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Abstract

A simple approximation to the semiclassical theory of heavy-ion transfer
reactions is presented. For one-nucleon transfer reactions it reduces to the
matching condition model given by Brink. Inelastic scattering and multinucleon
transfer reactions can also be treated for either case in which heavy ions
follow a straight-line trajectory or temporarily form a dinuclear system.

For multistep process a binary-step approximation is introduced, in which some
effects of the time differences between consecutive transfer events are taken
into account,

This model is applied to the analysis of energy spectra, angular distribu-
tions and polafizations of outgoing particles. Reactions involving transfers
of one, two and seven nucleons, one and two a-particles are treated. The energy
spectra are well reproduced for low incident energy, but at high incident
energy the agreement is not well. If the circular trajectory is assumed, the
better agreement for the polarizations can be obtained than the straight-path

trajectory.



Contents

I. Introduction cee 1
. Formulation cee 7
2-1 Introduction eee 7
2-2 General formulation see 9

2-3 Approximate evaluations of the form factor and the transition

amplitude eee 16

2-4 Multistep transfer process ees 26

2-5 Energy spectra ees 31

2-6 Discussions ses 34

II. Comparison with experiment oo 37
3-1 Introduction eee 37

3-2 General considerations on the energy spectra and choice of

parameters s+ 38

3-3 One-nucleon transfer reactions ser 42

3-4 Two-nucleon transfer reaction : 100Mo(14N, 12B) ces 44

3-5 Alpha-particle transfer reactions e+ 48

3-6 Seven-nucleon transfer reaction 197Au(lgF, 128) e 52

3-7 Discussions s+ 53

V. Summary and discussions se+ 55
Acknowledgements see 57
Appendix ves 58

References cee 63



Chapter I. Introduction

In heavy-ion transfer reactions populations of low-lying discrete states
are rather well described by the direct reaction treatments such as the distorted
wave Born approximation (DWBA). When the incident energy is well above the
Coulomb barrier, continuous energy region is also strongly populated. Energy
spectra and angular distributions of the transfer to the quasi-elastic region
show the importance of direct reaction mechanism. Application of the DWBA
formalism used for discrete levels to continuous region involves many difficulties,
such as large angular momenta and many overlapping states. Parametrizing the
transition amplitude or utilizing the local momentum, some authors proposed
simple models based on»the DWBA formalism and applied them to the reactions
to continuous region.

Tamura, Udégawa and their group treated continuum energy spectra with

1n4)

fully quantum mechanical way. Continuum cross section was given as a sum

of products of exact-finite-range DWBA cross sections and spectroscopic densities,
where the sum was taken over the spins of the final states. Overlap integrals
were expressed in an analytic form, which includes the relevant quantum numbers,
Q-values and several parameters. Exact-finite-range DWBA calculations were

made for a few thousand seté of quantum numbers and Q-values. This was followed
by a Xz-fitting procedure to determine the parameters. The cross-section
calculations were then carried out with considerable speed.

With this method they analyzed energy spectra, spin polarizations and
angular distributions, assuming one-step or two-step processes. In these
calculations parameters were determined for each reaction. The Q-value dependence
of the form factor was neglected. Further, for each calculation different

functional forms of level density were used, which largely affect the energy

spectrum.
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One-step no recoil DWBA transition matrix element was parametrized by
Mermazs) on the basis of the diffraction model for inelastic excitation.

Reduced matrix elements were related to the product of the derivatives of
reflection coefficients in the entrance and exit channels. They include only

a few free parameters, so the DWBA parametrizatibn is extremely simple. He
calculated angular distributions and continuum energy spectra. Analyses of
experimental data for two-proton and alpha-transfer reactions were successful

at low incident energies. On the other hand, energy spectrum of an alpha-transfer
reaction at high incident energy could not be reproduced. In this model, recoil .
effect originating from mass transfer was neglected. Moreover, effects of
multistep processes could not be included.

Mcvoy and Nemes6) treated transfer reactions and projectile-breakup
reactions with a simplified plane-wave Born -approximation employing Coulomb-
corrected local momenta. They discussed about the energy spectra especially
its width and concluded that in the case of projectile fragmentation the Fermi
motion within the projectile is responsible for the width of the spectrum.

For the case of transfer reactions calculated perks are located at the energies
near the ones for the breakup reactions, and widths are a little smaller than
the values of the breakup calculation. In this treatment, distortion of the
wave by the potential was neglected. Further, the effect of absorption by the
imaginary potential was not included.

In this paper a simple model for analyzing continuous spectra is developed.
Semiclassical approximation is made. Recoil effect to the first order of
transferred mass is taken into account. This model was originally given by
Brink7) and applied to one-nucleon transfer reaction to low lying discrete
levels. He-gavé three kinematical conditions for the transfer probability

to be large. For a stripping reaction, they are



Ak = £, - >\'/}—\;, — >\z/2 ~ 0 , : (1.1)
AL =)o = A + sz%n(Rl“R?w\’ T Qe Ry =0, .2

and

Z, -+ /\' = e , Zz + A2 = CULN . (1.3)

Here orbital angular momenta and their z-components of the transferred particle

are denoted as 21, A, and 22, Az for the initial and final states, respectively.

1
The z-axis is chosen to be the direction of kf>(ki in the case of repulsive

scattering, where kf and ki are the relative momenta in the final and initial

channels. The radii of the two nuclei are R1 and R2, and R = R1 + RZ'

The relative velocity of the two nuclei in the region of transfer is v, and
kn = mnv/h, where m is the mass of the transferred nucleon. The effective

Q-value is estimated from

foof _glxl
@\fo — Q_Z( ZQ_RZ Zl o)

(1.4)
2

where Zf Zf and Zi, AR

10 25 5 are charges of the nuclei in the final and initial states,

Q is the reaction Q-value.

The first céndition, Ak == 0, requires that the y-component of the momentum
of the transferred particle should be almost conserved, where the y-axis is
the direction of k,. The second condition, AL = 0, comes from conservation of
the z-component of the total angular momentum. The last two terms of eq. (1.2)
are the change in the z-component of angular momentum of relative motion.
The last condition, eq. (1.3), arises from the requirement that the transfer

should occur near the reaction plane.
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With these kinematical conditions, relative intensities of cross section
to discrete levels have been calculated for heavy ion transfer reactions.s)

In the following chapter we lay some foundations on Brink's matching
condition model and extend it to the case of accelerated motion and to multi-
nucleon transfer reactions. We derive an expression of transfer probability
for heavy-ion reactions, starting from a semiclassical theory of Broglia and

Winther,g)

The mass of transferred particle is assumed to be much smaller
than the masses of the projectile and the target. Further the particle is
assumed to be transferred near the line joining the centers of the two nuclei.
If the relative motion of the twonuclei in the region of transfer can be
approximated by that of aconstant velocity, the kinematical conditions of Brink
are derived.

In heavy-ion reactions, interactions between two nuclei are large. Then
the projectile may rotate around the target for a short time, especially
in the case of low incident energy. We treat this situation with assuming
circular trajectory for the relative motion. In many-nucleon transfer reactions
or in the reactions transferred to high excited states, multistep processes
play an important role. Transition amplitudes for higher order processes
are given for the straight—line'and the circular trajectories.

We calculate energy spectra and spin polarizations of outgoing particles
with the product of the DWBA cross sections and the level densities of residual
nuclei. The level density of one-particle excited states is assumed to be
independent of the excitation energy. For the distribution of z-component of
angular momentum we take a Gaussian form. The n-particle level densities are
calculated from the dne—particle level density.

Experimental data are analyzed with this model. The method was previously
100 12

appliedlo) for the two nucleon transfer reaction Mo(l4N, B) at incident energy

E. . = 90 Mev. D)

lab Energy spéctra and polarization of the outgoing particle 12B
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were analyzed with the assumptions of one-step process and straight-line trajectory.
The results showed good agreement with the experimental data in quasi-elastic
region. Results of two-step process for straight—line trajectory are shown

in this paper. Dependence of the energy spectra and the polarization on the

level density parameter (temperature T) and on the rotation angle 6 are studied

for the case of circular trajectory of one-step and two-step processes.

12)

For incident energies of 125 MeV and 200 MeV, the effect of friction is taken

into account.
197 19

Polarization data of the reaction Au("7F, 128) at Elab = 186 MeV show
0

Ovo(1?N, 2By at E. . = 90 Mev.'D) we also

the same trendz) as those of 1
lab

analyze this seven-nucleon transfer reaction as a one-step transfer process
and compare it with the calculation by Ishihara et al.z)
Frolich et a1.3) made the parametrized exact-finite-range DWBA calculations

16 9

for three alpha-particle transfer reactions (ZONe, o), (14N, 108) and (lSC, Be)

on 40Ca targets. For the reactions (14N, 10B) and (13C, 9Be), peaks and widths
of energy spectra are well reproduced. For the reaction 4OCa (20Ne, 16O)
the calculated results at forward angles showed a peak at the excitation energy
Ei\f80 MeV, while the experimental peak was at lower excitation energy E*~ 54 MeV.
This difference was attributed to a projectile-breakup and breakup-fusion
process.ls) We also treat these transfer reactions assuming both straight-line
and circular trajectories. Furthermore, calculations with the level density
used by Fr8lich et aLS)are made. Differences between their results and ours
are discussed.

Angular distribution for these alpha-transfer reactions shows a forward
angle peak. In our treatment angular distribution is estimated by the product
of elastic cross section with transition probability. In this paper, ﬁhe elastic

cross section is calculated from classical deflection function.

. . 27 ..
One and two alpha-particle transfer reactions on ~ Al target at an incident
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energy of 120 MeV14) are also analyzed. The analysis was also made by Udagawa

et a1.4)

We compare our results with theirs.

In chapter II we develop a semiclassical theory of heavy-ion transfer
reactions. When a straight line trajectory for the relative motion of two
ions is assumed, the cross section expression reduces to that given by Brink.7)
Expression for the case of circular trajectory is also shown. Transition
amplitudes for higher order process are presented.

In chapter HI calculated results of energy spectra, angular distributions
and polarizations of outgoing particles are compared with experimental data
and with results of the other theoretical treatments.

Chapter IV is the summary and discussions, where we point out restricted

applicabilities of a simle picture of direct reactions.



Chapter II. Formulation

§1. Introduction

In heavy-ion transfer reactions, transitions to low-lying discrete states
of nuclei are well described by the distorted wave Born approximation (DWBA)
method. When the incident energy is well above the Coulomb barrier and/or
large numbers of nucleons are transferred, the quasielastic scattering part
of the reaction turns over its role to the deeply inelastic collision process.
In order to understand the reaction mechanism of the latter process from the
viewpoint of the direct reaction theory, it is important to study firstly
the applicability of the-DWBA method for the analysis of the continuous energy
spectra of quasielastic nature.

Along this line, Tamura, Udagawa and their grouplm4) have done detailed
calculations on the energy spectra of one- and two-step processes. They used
a method called as the multistep direct reaction theory, in which the
overlap integrals obtained in the full-recoil DWBA are suitably parametrized.
On the other hand, MermézS) simplified the no-recoil DWBA by applying the
diffraction model. The overlap integral is related to the product of the
derivatives of the reflection coefficients in the entrance and exit channels,
for which the strong absorption model is used.. It is to be noted that
Mermaz could fit the angular distributions of the transitions to the discrete
le&els. He extracted the level density parameters of the residual nuclei
by comparing calculation with experiment.

The purpose of this chapter is to develop a simple DWBA model which can
~be applied to the analysis of continuous spectra. We use a semiclassical
approximation and take into account the recoil effect to the first ordér in the
transferred mass. The model was originally given by Brink7’15) for the case
of one-particle transfer. From the classical argument and simplified

semiclassical calculation for the relative motion with a constant velocity,



he derived the cross-section formula which incorporates the conservations

‘'of the linear and angular momenfa in the transfer process. 1In the classical

limit the expression for the optimum Q-value agrees with that given by Siemens

et al,lé)which could explain the relation of the optimum Q-value with the

number of transferred nucleons. The relative populations of the final

states in the one-cluster transfef reaction can be understood with Brink's

model. The model was applieéed by Ishihara et al.un to the analysis of the continuous

100 1L 12

energy spectra and polarization of the outgoing ion in the Mo (TN, T°B)

l02Ru reaction and showed good agreement with the experimental data in the
quasielastic region. Here we lay some foundations on Brink's matching
condition model and extend it to the case of the accelerated motion and
to the multinucleon transfer.

In sect.2 we derive the expression for the form factor of the one-
nucleon transfef process, starting from thé semiclassical theory of Broglia
and Winther.g) It is shown in sect.3 that when the trajectory of the
relative motion of heavy ions can be approximated by a straight line, the
cross—-section expression reduces to that given by Brink. In that section
we consider an extension of the method to the cases of the circular
orbital motion and of the inelastic scattering. Transition amplitudes for
higher order progesses are given in sect.l. For the straight-line trajectory,
we propose a simple approxiﬁation which takes into account partly the effect
of time differences between consecutive transfer events. In sect.5 we give
a short discussion on the energy spectra obtained by our method. Expressions
for the optimum Q-value and the half width of the spectrum are derived.

Finally we make some discussions in sect.6.



§2, General formulation

We consider a reaction

A+ b — a+B8 | (2.1)

in which a cluster of nucleons n is transferred from the projectile A to

the target b leading to a residual nucleus B, so that

A= a -+ n B = b+ (2.2)

9)

We follow Broglia and Winther. The angular momentum

guantum numbers of the states of A are denoted as I , and similarly for the

AMA
others. In the semiclassical theory, the differential cross section is

given by

c/o‘AJL = /a{a“/c{fl')eg"? , (2.3)

where (dc/dQ)el is the elastic scattering cross section while P is the
transfer probability

P oo (5 Ty el

(2.4)

N
in which I means (2I + 1)1/2.

The first-order approximation for the transition amplitude is given by

(2.5)

() o o (1)
Crp = (i%) ’/ e

— bo /7

where

(2.6)

—~ ~ Ab
F )= (@ “Cut), o/ & )



The perturbing interaction is denoted as AV, for which we will take ﬁhe

prior representation. The product wave function in the incident channel

is given by
z ’ /
5 = AP e [(zt)"/ UAb(kAézt;)dzﬁJ 2.7)
4

Here UAb is the average interaction between A and b, dependent on the

relative coordinate BAb' When the center of mass of a nucleus consisting
of N particles is moving, its wave function ¥ in the laboratory system is
connected with that of the intrinsic coordinate system, Y, by

Y (frl)= Y ({r-RI})e dper - et

p (2.8)

vhere

{D’r}‘—‘ v, , ¥ SRR o

s

, (2.9)

and the origin of the intrinsic system is specified by the classical

variable R(t). The phase factor P(t) is given by

¢
v 2,,7 / . ’ t/
Qo) = Wit)S mly — [zm?f (£ +m R(t) - wits fdt” (.10)
r=1 0 7

vhere v(t) = R(t) and m is the total mass equal to Z§=lmi' We will choose

t = 0 as the time of closest approach where the particle transfer takes

place. We demand that the intrinsic wave function satisfies the Schrddinger

equation HY = Ey, where H is the hamiltonian of the nucleus, In the appendix

a detailed derivation of eq. (2.5) is given.
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The form factor fé?&) can be written as
)(-(') _ ~14E /5
(g (£) = | dta dTh diy C n
A 1
Yo ([r-Ral) Y {l-Re]) AV Yl re-Ra 1) W ([Ik-Ry])

| |
o7 | (b Vi + By — 75,5 V5 = 7 1503

Z)g (MR + MUy — math™ — ma U™ ) dt’

T (mARA UA Mo Rb W}B maRa‘%—mBRg'%)dt/

f*
+ jt L)
i (Rap(L)) = Uaa(ﬁaa(»‘))j J ]

0

-
A

(2.11)
where
JE = EA+ Ep - Ea— Ep (2.12)
and the c.m. coordinates of each nucleus are denoted as L etc., i.e.
MalA = 2 Mk . (2.13)

1E€EA
We rewrite the exponent in eq. (2.11). By intrdducing the c.m. and relative

coordinates between A and b,

M¥em = "ila + "olb M= My + My, (2.142)

- 11 -



h.ly = Ja-— Iy ' mAb: mAmb/M) . (2.14b)

MWVem = My Yy + 7721;1/\13) Vi, = Vi —Vb) ' (2.14c)
and similarly for B and a, we have
Mako-Y + mMeks- Vo — MAYE - V3 — mblﬂ;'@fb
= (Talo Vot Mal5Us = MPinm-Viw) = (T3 Yo+ Mobs¥h = Mlem Vi)
= i{(
M mcL'f‘mB)WZa]fa‘w\a‘f' (77?0;+77?B) Mele-Vs — (Maﬁ‘f‘maré)'(ma&/&—i- i VB)}Z

“MLi(mAmeb)mAﬁ'V/\ + (7n,4+77@mb -1~ (mAﬁerbn)‘(mA%'f‘mb%)}

:P[IMAMB<IZ-%+H§~%—H-%—%'M) ~ ﬁmmb(yz-vﬁn% ~l-T-h)
= Map Vag - Vag = Mab Fab - Vi (2.15)
Making use of the relation (see fig.1)
e = Vap + (n/oin) Fa (2.162)
e = ks ~ ("/ms) Iab Gae

we can write eq. (2.15) as
Mag Fap - Veg — Mab Fab - Uab

:(mﬂBvaB‘mAbVAb)‘(ﬂb‘f‘nB)/z - O’(gﬁ)t)] (2.17)

- 12 -



where

0, t) = iko- (Fap - Vag)

H

Ao = (Map Vap, + Mag Vi) /2

ko
bl [ (m/m) B + (mn/me) 1y §

(2.18)

7

(2.19)

Exponentials in eq. (2.11), dependent on the kinetic energy and accelelation,

can be rewritten by use of the relations similar to that of eq. (2.15), i.e.,

m Z Yl P 1 A . < -
N+ oo Ub™ = Mg Uy — Me U~ = Piab iy — Fiag

mARA\'l}‘A + MbRb'vb —MaRa'v\a —~mgRp- MB
= M, Rab- Vab — 7agRag - Vg

Then the total phase factor of the form factor becomes

(4) | otn, ) - (9E £ + T(£)) |

2

where

Y () :j;t<MAb Wy /2 Uab (Ras) ) d&”
£ 2 /.
- jo (maglfag/z + UaB(RaB)) dE

£ * ) /
+ SO (Map Rap- Wy — 7ag Ras Vag ) di

+ (ag Vip — 74 W) - (Rap T IRaB)/z .

- 13 -
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(2.20b)
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(2.22)



In the last term of eq. (2.22) we have made use of the basic assumption of
equating the dynamical variables for the center of mass with corresponding

classical variables, i.e.,

Fab = Rap(t) | s = Rap(t). (2.23)
Using the identity
= (Mas Vig ~ M Un,)- (Rep + Rog) = :7/j K(&b‘fkag)'(manaB‘mAbl;fl\b) dff/

+ 2 (i Uhe) s s~ U)o — 5 (st T Rt R, )

(2.24)
and expanding the potential energy

Unb(Rip) = Ug(Reg) =~ Upp(R) ~ Uns(R)

T :’Z](RAE— }RaB)‘(‘VUAb(R) + V UQB(R))) (2.25)

we have the phase factor y(t) as

Yt) =j:(UAg(lR) ~Upp(R)) dt + %(mag —ab) S;:Uz dt' (.20

Here R denotes the average position,

Rit) = (Rap(t) + Raz®) /2 . (2.27)

In eq. (2.26), we have left out the last term of eq. (2.24), which is the
time-independent phase factor.
By carrying out the integration over the coordiantes T, and Ty of the

cores a and b, we have for the nuclear overlaps

- 14 -



S Ya({r - Ra)) ﬁ({i&-]EA})dm = %(IaMa 1y ”ZL‘“AMA) Bi (Joz;(/fﬁ*/&)) (2.28a)

SVB*({,WIRB}) Wl -Re]) dry, = %(ILME; i mfliBMB) B;fc(ﬁi-&)) (2.28b)

where Bi and Bf are the spectroscopic amplitudes of a bound particle with angular
momenta jimi and jfmf in the systems A and B, respectively. Corresponding
one-particle wave functions are denoted by 33 and y}.

Then we can write the form factor as the sum of

J(.(') _ Q(AEI'F W) ik f(/t) (2.29)

L

In the prior representation, f(t) is given by

W = Mg J B Vel G 02V gy @30
where |
Nig = B; Bf (LMo 3713 | IaMa) (LMs JS:?)ZJC[[BMB)) (2.31)
and
AV = Vi(rp) . _—

- 15 -



§3. Approximate evaluations of the form facor and the transition amplitude
We now consider the integral over r in the form factor. Broglia and

Wintherg) adopted the following approximation for o(ry,t)

0" (ta, £) ~ (M U/g) - (I = Ra(2)), (3.1)

by introducing the coordinate

Ratt) = (mgia + maty)/(my + mg) . (3.2)

With this approximation, the essential feature of o(rp,t) as describing the
effect of recoil or momentum mismatch can not be clearly extracted. To remedy

this, we express o(rp,t) in a different way,

() = (Do 4 Dajpp e — My .9
(’l, ) mA + mg ;{%O }/nb mA ﬁ‘/éo ]Rab,
where Ry, = Ry - Ry.  We can expect that the main contribution to the reaction

comes from the region where r,, is nearly equal to the target radius R,,

because of the presence of Vg(rpp) in eq. (2.30). We put

Iy = R, +% + 27 . | (3.4)

As shown in fig. 2, R is the vector having the magnitude R, and the

direction Ryp, while y' and z' are perpendicular to Rap. Defining py by

Ry = R, + P (3.5)

2

- 16 -



we approximate O(rn,t) as

o7 (Fn,t) = 754%’”.7/_/_ U"//t") (3.6)

where

Ph, = o g

/ (3.7)
0‘/(1‘/ — 7;//50 ) 715 R. 27, }

As the second term of eq. (3.6) does not depend on r,» it can be taken out

from the integral on ros which we write as

- 7
ZZ/Z‘%“’) Vig(r) o (r=Ry, ) € T gy (3.9)

For the peripheral collision, the integrand contains ?%’b exp(= 97 [ wr=Rap [ )

which is maximum if the transferred particle is in the region between two

nuclei near the reaction plane.

So we can set the polar coordinates (9,$) and (0',4') of the vectors

r - Ragp and r, respectively,

0 =~ 0 = 7£/2_ , (3.10a)

and

g/

5% =Ry, , (3.10b)

where

P = b + ¢, ¢ = B, + (-9 ) (3.11)

- 17 -



Here T - ¢l and ¢2 are the azimuthal angles of these vectors in the
body-fixed system, and ¢O is the angle between the laboratory x-axis and the

body— fixed x'-axis.

In the integrand of eq. (3.9), uf(r), the radial part of‘?f(r), and
Vf(r) are evaluated at r = R,, vhile ui(r') is approximated by the

asymptotic form

/ .
u-(r’) = N, e /A . - (3.12)

Here Yl is related to the binding energy €, of the initial state by

1
Y12 = 2m el/ﬁ2. Expanding r' = |r - Rabl as
r'= (f 2+ y“) I ' /Z/ (3.13)
VAR AV 5
we find

U, (r') = u, P, ) oxp [~ 7/2 A; )} A;Z; 2/0’/)/ (3.14)
i

Effective extensions of the integrand in the x' and z' directions are taken
to have Gaussian shapes with widths Ax and AZ, respectively, both of which

are of the orders of magnitudes df nuclear radii. Retaining the azimuthal

angular parts and the tail part of the wave functions in the integrand,

eq. (3.9) reduces to

I~ 1, EJW[— Rzl?;;/A; + i(ﬁn}% /angbv - A,Rz/)o, - )\2)3252] d?éz) 1(3.15)

where

-~ 18 -



lo = 7L deary €74 Vo (B, 8) Yo (B.4) WR) VAR Ui(9)
x (L% o l}; 771;) (LA 1 O”n/;lzmz) (3.16)

By extending the limits to + «, we have

I~ I, V& Ay Lzp [ = (Rap A%//OT/)&/DZ } 5 (3.17)

in which

A'gi/ = lg\n, An (fb‘/ - Al & - A2/:\2 P

(3.18)
2 ) 2
0% = 2 Ry /ay? (3-19)
T
where ¢V is the angle of v in the body-fixed system.
Now we consider the time dependence of the form factor. The reaction
Q-value is defined by
2 z
m v /f=*"°)/2, = m v ['W)/l

and is equal to AE, eq. (2.12). Comparing the energies before and after the
transfer which is assumedlto occur at t=0, the instant of closest approach,

we define the effective Q-value by

Map Vg (+0) /2 = Map Unb (c0)/2 + Qet | o

- 19 -



This gives

Eot Ey— (EavEg) 7 Hyyltz0) = Uygt=0) (5.

é?gfy‘ =

. . | | 2,
The potential energy difference can be taken to be (ZAZb - ZaZB)ev/RAB'

We meke the approximation that

2.
Y /e = Uplo) = Ugs(0) + j_l"(”Lag - Mpp) Vo),  C-%)
Then we have

LE + YO/t = Qef/ + o) J}a/z/ (3.24)

where Sy = Mo = Mpye

In the evaluation of o'(t) term, we notice the relation7)

Mn(Ra/mg — S /my ) = 77(’1[( Yy t %ns)(gz‘ﬁwr(%ﬂs‘ %14)(R2+5)')}/2

~{mn()22—5>,) + Rab 5#&/;2/() (3.25)

in which y = (m )/2. We assume that for small t the relative

aB * "ab
motion of heavy ions can be approximated by a straight path along the y-
axis, the tangent to the orbit at the distance of closest approach. We
take the coordinate system as shown in fig.3. If we denote the y component

of R i by y, the y components of p, and R, are (pl/Rob)y and (RQ/Rab)y’

respectively. We have approximately

- 20 -




and so

/
e~ tt) = = m ylﬁz/ofz-—/--{[‘ v
z n k 4
ab
This gives
. - y B
pEE V)= Tl = Gy~ F Lzt
Raob
-Again we take the asymptotic form for uy and write
-, ( Ry, (t)—d )
UsC [Ray () =Ry [)n g "1170 w, ( d~FK,)
’ J

d being the closest distance of approach for grazing scattering angle.

The relative distance Rab(t) can be written as

Rap (t) = [ 4%+ (vt)lf/Zx o+ /vt)%oé ,

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

Putting ¢V =T/2 - ¢0 and using the approximation ¢0 ~ vt/d, the form factor

can be expressed as

(1)
f

Here we have defined
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@) T
/VLJC = /V'L\ /'T-}/'Z ALA'; AZ, el L)\l 7/1)“ O) YZ )\2 /2

-(ﬁn)\[ :—]fmlg-imJ (ﬁz)\z %OT“

Ug (Ra) Ve (Re) Us(Ri)

2

2 7 2 2
’? = <OE‘U>4i >//2~ , =40 ?Zj/ﬂéb ’ 0 = wd

Y

Wi = 4L (V) , R=Ri+R., 5= d-k

?

kn = A/5, = A/,

AL = >\l"‘ ,>\; -+ ’{)-’l ‘S)g";“i )/Q\ + Op‘f C)/jl—'v\)

0)

fsmg) exp [-¥(d-R) ]

(3.32)

(3.33)

(3.34)

(3.35a)

(3.35b)

and we have neglected the t dependence of I in eq. (3.18). According to Brink,7)

the transition probability can be expected to be large if Ak is smaller than

ﬂ/Ay, where the spatial extension Ay 1s RAB/Z. For this value of Ay, 01

nearly equal to 2m, which is not so different from the value given here.

Performing the time integration we find the first order transition

amplitude as
ol g M 2 e [ 12 - £(5E)]

When we further approximate d-by R + R Ak and AL reduces to the

(l)l

29

corresponding definitions of Brink, 7) and the exponent of lc agrees

- 22 -
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with his expression.
We here add two remarks. Firstly we consider the case in which two nuclei
form a di-nuclear systemwith a lifetime T and an angular velocity Q.

As Rab(t) = d is constant and ¢O = Qt, ¢v = m/2, we have

(1 7 2
75{; (t) = /\/1_;) ,gx/b [__ /OLA/;;/O-;)A]@(F /-[__Q,AL. t}

« (3.37)

The transition amplitude is given by

01{; = ;—f— /\/1{;) xp [" (Oéd’é/oﬁ )%/] C/W/x/) (3.38)

where

1)

C "(x) = ,d/v—rb)C/)( , (3.39a)

X = 5 L (_Q T/Z/ . | (3.39b)

The second case is concerned with the inelastic scattering caused\by

the macroscopic distortion of the nuclear potential.

The optical potential between two nuclei is assumed to have the Woods-

Saxon shape with strength V

0° diffuseness a, and radius R

1 + Rg. We

consider that the shape change 1s produced by allowing the surfaces

r =R,(i = 1,2) to oscillate

1)
f'ef (_)1 a’ﬂm Rf ¥ A A 76
SR ) I%:L 7 (2) R Ylm ( R/U), KABzw/ ")- (3.40)
z I,M 7
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The Taylor expansion of the optical potential then gives to the lowest order in

the deformation parameter a{;) (1 = 1, 2) an interaction term

(1)
F oy = (Vifa) f,00 (5R, #5R:)
J

where

for= (Y ) (12 €))7, as (Rag=R /2.

We take the approximation that 6 = 7/2 and put

o _ JRag-d _1d=R/
fix) = — € ~ - e a e a

Performing the time integration we find

01’.;)‘ e 2}1 ’QX/A ["é /%_.)2] Y,éin (%, o)}

where
AL= w o+ d Qg b, 1= o Ria

It should be noted that the Gaussian factor expressing momentum‘matching

does not appear in ci%).

If the Lorentzian spread of each collective level with energy EO
is taken into account, the transition amplitude acquires a resonance

17)

denominator . We write ¢ -+ ¢ where

- 24 -
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-(3.42)

(3.43)"

(3.44)

(3.45)



Yo
() (T/27) M
Cu = C{JL = (3.46)

Here I' is the width of the resonance and E is the excitation energy of the

nucleus corresponding to the Q-value under consideration.
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§L. Multistep transfer process
4.1 Binary-step approximation for the straight-line trajectory

We shall derive expressions for the transition amplitudes for the
multistep transfer process when the relative motion of heavy ions can be
approximated by a stréight line near the point of closest approach.

The transition amplitude for fhe two-step sequential transfer via an
" intermediate state m is given by

23
(1)
[471'»)—‘&\/ 7[ (ﬁ)di} 7[[4'1 (2t . 4.1)

—_ Do

By use of the form factor given in eq. (3.31), we get

C(Z): 7z E(/— . ) /'3 /\/(l . [ RA/;‘) ,_'2]
of (l‘t)z /uLz " ?‘ F T7e ) .

(4.2)

2/2. The index

The second term in the exponent is equal to (ALi/GQi)
i = 1 (2) denotes the first (second) step of the process. The function

E(ix) is defined by

% S tZ /T . o
':():/ o at = Y5 1) oerflix) (4.3)
£ ( i 2 Z/ : JZ/

wherelS)
. ,a[ x I-z < X 2
erf(ix) = = / e’ dt = %t , Fx) (4.4
YT o /7—1_: .

. . 2
Here Dawson's integral F(x) varies slowly with x as compared with exp(x”).

The argument of the function E contains
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s _ }_(ﬂ _ @3») (4.5)
/Lla_'ZmL’lz ) W=7 (CRC S

It should be noted that Dietrichlg)derived a similar expression for
the sequential transfer amplitude in discussing nuclear Josephson effect.
Time dependence of his form factor is similar to us, but his method has
no relation to the matching of linear and angular momenta.

We also note that if the variation of Dawdon's integral with # can be
neglected, the part containeing the imaginary part of E(ix) gives a Gaussian
factor exp {—(w1+w2)2/4(n1+n2)} instead of.exp {—Zizl(wi2/4ni)}, Thus we
have the factor which corresponds to that of the one-step simultaneous
transfer.

The transition amplitude of the three-step sequential transfer via

intermediate states m and n can be written as

€))

0 = 6 [ Do db | finte e |50t

0o _ 2 I}+a23 2 I.’.'f‘alz_ z
. 15X _ 1, X
S_€33'0(13& ~€7de3& € dy (4.6)

where a,., is given by eq. (4.5), and

12
) 02 Ws
0 = L( 52 - ) |
23 2 )Z.Z /23 ; (4.7a)

Xy = £; + iw%z,zi (4.7b)
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We apply the following two transformations successively to the integral

variables xi:

0 43 = (’Z,)Q * }zle)/’llz) Mo ="+ )Zz,

Fo = Xi— Ao, Ko =1 /7
)

S
1

(155G + 2 ds) /s (M= 1+ 1
%3._ 3%3 | K = 74 + Q: + 73 5
L/‘(12,3 =, '23/

(2)

|}

da

123

The integral reduces to

Pow,, Rast 7 "{"/72/1
12 4
p{y,f

We assume that Yy appearing in the upper limit of the second integral can

be replaced by a,, at which exp (—ulehz) takes the meximum value. Then

we can carry out the integration, yielding the result

(3) /;-: - —
01f :(4'fz/)_~? /:(‘/“72 dfz) E('“/%/‘Z,S’ Ar2,3)

(g

77 /VL o .2

] g Z,Xf7 /Q 4 s /) _ W, ‘]
t=/ v 7/‘ ft 4 71,
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(4.8b)

e //%12 3 él dg/

(4.9)

(4.10)



where

a«/z,s = ‘L" a/,z + O3
12
_ ;é ( W+ We _ W3 )
2 n ¢8 . (4.11)

Thus in the present approximation we firstly take up the two-step
process consisting of the first and second steps disregarding the third
step. ©Secondly we regard these two steps as a simultaneous process by
ignoring their time difference and consider the two-step process consisting of
this simultaneous two-particle transfer and the third step. We can extend
this approximation to a process with arbitrary number of steps. Fof »
example, in the case of a four-step process, we simply multiply eq. (4.10) vy a
factor corresponding to the two-step process which consists of the
simultaneous three-nucleon transfer and the fourth step. We shall call
this the binary-step approximation. In the sense that some of the time
orderings are taken into account, we can regard this as an improvement over
the independent one-step approximation, in which, for example, two integrals
of eq. (b4.1) are evaluated independently by replacing the second upper limit

by -+,

4.2 Circular orbit
Let us briefly consider the case in which heavy ion follows a circular
trajectory from t = - T/2 to t/2. The two-step transition amplitude is

given by

(7-): (4"[/ )T £ Rak, 2
“if (1‘7:/’*' = 0 [ 45 )/c’”/#w

(4.12)
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Here

o @s _ /wm/aflvwa) T i o
1ﬂ ) 1/47 Aﬂ; *Aﬂl é A zj

_ ) o W
= 1’/{ [ CUG+8) - ¢ C ("az)]j (4.13)
1

in which the first term corresponds to the simultaneous transfer ignoring

the time difference between the first and second steps, while the second

term looks like the independent two-nucleon transfer. The imaginary part of
(2)(9 2) is exactly the amplitude of this process, but the magnitude

is half of the latter. In general we have

045:): ffﬂ/) 7; /V glé/ Raz //C’M b )

(<4 ) o (4.14)

(n)

The following recurrence relation holds for C

C ("}1 «/a) (49/ vdz""""}nv/)—/
-1 1 n-1)
'[C,/(véf,ﬂz,"' o j,‘)——e /C( f(vd‘z//lg/”-’&)]/

n-y

where

’Va{ AL; (’Q‘TA’) ) A (4.16)

I

We see that in the right hand side of eq. (4.15) the time difference

between the (n-1)-th and n-th steps is ignored in the first term but_is

included in the second term.
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§5. Energy spectra

We shall discuss the energy spectra of outgoing particle in the case
of straight-path trajectory in a crude way. From eq. (3.36) we see that the
one-step transfer probability is large for the values Az and Qeff that satisfy
the conditions Ak = 0 and AL = 0. For a fixed value of Al’ these optimum

values are given by

)xz = r”in_ Rz - (Rz/ P»z/\ }\1 (5.1a)

O = =120/ + (Rv/Ri) Ay 5.1

For the states whose values of Xz are near the Xg, the condition Ak = 0

1
o]

is approximately satisfied and AL depends linearly on Q - Q™. The A
eff eff 1

component of [cgé)lz

N is approximately proportional to

o

if

2 e {—(Qe/{ N Qi;j );L/W,O‘z }) (5.2)

where

ot
Qj/; = - mnzﬁ/gv (5.3a)

Wo = Avos/R . s

Due to the condition that Yglhﬁﬂ/Z}O) is not zero, the Xl is varied from

-%, to &, in steps of 2, then each component of |c£%)|2 for a specific?\1
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shifts its center by 2'ﬁv/R1 (see fig. 4). The shape of the spectrum
obtained by summing up all the Al components is dependent on the ratio of
Zﬁv/R1 to WO’ and may retain the Gaussian shape or may become flatter than

that. The width is approximately given by

W= W, + 4 tRU (5.4)
, |

As shown in 84.1, the AL-dependent part of the two-step transition

probability is given by

2 Z W
lC(;J) o %PI_(ah + .,7_>
5 ( 2y 2,
2
T . ( Q)I'7L &lz)
T P 0n) 7 P (5.5)
2 (1 + l2) -
We can assume that the function F varies slowly with energy. Writing the
relative kinetic energy and the intrinsic excitation energy of each step
*
i=12,2 as T. and E, , we have
i i
. Y (1)
Eeo, = Ty + Epo— Q;; . (5.6a)
7( (2}
T o= T, + £y 4}} (5.6b)

(2)|2

We take the sum of ’cif over T, while fixing the energy T

£ th
1 , O e

2

outgoing particle. When Al is zero for each step we have

//cgc)/zaéﬂ oG LXp [—- (Q,# - szt)l/wo lj) (5.7)
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where

st 2
Qg/)[ = - Zi:; Mz Vl% 7 (5.8a)

2 2.

\«4;L _ 2111:; vaz‘ (5.8b)
and we have neglected the T; dependence of Wyy. As in the one-nucleon transfer,
the shape of the composite energy spectrum is dependent on the ratio 2 ﬁv/(RIWO).
The width W takes the same expression as eq. (5.4) with 21 equal to the total
angular momentum of two nucleons on the initial system. Thus although
the first and second terms of eq. (5.5) depend on ws in a characteristic
way of the independent-sequentiél and simultaneous transfer processes,
respectively, both show the same kind of energy spectra.

It should be noted that for comparison with experimental data we have
to multiply the probability distribution obtained here with the level densities
of the intermediate and residual nuclei. It will be shown in the next chapter

that their inclusion especially the spin dependence, plays an important role

in fixing the shape of the energy spectrum.
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§6. Discussions

We developed a method to describe the heavy-ion transfer reaction in
a simple way. We followed Brink's argument as a physical guide and used
the semiclassical theory of Broglia and Winther as a mathematical means.
Brink's formula for one-nucleon transfer cross section was re-derived.
Inelastic scattering and multinucleon transfer reactions can now be
handled with this method for the straight-line or circular trajectory
of relative motion.

For & rough estimate of the absolufe magnitude of the cross section
it will be con'venient to use the Wigner limit for the radiasl wave function;

u(R)’\J(3/R3)l/2

. The angular disfribution is determined by the product of the
elastic scattering cross section (dc/dQ)el'and the factor due to the tail

of bound-state weve function exp(—2Yld), where d is the distance of closest
approach dependent on the scattering angle. Because of the absorptive
reduction of (dU/dQ)el at small d and the damping of the transfer probability
at large 4, the angular distribution can be expected to have a dumb-bell
shape centered at the grazing angle. The energy spectrum is given by the

product of the transfer cross section and the level density of the residual

nucleus, summed over irrelevant quantum numbers. The level density may

affect the optimum Q-value and the width of the spectrum.
Finaly we shall point out a possibility to view the multinucleon transfer
as a stochastic process. The transition probability of a n-step process

from the state i to £ is given by

(r) 2
Pi ﬂf/ S)m, '9)9 (6.1)

JC E_m)....l ﬁ} - 7
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where m,--+, 1 denote intermediate states and p is the corresponding level

density. For the straight-line trajectory we have

(n) . (n-1) .
E iy = ; P Ry (6.2)

where

N )2 Rak, V2w’ ],
Q :/___””_ /_ __A_) B Vo e
[’[ ;t\/?"w /'ex/b /0‘7"1’ £ //'(1...71—/}724 d/"'”'/ﬂJ @.

2 7¢v

(6.3)

We take n_ to be independent of n, and assume that the (n-l)-step part

proceedsvia the optimum path as a whole; that is, we take ZE;iwi =0

in the function E. Then for large n we have

2-1 # —
Byointyn = Tn T ’/,-/Z‘.;/ T7c = I ) (6.4)

2

— ﬁ// -
- 4,' Wy Z_.r .. C(),' [ wop
d/,... fz—}/M, ——:6— —_— _ | 2t 2 — (6 5)
Y b nlh, A0 '
re/ .

As Qlf is dependent only on the quantities related to the final n-th step,
eq. (6.2) reduces to the Smoluchowski equation. Thus we are lead to a
possibility to treat the multinucleon transfer as a Markov process. But
our treatment is restricted to a peripheral collision, while for the
multinﬁcleon transfer process we can expect the contribution from the

overlapping region of two nuclei to be important. It should be noted that
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Feshbach et 31'20) showed the possibility that a suitably redefined
transfer probability satisfies the diffusion equation when the multistep

direct reaction is treated statistically.
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Chapter III . Comparison with experiment

§1. Introduction

In chapter II, we developed a semiclassical theory of heavy-ion transfer
reactions which incorporates the matching conditions of the linear momentum of
transferred particle and total angular momentum as originally proposed by

7,1
Brink.7’ >)

We here intend to report the results obtained by analyzing
with this model gross properties of transfer reactions such as energy
spectra, angular distributions and polarizations of outgoing particles.
For that purpose we take the products of DWBA cross sections with the
level densities of the final and inte;mediate states (for the two-step process)

and sum them over irrelevant quantum numbers. Explicit procedures and

parametrizations of the level density are given in sect. 2. In sect. 3 we

96Mo, l8lTa and 208Pb targets.

lOOMO(léN’ 12B)

, 53
treat one-nucleon transfer reactions on Cr,
The approximation of a circular trajectory is applied on the
reaction in sect. 4, assuming the simultaneous or sequential transfer of two
nucleons. We include the effect of friction at high incident energies. One
' . 40 27 :
and two alpha-particle transfer reactions on Ca and Al targets are

197Au 19, 12

analyzed in sect. 5. In sect. 6, the °F, B) reaction is treated as

a one-step process. In sect. 7, some discussions will be made.
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§ 2. General considerations on the energy spectra and choice of parameters
We consider a reaction
A+b-=>a+B. (2.1)
In the one-step process in which one particle n is transferred from the

projectile A to the target nucleus b, the energy spectrum can be written as

)

~ A -2
o, 8)= (1, I,) ) ijj JEL 00 fy (E-E) (2.2)

42} S

The cross section for the scattering of outgoing particle a in the 6 direction

(1)
{22

the initial and final channel. In the semiclassical theory, the cross section

is denoted as © }(Ef,Ei,e). Here Ei and E_. are the kinetic energies in

f
is written as the product of the elastic scattering cross section and the
transition probability
2
O] I (1) i
o Ei =
(n (B B, 8) = G5y (6) C (2.3)
For the sequential transfer process, we assume that the particles are

transferred firstly from the state characterized by (lel) to the (QZAZ) state,
and secondly from the (Qiki) state to the (léké) state, The corresponding

energy spectrum is given by

), AR ANTY 2
g (E.,0)= (14 Z[,) 2,1 /dEth/ (Ef/ ” ., ,'/ﬂ)/? (£ - 9'\)ﬁ(/(5ﬁ' ) (2.4)
12} 2
{11} 2
where {21} denotes Qlkl, 295, Qiki and Qéké collectively, and E  is the channel
(2)

energy in the intermediate stage. The two-step cross section O{RA} is given

by the product of oel(e) and the two~step transition probability ]C{Zk}i
in eq. (2.3).

In the direct n-particle transfer, the acceptor nucleus is expected to be
excited to n-particle O-hole states as doorway states, for which the following

21)

level density formula derived from Ericson's model is adequate
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" E x) " (2 £, +1
P, (EF) = p (RET) G4 ’)zy{—lzgﬁfqéﬂ (2.5)
2 ° nitn-1)!  frm g3 v

The spin dependence is taken to have the standard Gaussian form. The level

density of one-particle excited states is denoted as po which we take to be

independent of the excitation energy E#*,

6 A
T

where A is the mass number. In the Fermi gas model'po 1s proportional to

)1/2

(F + E ,» Where E_ is the Fermi energy. For single-particle transfer

F F

reactions peak position of the energy spectrum calculated by use of this Po
shifts to somewhat higher excitation energy as compared with the case of

E*-independent po. The spin-cutoff parameter can be written as

o = 41/ %%, (2.7)

where g is the moment of inertia of the transferred particle around the
target nucleus and T is the nuclear temperature.. The spin-cutoff can also be
expressed as

o> = c<m> (2.8)
in which ¢ is given by n or n2, dependent on Qhether n particles are excited
independently or fully correlated. The mean square of z components of angular

momenta of one-particle states is given byzz)

<an®> = 0.1464273 (2.9)
Spectroscopic factors for the residual nucleus are assumed to be a
constant which is independent of E* and 22.

The choice of the level density formula affects strongly the energy

spectrum. We show in fig. 5 the effects of varying the level density formulas,

- 39 -



eq.(2.5) and the statistical form exp (E*/T) in addition to the transfer

hoCa(zoNe 16O)hu

probability. We treat the Ti reaction at the incident

energy of 262MeV. In the case of constant Py (E*), the energy spectrum is
2 .
obtained by summing over Al(—llfAlgﬂl, 21+Xl=even) the components with .

comparable magnitudes and having maxima at Q:ff(kl) given by

m _ 1 2
Qeff(xl) = -move o+ (ﬁv/Rl))\l . (2.10)

This result is shown in the top graph of fig. 5.
In the middle of the figure are shown ﬁhe results obtained by use of the
statistical level density exp(E*/T). As p(E*) increases rapidly with E* for
low T, the component with Kl=—21 becomes dominant and the composite spectrum
has its maximum at bigh E*¥. On the other hand, strong spin dependence of the
level density, eq. (2.5), for low T makes contributions of small 22 and Azdominant.
Due to the matching condition of linear momentum, eq. (3.35a) of chapter II,
small AZ means Al ~ ll.and the energy of the maximum cross section shifts to
low E* region. This situation can be seen from the lowest part of fig. 5.
Not only the peak position but the width of the spectrum is affected by the
choice of the level density formula.

Siemens et al.lé) found that the experimental optimum Q-values of
réaétions on 232Th induced by 130 MeV 15N and 120 MeV 16O can be explained by
a semiclassical argument similar to ref. 7 if we take into account the nuclear

attraction V. equal to 28MeV. In the following we also include V. as one

N N

of parameters in calculating local velocities: or momenta. The optimum Qeff

value for Xl = 0 with inclusion of VN is given by

m

= m = Eh ¢
Qegr = Qpe(Vy = O + VN | (2.11)

where | is the reduced mass of relative motion of heavy ions. Then we can
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expect that the peak energy of the energy spectrum changes linearly with VN
;nd the shift 1s much smaller than that of VN itself as long as mh<< H. This
result was borne out by the numericél calculations.

The widths 0, and 0, of the Gaussian factorshexpressing the matching

1 2
. ’ " 23)
effects of linear and angular momenta are taken to be

1/2
A" A%
Ol N T, 02 Y (YlR) .

(2.12)
Use of 9, gives in eq. (3.19) of chapter II does not give any noticeable changes

in the calculated results. In calculating R, and R2, the radius parameter

1

rO = 1.4 fm is used.

Level density parameters and VN used in the calculations are summarized
in table 1.
In the figures here, E* in the abscissa means the sum of excitation
energies of both final products. The calculated energy spectra are normalized
to the experimental data.
In the calculations we use both the straight-line and circular trajectories.
The forﬁer was originally used by Brink,ls)while the latter was proposed in chapter II
The circular trajectory calculation includes the rotation angle 8 as one of
the parameters. Which approximation describes the orbital motion adequately

is a problem which can not be settled from the classical deflection function

because of the effects of diffraction, absorption and transferred nucleons.
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§3. One-nucleon transfer reactions
In this section we shall study the following four kinds of one-nucleon

transfer reactions

Bercty, oy at 90 Mev,24525)
9o My, o) at 97 Mev,24:25)
Blra 2, 7oy at 96 Mev,2®)

20 15 ‘ 27)

%o (', o) at 312.6 Mev.

Comparisons of experimental data with calculations are shown in figs. 619.
As the residual nucleus has constant level density and low optimum excitation
energy in the case of one-nucleon transfer, the calculated cross section does not
ﬁend to vanish at zero exéitation energy. Discoﬁtindous changes can be seen

in the energy spectra, which is especially large for the 208Pb(l60, 15

N)

reaction. This reflects the onset of a new excited state in the ejectile. . For
16_ 15 . ' .

example, the (70, N) reaction takes place by transferring pl/2 and p3/2

nucleon for the transitions to the 1/2° ground state and 3/2  6.324MeV

15O) reaction, only the

excited state, respectively. In treating the (14N,
transition to the stable ground state of 15O is taken into account, so that
no kinks appear. Spectroscopic factors for light nuclei are taken from
Cohen and Kurath.zsl

Yoshie and Kohnozs)showed that the relative strengths of one-nucleon
transfer reactions on 92Mo leading to low lying excited states of residual
nuclei do not agree so well with the prediction of Brink7) for the 12C
projectile, but agree. well for the 14N projectile. The region of excitation
energies in which the eﬂergy spectra can be explained by the present model
seems to be restricted to low excitation energy similarly as their analysis.
Our model can not predict the second peak around E* n 10MeV in the

96Mo(MN, lSO) reaction and the broad spectra at high excitation energy region
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15N) reaction.

(not shown in fig. 9) in the 298pp (160,
Similar results can be obtained by using the circular trajectory with

6 = 1.0. This value is-considerably larger than those of other transfer

reactions, and seems to contradict with the.physical intuition that as the

number of transferred nucleons decreases, the reaction takes place at the

outer region of the nucleus. Thus one-nucleon trénsfer reaction may be more

adequately described by use of the straight-path trajectory.

In the above calculations we took VN to be 28 MeV. Fig. 10 shows the

effect of varying VN on the 53Cr(l4N, 13C)54Mn reaction. Some minor changes

in the shapes of energy spectra can be seen.
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. 100 14
§4. Two-nucleon transfer reaction : Mo(" 'N, ""B)
11,12)
Sugimoto et al. measured the energy spectra and polarizations of
12B emitted from the bombardment of laN on lOOMo at incident energies of

90, 125 énd 200 MeV. Results of our analysis under the assumption of one-
step process with straight-path trajectory were reported previously.lo) DWBA
calculations yielded similar reSults{l) Two-particle spectroscopic factors

for 14N > 12B were taken from Cohen and Kurath,zg)

and Ql was assumed to be 2.
For the transitions leading to discrete levels of residual nucleus, DWBA
- calculations were performed by taking into account both simultaneous and

sequential processes.sO’SI)

The latter was shown to contribute comparably

with or even dominate over the former, and some discussions were done for:

the similarity of predictions of both processes. As we do not have as yvet
corresponding Ealculatiéns for the continuum region, we here enumerate the
results of one- and tonStep processes and try to find out the difference between
them, if any, from the results. We firstly show in fig. 11 the results obtained
by assuming sequential transfer with straight-path trajectory. Real part of

the transition amplitude corresponds to the process in which two successive
transfer events occur independently of each other. This part has comparable
cross sections and similar polarizations as the imaginary part. Calculations

shown in the figure make use of V.. = 28 MeV, but if we set V. = 0, excitation

N N
energies of the maximum cross section and zero polarization become lower by
about 5 MeV.

To see the validity_of straight-line trajectory we calculated the

. . 100 14 12
classical deflection function of the Mo(T N, B) reaction at 90 MeV. For
each set of the orbital angular momentum 21 of the initial channel and the

excitation energy E* of the final channel, a classical orbit is determined so

that the turning points of both channels coincide. The optical model
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25)

parameters are

V = -80 MeV, r

0 1.174 fm, a = 0.5 fm.
(4.1)
1.2 fm

W= =25 MeV,

C

As shown in fig.12 the rainbow angle is about 28°(in lab. system) while the
observation angle elab is 20°., TFor the orbital angular momenta Ri in the
incident channel contributing to the transfer process the orbit may be bent

by the nuclear attraction and so can be approximated by a circle near the

closest distance of approach. Thus it is worthwhile to pay attention to the

calculations of circular trajectory.

Both for the oné— and two-step processés we have studied the effects of
variations of the nuclear temperature T and the rotation angle 6 on the
lOOMo(ll‘N, lzB) reaction at 90 MeV. Firstly, one-step results are shown in
figs.lsmds.v As 0 becomes larger, the contact time of two nuclei increases and
so the transition probability. At the same time, as AL A’ 0 condition becomes
more restrictive, the width of energy spectrum becomes more narrow and the
polarization more positive. Reflecting the appearance of sin(AL-6/2) in eq.(3.39a)
of chapter II, the polarization begins to oscillate with E¥. These situations can
be seen in fig. 13.

Effects of varying the temperature T are shown in figs. 14 and 15 for
-8 = 0.4 and 0.5,respectively. There are some differences between the results
for 6 = 0.4 and 0.5. The density of levels with large 22 increases rapidly

with increasing T. It shifts E* of the maximum cross section to larger value.

Near the maximum the transfer probability with Al = -2 becomes dominant,

corresponding to positive polarization. It should be noted that for large 6
we have negative angle scattering, for which the sign of the calculated

polarization must be reversed.
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Figs. 16 and 17 show the corresponding results for the sequential
transfer process. Here we have assumed that the reaction proceeds via the
ground state of 13C. General trends of dependences on T and 6 are similar to
those of the one-step process in line with the arguments of ref. 30. But
the oscillation of the polarization at large rotation angles now dissapears

and the 0, T dependence of the energy spectra is larger than the one-step case.

Comparisons of calculations with experimental data at 90 MeV are shown in
fig. 18. When we take the one-step picture the calculation performed with
VN = 28 MeV, T = 5 MeV and 6 = 0.7 reproduces the data. On the other hand,

the two-step calculation done by using V., = 0, T = 5 MeV and 6 = 0.4 gives

N
flattened shape for the polarization with respect to E* as compared with the
results of straight-line trajectory, thus bringing about better agreement
with the data at lafge E*, TFrom these comparisons, however, it is difficult
to conclude which process describes the reaction more adequately. For that
purpose, careful analysis of angular distributions and absolute cross sections
will have to be supplemented.

For incident energies of 125 and 200 MeV, experimental energy spectra
have maxima at 40Vv50 and 80 MeV excitation energies, respectively, and their
widths are very large, while the behavior of the polarization as a function of
tﬁe Q-value is pretty independent of the incident energy. As shown in figs. 19
and 20, the maxima of calculated spectra are at E* = 15 and 20 MeV, respectively,
and the widths are narrow. Polarizations are zero at E*¥ A 50 and 80 MeV in
contrast with the experimental situation.

In order to remedy this situation, we tried to take into account the
effect of friction, approximately following the line of Alhassid et al.sz)

The friction force is proportional to the velocity, so its effect may
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be important at high incident energies. For grazing collision the rate of loss

of tangential kinetic energy due to friction is

dE/dt = pv(dv/dt) = —yv? = —(2y/p)E (4.2)
where Y is the coefficient of friction. The duration t of transfer is assumed
to be proportional to the number of nucleons; t = nto. Then the fractional
loss of energy is given by

exp[-2y(t/W] = exp[-a(n/u)] (4.3)
in which o = 2yt0. We assume that after the incident energy is reduced by the
friction, the transfer takes place, and then the ejectile is affected again

by the friction. Results obtained by including the effect of friction are

shown in the figures as dashed and dotted curves for the straight-line and
circular trajectories, respectively. Energies of maximum cross sections
become large but thqgse of the zero polarization are affected in the same way.

Anyway we cannot reproduce observed attenuation of polarizations at large E*.
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§5. Alpha-particle transfer reactions

.. 3,33)
Frohlich et al. investigated three kinds of a-particle transfer

16

. 20 14 0 3
reactions (" Ne, 0), (TN, 1 B) and (l c, 9Be) on a 40Ca target at incident

energies of 262, 153 and 149 MeV, respectively. The orbital angular momentum

. .20 1
@l of a-particle in " Ne, 4N and 13C was chosen to be 0, 4 and 2, respectively.

The (14N, lOB) and (13C, 9Be) reactions were fitted well by assuming a-transfer
but the DWBA cross section of the (ZONe, 160) reaction concentrated near
80 MeV excitation energy in 44Ti; which is-much higher than the experimental
peak position of E*V54 MeV, éorresponding to the final laboratory energy Elab
of 175 MeV ahd 200 MeV, respectively. The difference was attributed to
projectile breakup and breakup-fusion processess.ls) They used_the'
spectroscopic density és given by )

pg(E%, 2) = (E%/T)°(2/0) *exp [ (E4/T) ~ (2/0)%] (5.1)

in which the & dependent factor is derived from the strength of the scattering

wave functions of a-particle, and T = 60 MeV and g = 11.

Our calculated results are shown in fig. 21. When we take 21 = 0 for

20 16 . . .

(" "Ne, 0) we can fit the energy of maximum cross section but the calculated
width is about one half of the experimental one, as shown in fig. 21 by a
dotted line. We can get much better agreement if we sum up the transitions
to the ground state, 6.13 MeV 1 and 7.12 MeV 3~ states of 16O which have

. 20 16 .. .

large strength for the transition Ne = 0% + a, The a-particle
spectroscopic factors are taken from refs. 34 and 35, 1In the other reactions
with 21 =4 and 2 for the ground state transitions, the effects of inclusion
‘0of other 21 components on the energy spectra are small. For large scattering
angles, however, our calculations predict only a small portion of the

20

(" "Ne, l6O) energy spectra, centering at Elab = 190 MeV.
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Calculations using the spectroscopic density of eq. (5.1) give the

16

optimum E* = 60, 68 and 68 MeV (E = 195, 66 and 65 MeV) for (20Ne, 0),

(lAN, lOB) and (13C, 9Be), respectively. Influence of the level density on

1

lab

the latter two reactions is stronger than (?Oﬁe, 60), due to their low

incident energies and the difference of the orbital angular momentﬁm 21‘

Eq. (5.1) makes use of a large value of T.so that it is very similar to eq. (2.5)
with T = 20 MeV. The change of optimum E¥ according to the choice of two level

density formulas is essentially what we can expect from the bottom of fig. 5.

We can make simple argument on the optimum Q-value of the breakup (~fusion)

process. GSuppose that the projectile A breaks up into a and n, and a is detected

as the ejectile. The Qeff value is then given by %avz - %sz = - %nvz. This is

equal to the optimum Qeff of the transfer reaction in which n is captured in the
continuum state of the target b. If the Coulomb interaction of the ejectile a

with other particles ‘are assumed to depend on the distance from a2 to the c.m. of

b and n, the optimum Q-value of the breakup process agrees with that of the transfer
process. It also coincides with the optimum Q-value of the breakup-fusion process.
For the breakup (-fusion) process we need not to multiply the cross section by the
1evei density of residual nucleus. Thus the breakup (-fusion) energy spectra

have the maximum at the optimum Q-value as given by Brink.7)

As in sect. 4 we have performed the calculations by using the circular

trajectory. . The classical deflection functions are calculated from the

optical potential parameters33)' .
V = -100 MeV, Tor = 1.10 fm, ap = 0.634 fm , |
= - = = : 5.2
W 24 MeV, o1 1.24 fm, a; = 0.507 ‘fm, _ (5.2)
rOC = 1.25 fm ,

As shown in fig. 22, the projectile's orbit is deflected from the Rutherford

trajectory by the nuclear attraction. The energy of the maximum cross section

is affected-by the choice of rotation angle 8 and becomes large for small 6.
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With 6 & 1.0 rad., we get results very similar to those of straight-line
trajectory for both densities of eqs. (2.5) and (5.1). The results obtained
by usihg our level density, eq. (2.5), and 6 = 0.4 are shown in fig. 22.

160) we obtain the energy spectra similar to ref. 3.

If we use 6 = 0.17 for (ZONe,
These choices of 6 differently taken for three a-particle transfer reactions
give agreements with experimental data at large scattering angles, as can be
seen from fig. 23. If we use the spectroscopic density, eq. (5.1), and 6 = 0.4,
the optimum E* is 80 MeV for (20Ne, 16O), thus giving agreement with that of

14N

ref. 3. However, ( , loB) and (13C, 9Be) have the optimum E* of 78 MeV

(Elab = 57 and 55 MeV, respectively).
Fig. 24 shows the effect of varying VN on the energy spectra of the

16O 44

4 ) 'Ti reaction at 262 MeV incident energy. We assumed 21 =0

OCa(ZONe,
fof simplicity and straight-line trajectory. The optimum energy varies
according to VN but the shift is much Smallér than the change of VN itself.
Nextly we consider the angular disfribution. The elastic cross section
oel(e) can b? evaluated in a semiclassical way by utilizing the classical

36) The imaginary part of the optical potential is assumed

deflection function.
to affect the attenuation of the elastic wave. The results of the straight-line
trajectory are comp?red with experimental data in fig. 25. At large angles,
the calculated cross sections are due to the scattering into negative angles.
The forward cross sections of (20Ne, l60) and (14N, lOB) get some contributions
from the rainbow-angle scattering.

In the evaluation of absolute magnitudes of cross sections we assume that

extensions Ai(i=x,y,z ) of the region between two nuclei and effective for the

transfer are all equal. The strength of the potential between the a-particle

and the ejectile is taken to be 20 MeV; 1/5 of the depth given in eq. (5.2).
Then the absolute magnitudes of three a-particle transfer reactions can be

fitted by taking the average a-spectroscopic factor of 44Ti* to be about 0.04.
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s 20 '
Now we consider the' (" Ne, 16O) and (zoNe, 12C) reactions induced by

37)

’ 20 . L 27 '
120 MeV Ne impinging upon Al. In the analysis of Udagawa et al.4)

the spectroscopic density was taken to have the form exp(E*/T) and 4 , T were

20
regarded as parameters. The ( Ne, 12C) reaction was assumed to proceed by

transferring two a-particles sequentially, and populating only the ground
state of l2C. We.have used’ the same assumptions on the reaction mechanism.
The results of the straight-line trajectory are shown in fig. 26. One-step
a-transfer to the l6O ground state has narrow energy spectrum as shown in the

figure by a dotted curve. So we have included three states of 160 as in the

40Ca(z-ONe, 160) reaction. On the other hand, the spectrum of two-step Q-

. 16
transfer is not affected by the choice of intermediate 0 states. The

nuclear temperature is chosen to be 10 MeV. For larger value of T, e.g.,

1 12

~ 2 20
20 MeV, we can get better fit to the (20Ne, C) reaction. If the (" Ne, C)

reaction is assumed to be one-step 8Be transfer process, the peak of the
energy spectrum shifts to E#* still larger than that shown in fig. 26.
On the other hand we could obtain rather good agreements with experiment

"and with Udagawa et ‘al.?)

if we use the circular trajectory. The results with
8 =0.6, T=6 MeV and VN = 10 MeV are also shown in fig. 26. 1In the present
case we have introduced the Coulomb reduction factor

Nc = exp [5.5(1 —IBl/Ef)] : (5.3)
for Efs 31 MeV, as in ref. 4. With the level density exp (E*/T), the results

of Udagawa et al. can be reproduced in the circular trajectory approximation

by taking 6 = 0.6,. T = 20 MeV and VN = 16 MeV.
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§6. Seven-nucleon transfer reaction : Au("7F, B)

In this brief section we discuss the energy spectrum and polarization
of 12B emitted from the 197Au(lgF, 12B) reaction at 186 MeV incident
energy. The experiment was carried out by Ishihara et al.z) and was
analyzed by the one-step mechanism, assuming the same form for the spectroscopic
density as eq. (2.5) with T = 10 MeV.

The me;hanism of seven-nucleon transfer reaction can be much complicated.
But here we follow the same assumption as Ishihara et al., for simplicity.
Calculated results are compared with egperimental data in fig. 27 for both
cases of straighc—line'and circular trajecto;ies. It 1s seen that for the
latter trajectory the 6 = 0.55 polarization shows pretty different behavior
from the 8 = 0.35 result. The former oscillates with E* at large E*, thus
gives better agreement with the experimental polarization data, But becomes

worse for the'energy spectrum. When we use the value of o, defined in chapter O

1
the polarization rises with E* more gradually, and the 6 = 0.35 result is

pretty similar to ref. 2. In the latter, calculated polarization did not

show oscillation with E*.
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§7. Discussions

-~

We analyzed some of gross properties of transfer reactions with the
semiclassical model developed in chapter II. Calculated energy spectra of
one-nucleon transfer reactions reprocuce well the experimental data for low’
excitation energy region. For high excitation energy retion the agreement is
not well, especially at high incident energy.

128) at 90 MeV incident energy, we maﬁe

For the reaction 100Mo (14N,
calculations for the energy spectra and the spin polarization of 128. Results
of the two-step process with straight-path trajectory show nearly the same
trend as the results of the one-step calculation which we have made previonsly.
The calculation of two-step process with circular trajectory explain the
trend of the experimental data of polarization for high energy excitation region.

. 197 19, 12, . S
We can also reproduce the experiment of Au (77F, B) at an incident energy
of 186 MeV by the calculation of one-step process with circular trajectory.
- . - . . 100 14, 12
On the other hand, at higher incident energies of the reaction Mo (" 'N,”"B),
we can not describe the experimental data both for energy spectra and for

polarization. The situation is not improved by the inclusion of the effect

of friction.

16

We also calculated the alpha-particle transfer reactions (20Ne, o),

(14N,IOB) and (ISC,QBe) on a 40Ca target. Results of one-step process for
straight-path trajectory can explain the energy peak of the data at forward
angles. They can also éive comparable energy widths with the experiménts.

160) in high excitation energy region can not be

Energy spectra of (ZONe,
reproduced by the calculation from straight-path trajectory.

The exact-finite-range DWBA calculation for transfer process by Frblich
et alé)has given the broad energy spectra. The peak position is near fhe

excitation energy E* ~ 80 MeV, different from the experimental value of

E” ~ 54 MeV. -Udagawa and Tamura attributed the difference to breakup and
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breakup-fusion processes which have a peak of E* ~ 50 MeV}S)We made a calculation,
using the same functional form of level density as they used. Our peak position
by the straight-path trajectory is E* ~ 55 MeV, much lower than their value

E* ~ 80 MeV of transfer process. Reproduction Qf their energy spectrum is
possible if we use the circular trajectory with a much smaller rotation angle
than the ones for the other two reactions. When we neglect the effect of

level dinsity, the optiﬁum Q-value for breakup process will agree with the

value calculated from the matching conditions of Brink.?)

(20Ne,160) in the high excitation energy region can be the contribution of

'So the énérgy spectrum of

higher order processes such as inelastic breakup, than the transfer process.
Using the classical deflection functions, we also analyzed the angular
distributions for these alpha-transfer reactions. Magnitudes of these three
reactions are explained by nearly equal spectroscopic factors. At backward
angles the contribution is mainly from tne scattering of opposite side of
the nucleus.
We also calculated the reactions (zoNe,16O) and (ZONe,IZC) at 120 MeV

1

incident energy on .a 27Al target. The (20Ne, 2C) reaction was assumed to be

a two-step alpha-transfer process. We couldnot fit these reactions with
4)

common parameters. If the Coulomb reduction factor which Udagawa et al.

have intriduced is taken into account, we can reproduce their results.
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Chapter IV. Summary and duscussions

In chapter II we developed a semiclassical method to describe the heavy
ion transfer reactions in a simple way, using the theory of Broglia and Winther.
Brink's formula for one-nucleon transfer cross section was re-derived. Inelastic
scattering and multinucleon transfer reaction can also be treated for the
straight-line or circular trajectory of ralative motion.
In chapter III we analyzed a variety of experimental data involving

transfer of up to eight nucleons. Values of g'r/<m2> used in the calculation
are larger than 1 for one-nucleon transfer, and very close to n and n2 for
(14N,128) and alpha transfer, respectively, while it is intermediate between
n and n2 for (19F,128).

- Calculated energy spectra of one-nucleon transfer reactions were shown
not to vanish at zero excitation energy of final products. In the case of
208Pb(l60, lSN) at 312.6 MeV incident epergy the direct reaction theory

explains only a limited region ofvthg energy spectra but not the main body.

For the o transfer on 40Ca our results agree with the expérimental energy
spectra at forward direction but predicts a small portion of fhe latter at
larger angles. Reproduction of such a broad energy spectrum as observed in

the 40Ca(ZONe,-l6O)44Ti reaction at large angles is possible if we use the
circular trajectory and the level density of ref. 33, but take a different
rotation angle frbm those of (laN,loB) and (lBC,gBe). Udagawa and Tamura's groupls)
regarded the experimental spectrum as the sum of this broad bump and a narrow
distribution with the maximum at excitation energy much smaller than that of the
former, and explained them as due to the transfer and breakup (-fusion) mechanism,
respectively. Importance of greakup process at high incident energy was also

pointed out by other people (c.g., refs. 38,39). High excitation of the

projectile sufficient to evaporate light particles subsequent to the collision
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is needed for the explaination of the observed yield of emitted light particles.
In order to account for the energy spectra and to decide which paft of 1it,
high E*¥ or low E*, is contributed by the breakup process, inelastic excitation

mechanism must be supplemented to the standard DWBA theory of the breakup

process.
. . . \ , 40
Angular distributions of three kinds of a-transfer reactions on Ca
target have been analyzed in a semiclassical way. Gradual decrease of cross
sections with angles can be understood by the scattering into negative
deflection angles. Angular distributions should be treated more satisfactorily
by extending the semiquantal model of transfer reactions such as developed

0)

by Hasan and Brink.4 Fits to experimental absolute magnitudes of cross

sections extracted the average spectroscopic factor of about 0.04 for

44Ti* d 40Ca + .

Polarizations of the outgoing 12B in the lOOMo(lz*N, 12B) and

19, 12
Au(T7F, B) reactions have been treated. We especially concentrated on

197
the model in which the incident ion is assumed to roll around.the target
nucleus for a short time interval and studied the'effects of vary;ng parameters
in some detail. By use of this circular trajectory we could obtain agreement
between theory and experiment, better than the case of straight-line trajectory.
At high incident energies, however, we have found big dissagreements which

can not be resolved even if we include the effect of friction. Thus it seems

to be a general trend that the direct reaction Picture becomes less valid as

the incident energy increases. Inclusion of other effects such as inelastic

breakup or temporary formation of a fused system will be necessary.
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Appendix

Below we give the derivation of eqs. (2.5) and (4.2) in chapter II
with the line of the paper of Broglia and Winther.g)

To describe the intrinsic motion we attach an intrinsic coordinate system
to each nucleus whose origin is specified by the classical variable R(t).
We want to derive a wave function of a nucleus moving in the optical potential
at the laboratory system. In this case the intrinsic motion of the nucleus
is not excited.

We demand that the wave function ¥ in the intrinsic coordinate system

satisfies the Schriddinger equation

HY = EV . o

A generalized Galilean transformation connects the laboratory system with the
accelerated intrinsic coordinate system. We write the wave function Y in

the laboratory system as

(A.2)

TR = O Y(in-re)) €T VA

2

where

Pit) = V- Sims i — |(dmvl) + mRw) V) dt.

(A.3)

In eq. (A.3) v is defined as y(t) = ﬁ(t), and m is the total mass. The wave

function ¥ satisfies the equation
(H-ih2)¥ = ID(/c)-(z mTy ~ mRw) ¥ )
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In the incident channel the total Hamiltonian is
H = Ha + Hp + Uap T (\/AB"UAE>, (A.5)

where HA and Hb are the Hamiltonians of systems A and b respectively, The

interaction between A and b is denoted by V while the average potential of

Ab’
this interaction is UAb depending only on the relative coordinate Tap = TA rb,
where r, is the c.m. coordinate of system A and similar for L
We approximate the potential energy as
Uns (Bp) = Unp(Rap) + (a5~ Rap)- ¥ Unp(Rnr) (a.6)
where RAb = RA - Rb. The coordinates RA and Rb are the solutions of the classical
equations of motion,
ma Ra = ~ V4 Unb (Rap) , (A.73)
MyRy = ~ W Unp(Rab) = Va Uap(Rap) . (A7)
For t = — «, the perturbing interaction VAb - UAb can be neglected,
Then the product wave function,
Thby = A T5 ] (1) [ U (Rep(t)) ot
eM(t) = ¥ 27 -eap | (1)) Upp(Rap()) e .9
-
is the solution of the time-dependent Schrbdinger equation
YAbroy — ik 9. HAb
(H/»\ + Hp + UAE) (L) = li{a/t K4 (/t), (A.9)
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where

A

b

eIMB/E ([ -Rap}) @ AEE .10

-
/

and similar for Wb. The intrinsic wave functions wA and wb are eigen states

of HA and Hb with the eigen values EA and Eb, respectively. 1In order to derive

the result of eq. (A.9), we have used the identity

Un- (2 miki = maRaw) + V(3 mes =mo Ry (0))
i D

MA A (B~ Rb) + Mo Us- (7 - Rut)

~ VUA;)(P?A},) ‘ (‘h\b ~ Rap(£)) .

(A.11)

In the exit channel we can also define analogous states 5&8. The set of
wave functions 5Ab and 5aB is not orthogonal. To solve the Schrodinger equation

HE = ihss

(A.12)

we expand the total wave function & on the product wave functions

ad ~ R kg/
2=z ey R + > ) 3%

(A.13)

Inserting this wave function into eq. (A.12) we find

2 C%m 3%y + ik b C %) S

=% 0 (Vip=Unb) %0 + 3 C%8) (Vap~Un) 8%

23
aB
(A.14)
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If we neglect the overlap integral (533, 5Ab), we can get the equation

l < = o /B/\ /B/
+€EL/<§5—QB (VﬂB“UaB> §Za ) C ki) (A.15)

Further assuming that

'/
CHP(t) =0
(A.16)

CA/b/ = DAN %bl/

on the right-hand side of this equation, we find the lowest~order approx1mat10n

(1)
th(t) for the amplitude C? (t) as

z
Cz(g ) = 3% J . :ff;)(t’) dt’ (A.17)
N ;
where
P zA
JLig)(t) = (S‘iaB, (VA},"UAL) ff‘xb), (A.18)

For the two-step sequential transfer process, the lowest-order amplitude

W
Clm to an intermediate state m is

) |
Ww 7 saw dt (19

We can therefore find the second-order amplitude via an intermediate state m that
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c = (] | 55w Calter dt

=) | e de | sy e =

For t = 4%, eqgs. (A.17) and (A;19) reduce to eqgs. (2.5) and (4.2) in chapter II,

respectively.
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Table Caption

Table 1. Strength of nuclear attraction, rotation angle and level density
parameters. For each reaction the upper part is for the straight-

line, the lower part for the circular-trajectory case. . Symbol a)

means the case for large scattering angles.



n <m2>

Reactions VN ¢] ‘g/ﬁ2 T ﬂ T/ﬁ2 n<m”™>
(MeV) Mev !y  (Mev)
S5cey, Boy 28 0.76 6 4.56 2.09
o1, 150y 28 1.05 6 6.30 3.04
181, 1%, 70y 28 1.51 6 9.06 4.65
2085, (16 15y o3 1.64 6. 9.84 5.11
100, 14y 12
90MeV 28 0.7 ) 5
125MeV 0 5 11.8
0 0.6 T 2.35 5 v 12.8 6.38
200MeV 0 6
14.1
0 0.5 6 )
100y 14y, 3¢y 28 6 6.54
1.09 3.10
0 0.4 5 5.45
101p. 3¢, 125y 25 6 6.54
- 1.09 3.19
0 0.4 5 5.45
2701%%e, %0) 16 10 25.3
2.53 23.1 5.76
10 0.6 6 15.2
31p16, 12¢y 16 10 27.3
2.73 25.0 6.24
10 0.6 6 16.4
40ca®ne, %0) 28 )
0 | 0.4
(0.17)
My, 10 28 | -
3,14 6 18.8 29.1 7.28
0 | 0.4,
5 o (0.4)
t3¢c, %Be) 28
0 | 0.4,
0.3)3) )
197,19 125 1
( 0.35 | 13.9 10 139.2 247.9 35.4
10 {555

Table 1



Figure Captions

Fig. 1. Position vectors used in the transfer reaction.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

A +b->a+ B in which A =Va +nand B=Db + n.

Positions of nuclei a, b and transferred particle n at the time t

after the closest approach. The y-axis is tangent to the trajectory

-of the relative motion at t = 0, while the z-axis is parallel to

‘the kf X ki direction for the repulsive scattering.

The x'-axis is directed from the nucleus b to a at the time t,

and the z'-axis coincides with the z-axis.

Positions of nuclei a and b at the time t after the closest approach.
For small t the trajectory of the relative motion is apprdximated by
a straight line paralle} to the y-axis, and-the velocity in the
region of transfer is taken to be constant.

Transition probabilitiés ]cgé)lz for three different values of

Al (solid lines) and their superposition (dashed line), plotted

versus -Qeff' In this schematic figure, 21 is taken to be 2.

Effects of varying the level density formula and the nuclear

temperaturé on the energy spectra of 40Ca(zoNe, 160)44Ti reaction

at 262 MeV iﬂcident energy. We have fixed Zl = 3, VN = 28 MeV and

g = 3.14 MeV—lt The top, middle and bottom graphs make use of the
following three types of level: densities : pg(E*) =1,

(20 + DexplE*/T - 2(4 + 1)/4 T} and (22 + D E*/D expl-2o(x + 1)/g T
Dotted curves in the top of the graph are the components with

specified Al. In the lower two parts, each curve corresponds to a
different choice of the nuclear temperature T. In this and all the

following graphs, E' in the abscissa means the sum of excitation

energies of both final nuclei.



Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

Fig.'13.

Comparison of theory and experiment for the energy spectrum of the

53.. .14

Cr("'N, 13C) reaction at 90 MeV incident energy.

Comparison of theory and experiment for the energy spectrum of the

96Mo(14N, 150) reaction at 97 MeV incident energy.

Comparison of theory and experiment for the energy spectum of the

181Ta(;60, 170) reaction at 96 MeV incident energy.

Comparison of theory and experiment for the energy spectrum of the

208Pb(l60, 15N) Teaction at 312.6 MeV incident energy.

Effect of varying VN on the 53Cr(14N, 13C)S4Mn Teaction at 90 MeV
incident energy.

Energy spectrum and polarization of 12B in tﬁe 100Mo(l4N, lzBY
reaction at 90 MeV incident energy. Successive transfer of two nucleons
is assumed; Dotted and dashed curves are the contributions from the
real and imaginary parts of the transition amplitude, respectively.

Their sum is shown by the solid curve.

102
14 12B

Classical deflection function of the ~  Mo( N, )" Ru reaction at

100
90 MeV incident energy. Solid curves, bold and thin, are calculated h
for E*¥ = 0 by taking the total potential and Coulomb potential,
respectively. Dotted curves are the cor;espondihg results for

E# = 10 MeV. Dot-dashed curve is obtained by ﬁsing the point

Coulomb potential at E* = Q.

Effect of varying the rotation angle 6 of the incident ion around the

100, 14 12B 102

target for the Mo(™ 'N, ) Ru reaction at 90 MeV incident energy.

One—sﬁep process with VN’é 0 and T = 5 MeV is assumed.



Fig. 14.

Fig. 15.

Fig. 16.

Fig. 17

Fig. 18.

Fig. 19.

Fig. 20.

Fig. 21.

Effect of varying the temperature T in the level density for the

100MO(MN, 12B)lOZRu reaction at 90 MeV incident energy. Circular

traﬁectory and one~step process are assumed and VN.= 0, 6 = 0.4

are taken.

Same as in fig. 14 .except for 6 = 0.5.

Séme aé in fig.l?fexcept.for the sequential transfer process.
Same as in fig. 14;éxcept for the sequential transfer process.

Comparison of theory and experiment for the energy spectra and

polarizations of the lOOMo(léN, 123) reaction at 90 MeV incident

energy. Both curves are calculated by assuming the circular orbit.

Solid curve is the one-step result with V., = 28 MeV, T = 5 MeV and

N

T = 5 MeV

0 = 0.7. Dashed curve is the two-step result with VN-= o,

and 6 = 0.4,

Comparison of theory and experiment for the energy spectra and

100 1

polarizations of the Mo(laN, 2B) reacfion'at—lZS.Merihcident

energy. VN = 0 and T = 5 MeV are used. Dashed and solid curves are
‘calculated by assuming the straight-line trajectory with and without
friétion, respectively. Dotted curve is the result of the circular
orbit of'rotation—angle 6 = 0.6 and with friction. The o coefficient
is 1.25.

Same as in fig. 19 except for 200 MeV incident energy, T = 6 MeV and

6 = 0.5.

Comparison of theory and experiment for the energy spectra of the

4 16 4

0Ca(zoNe, -0), 4

0Ca(l4N, 10B) and 0Ca(lBC, 9Be) reactions.
Incident energies are 262, 153 and 149 MeV and laboratory scattering
angles are 5°, 8° and 8°, respectively. Solid curves are the sum of

the transitions to the levels of emitted particles with large



a—spectroscopic factors, while dotted curves include only the ground
state transition. VN = 28 MeV and T = 6 MeV are used. Dashed curves
are calculated by assuming the circular trajectory with 8 ='0.4,

VN =0 MeV, and T = 6 MeV,.

160)44Ti reaction at

Fig. 22. Classical deflection function for the‘AOCa(zoNe,
1262 MeV incident energy. Solid curves, bold and thin, are calculated
for E* = 0 by taking the .total potential anﬁ Coulomb potential,
respectively. Dashed and dotted curves are fhe.corresponding results

for E* = 40 and 80 MeV. Dot-dashed curve is obtained by using the

point Coulomb potential at E* = 0.

‘ : ' : ' 14 10
Fig. 23. Fit to the energy spectra of the 40Ca(zoNe, 16O), 40Ca( N, 7 B) and

40 13C, 9Bej reactions. Incident energies are 262, 153 and 149 MeV and

Ca(
laboratory scattering angles are 16°, 20° and 20°, and rotation angles
used in the circular trajectory calculations are 0.17, 0.4 and 0.3,

respectively.

Fig. 24. Effect of varying VN_on the 4OCa(ZONe, 160)44Ti reaction at 262 MeV

incident energy. For simplicity 21 is taken to be 0.

Fig. 25. Comparison of the semiclassical calculation and experiment for the

16 40

angular distributions of the 40Ca(zoNe, 0), Ca(léN, 10B) and

40Ca(13C, 9Be) reactions at 262, 153 and 149 MeV incident energies,
respectively.
Fig. 26. Comparison of theory and experiment for the energy spectra of the

27Al(ZONe, 160) and 2

7Al(ZONe, 12C) reactions at 120 MeV ‘incident
energy. Solid and dotted curves are calculated by using the straight-
line trajectories with T = 10 MeV and VN = 16 MeV, while.dot-dashed
curves are the resuits with circular trajectories 6btained»by use of

0 = 0.6, T =6 MeV and VN = 10 MeV. Dotted curve includes only the

transition to the ground state of 160.



Fig. 27 Comparison of theory and experiment for the energy spectra and

polarizations of the 197Au(19F, 12B) reaction’at 186 MeV incident
energy. Solid curve is calculated by assuming a straight-line -
trajectory. Dashed and dotted curves afe the results of circular
orbits with 8 = 0.35 and 0.55, respectively. VN = 10 MeV and

T'= 10 MeV are used in all cases.
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