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Abstract
The time component of weak axtial vector current is investigated in the

B-ray angular distribution from oriented nuclei for the A=12 and A=13 systems,
New formalism of B decay is adopted, which introduces the nuclear form factors
and treats the lepton wave functions with no approximations. The analysis in
the impulse appfoximation with the Op sheli nuclear wave functions shows a

good agreement between the experiments and the theoretical calculations, if we
assume the C.V.C. hypothesis and no existence of the second-class current.
However, Fhe exchange current contribution to the time component is calculated
and it enhances the matrix element of the time component by‘about 30%Z. This
discrepancy is solved by introducing a more realistic nuclear model through

the first-order core polarization effects, Although the first-order core
polarization does not affect the space component of the axial vector current,
it has an appreciable effect on time component due to the momentum dependent
nature of the operator. In this case, the core polarization by the tensor.forcé
has a crucial effect and it is dominated by the intermediate states with 2hw
_excitation. The calculation with the tensor force of the Hamada-Johnston type
reduces the matrix element of the time component by abdut 30%. This almost
cancels the exchange current contribution. Thus the total value of thg timel
component by taking with these contributions is nearly equal to that of the
impulse term. It is also found that the situation is the same in the A=13
system, Finally we conclude that the individual values of the exchange current
and the core polarization effects on the time component are considerably large
for the asymmetry parameter of B-ray angular diétribution, however, they almost

cancel each other.
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§1 Introduction

The study of weak nuclear processes ')has two main purposes. One is the
understanding of the nature of the weak interaction, and the other is to obtain
nuclear strﬁctu;e ipformétions'from the weak processes.

Nuclgus has been a testing ground for fundamental interactions,vespecially
for the weak interaction. Important properties of the weak interaction were
discovered mostly from the study of atomic nuclei, These are the disco&ery
z)’ determination of the V-A structure of the

),5)
%) and the test of C.V.C.(conserved vector current) hypothesis+ .

of the parity nonconservation
weak interaction
Although the elementary particle physics and the low energy nuclear physics
afe to a large extent now going on their separate ways, the study of weak
interaction in nuclei still provides the significant and important informafions
about some-aspects of the fundamental interactions.

On the other hand, the nucleus appears now an excellent testing ground
and generator of many-body theories. Once the fundamental nature of the weak
interaction is understood, it can be used as a well known probe for testing
our theoretical ideas on nuclear structure. The electromagnetic interaction
also provides an excellent tool to study the nuclear structure, because it is
very well known and we can extract informations witﬁout much disturbing the
nuclear sfructure. Owing to the C.V.C. hypothesis, the_half of the weak
current (the weak vector current) is related to the electromagnetic current,
and the other half (the weak axial vector current) brings new excitation modes of
nucleus = which electromagnetic interaction cannot excite, and new informations.
Thus both qf these‘interactions work complementary.

Recent developement of intermediate energy nuclear physics concerns on

the new many-body aspects of nuclei: the exchange current or the extra nucleonic




degrees of freedom in nuclei. 1In this stage, weak interactién again plays an
 important role. The P.C.A.C.(partially gonserved axial vector current)
hypothesis(é)tells us that ﬁhe divergence of the axiai vector current isb
proportionai to the pion.field. Therefore the strong interaction and the
weak interaction in the nucleus are connected by the P,C,A.C. hypothesis, and
the pionic or the other extra nucleonic degrees of freedom are strongly
related to the weak interaction, 7
Thé study of weak interaction now stands on the intefsectidn of the

elehentary particle physics, conventional nuclear physics and intermediate
energy nuclear physics.

| Recent study of the structure of weak nuclear current attracted attention
by a possible evidence of the S.C.C.(second-class current) pointed out by

Wilkinson in 1970 8). The S.C.C. was first introduced by Weinberg 2

, and
it is defined by the G transformation properties of the currents, where G
transformation is the product of the charge conjugation and the 180° rotation

- ]
around the iso y-axis, The first—class current transforms as GVfZ': Vi

and
GAVG": - AL , for vector and axial vector currents, respectively, while the
second-class current has the oppositesign under the G transformation. The
ordinary nuclear currents belongs to thevfirst-class current, vWilkinson and
his co-workers have made an extensive search for the asymmetries of the ft

10)

values in the mirror B decays . The ft-value asymmetry can be written as

(Ft)+
(Ftr)_ e Jexr = 8sec + Snucl , (1.1)

Here 6}q_ comes from the S.C.C. term and Jdnucl arise from the mirror

asymmetry of the Gamow-Teller matrix elements, which is the nuclear structure




effect induced by the electrmagnetic interaction. Using the parametrization

i)

of Kubodera, Delorme and Rho , the systematic analysis of § was done in the
mass -number A=8-30 region. However, fhe effect of §pucl 1is strongly
dependentvbn the nuclear model and it wés'difficult to obtain a definité
conclusion about &scc . .

Less ambiguousvinformations about” S.C.C. caﬁ be obtained from the
investigation of angﬁlar-correlation coefficients in nuclear B decay 2), B)
such as the B asymmetry from polarizgd nucleus or B~y directional correlation.
As is shown in the later section, the S.C.C. effect appears with the ratios
of the nuclear matrix elements for each case of B; and B+ decays, hence
ambiguities due to nuclear structure become sméller. The B asymmetry of the
A§12 system provides us one of the best candidate to investigate the problem.
Energy releases are very large ( up to 15 MeV ) and the structure of nuclei.
is well known. Furthermore, geometrical factors favor decays of this system,
These types of experiments determine a linear combination of the " weak
magnetism " term and S.C.C. term. Thus the test of C.V.C. hypothesis again-,

excited attension so as to fix the " weak magnetism " term more precisely.

14
In 1976, Calaprice and Holstein )noticed that a systematic error found

in the numerical table of positron wave function may change the results of

Lee, Mo and Wu 5-); Their reexamination of the spectral shape factor of the

A=12 system with the latest value of the end point energy of B rays shows

that the C.V.C. hypothesis is not subported strongly as.was previously thought,

5)

Subsequently in 1977, Wu, Lee and Mo : found again a consistency of

experiments with C.V.C. hypothesis in their repeated analysis of their data

by adopting the latest value of the branching ratios of the inner B groups.

16) 7), 18)

New experiments and theoretical analysis with higher precision




have been made for this problem and confirmed the conclusion of Wu, Lee and
Mo. The other candidates are also investigated and they are consistent with

the C.V.C. hypothesis I8).

The B;ray asymmetr& from 12B and 12N are investigated experimentallgq)’zo)
and theofeticallyzt) Assuming the C.V.C. hypothesis, the S.C.C. term is found
to be small and it is consistent with no existence of S.C.C.. A systematic
analysis with the other experiments also suppofted no existence of S.C.C. 22).
Thus the problem of the S.C.C. and C.V.C. in nuclear weak interaction seemed
to be solved, but there still remained the question about the exchange cufrent.
In 1978, Kubodera, Delorme ahd Rho 23)pointed out that a clear evidence
of exchange current can be obtained not in the space component but in the
time component in the case of axial vector current. Although there has been
an extensive study of the exchange current for the space component of the

24)

axial vector ( that is, the correction to the allowed Gamow-Teller matrix
element in B decay and U capture ), there are many ambiguities remained to
draw a definite conclusion. Using soft pion theorem§ and current algebra, they
showed that. the exchange current effects on the time component of axial vector
current is given with less model dependence, and it appears_in the B-ray
asymmetry of the A=12 system. It is also suggested tﬁat the 0+F0_ transition
( as 16N(O-) —9160(0+)-+ e + Ge or 160(0+) + u_—a»lGN(O_) +-,\)u ) is strongly
affected by the large exchange current for the time component.A

In 1978, Guichon, Giffon and Samour zs)made an aﬁalysis'of the ratio,
W’u/WB , of the u-capgure to B-decay rate, based on the lp-l1h Tamm-Dancoff
approximation. They found that the inclusion of the exchangé current for the

time component reduces Wh/W about factor 2 and it falls into the present

B

experimental value, However, it was pointed out that the nuclear structure




26)

effect cannot be eliminated by taking the ratio of U capture and B decay R

and there still remains a strong nuclear structure dependence., Due to the
complicated nuclear structure of the A=16 system and the experimental
uncertainties, it is difficult to obtain a definite conclusion about the

exchange current for the time component at this stage.

' : : 21
The analysis of B-ray asymmetry

)was performed in the impulse.
approximation by adopting the Cohen-Kurath ﬁave function zv)which is able to
reprbducelthe electromagnetic and weak transitions in the Op shell region
quite well, and it was consistent with no large exchange current for the time
component. ;Therefore, the question is " Wﬁere have the large exchange current
for fime component gone ? ",

The exchange current problem is usually followed by the nuclear structure
problem -called "-configuration mixing " or " core polarization ", They are
extensively studied in the magnetic p?operties of nuclei 24), and revealed
the interplay between the configuration ﬁi#ing ( core polarization ) and the
exchange current. For example, the magnetic moment and the Gamow-Teller B
decay rates in the LS closed * 1 nuclei, or the inelastic electron scattering,
Recently, in connection with the study of precritical phenomena of pion
condensation.282 Ml form factors of the A=12 and A=13 systems are investigated.z7)
It is shownﬂtﬁat the first-order core polarization effect with tensor force can
reproduce the experiments up to the second maximum of the form factors.

While in the study of B decays in the A=12 system, the core polarization
effect has been neglected, since the Gamow-Teller matrix elements cannof be
renormalized by the first-order core polarization, and other operators

0)

are expected to be renormalized in the same way. .But we find that it is

not the case. Since the time component operator of the axial vector is



momentum dependent, it is renormalized in the first-order core polarization
and the large reduction occurs if we adopt the effective interaction used in
the analysis of the eleéfron scattering. Thus the experimental data are
explained éé a cancellation of the exchange current and core polarization
contributions, and a new aspect of the interplay between the exchange current
and the nuclear structure effecﬁ is revealed in nuclear Veak‘processes.

It should be noted here that sincg we deal with the induced terms in the
weak interaction Hamiltonian, that is, we concern with the quantity O(E/M)
where E is the typical electroﬁ energy and M is the nucleon mass, it is importaﬁt
to take into account the higher order corrections such as the Coulomb correction
of finite size nucleus or leptons with higher partial waves. Thus.we make a
new formalism §f B decay where we treat the lepton wave funcfions exactly and
take into account the higher order corrections properly.

In §2, we briefly summarize.the theory of nuclear B decay. The weak
interaction Hamiltonian of the V-A type is presented, and the nucleon form
factors appearing in the expression for the vector and axial vector currents
are summarized. The difficulties in the conventional theory of nuclear 8 decay
and the advantagés of our formalism are discussed. In §3, we derive a new
formalism of B8 decay. The effective Hamiltonian is derived, which is written
as a sum of‘operators with a definite angular momentum and a parity. The nuclear
form factors in the impulse approximaiton are represented explicitly., We also
comment on the nuclear recoil correction. As is discussed now, the A=12 systen
is the best candidate and the experimental data are accumulated. We found that
the A=13 system also has a similar property as the A=12 system, Therefore,
we investigate both of these systems. The gxplicit formulas for these cases

are given in 84, and the relation of the present formalism with the conventional



theory is discussed.

In §5, the ﬁuclear models are discussed. The Op shell formula: the matrix
elements of one-body and two-body operators in the two-orbit states are given.
We briefly summarize the formal theory of effective operator, and derive the
explicit formula for the first-order core polarization. »The details of the

effective interactions used in the analysis of core polarization are shown.

‘The properties of the core polarization effects are qualitatively investigated

in the simple j~j model. Core polarization effects on the time component .
operator are compared with those on the M1 operator, and the differences between
two cases are clarified.

The exchange current operator for the time component of axial vector
current is derived in 86. The operator in the momentum space is derived using
low enegy theorems and current algebra. It is transformed into the coordinate
space operator and expanded into multipoles. The two-body part of the nuclear
form factor for the time component of axial vector current is obtained from
the coordinate space exchange current 6perator.

Numerical results are presented in 8§7. The analysis in fhe impulée
approximation is performed and confirmed the previous results for B-ray
asymmetry coefficients in our new formalism. We calculated the exchange current
and core polarization effects on the time component of axial vector current
in the A=12 and A=13 systems. The core polarization effects are also calculated
with the different effective interactions given in §5, and their effect on the
higher order correctins in nuclear B decay are discussed. Discussions and

summary are given in §8.



§2 Nuclear B-deéay
We shall briefly review the weak interaction Hamiltonian and the

conventional theories for nuclear B decay.

2.1 Weak interaction Hamiltonian
The nuclear B decays are introduced by the V-A current—current interaction

as follows,

Wpx) = ZTax) batx) +hoc. | , (2.1)

with
Iy = Valx) + Ax (), (2.2)

and
Da(x)= =i I YA (75 ) (x) (2.3)

Here G is the effective vector coupling constant for nuclear B decay and it is

related to the |t decay coupling constant G, through the relation

0
G= Go ¢os O ’ (2.4)
3l
where §. is the Cabibbo angle ). The systematic analyses of o'- ot super
32),33)

allowed Fermi B decays have been performed and have yielded the latest

value of G



33)
G= (2.9960 + 0.0009 ) X 1077 (#/mec?) (2.5)

In the framework of the Lorentz covariance, the matrix elements of the vector
current VA and the axial vector current AA between nucleon states can be written

as,
PIVaIn) = i%p (R YA+ FuDip Ko + Cfs ka) Y0 (2.6)

(PIANINY = LT Y (faYa + £GapKe + o kn) W (2.7)

J
Yo WY |, K=Kp—ka , Oap= [Ya, %1/2i . (2.8)

The six terms in eqs.(2.6) and (2.7) are called the vector, weak magnetism,
induced scalar, axial vector, induced tensor and induced pseudoscalar couplings,
respectively. These nucleon form factors are the functions of K2 and are real
if time reversal invariance holds. The fT and fS terms are thé second-class
currents. )

If the conserved vector current hypothesis (C.V.C.) holds, the structure

of the weak vector current is determined. The electromagnetic current can be

written as,
(IR 3 B [(F3+ R W + (BS+ TR Qe ip 1 Wy, , (2.9)
with

KZ
FS= FY= fl+ yTvEs (H‘HP)} F 5 F'= -z—lﬁfﬂp-f/ln(l-—lf;)} F,



-1
v

2 F4 K
Fz = — E#[“P"Hn(l‘f'ﬁ: IF F=[(”Z;(7‘)(}+m-i‘>J ’ k= F-Fe, (2.10)

and

(2.11)

Hp=1.193 , Un=~1.9)3 , M=937MeV  awd Mj= 0.71GeV?

v and £_=F, . Since the four momentum transfer K2 is small

. _ v
C.V.C. implies fv Fl Wi

in nuclear B decay, the following values are adopted,

fo=El0)=1 , fus EVo- - Hzkr 2704 (2.12)

Furthermore, the second-class vector current (induced scalar term fS) vanishes,
if C.V.C. hypothesis holds. The experimental upper limits for fS is derived
from the analysis of super allowed Fermi B decays as,
-3 34
f=(-0.17t0.50)%x [0 (2.13)
It is consistent with the C.V.C. prediction fS=0.

Axial vector coupling fA can be determined from the free neutron B8-decay
experiments, such as the life time of the neutron decay, B8 asymmetry in the
decay of polarized neutron or the electron-neutrino angular correlation. The
latest value is as follows,

fo= = 1254 2 0.007 - (2.14)

. 6
The P.C.A.C. hypothesis gives the pseudoscalar form factor fP as- )

_IO__



fp= 2M% / (mi+ K*) ’ (2.15)

Here m is the pion mass. For K2=O, this gives
fo= —0.06 . (2.16)

In the B-decay processes, it is difficult to determine the induced pseudo-
scalar codpling fP, because of the smallness of the momentum transfer. Thus

' . ’ . 1),36)
most of experimental tests are concerned with the U capture processes R
such as the partial capture rate, average polarization of the recoil nucleus
or photon spectrum from radiative M capture. The upper limits to the induced
tensor coupling fT are determined through the systematic analysis of all
available B-decay data,

22.) _
14,1 < 031 x j0=° | (2.17)

We use the following values as canonical values of the B-decay coupling

constants,

0é
fv=1l, fw=—3ﬁ4 , fs=0,  fa==125, Fr=0, fp= 006 . (2.18)

The units #=C= Me=| 1s adopted,unless we state otherwise.

2.2 Theory of nuclear B decay
The theory of nuclear B decay is complicated by the fact that the

electron wave functions are not plane waves but are distorted by the Coulomb

_— ] —



poteﬁtiél'of the daughtér nucleus. The transition matrix element Fﬂ;gfor ‘

B decay can be written schematically as
+, 0t
Mp = f Y (Ve W)W dT P _ (2.19)

where ¥ and Y represent the final and initial nuclear states, 7% and dh;

are the lepton wave functions. The lepton wave length is large compared to the

nuclear dimensions, thus Y and %% vary only slowly through the nuclear

volume. It is, therefore, usual to factor out the lepton wave functions from
Mg . For example, the transition raterfor the allowed transition can be

1)

written as s
G2 | 79 3 2 2
W = 3——173(], FLE)PE(E-EVdE) (A 5117+ [fafo ") (2.20)

Here P,E and E0 are the electron momentum, enefgy (including rest mass)and its
maximum value, and 51, f@'are called the Fermi and Gamow-Teller matrix elements,
respectively. The effects of Coulomb corrections for the electron wave functions
are factorized in the conventional Fermi function F(Z,E).

The more precise treatment which includes the higher lepton partial waves
and the retardation effects is required if we want to know the induced terms of
weak interaction Hamiltonian or the detailed information for the nuclear
structure. Two methods are usually adopted to include these higher order
corrections. One is to estimate the electron wave functions at the nuclear

1),3D

surface r=R such as,

(¥ e Wedt = [W®/R?) [ r2 v dT (2.21)



Here, %), denotes the f-th partial wave of the electron. While the neutrino
wave functions are plane waves and they are expanded in the power series of

3% '
9 ), where ¢ 1is the momentum of the neutrino. For example,

St dotam ¥ dv = fwiyedT - %sz;“ p2e dT ' (2.22)

The second term in the right hand side of eq. (2.22) represents the typical
higher order matrix elements. Thus, by factorizing out the lepton wave
functions; Mygc can be written as the linear combination of the products of the
energy independent nuclear matrix elements and lepton combinations.

The other method is to expand both the electron and neutrino wave functions

around the center of the nucleus r=03q),

Wiri= Opr® { Qo+ v+ Qurts o ] (2.23)

Each term in the right-hand side of the above equation introduces a new higher
order matrix elements. Althouth the latter method seems more rigorous than the
former, the power serieg expansion is valid only in the domain of convergence

r <R, , where Rc is finite. This difficulty disappears if a well behaved
nuclear charge distribution like a Gaussian type is used, however, the B-decay
formula do not converge at all in this case. To avoid these difficulties,
electron wave functions are expressed in the Neumann series énd are expanded
in combined powers of PR and aZ‘%D. But these conventional formulas introduce
many types of nuclear matrix elements and it is rather tedious to calculate
each term individually if the higher precision of the theory is required.

Therefore we develop a new formalism of the B decay, where the lepton

wave functions are treated with no approximation. The exact lepton wave

—_ 13 —



fu.nctn;.(‘)né ér;a noté fac'tol‘:‘i.zea oﬁt ;)f the ini:eérai of tie.lq..'.~(2‘.‘l9); | ’I"he An-uclléar
wave functions are combined into nuclear form factors, and the integrand in

eq. (2.19) is expressed as the products of the lepton wave functions and the
nuclear forﬁ factors. Thus the transition matrix elements become energy
dependent. The present formalism has the following two advantages:

(1) The higher order corrections due to the retardations and higher partial waves
of'the lepton wave functions can be treated as exactly as possible. Theée
corfections become important when the enefgy transfer to the electron is large,
and a precise analysis of ekperimental‘data is required or when cancellations
of nuclear matrix elements take pla;e.

(2) In the present formulation, exchange current contributions are easily
taken into account, through the nuclear form factors. Since the same nuclear
form factors can also be used in the other weak or electromagnetic transitions,

the relations among these processes become clear.



§3 Formulation
. . . 7y ..
In this section, we develope general formalism of B decay which are

analogously obhtained as those of the muon capture in complex nuclei4l). Th

e
lepton wave'functions are expanded into multipole series to satisfy the spin
and parity selection rules in the transitions. We introduce the concept of the
nuclear form factors, and the transition matrix elements are expressed as the

integral of the products of the lepton wave functions and the nuclear

form factors. The radial integrations are left for the numerical calculations.

3.1 Effective Hamiltonian
The effective Hamiltonian which operates on the nuclear states is derived
from the interaction Hamiltonian density of eq. (2.1), by replacing the lepton

part by its matrix element [, (I)

He= 2 [ B dr (3.1)
with
LalE)= eS| Oam)o) = - i BV l1+Ys ) P (w) (3.2)

for the negatron decay. Here Ye(F) and @S(r) are the electron and antineutrino
wave functions, respectively, and Se and Sv represent the Z components of their
spins. We expand these lepton wave functions into series of the partial waves.

Y ()= 47%.'" %0015 mese Lieke) ﬁ‘,,ea?) .eap(—iA»@)[ (3.3)

¢ Fe Xoxe pe

Gre Xiape )
’

and



¢ 4 £y _clr ¥ z - [7[‘(./ X-waps
S = T, st Vi, Gy [ )

j M, x oHv

(3.4)

where P and § are the momenta of the electron and antineutrino. Gxe and h. are

the large and small components of the radial Coulomb wave functions for the

electron and Ak, is Coulomb phase shift given in appendix A. é&, and fk,are

the radial wave functions for the neutrino, which is given by the spherical

Bessel functions,
In= dol2v) Fu = Swvdiy (2F)

The total and orbital angular momenta of the leptons are expressed by the

quantum number X, respectively, as follows:

. X kpo).
o= IKI-QK and L = ¢
~(k+1) (k<o) 5

while the sign of X is defined Sx= k/IXI so that

ju‘:‘— /e-K‘: j“‘\y’( .

We use the notations .ty =_fx, and Z=lx etc.

The spin angular function is defined by

Kup s I (ki mS| k) Youm (5 X

with

—_— 1 —

(3.5)

(3.6)

(3.7)

(3.8)



%= (p) Xo=(7) . (3.9)

)

Using the pértial wave expansion in eqs. (3.3) and (3.4), and the folldwing

relation

: ." — . ¥ A /- iy‘r,ﬂ’,n,p., :
'}/5.¢;y[[r) = 722— Z-l l IP(IV%MP—SPIJV"’V) Em, [7)( )’ (3.10)

o I Xsops
we have an explicit form of [, (r) ,
-(4m)? -\ Letbs . A LAk
Latr)s i E L ™ i tiette) Yoom, () €4
XM By
‘ s . ¥ A —_—

LiokmemS, 1) Yor (3) £ (65 MmSi] i) ‘5;(@)](1};%7& Vi) (3.11)
with

JR— + P— 1 - L.](K./y”‘y}‘u

"'-P,Qk = (erxwe;le , b/-ke%—ke}‘e) 5 77’/;(,,}’, = S Xriupiy ) (3.12)

In eq. (3.11), the upper (lower) sign refers to the negétron (positron) decay,
and this convention is adopted throughout this thesis. The positron formula
is obtained from the negatron formula by using the charge conjugation relation,

and is shown in appendix B.

To calculate ( ‘%@HQYQ‘UA¢FV ), we use the following formula,
T
Crope (€7 T™) Xy, = Y (M e Mo Bel3M ) Szik (ke %)
c= T (Lkmp T Yo €V
V% Ry M 3 - (3.13)

17




with

K Le Vi
Srix ke, 8, ) = See ) 20eteriy2tti 2t Y2+ 1) (le,&oo/w)ijiyz JfJ (3.14).
. LKk

" . . . .
@, ¢"”is the unit vector,dﬂols the 2X2 unit

Here K is either Q or | , and €
matrix and " is the Pauli spin matrix.

The effective Hamiltonian can be expanded into a series of nuclear
multipole operators EE"1OQ.Ky) , each of which corresponds to the lepton system

of the total angular momentum J, its Z component M, with parity»@—fk”% . We

write down the space and time components of nuclear current explicitly as,

W)= (Y, iP )

b4

Anlr) = (J4w), LPAY)) . ' (3.15)

Thus the éffective Hamiltonian can be derived from eq.(3.1) with eqs. (3.11)-

(3.15),

. Lett) . . )
He= Sm) 2 07 " (G imeselie e Youme(F) € 2% (- 1F"%
KymyHe

LM I ) e, (B 1 (Bhimm51ds o) Yo (5 ) )

'J,ZE(J'ejv’FeFV/-T“) Drﬁ(Ke,Kb) (3.16)
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wh‘e;é
e, k)= J&T 3T fap
{ P:FV(D’) Y.Tn (U,"')[ GKe 9;(,, SJ’-D (e, %) — Fi‘cﬁ».j:no[""e,""r)] J-J'L

?':.vaﬂ’)'\;m(@)[ﬁxeﬂ.,&m[Ke,'x")‘f’ Fre Fre Sr0(~He, K )]

- .VA(D‘)‘\YJ'LH(DA.) [G‘Q gx,, SJ'L, (K" Ky)- F“ef’fyjfu["xe,’k.b) J

- E’FA(D') )./TU;’/ [6&}'\'4«5}10 (Ke) -}(k)'f' F'ngy SILO("’Q;”‘»)J JJL } 2 » (3'17)
with
Youm (F) = ,2"; (L)mpr )l TH) Yim () & ~ (3.18)

3.2 Nuclear form factors
By using the more explicit expression for eq. (3.14), we can rewrite the

operator T, (kek,) as,

- : i ':__!& oL
Cismlie, ko) = VATCIer N2 ) (230 1) (S 4-Y% V50) I [ H_Z, — J

'ﬁ“‘r §F P Gom (P L (e ) S50 78 3009~ Yool P) L i)

~TM0)- o OF) Unlees) = LPAR Yo ()1 o) S F (3.19)



" where [k, etc. are the combinations of the radial parts of the lepton wave
functions and they are tabulated in table 1. If we define the nuclear form

factors as,
Fitry= (T3l Jabt Pt o (Fo1T: ),
Fo )= (T4l o cTtm W (21172,
- Fhry = (T [ ]”‘(u')-‘}; LR 5

FAr)= (30 fdiF ipAm) Y5y )j3: ) (3.20)

. Lot . .
we can express the reduced nuclear matrix elements of gy in a simple form as,

TN By (Kes k) T3 = Jh (o s( 2zt (35019 (Jed o241 T0)

);.jyzdv [ FEU ey £ FYL 000 L% 00,5 )

—FﬁLér) L’;L(Ke,m- FAtr L (ke ) } (3.21)

Here the reduced nuclear matrix element is defined by

(Bl Exn] TeMed = (5TM: MITsMy) /-;7;7 ONENT:D (3.22)

Thus the nuclear matrix element is expressed by the radial integral of the
products of the lepton wave functions and the nuclear form factors. If we replace
the lepton combination with its numerical value at a certain point (e.g. at the

nuclear surface) and factorize it out of the integrand, we have the integral
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for B decay in the conventional theories.

We shall show a few simple examples for the relation between the nuclear
form factors and the conventional nuclear matrix elements. If £ and J* have
the following forms,

A A ‘ : '
) =;§_ T Sw-r Jf‘(,,-):d_{_'l tj. o; Jr—r;) (3.23)

b4

we have
A | |
S [ FYer) redr= (J)IIE-TJIIIIL)= Jexer S
A . _
/ﬁfﬁﬁ(ﬂ Vodr= UHJJ.E Lio 1) = Va4 for . : (3.24)

Here 51 and jdf are the same as in eq. (2.20).

Isospin operators are defined as,

T = F ok Tay = L (Tx20Ty) | ' (3.25)

3.3 Transition probabilities of B decay

The probability of B-ray emission with energy between E and F+dE in the
solid angle (), 1is given by
AW o o2 3.26
dedQe ~(2m)5 PE(E.—E) Zm-ﬁum Oy . ( )
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with the density matrix which is defined By.
gl ’
Rite= Zopy, JAS0 TFe | He | 3 )03 e [ s [T HE) (3.27)

Here )%M:? and Uyts) stands for the initial and final nuclear states with
spins J; and J; , and their Z components M, and /; , respectively. Qm: is

' the population of the intitial magnetic substates A, with a normalization

T Q|

M

From eqs..(3.16), (3.26) and (3.27), we have an explicit form for the B-ray

angular distribution from oriented nuclei as follows:

AW z
déE_a‘fZe‘ ETCTL)" PE(E.~E)"
A X -T:13+T40 , (2) :
ZL F00) =L () WO ) by (st ) (3.28)

with
hire LZlgat ()7 (gl 0e) an: (3.29)
K- Z 1:5,,, Y o i (@5ei 2zt 1 )+ (Jedé VoK) po)
Kok
. — . S
“W(iedd T35 LT N e I T ) (BN Epr b6 132D
) (CYKM/' 005 (o5 ) i, §romt? S (S sep=3es ) ] , - (3.30)
and
Sxe= Axe— Lllt1) » o (3.31)



Here the condition let%+f =even should be satisfied, the angle-H denotes the
direction of the momentum of the electron with respect to the nuclear orientation
axis. The summations over M., K, and J should be performed so as to satisfy
the spin and parity selection rules for the related transitions.

The B-decay spectrum ié given by integrating eq. (3.28) over the solid

angle for the electron, . and we define the shape correction factor C(E) as follows:

‘g,é‘”‘= 4,&; FoPE(E,~E) C(E) | (3.32)
with

C(E)= 1 Z,i(—)"/%:'fbfx) YR o, (3.33)
and

For 4(2PR) T Venp s ) | POvEi9/ P2ve1) I

oZE o '
v- Ji—tary* Y= — _ (3.34)

3.4 Impulse approximations

Until now, we have made no restrictions for weak nuclear current densities
PV , I ,,F”(V)»and f”n?) . In the following, we assume that the nuclear
.curfents can be expressed by the sum of individual nucleon currents as in eqs.
(2.6) and (2.7) of the free nuclepn. We also assume the non-relativistic
description for nucleons. In this case, the nuclear current densities are

-expressed as,



A
PV{W): jZ;J(ﬁ’-IVj)Ef [fV'tE;’f“ ]J ’

- LS4 L CCLL |
(= L8010 [J, 35+ (h-2mf) 5= F KUK 5,

b4

A
Ty LI T (hr B )0 - ﬂ(_____ﬂ‘)’f‘]j

) _
Por = Z, Sr-m) T/ [ 4 ZF (121154 Eohy) %K]J. s (3.35)
with
P< #cr B > k= Bi—F: _ " (3.36)

Hererthe momenta [ and F; operate on the nuclear wave functions in the
initial and final nucleon states, respectively.

From eqs. (3.20) and (3.35), we obtain the explicit expression for the nuclear
form factors with one-body currents. They are summarized in table2. Note that’
the induced pseudoscalar and scalar terms are treated separately from the other

space and time components. Induced pseudoscalar term (P.S.) is proportional to
PS. o« EolTeYeYsWl)t+ ¢ kK(FeY V%)

= (E"‘Q )[:'7’07,4)/!1[’!/)‘“ L‘(,Pe‘f' Fv)[;e}/')/;%) . : (3'37)

By the help of the Dirac equations for the electron and the neutrino:



Fe (LYeRFme)=0 (P H= 0, (3.38)
eq. (3.37) can be expressed b&'a single term which is multiplied with electron

mass Mg ,

PS. = M. TYVsY ' (3.39)

As a_consequence, many observables in nuclear B decéy are insensitive to the
induced pseudoscalar coupling4z). In the case of the py capture, this
multiplication factor Me is replaced by the muon mass mp  which is 207 times
’larger4|). Because of this fact, the pseudoscalar coupling becoms important in
the muon capture. Thus the additional nuclear form factors and lepton

combinations appear, and they are also tabulated in table 1 and table 2.

Therefore, the matrix elements of Iy(ke, %) should read as

(I ExOes kI 1 T2) = Jam(zjori N2it1 /(2561 ) (Jeh 5-15]T0)
'Z:f”""” [ FFL LY 0,50 F Y 0r L3y (%, .
= FAO L tke k) — Fens L7 0o, )
FFELr (e, %) + F§0m LS(xe. ) §

(3.40)
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3.5 Nuclear recoil corrections to B decay rate

The phase space volume should change by taking into account the recoil of

the final state nucleus'3) so that,
d.f = I P | b4 J . 35'—5—31,9.3
4 * Gy PE(Fem € )dE 4060, (1 2 ), (3.41)

A

where @ 1is the unit vector of the neutrino momentum, and Mf

the daughter nucleus. The correction term withlﬂﬁq&) may not be neglected for

is the mass of .

light nuclei, since we are to concern ourselves with the 0/#%) terms in this
work. This nuclear recoil correction should be done for the integrand of eq.

(3.27), which should be multiplied with the following factor:

¥ A A 47 ,
kZp:t RK Yk}l (!P) YKP- (tﬁ) 2K+ 3 . (3'42)
with
3E —Eo ’
Ro: ]+ ——74‘;‘ , R = - %’—P; (3.43)

The term with K=0 gives the same result as eq. (3.30), except that it is
multiplied with Ry . The expression for the K=1 term, and some examples are

given in appendix B,
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84 B decays in the A=12 and A=13 systems
In this section, we shall.write down the explicit formulas for B-ray
angular distribution from oriented nuclei in the case of the(l+, 1~ d+, 0)
transition for A=12 and the(3/2_, 3/2 +1/2°, l/Z)for A=13. The level schemes
for these transitions are shown in fig 1 and fig 2. The transition operator
g;,(kﬁky) wiﬁh J=1 contributes to both cases, while the operator with J=2
contributes 6nly-to the transition in the A=/3system. We shall show that we

21)

can derive the conventional formulas by making some approximations for the

lepton wave functions.

4.1 Explicit formulas for the A=12 and A=13 transitions
From eq. (3.28), the B-ray angular distribution in the 8 decay of the

A=12 and A=13 systems can be written as,

4}2%3“/5 ) (Tr%zv”’ffffs)zz;,-f, [ Bo+ B, PR (08) +B8. AR 0) + BT Blco0) }) (4.1)

with

I 400 ;000
Bo: T 203 bl! * }Tf‘bzz 3

_ 1 [{ V2 v3 { i t
Bl‘ —Zﬁ [ 10\/-;- bj: + Io./l_o 12 »

;! (2) 7 )
o o — - /
Ba= ~575 bu ?75}’/1 * T bz ’

3 (3’ 2 3) :
Bs-= ‘E‘B‘b/z * oV b , (4.2)
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where the polarizationsof the initial state P , A and T are given as

P=Qy-0o» A= 1-300 and Te0 oo the A= )2 sgilom,
and
P= s+ % Q- Y0u-035 , A=Qyu-0un-0-%+0-3
and  T= BAs-0% +A-%— )5 0-34 'ﬁy%/ﬁ/}%ﬁ/m/. (4.3)
s, . .
In the case of the A=12 formula, we have only b, 75 with ¢ =0,1 and 2 in

eq. (4.2). Nuclear matrix elements (J;}]EJ.(}(,IJ(,,)”J'; ) with J=1 and J=2 in

~are given by

15 s 05« [T (5 110 s
[~ B0 )= G B wrear) - ROL% mRWL+ R} (4.4)

and

4n( z,é-f )rt)

(740 Balre e 172)= / (e - |20) fredr.

(FFYF G 0Lz 2d?) F k) 0L 3L - gppn U+ B ) . (40
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4.2 Relation of the present formulas with.the conventional theory.

The formulas in the -conventional theories of B decay can be derived from
the present formalism under some approximations. For example, the eiectron
wave functions (or those multiplied with an appropriate power of / ) afe
replaced by their values at the nuclear surface r =R, and the neutrino wave
functions . are expanded into a power series in 2r . If we neglect the terms
with F?* and highér powers in r , and the partial waves with [X!2> 3 , the
lepton combinations are approximatéd as those in table 3. Lepton combinations
with (e, ¥y )=(-1,-1) and (1,1) are excluded by the spin selection rule for

Se (¥e, o) . | |
- Factorization of the lepton wave functions in table 3 introduces the following

nuclear matrix elements,
[ (B2 mrar = gaa)
Jm JFAtPar = J5 fa(iver)

& Rl rars < T (dxr)

i JE  (oars ~ A Ay (4.6)
with
Ga= #FEFr . (4.7)

In the impulse approximation, these matrix elements are given by



(%)= sHT)+ & { IO V))+ ﬁ(g;)
@) )+ (1-artde ) ] R
(iAg )= = 557 > <r¥, V) s (r Y e I (1-2MA, 1) (P DYy 0} )
with
{rDeb)< [ridar D {JfIIZ_l'*J(”’ )0”“' ) | (4.9)

From eqs. (4.1)-(4.7), we have an approximate formula for the B-ray angular

distribution for A=12(1%, 1 > 07, 0) and A=13(3/2", 3/2 + 1/27, 1/2), as follows:

;ﬁ%g om‘* F,PE(E,- 5)5—, Ja {cﬂ)z/[}ﬁffﬁ, Rtwro )+ A3, B (w30 ) } s (4.10)

with
Po= LoF 4a(ZrorMo)t 25 (LMo
Bi= 2/ 4—'4a/ /1.+/N/"—' ll;z)F2b/—3‘2—2/\,-rll‘U,,+llu)i:—//—L?_—cﬂ,z
e 2

Bi= Fa(o-b) Lp F55CL. (4.11)

Here parameters a, b and ¢ are defined by
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A= - = £ (Fxw) / (@),
b= + faCi¥s ) [/ GasT> ' ' (4.12)
e=— FiAg) [ Gaxa)

Combinations of electron wave functions, Lo , Np s, etc., are given in table 4.

In the limit of the point nuclear charge, we have the well known expression for

21)

B~ray angular distribution from oriented nuclei

A G RPee,-E ) Cte)

dNed (2m)*# _
' '{_I-?l}’gp(/rd;‘f)ﬁ(w@)-r-/ﬂ ArER(ws0) § | (4.13)
with
ClE)s 5 Mo (1efaE) | 7 (4-14)
and
dr= T Fla-b) 75 . (4.15)

In the case of the A=12, we set ¢ equal to zero. It is interesting to note that
the same geometrical factor 2/3 appears as a coefficient for the time component
b in both cases of A=12 and A=13, though the individual values of J. , P ,

A  and the nuclear matrix elements are different.
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The time component matrix element 7{4(5}’30’) contains the induced tensor

coupling as
Cf (DY) = fadiYe W) 2 K sy (4.16)

‘Hefe (¢Yslr) and (iYs ;r)n are contributions of the first and second-class
currents, and their expressions in the impulse approximation are given in eq.
(4.8). From the definition of ®F in eq. (4.15), we can single out the first-

class and the second-class time component matrix elements as follows,
oot = = [2] 4 x5 - %) V- S fihg) ]/ Jasm ),
Oordy = — 2 (Velrds /AT (4.17)

Here we neglect E,A in Js , and (&4{f> equals to zero in A=12.

If Cc.V.C. hypotﬁesis holds, the magnitude éf Qﬂxlk)‘ .is determined and the
strength of S.C.C. can be discussed from the difference of o_ and o, . On

the other hand, the space components of vector current, {&xl) and (Qﬁyj} , are
conceled in the sum of O/~ and O , which contains only the time component
matrix element for the first-class current. Here we define the paramete; 24

21y,

as usual

_ (Vs i)y
Y= 2M el (4.18)

In the impulse approximation, this is written as

Ya= 1+ 20@W)/{T> - (4.19)
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This is essentially the ratio of matrix elements of the time component and
space component of the axial vector current,and are related to o + O/, as

in eq. (4.17) in the approximate formula.
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§5 Nuclear models

The original nuclear shell model is based on the assumption that each
nucleon in the nucleus moves independently in the average field produced by the
other nucleons. This can be understood qualitatively from the Pauli exclusion
principle and the wgakness of the nuclear force at large distance. Thus the
nucleus is described as anrensemble of non-interacting nucleons in a common
potential well. But, in fact, the nﬁcleons'interact each other and there still
remains the residual interaction except for the part which is used to construct
the average field. Then the problem is reduced to solving the secular equation
for a Hamiltonian which contains the residual interaction. Since there are
10" ~ J0* nucleons in the nucleus, it is a very difficult task to solve the
complete problem. Owing to the existence of the magic numbers, we can describe
the nucleus near the closed shell as a system of a few valence nucleons moving
around the inert core, which greatly simplifies the froblem. In other words,.

‘we can truncate the nuclear Hilbert space. These procedures have brought a
great success in nuclear physics43).

Of course, there still remains the question "How is this truncation
justified?"; The answer to the question have been investigated in the context
of "effective interaction" and "effective operator"44). We are not in the place
to discuss these problems in detail,but give some short comments on the
“core polarization". Core polarization is 5 revival of the inert core problem
which was once discarded. Since the interactions between the valence nucleons
Aand the core nucleus cause the~excitation of the core, the excited core also‘
has non-zero spin and eleétromagnetic moments, and contributes to the transitioms.

Concept of- the core polarization was first introduced by Arima and Horie45)

as the "configuration mixing" in the study of magnetic moments. The gap between

the Schmidt value and the experimental data for the magnetic moment is mostly
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explained by them. The importance of the core polarization in the effective
46) '

interaction is also shown by Kuo and Brown . ‘. The E2 operator for nuclei with

the closed shell + one nucleon also provides a possible test for core
polarization effect, and; in fact, many works have.been done44). Their effects -
are also seen in the other electromagnetic or weak transitions in the different
region of nuclei47).

In what follows ﬁe shall briefly summarize the derivation of the effective
operatorsAg), for the purpose of the later discussion. Then the explicit
formula for the first order core polarization is derived. The qualitative
feature of tﬁe core polarization effects will be investigated in the simple

j~j model. Notations, symbols and some definitions used in this section is

summarized in oppendix D.

5.1 Op shell formula

Before going into the discussion of the core polarization, we shall
summarize the formula which is needed to describe the nuclear model within the
truncated Op shell. We assume that the nucleus of o) forms the core, and
A=12,and 13 systems are described as hole stétes. The n-hole basis state with

the set of quantum number [? is written as,

AT = INTex G o (5.1)

Here A T: represents the N -hole states for the . -th orbit with ¢, and
.Au, M2 stand for the Op3/, and Opy s, orbit, respectively.
The matrix elements of the Qne—body operator qu and the two-body operator

G"’ are obtained from the formulas in gppendix D,



WTHER N D= = 0doe [PP1" 2o BUF ) (=)

L wirswpior’) NP A ) RTINS a5p) (5.2)

’ ’ P . © . X~Y+rw
RINGNAT )= B2 G [7] % T V85 INETN A 50w (=)

. D Wraws; 2p (R X7 5oz y NP AN T4 04)3)
15 T paaesszm S inpyewy poiz 9
— N’ [FT7'] prey (BN G NCd 5 X ) l=) 7 wiyewd ;px)Ix 4]
Y. WU TAwp; AT KPS &K N4 580, (5.3)
A N

Here the summation on o, 8 , Y and 4. runs over 0p3/2 and 0p1/2’ and c over

the orbits within the core. The first and the second line in eq.(5.3) represent
the two-body and the one-body part of @G% , respectively.

From eq. (5.2) and (5.3), the matrix elements of Hamiltonian between the

two basis states are obtained by setting & =0.
(Ar | H% VINP'Y= (-mEppy —N2 Eopy ) Srr

WD)y v8ix V1B e TONTINA S GpIRT ATB50050 80, (s 4
=z 4 ’
apYEsx

where H? is the one-body part of the Hamiltonian and V is the residual

. interaction, fpP3;, and Eory are the single particle energies of each orbit.

The matrix element of the one-body operator can be written in the form



. n —~ow N7y W w
NI P de’. Cog @I FUR) (5.5)

where [A"}) and [A"F:)  are the final and initial nuclear states which are
the linear combination of the basis states of eq. (5.1). The coefficients

C;; for some nuclear models used in this thesis are summarized in table 5.

5.2 Formal theory of the effecive operator

_The Schrodinger equation for the statioga?y state of - the nucleus isAwritten,
H’ll/o( = Fx Yz R | | | (5.6)
with
He H°+Vv , H°¢:i= &« | (5.?)
where H® is the model Hamiltonian, 4% is its eigen function and V defines the

residual interaction. The true eigenfunction A, of the system can be expanded

into the series of ¢k 5

Yy= ZZCo; @i . | (5.8)

Since the index runs from one to infinity, it is necessary to truncate the

series in eq. (5.8),

- .- (5.9)
q{:‘_ Er) Cdb¢b . ‘ -



Here we introduce the model space (7 with the truncated cdnfiguration. The
division of the full Hilbert space into the model space ( P space) and the
other excluded space ( & space) can be accomplished by the use of the

_projection operators,
VP = Z 190:2¢Pc 1, Q= b xdel (5.10)
e . 4P
They satisfy the following properties of the brojection operator,
P+Q= I , p: P R a , pp=4aP=o0 . | (5.;1)
Since H? commute with PAand-Q? H® cannot couple the (? space to 4] space
HY = Hep= 0 | (5.12)»
-Here we have
Hfe = PH2 . ofe. (5.13)

By applying P and Q to ‘eq. (5.6) from the left hand side, we obtain the

two coupled equations,
[HEp+ Ver + Vpa 1 Ua = ExPYa (5.14)

[He + Var+ Vorl%y= Ei@ W% (5.15)

.

Eq. (5.15) can be solved for QUx to give



1 : )

QY = e e Vor e * Bl %t s (5.16)
with
’l/ep = Var + Voo V&; Vor Feo = I _’ > (5.17)
d. ea .
By substituting eq. (5.16) into eq. (5.14), we £ind
Hetf Pt~ E, Ptk , | (5.1'8)»
with
He##= Hep+ Vpp ', | (5.19)
and
Vpp = Vop + VeaTes Vap ’ (5.20)

Thus Heff is the effective Hamiltonian which acts only the model space and |

gives the same eigenvalue: E. as the ériginal equation (5.6).

The effective Hamiltonian depends on the true energy Eyx of the system through
r}g , therefore the solu'tions of eq. (5.18) with different Ey are not

orthogonal to each other. In the more sophisticated treatments, the energy

dependence of the effective Hamiltonian can be eliminated by introducing the

~

56)

folded diagrams “, and Heff is expressed as the linked valence diagram
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expansion with the unperturbed énergy denominaters. The eigenfﬁnctions with
different energies are not orthogonai even in this case; because of the non-
Hermitian nature of the folded diagrams. On the bther hand, the FST-Okubo
methodév) ensures. both the use of the unperturbed energy denominator and the
orthogonality of the model wave functions. In the first order in V, these
methods gives the same results and we assume that the orthogonality of the

model wave function_holds.

The normalized projected wave functions are defined as

rq’o;l,= dP—’P% (5.21)

where Op is the normalization constant obtained by
- = ' = AP UL N 1 '
(L@ Yay= 1 p = Op (U Nepl Yu , (5.22)
with
Ner= Uka Va% ’7030 Vor . (5.23)

We now consider the matrix elements (U¥,|T|7%Y3) of any physical operator
T. This matrix element can be also described in terms of the effective operator

Teff which operates within the model space,

(5.24)

2

(W I T1 %)= (Y| (PROT(PrE)Ysd = OlpBe (YT | Topt | ¥a D
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where the effective operator Teff is given by

("I;H_)PP = Tpp+ TpaToolep + Vrse [oa Tor + Vre 36 Toa Too Ver . (5.25)

Eq. (5.24) shows that the true matrix elements of operator T are equal to those
of Teff in the model space. If we know the model space wave functions,
normalizgtion constants and the effective operator Teff from eqs. (5.18), (5.22)
and (5.25), the true matrix elements are obtained in the truncated space.

Thus the problem is to obtain %r , Y» and Upr by solving eqs. (5.17) and
(5.20), and then we have the consistent déscription of the effective interactioh
énd the effective operator.

Any model can be used for H? and {? space, if the correct renormalization
through the above procedure is done. Unfortunately, the correct renormalization
réquires the complex knowledge of the whole excluded space, and it is a very
difficult task. The problem in nuclear theory is thus to choose a_modelA
Hamiltonian H® and a model space {” » which enébles us to solve the problem
easily. For example, the renormalization due to 52 space can be ighored
('16r=0) or the § space can be included by the perturbation theory (Vep= Vop ).

Here we assume that {jpg and 4/, are given in certain functional forms

Oﬂ; and §pp , which leéd to the reasonable results for the energy levels
and the transition probabilities in the relevant.region. Then eqs. (5.18) and

(5.24) are written as,

(Hopt Vep) W = Eu , ' (5.26)
(Wl T 1Yo (YP] T Tigoo Vor + \'/,,3—55_—’*7,7 19> (5.2D)



N .
Here we neglect the second order in lfp , and the normalization (p and /3P

are reduced to unities. For the lowlying states of the Op shell nuclei, Op shell
are chosen as the model space.
Furthermore, we regard the interaction ng + OPP as the Cohen-Kurath

27)

effective interaction which is empirically derived from the Xi—fitting with

experimental energy levels of the Op shell nuclei. Thus the Cohen-Kurath wave
. P I o . .

functions are adopted for %b and QPB . H is assumed to be the harmonic

oscillator Hamiltonian, and the upperturbed energy difference of’}{o is inserted

in the denominator of eq. (5.27).

5.3 Explicit formula for first-order core polarization
We start from eq. (5.27) and Q is feplaced by its explicit expression
in eq. (5.10). Since the nuclear states have definite spins and parities,

we deal with the reduced nuclear matrix elements of the following form,

N Te e Ted= (TRUTYNT: )
b (I TUP) 2 (RIVITS) + TARIVIR) 2 (BT 7)) . (5.28)

Here 'rw is the transition operator with rank w , and V is the effecti&e
interaction ( 0?@ in §5.2). T3, [P and T, denote the quantum numbers of
the relevant states and summation runs over the states [m in the 4 space.
[ and [ are the n-hole states in the Op shell. For the one-body
operator T% , Im becomeé the one-particle (nt+l)-hole states. The particle
states are Ody; , ISy , odys ., 1Py, --- , and they are denoted by P ,

and the hole states Osy > QPy » OFPy are denoted by A\ . Em is the‘energy

difference between [}, and [?c or T+ . The terms in the curly brackets of
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eq. (5.28) are called the core pblarization terms (C.P.).
The final, initial and intermediate nuclear states are'expressed as the following

"linear coﬁbinations of the basis states,
130 ZClB) I RTEY ,  Te)= P XTB7

2= | Po Ad i) <[ |92@ Zy.'cv{Ad)M”“A(YD 7 , (5.29)
where )ﬁ denotes the n-hole states. o , B and vy stand for the quantum
numbers which specify the basis states, and (i ([%), (s (%) and C,(ad)
are their amplitudes determined by the diagonalization of the Cohen—Kurafh
effective Hamiltonian. The symbdl d in eq. (5.29) is an extra equantum
number to specify the individual energy eigenstates with the same quantum

number A.

The C.P. term in eq. (5.28)_can be written as
c.P. = %% Cal(l2)Ca(le )ﬂ){.}yg Cy(ad) Cglad )
ST UT N PON A5 ) By AP ON"AE) T [V | KT

+ Q) Iy | POXALI; T ) 2 (POR ALY B T DAL () ) J. (5.30)

Here the spin isospin selection rule for A should be independently applied to
the first and the second term in the bracket. We assume that the energy

denominator Ep is independent of d, then the summation over d can be performed

. independently,
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Zd'.Cv[A'd)CJ(A'd);‘ dvs . (5.31)

With the help of the 2-orbit and 3-orbit c.f.p. defined in appendix D, the

. following formula is obtained,

- N 1
C.P.—%Cd(ﬂ)(p(ﬂ)%ﬁ_ =

' { >;.rr;AJ"wmAwh;Pma"*’Avﬁ)\"W ds Al T P)

% ot ,
-»[?%[—ﬁ‘;] [%J (PC;IIVI2C; Yoa (N AYINT:B56) Spa
4 2 [XATE (AT 2] poy( PI sz )V 168 5 Jan

ANAY AT k) 2 DNTB A P YA ach ‘9] }

¥ p-h-

+ () r:’((f'id)tf—-’(ﬂ:ﬂ) 3 (hll/T“’Ill}’)—"(PlllT“’lllh)) .

(5.32)

The derivation of the formula is summarized in appendix E. The summation of
C-h, %, K, ﬂ and (} runs over the hole states which are allowed by the
sélection rules for spin and the particle-hole. number selection rules in
c.f.p.'s. The first term in the square brackets comes from the one-body part
of the effective interaction, and the second term from the two-body part. Note
that the first term does not vanish since we did not adopt the Hartree-Fock
condition. The last térm in the curly bracket in eq. (5.32) comes from the

second term in eq. (5.30).



5.4 Effective interactions
We shall give the detail of the effective interactions which will be
adopted for the core polarization calculation in this thesis. As the effective
52)

interactions, we adopt the following four models: (1) Rosenfeld s (2) Suzuki-

29)

A 3
Hyuga-Arima-Yazaki , (3) Millener—Kuraths.) and (4) Sussexjm).

Models (1)v(3) assume the effective interactions with the éimple functional form,

and the central part of the effective interaction is given

VIr) = Ve | Qo+ o0y + Oc G + Aot T30z Tle | £ (r) | (5.33)

with Y= |n-inl.

The exchange character of this interaction can be presented also in a different

expression

vir= VelPuPon+ PsPs+ Pa Po+ Pis B ) Fe r) s (5.34)
with the spin isospin projection operators

Fu= g (1—0i0)(~T5) _ﬁ3=7§1/—cr,~on)(3+-m-m),

E;=7§‘B+ 07:05)'(/-'03"15) > - 77';(3*“10;73);)(31-'0745) , (5.35)

and their cofficients P , which are related to (I in eq. (5.33) as
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P” ' -3 -3 q ao_

Pis = | -3 | -3 Qe
P a

! ] =3 -3 T
fa3

[ Qs . (5.36)

They are normalized as follows:

Qo+0o0~ 30c-30ec~ Poy=1 ‘ (5.37)
Numerical values of the potential parameters are summarized in table 6.

Now we shall go into the details of the four models.
Model (1) and (2): These are used in the analysis of the inelastic electron
scattering in the A=12 (07,0 -~ 11,1) and A=13 (1/27, 1/2" =+1/2", 1/2) transitions

29)

.by Arima et al. The potential parameters of Model (2) is obtained by
fitting both the experimental data on the magnetic form factors of the inelastic

electron scattering for the A=12 and A=13 systems. As is seen from table 6, its

triple odd component ( F33 ) is fairly strong. The authors of Ref. 29 ) adopted

55
the tensor force of Hamada-Johnston potential ) with a radial cut off at
Ye=0. '7)(7'".
2. 2,0% e e &
VeSe (1) =@tz *5) = [+t +e S5 IS:0(r- 1), (5.38)

~with

X720

2= P05 Sp=3@RENI-OT: , §(X)= /o, | x<0

(5.39)
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Suffix T (=0 or 1) of a and b indicates the total_isospin of Lhe two nucleon
system. The parameters adopted here are 1, =3.7 MeV, P =1.41fm_1, 0o =-0.5,
bo =0.2, @, =-1.29 and b; =0.55. The Ml form factor of the inelastic
electron scattering is well reproduced up to the second maximum (momentum
transfer 4~ me-f ) by Model (2).
Model (3): Millener and Kurath obtained the particle-hole interaction which
gives a good account of the non-normal parity states of a number of nuclei from
"Be to O . It is noticed that this effective interaction is just the
particle-hole interaction that comnects the model space and the excluded space,
and that it incorporates the non-central components. Thevadditioﬁal non-central
components to eq. (5.33) are given by

e—xr . e‘XLS
= " hs(crGe OIS =, : (5.40)

Vi (b+be TR )5,
with

Xp=Hrrr , Xys= Hus™ , L-$= 3 (F-1IX(R-P) - ($i+ 32 ), (5.41)

1

The parameters adopted here are Vr =-16.25 MeV, W5 =-26 MeV, M+ =1.4fm
His =0.7fm Y, b =-0.035, bt =-0.345, C =2.875 and Cg =0.625. This
interaction is shown to give a good description of the allowed B decay of "g
to the 1owest 1, 27 and 3 1level of l“‘C .
The matrix elements of the effective interactions (1)-(3) are derived with
the harmonic ascillator nﬁclear wave functions with b =1.65fm. |
Model (4): Elliot et al. used the experimental nucleon-nucleon phase shifts to

deduce matrix elements of the nucleon-nucleon potential in a basis of the

harmonic oscillator wave functions of the internucleon distance. The matrix



elements are given in the form

(ﬂ ZSHLJ IV | m’ zs+lL/3_> (5.42)

up to G wave and |m-1'] €2 ., They are tabulated for several values of the
oscillator parameter b, and we adopt those for b =1.7fnm. Hauge and Maripuds')
used them for the effective interactioﬁ calculation of the Op shell nuclei.
Although non-central components of this interaction are different from those of

6)

5‘ .
the Cohen and Kurath » both of them obtained a fairly good agreements with the

electromagnetic and weak transitions in the Op shell.

‘5.5 Qualitative features of core polarization effects

To see the core polarization effects qualitatively, we shall investigate
(1+, 1- 0+, 0)transitions in the A=12 system by adopting simple j-j coupling
model. The ground state of 120 is assumed to be closed shell ofAthé 0B

- orbit. Then the excited state 12C(l+, 1) is the one-particle one-hole state

(1p~1h) written as [ 0Py @0Ps ™! ](1’1). Thus in eq. (5.28), [% and [
stand for the closed shell and the 1lp~lh state and the state with [7, of the
first and the second terms are lp-lh states and 1lp-lh or 2p-2h states,

respectively. Therefore, C.P. term can be written as
' -
C.P= 2 OUT“NPh3P)EnPhiPIV I PohosTo D
r

+3 (oW TUNph P B (Pl LI Pho 3T )

phy

+37, OVIE@PTREO ) & R ® (1) TIT N Poho ;15

odEp uELr

. ! ST .
+ L OIUIPHST D (PRSTHT I PohoiTs )

(5.43)



where |/ denotes the one-body part of the effective interaction, and it is
removed from V in the above expression. [PhsT) and ]@W)TUO(HV)Q;I’>
denote the 1lp-1h and normalized 2p-2h states, respectively.

The core polafization formula in the j-j model is given by ’
) -3 . N
C.p = 3 <ANTIR) g (3" LT B ohos IV W 3% )
el x

+ T holl TIP) & (M [Z P VIR X ) &,

+ X CPI Tl h) ?L. [ IW (howXP;FPs h ){ hoh; XIVI P P;X )
Phx

r Z (PUT P ) & IR LR e X IV 1 Pes %) 8 6

4

(5.44)

with P = 0P , he =0Pyp 5, T, =1%]

X . (see appendiX E) Here the

first énd the second terms correspond to the first term, and the third and the
fourth, to the second term in eq. (5.28), respectively. The second and the
fourth terms come from the one-body part of the effective interaction. The
summation on p and h runs over the (p-h) pairs as ( %, 0P, ), (IR, , 0B, ),
( 0fs s 0P ), (C15% , 05% ) and ( odss , 0S8y ), and that for c runs over
05, and 0Py . Due to the Kronecker delta functions, p is restricted

to 1Py and 1Py in the second and the fourth terms, respectively; Here the
intermediate states are restricted to ZRW states for simplicity.

Introducing the parameters, Xps , Yen , Ux and Uy , we rewrite

eq. (5.44) as,
C.P= %}(hn/*r“’(u P) Xph+ 2 <PI T ITh) Yeh

+ Choll Tl 1B ) Ux + (PN T WP )y . (5.45)
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The definition of the parameters is clear from eqs. (5.44) and (5.45).
We put our particular interest on the distinct features of the core
polarization effects on the time component of axial vector current TeA and

the M1.electron scattering operator Aj}ﬂ defined as,

Teas ’;é‘ (@2 r@vIT* , | (5.46)

. . Jilar) 7 |
Tm='4_r%[Hf@“ﬂ&ﬁ”o(g”—g\ma]é2(&"}+mf’”'ﬂ 7 1 Tz . (5.47)

with M =4.706. Here 4 is the momentum transfer in the electron scattering.

If the Hermitian property of the operator-'T;f ( 9 is the z component of rank w )

‘is given by

T w.
TS . (T | ( 5.48)

2
the reduced matrix elements of this operator has the following property

i . ¥
@ITUMb Y= (2 BT e )", (5.49)
Here k is determined by the property of each operator, and for the time

component operator Tg, and M1 operator Tu) , k takes the values 1 and O,

respectively.

From the time reversal property of these operators, both of their reduced matrix
elements are real. Thus the first two terms in eq. (5.45) are combined into a

single expression
2 CnehllTNPY | aith Coh= Yo+ ()P Yon | (5.50)
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Using the effective interactions discussed in 8§5.4, the nuﬁerical values
of these parameters are obtained and they are summarized in table 7. The
results are shown individually for the central and tensor parts of the effective
interaction. For the central force, the parameters Xpj and'Y}h appear with the
same absolute values for the four components of the P—’? pairs, and the
relative phase of them is given by (_)p—h. Therefore, a strong cancellation
occurs for the case of the time component operator, but not.for the M1 operator.
On the other hand, this is not the case for the tensor force, except for
( IS% , 05% ). The core polarization for fhe time component operator has
large amplitude in the 0}5& - 0B ana Od% - 0% transitions, which
are the tensor type transitions with A £ =2. One-body part of the effective
interaction has no effect for the tensor force ( Ux=Uy=C ), and again the
cancellation of the central force effects occurs for the time component operator
( Ux= Uf = -0.0961). Thus both the central and the tensor parts of the
effective interaction play an important role for the M1 operator. On the cher
hand, only the tensor part is important for the time component operator of the
axial vector.

Another difference between the M1 operator and the time component operator
lies in the contribution of thg intermediate states. The one-body matrix elements

of the time component operator is given by,

. ' ) . - V %, .,
L DD nafagz Y= Vij+ )22t 1) (—)" (n*%3.-%]10)

[ %&IJ—Y-U? Rn.e. D.IZRn;A + '_2&“/"3"." k”)"' p*h’?”‘l‘] s (.51

' £
with the derivertive operators D: and Sx defined in §3. Here only the

relevant part of the time component operator is written. The matrix elements
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vanish for Im-ml¥»2  for the harmonic oscillator single particle radial wave
function Anf! , due to the ladder nature of the derivertivé operator Ehf .
This means that only the intermediate states wifh 2AW  contribute, in the
case of Tga . On the other hand, Ths contains de¢ (2r) , and (m&di |l Teull 120425
has non zero values for arbitrary ni—-1: .

The tensor force has also important contributions to the magnetic moment and
B decay transition probabilities in the nuclei with [ S doubly closed shell
plus or minus one nucleon 57). The core polarization appears as the second-order
effect of the configuration miiing, and it is shown that the mixing of the highly
exci;ed intermediate states (~12#%w ) by the tensor force is essential to explain
the reduction of G-T .type B decay. On the other hand, for the time component
operator, the core polarization appears in the first order of V due to the

momentum dependent nature of the operator, and mixing of 2ZAW intermediate

states by the tensor force is important.
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§6 Exchange current effect in axial vector time component.
In describing nuclear weak and electromagnetic processes, it is usually
assumed that the transition operator TY is given as a sum of one~body

operators ¥ (¢ ) of the free nucleon
A
TY = Z +*(i) ‘(6-1)

This assumption is called "impulse approximation", and many electromagnetic and
weak processes show that this is a fairiy good assumption. However, it is
evident that the nucleons in the nucleus are no more the free nucleons but

they are interacting with each other by the strong interaction. The deviation
of the transition operator from the impulse approximation is usually called
"exchange current', and it is written as the two-body and the other many-body

operators for nucleus

A ' :
T, = X Ao (5,0) + [ 3body and ha‘ﬂhu'lefms ) 6.2)

X ST
LSy =t

To test the existence of the exchange current has been a subject of

7,24)

intensive studies in nuclear physics = ’, but apart from a few exceptional cases,

conclusions are not clear cut. Two positive evidences for the exchange current

58)

exist in the thermal nutron capture by proton (n+ P> d + v) and the

electro:disintegratioh of deuteron (e+d ~ e +n +pP ). 57) In these cases,
the nuclear wave function is well known, and the one-pion exchange current can
explain the main pért of tﬁe deviation from the impulse approximation.

However; no such clear evidence exist for the axial vector current. Most

60)

efforts were concerned on the allowed transition of B decay and u capture s

which is dominated by the space component of the axial vector current.
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23)

Kubodera, Delorme and Rho pointed out that, owing to the soft pion theorems,
one-pion exchange current processes can be obtained almost model independently
and the successful theory of exchange current is that one-pion exchange process
be dominant ovef'other short—ranged processes such as multi-pion or heavy-meson
exchanges. They shpwed that such a situation occurs not for the space component
but for the time component of axial vector currents, and it could give rise to
large effects.
In this section, we derive the explicit formula for the time component

exchange current operator, by taking into account one-pion exchange between two

nucleons. The momentum space operator is obtained from the Adler and Dothan's

6l)

result and then it is transformed into the coordinate space. They are
expanded into multipoles and the nuclear form factor for the exchange current

for the time component of axial vector current is given.

6.1 Momentum space operator

o
The one-pion exchange contribution to the two nucleon current Jx shown

in fig. 3 is given by the following transition matrix element 3;“

T @) SR+ Bt K—FBERIRR I IAIAR)

= (2138 (PPt k—Rp)

1
§_2+ Mﬂz

Jmta s NRY | TR NIRO) SNRO)TE 1N ) Y (6.3)

Here P:, P‘;, , & and K are the four momentum of the initial nucleon, final
nucleon and the pion, and the momentum transfer induced by the external field.
( m;,ﬂ/, § and K are the three momentum of them). o and B denotes the

isospin indices of the current and the pion. :Ig is the pion source current.
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The pion production amplitude by the external field in eq. (6.3) is

61
expressed as follows, by the help of the soft pion theorems ),

A~ | g .d
w0 ) NI IS INGD) = c R[22 TLUe-2) = 557 1% 5 TX0k0 s
Mfa

._[,V(ﬁ—ﬁ)+’4
(F-9)*M?

~iy(p*1)+M
(R+9)*+ n?

+ 9y %5 1 750 + TO(K) Ir Y5 T

+ Fic—n‘ pole terms ) Y (p )'L}’; (6.4)

Here, M is the nucleon mass, J+ is the pion nucleon coupling constant given by
2 : .
:g?— = 14.6 and fi is the axial vector coupling constant given in §2.

“ﬂf is the isospin wave function of pion

Y-z () pr T

2

1
—_~
~o

0) e (6.5)
T4 k) and  TA() are defined as follows :
{ NI T NP)) = E(a)if(ﬁ—ﬁ)ucﬂl ’ (6.6)
{NEB)] [Qf JIRJINGPOY = T (B) TNPR-PYULR ) , (6.7)
with the axial charge Q- Jax Afux. 0 .
The first term in eq. (6.4) is known as the "commutator term", the second as

the "P.C.A.C. consistency term", the third and the fourth are the Born terms.

The last pion pole term does not contribute in the case of axial vector current.
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The propagator . of the Born term is rewritten as a sum of the positive energy

part and .the negative energy part as,

~LYP+ M1 | [ YoEp-(YP+M YeEp + ¢V P-M ]
P%*MI - 2Ep E"‘E?“’ 33 - Fo+ Ep—(E Py

(6.8)

with Ep-= JET/{T

Each term corresponds to the diagrams in fig. (4.a) and (4.b). The first term
(positive energy part) can be considered that it is already incorporated in the
nuclear wave function. The second term is the so called "pair current". 1In
the non-relativistic approximation, the pair current term reduces to -?ﬁT and

is canceled exactly with the P.C.A.C. consistency term. Thus, only the

commutator term remains

(PN (R TLINGRD) = ¢ H‘z; NIl L5, 73T INGRY) ' (6.9)

Current algebra shows us that the commutator in eq. (6.9) for the axial vector

current /&f is given by
) Y
[QZ,AIJ = léugy Vi (6.10)

Here \67 is the vector current. The leading term of VQ? in eq. (6.10) is
proportional to ¥y and this implies that the time component and space
component can have very different magnitude, Yo~0() for A =4

and 7)4,67{£;) for A =1,2,3. On the other hand, the impulse term is
proportional to Y)Ys , which dominates in the space component. Thus the

exchange current contribution is relatively large in the time component of
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axial vector current. From eqgs. (6.9) and (6.10), the pion production

amplitude is given as,

- v
(MAEINED TS N RI) = g’; Leprlr (6.11)
and the pion source current,
. g-9 B
(NEITEINRY = (9 55 & . - (6.12)

From eqs. (6.3), (6.11) and (6.12), the transition matrix element in the non-

relativistic limit is obtained,

3y 1 09

d .
ng )3 6-3(}}7-%1?4-0( ~P-F) Cigs Gumg 2M (TxT2) . (6.13)

4 (zm

"

6.2 Multipole expansion in the coordinate space

. e o .
The exchange current operator in the coordinate space J, (X, X:) is

£2)

. n
defined by the Fourier transform of the momentum space operator ;Ti as

WS T Y0820 = S(5—%08 (=X T (%=
! N I 7 . It sar? g V
= e | AR AR B AR exp [-C(R8 +R-BY - BT TN (6.14)

Substituting J)d in eq. (6.14) from eq. (6.12), we obtain

- e-wr 0-)-1 o’
T3 (%,5:)= m,yqu} HZA‘ Tom (txw)7 ) (6.15)
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Here, " = X - 2, § = Tﬂ/— IP; and we set the momentum transfer by the

external field K - 0. Replacing ;4 by i(k-V  and using the formula

J{‘dzg %g = 2mime Y, (ranr) , ' | (6.16)
- .adr_yo (rr )= Mn - Y, (mar) , | (6.17)
with
Y, (%)= ‘.;;x- Y= (1+ ) _e;‘f R (6.18)
then, .'J: (X, ,X,) is given aé
T )= Lzl Yomr) (TxT)” O (6.19)
with
A Ti*_ ) = 003 . - )r/ur/-‘» | (6.20)

. o '
By symmetrizing Je (X, X,), with its indices X, and X, , the two-body

operator for the nucleus is written as,
Pl ¢ Z (WX (ol g5+ 0y FS5=00) Guimr) (6.21)

The time component operator PA(X ) is expanded into multipoles as

follows. We define the relative and center of mass coordinate as

Y - S



= ¥ =Xy, R=(Xi+X;)/2 ‘ - (6.22)
The § function in eq. (6.21) can be written as

§-Sx= SUH-RFT) = s [awe e F ™™ e () ’ (6.23)

Using the Rayleigh expansion of these exponential factors, fm4(/$') is written

as
)OA(K)- Z CLT:x T, ) (Z,.Ufp/IK [471)3,5’% [AtrE o .?
YawlBe ) ity (K9 Yo (8D Yom (5 Yorr (1) Yo (F
Jo (5 )Y, () J, (kR Sk X ) .20
with
Sy Ocr (=)', . | (6.25)

Integrating over the angular variables of the momentum J¢ , and recoupling the

angular momenta, we have
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f{d o chlerrk gk
PA(y)- L% &= [Lx]® A szk,wu‘s L (—)° “cp100lAa)
4 .

A v
(B1oo40) W1SAL B8 ) [L(F )9 Y(R)] S 4]

do (B ) Y, omare) Jo (KR DI (kD Vo ()

(6.26)»

The nuclear form factor for the exchange current in the time component of

axial vector current is defined as in §3, which is given as follows,

FAx) = (T3]l [df i pACR) Y (%)) 72

8 (g Dy T A 8- ) £2Lg 7%
"T/ﬁjv I dK Jy(x ) fers (-7 ) 5]

(220030 ) (L100 1fO) W(14TL L3 )
Ol 2 [0x ) [LJg (57 JmabYy (0 Jy (R VUAR)] XANESS (6.27)

Total time component form»factor is the sum of eq. (6.27) and the impulse form
factor obtained in §3. The calculation of the two-body matrix element is given'
in appendix F.

So far we have assumed to start from the Adler and Dothan's result,
‘however, it was pointed out that the explicit introduction of:)D meson may

63)

change the results . The pion production vertex in fig. 3 consists of some
pole diagrams such as nucleon, nucleon isobars, P meson ete.. In the limit

K =+ 0, the P exchange diagram shown in fig. 5 dominates over other diagrams

ﬁéo_.
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and the propagator should be modefied as

2

et ] :__”ﬁ’_a[ oo __L_,) (6.28)
m;‘z+3z W_fz"’ gz m"z+ q% mfz_ 7.’17'2 m"_r..,_ g2 m’z_'_ 9’-

” A
If we retain the § dependence of the fD meson propagator , the radial

" dependence of the time component operator in eq. (6.27) changes as follows,

Yy lomar) — - f"”zz [ Y, emar ) — (22 )" Y, (mpr) ] (6.29)
mf - Mn . .

This change has the effect to remove the singularity of the fﬂ (M»y ), and may
bring the similar effect as the introduction of the short range correlation of

two nucleons. The comparison of both of these calculation is given in §7.
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§7 Numerical results

In order to analyze the experimental data, we must take into account the
higher order corrections in nuclear B decay by the formalism which we have
given in §3. Experimental data are derived by the following procedure a>).

The ratio R is obtained by the measured intensities, W (& ”4 ), of B rays at

the angle @ with the aligmments A, and A, ,

- WA
R W(G)AJ—) . . (7.1)

Here the angle f) is either () or v , and the coefficients /3 are

defined by
R—1 = (A—A:) 07 E | (7.2

We derive theoretical values of &F in the same way as in eq. (7.2), this
corresponds to the average slope of B:/Bo in eq. (4.2) in the energy region
of experiments. If the experiments are done for the coefficient of polarization'

‘P , the asymmetry coefficient is defined as the average slope of

F (B/B)(E /P )-1. These coefficients in aligned and polarized nﬁclei are
the same in the simplest formula. By taking into account the exact formula,
this is, however, not the case. Formerly Y is defined as the ratio of the
matrix elements for time and space compénents without higher order corrections

~

in §3. Now we introduce 4 which includes higher order corrections, and the

quantity can be compared directly to experimental data.

~.

Y= - 3P (ot tets ) (7.3)

2




The average slope of spectral shape factor C(E) is defined as follows
Ax = [CE) = c(E)]/ [ClENE-E.T (7.4)

with E = (E1 + Ez)/2.
Here, El and E2 are the upper and lower values of the electron energy in

. . . . . 2
experiments. Since the higher order corrections introduce the E~ dependence

: !
in B¢ , eq. (4.2), we must be carefull about the averaging procedure 7).

7.1 Impulse approximation

At first, we show the results in the impulse approximation within the Op
shell configurations. The experimental values of ¢/t and Ax in the A=12 system
are summarized in table 8 together with the theoretical values. The calculation
of B decay is performed with the formalism derived in §3. with the Cohen-Kurath
8-16 2BME model. The harmonic oscillator strengh, b=1.64fm, is adopted for the
single particle wave functions;_ In conformity with the shell-model wave

functions, nucleaf charge distribution of the harmonic oscillator is adopted
P =5 b LI+ (412735 )T enp(-rY/b*) .5

The electron wave functions are numerically obtained by solving the Dirac
equation with a Coulomb potential of the nuclear charge distribution in eq. (7.5).

The maximum energies of the electron are E, =13.873MeV for B~ and E, =16.819

6+J4)

MeV for . The weak coupling constants in eq. (2.18) are adopted as the

canonical values. The results show a good agreement between the theory and
experiments, although there still remains a slight difference for the .

16)

coefficients (A of the Heidelberg group .

~
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Using the asymmetry coefficients ¢ of. the Osaka group Z?), we can show

the limits of the strength of S.C.C. and the validity of C.V.C. hypothesis.

ve
In fig.6, o_-o, is shown as a function of f+/fw where fw = - 3_2_;9é (= ﬁf, ).
This impose the following limits on {;
SifFy= = 0.02070. 164 or 2% /fa= -0.0571 0.486 (7.6)

Thus the experimental data of the asymmetry coefficients f in the A=12 system
is consistent with no existence of S.C.C., and it is also consistent with the

. .. 22)
result of the other analysis in nuclear § decay °.

Now we assume that f} =0, and o_-0, is given as a function of fhz. The

.result is shown in-fig. 7, and it gives the following limits,
cve
fw/ fw = L03x0.2] | (7.7)

If we use the coefficient of the spectral shape factor which is derived from

5)

the experiment of Lee, Mo and Wu , the result is

fo/ f = Loszo30 (7.8)

-and is shown in fig;‘B.T'The experimental.result éf the Heideiberg groun is also
shown in this figure., 1In the case of Lee, Mo and Wu, the errors are not so small,
but are consistent with the C.V.C. prediction within 30Z ambiguity.

On the other hand, the sum of the asymmetry parameter a_&a+ is sﬁown in
fig.9, as a function of X where X 1is defined as the muiiplication factor of
the time component matrix element which is derived in the impulse approximation

within the Op shell. This shows the limits on X



x= J.l0 £ 0.18 , (7.9)

which seems to be consistent with no large exchange current effects and this

is the starting point of our discussion.

7.2 Exchange current and Core polarization

Before going into our discussion, we show the difference of the two
models of exchange current operator given in §6. The models (a) and (b) are
those without and with the explicit § meson propagator, respectively. The
ratio of the matrix elements for the time and the space components, ﬁi , is

calculated with the Cohen-Kurath 8-16 POT model. The results are as follows:

(a) Yza+ec = 5.134 §Yec =.38.1%,
(b) Yrarec = 4.975 $Yre = 33.8%, (7.10)

with

S’dsc= (leA'rEC—yIA)/IlJIA . Yea=3.714 . (7.11)
Here 2hﬂfgc is given by taking into account the impulse term with the
exchange current for the time component, but not with the core polarization.
‘ﬂIA corresponds to the calculation in the impulse approximatioh. As was
expected before, the inclusion of f meson propagator suppresses the short
distance singularity of the Yukawa function. Thus the matrix element for the

exchange current is reduced by about 13%, and this reduces Y by about 4%.
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As this is a minor change, it is supposed that the inclusion of a short range
correlation factor doesn't change the results considerably. The model (b) is
adopted throughout " the following célculations. In the calculation of core
‘polarization effect, we adopt the energy denominator in eq. (5.32) as follows:
Em= —z‘hw; ;30_74}44(/ .

In fig. 10, the results for different nuclear models are shown in the case
of the A=12 system. The symbol & in fig.10 denotes 3’ which includes all the
effects, but the other symbols O and- correspond to g , the calculation
without higher order corrections. The core polarization is calculated by the
effective interaction of Arima et ai?)with the tensor force of Hamada-Johonston
type given in §5.4. The thfee models of the Cohen-Kurath wave functions give
the similar results, not only for the impulse term but also for the exchange
current and the core polarization. As is seen in table 9, the contribution of
the exchange current for the time component is about +34% and the core
polarization is aBout -307% of the impulse value of Y . Thus, both effects
cancel each ofﬁér and the final result is only slightly larger than the impulse
value. The difference between Yy,r and E? in table 9 comes from the higher
order corrections and it seems to be not large. These points are discussed later.
The Hauge-Maripuu wave function gives a smaller value of ‘YzA , but the exchange
current and the core polarization contributions are nearly the same as those of
the Cohen-Kurath wave functions.

The results for the A=13 system is also shown in fig. 9, Where we derived
oﬁly the ratio of the maffix elements, because no experimental data is
available now. As was expected in §4, the magnitude of 'ﬂ is the same order
as in the A=12 system and the contributions of the exchange current and the
core polarization are found to have the same tendency as in A=12, and they almost
cancel each other. The study of the A=13 system is as useful as that of the A=12

system.

—_— % ——



7.3 Effective interactions and the core bolarization

The core polarization effects for various effective interactions discussed
"in 85.4 are shown in fig. 11 and table 10. Here we used the Cohen-Kurath
. 8-16 POT model. As was discussed in §5.5, the core polarization effect is
strongly dependent on the tensor force, and less sensitive to the central force.
The three models of the left side of fig. 11 has the same tensor force, that is,
the Hamada-Johnston tensor force with cut off at rc =0.7fm. Therefore, they
show.nearly the same results. On the other hand, thelfillener-Kurath interaction
and the Sussex interaction show the smaller core polarization effects. This is
due to the weakness of the tensor force in these interactions.

" In order to see the differénces of these interactions more explicitly, we
calculate fhe Op shell matrix elements of the tensor force and compare‘them with
the other models which we used to obtain the Op shell wave functions. The
matrix elements of the tensor component of different interactions are shown in
table 11. The Cohen-Kurath 8-16 POT and Hauge-Maripuu interactions are similar,
but they have éome large matrix elements which are different from each other even
their phases. The Hauge-Maripuu and Hamada-Johnston interactions agree quite
well, but the Millener-Kurath interaction is very different from other
interactions and it is the weakest among these interactions. Even though these
‘interactions explain the energy levels of nuclei in the Op shell region, they
have different tensor components and it is Observed from the analysis of the
transitions where the tensor force plays an important role as in the case of the
time component matrix element.

The Hauge-Maripuu interaction is obtained from the Sussex interaction by
the second order perturbation theory, but they seem quite different in their
tensor forces. That is, the teﬁsor force of the Hauge-Maripuu interaction is

nearly equal to that of the Hamada-Johnston which is stronger than the Sussex
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matrix element, as is seen from the core polarization effect on time component
in fig. 11. It may indicate that the higher order correction terms to the bare

G matrix elements amplify the temsor part of the effective interaction.

7.4 Higher order cofregtions

Introduction of the core polarization changesalso the other matrix elements,
bfor example, (Fr?) and ([0 Y. 1% , in additioﬁ to those for the time
éomponent. In table 12, we éhow these higher order matrix elements. The
effect of the core poiarization is large for these higher order matrix elements,-
particularly for the tensor-type operator, {ﬁﬁ@7§7")V°)j . Since both of the
matrix elements (J¥*) and ({05 Y:1'""¥?) have the same transformation properties
as the Ml operator, both the tensor and central parts of the effective
interaction are important for the core polarization effect, and indeed it is
seen from table 12. These changes of higher order matrix elements may affect
the coefficienté; Az and o . |

For the spectral shape factors, thié does not bring a considerable change.
In fact, the change is at most 0.01%/MeV for a_-a,. For the asymmetry
coefficients (%% , it is noticed in §7.2 that the effect of higher order
corrections seems to be very small. In table 13, we_show the difference of 3
and é; for some cases. This difference mainly comes from the higher order
matrix elements. It is clear from this table that tﬁe higher order corrections
many affect the results nearly 47 in some cases and it is non-negligible.

The another reason why the higher order corrections are important is as
fo;lows. As is seen from fig. 12, the higher order corrections introduce the

2
terms proportional to E  and the line has a curvature, while in the simple

approximation, it appears as the straight line. The exchange current and core’
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polarization change theAcurvature, thus we have to be careful to derive the
slope o/ of these lines and compare them with the experimental values.
Finally, we comment on the nuclear recoil corrections given in appendix C.
The results with and without recoil corrections are shown in table 14, The
‘recoil correctioﬁs are almost cancel each other in the differences a_-a+.and
o_—0, but they remain in the sum a;ﬁx+. These corrections are not large, -

but cannot be neglected completely.
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§8 Discussions and Summary

We investigated the time component of axial vector current in the A=12
and A=l3vsystems. The new formalism of B decay is adopted, where the lepton
wave functions are treated exactly and the nuclear form factors are introduced.
The interplay betweeﬁ the exchange current and the core polarization for the
time component of axial vector current is clarified. the results are
summarized as follows.
(1) From the analysis of experimental data on the B-ray asymmetry coefficients
ax in the A=12 system by the impulse approximation within Op shell, the
following features are found , The difference a_—a+ indicates that the
induced tensor coupling constant fT is small and it is consistent with no
existence of the second—élass current., With the aﬁalysis of the spectral
shape factors, the validity of the C.V.C. hypothesis is confirmed. The sum
a_+a+ wﬁich singlesout the time component of axial vector éurrent indicates
that the calculation by the impulse approximation within the Op shell can
reproduce the experimehts very well, On the other ﬁand, as was pointed out
by Kubodera, Delorme and Rho, the exchange current contribution to the time
component of axial vector current is large, in fact, our calculation shows
that the exchange current enhances the matrix element of the time component
by about 30%. This is indepen&ent of the nuclear models used. Therefore,
introduction of the exchange current breaks the agreement between the theory
and experiments,
(2) The probleﬁ is solved by using'the realistic nuclear model, that is,
by incorporating thg first~order core bolarization. The Cohen-Kurath wave
function is commonly used for the analysis of the electromagnetic and weak

transitions in the Op shell region. Because it succeeded in reproducing
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the magnetic moments, M1l gamma transitions and allowed Gamow-Teller B decay
rates in the Op shell nuclei. One of the reason why the Cohen-Kurath wave
function succeeded in explaining these quantities is as follows. As is seen
in §5, the truncation of the nuclear Hilbert space introduces
the correction term @’-IT%V*V‘CQT“:> to <HTI|() in the first order
in the residual interaction V. If the Fransition operater T does not have
matrix elements between the model space and the excluded space projected by
Q, these first-order correction terms vanish. Indeed, the magnetic dipole
operator and the allowedAGamow—Teller operator have this property. Then
the corrections abpear in the second and higher order in V, and they are
supposed to be not large. The;efore the trancation in thé Op shell is
justified for these operators. On the other hand, time component operator
for the axial vector current is of the momentum dependent, and it has matrix
elements between the model space and the excluded space., Thus the first-
order correction terms in V can survive as in the case of the inelastic M1
electron scattering,

The core polarization effect reduces the time component matrix by about
30% and almost cancels the exchange current contribution. In other words,
the existence of the large exchange current effect on the time component of
axial vector curreﬁt~is shown indirectly but clearly in the analysis of the
B-ray asymmetry in the A=12 system. Introduction of the exchange current and
core polarization does not change the conclusion for the second-class current
and the C.V.C. bypothesis, since the total value of the time component by
taking with these contribution is nealy equal to that of the impulse value.
(3) The importance of the.interplay between the exchange current and the
core polarization has been discussed in the magnetic moment, allowed B decay

and inelastic electron scattering. In the former two cases, the contribution
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of the highly excited éonfigurations through the tensor force is important in
the second-order effects. For the latter case, the core polarization appears
in the first-order effect and_is dominated not only by the tensor force but
also by the central férce of the effectiﬁe‘interaction. The difference of
core polarization effects between the Ml operator in inelastic electron
scattering and the time component operator is investigated in the simple j-j
model. Only the tensor part of the effective interaction is essential to
reduce thertime compoﬁent matrix element and the intermediate state with kit
excitation dominate the effect. -The result is depéndent on the model of the
tensor force.

In the study of the magnetic form factors in the A=12 and A=13 systems,
Arima et al. used-the tensor force of Hamada-Johnston type with radial cut off
and they succeeded in reproducing the experimental data up to the second
maximum of theimagnetic form factors. The tensor force is important to obtain
the agreement around the second maximum of the form factors. Therefore it is
reasonable to consider the Hamada-Johnston tensor force is well reproducing the
chargcter of the tensor part of the effective interaction for the nuclei in
this region. Both the electromagnetic and the weak process in this region can
be explained by this tensor férce.

(4) We have beeﬁ concentrating on the time component of the axial vectof
current, and the space component of the axial vector current and vector current
are calculated in the impulse approximation. The exchange current contributions

80), £5)

to these quantities are calculated and their ratios to the impulse

matrix elements are given by
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(T g /(U7m "‘54°) ' (8.1)

(XY D VARC 21 9 I A (8.2)

These are the minpr effects as compared to the case of time component matrix
element and we did not take them into account. So far, the non-relativistic
description of the ﬁucleus has been assumed. The relativistic correctibn 46)
which'comesvfrom the small components of the nuclearvwave function also changes .
the result. There may be 10% enhancement of the time component matrix element,
but it is strongly dependent on the models of the relativistic correction.

The second-order effects in V gnd the interference term of the first-order

core polarization and the exchangevcurrent may also give some corrections.

The above corrections compete each other. The agreement between experiments
and the thgory including the first-order core polarization and the exchange
current for the time component of the exial vector current may imply that

these additional corrections are not large, or they are canceled among each
other. The problem is left to the future investigation.

(5) 1In additidn to the A=12 system, we also showed the results for the A=13
system in the simple approximation (we neglect the higher order corrections

in nuclear B decay). The calculation supported our first observation that

the A=13system also provides a testing ground for the exchange current for the
time component of the axial vector current. The situation is nearly the same
as in the A=12 system. The individual wvalues of the exchange current and

core polarization effects are considerably large, but they almost cancel

each other. The analyses of the angular correlations in nuclear B decay for
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the A=8 and A=20 system 30)

and the | capture to the B decay rate in the
A=16 system will also provide fruitful informations about the exchange

current and nucleon structure problem.
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Appendix A. Electron wave functions
The electron radial wave functions Gxe and Fx. in eq.(3.3) are the

solutions of the Dirac equation,

Ko+ 1 :
_d_(er) _ (“’F“ E*”"’”’)(G*@) (4.1
driFe —Eri+vi) 2L Pel

v

where V(r) is the Coulomb potential of the daughter nucleus.

(1) Plane wave solution

The plane wave solution T@ZPG7 is obtained if we set V(r)=0 in eq.(A.1),

Xee
Y () = /%’;_’ (@'-B’ xfe) e P

E+1
T 1% (e timese loke) Yo, () 3 dulr) Hute
= 4T l Me P)}. . :
emope o e e G (PR Xwepe ) (a.2)
It is normalized as,
, |
JUo®) Yl 0 dar = @TIS(P-PIGucs | A.3)

(2) Solution for the point charge distribution

For the point charge distribution V(r)= —-%; s Gy and Fx, are given

with their asymptotic forms as,

e R PO A 1y sprain
(G"e)r = e gy P e ] Efpriy, 200, 2ivr) (A.4)
Fie ——f%'ﬂm

— ( Bt L cas [pre Ylog 27— T )+ A ] )
(A.5)

¥-roo il
_‘;EZ-:'E'—I._—#. S'nrpr_;, 'g[,; 2Pr— ;(12*')+Ake]
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with

Are= T+ Mo - argPlrscg)- 3L (A.6)

and

ry ) ;fZE 2f'7h<e ke—'lgg
Ve Sri@yt =, € e = oy

: ' n (A.7)
, _ e & rlam) X7
F(a; C)x) = _]%-) A,-'L:-D ,7(6,,.’1) 71.' -
The wave function with the proper asymptotic form is given by
Y 4w T it (Lt meSeliete) Y (B) pE % e X rere
B T T emete &ne “Fre X-refte
P e:tl:Pr" » :
e et S0 (A.8)

'Vé:; and q%:} denotes the solutions with outgoing and incoming boundary
conditions, and » mﬁzy is the plane wave solution in eq.(A.2), except the
phase factor proportional to ylog2pr. In the theory of B decay, the solution
)

-
with the incoming boundary condition #&;m -is adopted.

(3) Solution for the finite charge distribution

" Inside the nuclear charge distribution, we put the inner solution of the

following form,

() = v () . (a.9)
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Here N is the normalization constant and Ux and ¥ satisfy the equation,

K+ix]

1 4 —
drt e lA—E+Hr vir) k—,:’tl Vi

Ux and af are solved numerically with the initial conditions,

Uxo=1 , Ukl0)=0 fn k<O ,
| . (A.11)
Unl0)=0 ,  Ud0)=) jn x>0

The outer solution is represented as the linear combination of the regular

and irregular solution for the point charge distribution.

out R
(o) = ALZ) + 8lZ) )

where Gx and f; are the irregular solutions. The regular solution is given
in eq.(A.4) and the irregular solution is obtained if we replace Yo -Y in
eq.(A.4). The inner and the outer solutions aré connected at a point of
suitably large r where the Coulomb potential of the finite size nﬁcleus shows
the 1/r dependence.

A, B and N are determined as follows:

(A.13)

1"

A/B = (Gl G [ (Fie/Gr) = (Vie/ i)/ [Wi/the) - (Fic/G )] [H

3
, (A.14)

[ 1+ 2(A/B) s (e ) + (A/B)" ] }

o
u
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N = B (GuFx- ;:néx)/[(_amw—ﬁuk). r*' /ﬁ& , (A.15)

with

- r+icy) -
Sx=8x = = g iyt ('/x.—'h)‘— mr o, (A.16)

Here Rc is the point of the connection.

The Coulomb phase shift for the finite charge distribution ,di is given

by,
Ab = Bv b3 [sin(Gm8)) (A/B + o5 (Fu-8r)) ] 5 | (A.17)

where Ax is that of the point charge given in eq.(A.6), and Ji is related

AL by eq.(3.31).
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Appendix B. Formula for positron decay

For positron decay, the Hermitian conjugate in eq.(2.1) contributes, and

it is written as,
* o .
he = Tl Lo, | (8.1)
with
o* #* *
TX) = YA+ A (X0, (8.2)

and

rxre =i B OO YA+ Ve ) YelX)
- (B.3)

The matrix elements of the vector current V., and the axial vector current A

A A

between the nucleon states can be written as,

MIVRIPY = iT (Fn+ R Te ke i £ 0 1 (B.4)
MIATIP) = i Ys(£Yn — £70 6+ i B KO - (8.5)

with
K'= Kn—Kkp. : (B.6)

If time reversal invariance holds, these nucleon form factors are real and

the change from the negatron formula appears in the sign change of S.C.C.
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terms fsvand fT'

The lepton matrix element LA(U‘) is given by,

La(m) = ErlLRCF)[0) = = B 0IIa(1+75) Ve OF) (B.7)

Here d&jnj and 1h;ar) are the neutrino and the positron wave functions,

respectively., The particle wave function ﬁp and the antiparticle wave function

/¢ are related by the following relation

Y= C» yr (B.8)

where C is the charge conjugation operater which is given by

C= Yz 2 (B.g)

in our metric (Pauli metric). Using eqs.(B.8) and (B.9), eq.(B.7) can be

rewritten as

L [BE) v+ ) [ B )]

"

Laltyr)

-0 aje(r) Vs fYJYI,_YA([-’-Ys )Y }'t¢;‘;l(r)

— i) Va (=Y ) Dy () (B.10)

U

where t denotes the transpose of Yy matrix.
Thus the positron formula is obtained by replacing 1+Y5 in eq.(3.2) by

l—YS, for the lepton part. Furthermore, the radial wave functions for the
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electron should be replaced by the charge conjugated solutions which are

obtained from eq.(A.1l) by replacing V(r) > -V(r).



Appendix C. Nuclear recoil correction

The density matrix which incorporate the nuclear recoil correction is

given by

/. - y'-,f . 7, .L_ s/ - o rd
; Puiwi ue = ,ZTTG’Z' R« 4,19 & it "(——)33”70*7*"(__ )J e CL(A e—die )
JJ”JcKE .
o 1 (s3I H 2 e 1 (2TH1 (2541 J(RTet 1)/ 2K+ J(2Tiv1) ]

- (Jele %65 3o 0)( S Jo s [ Ko (1Je001£0) Fp(J; ) B (w08
W(th&IJ IIJ;} (Jo J;J j (_D/ uJ(KG KV}”J—P){‘T;//LJJ' (‘G, ‘V )//Jl-

<[ (ar a0 K W):t(},n‘j,,+)( wd)] - [M"] . (c.1)

In the case of the A=12(1+,1 d+,0) transition, the particle parameters.
[ﬁf) in eq.(3.30) should be multiplied with.RO, and the additional terms

appear in the following manner,

b = Rebu - gFRiallm805 5

by — RobyF R (BwE)

by —s  Roby - SER 4 (L,-8085, , ©.2)
with
§= (M E ,( - mm) s Sa=AmNE L0 0I:) . (€.3)

The effects of the recoil correction are discussed in §7.4.
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Appendix D, Shell modei célculations
D.1 Notétions'

The isospin formalism is used thrdughout §5, and the alphabet which
specifies the individual nuclear states is an abbreviation of the spin and

isospin as follows:

10y liata? , ()%= (=% 13- (2ariiztatt)
Wlabcd ;e4) = WliajvJe Jd 3lelf) Witatsteta stety)  efe. (0.1)

The reduced matrix element is defined by

. 2Tt To) novin L)
G10910) = ()2 (30 1 e | 3 M) (T e Wi 1Ty g ) S (®.2)

J(Z3p 1 (2T541)
where the phase factor vanishes for the ordinary operater with integer rank,
-and it is consistent with the definition in §3, if the isospin indices are

dropped.

An irreducible tensor operater made of the tensor product is defined by

[ A% B2 %= w%,m{fm‘, Ma 1 Mo ) (T T Neb | Tul) AT S B2 (0.3)
fed .

Antisymmetrized (A) and normalized antisymmetrized(AN) two-body matrix element

between the angular momentum coupled states ( [dB;T) = Hd@ﬂ]t) ) are given by

- ’ - ’,
@p;TIGIYE ;T )an =m (5P 1GIYE; ),

) ved-v, . .
= ; Y57 - (- dp;rIGIEYT, D.4
(UHdop) (Hdvs) {{dp rial -6 s ’ } s : ®-9
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with GaB = &jujp0smgp bnymg - Note that the Kronecker's delta is an abbreviation
of the product of the Kronecker’s delta functions for all necessary quantum
numbers, while §' represents the product of the Kronecker's deltas for spin
and isospin.

-D,2 Second quantized formalism for shell model calculation43)’68)

One-body operator F* and two~body operator c” are generally éxpressed as

F% Z(mIF“In) On On o (D.5)
G"= g L (mnlG IP2), & 01 G 0r (D.6)

in the second quantized formalism. Then we define the core, and the hole

operator bZis introduced as follows:

b-j'mtn ( stafes inside the core)

(__)f+m+t+n Bjomton = { 0.7

’a\'jmtn (sz‘af‘ej oulside He core ) ,

" where ET is the particle annihilation operator with the correct transformation
property for angular momentum, and 27 is defined in the same manner. Egs.
(D.s) and (D.6) are rewritten by the particle and hole operators, and they
are rearranged in normal order. Then we reduce the matrix elements by eq.(D.2)
and sum over the magnetic quantum numbers. Finally we obtain five terms of
irreducible tensor operators for Fuﬁ and fourteen tefms for G“. Wé give the

explicit expressions for the relevant terms in our analysis,
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Jre

FY = Z (U F™nj) wi” Bj: =) : (D.8.3a)

+ I (miF) w37 | (D.8.b)
+ I Feym) [l - (D.8.¢)
R LB A L o (0.9.2)
g L XD N RE Y ) 1% [ 8% b 1o (7 (D.9.b)
L T (U XN G N 3 0y [ [0 B ) ) (0.9.0)
_ ik}%wrmn SXBGN P2 ;Y )4 (W] [Are® BYG T (0.9.4d)
-7, Z SSYXNG Y PI;Y)a0 [W)” (B o Ak 17 (D.9.e)
+c[ﬂy (cn'zlilG“‘lllcE‘y),, [E’Z] WXl ;n¥) Cop (D.9.%)
+ ey (5 XNGY mcg NESS W(zcwﬂuwcg, )"’*“” (0.9.g)
© with
w + Vo oqw ]y N".t._.:_[”b\’.@z;’.)x
B)'l:-:[b)’@bb] 3 Fg—[bl(@bg v B::/ ' J] »

M- ft X

w ~t ~ ~ w b 'H
O [aneb;]”, G- -[.0b:i)*, BE=I0eb ], Dr=lbeal e
Mol [/ 17 X7 V) Lol A 1408])° (D.10)

"o
Here the summation runs over particle states for the suffices of A" and A ,
+ s
hole states for those of D and b and all the states in the core for c.
'x and y are restricted by the spin and isospin selection rules.
Matrix elements of these operators between the particle-hole states are

reduced by the formula,



(X7 Y r Il LA%e B 1) X e Y5 )
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Here X% X7 and Yr", Y" are the particle and hole states, respectively.
,Aﬂp( Bﬁh) is constructed from the product of particle (hole) operators A%
ns e -
and 3 (b and b). nP is the particle number of X' and Vi is the number of

npy
hole operators in Bﬂ”, .and the phase factor (-) P happears by the anti-

commutation properties of the particle hole operators.

D.3 Definition of the coefficient of fractional pa?entage (c.f.p.)

The problem is now reduced to obtain the matrix elements of afand 2{
( b and i; ) between the many particle (hole) states. The task is accomplished
with the help of c.f.p.. In the following, we give the formulas for the

particle operators, and the situation is éompletely equivalent for the hole

operators,
(1) One-orbit formula

One- particle c.f.p. is defined by
'P”I’): % ( P”Fﬂ Pn‘l’,l). P) ’ P"-'V’Q P; ’7) 5 . : (D.lz)
‘and .the reduced matrix elements of a+ and a can be written as

(PPNOSNPT)= Sna ) = /T [PIXPTIPTS P,

(D.13)
PN npry= I e napnen s | |

— R4 —



Here [PWZ) is the n-particle orthonormal state with definite spin and isospin.

Two-particle c.f.p. is defined by
1) L (TIPS (R 0) (R0 a3 ) | PT /@ T ReRI%T) (D.14)
rrl

where two particles o and B are distinguished for later convenience.
From eqs.(D.12) and (D.14), the relation between one-~particle c.f.p. and two-

particle c.f.p. is obtained,

Prfi P (REOI((RFIO iR R) = 2';; (PP IS RIS
| [re Y WIrgrR ;e ) . (D.15)

It is also defined as the matrix element of the second quantized operator,
(PP [05®@ 05 1PNP"")= ()70 dnne (PTHPTTHRBIIBRNG: B, (D.16)

" The one-body operator F* and two-body operator ¢ can be expanded in the
following nine types of operators: |, A", &‘, [Boi] , [0Te '], [Dei],
((aeat)e]l, [oo(0@l)] oxd [ (deale(Aed)] |

With the help of egs.(D.13) and (D.lﬁ), they are reduced to the product of
c.f.p.'s and Racah coefficients with proper factors.
(2) Two—orbit-formula

In the two-orbit formula, 1P"7) in the one-orbit formulas should be
replaced by 18" 817 ) . It is accomplished by replacing the one-orbit
c.f.é.'srwith the two-orbit c.f;p.'s in eq.(D.13) and (D.16).

The two—-orbit c.f.p. can be expressed in terms of the one orbit c.f.p. as,



ORI RO T R
= Spi St Snima (LT PPWT B BT (BTG SR der
+ Sxz8mn Sntemr S P WP R ARSI NRE IR R b, © (D.17)
(RT@ P51 | RV e R ir 5 (R0
= SuiSp Swin-z ARl [ P VAW T OT SR TR IRV CRA )87 g
+ 8 dpe S n,—xﬂ”:’l [RrYVe wirrer: B QRN R L' (B5)8) dnn’

n-t Z"I"L

+ SJ:S‘;:J», -t an’n,-y (—) N(N"’) [r'r’ 779]4{[7’['{'7/}(’7”?// uE){f’}’//P"H N )) (D.18)

with N—nl+n 2°

The three~orbit c.f.p. can be defined in the same manner as eqs.(D.17)

and (D.18). In §5.3, the three-orbit states appears in the following special

form with Osy (£),
pray - [URTReRM B S Ay | - @19
Then the three—orbit‘ c.f.p. can be reduced aé follows:
TS 00, RV Sk T TP - (.20

(P AP T 5 (Fufp)6)

S 8ps Srtmr Sugry (2 [T I WP BT, ST WP 507 (67 E7 £ )

# 8 Bgs niner Spr [ 2R [P T WIPR RGP WP B 0r RN i R
= J2 WA R 545070 [T0 1% (RMF @ R s Pl BY e R T 5 8) 8y (D.21)

The c.f.p.'s in §5 should be read as the two-orbit or three-orbit c.f.p.'s.



Appendix E. Derivation of the core polarization formulas
E.1 Derivation of eq.(5.32)
As is seen from eq.(5.30), we need to calculate (NGNT“lPeA*4;[7,) and
(POX AWV IATT: ) . The contribution to the reduced matrix elements

of the one-body operator T comes from eq.(D.8.c) , as
n R P R RO, o
: ()\@[[]T“’Ilp@)\"fﬁ ;}',’,,)=,"Zl.fLMT N [wIt=)"" (RGN Coi W PR X252 . (E.1)

Then, eq.(D.11) is applied and we obtain

B, A -
/ffnf}wﬂanll?)a"!’ﬂﬂb: a4y (E.2)

inp w

. # A

:’; (””Twm,n) [WJ}?—)L—H’”[U’;W]
Using the definition of c.f.p. in eq.(D.13),

(E.3)

= TV ar [Ra) wirawi; ey X i 0 (CNT ey

The contributionSto the matrix elements of the effective interaction
come from eqs.(D.9.b) and (D.9.f) with rank w=0, which correspond to the
two-body and one-body part, respectively. The one-body part of V can be

calculated in almost the same way as eqs.(E.1)-(E.3).
A % b4 N - AL M o f s
(XD TalVIAT: Y= Z (-t [£]) [l tresxiVise oy X000 dpdnr | (m.4y
While the two-body part is derived as follows:

P Ul VIXTE) = 2 L (mis A VIKE X ), D (e85 [ G @D TIATE) (E.5)



X o ' '
Recoupling the operator [B:zQILéJO and applying eq.(D.1ll). we obtain

S

X 4% iy J -
(PoX8; Tl [Biz @ Do 12| N ye =1 m«lJ’f{f’ gcg'} -y

- (PUOL HOY LA I B 2 B 1IN Y S o . (E.6)
-The matrix element of the hole operator is given as

QU BE @D T IAT:) - ()™ () /ar T [ATem )%

L Wa6m X )R TE NN G5 KA AN 0,002 )ik, 4) - (BT
Finally we obtain,

, - " n/nri - _ 2 ' s
(Po X85 I IVINT:) - (—)”ﬁy\g;”m,xlwmﬂm CaX Wiapispo) -0

n+l

AN AfINO CLXIXRTIA0§ ) (E.8)
Here we used the relations

. 2 _ J1*§
s (g, )~ (i)xfiee) s [ T0H

’

(PI.;xl'/Ik’(;X)AN :‘/I‘f‘sz (PJ',‘]C/VIK,?;X)AN' . (E,9)
The second term in eq.(5.30) can be calculated in the saﬁe manner.
E.2 Derivation of eq.(5.44)

Since the calculation in this case is simpler than that of eq.(5.32),

we give only the final results for each term.
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OITeR: Y= ) T P) e o (E.10)

’

. ) : , 6
() TOU 85PN T8 Pohos T3 )= — BT IV [TTme ]/"/r':f»o’k } dup, Suto

Ar
.V(’*chs}(llf'J,w} Jli= " taapr 1[1- " e ] (E.11)
SASPNT U Bohoi 6= (PHT IR ) (TR JAW(PhtW BT ) dhne (E.12)

) Piho=X
(Ph;r’lV}Poha;‘rz)=Z?(Pho;llVIthIJ‘),qUJW[P/x/’oFo)l’/f)(‘)f dr; , (E.13)

{01V PN (R) 0 5T) = — I (1Y S 0] VI, 7T )pudmo dro (E.14)

{Ph3PIUIRohosTP= 2 [—’,S»J{cr;x;y/m;x)A Shho 6Fm » (E.15)
. ¥ ‘ ,

{OIUIPh3T)= 4:; [_’;,](ch;xjvlcr;x),, Spadps. (E.16)

These terms are combined into eq.(5.43) to give eq.(5.44). Note that the

third line in eq.(5.44) is obtained with the following relation,

B (1t duap ) (1+ Jn) ' (E.17)
asppsp T ,%’;y A ~ .,

then the exchange terms in [/ )%f~ “ep) ] [)_(—)”*"9(,“,.,.,,)] gives the
same contribution as the main term, and they give factor 4. These are canceled

-~ .
with ((/‘l‘Jd/; NFd,,)] which comes from the normalization factor of the 2p-2h

state and from (f"";NVIL’/ﬁ)'ﬂ)Ay= [..//fcfd})(/*rf,«u)]-’(#V}?IV)dﬂ;'”),;



Appendix F. Two~body matrix elements

The formula.to calcﬁlate the matrix elements of the two-body opefator
between the antisymmetrized two—particle states with the harmonic oscillator
single particle wave function is given for general two-body operator and
for the effective interaction.
F.1l General two-body operator

We assume that the two-body operator is given by

a”- [IVvime lL!“(lR)}x(X’ J;“Jw‘[l't , , " (F.1)
with

VY= v Yo (F) , | U OR) = ucR)Yu(fK) 5 | '(F.Z)
and

=1 -0 ,' R=m+mrr/z2 . (F.3)

Here $ and 'Fthare the spin and isospin operator for two-nucleon system

with rank s and t.

The antisymmetrized normalized matrix element is given by

t
{ab;Toll G W ed s Tedan = Fetiion)
[ab; G Hed; 2> = (oA a6 Y de s Y | (-4

Each term in the brackets is calculated by the help of jj-LS recoupling

coefficients,
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LiScLsSs

LatiJa \[Les) 43474
(@bl G lted 37 ) = PR (jff/zj,, )(ziv/jij ){La.SiJi}

LiSygye /N riscye s txs w »
- (bl wrrm[u “R)TN0003L; ) (45515 )(T,LI/V'I/T;) JUE (F.5)
with
atsda .. o | Lo Yeda
(i%b}azJjb ) = [JaylsSs ]4 ’X,&,Vzh S (F.6)
Ly S5 T Lt S+ 35 .

Using the Moshinsky bracket <{WNL Alnafatslos; A} | the reduced matrix

element of the product of the relative and center of mass coordinate operator

is given as

(/Jz, A LY Y ® UNR) 114045 L )

5 ' : . %
= ”%7,1(,’ (MLINL 5 Ly [malamolo s g YNy s Le Imedendha s Lo ) [Lilyx]7
Nytgtlz bl ! L
| { i } () Ve g ) MLl DURD D N2 Ls ) F.7)

»w ux

The reduced matrix elements are written as

g fl \Vu(lr)l['nzf,h(—)l-’ﬁ—;' 4412 (04 00lv0) j vir @, (nVEr)P, tr) (F.8)
(e l] UHRIIN:L2? = (5L [L,Lz]"[l,w’/uo)fkJRCP,,,L,(R)L((‘,.)qbVL,(R) . (F.9)

. Here the factor v2 comes from the definition of ) and /R in the Moshinsky

brackets ( Jr- _”:T__"—'r} s R= ;r,f;_ﬂ’z ), and q),(r) is the radial part of the

harmonic osillatOr wave function.. The exchange term in eq.(F.4) is calculated

in a similar way, together with the following phase relation
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D15 54 Pdatitlesea fobideTe [Aeede
(fc Ve )= (_)Bd~ d+Li 1 +Sc+JetId+T (/jd Py ) (F.10)
L SiJe : Lo 5:T¢ D
La-Le” .
(MLoNaba 5L Mplancle L0 )= () '(M;I;N,L,:L;/m,pc madds L} , (F.11)
with ()¢9 Ty LSt Te

, the total phase for the exchange part is given by (-) .
Finally we obtain the antisymmetrized normalized reduced matrix element

of ¢ in eq. (F.1) as

. 1 Z:‘ [@VZ?A ]‘%J—f— LySsTs P
ab NG cd5Taw = e 452 12 Vu,)p Y4.d 1Seye yfLilgx ]
fab; fA s R ) T G 65 I, 3 e ! J

(SHSTISHTHITENT:) n),J_T';L!, {MINILES Lp a3y Y (b Nale S L Prefe tafa s L )

MegN2L, ]
{hL L +SC+Te
: Zfz Ls L?j (@0 VIR A YNl Ut ) [ 1= (29T ] (F.12)
muzx

F.2 Effective interaction

The matrik element of effective interaction maj be derived from eq.(F.12)
by substituting UY(R )=1 and rank w=0, We make, however, another formula
which is more useful in wider applications.

The effectivé interaction has a form of

(o)

T (F.13)

V= [V e®$®]

The matrix element of V is, ‘therefore, given by

Jaliya \[A Vie
(ab,F}VICd;r'}‘ Z (sz)ib )[ld}’zid)

LSitsSy ‘1sSey /N 603

_ : (F.14)
(10081 Y 5533 TIV [[L@04Y0 S 53T

_ Q4



Using the Moshinsky brackets and recoupling the angular momentg ., we have .

. Z iql/zju ,fc% }-o
(ﬂb ,VW ,Cd ;77)’ LiSiLsSy /{;?; J; )'\{"'?J;l)

- n% e VALt [ Makla Nl 5 L‘f)(';’l-zl'/llv;Li | nede nakd 5 L‘.)
DA Litld

T WAL, s L WKETS: s Ll [LiLe s 1% =)

C (fwSs1 e v IT |V | Diesit e rae 3T C(F.19)

The exchange term can be incorporated as the same in F.1, and we finally obtain

: | : 1 la. ya.'):a. N Le %_)l(,
(ab;rIVch;r)AN=m) Z'_\ (/»V;/»)(IJV;M)

LSSy N L3S 3 Lese Ty

.1 {NOVA ;s Le[alalslos Ly Y00 WA 5 Li| NeleMala S L: )

ﬂ,é”f{ll’/k
’ itL
T WIS LW s Ll ) [ Ly VR =)
L
bhserre
(@S LT [V10e 3511 mees: 5 LT [1-¢-) 7 J (F.16)

The matrix element of relative coordinate and spin isospin operator are

calculated for some examples. The matrix elements for isospin is given by

! ’ Srr’
sou1"| | 1. L) [Ba51T) = { ' (¥.17)
The matrix elements>f6r the space and spin are given as follows:
(1) central force
(ndoSssL] Ve lm@/'@Si3L) = Sppr T (nhnkr) (F.18)
(2) spin-spin force
{(ndB 53511000 M-lnf({»je; L‘) = J;y'[zfu-— 3650) J{(nf n8)) . (F.19)
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(3) spin-orbit force

{nloSe LI L8 Vis| WL BS: 5L) = Sppr s, £ [L1H)=2(2410-2] Ts oW 2') (F.20)

(4) tensor force

<M_€Q95;.;L IS,:_V;- ’%{0’5’5[} L)= J:s; (—)H\}?';Ul,]z(][/ﬂo/‘z 0)
WL 32L) Tv(ndn2’) . (F.21)

Here the radial integral Ix(nl n'l') is defined by

Telnth = [redr Bourvlvar) Gup(r) ' (F.22)

and it is calculated with the help of the Talmi integral. Another type of
effective interaction is given in the form (mf®S;1T]V | VLTI

as in eq.(F.16), and the calculation proceeds from eq.(F.16).
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Table 3. Approximated lepton combinations

Ke o Ko L* oL"

“1, =1 ey | [t BB Zem))
b, + F (R) r{ 28y L ER))
-l 2 0 FIZ6,R) |

j+2F (R}
-2, 1 0 { G-2(R) }
r

+ RS

Table 4, Combinations of electron wave functions

Lo tei+ Fi' )/ Fo

No (6. Ei-F6G }/FR | - 3_,;

A Gt Fy sin (8,-8,) / Fo F
Nw — AEF - 616 }sin(84-80/ Fo S -Lv
Le {RFsin(s-6)+ 6,6, sin (d-,écf.z)}/FoR g

Liz  { Gk sl ~&:) ~ F G2 s (68 }/FoR —3";

The expressions in the right column are obtained for the point
nuclear charge with (a2)2<( 1. V=dZ/2R is the half of the

Coulomb energy at the nuclear surface, - (G_1=G_1(R) ete.)
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Table 6. Parameters of the model wave functions which we have adopted,

Those for the other two models are also shown for coparison purpose,

Model a, | a; a_ a .
Rosenfeld . -0.0025 -0,0025 | -0.1025 —0;2325
Arima et al. -0.3000 -0.1250 ~0.2750 -0.2000
Millener-Kurath 0.0945 -0.0590 -0.1590 -0.1625
Gillet 0.0 -0.2 0.3 o
Ferrell-Visscher |  0.1005  -0.1250  -0.2165  -0.1250
Model P11 P13 P31 . P33
Rosenfeld , -1.78 0.6 1.0 -0.34
Arima et al, -0.9 0.4 1.0 -0.9
Millener-Kurath | -0.714 0.6 1.0 ~0.286
Gillét : ' 0.6 0.6 1.0 -0,6
Ferrell-Visscher 0.0 0.634 1.0 -0.366
Model VO(MeV) f(x) ro(fm)
Rosenfeld -60 e~y 1.60
Arima et al, -60 e;{rh%)' 1.60
Millener-Kurath =45 ethVQ”“$) 1.40




Table 7. Amplitudes of single particle matrix elements of the core

polarization in the j-j model,

central tensor

P h _ Xph th Xph th
1p,,, 0Py, 0.0282 0.0509 -0.0147  -0.0087
1py), by, 0.0489 . 0.0489 0.0257 0.0106
0f, 053/2 0.0166 -0.0166 0.0590 ~0.0065
s, /9 031/2‘ 0.0494 0.0494 0.0272 0.0272
0d,,, Osy/, 0.0106 ~0.0106 0.0443 0.0427

central tenéor,

P h Con(Tpa) ConTrar ) Cph(TPA ) Céh(Trﬂ )
pys2 0Py 0.0791  =0.0227  -0.0234  -0.0060
1y, Opy), 0.0  0.0978 0.0151 0.0363
0fs/, Opy), 0.0 0.0332  0.0525 0.0655
1s,,, Os) ), 0.0 ' 0.0988 0.0 0.0544
0dy/, 0sy,p | 0.0 0.0212 0.0870 0.0016

The central and tensor forces are those of the model (2) in

§5.4, and E_=-2hw = 30.74 MeV is adopted.



Table 8. Comprison of the experiments and the theory (impulse

approximation within Op shell) for oy and ag .

%/ MeV) Osakazo) Louvain, Zurichlg) Theory
a_ | 0.006%0.018 -0.007%0.,020 - 0.016
a+ -0.273%0.041 -0.273%0.039 f0.257

o_-0, 0.279+0.045 0.267i0.044A 0.273

o+, -0.267+0,045 —0.280i0.044 ~-0.241

(% /MeV) Wu et al.s) Heidelberg16) Theory
a_ 0.41%0.10 0.64%0.11 0.405
a, -0.45%0,09 -0.31+0.09 -0.417

a_-a, 0.86%0.24 0.95+0,09 0.822

Theoretical values are derived in the following energy region:

2=11.2MeV. 6+ : El=7.2MeV, E2=13.3MeV. The

coefficients;a¥_,of Heidelberg group are derived from the original

B : E,=5.1MeV, E

data with the corrections 8z =¥0.07%/MeV, which comes from the use

of the different Fermi functions.
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Table 11. Matrix elements of tensor force (ab;JTIVTlcd;JT‘>AN

in the Op shell.

Cohen~ - Hauge— - Hamada= Millener-
abed JT B
Kurath* Maripuu* Johnston Kurath
3333 10 0.15 0.46  0.63 - 0.14
30 ~0.37 0.31 0.32 0.14
01 0.63 0.57 0.55 0.27
21 0.13 0.11 0.11 0.05
3331 10 ~0.11 0.19 0.22 0.08
21 ~0.09 -0.08 ~0.08 ~0.04
3311 10 ~0.12 -0,92 -1.22 ~0.30
01 -0.88 ~0.80  -0.78 -0.38
3131 10 ~0.73 -0.56 ~0.89 - =0.12
2.0 1.29 -1.10 - ~1.13 -0.50
11 -0.94 -0.85 -0.82 ~0.41
21 0.06 0.06 0.05  0.03
3111 10 [ 0.91 0.26 0.54 0.00
1111 10 -0.71 1.13 1.39 0.48
01 1.25 1.20 1.10 0.54

* *~The numerical values of matrix elements for the Cohen-Kurath

(8-16P0T) and Hauge-Maripuu are taken from ref. 56)..

C 3=0p3/2; l=0p1/2 )
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Table 14, Recoil corrections to (R and olf .

(Z/MeV) with recoil. without recoil
a 0.385 © 0.355
a, -0.414 ~-0.443
a_may | 0.799 0.798
o 0.000 ~0.006
o | -0.273 ~0.279
o_-0, 0.273 0.273
ote, | -0.273 -0.285

The calculation includes the exchange current and core -

polarization. The Cohen-Kurath 8-16POT is adopted.
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Fig.10

Fig.1l1

+
Decay scheme of the 1, 1 states in the A=12 system,
Decay scheme of the 3/2 , 3/2 states in the.A=l3'system.
The one~pion exchange contribution to the two nucleon current,

Time ordered diagrams for nucleon Born contributions. (a) The part

‘contained in the nuclear wave functions. (b) The pair current.

The p-m exchange diagram.
o -q+ as a function of fT/fw. The experimental data indicated by

the cross hatched area are those in ref, 20).
o cve .
o_-0, as a function of fw/fw . The experimental data are the same

as in fig. 6.

a -a, as a function of fw/fcvc

_"a, W o The experimental data indicated

by the cross hatched area (a) and (b) correspond to those of refs.
5) and 15), and ref. 16), respectively.

a +a+ as a function of x. The experimental data are the same as in

fig. 6.

;(G') and y(-, o) for different nuclear models._.The upper, middle
and lower bars (-) correspond to the calculations with, impulse +
exchange, impulse and impulse + core polarization, respectively.
The circles (®) include all the effects, while the open circle (o)
does nét include the higher order corrections in B décay. The core
polarization is calculated with the effective interaction of Arima
et al.,., The experimental data indicated by the cross hatched area
are those in ref. 20).

;(o ) and y(-) for different effective interactions. The symbols

have the same meanings as in fig. 10), except that we do not show



Fig.12

the calculation with impulse + exchange current. They are calculated

for the A=12 system with the 8-16POT model of the Cohen-Kurath wave

" function., The experimental data are the same as in fig. 10).

B2/B0 as a function of the electron enegy E. The solid curves
include the contribution of the exchange current and core
polarization, while the dashed curves are calculated with the

impulse approximation.
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