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Kenji Yokogawa 

Recievcd 

Introduction. Let R be a commutative ring with identity, 

H a finite co-commutative Hopf algebra over R and A an 

If-Hopf Galois extension of R in the sense of [15]. When R 

is a field and II is a group ring RG, H-module structure is 
.the' . 

simply stated as Il-~mal basis theorem" and combined with the 
(the) 

theory of Galois algebras[8], [9). B~ormal basis theorem 

heavily depends on' the RG-isomorphism HomR ( RG, R ) :::: RG. 

Therefore, in considering Hopf Galois extensions,the correspo-

nding notion would be the dual normal basis theorem- an H-Hopf 
leof R) 

Galois extens~ isomorphic to H* = Hom
R

( H, R) as !-i-modules 

- of course this does not always hold. We shall call such one a 

Hopf Galois extension wit~dual normal basis. On the other hand, 

A.Nakajima[12], [13] examined the H-module structure under rather 

strong assumption H*"- H and obtained information concerning 

the relation between the generalized Harrison cohomology groups 

and Hopf Galois extensions. 

In this paper, we shall examine the H-module structure of 

Hopf Galois extensions and then shall establish the exact sequ-

ence inVOlving the isomorphism classes of Hopf Galois extensions, 

unit-valued Harrison cohomology groups and Pic-valued Harrison 

cohomology groups, but unfortunately we must essentially assume 

tha t H 1S, conIDmta ti ve for the cohomological nature. In 51, 
\.an..> 

we shall prove that~I-Hopf Galois extension A has a decom-
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posi tion A G:: 11* 0
11 

P as left II-modules with a rank 1 H-pro

jective module P satisfying some cohomological properties. 

In §2, we deal with the Hopf Galois extensions wit~ual nor-
a 

mal basis. In §3, we shall start fro~rank 1 H-projective 

module P with further cohomological properties and then con-

struct the Hopf Galois extension of R from P. Finally in 

54, using the results of 51, §2 and §3, we shall show that the 

isomorphism classes of Hopf Galois extensions of R forms an 

abelian group. In Appendix, we shall define the generalized 

1 
Barr ison cohomology groups (c. f. [12]) and then, follO\'/ing the 

idea of A.Hattori (6), [7] we construct the cohomology groups 

related to the generalized Harrison cohomology groups. 

Also we show that D2( H) is isomorphic to the group of iso-

morphism classes of H-Hopf Galois extensins of R using the 

results of previous sections. 

Througout this paper, R will denote a commutative ring 

with identity and II will be a finite co-commutative Hopf alg-

ebra over R. c (resp. !l resp. s) will denote the augu-

mentation (resp. diagonalization resp. antipode ) of H. Un-

adorned ® and Hom will mean 0n and Hom
R

• \ve shall denote 

by -* the functor HomR( -, R ). We shall deal with the various 

H-modules, H-H -bimodules, etc., so to indicate the module stru-

cture, we shall use the index notation. For instance, H Hom( 
1 

II Il l-l ' 
2 1 

means that 110m ( II, R ) is an II -H = 1 2 

H-H -bimodule by (h
l

fh
2

) (x) = f{h
2

xh
l
), h

l
,h2 ,x E H, f E Hom( H, R ) 

and the tensor product is taken with the right H2 = H -module 

Hom( H, R) and the left H2 = H -module P over H2 = H. 

Repeated tensor products of H will be denoted by exponents, 
,For) 

lIn = II ~ ... 0 II \<lith n-factors~ther notations and termi-

nologies we shall refer to [3J [ , 14 J and ( 15] . 
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1. Decomposition of Hopf Galois extensions 

First we shZlll review the definition of H-IIopf Galois ext-

ensions. Let an R-algebra A be a faithful finitely generated 

projective R-module which II measures and makes A an H-mo

dule algebra, thZlt is there exists an R-homomorphi'sm P 

II (') A ---? A wi th the properties; 

P (h e ab) := (h) P (h(1) 0 alp (h(2) ~ b) 

P (h ® 1) = ( (h), ( is an augumentation (if A has an 

identity) 

p(gh ® a) := p(g ® p(h 0 a», 'g,h i H, a,b E A. 

P (h ® a) is denoted by h'a or simply by ha. 

1\ is called an H-Hopf Galois extension of R if AH:= { a 

C A I h·a := C (h)a for any h c H} is equal to R and the 

homomorphism (I) : A 0 A-;.Hom( H, A) defined by [4~ (a 0 b)] (h) 

:= ah·b, a,b E A, h cHis an isomorphi~m. We shall call this homo
I 

morphism ¢ a fundamental homomorphism or a fundamental iso-

morphism if this homomorphism is an isomorphism. We know that 

H* is an H-HOP£ Galois extension of R ( c.f [3], [15]). As 

to II* ( with its canonical left ( resp. right) II-module stru-

cture HIiom( H
IJ

, R ) (resp. Hom( HH, R )II ), the isomorphism 

JIH*A- I 0 HH (resp. H*H "'- I' @ H
Ii

) with rank I R-projective 

module I (resp. I' is well-known {3], [11]. But unfortu-

nately, these isomorphisms are not necessarily H-H -bimodule 

isomorphisms. JIence we consider the following condition (#), 

which is automatically satisfied if II is a group ring or H 

is commutative. 

H* := II IIom( H HH ' R )H "- I ® H HII 
121 2 1 2 

as 

a 
I1-H -bimodules wit~ank 1 R-projective module I. 
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Proposition 1.1. If H satisfies the condition (I), then 

for any left !-I-module A, there exists the unique ( up to H-

isomorphisms) left H-module p such that is isomorphic to 

as left H = H-modules. 1 

Proof. Let n be HOIn
Hl 

( H*H
l

' Il~Hl ), then 

homothety. And by this isomorphism 

is isom-

orphic to H by 

cides with the original HH*. Since H* is a right H-progene-

ra tor, we get by Morita theory H A ~ H H* H ~I BomB ( 
1 122 3 

H H*H I 

3 2. 

H A ) 
3 

and HomH ( H B*H ' H A ) = P is uniquely determined 
3 3 2 3 

up to !-I-isomorphisms. This verifies the assertion. 

Corollary 1.2. Under the condition (I), let A be an H-

Hopf Galois extension of R, then in the decomposition H A 
1 

/'-_. 

H* ~ P of Proposition 1.1, P is a finitely generated 
. III H2 "'11 2 H2 

.faithful projective II-module. 

Proof. Since the Hopf Galois extension A of R is a 

left Il-progenerator ( [15] Cor.l.4.), P = H HomB { 
1 2 

is a 
c..fai~fuy 

finitely generated projective B-module by the condition 

(#). This verifies the assertion. 

NOW, for an H-Hopf Galois extension A of R, we have the 

fundamental isomorphism 

<P A ~ A /"'- Hom ( B I A ). 

Hence the left H-module P of the decomposition A A... H* fY\ P == '4-1 
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must satisfy some relations, which we next investigate.~. ~_~. 

left 

H, l\. 

Proposition 1.3. Under the assumption (#), let P be a 

H-module and 

and p 0 II 

\-I A = 
1 

as left 

H* 6{) P. We consider Hom( 
III H2 ~I2 H2 

H 0 \-I-modules by the formulas; 

[( 9 ®. h) f) (x) = (§) 9 ( 1) . f ( S (g (2) ) xh 

g 0 h ) ( p 0 x ) = (§) 9 ( 1) p B) hxS (g ( 2) ) 

g,h,x c H, f c 110m ( H, A ), pcP, S is ;·an antipode of H. 

Then H A ® H A is H ® H-isomorphic to Hom( H, A ), if and 
1 2 

only if, H P e H P is \-I ~ H-isomorphic to P ® H. 
1 2 

Proof. By the condition (#), A ® A is II ® H-isomorphic 

to (I 0 P ® ( I ® P) and with the given II ® H-module st-

ructures.J Hom ( II fA) is 11 @ H-isomorphic to I CD I 0 P c:;) II 

through the isomorphisms 1I0ln ( H, A ) A... Hom ( II, ll* C11 P ) c:::::-

( 11* °Il P ) o I-I* r--. « I ®II ) ~l P ) ® ( I @H ) C::::I ® I 0 P 011. 

'rhus A (3) A r-- Hom ( I I , A ) , if and only if, I @1 01' 0 P /"0-

I <8> I \9 P ® II. The later is equivalent to P 0 P c::: P <9 II since 

I is a rank 1 R-projective module. This verifies the assertion. 

When A is an H-Hopf Galois extension of R, the H 0 H-

module structure of Hom( H, A ) in Proposition 1.3 lS the one 

induced from that of A ® A through the fundamento.l isomorphism 

¢. As to that of l' 0 II, we have 

Proposi tion 1. 4. p 0 H vJ i th the 
<...2.iven..) 

H@ H-module struct~ 

Proposition 1.3 is H ® H-isomorphic to 
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where we consider H ® II as a right lI-module by the diagonal-

ization 6 : H ~ H ® H. 

Proof. \ve consider the homomorphisms a,S P 0 H ~ 
Ii ~ 11 ql P defined by a ( p ~ h ) == 1 0 h o p, 8 ( ( g 0 

h )0 p == (~) g(l)P e hS{g(2»' g,h E H,p E P. As easily 

checked, a and S are well-defined H ® H-homomorphisms 

and are inverse to each other. This verifies the assertion. 

I-I @H ®rl P in the above Proposition will be denoted 

a's II ®H ~ P. Also if Q is a left H-module and H ® II 

is regarded as a right I-I-module via 6 H ~ H ®H, then 

the tensor product Q ~i ( II ® H \vill be denoted uS Q ~H 
( II G H ). These notations will be used frequently in the 

seguel. 

In the next theorem, we use the terms of the generalized 

Harrison cohomology. As to them, we refer to [12) or Appendix 

of this paper. From now, the term cohomology will mean the 

generalized llarrison cohomology and cocycle,coboundary, etc. 

will mean that.of the generalized Harrison cohomology. 

Theorem 1.5. Under the assumption (C), an H-Hopf Galois 

extension A of R has a decomposition A""'" H* ~I P and 

there exists the H ® H-isomorphism ip: P 0 P /"'... ( H <8> H ) ~l 

P. If II is commutative, above P is a Pic-valued l-cocycle. 

Proof. For commutative H, we shu.ll show that P is a 

rank 1 H-projective module, then all will be settled. We 

localize the rela tion P ® P ~ ( II ® H ) ~ P and count the 

ru.nk of P, then we get that P is rank lover H. This 

completes the proof. 
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2. f 1 · ., l~d 1 . lIop Ga 01S extens10ns W1tl ua normal baS1S 

Let A be a left H-module algebra which is isomorphic 

to H* as left II-modules. Since the multiplication m: A 

o 1\ ~ 1\ is a left II-homomorphism (regarding 1\ ~ A as 

a left H-module via 6 ) and A /'-- H*, passing to dual we get 

the right H-homomorphism m* : II -7H ® H. m* is uniquely 

determined by m*(l) c II ® H, hence A is determined by m*(l) 

Conversely, from v = t v l . 0 V 2 .E II & H, we can form an 
1 1 

II-module algebra .H*( v (not. necessarily associative) as 

follows; 1-)* ( v ) == 11* as a left II-module, the mul tiplica tion 

is given by f·g) (x) == i~(x) f( vlix(l) )g( v
2i

x(2) ), f,g 

c H*, x E H. As easily proved, H*( v) is an H-module 

algebra. Thus 1\ == H*( m*(l) ) in this sense. 

Since A is an assoiative algebra, the following diagram co-

mmutcs. 

A&J1\(S)A m01,> A0A 

(2.1) 110m 1 m 

1\ 0 A --------~---------;. A 

Passing to dual, the commutativity of the above diagram (2.1) 

is equivalent to the commutativity of the following diagram. 

H 0 H 0 H .t...---~~-- ~ __ .L_ Ii 0 H 

(2.2) 11 (9 m* f m' 
m* H 0 II (-----. -.. H 

Now we define the algebra homomorphisms 6~ H 0II~ H 0H o H 
1 

( i = 0,1,2,3 by 6
2

( v ) == 1 ® v, 6
2

( v == (6 0 1 ) ( v ) 
0 1 

112( v ) == ( 10 6 ) ( v ) , 6 2 ( v ) == v <Zl 1, v € H ® H. 2 3 
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Then the commutativity of (2,2) means 6~{ m*{l) )6;{ m*{l) ) 

= 6;( m*{l) )6i{ m*{l) ). Thus we get the following 

Proposition 2.1. A 1S an associative H-module algebra 

not necessarily with identity ) which is isomorphic to H* 

as left H-modules, if and only if, A = ll* ( v ) \'li th v ( II @ Ii 

satisfying 6~( v )6;{ v ) = 6;( v )6i( v ) 

Next we shall consider the condition of v which guarantees 

tha t 11* ( v is an H-I1opf Galois extension of R. 

Lemma 2.2. For v = r v!. G9 v 2 . E Ii ® H, the following 
1 1 

diagram is conUllUta ti ve. 

H*( v) ®I1*( 

1 v' 

v ) 
¢ , 

------7 Hom
H 

( H ® 11 I H* ( v ) ) 

~I\ e 
(1l0I1)* II @H ) )* 

where H 0 II is regarded as a left II-module via 6, and the 

homomorphisms are defined by [[ <P' ( f 0 g ») ( x ® y») (z = 

i;(z) f( vl.z(l)x )g( v 2 .z(2)Y ), 
1 1 

[O( L ») ( x 0 ( y 0 z » = 

[ L ( y t:O Z ) ) ( x ), [ v* ( f ~ g ») ( x 0 y = ~ f( VI x )g( v 2 .Y ), 
1 i 1 

f,g c H*{ v ) = H*, L c Homu { H ® H, H*{ 'v ), X'YIZ, EO H, 

can. is the usual canonical isomorphism. 

Proof. This is an easy computation. 

'rheorem' 2,. '3. A = H*( v ), V EO H ® H is an H-Hopf 

Galois extension of R, if and only if, 6~{ v )6;( v ) = 
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~ ~ ( v ) /\ i ( v) and vis a uni t 0 f II 0 II • 

Proof. Let a,S 

<_-;-> !lom ( Ii, !l* ( v ) 

be the homomorphi'sms BomB { II <:0 II, H* ( v ) 
1 

def ined by [a ( 9 )] ( x ) = g ( 1 0 x ) I 

[ G( f ) ] ( x 0y 

o II, H * ( v ) ), f ( Hom { H, II * ( v ) ), x, Y E H. a and B 

are well-defined homomorphisms and are inverse to each other. 

The commutativity of the following diagram is easily proved. 

11* ( v ) 0 11* ( v ) ____ . .P_~ Born ( H @ H, H* ( v ) ) 

~ 
.!~- _______ :or 

q)., .. , .. C;., ___ ~ 13 
L-' ,..---

Hom ( H, II* ( v ) ) 
ldef~ 

,."here q) , is the homomorphiSffiY1n- Lemma 2.2 and cp is the 

fundamental homomorphism of the II-module algebra II*( v ). 

Thus, if A = H*( v ) is an H-Hopf Galois extension of R, 

then l)), so l))' is an isomorphism. By Lemma 2.2, this claims 

that v* is an isomorphism, hence that v is a unit. 

Conversely we assume that v = ~ vI. ® v 2 . is a unit and 
1. 1. 1. 

222 ( v ) 6
2 

( v ) = /\3 ( v ) 6
1 

( v ). Then Ii* ( v is an associ-

ative H-module algebra and by the above arguments, ¢ is 

has an identity, an isomorphism. We shall show that H*( v 

then AlI is automatically equal to R c.f. [15) Prop. 1.2 ). 

Thus A = H*( v ) is an H-Hopf Galois extension of R. 

2 
Applying 1.0 c 0 1 on the both sides of; 6

0
{ 

and then cancel v. \-ve get 

= L: vI. ® d v 2 . ) . Further applying 1 0 c 
i 1. 1. 

sides, we get 

(2.3) ~ c ( v l . v 2 . ) = E vI. c ( v 2 . 
1. 1. 1. i 1. 1. 

( 2 .4) L c ( vI. ) v 2. = L c ( v l .v2 . 
i 1. 1. i 1. 1. 

- 9 -
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shall c ( ( L 
-1 ) c H* \ve put e ::: v1. v 2. ) to ::: H* ( v ) . Then 

i l l 

for any f E 11*( v ) and for any x c H, we have 

( f·e ) ( x ) ::: L: f ( v I .x(l) ) c ( v 2 .x(2) (x) ,j 
J J 

[ f ( ) c ( ( E 
-1 

) £ ( ::: vl.x(l) v l .v2 . ) v 2 .x(2) (x) ,i,j 
J i l l J 

L: f ( c ( ) c ( ( E -1 )x ) , ::: vI. v 2 . v l .v2 . ) 
j J J i l l 

which is equal to f ( x ) by ( 2 . 3) Similarly, we get 

( e·f ) ( x ) ::: f( x) by (2.4). Thus, e is an identity of 

H*( v and for x ( H, xe ::: c( x)e Iol1ows readily. This 

completes the proof. 

Let A,B 
~n) 
b~i-module algebra, then means that 

there exists an algebra isomorphism A ~ B which preserves 

II-actions. 

Theorem 2.4. Two I1-Hopf Galois extensions of R \"i th a 

dual normal basis H*( v ), H*( Vi) are isomorphic, if and 

only if, there exists a unit w E H such that v~( w ) ::: 

(w0w)v ' . 

Thus, if H is commutative, the isomorphism classes of H-Hopf 

~ Galois extensions of R with dual normal basis is set th00rf.!t-

ically isomorphic to the unit-valued 2-cohomology group. 

Proof. The existence of the left H-isomorphism T): H*( v ) 

-::::::::::- H* ( v I is equivalent to the existence of the right Il-iso-

morphism n* : H ::: ( 1-1*( Vi ) )* C::::: ( H*( v ) )* ::: H. The later 

is uniquely determined by the unit w::: T)*( 1 ) e H. 
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The conunuta ti vi ty of the diagram 

H*( v o H* ( v 
n IS> n 
~_ H*( VI ) ®H*( VI 

( 2 .5) 1 mul ti. 

11 * ( v )~_~:~." n ~ _ ~_~"-

1 multi. 

H* ( v I ) 

lS equivalent to the commutativity of the diagram 

n* iC\ n* 
(11*( v»* 0 (11*( v »* __ ~C~ (H*( VI »* ~ (H*( VI »* 

( 2 • 6 ) 1 ~ ( v t 9. ( v~) 
II == (H*( v»* 

where [~( v )] ( x ) == vt:. ( x ), [~( v I )] ( x ) == V It:. ( x ), X E H. 

Since [9.( v )n*] ( 1 == vt:.( w and [n* @ n* 9.( VI )] ( 1 ) 

== ( w 0 w )v', the commutativity of (2.6) is equivalent to 

vt:.( w ) == ( w ~ W )v l
• From Proposition 2.3 and the definitipn 

of cohomology, the assertion about cohomology follows readily. 

This completes the proof. 

1 
Remark. In 54, we shall define the product on the isom-

orphism classes of Hopf Galois extensions oL_. R, .. tind then. \ve shall 

show that the isomorphism of Theorem 2.4 is a ~roup isomorphism. 
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3. General Hopf Galois extensions. 

Let P be a finitely generated faithful projective H-mo-

dule \\lith an 2 t-. 
" h" x P M P ( Ii -lsomorp lsm 'l' 'd /"'- Ii ® H ) ~ P. If 

II is commutative such (P,iji is a Pic-valued l-cocycle. 

By abuse the language, we shall call such (P,iji) a Pic-valued 

l-cocycle even if H is not commutative. 

Let ( P,~) be a Pic-valued l-cocycle. Then we have a 

chuin of i~omcrphisms 

1 0 iji 

c:::= -

1 '0 iji 

~t-. 
H2 

« H 0 

P0«II{9H 
t-. 
0

11 
P) 

H ) 
t-. 

0rI P = 

( t-. ® ~)t-. P 

iji -1 0 1 

l~-l H3 {j, ~ 1 ( P & P ) 
0H2 

{j, 

= « H & II ) <b>1I P ) ® P ----- P ® P ® P. 

Composing these isomorphisms, \\Ie get an a~tomorphisrn of 

P 13> P ® P, \\Ihich we shall denote by u ( P, iji ) . \\1hen B is 

COllunu ta ti ve I u ( P,~ is an 
3

1
, 

II -automorp 1lsm of P 0 P ~ r 

and \Ye 8hnll regard u ( P/iji ) as a unit of H3 by homothety. 

Lemma 3.1. If H is commutative , then for a Pic-valued 

l-cocycle (P, <Ii) and a unit v of 11 2 , we have u( P, viji) 

= d(v)u( P, <Ii) (d is a coboundary operator ) and u ( P I ~) 

is a unit-valued 3-cocycle. 

Proof. The assertion follows by easy computations and usual 

localization technique. 

Theorem 3.2. Let H be commutative and (P,iji) be a 

Pic-valued l-cocycle , then A = H* 0 P 
B 

has a structure of 

an II-Hopf Galois extension of R, if and only if, u( P, iji) 

is a 3-coboundary. 
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Proof. First we shall prove only if part. Let ¢ be 

the fundamental isomorphism A 0 A -::: IIom( H, A ). Then \.,.e have 

2 . h.;):' 2 b. :r. the H -lsomorp 1sm \1' : P 0 P /'.. II ~J P by 'I'heorem 1.5. (I) I 

may differ from the given ¢, but Lemma 3.1 ensures that the 

differnce between u( P, iji') and u( P,iji) is a 3-coboundary. 

So we may assume ~'== iji and we have the following conunutative 

diagram. 

A 0 A -----cjL----;r Hom ( H, A ) 

\ \ 
)\\ can. 

( H* ®H P ) ® H* 

(3.1 ) H* «1i P ) 6) ( H* ®rl P ) )11 can. 

)11 can. 

I ~ I @ P @ H 

)\\ by Prop. 1. 4. 
1 ~ 1 ~ ~ 

( H2 
11 

I ~ IQP<-) P -------]> I 0 I ~P 

We shall show thilt u ( P, iji ) = 1 o 1 0 1 E H3. For this pur-

pose, we may assume that R is a local ring, hence H* == eH 

== lie, e is a free basis as an H-I1-bimodule. ~'1e consider the 

following diagrams ( they are conunutative but the conunutativity 

(lie &11 P) (i) (He 0
H 

P) ~~ 
"> Hom( H, He «iI P ) 

(3.2) II la 
1 0 iji b. 

(lIe 0 l1e) Q 
H2 

( P ~ P ) > (He o He) ~I P 

(He. ® He 0 He) o .3 (P 0 P (& P) == (He ~-I P)®(He 0
H P) @(He ~ P) 

H 
ly ll&(l&<)i 

(lIe ql P) 0 
b. 

( 3 . 3 ) «He e He) q! P} Hom( H ® H, He «\-1 P 

ll~ b. 1 ® iji fs (1 lY /j)b. 
(He (9 He 0 He) o 2 (P ® P) ) (He ~ He <9 He) ~-I 

p 

II 
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(lie ~ lie C:O lie) ~ (P 0 1) 0 P) = (lie @II P) 0{Ile 0
H 

P)0(I-Ic ~ P) 
II3 

J 1 m( ~ 0 1 ly 
1:1 

( 3 . 4 ) (He 0 He) ~ P) ® (He 0
H 

P) Hom( H@ H, He ~ P 

II tB 
t, 0 1 1 o ~ (1:1 o 1) t, 

(He 0 lie 0 IIe) o 2 
H 

(P 18> P) > (He o He e He) ~I P 

where a is .defined by [a({xe 0 ye) ~ p)] (h) = (~) e ® 

e{hyS(x(2»)x{l)p, (3 is defined by B[(xe @ye ® ze) 18> pJ (g 60 h) 
. 

= (x)7(y) e (S) e{gY(l)s(x(2»)e(hzS{Y(2)})x(l)P, y is defined 

by [y «e 0 Pl) 0 (e ® P2) {9 (e ® P3»] (g ® h) = (e ()? PI)' 

g{(e @ P
2 ) 'h(e <y P 3 » (product in He ~ P = H* ®rl P) I P,P

l
, 

P2,P
3 

€ P, x,y,z,g,h E: H. 

(3.2) is a loculized diagram of (3.1) and by the similar 

methods to Proposition 1.3,1.4, -B is a well-defined isomor-

phism. We shall compute B· (1 0 ~). (1 0 (l ® ~». For (e 0 P
l

) 

o (e 0 P2) 0 (e ~ P 3 ) € (He ®II P) I1t (He ~-! P) @ (He ~I P), we 

2 1:1 
q) (P2 ® P 3 ) = f (l 0 pi,) 0 Pj. € H ~I P (we may 

1 1 

shall put 

assullIe that t11C first term of 112 is 1 by 

und we shall put 

Proposition 1.4 ) 

2 1:1 = L (1 0 pi) 0 p" E: H ~l P. 
j 1. 3.. 1-

J 1J 

Then from the commutativity of (3.2), we get 

(3 • 5) (0 (YP
2
)'(e 0 hP

3
) = L e ® e(hPi.)pj. , h E: H. 

i 1 1 

(3. 6) (e @P1)'(e® hpi ) = E e@e(hpl )p" , h ( H. 
3. J 1, 3 .. 

2 , ,1 J 1J 
Since 9 is an II -lsomorphlsm, ~ ( L g(1)P2 ® g(2)hP3 

) = 
(g) 

L 9 (1) @ g(2)hP2, ) ® Pj. ' which is equal to L 
(g) , i . 1 l (g) , i 

( 1 ® 9(1)hPi.S(g{2» ) ® g(3)P3. ' 9 E: H. e is a basis of 
1 l 

1I* as an I1-rI -bimodule , so e (gh) = (eg) (h) = {gel (h) = e (hg) 

for any g,h (11. Thus we get for 9 E: H, r E R; 
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(3.5)' 1: (e 0 9 (1)P 2 )' (e (:y 9 (2)hP3 ) = 1: e ~ 
(g) i, (g) 

e(g(1)hP2iS(<J(2»)9(J)Pji =~ f eee(hP;i)g~3i' 
(3.6) I (c 0 Pl ). (e 0 hrpj.) = ~ e & re(hpi.)PJ .. , 

1) ) 1) 

'rhus [«(3. (1 ~ ifl)· (1 0 (1 (9 ifl») «e ® Pl)®(e 69 P 2 )O(e ~ P 3»] (g @ h) 

= [(3 (1: (1 ~ P
l
' .@p'PI)®p"»)(g@h) 

•• ( I ) 2. 1. 3 .. 
1,J, Pl. J(1) 1 J(2) 1) 

) 

= . E ( I ) e 0 e(gp' )e(hp' p' S(p' »p" 
1,), P 1. 2. 1. 1. 3 .. 

lj )(1) 1 )(2) )(3) 1) 

o e(gp' )e(hp' )p" . 
1. 2. 3 .. 

) 1 1) 

= 1: e 
i,j 

By (3.5) , and (3.6)', this is equal to 

1: (e ® 
1 

Pl)' (e ® e( hp 2.)gP3.) 
1 1 

= (e 0 PI)'( (~) (e0g(1)P2)'(e®g(2)hP 3 ) 

= (e0 Pl)'(g«e 0 P 2 )·h(e 0 P3»)· 

Similarly, [( G' (l 0 if»' (1 Q) (q; 0 1») «e ® PI) ® (e 0 P
2

) ~ 

(e0 P
3 »)(90 h ) = 1: «e0Pl)'(eCllg(1)P2»'(e®g(2)hP3)' 

(g) 

Since A is an associative algebra, (3. (1 ® ifl)· (1 ~ (1 0 ~» 

= (3. (1 (:0 ill)' (1 () (if> (9 1» I which claims that u( P, (j) ) = 

I ® 1 ® 1 (H
3 

as desired. 

Conversely, let P, if» be a Pic-valued 1-cocycle and assume 

that u( P, ~) is a unit-valued 3-coboundary. We may alter 

by with the suitable unit V E: Hence we may assume 

u ( P, if> 
3 = 1 @ 1 & 1 E: H. \ve shall put A = H* '1-t P " Il* = 

I ® H. From 0, we make ~ : A ~ A ~Hom( H, A) such that 

the diagram (3.1) commutes. He define the product of A by 

a·b = [¢ (a 6) b) 1 (1), 1 E H, a,b E A. By the above arguments, 
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u ( P, ~) = 1 0 1 <& 1 claims that this' product is associative 
1 

and makes A an H-module algebras with the fundamental isom-

orphism ~. Only the existence of identity is not yet valid. 

We make the smash product A # H ( A # H = A ® H as an R-module 

we write a # h rather than a 0 h , the-product is defined by 

a # g ; b # h = (~) ag (1) b jf g (2) h , a, b E A, g, h elI) and 

consider the homomorphism W A # H-;dlom{ A, A) defined by 

[w (a # h)] (b) = ah·b. Locally A is an associative H-module 
a 

algebra wit~dual normal basis, hence by Proposition 2.1 A = 

II * ( v ). From the proof of Theorem 2.3, that q) is an isomo-

rphism claims that v is a unit and A has an identity. 

Thus locally A lS an H-Hopf Galois extension with identity. 

IIence W is an isomorphism locally (c. f. [15] Theorem 1.1), so 

globally. Let }1 ( >: a. jf h. ) 
ill 

be an identity of Hom( A, A ). 

Since [a. 11 h. 
i J. J. 

contained in A 

is contained in A 

globally and ~ a. 
J. 1. 

locally, 

# h. is a 
1. 

La. # h. is 
i 1. J. 

left identity 

of A. By localization, [ a. B h. is a right identity of A. 
i 1. 1. 

'1'his completes the proof. 

Let II be merely a finite Hopf algebra satisfying the con-

clition ( # ) and ( P, ~) be a Pic-valued l-cocycle. From the 

above proof, if A = 11* ~II P has a structure of an H-Hopf 

Galois extension of R, then we can chose the cocycle condition 

isomorphism if> to satisfy that u( P, q; ) is an identity auto-

morphism of p 0 P ® P. Conversely if u( P, ~ ) is an identity 

automorphism of P ~P0 P, then we can make A = H* 0 H 
P an 

associative II-module algebra ( it may not have an identity -
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the commutativity of H is used only to ensure the existence 

of an identity of A) with the fundamental isomorphism ~: 

A ~ A ~ Hom ( H, A ). Instead of localization techniques, passing 

to the residue class field, we can prove the existence of an 

identity as follows; 

Theorem 3.3. Let H be a finite ( of course co-cornmuta-

tive) Hopf algebra which satisfies the condition (#) and let 

A = H* 0H P 

can chose an 

that u ( P, 

Conversely, 

that u ( P, 

Then A ::: H* 

sian of R. 

be an H-Hopf Galois extension of R. Then we 

2 , h' H -J.somorp J.sm 
fj 

( H ® H ) ®H P to satisfy 

qi is an identity automorphism of P 0 P ® P. 

let ( P, qi) be a Pic-valued l-cocycle and assume 

qi ) is an identity. automorphism of P ® P ® P. 

®H P has a structure of an H-Hopf Galois exten-

Proof. Only the existence of an identity of A = H* ®u P 

should be proved. We make the smash product A # Hand con-

sider the homomorphism ~ : A # H ~Hom( A, A as the proof 

of Theorem 3.2. We shall show that ~ is an isomorphism. 

For this purpose, we may assume that R is a local ring, fur-

ther by Nakayama's lemma we may assume that R is a field 

since A # Hand Hom( A, A are finitely generated pro-

jective R-modules. From qi I we have the isomorphism cp: 

( He ~ P ) 0 ( He ~H P ) ~ Hom ( H, He ~ P ), where e is a basis 

of H* • ~le shall· regard (He 0H P ) 0 ( He ~H P) as a left 

H-module via the second term and regard Hom( H, He ®H P as 

a left H-module by HHom ( HH' He e>H P ).' Then cp is a left 

H-homomorphism. As left H-modules, the former is a direct sum 

of dimR P -copies of P and the latter is a direct sum of 

- 17 -



dim
R 

P -copies of H*, which is isomorphic to the direct sum 

of dimR P -copies of H. Since H is a finite dimensional 

algebra over a field R we get P ~ H as left H-modules by 

Krull-Schmidt theorem. This means that A has a dual normal 

basis, hence A has an identity by Theorem 2.3 and ~ is 

an isomorphism. 

Thus ~ is an isomorphism for a general commutative ring R. 

let ~ (a be an identity of Hom ( A,r A ). Then by Nakayama's 

lemma, a is contained in A and a fs a left identity of A. 

Again by Nakayama's lemma, a is a right identity of A. Thus 

A has an identity element. This completes the proof. 

Corollary 3.4. If H is a group ring RG over a field 

R. Then any RG-Hopf Galois extension A of R ( hence the 

usual Galois extension with the Galois group G) has a dual 

normal basis, therefore A has a normal basis. 

Proof. That A has a dual normal basis is proved in the 

proof of Theorem 3.3. Considering the H-H -bimodule isomor-

phism n: H = RG~H* = Hom( RG, R defined by [n(o)] (T) 

= 0 (Kronecker delta) O,T € G, the assertion follows. 
O-l,T 

Now, we shall assume that H is commutative and shall 

investigate when two H-Hopf Galois extensions of R, A = H* ~ (ji 
1/ 11 (jiB H2 

11 
B = H* 0 Q ( P ® P ~ «if P, Q® Q ~ ~ Q, u( P, ijiA ) 

H 

= u ( Q, (jiB ) =101®1 € H3 ) are isomorphic. By Proposition 

P, 

1.1, if A and B are isomorphic then P:;:Q ( we shall identify 

p and Q ) . Let t;. be the isomorphism A = H* ~I P ~ B = 
II* ~I P, then t;. induces an 
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automorphism of P, which we shall denote by w( ~} and we 

sometimes regard w( ~) as a unit of H by homothety. ~ 

commutes with the multiplications of A and B, so w( ~ 

conunutes wi th (lJ 
'A and That is the following diagram 

is commutative. 

(3.7) 

Since qiA 

1 ~w(';) 

of (3.7) 

~A !1 
p 
~ p ---._----) (II o Ii) 0 H 

p 

1 w (~) 0 w (t;) t 1 ®w(l:) 
qi !1 

p B ® H) p vy p ------------> (H ~ 
and ~ B 

are 2 . h' H -lsomorp lsms and the isomorphism 

is a left homothety by 

claims that qi q; -1 = 
A B 

!1(\1(l:)) , the commutativity 

!1(w(~}) -1 (w(,;) (\l w(s)) or 

eguivalently e/iA q; 
-1 

d ( w(l:)), d is coboundary operator. = a 
. B 

Conversely, if such w (s) exists, we can easily make the iso-

morphism S : 11* 0 H 
P f":; II * ~I P. Thus we get 

Theorem 3.5. Let H be a commutative Hopf algebra, A = 

11* 01-1 P 

with CPl\ 

and 

p 0 

B = H* ~I Q 
2 !1 

P~H 10. P - '-"'II 

be 

and 

H-Hopf Galois extensions of R 

2 !1 
Q ® Q /'- H ~I Q, u ( P, ;p A 

~ u ( P, q;B = 1 0 1 ® 1. Then A is isomorphic to B, if 

and only if, p ~ Q and 
-1 

~Aq,D is a unit-valued 2-cobound-

ary. 

IIere we can review the results of § 2. ~'1e assume that 

II is commutative. Let A = II* 0
H 

P be an H-Hopf Galois 

extension of II. 

3.2, there exists 

with a dual normal basis, 

q; H 0 II ~ H2 £ H = 
H 

- 19 -

so P (::::- H. By Theorem 

H @H with u( H, ~ ) 



= 1 ®l~l. ~ is a homothety by a unit v of H2. u( H, v 

-1 -1 
u{ = v o 1 ) • { (6 (3) l){v ».(1 ~ 1'1) {v»·{l &v). Thus H, 

= 1 ® 1 @l claims that v is a unit valued 2-cocycle. As 

easily proved, the product of A = H* ~I H defined by Theorem 

3.2 is same CIS that of 11*( v ). 

Similarly Theorem 3.5 deduces Theorem 2.4 when P ~ II. 

- 20 -
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4. The isomorphism clLlsses of lIopE GLllois extensions 

Throughout this section I \.,e assume that H is conunu ta ti ve . 

First we shall prove two Lemmas, and then we shall prove 

that the isomorphism classes of H-Hopf Galois extensions of 

R - which we shall denote by E( Ii )- forms an abelian group. 

Lemma 4.1. (c.f. (13) Lemma 2.5) Let m: G ---7H be a homo-

morphism of finite Hopf algebras and let A be a G-Hopf Galois 

extension of R. Then Hom
G

( H, A ) is an II-Hopf Galois ext-

ension of R, where the mUltiplication on HHom
G

( Hil' A) is 

defined by the formula; 

(f 1 • f 2) ( x ) = (~) f 1 ( x (1) ). f 2 ( x ( 2) ), f 1 ' f 2 E: HomG ( 

1l,l\),xE:II. 

Proof. c is an identity of Ilom
G 

( H, A') and. 1l0m
G 

( H, 

A) is an associative H-module algebra. We shall consider 

the following diagram. 

(/) , 
IIOln

G 
( H, A ) 0 I10m

G 
( II I A ) -~~> Hom ( Ii,' HOln

G 
( If, A ) ) 

)11 can. 

(4.1) BOn1
G 

® G ( H 0 H I A 0 A 

)!(HomG2 ( H2 I cP 

ex 
IlomG 0 G ( H @ H I 110m ( G I A ) ) -----7 HomG ( Gli 0 H I A 

\.,here q) is the fundamental isomorphism A ® A ::::. Hom ( G I A 

and ¢' 1S the fundamental homomorphism of an Ii-module alg-

ebra Hom
G

( II I A ) . ex is defined by 

[ex(T)](X ~ y) = L 
( x) 

[T ( X (1) ® x(2)Y ) ] ( 1 ) I 

l,x,y c H, T ( HOln
G @ G( H o II, Hom( G, A ) ) . As easily. che-

cked, (4. 1) is a conunutative diagram. ex 1S an isomorphism 

- the inverse 
-1 

ex is given by the formula; 
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[(a- l ( v )) (x G y)] ( z 

v ( 1I0mG( GIl 0 II, A ), x,y r. II, z (G. Thus ql' is an isom-

orphism. So I1om
G

( H, A ) is an 1I-lIopf Galois extension of 

R as desired. 

Lemma 4.2. Let A. be an H.-Hopf Galois extension of 
~ ~ 

R (i=1,2), then Al 0 A2 is an III \9 H2-Hopf Galois exten

sion of R. 

Proof. The tensor product of the fundamental isomorphisms of 

Al ahd A2 will give the fundamental isomorphism of Al 0 A2 · 

\..Jell, the multiplication m: H 6) II ---=;,.H is a homomorphism 

of Hopf algebras. Let A,B be an II-Hopf Galois extension of 

R, we shall define 

A . 13 = HomIl 0 H ( II, A 0 13 ) 

\oJhich is an I1-Ilopf Galois extension of R by Lenuna 4.1 and 

4 • 2 • 

13y the image of 1 (H, A·13 is characterized as follows; 

Lenmw <1 .3. Let A,B be an Il-Ilopf Galois extension of R, 

then A'B = IlOJl1
11 II ( H, A e>13 ~s isomorphic to {l: a. o b. 

&1 ~ ~ 

( A 0 13 I ~ ha. G b. = L a. <) hb. for any h ( H }. 
~ ~ ~ i ~ ~ 

\-Je shall denote { L a. ® b. ( A 0 13 I L ha. @ b. = L a. @ 
i ~ ~ i ~ ~ i l 

hb. 
~ 

for any h ( H } by ( A fO\ 13 ) H _ I th 1 . 11 ~ n e segue , we Wl 

pass freely between A-B and 
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By this product, E( H ) forms an abelian semi-group. 

Proposition 01.4. Let A = H*( v ), B = H*( Vi) be an 

H-Hopf Galois extension of R with dual normal basis. Then 

11* ( v ). H* ( v' ) "- 11* ( vv' ). 

Proof. First we shall shm.,7 that II* ( v ) 'H* ( v' ) is 1S0-

morphic to 11*( vv·) as left II-modules. We define the homo-

morphisms a, B : ( H* ( v ) ® H* ( v' ) ) II~----r~ 11* ( vv' ) 

by the formulas 

[a (f 1 0 f 2) ] ( x 

[8( f )]( x 0y 

= fl ( x )f 2 ( 1 ) 

= f( xy ) 

f 1 0 f 2 ( (II * ( v ) G?> H * ( V I )) H I f £ II * ( vv' ) I 1, x ,y E • II . 

It is easily checked that a and B are well-defined left 

II-homomorphisms and are inverse to each other. That a gives 

an isomorphism of II-module algebras can be proved by strait

forward but laborious calculations. This completes the proof. 

From Proposition 4.4 and Theorem 2.4, we get 

Corollary 4.5. The group of the isomorphism classes of 

iI-Hopf Galois extensions of R with dual normal basis is iso

morphic to the unit-valued 2-cohomology group as abelian CJroups. 

Theorem 4 .6. Let P, ~p ) , ( Q, iliQ ) be a Pic-valued 

l-cocycle with u ( P, rpp ) ;::: u ( Q, qlQ ) = 1 ® 1 0 1, and let 

l\ = 1-1* ~1 p, B = II* ~I Q be an H-Hopf Galois extension of 
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R induced from P,Q respectively. Then A·n is an II-Hopf 

Galois extension of R induced from a Pic-valued l-cocycle 

( P 0 11 Q, ~P 0 2 ~Q ) • 
I-I 

Especially, the isomorphism classes of I1-Ilopf Galois exten-

sions of R E( II ) forms an abelian gr6up. 

Proof. We shall define the homomorphisms a', 8' (A0 

13 ) H a' > H* CZl (p 6?l Q) by the formula,· <-(3-'''- VII II 

a' ( (f 1 0 p) 0 (f
2 

@ q) ) = a(f l 0 f 2 ) ® (p 0 g) 

S' (f ~ (p 0 q)) = I (fl. @ p) ~ (f 2 . ® q) 
l l 

if S ( f ) = [ 
i 

flo 
l 

where a, S is the homomorphism in Proposition 4.4, f l ,f 2 ,f1 ., 

f E H*, PEP, q E Q. 2. 
l 

As easily checked, a l and (3 I 

well-defined left H-homomorphisms and are inverse to each 

are 

other. To see that a' is an isomorphism of "-module alg
_<...i t) 

ebras, we may localiz~ Then Proposition 4.4 ensures that 

Ct' is an isomorphism of H-module algebras. 

NO\.; , tha t E ( II ) forms an abelian group with identity H* 

follows readily. This verifies the assertion. 

- ~4 -
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Appendix 

Throughout we assume that II is commutative. 

First we shall define the generalized Harrison cohomology. 

Let 
I 

II ~ I 67 ( i = 1 , 2 I ••• , n) I 6 ~ + 1 : H n -----:> H n + 1 (n~, 0) 

be the algebra homomorphism defined by the formulas; 

® x e 1, x. ( II. n l 

means R and we note that coincides with the 

unit map R-;..I1. 

Let U 

group 

-)U( 

by the 

d 
n 

denote the unit functor and Pic denote the Picard 

functor. 6~ (i=O,l,···,n+l) yields functors U( H
n 

I1 n+ l 

same 

: U ( 

l 

) , Pic( Hn 
) -~Pic ( II n+ l 

) , which 

letter 6~. We shall define 
l 

we shall denote 

Hn ) -7 U ( Hn + 1 ), d
n 

: Pic ( lin ) -rP ic ( Hn+ 1 

as the alternate sum of 6~ (we use the same letter d or 
l n 

simply d, it would not make confusions). We remark that 

dO is a zero homomorphism. 

Since c1
2 = d d = 0 , we can define cochain complexes C( 

n+l n 

= { U( Hn 
) I d } and C ( B, pic ) ::: { Pic( Hn) , __ d n } n2:,O . n n2;,O 

The n-th cohomology group Ker( d
n 

)/ Im( d
n

- l (n~l) of 

H, 

C( II, U ), C( I-I, Pic) is denoted by IIn( H, U ), -lIn ( H, pic 

respectively, and will be called the unit-valued (resp. Pic-

- 25 -
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valued) generalized Harrison cohomology group. The O-th co-

homology group is defined as lIO( II , U ) = Ker( dO ) = U ( R ) , 

HO( H, Pic ) = Ker ( dO ) = Pic( R ) . 
Next, we proceed toward the definition of groups U

n
( H ) 

parallel with Hattori [6), (7). Let Pic( lIn ) be the cate-

gory of projective lIn-modules of rank 1 (n=O,l,"') This 

is a category with product o . In this Appendix, P* denotes 
Hn 

the lin-dual module of P c p,{. c ( !-In ) unless otherwise stated. 

lIenee P* c Pic ( lIn ) . 
Similar to the case of Pic-valued cohomology groups, 

yields the functor 

lIence we also define d 
n 

P,tC ( Ifn ) --7P,{.c ( 

as the 

alternate sum of n 
!:J .• 

l 
Let f : P ~Q be an isomorphism in 

. n p,( c (11 ) and let !:J~f* 
J. 

be 

the canonical isomorphism induced from f, then d f 
n 

is de-

fined as !:Jn f o L'lnf* ~ ... : d P"--d Q. 

° 1 n n 

'l'here exists a canonical isomorphism I 
n+l 

: dfI n /,-- I1 n + l , th-

rough which we identify dlI n \.;i th IIn+l. ~\1e also identify 

n+2 h h . II throug t e composlte of the canonical iso-

morphisms 
dI I 

d 211n ~+l dlln+~!.2 II n + 2 
-- --

P ( Pic( fIn ), we have a canonical isomorphism For any 

::::::: !-I n + 2 given by contracting all dual pairs appearing in the 

expression of d 2P. This isomorphism d 2P::::: Hn + 2 will be 
i 

\oJr i t ten as c p in the scqual. For f: P;;:;' Q I the following 

diagram is commutative: 
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d 2p __ ... _~p . _____ ) 

1 d 2
f 

2 c d Q - ... -.-.- ....... Q .. - ... ----.-) 

d 211n 
dI n + l dH n+1 I 

I!n+2 In particular, the composite '"'+2 ~ ~ 

(through which we identified d 2Hn with Hn+2) coincides with 

c : d211n~ Hn+2. An automorphism of P ( P.t c. ( lIn ) is given 
lin 

by a unit u L l!n by homothety, which we shall denote by the 

same letter u. For P ' n P C .le. (H ), we shall denote the iso-

morphism class of P by I pi c Pic( Bn 
} . 

Let n > 1 , 
:..::; 

P, P ) denotes a pair of a module p ( P.i, c. 

lI n- l 
) such that I P I is a Pic-valued n-l - cocycle and 

a cocycle condition isomorphism n p : dP·/'... H • An isomorphism 

i 
P, P )"- (PI, p' is an isomorphism f : P /\,.. pI such that 

the follm-ling diagram commutes: 

P dP ---.-.-----.. ---) 

J d£ 
• p' dP - ____ .. _ ..... _. __ ......... -..... -..... ~ 

We shall denote the category of these pairs and isomorphisms 

pn( II ). This is a category with product defined naturally by 

( P, P ) . ( 0, q ) = ( P 0 0, P (il n q ) 
Hn - l 

H 

The set of isomorphism classes I ( P, P ) I of ( P, P ) C 

pI: (H ) forms an abelian group, which \-Ie shall write lP'~(H ) . 
\ve shall denote by Zn( I-I ) the subgroup of llf;( II ) consist-

ing of all I ( P, P ) I satisfying dp = c p ' and by an
( H 

the set of all I ( dP, c p ) I (P c P.i c. ( Hn - 2 
) ) . For n = 1, 

we shall put lIt 1 ( H ) = { I ( R, 11 ) I } . Since dcp = c dp ' Sn( 

- 27 -
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is a subgroup of Zn( H ) and He have the groups 

lIne II ) :::: zl1( II )/ nn( II 

for n :::: 0, we put zOe II :::: u " U( R ) I dou :::: 1 } , and 

113 0 ( II :::: . { 1 }. Since dO is a zero-homomorphism, this means 

HO( H :::: 11 0 ( H, U ) :::: U ( H ) . 
Every 

dlI n - l :::: 

u ( U ( lin determines u pair (II n - l , u) where 

U : 
IIn ____ Jln 

und n-l I n 1(11 ,u) cX(H if and 

only if 

dary, 

u is a unit-vulued n-cocycle. If u is u coboun

Un-I, u ) r-..... ( Hn-l, 1 ). 'l'hus we have a homomorphism 

( n > 1 ) , 
n Hn(H, U ) ---:>nn ( H ) ; cl (u)l-ycll ( Hn - l 

) I . a , u 

For 0, ° is defined to the identity II
O

( II , U ) n :::: a mup :::: 

iRO( H). 

'1'l1e definability of the follm.,ring mup is clear ( n > 1 ). 

B n : ll1l n ( II ) -). II n -1 ( II , Pic ); c 1 I ( P, P ) II->C 1 I pl. 

Let Ipi be u Pic-valued n-l -cocycle and take any cocycle 

condi tion isomorphism p : dP ~ lin. There exists a uni t u c 

such thut the following diagram is commutative. 

2 c d P _____ 2 ___ ---;;> 

II 
dp --------- --_. __ ... _--> 

And we see easily that u is a unit-valued n+l -cocycle. 

The cohomology class of u does not change, even if we change 

P to an isomorphic module pI or p to another cocycle con-

dition isomorphism p'. If Ip is a coboundary IdQ!, taKing 

c
Q 

: dP :::: d 2Q r-:= Hn . 

as a cocycle condition isomorphism. claims 
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that u == 1. lIence we have the follm.;ing homomorphism. 

n y 11-1 ( ') n+l( ) lit I : II .. II, Pl.C -7 H II, U ; C P,p) I--~cl( u ). 

Theorem A.l. The following sequence is exact: 
1 1 1 

0-7-Hl( H, U )_ex_~nnl( H ~HO( II, Pic Y) ••• 

n-l n n n 
y '> II n ( H, U ) -~ n n ( H ) ___ Y.. __ > 11 n -1 ( H, Pic ) ~-+ ... 

Proof. Let n > 1, it is easily verified from the defin-

ition of maps that the composite of any consecutive maps red

uces to O. Let cll ( P, p ) I ( ·Ker( Sn ). y]e may assume that 

P == dQ with some Q ( P -i. c.( Hn- 2) . Then there exists u <: U ( H
n , ) 

such that p == uCQ and it must satisfy du == 1. Since we have 

dQ, p == dQ, c Q 
) . ( lIn, u ) , dQ, c

Q 
) c nn( H ) , 

cll( P, p)1 == cll( dQ, p)1 ( Im( 
n a ). 

If cllpl c Ker( yn ), we have dp = c with a suitably chosen p 

dP lI n T]' th t clipi r. Im( nn). p: ~ . u.s means a Co fJ 

If cl ( u ) n+l 
c Ker( ex ), there exists P ( P-i.c. ( Hn - l ) such 

that u ) ""- ( dP, c P ). This means that there exists 

dP ./'.. Hn 
satisfying udp. Hence -1 

Im( n 
) , p : c p == u <: y 

and therefore Im( n u c y 

The definitions of IIl( H and UO ( H, pic ) are slightly 

different to the case of n > 1. But the above argwnents will 

give the proof of the case n = 1, if we are careful. This 

completes the proof. 

Well, in our case of Harrison cohomology, those which On 

( H n 
, H ( II, U and En( H, Pic) represent are different 
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from lIattori's by their own characters. For example, nO( /I ) 

:= III ( H, U ) :::: U ( R ), 110 ( II, Pic ) = Pic ( R ), /II ( H, U ) = 
r 

{ u ( U( /I ) I ~( u ) :::: U 0 u} is the0~oup of group-like units 

of II, by Corollary 4.5 1l 2 ( II, U) represents the group of 

isomorphism classes of H-Hopf Galois extensions of R with a 

dual normal basis. Further as is easily verified, 6
1 

is 

an epimorphism. Thus we get 

Corollary A.2. The following sequences are exact; 
1 (ll 

o -) II I ( Ii, U ) -~ 0 1 ( Ii ) _1_) -7 Pic ( R ) ---). ° , 
2 C(2 2 0 2 1 2 3 3 ° --;..1/ ( II, U ) -----). EJ! ( II ) -----> II ( II, Pic ) __ 1 __ > II ( 11, U ) ..s;_> 

Let cll ( P, p ) I ( nn 2
( II ), this me-ans that P is a rank 

I-projective II-module and that 

satisfying ~I p* )L r/ 
2 6. 

P0 p r--1I ~IP naturally, then 

dP 

From 

C :::: clp 
P 

p 

:::: 1 0 1 e 1 E 11 3 • And (P, P ) /'-.. ( P I I P I 

H 6> H 

we make qip : 

means u( P, ilip 

means that 

there exists a uni t w (II which makes the following diagram 

commutative; 

dP __ x ___ >;. !-In 

1 dw 1\ 
p' Hn dP I ____ ._ .... _._ .. __ . ___ > 

Thus ( P, P ) ./'-..... ( pI, p' ) means u ( P, ~ ):::: dw· u ( pI, qi I ) • 
P P 

From Theorem 3.2, 3.5, we get 
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Theorem A.3. U
2

( H) represents the group of isomorphism 

classes of H-Hopf Galois extensions of R. 

Nara Women's University 
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