Osaka University Knowledge Archive

Title	DE－EXCITATION PROCESS OF HIGHLY EXCITED DEFORMED NUCLEI
Author（s）	Maeda，Kazushige
Citation	大阪大学，1980，博士論文
Version Type	VoR
URL	https：／／hdl．handle．net／11094／24337
rights	
Note	

Osaka University Knowledge Archive ：OUKA
https：／／ir．library．osaka－u．ac．jp／

DE-EXCITATION PROCESS OF HIGHLY EXCITED DEFORMED NUCLEI

Thesis submitted for
the degree of

Doctor of Philosophy

by
Kazushige Maeda

Department of Physics, Osaka University, July, 1980

CONTENTS

page
Abstract 1
I. INTRODUCTION 2
1-1. Mechanism of (particle, xn yp γ) Reaction 2
1-2. Reaction Models 4
1-3. Investigation of (particle, xn yp γ) Process by Decay Particle- γ Coincidence Method 6
1-4. Purpose of the Present Work 8
II. EXPERIMENTAL INSTRUMENTS AND APPARATUSES 11
2-1. General Descriptions 11
2-2. Beam Course 15
2-3. Target Chamber and Goniometer 16
2-4. Detectors 18
A. Charged particle detector 18
B. Liquid scintillation detector 20
C. Gamma detectors 23
2-4. Data Taking System 25
III. EXPERIMENTAL PROCEDURES AND RESULTS 27
3-1. Neutron Mulitiplicity 27
A. Neutron multiplicities.for the (α, xn yp γ) reactions 29
i) Procedure of neutron multiplicity measurement 29
ii) Result 30
B. Neutron multiplicity in coincidence with protons following the ${ }^{1.65} \mathrm{Ho}\left(\alpha, p\right.$ xn γ) reaction at $E_{\alpha}=$ 109 MeV 31
i) Procedure of neutron multiplicity measure- ment gated by energy and angle of decay proton 31
ii) Result 32
3-2. Energy Spectra of Decaying protons and Neutrons 33
A. Neutron energy spectra following the ${ }^{165} \mathrm{Ho}$ (α, xn yp) reaction at $\mathrm{E}_{\alpha}=109 \mathrm{MeV}$ 35
i) Procedure of neutron measurement 35
ii) Result 36
B. Exclusive proton spectra for each reaction channel of the ${ }^{165} \mathrm{Ho}(\alpha, \mathrm{p}$ xn γ) reaction at $E_{\alpha}=109 \mathrm{MeV}$ 38
i) Procedure of measurement 38
ii) Result 39
C. Neutron energy spectra following the ${ }^{158} \mathrm{Gd}$$\left(\alpha\right.$, xn γ) reaction at $E_{\alpha}=70 \mathrm{MeV} \quad 40$
i) Procedure of measurement 40
ii) Result 41
IV. ANALYSES 43
4-1. A De-excitation Model 43
A. A general consideration 43
B. Numerical results 48
C. Comparison with experiments 52
4-2. Two Phase Analysis 56
V. Discussions 60
5-1. Energy and Angular Momentum Balance of the PEQ-EQ Process 60
5-2. Decay Particle Spectra 64
5-3. Calculation of the Exciton Model for Multi- particle Emission Process 66
VI. SUMMARY 68
Acknowledgement 72
Appendix 73
References 83
Tables 89
Figure Captions 92
Figures 98
Program List

Pre-equilibrium-equilibrium (PEQ-EQ) de-excitation process for (α, xn γ) and (α, xn yp γ) reactions induced by $50 \sim 120 \mathrm{MeV}$ α-particles were studied. The complex reaction mechanisms were investigated by measuring rotational γ-rays which are characteristic of the reaction channels (residual nuclei), and decay protons and neutrons in singles and various coincidence with protons and discrete γ-rays were shown to be very useful for studying the experimental evidences of the PEQ process. They were found in the reaction channels with small neutron multiplicities x, the average neutron energy $\left\langle\mathrm{E}_{\mathrm{n}}\right\rangle$, fast and slow components of the neutron energy spectra, and finite values of the A_{1} coefficient in the high energy components of the neutron angular distributions. These features much depends on the way to excite the PEQ phase. Proton energy spectra of each reaction channel were found to have double peaks, especially in the small x channels. The high energy narrow peaks correspond to the high energy proton emission at the first doorway state. Medium and low energy broad peaks correspond to the high energy neutron emission at the $P E Q$ phase. The present data were analyzed in terms of an exciton model for multi-particle emission process. The multiplicity distributions and decay particle spectra were well reproduced with the initial exciton numbers of (5, 1) and (6, 2). Comparing between the experiments and the calculations, the PEQ fractions and the entry lines to the $E Q$ stage were deduced, and found to be constant for each reaction channel.
I. INTRODUCTION

1-1. Mechanism of (particle, xn yp γ) Reaction

Mechanisms of fusion-like (particle, xn yp γ) reactions induced by medium energy projectiles with several tens of $\mathrm{MeV} /$ nucleon are of current interest in view of a pre-. equilibrium (PEQ)- equilibrium (EQ) de-excitation process. ${ }^{1)}$ The mechanism of fusion like reactions induced by relatively low energy projectiles ($\lesssim 10 \mathrm{MeV} / \mathrm{nucleon}$) is considered to be a statistical process. Decay particles (mostly neutrons in medium and heavy nuclei) following these low energy reactions are evaporated from the compound nuclei in the EQ phase. As the projectile energy increases beyond the nuclear Fermi energy of $20 \sim 30 \mathrm{MeV} /$ nucleon, particle emissions at the PEQ stage become important because of the large widths of particle escape channels at the first few doorway stages of the de-excitation process in the PEQ phase. ${ }^{2-4)}$ With increasing projectile energy, the collision probability of the projectile nucleons with the target nucleons increases and the multiple scattering process for these reactions becomes dominant in the PEQ stage of the reaction. As the projectile energy increases beyond -$50 \mathrm{MeV} /$ nucleon, quasi-free scatterings become to take the major part of the first stage of the reaction process. ${ }^{5}$)

It is assumed that the incident nucleons interact
initially with the target nucleus through the nucleon-nucleon interaction forming the first doorway of the reaction process. Then the reaction process may be approximately classified by the following two types of mechanisms. One is a direct reaction channel (e. q. stripping, pick up, inelastic, projectile break up and so on). This tends to leave the resiudal nucleus in discrete states at low excitation energies. Another process is a fusion like reaction channel, in which a highly excited nucleus in a continuous energy region is formed. The de-excitation process of the latter nucleus is interesting from a view point of the PEQ-EQ mechanism. 6). In the fusion like reaction, a particle-hole pair is created by the first interaction between the projectile and the target. These excited particles and holes are called excitons. ${ }^{7}$) A series of exciton-exciton collisions, namely a nuclear cascade ${ }^{8)}$, is initiated. During the cascade, the number of exciton increases step by step (state spreading). One or a few high energy particles may escape (PEQ particle emission) through the cascade process. If the number of excitons increases beyond $20 \sim 30$ in the cascade process for the medium heavy nuclei, no escape is feasible at the PEQ stage and the residual nuclei is likely to be equilibriated. The equilibrium (compound) nucleus cools down statistically by evaporating low energy particles (mostly neutrons), finally followed by the γ de-excitation process. A schematical description of
this process is shown in fig. 1-1. The present work is focused on the PEQ de-excitation process following highly excited nuclei ($50 \sim 120 \mathrm{MeV}$) produced by α-particle induced reactions.

1-2. Reaction Models

There are many different approaches to understand these processes described above. They are the intra-nuclear cascade
 and the exciton model ${ }^{7,14-16)}$. These, models have been described well the various experimental data. The INC model deals with successive two body collisions between the nucleons in the excited nucleus. The trajectory of the colliding nucleons is simply treated classically. The nucleons lose their energies by escaping from the boundary of the nucleus. The deformation effects (diffraction and deflection at the nuclear boundary), were also taken into account in the several
 distributions of the emitted nucleons. These predictions are in good agreement with the experimental data for nuclear reactions induced by high energy projectiles beyond $100 \mathrm{MeV} /$ nucleon. But an application of this model to the lower excitation energy region ${ }^{18, ~ 19)}$ yielded inconsistent results
with experiments for both energy and angular distributions. ${ }^{20}$) Futhermore, the INC model can hardly treat reaction processes with complex projectiles and outgoing complex particle emissions. In order to improve the INC model, the QFS model ${ }^{13 \text {) }}$ has been proposed. This model describes the intra-nuclear nucleon-nucleon and cluster-nucleon scattering kinematics. The decay rates of the particles to continuum states are calculated from phase space and penetrability considerations ${ }^{13}$). As well as the INC model, the QFS model has not been able to reproduce the experimental data in the lower excitation energy region ($<100 \mathrm{MeV})^{21)}$. The PEQ exciton model proposed by J. J. Griffin ${ }^{7)}$ describes the nuclear states in terms of exciton numbers $m=p+h$ with total excitation energy E, where p and h are the number of excited particles and holes, respectively. An excited state with exciton number m has some unbound particles which may escape to continuum states. Therefore the excited nucleus decays partly by emitting these particles and partly by spreading to more complicated states. Cline and Blann ${ }^{23)}$ combined this model with the master equation approach of Harp, Miller and Berne (HMB model) ${ }^{22}$). It has been generalized as a hybrid model by Blann. ${ }^{24}$, 25) The refinement and improvement of the model has also been done by E. Gadioli et al. ${ }^{26) . ~ B l a n n ~ h a s ~ d e v e l o p e d ~ t h e ~ m o d e l ~}$ by taking into account a geometry-dependent hybrid model (GDH ${ }^{24)}$. Recently, the exciton model has been extended to
calculate the angular distributions of emitted particles. 27-31) Recent reviews on these subjects are given by Blann ${ }^{14,} 32$) and Gadioli ${ }^{33)}$. On the other hand, an approach with the multi-step direct reaction theory (MSDR) was proposed by T. Tamura et al. ${ }^{34)}$. They analyzed $\left(p, p^{\prime}\right)^{34)}$ and $(p, \alpha)^{35)}$ reactions successfully, and recently analyzing powers in the continuum region of the (p, p^{\prime}) reaction ${ }^{36}$) -have also been analyzed using the MSDR method.

1-3. - Investigation of (particle, xn yp γ) Process by Decay
Particle- γ Coincidence Method

It is important to investigate fast and slow neutrons following (particle, $x n$ yp γ) reactions as a function of the neutron multiplicity x in order to investigate the deexcitation process through the PEQ and EQ phases of the reaction. Here the neutron multiplicity x can be identified by requiring a coincidence with discrete γ-rays characteristic of the final reaction channels. Previously, Ejiri et al. 3) made a detailed study of the ${ }^{165} \mathrm{Ho}(\mathrm{p}, \mathrm{xn} \gamma) \mathrm{Er}$ reaction at $E_{p}=60 \mathrm{MeV}$, and found the properties of the neutrons emitted at the PEQ stage. Since the projectile used was 60 MeV protons, the neutron multiplicity x was limited to $x=2 \sim 6$ and the angular momentum involved was small. Sakai et al. ${ }^{37 \text {) }}$
has extended the previous ($p, x n \gamma$) reaction induced by 60 MeV protons to the (α, xn γ) reaction induced by 120 MeV α-particles, where the range of the neutron multiplicity was much larger and the angular momentum involved was also much larger. They studied characteristic behavior of emitted neutrons through the $P E Q$ and $E Q$ stages as a function of the neutron multiplicity x in a wide range of the neutron multiplicity $x=4$ ~ 11 .

The (particle, xn γ) reaction mechanism has also been studied by singles γ-ray and coincidence $\gamma-\gamma$ measurements. Recently γ-ray multiplicities for (α, $x n \gamma$) reactions and the median spin value of the ground state rotational band have been found to saturate as the projectile energy increases well beyond the threshold energy. ${ }^{38-41 \text {) This }}$ suggests that a considerable fraction of input angular momentum is carried away by the PEQ neutrons. The energy, angular and multiplicity distributions of decay neutrons were analyzed in terms of the effective energy parameter (quasitemperature) and active exciton particles (local mass).

The de-excitation properties following the heavy ion induced reaction also have been investigated by several authors ${ }^{41-44)}$. The neutron coincidence experiments for the ${ }^{165} \mathrm{Tm}\left({ }^{14} \mathrm{~N}\right.$, xn $\left.\gamma\right)$ reaction at $\mathrm{E}\left({ }^{14} \mathrm{~N}\right)=130 \mathrm{MeV}$ showed that the neutrons came mostly from the EQ stage ${ }^{42 \text {), and } \gamma \text {-ray }}$ spectra following the ${ }^{169} \mathrm{Tm}\left({ }^{14} \mathrm{~N}\right.$, xn yp γ) reaction at $E\left({ }^{14} \mathrm{~N}\right)=$

210 MeV showed that some fast particles were emitted at the PEQ stage ${ }^{43 \text {). Westenberg et al. 44) found some PEQ }}$ neutron in the $n-\gamma$ coincidence measurement for the ${ }^{158} \mathrm{Gd}\left({ }^{12} \mathrm{C}\right.$, xn γ) reaction at $E\left({ }^{12} \mathrm{C}\right)=152 \mathrm{MeV}$.

1-4. Purpose of the Present Work

The present subject is the PEQ process for nucleon emissions following highly excited nuclei in the $50 \sim 120 \mathrm{MeV}$ excitation region produced by α-particle bombardments on medium heavy nuclei. This energy region is very interesting because the PEQ and EQ processes co-exist and the phase transition from the $P E Q$ to the $E Q$ stage is expected. From the experimental point of view, the complex reaction mechanisms can be studied by measuring the cascade γ-rays which are used to identify the final reaction channels and by observing the energy spectra of emitted particles from the de-exciting nuclei. The emitted particles are measured by singles and/or coincidence with the cascade γ-rays.

In order to perform these experiments, decay particles and γ-rays following the $162,164 \mathrm{Dy}(\alpha$, xn $\gamma)$ reaction at $\mathrm{E}_{\alpha}=50,70,90$ and 120 MeV , the ${ }^{158} \mathrm{Ho}(\alpha, x n$ yp γ) reaction at $E_{\alpha}=109$ and 120 MeV , and the ${ }^{158} \mathrm{Gd}(\alpha, x n \gamma)$ reaction at $E_{\alpha}=70 \mathrm{MeV}$ were investigated. As the residual nuclei
following these reactions are well known rotors the neutron multiplicities (reaction channels) can be easily obtained from well defined rotational γ-rays. The yields of the residual nuclei can be obtained from the yields of the rotational transitions of $4^{+}+2^{+}$and/or $2^{+}+0^{+}$which accumulate most of the de-excitation flows. Several investigators ${ }^{37-44)}$ carried out the γ-ray multiplicity measurements using the deformed nuclei with same reason as mentioned above. These results are available to be compared with the present measurements.

The present work aims at the following:
(1) To study experimental evidences for the PEQ process, neutron multiplicity distributions, mean neutron energy and angular momentum transfer were investigated.
(2) To study dynamic properties of the PEQ process, the data obtained in the present work were analyzed with a simple two phase (PEQ-EQ phase) model and a de-excitation model based on the exciton model. The PEQ process is shown to depend strongly on the projectiles and the reactions used to excite the PEQ phase. The analyses give the quasi-temperatures of the nucleus at the PEQ and the EQ phases the effective number of the excitons, the effective collision probabilities and the critical energy of the PEQ de-excitation.

The experimental instruments and apparatuses are discribed in chap. II. In chap. III, the experimental procedures and the obtained experimental results are presented. The following quantities were obtained; the cross sections of each reaction channel, the neutron multiplicity distributions, the mean neutron energies, the quasi-temperatures of the PEQ and the EQ stages, and the differential and angle integrated decay particle cross sections both for singles and coincidence measurements. In chap. IV, the experimental results are analyzed in terms of the exciton model for multi-particle emission process and the simple two phase approximation. The results of the present work are discussed and concluded in chaps. V and VI, respectively.
II. EXPERIMENTAL INSTRUMENTS AND APPARATUSES

2-1. General Descriptions

PEQ and EQ processes of the (α, xn yp γ) reactions on deformed nuclei were studied by investigating neutron multiplicity distributions, and energy and angular distributions of decay neutrons and protons. Incident α-particles of energies between 50 and 120 MeV were provided by the 230 cm AVF cyclotron ${ }^{45 \text {) at RCNP (Research Center for Nuclear Physics), }}$ Osaka University. The enriched 162, 164Dy targets were prepared by depositing of oxide powder onto thin mylar films (30 $\mu \mathrm{m}$ in thickness). Self-supporting metalic foils of natural holmium and enriched gadrinium were obtained by rolling for ${ }^{165} \mathrm{Ho}$ and ${ }^{158} \mathrm{Gd}$ targets. The thickness and the enrichment of these targets are tabulated in table I.

Neutron multiplicity distributions for (α, xn yp γ)
reactions were obtained from singles γ-ray spectra for the reactions of $162,164 \mathrm{Dy}(\alpha, \text { xn } \gamma)^{166-\mathrm{X}}, 168^{-\mathrm{X}} \mathrm{Er}$ at $\mathrm{E}_{\alpha}=50,70$, 90 and $120 \mathrm{MeV},{ }^{165} \mathrm{Ho}(\alpha, \mathrm{p} \text { xn } \gamma)^{168-\mathrm{X}_{\mathrm{Er}}}$ at $\mathrm{E}_{\alpha}=110$ and 120 MeV , and ${ }^{158} \mathrm{Gd}(\alpha, \mathrm{xn} \gamma)^{162^{-x}} \mathrm{Dy}$ at $\mathrm{E}_{\alpha}=70 \mathrm{MeV}$. The singles γ-ray spectra were measured at lab. angle $\theta_{\ell}=125$ deg. with respect to the beam axis by a 1.4 cc pure $G e$ detector (LEPS) with energy resolution $\Delta E=1 \mathrm{keV}$ for $511 \mathrm{keV} \gamma$-rays. Absolute yields of the reaction residues were estimated from cascade
rotational γ-transitions by refering to the branching ratios observed in previous in-beam works ${ }^{46-60)}$.

The neutron multiplicity distribution for the ${ }^{165} \mathrm{Ho}(\alpha, \mathrm{p}$ xn γ) $168^{-2} \mathrm{X}_{\mathrm{Er}}$ reaction at $\mathrm{E}_{\alpha}=110 \mathrm{MeV}$ for the particular proton energy was achieved by coincidence measurements of discrete γ-rays with decay protons. Angular and energy distributions of decay protons were measured at lab. angles of $\theta_{p}=25,40$ and 125 deg. with respect to the beam axis. A counter telescope system was used for the proton detection. It consists of a ΔE counter of silicon surface barrior detector (300 $\mu \mathrm{m}$ in thickness) and an E counter of $\mathrm{NaI}(\mathrm{Tl})$ scintillation counter $(31.75 \mathrm{~mm}$ diameter $\times 31.75 \mathrm{~mm}$ thick and/or 25.4 mm diameter $\times 125 \mathrm{~mm}$ thick). In the coincidence measurements, discrete γ-rays were detected by a large volume (55cc) pure Ge detector (GAMMA-X) at $\theta_{\ell}=130$ deg. with respect to the beam axis.

Angular and energy correlations between decay protons and neutrons following the reaction mentioned above (${ }^{165} \mathrm{Ho}$ (α, xn yp γ) at $E_{\alpha}=110 \mathrm{MeV}$) were measured both in the reaction plane and the out of this plane. Protons were measured at the fixed angle of $\theta_{\ell}=30$ deg. with respect to the beam axis. The neutrons were detected by an NE213 liquid scintillator (127 mm diameter $\times 127 \mathrm{~mm}$ thick) which was placed at a distance of 120 cm from the target. The neutrons were separated from γ-rays with a pulse-shape analysis metod ${ }^{61 \text {). }}$ Moreover, a 2 cm lead absorber was placed in front of the
neutron counter to reduce the γ-ray background. The small absorption effect due to the lead absorber was corrected for by measuring the neutron spectra with and without the lead absorber.

The neutron $-\gamma$ coincidence measurement was carried out by using the ${ }^{158} \mathrm{Gd}\left(\alpha\right.$, xn γ) reaction at $E_{\alpha}=70 \mathrm{MeV}$. The neutron spectra were obtained by requiring coincidence with discrete γ-rays which are characteristic of each reaction channel ($x=$ 4~6). The neutrons were detected by an NE213 liquid scintillator (127 mm diameter $\times 76.2 \mathrm{~mm}$ thick) with $\mathrm{n}-\mathrm{Y}$ discrimination. The neutron detector was placed at 48 cm from the target. A larger solid angle could be obtained than that in the $p-n$ coincidence experiment. In order to reduce the accidental coincidence owing to a large background of the γ-ray sprectrum, such large solid angle is essential for this work. The neutron angular distributions were measured at $\theta_{\ell}=35,70$, 110 and 145 deg. with respect to the beam axis. The discrete γ-rays were detected at $\theta_{\ell}=90$ deg. with respect to the beam axis using GAMMA-X. It was placed at a distance of 9.6 cm from the target.

The neutron energy spectra were obtained by means of a TOF--(time of flight) technique. The energy resolution ($\Delta \mathrm{E}=$ 1 MeV for 5 MeV neutrons) for a typical flight path ($\ell=120$ cm) is sufficient to select high energy neutrons for the angular distribution measurements and to give rough shapes of
the continuous energy spectra characteristic of the $P E Q$ and $E Q$ processes. The absolute efficiency of the NE213 scintillators presently used was calculated by a Monte Carlo calculation code provided by K. Shin ${ }^{62)}$. The calculated detection efficiency with the lower discrimination for the experiment was compared with the experimental values ${ }^{63 \text {) , and a reasonable }}$ consistency was obtained.

Background neutrons due to lead shields and other surroundings to the neutron spectra were examined and found to be negligibly small in the present coincidence experiments.

The counting rates of all the detectors were kept constant so that the dead time correction was nealy constant over the runs.

All the experimental informations were accumulated onto the magnetic tapes in an event-by-event mode. The raw data processor ${ }^{64)}$ controlled by PDP $11 / 40$ computer was used for data takings. After the experiments, off-line analyses were performed. Data tapes were editted using the central computer TOSBAC 5600.

A typical experimental arrangement of the detectors is shown in fig. 2-1, and a schematical diagram of the experimental flow is illustrated in fig. 2-2.

In the following sections, we describe in details the apparatuses, the detectors and the data taking system used for these measurements.

2-2. Beam Course

The F beam course in the RCNP is aimed for inbeam photon, electron and particle (PEP) spectroscopy. The profile is shown in fig. 2-3.

Alpha beams from the RCNP AVF cyclotron are analyzed in energy by an analyzing magnet and deflected by a switching magnet. They are focussed on a defining slit after the swiching magnet. Then, they refocussed on the first target port (F) in F beam course by means of two sets of quadrupole magnets. The target port F is used for the measurements of γ-rays, charged particles and neutrons. The beams are refocussed by an another set of quadrupole magnets on the second target port (F^{\prime}). A steering magnet is used to correct the beam discrepancy from the center of the second target. In this target port, an electron spectrometer called AGNES is placed. Finally, the beams are stoped by the beam dumper made of Ta . In order to decrease the room backgrounds of stray neutrons and γ-rays, the beam dumper is shielded with paraffin, iron and lead blocks. This beam dumper is also used as a Faraday cup in order to measure the beam current.

A typical size of the beam spot for α-particles is about $1.5 \mathrm{~mm} \phi$ at the first target position (F), when the beam current is a few nA.

There are no beam defining slits inside the beam duct in
the experimental room in order to avoid background γ-rays and neutrons from them. There are seven graphite buffers with apertures of $8 \sim 30 \mathrm{~mm}$ diameter are placed inside the beam duct and the exit of the target chamber. They are used to reject the stray beam and to avoid the activation of the beam duct and the target chamber.

The beam duct and the target chambers were evacuated using three turbomolecular pumps and two.sets of liquidnitrogen traps placed up- and down-stream of the target chambers. The pressure in the first target chamber was typically 1×10^{-5} torr.

2-3. Target Chamber and Goniometer

The target chamber installed on the F target port is illustrated in fig. 2-4. This chamber was designed for measurements of γ-rays, neutrons and charged particles outside the chamber. It has two arms for charged particle counters. They can be rotated manually for measuring angular distributions in the reaction plane (θ direction). The chamber with particle counters can be rotated itself about the beam axis (ϕ diaection) automatically using a stepping moter. Several kinds of angular correlation measurements $(n-n, n-\gamma, p-n, p-\gamma$, and $\gamma-\gamma$ etc.) can be carried out by rotating charged particle counters
in the $\theta-\phi$ plane, and γ-ray and neutron counters in the horizontal plane.

The side wall of the chamber is made of stainless steel with 3 mm thickness. It has wide opening windows which are vacuum sealded with a thin mylar film (25 $\mu \mathrm{m}$ in thickness) for measuring angular distributions in a wide angular range of $-150 \sim 150$ deg..

Absorption of γ-rays and neutrons due to the mylar window may be neglected for energetic charged particles of the present interest. The energy loss of a charged particle through the mylar film is about 300 keV for 10 MeV proton. The cap of the chamber was made of $A 1$ (5 mm in thickness) in order to reduce absorption of neutrons when the chamber was rotated around the beam axis. The absorption due to the Al cap was estimated less than 5 per cent for fast neutrons.

The goniometer which is installed at the F target port has four turn tables. Two of them can be rotated automatically by using stepping notors. They are used for γ-ray detectors (Ge(Li), LEPS and GAMMA-X). One of the other two turn tables are used for a NaI(Tl) scintillation counter, which is used to measure continuous γ-rays, and another has an extended plate on which an NE213 liquid scintillation counter can be set. The neutron time of flight measurements were ! carried out using this extended plate. It can be rotated on the rail around the target to measure the angular distributions
of neutrons. The length of neutron flight path is adjustable from 20 cm to 120 cm .

2-4. Detectors
A. Charged particle counter

Energies of charged particles were measured by a counter telescope consisting of a Si surface barrier SSD and a NaI(Tl) scintillation counter.

The Si surface barrier SSD with $450 \mathrm{~mm}^{2}$ detection area and $300 \mu \mathrm{~m}$ thickness was used for the energy loss counter ($\Delta \mathrm{E}$). The lower limits of energy ranges for any charged particle are determined by the ΔE counter. In the case of this detector, they were 6.5 MeV for protons and 25.0 MeV for alpha particles. The NaI(Tl) scintillation counters were used for the E counter. Two types of $\mathrm{NaI}(\mathrm{Ti})$ counters were used. One is 25.4 mm diameter $\times 25.4 \mathrm{~mm}$ length with $50 \mu \mathrm{~m}$ Al window (OYO-KOKEN), and another is 31.75 mm diameter $\times 31.75 \mathrm{~mm}$ length with $25 \mu \mathrm{~m}$ Al window (HARSHOW). Both counters can detect up to 80 MeV protons. The typical energy resolutions of these NaI(TI) counters are 2.0 MeV FWHM (OYO-KOKEN); and 1.0 MeV FWHM (HARSHOW) for 120 MeV alpha particles. Ordinary, the latter detector (HARSHOW) was used because of its better resolution,
wider detection area and thinner window than the former (OYO-KOKEN). Photo-productions in the NaI(Tl) counters caused by the present high energy charged particles (~ 100 MeV) are much larger than that in the ordinary use, so a breeder circuit for the photo-multiplier (R580, HAMAMATSU) was changed to obtain stable out-put gain. The resistances of the breeder were converted to about one tenth value of the ordinary ones. Fig. 2-5 shows the circuit of the breeder. The pulse hight responses of the $\mathrm{NaI}(\mathrm{Tl})$ scintillator for charged particles deviate from linearity over an energy range of several tens of $\mathrm{MeV}^{65)}$. In order to determine the energy dependence of this non-linearity for the $\mathrm{NaI}(\mathrm{TI})$ crystal presently used, the pulse height responses of the elastic scattered protons and α-particles were measured. The energies of these particles were determined with detection angles and absorbers. Fig. 2-6 shows the pulse height responce of the crystal of 31.75 mm diameter $\times 31.75 \mathrm{~mm}$ thickness to higher energy protons.

This counter telescope was mounted on a brass case, in order to reduce noises caused by light etc.. A slit system to determine the solid angle of the charged particle detection was fixed to this brass case. A typical solid angle of this counter telescope for coincidence measurements was as large as 60 msr . The mounting of the counter telescope system is shown in fig. 2-7. Fig. 2-8 shows a typical particle
identification spectrum obtained by the present counter telescope system.

B. Liquid s'cintillation detector

Neutron was detected by an NE213 liquid scintillation detector. A time of flight (TOF) technique was employed to determine the kinetic energy of neutrons: The NE213 liquid scintillator has a good detection efficiency for fast neutrons, and is suitable for pulse shape discrimination analysis between neutrons and γ-rays. The pulse height response and the detection efficiency of the scintillator for fast neutrons have been studied by many authors ${ }^{66-69 \text {). The pulse height }}$ response of the NE213 scintillator is an important quantity to estimate the absolute detection efficiency. It varies with the size and form of the scintillator.

The liquid scintillator detects fast neutrons through recoiling protons. The recoiling protons make continuous -pulse height response distributions corresponding to their kinetic energy. This property depends on the angular distributions of the recoiling protons with respect to the momentum direction of the incident neutrons. The amount of secondary scatterings of the neutrons affects the pulse height response function, and depends on the scintillator geometry. The measurement of the pulse height response function was made
with the use of a pulse shape discriminator to reject the γ-ray events. The γ-rays are detected in the liquid scintillator through the compton electron scatterings. The decay time of the fluorescent light output of the NE213 scintillator consists of two time components ${ }^{70}$). One is a fast component (2-4 ns) due to the low ionization density produced mainly by γ-ray events, another is a slow component (10-30 ns) due to higher ionization density produced mainly by neutron events. This property is used to distinguish the events of neutrons form that of γ-rays. We used a pulse shape discriminator (Model 2160, CAMBERRA) in order to perform this problem. A pulse shape discrimination spectrum is shown in fig. 2-9-a and the neutron energy dependence of the pulse shape discrimination is shown in fig. 2-9-b. Measured response functions for various energy neutrons are shown in fig. 2-10. The detection efficiency is critically dependent on the bias setting at low light output side because of a sudden steep character at this region. This character may cause a serious error to the low energy neutron ($\sim 5 \mathrm{MeV}$) detection efficiency. At the higher light output region above $\mathrm{E}_{\mathrm{e}}=2.0 \mathrm{MeV}$, the efficiency changes just slowly with the bias setting because of its relatively flat character. We should take care of these natures of the used scintillation detectors to calculate the absolute detection efficiencies of the fast neutrons. A Monte Calro calculation was used to estimate the neutron
detection efficiency. We calculated the detection efficiency for the used scintillator with a Monte Calro calculation code provided by K. Shin 62). The calculated detection efficiency with a certain threshold is compared with experimental value ${ }^{64 \text {). } . ~}$ Fig. 2-11 shows the results of the calculation for neutron detection efficiency (lower distribution level $E_{e}=800 \mathrm{keV}$).

The energy calibration of the time of flight was carried out with the maximum of the light output: The light output is proportional to about $3 / 2$ powers of the energy of protons. This relation between the light output and the proton energy for the NE213 scintillator was measured by V. V. Verbinski et al. 69). The light output calibration of the NE213 scintillator is usually carried out by measuring the compton edge of γ-rays; ${ }^{56} \mathrm{Co}\left(\mathrm{E}_{\mathrm{e}}=3017,2365\right.$ and 1027 keV$),{ }^{88} \mathrm{Y}\left(\mathrm{E}_{\mathrm{e}}=1632 \mathrm{keV}\right)$ and ${ }^{22} \mathrm{Na}\left(E_{e}=1062\right.$ and 341 keV$)$. The light output for higher energy electrons were extraporated. The calibration curve and experimental points obtained with monoenergitic neutrons following ${ }^{7} \mathrm{Li}(\mathrm{p}, \mathrm{n})^{8} \mathrm{Be} *$ reactions are shown in fig. 2-12. The time and energy calibration for neutrons are shown in fig. 2-13. The neutron flight time was measured with time differences between the neutron signals from the scintillator and the RF signals from the cyclotron for neutron singles
*) Proton beams were provided by the AVF cyclotron at the Cyclotron Radio-isotope Center, Tohoku University.
and neutron- γ coincidence experiments. In the case of charged particle-neutron coincidence measurements, the neutron flight time was measured with the time differences between the neutron signals and the charged particle signals from the ΔE counter (Si surface barrier SSD). Fig. 2-14 shows the time spectrum of neutrons for the latter case.

In order to reduce the backgrounds (stray neutrons and γ-rays), paraffin blocks, lead plates (30 mm thickness) and brass plate (5 mm thickness) at the side of the scintillator, and lead plates (20 mm thickness) and brass plate (5 mm thickness) in front of it were used for shields. The absorption of the neutrons of the front shield was measured. Fig. 2-15 shows the effects of the front shield and the total neutron detection efficiency. The neutron background was estimated from the yields of neutrons with a blank target. A typical neutron time structure is shown in fig. 2-16.

All the informations; The pulse height spectra, the time of flight spectra and the pulse shape discrimination spectra, were recorded in an event by event mode by use of the Raw Data Processor. After the experiment, off line analyses were performed.
C. Gamma detectors

Highly excited nuclei have many decaying channels. The
γ-ray spectra are much complicated because of many decaying channels. These complicated spectra were precisely measured by a 1.4 cc high purity $G e$ detector in a singles mode. This detector called LEPS (Low Energy Photon Spectrometer) has the higher energy resolution than a ordinary large volume $G e(L i)$ detector. The energy resolution is 1 keV for $511 \mathrm{keV} \gamma$-rays. In order to avoid the ambiguity of the dead time correction, the counting rate was always kept as 700 counts/sec. In front of LEPS, a brass plate (1 mm thickness) was placed to reduce the x-rays from the target. Photo-peak energies were determined within 0.2 keV by using LEPS. It was very powerful to identify the γ-rays from the final nuclei accurately. We could determine precise distributions of the residual nuclei (neutron multiplicity distributions).

In the times of coincidence experiments ($n-\gamma$ and $p-\gamma$), a large volume $G e(L i)$ detector (60 cc) and a $G e(p u r e)$ detector (55 cc one called GAMMA-X) were used in order to improve the coincidence efficiency. The energy resolutions of these detectors were about 2.0 keV for ${ }^{60} \mathrm{Co} 1332 \mathrm{keV} \gamma$-rays. The counting rate had also to be nearly constant to keep the counting condition to be stable. ' These detectors were shielded by - lead blocks (50 mm thickness) to reduce background γ-rays. A copper plate (1 mm thickness) was inserted between the lead shields and an Al cap of the Ge detector to absorb the x-rays from the lead sheild. In front of the detector, a copper or
a brass absorber (3 mm thickness) was set to reduce the x-rays and low energy γ-rays coming from the target.

The absolute efficiencies of these $G e(p u r e)$ and $G e(L i)$ detectors were measured every time after experiment by an calibrated RI source set at the target position. The counting rate and electronics were maintained as the same condition as the inbeam experiments. The typical examples of absolute efficiency curves obtained for GAMMA-X and LEPS are shown in figs. 2-17-a and 2-17-b.

2-4. Data Taking System

The electronic circuit used are mostly NIM module circuits. The typical block diagram is shown in fig. 2-18. They are composed three parts. One is the coincidence circuit block. Conventional fast-slow coincidence modes were used. The signals through these circuits were processed by the raw data processor. And they were written onto the magnetic tape which is controlled by the PDP 11/40 computer. The second part is the circuit for measurements of the singles γ-ray spectra. The signals from LEPS or Ge(Li) are accumulated in the multichannel analyzers (CAMBERRA 8100,8700 or SCORPIO). The third part is the on-line monitor circuit for the coincidence measurements.

After on-line data taking, off line analyses were performed. Data tapes were sorted by various modes (projection, digital gate and two dimension etc.) using the central computor TOSBAC 5600.
III. EXPERIMENTAL PROCEDURES AND RESULTS

Table II summarized types of the reaction studied. It lists the target nuclei, energies of incident α-particles, initial fused nuclei and their excitation energies, modes of experiments, and laboratory angles of observations are tabulated.

3-1. Neutron Multiplicity

A systematic study of the de-excitation process for the fusion like (α, xn yp γ) reactions in an energy range of $50 \sim$ 120 MeV is important from a view point of the PEQ neutron emission. When a medium heavy nuclei is excited by the $\alpha-$ particle bombardment, a small number of fast neutrons are expected to be emitted through the PEQ process. A part of these neutrons which is emitted at the first doorway state take away large excitation energy. After one or two these neutron emissions, the residual nucleus transits to the EQ phase at the excitation energy of $25 \sim 40 \mathrm{MeV}$. The equilibriated nucleus cools down by a several• number of neutrons proportional to the excitation energy. Thus the neutron multiplicity x is much smaller than the statistical model prediction for the fast neutron emissions at the first stage of the PEQ process.

On the other hand, after several state spreadings at the PEQ stage of the de-excitation process, relatively low energy neutrons are also expected to be emitted through the PEQ phase. The phase transition from the PEQ stage to the EQ stage occurs at higher excitation energy of $35 \sim 50 \mathrm{MeV}$. This process corresponds to the large neutron multiplicity. Thus the neutron multiplicity distribution is sensitive to the first stage neutron emission at the PEQ phase. . The neutron multiplicity in a wide range can be measured experimentally by observing discrete γ-rays characteristic of the residual nuclei.

The discrete γ-rays were measured in coincidence with protons for the (α, p xn γ) reaction in order to study correlations between the neutron multiplicity, and energy and angular distributions of decay protons. Almost the decay protons without low energy part are considered to be emitted from the PEQ stage. They leave the residual nuclei at the PEQ stage. Characteristic properties of the PEQ stage such as the exciton number and the excitation energy of the residual nucleus should be reflected upon the kinetic energies and the angular distributions of first emitted protons. As mentioned above the neutron multiplicity is sensitive to the PEQ properties. Therefore the neutron multiplicity distributions in coincidence with protons are expected to be sensitive to the exciton number and the excitation energy at the proton
emission.
A. Neutron multiplicities for the (α, $x n$ yp γ) reactions
i) Procedure of neutron multiplicity measurement

We measured neutron multiplicity for the reactions of 162, $164 \mathrm{Dy}(\alpha, x n \gamma)^{166-x^{2 r}}$ at $E_{\alpha}=50,70 ; 90$ and 120 MeV , ${ }^{165} \mathrm{Ho}(\alpha, \mathrm{p} \text { xn } \gamma)^{168^{-x}} \mathrm{Er}$ at $E_{\alpha}=110$ and 120 MeV , and ${ }^{158} \mathrm{Gd}(\alpha$, $x n \gamma)^{162^{-x}}$ Dy at $E_{\alpha}=70 \mathrm{MeV}$ by means of singles γ-ray measurements. The thickness and form of the bombarded targets are listed in table I. The singles γ-ray spectra were obtained by use of LEPS (Ge(pure) detector) at 125 deg. with respect to the beam axis. A typical singles γ-ray spectrum following the ${ }^{164} \mathrm{Dy}\left(\alpha\right.$, xn γ) reaction at $E_{\alpha}=120 \mathrm{MeV}$ is shown in fig. 3-1.

Cross sections for each reaction channel with neutron multiplicity x were obtained from the detailed γ-ray spectra. Total cross sections $\sigma(x)$ are estimated from the absolute yields of discrete γ-rays characteristic of the $x n$ reaction channels. For the even-even isotopes, the $\sigma(x)$ are approximately given by the yields of the ground band $4^{+}+2^{+} \rightarrow 0^{+}$ transitions. The cross section of the $2^{+} \rightarrow 0^{+} \gamma$-transition may be assumed to stand for the cross section of the reaction channel, and the yield of the $4^{+}+2^{+} \gamma$-transition for the 80
per cent of total yield of the reaction channel. The $\sigma(x)$ for odd-A isotopes were estimated from the intensity ratios of the γ-rays along the yrast, yrare and other possible bands observed in refs. 41-59. In the case of each odd-A Er isotope, the γ-ray yields of the yrast $\frac{21^{+}}{2}+\frac{17^{+}}{2} \rightarrow \frac{13^{+}}{2}$ transitions and yrare $\frac{19^{+}}{2} \rightarrow \frac{15^{+}}{2} \rightarrow \frac{11^{+}}{2}$ transitions were used. The total yields for the feedings of each reaction channel were obtained by summing up the intensities of the transitions with correction for the electron conversion. Small corrections (~ 10 per cent) for the anisotropic distribution of the γ-rays have been made by use of the stretched E2 transitions. A phenomenological $A_{2} P_{2}(\cos \theta)$ term ${ }^{68)}$ for the stretched $E 2$ transitions was used.
ii) Results

The total cross sections for the $162,164 \mathrm{Dy}(\alpha, \mathrm{xn} \gamma)$ reactions at $E_{\alpha}=50,70,90$ and 120 MeV are plotted in fig. 3-2 as a function of the kinetic energy sum E_{T} of the decay neutrons. The $\mathrm{E}_{\mathbf{T}}$ is defined as

$$
\begin{equation*}
E_{T}=\sum_{n=1}^{X} E_{n} \tag{3-1}
\end{equation*}
$$

where x is the number of neutrons emitted, namely neutron multiplicity. The sum E_{T} is equivalent to the energy excess above the reaction threshold, and it is simply related to the
neutron multiplicity x as follows.

$$
\begin{equation*}
E_{T}=E^{*}-x<B_{n}>-E_{\gamma}, \tag{3-2}
\end{equation*}
$$

where E^{*} is the initial excitation energy, $<B_{n}>$ is the average neutron binding energy and E_{γ} is the excitation energy removed by γ-rays. We assumed a constant value of $E_{\gamma}=9.0 \mathrm{MeV}$ for all residual nuclei. A prominent feature is that the cross sections for small number x of emitted neutrons with large E_{T} are much larger than those expected from a simple calculation within the compound nucleus model. Thus most of the cross section at large E_{T} (small x) may be due to the $P E Q$ process. This feature gets more pronounced with the increasing projectile energy. In fig. 3-3, the cross sections for the reactions of
 presented as a function of the neutron multiplicity. The sum of the cross sections for the ($\alpha, \mathrm{p} x \mathrm{x}$) reaction is rather flat as a function of the neutron multiplicity x.
B. Neutron multiplicity in coincidence with protons following the ${ }^{165} \mathrm{Ho}(\alpha, p$ xn $\gamma)$ reaction at $E_{\alpha}=109 \mathrm{MeV}$
i) Procedure of neutron multiplicity measurement gated by energy and angle of decay protons

In order to obtain the neutron multiplicity distributions in coincidence with protons. We studied the ${ }^{165} \mathrm{Ho}(\alpha, \mathrm{p}$ xn γ) 168^{-X} Er reaction by means of the proton- γ coincidence measurement. A $5.5 \mathrm{mg} / \mathrm{cm}^{2}$ metallic 165 Ho target was irradiated by $109 \mathrm{MeV} \alpha$-particles. Two sets of counter telescope were used to detect charged particles. They were observed at lab. angles of 25,40 and 129 deg. with respect to beam axis. Discrete γ-ray were detected by GAMMA-X (Ge(pure) detector) at 130 deg. to the beam axis.

Cross sections of each reaction channel $\frac{d^{2} \sigma_{x}}{d E_{p} d \Omega_{p}}$ were obtained from the γ-ray spectra gated by five proton energy intervals at each detection angle. As described in the previous section, each rotational γ-transition observed in the gated spectra was used to estimate the absolute values of $\frac{d^{2} \sigma_{x}}{d E_{p} d \Omega_{p}}$. ii) Result

The observed neutron multiplicity distributions are shown in fig. 3-4. . The neutron multiplicity distributions gated with forward low energy protons are similar to those for the ($\alpha, \operatorname{xn} \gamma$) reactions, namely the cross sections with small neutron multiplicity x is so large as to be expected from the EQ calculation. The residual nucleus is thought to be left at the high excitation with small number of excitons after. forward low energy proton emissions. The forward high energy
proton emissions give only the reaction channels with small neutron multiplicity. When these proton emission occur, the residual nucleus transits rapidly to the EQ phase. The characteristic properties of the PEQ process can not be observed. On the other hand, the multiplicity distribution gated by backward protons is close to what was expected by the evaporation process indicating large number of excitons aftér the proton emission.

3-2. Energy Spectra of Decaying Neutrons and Protons

It is important to investigate fast and slow neutrons following the de-exciting nucleus at the PEQ and the EQ phases. Energy and angular distributions of these neutrons give direct informations about the PEQ de-excitation process, namely the PEQ neutrons can be easily distringuished from the EQ neutrons which indicate a typical evaporative energy distributions as $\propto E \exp \left(-\frac{E}{k T_{e}}\right)$, where $k T e$ is the nuclear temperature of the equilibriated nucleus, and a isotropic angular distribution. On the other hand, protons following the de-exciting nucleus considered to be mostly emitted at the PEQ phase since the evaporation of protons is suppressed by the Coulomb barrier of the compound system. Although a part of protons and fast neutrons can be emitted through a single collision with
protons and neutrons from the PEQ stage are ejected after multi-collisions (state spreadings) with nucleons in the compound system. In order to investigate these complicated process, energy and angular correlations between protons and neutrons were measured. The PEQ neutrons should give the informations about the excitons and excitation energy at the proton emitted states. Proton energy spectra for each reaction channel can be obtained by requiring the coincidence with the discrete γ-ray which is characteristic of each reaction channel. They can be related to the excitation and the excitons of the residual nucleus'at the proton emission.

Recently very detailed measurements of the γ-ray multiplicity distributions for (α, xn γ) reactions have been carried out by using the multiple NaI counter system by M. A. J. de Voigt et al. ${ }^{40 \text {). The measured multiplicities and } \gamma \text {-ray }}$ energies were used to locate the γ-ray entry lines in the final nucleus after neutron emission in the excitation-energy versus spin plane. In that work tests on the conservation of angular momentum could only be made by using neutron data obtained with other reactions.

We carried out the $n-\gamma$ coincidence measurement to correlate the previous γ-ray multiplicity and the present neutron data for one and the same reaction. This will serve as a more stringent test on the conservation of energy and angular momentum in the reaction and to construct a consistent
picture of the decay in terms of competing equilibrium and pre-equilibrium processes. For this purpose the ${ }^{158} \mathrm{Gd}(\alpha, \mathrm{xn} \gamma)$ 162^{-x} Dy reaction was chosen with $x=4,5$ and 6 at bombarding energy of $E_{x}=70 \mathrm{MeV}$. The γ-ray data taken at the Groningen cyclotron a $\mathrm{Ge}(\mathrm{Li})-16 \mathrm{NaI}$ detectors multiplicity filter indicated that the $(\alpha, 6 n)$ reaction led to predominently compound-nucleus formations whereas significant PEQ effects seemed to be present in the ($\alpha, 4 n$) reaction, with the ($\alpha, 5 n$) exit channel aćting as an intermediate phase. The deduced entry lines ${ }^{40}$) are Used in the present work to obtain the average energy and continuum and discrete γ-ray cascades.
A. Neutron energy spectra following the ${ }^{165} \mathrm{Ho}(\alpha$, xn yp) reaction at $E_{\alpha}=110 \mathrm{MeV}$
i) Procedure of neutron measurements

Both singles añ proton gated neutron energy spectra were obtained from the ${ }^{165} \mathrm{Ho}\left(\alpha, x n\right.$ yp) reaction at $E_{\alpha}=109 \mathrm{MeV}$. The energy of neutrôns were determined by means of TOF method. The flight path was $\mathrm{L}=120 \mathrm{~cm}$. Neutrons were detected by an NE213 liquid scintillation counter which has a good neutron detection efficiency and character of $n-\gamma$ discrimination. The energy range of neutrons which was determined with the
flight path and the beam cycle of the cyclotron was between 1.2 and 30 MeV .

Angular distributions and correlations with decay protons which were detected by a counter telescope system at fixed angle $\theta_{p}=30 \mathrm{deg}$. were measured at $\theta_{h}=-69.2,-53.8,-20.3$, $23.9,33.6,53.8,63.2,108.6$ and 139.1 deg.
ii) Result

Differential neutron spectra at lab. angles $\theta_{h}=20.3$ and 139.1 deg. are shown in fig. 3-5. The neutron energy spectra at the forward angles show large high energy tailes, and those at backward angles show a typical evaporation pattern. The former and the latter may correspond to the PEQ and the EQ neutron-emissions ${ }^{1-6)}$, respectively.

The differential cross sections $\frac{\mathrm{d}^{2} \sigma}{\mathrm{dEd} \Omega}$ in the center of mass (C. M.) frame were integrated over C. M. angles using the following equation;

$$
\begin{equation*}
\frac{d \sigma}{d E}=\int \frac{d^{2} \sigma}{d E d \bar{\Omega}} d \Omega=2 \pi \int_{0}^{\pi} \frac{d^{2} \sigma}{d E d \Omega} \sin \theta d \theta \tag{3-3}
\end{equation*}
$$

The integration was carried out by means of a spline function which can connect the experimental value smoothly. Fig. 3-6 shows the angle integrated neutron spectrum. The errors in this spectrum were mostly due to the TOF resolution which
consisted of the time resolutions of the cyclotron beam bunch and the detector length relative to the length of the flightpath. Stray neutrons (room background), which were carefully surveyed, were estimated less than 5 per cent of the total neutron yield. In fig. 3-6, there is a large high energy tail considered as due to the PEQ neutron emission. Deviations from a statistical estimation for any physical quantity in the present energy region may be connected to it. The-PEQ neutrons account for about ten per cent of total yields of the neutrons. An energy integration of the angle integrated neutron cross section can be obtained from the following equation;

$$
\begin{equation*}
\sigma_{\mathrm{n}}=\int_{0}^{E} \max \frac{d \sigma}{d E} d E \simeq<M_{\mathrm{n}}>\sigma_{\Omega} \tag{3-4}
\end{equation*}
$$

where $<M_{n}>$ is the mean value of the neutron multiplicity and σ_{Ω} is the total reaction cross section accompanied with : neutron emissions. ..The mean neutron multiplicity $<M_{n}>\simeq 7.5$ is obtained from the observed neutron multiplicity. - Inserting this value into eq.-3-4,-we-get-the-total-reaction cross section $\sigma_{\Omega} \simeq 1.63 \cdot$ b. \cdots It agress with the cross section obtained from the singles γ-ray spectra.

The neutron momentum distributions deduced from the angular distributions in coincidence with protons for three energy bins are shown in fig. 3-7. The relative yields are
plotted as contour lines of each one half value. The shaded portions in the fig. 3-7 represent the coincident proton momenta, and the lozenges are the momentum of the incident α-particles. It is approximately seen that there are conspicuous forward peakings of high momentum tails of neutrons. On the other hand, neutrons with low momentum (< 5 MeV in energy) indicate isotropic angular distributions. Angular correlations between the PEQ protons and neutrons could not be found in the present experiment, because of the lack of higher momentum ($>30 \mathrm{MeV}$ in energy) neutron detection. Fig. 3-8 presents mean energies of the neutrons $\left\langle E_{n}\right\rangle$ at each detection angle in three proton energy bins. It is seen that <E E_{n} > gated by the proton energy of $\geq 50 \mathrm{MeV}$, is nearly constant at all the detection angles. However, $\left\langle\mathrm{E}_{\mathrm{n}}>\right.$ gated by lower energy protons indicate large forward peakings. The ratios of high ($>5 \mathrm{MeV}$) and low energy ($<5 \mathrm{MeV}$) neutron cross sections in three proton bins are presented in fig. 3-9. The angular behavior is very simillar to that of the mean neutron energy.
B. Exclusive proton spectra for each reaction channel of the ${ }^{165} \mathrm{Ho}(\alpha, \mathrm{p} \times \mathrm{x} \gamma)$ reaction at $\mathrm{E}_{\alpha}=109 \mathrm{MeV}$
i) Procedure of the measurement

The same procedure as the measurement of neutron multiplicity distribution in coincidence with protons described in sec. $3-1-B$ were employed. Here the proton energy spectra at each detection angle were gated by the discrete γ-rays characteristic of the reaction channels with neutron multiplicity range $x=2 \sim 8$.
ii) Result

The proton energy spectra obtained from the proton- γ coincidence measurements in the neutron multiplicity range $x=2 \sim 8$ are presented in fig. 3-10-a for even mass isotopes and in fig. $3-1-b$ for odd mass isotopes at lab. angles $\theta_{p}=$ 25 and 129 deg. The proton energy spectra consist of high energy part and low energy tail. The high energy part corresponds to the EQ neutron emission. As shown in sec. $3-1-b$, the high energy proton emissions leave the residual nucleus at the low excitation region with a small exciton number. In these nuclei, more particle emissions are not feasible, so the residual nucleus transit rapidly to the $E Q$ phase where additional de-excitation proceeds by emitting the evaporative neutrons and γ-rays. On the other hand, the low energy part corresponds to the PEQ neutron emission. These protons are considered to be secondly emitted after the more energetic neutron emission at the first doorway state.

The forward proton spectra for the ($\alpha, \mathrm{p} 2 \mathrm{n} \gamma$) and ($\alpha, \mathrm{p} 3 \mathrm{n} \gamma$) reactions seem to have even two peaks, namely the high energy narrow peak and the medium energy broad peak. The high energy peaks in these reactions leave the residual nuclei at low excitation energy ($<50 \mathrm{MeV}$) where the EQ process becomes to be dominant. For the higher excitation energy ($>50 \mathrm{MeV}$) of the residual nucleus after the proton emission, the PEQ process is important as same as the first doorway state. Thus, the medium energy broad peak may correspond to the PEQ emission of neutrons. These double peaking charactor in both ($\alpha, \mathrm{p} 2 \mathrm{n}$) and ($\alpha, \mathrm{p} 3 \mathrm{n}$) reactions indicate the phase transition between the PEQ and the EQ phases.
C. Neutron energy spectra following the ${ }^{158} \mathrm{Gd}(\alpha, \mathrm{xn} \gamma)^{162^{-x}} \mathrm{Dy}$ reaction at $E_{\alpha}=70 \mathrm{MeV}$
i) Procedure of neutron measurement

The energies and angular momenta released by the emitted neutrons were obtained in the present work for each specified exit channel from neutron TOF spectra and angular distributions. The exit channels were specified by observed discrete γ-ray transitions in a (Li) detector. A check on the γ-ray multiplicities.was made from one additional $\mathrm{NaI}(\mathrm{Tl})$ detector, which also enabled us to observe triple coincidences between the

Ge(Li), NaI(Tl) and NE213 neutron detectors. Because of the poor statistics in the latter correlations the main conclusions on the physics will be based on the double Ge(Li) - NE213 correlations.

The $70 \mathrm{MeV} \alpha$-particle beam was obtained from the RCNP AVF cyclotron. The target was self-supporting and isotopically enriched to $99.0 \%{ }^{158} \mathrm{Gd}$ with a thickness of $2.6 \mathrm{mg} / \mathrm{cm}$. A 55 cm Ge detector was placed at $D=9.6 \mathrm{~cm}$ from the target at $\theta=$ 90° with respect to the beam direction. Low-energy γ-rays were attenuated by a 1 mm brass absorber. A. 10.4 cm diameter $\times 10.4 \mathrm{~cm}$ long $\mathrm{NaI}(T I)$ detector was positioned at $\mathrm{D}=25 \mathrm{~cm}$ and $\theta=145^{\circ}$. A lead collimetor and a 3 mm brass absorber were used to flatten as much as possible the response function with a low-energy cut-off at 150 keV . The neutrons were detected by means of a 12.7 cm diameter $\times 7.6 \mathrm{~cm}$ NE213 liquid scintillator. They were separated from γ-rays by means of pulse-shape discrimination. Their energies were obtained from the time-of-flight over a distance of 48 cm . Angular distributions for those neutrons were measured at angles of $\theta_{n}=35^{\circ}, 70^{\circ}$, 110° and 145°.
ii) Result

The γ-ray spectra obtained in coincidence with neutrons at lab. angle of $\theta_{n}=35$ deg. for three energy intervals are
shown in fig. 3-11. It is clearly seen that in coincidence with low energy neutrons enhances the ($\alpha, 6 n$) exit channel and high energy neutrons the ($\alpha, 4 n$) channel. The neutron energy spectra for the three exit channels measured at four angles are presented in fig. 3-12. As shown in the fig. 3-12, the shape of the neutron spectra depends much on both the exit channel with neutron multiplicity x and the angles of observation. The low energy neutron may be due to the EQ process which shows on the neutron spectrum a characteristic evaporation pattern. Such shape is dominantly seen in the reaction channel with large neutron multiplicity. On the other hand the high energy ones may be due to the PEQ process, being? dominant in the reaction channel with small neutron multiplicity. These results indicate that the fast neutron emissions at the PEQ stage of the de-excitation process also gets important in the $70 \mathrm{MeV} \alpha$-particle induced reaction.
IV. ANALYSES

4-1. A De-excitation Model
A. A general consideration

Present calculations were designed to describe multiparticle emission processes of highly excited nuclei (~100 MeV). Based on the exciton model ${ }^{15}, 71-73$), we employ the decay rates for particle emission and exciton-exciton interaction reported in previous works ${ }^{74-76)}$. The Monte Carlo method, which was developed for the calculation of the nuclear evaporation process by Dostrovsky et al. ${ }^{77 \text {), was used to }}$ evaluate complex reaction processes. Gadioli et al. applied the Monte Carlo method for the exciton model calculation of the PEQ-EQ de-excitation process. ${ }^{78)}$

In the frame work of the exciton model, the de-excitation process can be described by the Pauli master-equation which is given by ${ }^{15)}$

$$
\begin{equation*}
\frac{d}{d t} P_{n}(t)=\sum_{\cdot m}\left[P_{m}(t) W_{m \rightarrow n}-W_{n \rightarrow m} P_{n}(t)\right] \tag{4-1}
\end{equation*}
$$

where the $P_{m}(t)$ is the occupation probability of the m-exciton state (m is the sum of the excited particles and holes) at time t, the $W_{m \rightarrow n}=W_{n \rightarrow m}$ is a mean value of the square of the
transition matrix element. The master equation (4-1) describes a gain and a loss of occupation probabilities. It can be solved by a diagonalization of the kernel with following initial condition as

$$
\begin{equation*}
\mathrm{P}_{\mathrm{m}}(0)=\delta_{\mathrm{mm}_{0}} \tag{4-2}
\end{equation*}
$$

We require the condition that the solutions of eq. (4-1) has to approach finally to the equilibrium values;

$$
\begin{equation*}
\lim _{t \rightarrow \infty} p_{m}(t)=p_{m}(\infty)=\frac{\rho_{m}}{\sum_{\substack{m=m_{0} \\ \Delta m}} \rho_{m}} \tag{4-3}
\end{equation*}
$$

where level density. ρ_{m} is given in Appendix. The mean number of the exciton is given as $\overline{\mathrm{n}}=\sqrt{2 \mathrm{gE} *^{15}}$), where g is the single particle level density. The differential cross section of the particle b for the reaction is given by

$$
\begin{equation*}
\frac{d \sigma^{b}}{d \varepsilon}=\sum_{\substack{\alpha=m_{0} \\ \Delta m=2}}^{2 \bar{n}} W_{m}^{b}(\varepsilon) \int_{0}^{T} e q P_{m}\left(t^{\prime}\right) d t^{\prime}+\left(\frac{d \sigma^{b}}{d \varepsilon}\right) \text { evaporation } \tag{4-4}
\end{equation*}
$$

Here, α is proportional to the square of the mean transition matrix element of the residual interaction $|M|^{2}$, while W_{m}^{b} is the average decay rate from the m-exciton state to a channel where the particle b has kinetic energy ε, and T eq is the
equilibration time. The time integration of $P_{m}(t)$ is interpreted with a physical assumption as a sum of the emission probabilities ${ }^{15}, 27$) at the m-exciton state between the time 0 and T_{eq}. Therefore, the integration can be rewritten as

$$
\begin{equation*}
\sum_{m}^{2 \bar{n}} \int_{0}^{T} e^{T} p_{m}(t) d t \propto \sum_{\Delta m=2}^{2 \bar{n}} \frac{\Gamma_{c}^{m}}{\Gamma_{c}^{m}+\Gamma_{s}^{m}}=\sum_{\Delta m=2}^{2 \bar{n}} \tau_{m} \tag{4-5}
\end{equation*}
$$

where Γ_{c}^{m} and Γ_{s}^{m} are the escape and the spreading widths at m-exciton state, respectively. Eq. (4-4) becomes

$$
\begin{equation*}
\frac{d \sigma^{b}}{d \varepsilon}=\bar{\sigma}_{b}(\varepsilon) \sum_{\substack{m=m_{0} \\ \Delta m=2}}^{2 \bar{n}} \tau_{m} W_{m}^{b}(\varepsilon)+\left(\frac{d \sigma^{b}}{d \varepsilon}\right) \text { evaporation } \tag{4-6}
\end{equation*}
$$

where $\bar{\sigma}_{b}$ is the inverse reaction cross section, and is obtained from the continuum theory ${ }^{79}$) as

$$
\begin{equation*}
\bar{\sigma}_{n}\left(\varepsilon_{n}\right)=\lambda R^{2} C_{n}\left(1+\beta / \varepsilon_{n}\right) A^{\frac{2}{3}} \tag{4-7-a}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{n}=0.76+2.2 \mathrm{~A}^{-\frac{1}{3}} \tag{4-7-b}
\end{equation*}
$$

and

$$
\begin{equation*}
B=\left(2.12 A^{-\frac{2}{3}}-0.05\right) C_{n}, \tag{4-7-c}
\end{equation*}
$$

for neutrons. And for charged particle j, as well

$$
\begin{equation*}
\bar{\sigma}_{j}\left(\varepsilon_{j}\right)=\left(1+C_{m}\right)\left(1-k_{n} V_{c j} / \varepsilon_{j}\right) \lambda R^{2}, \tag{4-7-d}
\end{equation*}
$$

where

$$
\begin{equation*}
v_{c j}=\frac{z_{j} Z^{Z}}{R+1.2} \tag{4-7-e}
\end{equation*}
$$

Here, $R=1.3 A^{\frac{1}{3}}$ is the nuclear radius and $V_{c j}$ the height of the Coulomb barrier, while c_{n}, β, c_{j} and k_{j} are the parameters determined by an empirical table listed in table III.

The escape width Γ_{c}^{m} for m-exciton state is defined as

$$
\begin{equation*}
r_{c}^{\mathrm{m}}=\hbar \sum_{\mathrm{m}} \int_{0}^{\mathrm{E}-\mathrm{B}_{\mathrm{b}} W_{\mathrm{w}}^{\mathrm{b}}(\varepsilon) \mathrm{d} \varepsilon, ~} \tag{4-8}
\end{equation*}
$$

where B_{b} is the binding energy and $W_{m}^{b}(\varepsilon) d \varepsilon$ is the probability per unit time for the emission of particle b with kinetic energy between ε and $\varepsilon+d \varepsilon$. It is given as

$$
\begin{equation*}
\mathrm{W}_{\mathrm{m}}^{\mathrm{b}}(\varepsilon) \mathrm{d} \varepsilon=\gamma_{\mathrm{m}}^{\mathrm{b}} \bar{\sigma}_{\mathrm{b}} \varepsilon[\rho(\mathrm{i}) / \rho(\mathrm{f})] \mathrm{d} \varepsilon . \tag{4-9}
\end{equation*}
$$

Here, γ_{m}^{b} is the function of the spin of the particle b, reduced mass and the exciton number, and $\bar{\sigma}_{b}$ is the mean
inverse cross section, and $\rho(i)$ and $\rho(f)$ are initial and final state densities, respectively. The spreading width Γ_{s}^{m} is defined ${ }^{73)}$ as

$$
\begin{equation*}
\Gamma_{s}^{m}=2 \pi \sum_{\mathrm{n}}\left|M_{\mathrm{mn}}\right|^{2} \rho_{\mathrm{m} \rightarrow \mathrm{n}}, \tag{4-10}
\end{equation*}
$$

where $M_{m n}$ is the transition matrix element from n - to m-exciton state. The matrix element $M_{m n}$ vanishes unless $m=n \pm 2$ because of the assumption of a two body interaction, and the $\left|\overline{M_{m n}}\right|^{2}$ can be assumed as $\left|\overline{M_{m n}}\right|^{2}=\left|\overline{M_{m n}}\right|^{2}=|\bar{M}|^{2}$. The $\rho_{m \rightarrow n}$ is the effective level density of the n-exciton state which can be reached from a m-exciton state.

In the case of multi-particle emissions at the PEQ phase, eqs. (4-4) and (4-6) should be added term of a secondary, thirdly part and so on. The secondary part is given as
-

$$
\begin{align*}
& \frac{d \sigma^{b \prime}}{d \varepsilon}=\alpha \sum_{\Delta m=2}^{2 \bar{n}} W_{\substack{m^{\prime} \\
\Delta m^{\prime}=2}}^{m} W_{m^{\prime}}^{b} \int_{0}^{T} e q p_{m}^{\prime}\left(t^{\prime}\right) d t^{\prime} \\
& =\bar{\sigma}^{b}(\varepsilon) \sum_{\Delta m=2}^{2 \bar{n}} W_{\substack{m^{\prime}=m_{0} \\
\Delta m^{\prime}=2}}^{m} \mathbb{W}_{m^{\prime}}^{b} \tau_{m}, \cdot \tag{4-11}
\end{align*}
$$

The cascading properties of the PEQ-EQ de-excitation was followed by the Monte Carlo method using random numbers instead of the summations in eqs. (4-6) and (4-11). At the
beginning of the calculations, for each particle considered and each set of (p, h) values, the decay rates into the continuum have been numerically evaluated. The values of the maxima and of the integral over the emitted particle energy are calculated and that of integral over the exciton-exciton interaction decay rates are calculated and tabulated.

The extraction of a sequence of random numbers allows to choose one particular next reaction channel, where a possible kinetic energy is determined by the reaction Q-value and the Coulomb barrier for a particle emission, and next state is defined for both the escape and the spreading channel. The calculation end of the PEQ cascade is determined as the exciton number $\mathrm{m} \geq \sqrt{2 \mathrm{~g}_{\mathrm{A}} \mathrm{E}^{*}}$. Then the PEQ cascade transitions to the EQ cascade. When the nucleus de-excite to the neutron threshold energy, the calculation is stopped and the next cascade is started.

The detailed formulations of the present multi-step calculation are described by deviding the de-excitation process into the $P E Q$ and the $E Q$ stages.
B. Numerical results

In order to carry out the calculations, quantities like the level density g_{A}, average two body matrix elements $|\bar{M}|^{2}$ and so on, must be given numerically. For this porpose,
expressions of the exciton model was employed. ${ }^{73)}$. In the followings, the expressions are briefly described.

The state density for the $m(=p+h)$-exciton state is written in terms of the equi-distance Fermi gas model ${ }^{74 \text {) as }}$ follows.

$$
\begin{equation*}
\rho(E, p, h)=g_{A}\left(g_{A} E-A_{p h}\right)^{m-1} / p!h!(m-1)!, \tag{4-12}
\end{equation*}
$$

where $A_{p h}$ is a correction factor due to the first order Pauli exclusion principle ${ }^{73}$), and is given as

$$
\begin{equation*}
A_{p h}=\left(p^{2}+h^{2}+p-3 h\right) / 4 g_{A} \tag{4-13}
\end{equation*}
$$

The level density g_{A} in eq. (4-12) is given by the single nuclear value,

$$
\begin{equation*}
g_{\mathrm{A}}=\frac{3 \mathrm{~A}}{4 \pi^{2}} \tag{4-14}
\end{equation*}
$$

the g_{A} in eq. $(4-13)$ is given by $g_{A}=6 a / \pi^{2}$, where a is an ordinary level density parameter given as $a=A / a_{0}\left(a_{0}=8 \sim 15\right)$. The effective level densities $\rho_{\mathrm{m} \rightarrow \mathrm{m}+2}$ used for calculating the spreading width are

$$
\begin{equation*}
\rho_{m \rightarrow m+2}=\frac{g_{A}}{2(m+1)}\left(g_{A} E-C_{p+1 h+1}\right)^{2} \tag{4-15}
\end{equation*}
$$

$$
\begin{equation*}
\rho_{m \rightarrow m-2}=g_{A} p h(m-2) \tag{4-16}
\end{equation*}
$$

where $C_{p h}=\left(p^{2}+h^{2}\right) / 2$ is the correction due to the Pauli exclusion principle. The matrix element $|\bar{M}|^{2}$ is assumed to be independent of m. It is

$$
\begin{equation*}
|\bar{M}|^{2} \approx \frac{h}{g_{A}\left(g_{A} E\right)^{2}} \lambda(E), \tag{4-17}
\end{equation*}
$$

where $\lambda(E)$ is the effective nuclear collision probability in the nucleus. Kikuchi and Kawai ${ }^{80 \text {) }}$ were obtained by using a simple Fermi gas model,

$$
\begin{equation*}
\lambda(E)=\left(1.6 \times 10^{21}-6.0 \times 10^{18} \mathrm{E}\right) \mathrm{E}\left[\mathrm{sec}^{-1}\right] \tag{4-18}
\end{equation*}
$$

Some authors ${ }^{81-83}$) have used reduced probabilities $\lambda(E) / C$, were $C=3 \sim 5$. Reduction factor C reproduce experimental data for the PEQ process. Alternatively, one may use a factor K for $|\bar{M}|^{2}$ as

$$
\begin{equation*}
|\bar{M}|^{2}=\frac{K}{A^{3}} \frac{1-0.375 \times 10^{-2} E}{E} \tag{}
\end{equation*}
$$

The reduction factor $C=4.8^{23)}$ corresponds to the value. $\mathrm{K}=1450 \mathrm{MeV}^{3}$. ${ }^{27}$)

First the ratios $\Gamma_{c}^{m} /\left(\Gamma_{c}^{m}+\Gamma_{s}^{m}\right)$ are plotted in fig. 4-1 as a function of the excitation energy and the exciton numbers
in the case of ${ }^{166}$ Er* system. It is seen in the figure that there is a critical energy E_{c} for the $P E Q$ particle emission around the excitation energy $\mathrm{E}^{*} \sim 40 \mathrm{MeV}$. As the initial excitation energy exceeds $E_{c}=40 \mathrm{MeV}$, features of the $P E Q$ process get apparent. Therefore a highly excited nucleus with excitation energy of about 100 MeV firstly decay by emitting one or two high energy particles down to about 40 MeV and then the residual cascading nucleus quickly transit from the PEQ phase to the $E Q$ phase. In fig. 4-2, entry lines of each reaction channel to the EQ stage is shown as a function of the excitation energy for the $166 \mathrm{Er} *$ system. Where the initial exciton number ($\mathrm{p}_{0}, \mathrm{~h}_{0}$) $=$ (5, 1) was used. The energies of the phase transition seems to be independent of the initial excitation energy.

Fig. 4-3 gives the ratios $f_{p}=n_{p} /\left(n_{p}+n_{e}\right)$ and $f_{e}=n_{e}\left(n_{p}+\right.$ n_{e}), where n_{p} and n_{e} represent the numbers of neutron emitted at the PEQ and the $E Q$ phases, respectively, as a function of the order of the cascades for the ${ }^{166} \mathrm{Er}^{*}$ system with the initial excitation energy $E *=120 \mathrm{MeV}$ and the initial exciton number $\left(p_{0}, h_{0}\right)=(5,1)$. The maximum of the PEQ fraction lyes at the initial cascade, and then the PEQ fraction decays exponentially as successive cascades. After several cascades, the EQ fraction increases rapidly and the de-excitation process reaches the statistical equilibrium.

The calculated neutron spectra following the ${ }^{164} \mathrm{Dy}(\alpha$; $x n$ yp) ${ }^{168^{-x}}$ Er reaction with initial excitation energy $E *=90$

MeV are presented in figs. 4-4 and 4-5. In fig. 4-4, the total neutron spectrum is decomposed to each reaction channel with neutron multiplicity $x(x=3 \sim 8)$. The neutron spectra with low multiplicity x seem to have three components which are the evaporative low energy part, medium energy broad part and high energy confined peak. It is difficult to reproduce these shapes with simple Maxwellian distributions $E \cdot \exp \left(-\frac{T}{\mathrm{kT}}\right)$, where kT is a quasi-temperature of the nucleus. On the other hand, in fig. 4-5, the total neutron spectrum is decomposed to the neutron emitted firstly, secondly and so on. We are able to fit the individual spectrum with the Maxwellian distributions with two quasi-temperatures, namely, the PEQ and the EQ temperatures.
C. Comparison with experiments

Using the procedure just mentioned, the neutron multiplicity distributions and the energy spectra of decay particles were calculated. In order to reproduce the experiments, the initial exciton number (p_{0}, h_{0}) and the reduction factor C for the average two body matrix element $|\bar{M}|^{2}$ (see eqs. (4-17) and (4-17')) were treated as free parameters. The initial exciton number is an important parameter to determine the spectrum shapes. With low energy α-particle incidence (え 50 MeV) either $\mathrm{a}(4-0)$ or $\mathrm{a}(5-1)$ configuration has been used. For
above $50 \mathrm{MeV} \alpha$-particle induced reactions (5, 1) or (6, 2) configurations give over all fits to the experiments. Note that for proton and deuteron induced reactions give the best fits with (2-1) and (3-1) configurations, respectively. ${ }^{84}$) The reduction factor for the average two body transition matrix element determines the relative rates between the particle decays and the state spreadings which determine the PEQ decay fraction. A value of 1.5 gives good fits for the present data.

In figs. 4-6-a~4-6-c, comparisons between the experimental and calculated neutron multiplicity distributions for the reactions of α-particle incidence upon 162, $164 \mathrm{Dy},{ }^{165} \mathrm{Ho}$ and ${ }^{158} \mathrm{Gd}$ are shown, where dotted lines represent the present calculations. Full lines are the results of Sakai et al. 8). using the two phase analysis. Used initial exciton numbers were $\left(p_{0}, h_{0}\right)=(5,1)$ at $E_{\alpha}=50,70$ and 90 MeV , and $\left(p_{0}, h_{0}\right)=$ $(6,2)$ at $E_{\alpha}=120 \mathrm{MeV}$. In all cases, the reduction factor $C=1.5$ for two body matrix element was used. On the whole, the calculations reproduced the experiments. Only in the case of $120 \mathrm{MeV} \alpha$-incidence, the cross sections with small x are somewhat under estimated. This is presumably the same treatments as lower excitation energy region ($\lesssim 90 \mathrm{MeV}$) are - not suitable for these high excitation region. We should consider carefully the contributions from outside of the statistical process as the direct reaction process.

The cross section with neutron emission for each reaction channel is written as follows;

$$
\begin{equation*}
\sigma^{n}(x)=\left[\sigma_{p}^{n}(x)+\sigma_{e}^{n}(x)\right] \tag{4-19}
\end{equation*}
$$

where $\sigma_{p}^{n}(x)$ and $\sigma_{e}^{n}(x)$ are angle and energy integrated neutron cross sections of the $x n$ reaction channel through the $P E Q$ and the EQ processes, respectively. The respective numbers of the PEQ and the EQ neutrons are given as

$$
\begin{equation*}
n_{p}(x)=\sigma_{p}^{n}(x) / \sigma(x) \tag{4-20}
\end{equation*}
$$

and

$$
n_{e}(x)=\sigma_{e}^{n}(x) / \sigma(x)
$$

where

$$
n_{p}(x)+n_{e}(x)=x
$$

A PEQ fraction $f_{p}(x)$ for each reaction channel is defined as

$$
\begin{equation*}
f_{p}(x)=\frac{n_{p}(x)}{x}=\frac{\sigma_{p}^{n}(x)}{\sigma^{n}(x)} \tag{4-21}
\end{equation*}
$$

and the total PEQ fraction f_{p} is

$$
f_{p}=\frac{\sum_{x} n_{p}(x)}{\sum_{x}\left[n_{p}(x)+n_{e}(x)\right]}
$$

where $\sigma^{n}=x^{\sigma}(x)$ and $\sigma_{p}^{n}=\sigma_{p}^{n}(x)$. Estimations for the $f_{p}(x)$ and f_{p} were carried out comparing the experiments and the calculations. In fig. 4-7, the $f_{p}(x)$ is plotted as a function of neutron multiplicity x, and fig. 4-8 the f_{p} as a function of the initial excitation energy.

Only the experimental angle-integrated energy spectra were compared with the calculation, because the exciton model which does not contain the angular momentum informations has been developed and is reasonably successful in predicting angle-integrated particle energy spectra. Figs. 3-6 and 4-9 show the comparisons between the exciton model and Maxwellian distributions, and the angle integrated neutron and proton spectrum following the ${ }^{165} \mathrm{Ho}(\alpha$, xn yp$)$ reaction at $\mathrm{E}_{\alpha}=109 \mathrm{MeV}$. Full lines represent the exciton model. The experimental neutron spectrum does not reflect the first stage contribution because of the lack of higher energy component. (> 30 MeV). However the PEQ contributions which are not able to be represented with Maxwellian distributions (dotted lines) of the neutron spectrum are reasonably reproduced. The calculated proton spectrum which is consisted of almost the PEQ fraction because of the Coulomb barrier suppression is slightly over-estimated in the medium energy region ($\sim 30 \mathrm{MeV}$). The first and the
second stage contributions may be small in the calculation. The larger reduction factor $\mathrm{C}=2.0$ gives better result.

Angle integrated neutron spectra following the ${ }^{158} \mathrm{Gd}(\alpha, \mathrm{xn})$ at $E_{\alpha}=70 \mathrm{MeV}$ for each reaction channel $(x=4 \sim 6)$ are shown in fig. 4-10. The same parameters used in the calculation of the neutron-multiplicity distribution presented in fig. 4-6-b were employed. The calculations give good fits for neutron spectra of the $(\alpha, 6 n)$ and the $(\alpha, 4 n)$ reaction channels. In the ($\alpha, 5 n$) channel the calculation slightly over-estimate for the PEQ emission. However, in order to check the prediction, higher energy neutrons ($\gtrsim 15 \mathrm{MeV}$) should be observed. In this case, the Maxwellian distributions with quasi-temperatures of the PEQ and the EQ stage, $\mathrm{kT}_{\mathrm{e}}=1.0 \mathrm{MeV}$ and $\mathrm{kT} \mathrm{p}_{\mathrm{p}}=6.0 \mathrm{MeV}, \mathrm{kT} \mathrm{e}^{=}$ 1.0 MeV and $\mathrm{kT}_{\mathrm{p}}=4.0 \mathrm{MeV}$, and $\mathrm{kT}_{\mathrm{e}}=0.9 \mathrm{MeV}$ and $\mathrm{kT}_{\mathrm{p}}=2.2 \mathrm{MeV}$ for $6 n, 5 n$ and $4 n$ reaction channel, respectively.

4-2. Two Phase Analysis

In order to obtain an essence of the PEQ-EQ de-excitation process, a simple two phase model accoring to ref. 3-is employed for an analysis of the average neutron enercies, angular momenta emitted and neutron multiplicity distributions. An analytical formula is used to represent the energy spectra of the i - th emitted nucleon;

$$
\begin{equation*}
f_{i}\left(E_{i}\right)=C E_{i} \exp \left(-E_{i} / k T_{i}\right) . \tag{4-22}
\end{equation*}
$$

This reproduces well the observed data and is also in accord with calculations based on the exciton model ${ }^{85 \text {) }}$ and the model described in sec. 4-1.

The observed spectrum is decomposed into two components, thus a fit is performed in which two parameters T_{i}, are obtained, one for neutrons emitted at equilibrium state with $\mathrm{E}_{\mathrm{n}}^{\mathrm{p}}=2 \mathrm{kT} \mathrm{p}_{\mathrm{p}}$ and another for those emitted at an equilibrium stage $\mathrm{E}_{\mathrm{n}}^{\mathrm{e}}=2 \mathrm{kT} \mathrm{e}_{\mathrm{e}}$. Here the kT_{e} is the nuclear temperature at the equilibrium phase, and $k T$ p may be called the quasi-temperature for convenience at the PEQ phase, although the temperature can not be defined at the PEQ stage.

The results of such fittings for the neutron spectra with the corresponding temperature kT_{i} for the two components are indicated in fig. $3-5$ following the ${ }^{165} \mathrm{Ho}+110 \mathrm{MeV} \alpha$-particle reaction at $\theta_{n}=20.3$ and 140 deg .

The neutron spectra for the ${ }^{158} \mathrm{Gd}(\alpha, \mathrm{xn})$ reactions at $\mathrm{E}_{\alpha}=70 \mathrm{MeV}$ at the four angles ($25,40,110$ and 140 deg .) were fitted to correct for angular distribution effects. The average numbers of neutrons <n> emitted in the PEQ and the EQ stages are presentedin table VI. The average quasi-temperatures of the two stages are expressed in terms of the average kinetic energies $\left\langle E_{n}>\right.$ which are also given in table VI. These data allow us to check the energy conservation in the reaction
which is expressed in the values for the incoming and outgoing energies $E_{i n}$ and $E_{\text {out }}$, respectively. For this we obtained the total γ-ray energy release E_{γ} from the average excitation energy of the entry state given in ref. 40. The reported average γ-ray multiplicities agreed within the experimental errors with those obtained from Ge-NaI coincidences. They vary between 10 and 12 for all exit channels including. the discrete transitions.

The angular distributions, which should contain information on the angular momenta released by the neutrons, are given in fig. 4-11. The EQ process gives the neutrons distributed symmetric with respect to 90 deg. in the Center of Mass system. -Since the asymmetry through the transformation to the lab. system is only a couple of per cent, one would expect almost symmetric distribution in the laboratory system for equilibrium neutrons. However, all exit channels show pronounced forward peaking which is a clear indication of the occurance of PEQ neutron emission even in the ($\alpha, 6 n$) channel. The asymmetry of the angular distribution can be experssed by the A_{i} coefficient of the Legendre polynomial expansions $\Sigma_{i} A_{i} P_{i}\left(\cos \theta_{n}\right)$. The results of such expansions are also given in fig. 4-11, and yield for ($\alpha, 4 n$), $(\alpha, 5 n)$ and ($\alpha, 6 n$) exit channels the asymmetry coefficients $A_{i}=0.34 \pm 0.08,0.17 \pm 0.07$ and 0.09 ± 0.04, respectively. The angular momentum removed by the PEQ emitted neutrons can be estimated ${ }^{8)}$ as;

$$
\begin{equation*}
\ell_{\mathrm{n}}^{\mathrm{p}}=2 / 9 \mathrm{n}^{\mathrm{p}} A_{i}^{\mathrm{p}} \overline{\mathrm{p} R / \mathrm{h}}, \tag{4-23}
\end{equation*}
$$

where R is the nuclear radius (calculated with $r_{0}=1.35 \mathrm{fm}$). \bar{p} is the average momentum and A_{i}^{p} the expansion coefficient for the PEQ neutrons. This coefficient is related to the observed one by $A_{i}=n^{p} A_{i} / x$ with x being the total number of the emitted neutrons. Here, we assumed only the PEQ neutron contribution to be asymmetry. $\overline{\mathrm{p}}$ is obtained form $\left\langle\mathrm{E}_{\mathrm{n}}^{\mathrm{p}}\right\rangle$ given in table VI. The angular momentum released by neutrons emitted in the EQ phase is estimated on the basis of a spin dependent level density calculation. ${ }^{2)}$ The final results and angular momentum balance are presented in table V.
V. DISCUSSIONS

5-1. Energy and Angular Momentum Balance of the PEQ-EQ Process

The energy balance of the fusion like (particle, xn γ) reactions is discussed by using the average neutron energies < E_{n}. . They are obtained from the neutron multiplicity distributions using following eqs.

$$
\begin{equation*}
\left\langle E_{n}(x)\right\rangle=\left(E^{*}-E_{\gamma}\right) / x-\left\langle B_{n}\right\rangle \tag{5-1}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{n}=\frac{\ddot{\dot{C}_{x}} \sigma(x)\left\{\left(E^{*}-E_{\gamma}\right) / x-\left\langle B_{n}\right\rangle\right.}{\sum_{x} \sigma(x)} \tag{5-2}
\end{equation*}
$$

where E^{*} is the excitation energy, $\left\langle B_{n}\right\rangle$ is the average value of the neutron binding energy, E_{γ} is the energy removed by γ-rays, and the $\sigma(x)$ is the cross section of the $x n$ reaction channel. The values of $\left\langle E_{n}\right\rangle$ which were deduced from the present (α, xn γ) reactions at $E_{\gamma}=50,70,90$ and 120 MeV as a function of $\left(E^{*}-E_{\gamma}\right)$ are shown in fig. 5-1-a, where open circles represent the (α, xn γ) reactions. An example of the quantitative energy balance decomposed to the E_{n}^{p}, E_{n}^{e} and E_{γ} for ${ }^{158} \mathrm{Gd}(\alpha$, xn $\gamma)$ reaction, at $E_{\alpha}=70 \mathrm{MeV}$ is shown in fig. 5-2. The E_{n}^{p} and E_{n}^{e} were obtained from the present $\left\langle E_{n}\right\rangle,\left\langle E_{n}(x)\right\rangle$ and f_{p} values as

$$
\begin{equation*}
\left\langle E_{n}(x)\right\rangle=E_{n}^{p}(x) \cdot f_{p}(x)+E_{n}^{e}(x) \cdot f_{e}(x) \tag{5-3}
\end{equation*}
$$

where

$$
\begin{align*}
\mathrm{E}_{\mathrm{n}}^{\mathrm{e}}(\mathrm{x}) & \sim \frac{4}{3} \sqrt{\left(\mathrm{E}^{*}-\mathrm{E}\right) / \mathrm{a}} \\
& =2 \mathrm{kT} \mathrm{e} \tag{5-4}
\end{align*}
$$

: where $k T e$ is the nuclear temperature of the $E Q$ phase and a is the ordinary level density parameter. The $E_{\dot{\gamma}}$, which is the energy removed by γ-rays, was estimated by several investigators ${ }^{3,37-40) . ~ A s ~ s h o w n ~ i n ~ f i g s . ~ 4-1 ~ a n d ~ 4-2, ~}$ there are critical energy E_{c} of the PEQ de-excitation process for each reaction channel. The E_{c} values of small x channels are lower than those of large x channels. A high energy neutron emission at the first doorway state leaves a lower excited nucleus with a small number of excitons. The residual excited nucleus \cdot rapidly reaches to the PEQ limit ($\mathrm{m} \geq 2 \sqrt{2 \mathrm{gE*} \text {) }}$ after emission of a few fast neutrons. ($\sim 10 \mathrm{MeV}$) neutron emission occurs at the first doorway, a relatively highly excited nucleus may be left with a small exciton number as well as initial exciton number. Until the nucleus reaches to the PEQ limit, several neutron emissions can be allowed. The latter process should need more complex decay process and larger time than the former.

The angular momentum of these reactions can also be decomposed to three parts as $\ell=\ell_{n}^{p_{+}} \ell_{n}^{e_{+}} \ell_{\gamma}$, where ℓ_{n}^{p} and ℓ_{n}^{e} are the angular momenta removed by the PEQ and EQ i neutrons, respectively, and ℓ_{γ} by the γ-rays. Previously. M. J. A. de Voigt et $a l^{40)}$ obtained the ℓ_{γ} of each reaction from a $\gamma-\gamma$ coincidence measurement for the ${ }^{158} \mathrm{Gd}(\alpha, \mathrm{xn} \gamma)$ 162^{-x} Dy reaction at $E_{\alpha}=70 \mathrm{MeV}$. They have deduced energyspin entry lines for quasi-continuum $\gamma-r a y$ cascade of the $(\alpha, 4 n)$ and ($\alpha, 6 n$) reaction channels. In the present $n-\gamma$
coincidence work, angular momenta carried away by the PEQ and the $E Q$ neutrons were evaluated for the same reaction. These values, listed in table V, does show quantitatively an important role of the PEQ neutrons for the angular momentum changes. The obtained values $\ell_{n}^{p} / n e u t r o n$ increase with decreasing the neutron multiplicity. They are $1.2,1.0$ and 0.6 . As these values are propotional to $\sqrt{\bar{E}_{n}^{X}} \propto \bar{p}_{n}^{x}$, where \bar{E}_{n}^{x} and \bar{p}_{n}^{x} are mean values of decay the neutron energy and momentum for each exit channel, respectively, the PEQ neutrons may be emitted at a rocated region of the nucleus, namely nuclear surface. Angular momenta $\ell{ }_{n}^{e} / n e u t r o n ~ a r e ~ 0.4 \sim 0.5 \mathrm{~h}$ for all exit channels. The neutrons from the equilibriated nucleus are mostly s and p waves. Thus, a schematical angular momentum balancesi, in consistent with the energy balances of the PEQEQ process, can be illustrated as fig. 5-2 for each exit channel.

The comparisons of the $\left\langle\mathrm{E}_{\mathrm{n}}\right\rangle$ between present light ion results and (H.I., xn γ) reactions whose energy/nucleon are generally smaller ($215 \mathrm{MeV} / \mathrm{nucleon}$). is quite interesting The compound nucleus ${ }^{170} \mathrm{Yb}$ excited by ${ }^{12} \mathrm{C}$ ions to an energy of 132 MeV (11 MeV/nucleon) was reported to de-excite first by 0.6 and 1.8 fast neutrons in the 8 n and 10 n exit channels ${ }^{87)}$, respectively. The average neutron kinetic energies $\left\langle\mathrm{E}_{\mathrm{n}}\right.$ > for ${ }^{12} \mathrm{C}$ induced reaction is considerably higher and the fraction of fast neutrons emitted at the PEQ phase is about a factor of two lower than that of proton
or α-particle induced reactions. However, one has to realize that in (H.I., xn) reactions with $\mathrm{E}_{\mathrm{H} . \mathrm{I} .} \sim 10 \mathrm{MeV} /$ nucleon angular momentum limitations play an important role. Particularly for the reactions of angular momenta greater than than a critical value, imcomplete fusion processes remove significant amounts of the excitation energy and angular momentum which has also been observed through the measurements of emitted charged fragments. 87-89)

The average values $\left\langle E_{n}(x)\right\rangle$ of neutrons for $(p, x n)^{8)}$, $\left.(\alpha, \mathrm{xn}),\left({ }^{12} \mathrm{C}, \mathrm{xn}\right)^{42,87)},\left({ }^{14} \mathrm{~N}, \mathrm{xn}\right)^{42}\right)$ and $\left({ }^{20} \mathrm{Ne}, \mathrm{xn}\right)^{42,87)}$ reactions are shown in figs. $5-1-\mathrm{a}$ and -b , where the average neutron energies are plotted as functions of E^{*} and ($E^{*}-30$)/ $A_{i}^{1 / 3}$ The experimental values, however, increase much more than the 2 kT e with increasing the excitation energy. The $\left\langle\mathrm{E}_{\mathrm{n}}\right\rangle$ is expressed phenomenologically as $\left\langle E_{n}\right\rangle \exp \sim\left(1.8+0.1\left(E^{*}-30\right) / A_{i}^{1 / 3}\right.$ MeV, where A_{i} is the projectile mass. The number of the PEQ neutrons increases with the increasing projectile energy and with the decreasing projectile mass. This is because the escape width increases as the excitation energy with excitons introduced at the first stage of the doorway increases, and heavy ion introduced reactions whose initial exciton number are much larger than light ion induced reactions should rapidly reach to the PEQ limit. Note that the dependence on the projectile mass as well as initial exciton numberis really characteristic of the PEQ process.

5-2. Decay Particle Spectra

Neutrons follwing the ($\alpha, \mathrm{p} x \mathrm{n}$) reactions also classified into the PEQ and the EQ process. Fig. 5-4 shows the angle integrated neutron spectra following the ${ }^{165} \mathrm{Ho}(\alpha, p \mathrm{xn})$ reaction at $E_{\alpha}=109 \mathrm{MeV}$. These spectra were obtaind in coincidence with protons detected at a lab. angle $\theta_{p}=30 \mathrm{deg}$. The neutron spectra gated by three proton energy intervals are well reproduced by both the two phase approximations and the exciton model for malti-particle emission process calculations. As shown in fig. 3-8, the angular dependence of the average neutron energy $\left\langle E_{n}\right\rangle$ in coincidence with high energy protons ($\mathrm{E}_{\mathrm{p}}>50 \mathrm{MeV}$) is nearly constant value ($\left\langle\mathrm{E}_{\mathrm{n}}\right\rangle=2.5 \sim 3.0 \mathrm{MeV}$) which is expected from the statistical model. Thus, these protons should be emitted at the first PEQ stage with large kinetic energies. The residual nuclei. after these emissions decay to the PEQ limit without more particle emissions at the PEQ stage. On the other hand, the $\left\langle E_{n}\right\rangle$ with lower energy protons ($\mathrm{E}_{\mathrm{p}} \leq 50 \mathrm{MeV}$) indicate foward peakings which are characteristic feature of the PEQ process. The some neutron fractions should be emitted at the PEQ stage after the forward proton emission.

Proton energy spectra for given neutron multiplicity x for the (α, p xn γ) reaction are presented in figs.3-10-a and $3-10-\mathrm{b}$. The present exciton model calculations for angle integrated proton spectra of each reaction channel are
shown in fig. 5-5. The conspicuous two peak charactors of the spectrum shape can be reproduced. According to the calculation, the protons which compose the high energy peak are first emitted at the PEQ stage but the medium energy protons are not emitted only at the first stage but also at the second stage after one or two neutron emissions. On the other hand, the identification of the reaction channel ($\alpha, \mathrm{p} 4 \mathrm{n} \gamma$) defines the energy sum $E_{p}+\Sigma E_{\mathrm{n}} \tilde{\sim}-70 \mathrm{MeV}$. Thus the high energy peak at $E_{p} \approx 50 \mathrm{MeV}$ corresponds to the low energy $E Q$ neutrons and the broad peak at $E_{p} \approx 30 \mathrm{MeV}$ corresponds to the PEQ neutrons. The average neutron energy < $\mathrm{E}_{\mathrm{n}}>$ for given proton energy, namely for given excitation energy at the high energy proton gate, decreases as proton angle increases. Finally they approach to the EQ value of $2 \mathrm{kT} \mathrm{e}_{\mathrm{e}}$ (fig. 3-5). The dependence of the proton angle of the ($\alpha, \mathrm{p} \times \mathrm{x}$) reaction is characteristic of the PEQ process. This feature can quantitively be explained by the number of exciton particles at the PEQ stage. The protons emitted at larger angles leaves more exciton particles than at smaller angles. The average number of exciton particles after a proton emission is plotted in fig. 5-6 by reffering to the relation between $\left\langle E_{n}\right\rangle$ and the projectile mass.

5-3. Calculation of the Exciton Model for Multi-particle Emission process

The exciton model has been considered the first stage distributions of the de-exciting particles. This approach can be applied only to the low initial excitation region ($\leq 40 \mathrm{MeV}$), where less than one PEQ decay is possible. In order to apply the exciton model to more energetic reactions, multi-particle emissions should be considered. The multistep calculation of the exciton model improved the medium and low energy parts of the decay particle spectra.

The two body matrix element, which is obtained by analyzing the experimental data by use of the present model, has a week energy dependence up to energies of $\sim 100 \mathrm{MeV}$, and is smaller than the value expected on the basis of calculations based on the Fermi gas model and the use of free nucleon-nuleon cross sections. We used the reduction factor $C=1.5$. This value means that the real nucleus may be more transparent than the nuclear matter. It seems that the PEQ process proceeds in the rather low nucleon density region, namely nuclear surface. In the ordinary exciton models, $C=3 \sim 5$ have been used for the reduction factor. These values correspond to the enhancement of the PEQ fraction, which may correct the under-estimation because of the single step calculation at the PEQ stage, and give an over-estimation in the multi-step calculation.

The two phase approximation has reproduced various experimental data. As shown in fig. 4-9, the i-th emitted ($i=1,2,3, \cdots \cdot \cdot n$) neutron spectra can be approximated with a Maxwellian distribution. However, it is seen that the total PEQ neutrons are not able to be described with one quasi-temperature. These are more lower energy fractions of the PEQ neutrons than the Maxwellian fits. The neutron spectra for individual reaction channel seem to have three energy region in the exciton model calculation. One is a evaporation region. It is completely same pattern as the Maxwellian shape. Second part is medium energy region which has a rather flat pattern and third part has a narrow peaking, especially in the reaction channels with small neutron multiplicities. It is difficult to be described with a simple Maxwellian shape. In these energy regions the two phase approximation may be over-simplification. In order to deduce the essence of the PEQ-EQ process, the two phase model should be treated carefully.
VI. SUMMARY

The PEQ-EQ de-excitation process with α-particle induced reactions in an energy range of $\mathrm{E}_{\alpha}=50 \sim 120 \mathrm{MeV}$ were studied by measuring the detailed γ-rays, and decay protons and neutrons with singles and various coincidence modes. The experimental results were compared with the calculations in terms of an exciton model for multi-particle emission process and a simple two phase approximation. Energy and anguilar momentum balances of the PEQ-EQ de-excitation process were discussed. The results and the concluding remarks are summarized as follows:

1) Measurements of neutrons in coincidence with charged particles and discrete γ-rays are shown to be very useful for studying the PEQ-EQ de-excitation process in the (particle, xn yp γ) reactions.
2) Experimental evidences of the PEQ process are found in the reaction channel with small neutron multiplicity x, and the average neutron energy $\left\langle\mathrm{E}_{\mathrm{n}}\right\rangle \gg 2 \mathrm{kT}$ e which is the nuclear temperature of the equilibriated nucleus, fast and slow components of the neutron energy spectra, the finite value of the $A_{1} \operatorname{coefficient}$ of the $P_{1}(\cos \theta)$ term in the neutron angular distribution, the large angular momenta removed by the fast neutrons, and the good spin alignment of the residual nucleus. .These features depend much on the way to excite the PEQ phase, namely
on both the reaction type and the projectile.
3)
4) The exciton model calculation for multi-particle emission process was applied for the present analysis. The neutron multiplicity distributions and the energy spectra of decay particles were well reproduced with the initial exciton numbers of (5, 1).for the incident α-particle energies of $\mathrm{E}_{\alpha}=50,70$, and $90 . \mathrm{MeV}$, and with (6, 2) for $\mathrm{E}_{\alpha}=120 \mathrm{MeV}$. Comparing the experimental results with the calculations, The PEQ fractions and the entry lines to the EQ stage were deduced. The PEQ fractions
and entry lines to the EQ stages are roughly constant for various reaction channels in a wide range of the initial excitation energy.
5) Effective collision probabilities in the excited nuclei were estimated from the comparisons between the various experiments and the present exciton model calculations. They agree with the expection of another model and calculations for the first doorway state, and smaller than the estimation for the nuclear matter.
6) The simple two phase approximation is considered to be a good approximation to describe characteristic features of the PEQ-EQ de-excitation process. However, it is difficult to reproduce the whole of the decay particle spectra, especially high energy part ($>40 \mathrm{MeV}$) which contributes little to the total cross sections.
7) Properties of the PEQ process can be well studied by observing the multiplicities of decay neutrons, the proton and neutron energy and angular distributions, and γ-rays. The PEQ phase is characterized by the excitation energy and the exciton particles. The number of exciton particles at the first doorway state depends on the projectile mass for the (particle, xn yp γ) reaction, and on the : detection angles of the PEQ particles.
8) In the present energy resion, it is not nessesary to seriously consider the effect of the angular momentum transfers in order to estimate the energy balance of the α-particle induced reactions. In the case of the H. I. induced reactions the angular momentum transfers are much larger than the α-particle incidences. It is considered that the effects of the angular momenta to the PEQ de-excitation may be clearly investigated with the H. I. induced reactions.

Acknowledgement

The author would like to acknowledge the continuing guidance and warm encouradgement of Professor H. Ejiri during the course of this work. The author is much indebted to Drs. K. Okada, H. Sakai and T.-Shibata for valuable discussions and criticism. The author is also indebted to Prof. A. Shimizu, Drs. M. Sasao and T. Motobayashi for their excellent collaborations and valuable discussions. The author would like acknowledge the excellent ideas and discussions of Prof. M. J. A. de Voigt. Many thanks are also due to Drs. Y. Nagai and S. Nakayama, and Messrs. T. Kishimoto, H. Suzuki, Y. Masakawa and staffs of the OULNS and the RCNP for kind help and discussions.

APPENDIX

Multi-step Calculation for De-excitation Process

In order to carry out the calculation of the de-excitation process at the PEQ and EQ stages, decay rates for various competing processes have to be determined. An exciton model and a statistical model were employed for the calculation for the $P E Q$ and the $E Q$ stages, respectively.

A. Pre-equilibrium decay

In the case of the PEQ decay process, a concrete expression of an escape probability W_{m}^{b} for a particle b which is decaying from m-exciton state, has to be required to calculate an escape width. Applying the exciton model, eq. (4-9) becomes

$$
\begin{equation*}
W_{m}^{b}=\frac{2 s_{b}+1}{\pi^{2} h^{3}} \mu_{b} \varepsilon \bar{\sigma} R_{b}(p, h) p_{b}!\frac{\rho\left(E-\varepsilon-B_{b}, p-p_{b}, h\right)}{\rho(E, p, h)} \tag{A-1}
\end{equation*}
$$

where subscript b denotes the escaping particle with spin s_{b}, reduced mass μ_{b}, and binding energy B_{b} obtained from the Mayer and Swiatesky mass formula, ${ }^{92}$) and $\rho(E ; p, h)$ and $\rho\left(E-\varepsilon-B_{b}\right.$, $\left.p-p_{b}, h\right)$ are the initial and the final level densities with the exciton numbers $m(=p+h)$ and $m-p_{b}\left(=\left(p-p_{b}\right)+h\right)$, respectively, in which p_{b} is the number of the out-going particles. The extra two factors of $\mathrm{R}_{\mathrm{b}}(\mathrm{p}, \mathrm{h})$ and p_{b} ! are empirical adjustment parameters being incorporated into the model in order to obtain reasonable values of complex particle emission rates.

The function $R_{b}(p, h)$ gives a formation probability of a complex particle which consists of p_{b} nucleons, A right combination of protons and neutrons to form the out-going particle was taken into account for $R_{b}(p, h)$. The latter additional factor p_{b} ! is an empirical variable introduced by C. K. Cline. ${ }^{71 \text {). However, it can not be derived from a micro-. }}$ scopic reversibility. 72,73) This factor causes too many high energy particles, especially for α-particles. ${ }^{71,72 \text {) We }}$ introduced a factor G_{b} instead of p_{b}. . The factor of G_{b} should describe internal structure effects of the out-going particle. In the case of a structureless particle such as a proton or a neutron, G_{b} should be unity. In the present calculation, G_{b} was treated as a free parameter in order to obtain an analytical expression for the decay probability W_{m}^{b}. So, making use of this approximation, eq. (A-l) becomes

$$
W_{m}^{b}=\frac{2 s_{b}+1}{\pi^{2} h^{3}} \mu_{b} \varepsilon \bar{\sigma} R_{b}(p, h) G_{b} \frac{\rho\left(E-\varepsilon-B_{b}, p-p_{b}, h\right)}{\rho(E, p, h)}
$$

The complex particle formation factor $R_{b}(p, h)$ was given by C. K. Cline. ${ }^{71)}$ It is expressed as

$$
\begin{align*}
& R_{b}(p, h)=\sum_{i=0}^{p-p_{b}}\left[\frac{\left(p-p_{a}\right)!}{i!\left(p-p_{a}-i\right)!}\left(\frac{Z}{A}\right)^{i}\left(\frac{N}{A}\right)^{p-p_{a}-i}\right] I \frac{\left(\pi_{a}+i\right)!}{\pi_{b}!\left(\pi_{a}+i-\pi_{b}\right)!} \\
& \left.\times \frac{\left(p-p_{a}-i\right)!}{v_{b}!\left(p-\pi_{a}-i-v_{b}\right)!}\right] / \frac{p!}{p_{b}!\left(p-p_{b}\right)!} \tag{A-2}
\end{align*}
$$

where π and v are numbers of protons and neutrons, respectively, and p is the number of nucleons ($=\pi+v$). Subscripts a and b denote the projectile and the ejectile, respectively. We can get the expression of $R_{b}(p, h)$ for protons, neutrons, deuterons and α-particles:

$$
\begin{align*}
& R_{p}(p, h)=\left(\frac{N}{A}\right)^{p-p_{a}} \frac{\pi_{a}}{p}+\sum_{i=1}^{p-p_{a}} w_{i}\left(p_{a}\right) \frac{\pi_{a}+i}{p}, \tag{A-3}\\
& R_{n}(p, h)=\left(\frac{N}{A}\right)^{p-p_{a}} \frac{p-\pi_{a}}{p}+\sum_{i=1}^{p-p_{a}} W_{i}\left(p_{a}\right) \frac{p-\pi_{a}-i}{p}, \tag{A-4}\\
& R_{d}(p, h)=2\left(\frac{N}{A}\right)^{p-p_{a}} \frac{\pi_{a}\left(p-\pi_{a}\right)}{p(p-1)}+\sum_{i=1}^{p-p_{a}} 2 W_{i}\left(p_{a}\right) \frac{\left(\pi_{a}+i\right)\left(p-\pi_{a}-i\right)}{p(p-1)} \tag{A-5}
\end{align*}
$$

and

$$
\begin{align*}
& R_{\alpha}(p, h)=6\left(\frac{N}{A}\right) p-p_{a} \frac{\pi_{a}\left(\pi_{a}-1\right)\left(p-\pi_{a}\right)\left(p-\pi_{a}-1\right)}{p(p-1)(p-2)(p-3)}+\sum_{i=1}^{p-p_{a}}\left[6 W_{i}\left(p_{a}\right)\right. \\
& \left.\times \frac{\left(\pi_{a}+i\right)\left(\pi_{a}+i-1\right)\left(p-\pi_{a}-i\right)\left(p-\pi_{a}-i-1\right)}{p(p-1)(p-2)(p-3)}\right] \tag{A-6}
\end{align*}
$$

where

$$
\begin{equation*}
w_{i}\left(p_{a}\right)=\frac{\left(p-p_{a}\right)!}{i!\left(p-p_{a}-i\right)!}\left(\frac{Z}{A}\right)^{i}\left(\frac{N}{A}\right)^{p-p_{a}-i} \tag{A-7}
\end{equation*}
$$

An equi-distance Fermi gas model was employed for the calculation of state densities. For the $m(=p+h)$ exciton state, the state density is given in eq. (4-12). Using these expressions, concrete forms of the escape probabilities per unit time and unit energy can be given for protons, neutrons, deuterons and α-particles as

$$
\begin{align*}
& W_{m}^{p}=\frac{2 M_{p} R^{2}}{\pi h^{3}} R_{p}(p, h)\left(\frac{A-1}{A}\right)^{m-1} \frac{p(m-1)}{g_{A}}\left(\varepsilon-V_{c p}\right) \\
& \times \frac{\left.\left(E-B_{p}-V_{c p}-A_{p-1} h^{-\left(\varepsilon-V_{C p}\right.}\right)\right)^{m-2}}{\left(E-A_{p h}\right)^{m-1}}, \tag{A-8}\\
& W_{m}^{n}=\frac{2 M_{n} R^{2}}{\pi h^{3}} R_{n}(p, h)\left(\frac{A-1}{A}\right)^{m-1} \frac{p(m-1)}{g_{A}} \varepsilon \frac{\left(E-B_{n}-A_{p-1} h^{-\varepsilon}\right)^{m-2}}{\left(E-A_{p h}\right)^{m-1}}, \tag{A-9}\\
& W_{m}^{d}=\frac{3 M_{d} R^{2}}{\pi h^{3}} R_{d}(p, h)\left(\frac{A-1}{A}\right)^{m-2} \frac{p(p-1)(m-1)(m-2)}{g_{A}^{2}}\left(\varepsilon-V_{c d}\right) \\
& \times \frac{\left.\left(E-B_{d}-V_{c d^{2}}-A_{p-2} h^{-\left(\varepsilon-V_{c d}\right.}\right)\right)^{m-3}}{\left(E-A_{p h}\right)^{m-1}} \tag{A-10}
\end{align*}
$$

and

$$
\begin{align*}
& W_{m}^{\alpha}=\frac{M_{\alpha} R^{2}}{\pi h^{3}} R_{\alpha}(p, h)\left(\frac{A-1}{A}\right)^{m-4} p(p-1)(p-2)(p-3)(m-1)(m-2)(m-3)(m-4) \\
& g_{A} \tag{A-11}\\
& \times\left(\varepsilon-V_{c \alpha}\right) \frac{\left(E-B_{\alpha}-V_{c \alpha}-A_{p-4} h-\left(\varepsilon-V_{c \alpha}\right)\right)^{m-5}}{\left(E-A_{p h}\right)^{m-1}} .
\end{align*}
$$

In order to simplify the calculation, using normalized escape probabilities $W_{m}^{a '}$ were used, They are defined as $W_{m}^{a '} \max =1.0$. Using this definition, eqs. $(A-8) \sim(A-11)$ are rewritten as

$$
\begin{align*}
& W_{m}^{p}=\frac{(m-1)^{m-1}}{(m-2)^{m-2}}\left(\varepsilon-V_{c p}\right) \frac{\left(E-B_{p}-A_{p-I} h^{-V_{c p}}-\left(\varepsilon-V_{c p}\right)\right)^{m-2}}{\left(E-B_{p}-A_{p-1} h^{-V_{c p}}\right)^{m-1}}, \\
& W_{m}^{n^{\prime}}=\frac{(m-1)^{m-1}}{(m-2)^{m-2}} \varepsilon \frac{\left(E-B_{n}-A_{p-1} h^{-\varepsilon}\right)^{m-2}}{\left(E-B_{n}-A_{p-1}\right)^{m-1}},
\end{align*}
$$

$$
W_{m}^{d^{\prime}}=\frac{(m-2)^{m-2}}{(m-3)^{m-3}}\left(\varepsilon-V_{c d}\right) \frac{\left(E-B_{d^{-A}} p^{-2}-2 h^{-V_{c d}}{ }^{-\left(\varepsilon-V_{c d}\right)}\right)^{m-3}}{\left(E_{-B_{d}}-A_{p-2} h^{-V_{c d}}\right)^{m-2}}
$$

and

$$
W_{m}^{\alpha^{\prime}}=\frac{(m-4)^{m-4}}{(m-5)^{m-5}}\left(\varepsilon-V_{c}\right) \frac{\left(E-B_{\alpha}-A_{p-4} h^{-V_{c \alpha}}{ }^{\left.-\left(\varepsilon-V_{c \alpha}\right)\right)^{m-5}}\right.}{\left(E-B_{\alpha}-A_{p-4} h^{-V_{c \alpha}}\right)^{m-4}}
$$

respectively.
Following the general definition of the escape width given by eq. (4-8), integrations of eqs. (A-9)~(A-11) gives the total escape widths for protons, neutrons, deuterons and α-particles, respectively. The integrations can be carried out analytically to be

$$
\begin{align*}
& \Gamma_{p}=\frac{M_{p} R^{2}}{\pi n^{2}} R_{p}(p, h) \frac{E-A_{p h}}{g_{A}}\left(\frac{A-1}{A}\right) \frac{p}{m}\left(\frac{E-B_{p}-V_{c p}-A p-1 h}{E-A_{p h}}\right)^{m} \tag{A-12}\\
& \Gamma_{p}=\frac{M_{n} R^{2}}{\pi h^{2}} R_{n}(p, h) \frac{E-A_{p h}}{g_{A}}\left(\frac{A-1}{A}\right)^{m-1} \frac{p}{m}\left(\frac{E-B_{n}-A p-1 h}{E-A}\right)^{m} \tag{A-13}\\
& r_{d}=\frac{3 M_{d} R^{2}}{\pi n^{2}} R_{d}(p, h) \frac{p(p-1)}{g_{A}}\left(\frac{A-1}{A}\right)^{m-2}\left(\frac{E-B_{d}-A p-2 h}{E-A}\right)^{m-2} \tag{A-14}
\end{align*}
$$

and

$$
\begin{align*}
& \Gamma_{\alpha}=\frac{M_{\alpha} R^{2}}{2 \pi \hbar^{2}} R_{\alpha}(p, h) \frac{p(p-1)(p-2)(p-3)(m-1)(m-2)}{g_{A}^{4}\left(E-A_{p h}\right)^{2}} \\
& \times\left(\frac{E-B_{\alpha}-V_{C \alpha}-A_{p-4} h}{E-A_{p h}}\right)^{m-3} \tag{A-15}
\end{align*}
$$

In the exciton model, the de-excitation proceeds through exciton-exciton scatterings. Only when a change of the exciton
number occurs, the excited state spreads to the next continumm state. In this process, each. intermediate state may be formed by the creation of a particle-hole pair ($\Delta \mathrm{p}=\Delta \mathrm{h}=+1$) or the annihilation of it $(\Delta p=\Delta h=-1)$. Transition rates given in eq. (4-10) of the spreading process can be estimated, based on a first order time dependent perturbation theory. 75,76) The respective spreading widths of $\Gamma_{+}(\Delta p=\Delta h=+1)$ and Γ_{-} $(\Delta \mathrm{p}=\Delta \mathrm{h}=-1)$ are written as

$$
\begin{equation*}
\Gamma_{+}(E, p, h)=\pi|M|^{2} \frac{g_{A}}{p+h+1}\left(g_{A} E-C_{p+1 ~ h+1}\right)^{2} \tag{A-16}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma_{-}(E, p, h)=\pi|M|^{2} g_{A} p h(p+h-2) \tag{A-17}
\end{equation*}
$$

where $C_{p h}=\left(p^{2}+h^{2}\right) / 2$ is the correction due to the Pauli exclusion principle and $|M|$ which is given in eq. (4-17') is the average two body transition matrix-element. The average two body matrix element $|\bar{M}|^{2}$ was treated as the only free parameter. We adopted the value of $|\bar{M}|^{2}$ which reproduce neutron multiplicity distributions,
B. Equilibrium Decay

In the present calculation the de-excitation process of the EQ stage was followed essentially in the same way as the Monte Carlo calculation developed by Dostrovsky et al. 77). In their calculation; eq. (4-9) was given as

$$
\begin{equation*}
W^{a}(\varepsilon) d \varepsilon=\frac{2 s_{a}+1}{\pi^{2} \hbar^{3}} \mu_{\mathrm{a}} \bar{\sigma} \varepsilon \frac{\rho(f)}{\rho(i)} d \varepsilon, \tag{A-18}
\end{equation*}
$$

where s_{a} and μ_{a} are the spin and the reduced mass of the particle a, respectively, and $\bar{\sigma}$ is the cross section for the inverse reaction, and $\rho(i)$ and $\rho(f)$ are the level densities of the initial and final states with their respective excitation energies. $\bar{\sigma}$ was obtained from eqs. (4-7-a)~(4-7-e). The simplest and most widely used formulation for the level density with the excitation energy E was given by Weisskopff ${ }^{79}$) for complete degenerate Fermi gas, and is written as

$$
\begin{equation*}
\rho(E)=C \cdot \exp \{2 \sqrt{a(E-\delta)}\} \tag{A-19}
\end{equation*}
$$

In more refined treatments the factor C should be a function of the excitation energy E. However, in order to get an analytical integration of eq. ($\mathrm{A}-22$), the variation of C with E was neglected. This simplification may cause a small effect to the results because of the dominant exponential term.

The level density parameter a has a slight dependence on the neutron excess as follows for light particles,

$$
\begin{aligned}
& a_{p}=a(1+1.3 \theta / A)^{2}, \\
& a_{n}=a(1-1.3 \theta / A)^{2}, \\
& a_{d}=a(1-0.5 \theta / A)^{2} \\
& \text { and }
\end{aligned}
$$

$$
a_{\alpha}=a(1-1.5 \theta / A)^{2}
$$

where $\theta=(N-Z) / A$, and a is the leyel density parameter. In eq. (A-19), δ denotes a correction to the leyel density for an eyenodd effect arising from the ground state energy displacement caused by a nucleon pairing. ${ }^{93)}$ The values of δ can be evaluated from the pairing energies for neutrons and protons. Using eqs. ($A-18$) $\sim(A-24)$, the following equation was obtained for the neutron emissions.

$$
\begin{align*}
& W_{n}\left(\varepsilon_{n}\right)=\frac{2 s_{n}+1}{\pi^{2} n^{3}} \mu_{n} R_{0}^{2} A_{n}^{2 / 3} \exp \{-\sqrt{a(E-\delta)}\} \varepsilon_{n}\left(1+\frac{\beta}{\varepsilon}\right) \\
& \times \exp \left\{2 \sqrt{a_{n}\left(E-Q_{n}-\delta_{n}-\varepsilon\right.}\right\} d \varepsilon, \tag{A-21}
\end{align*}
$$

where Q_{n} is the neutron binding energy, and it is assumed that the maximum available energy for the evaporation process is $\left(\varepsilon_{n}\right) \max =E-Q_{n}-\delta_{n}$. The decay probability of a charged particle j is

$$
\begin{align*}
& W_{j}\left(\varepsilon_{j}\right)=\frac{2 s_{j}+1}{\pi^{2} \hbar^{3}} \mu_{j} R_{0}^{2} A_{n}^{2 / 3} \exp \{-2 \sqrt{a(E-\delta)}\} \varepsilon_{n}\left(1+c_{j}\right)\left(\varepsilon-k_{j} V_{c j}\right) \\
& \times \exp \left\{2 \sqrt{a_{j}\left(E-Q_{j}-\delta\right.} j_{j}^{-\varepsilon)}\right\} d \varepsilon . \tag{A-22}
\end{align*}
$$

The escape widths may be obtained by integration of eqs. ($A-19$) and ($A-20$). The total neutron escape width is

$$
\begin{equation*}
\Gamma_{n}=\hbar \int_{0}^{E-Q_{n}-\delta_{n} W_{n}\left(\varepsilon_{n}\right) d \varepsilon_{n}, ~} \tag{A-23}
\end{equation*}
$$

and the total escape width of a charged particle j is

$$
\begin{equation*}
\Gamma_{j}=\hbar \int_{k_{j} v_{j}}^{E-Q_{j}-\delta_{j}} W_{j}\left(\varepsilon_{j}\right) d \varepsilon_{j} \tag{A+24}
\end{equation*}
$$

These integrations yield for neutrons as

$$
\begin{align*}
& r_{j}=\frac{2 s_{n}+1}{2 \pi b^{2}} \mu_{n} \gamma_{Q}^{2} A^{\frac{2}{3}} \frac{\alpha}{a_{n}^{2}} \exp \left\{-2 \sqrt{a_{Q}\left(E-\delta_{Q}\right)}\right\} \\
& x\left\{a_{n} R_{n}\left[2 \exp \left\{2 \sqrt{a_{n} R_{n}}\right\}+1\right]-\left(3-2 a_{n} \beta\right)\right. \\
& \left.\times\left(a_{n} \beta\right)^{\frac{3}{2}} \exp \left\{2 \sqrt{a_{n} R_{n}}\right\}-\frac{1}{2}\left(3-2 a_{n} \beta\right)\left[1-\exp \left\{2 \sqrt{a_{n} R_{n}}\right\}\right]\right\},
\end{align*}
$$

and for charged particles as

$$
\begin{align*}
& r_{j}=\frac{2 s_{j}+1}{2 \pi \hbar^{2}} \mu_{j} \gamma_{0}^{2} \cdot A_{j} \frac{2}{j} \frac{\left(1+c_{j}\right)}{a_{j}{ }^{2}} \exp \left\{-2 \sqrt{a_{0}\left(E-\delta_{0}\right)}\right\} \\
& \times\left\{a_{j} R_{j}\left[2 \exp \left\{2 \sqrt{a_{j} R_{j}}\right\}+1\right]-3 \sqrt{a_{j} R_{j}}\right. \\
& \left.\times \exp \left\{2 \sqrt{a_{j} R_{j}}\right\}-\frac{3}{2}\left[1-\exp \left\{2 \sqrt{a_{j} R_{j}}\right\}\right]\right\}
\end{align*}
$$

with

$$
\begin{equation*}
\ldots \quad R_{n}=E-Q_{n}-\delta_{n} \tag{A-25}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{j}=E-Q_{j}-k_{j} V_{c j}-\delta_{j} \tag{A-26}
\end{equation*}
$$

As R_{n} and R_{j} mean the maximum possible values of kinetic energies of emitted neutrons and charged particles, respectively. In our case, exponential terms are always $\exp \left[2\left(a_{n} R_{n}\right)^{\frac{1}{2}}\right] \gg 1$ and
$\exp \left[2\left(a_{j} R_{j}\right)^{\frac{1}{2}}\right] \gg 1$. Therefore, eqs. $\left(A-23^{\prime}\right)$ and (A-24') can be sịmplified as

$$
\begin{aligned}
& r_{n} \simeq \frac{2 s_{n}+1}{2 \pi h^{2}} \mu_{n} \gamma_{a}^{2} A^{\frac{2}{3}} \exp \left\{-2 \sqrt{a_{0}\left(E-\delta_{0}\right)}\right\} \\
& \times \frac{\alpha}{a_{n}^{2}} \exp \left\{2 \sqrt{a_{n} R_{n}}\right\}\left\{2 a_{n} R_{n}-\left(\frac{3}{2}-a_{n} \beta\right)\left[2 \sqrt{a_{n} R_{n}}-1\right]\right\},
\end{aligned}
$$

and

$$
\begin{align*}
& r_{j}=\frac{2 s_{j}+1}{2 \pi h^{2}} \mu_{j} \gamma_{0}^{2} A^{\frac{2}{3}} \exp \left\{-2 \sqrt{a_{0}\left(E-\delta_{0}\right)}\right\} \\
& \left.\times \frac{1+C_{j}}{a_{j}^{2}} \exp \left\{2 \sqrt{2\left(a_{j} R_{j}\right)}\right\}\left\{2 a_{j} R_{j}-\frac{3}{2} I 2 \sqrt{a_{j} R_{j}}-1\right]\right\} \tag{A-24}
\end{align*}
$$

It is to be noted that the maximum excitation energy has to be limited so as not to overflow in the calculation because of the positive exponential term to be a very large value for a highly excited nucleus. The schematical procedure of the calculation is shown in fig. A-l.

References

1) H. Feshbach, Rev. Mod. Phys. 46 (1974) 1.
2) H. Ejiri, T. Shibata, T. Itahashi, Y. Nagai, H. Sakai, S. Nakayama, T. Kishimoto, K. Maeda and H. Hoshi, J. Phys. Soc. Japan Suppl., 44 (1978) 655.
3) H. Ejiri, et al., Nucl. Phys. A305 (1978) 167.
4) H. Ejiri, Proc. Int. Workshop on Nuclear Reaction Models of Continuum Spectra of Light ions, Bad-Honnef, West Germany, 1978.
5) G. Roos and N. S. Wall, Phys. Rev. 140 (1965) 1237; ibid. Phys. Rev. 150 (1966) 811.
6) H. Ejiri, Colloque Franco-Japonais on Nucl., Gif sur Yvette, Oct. 1979.
7) J. J. Griffin, Phys. Rev. Lett. 17 (1966) 478.
8) H: Sakai, Thesis, Osaka Univ.
9) M. L. Goldberger, Phys. Rev. 74 (1948) 1289.
10) N. Metropolis et al., Phys. Rev. 110 (1958) 185; ibid., $110(1958) 204$.
11) H. W. Bertini, Phys. Rev. 131 (1963) 1801.
12) K. Chen et al., Phys. Rev. C4 (1971) 2234.
13) A. Mignerey, M. Blann and W. Scobel, Nucl. Phys. A273 (1976) 125.
14) M. Blann, Ann. Rev. Nucl. Science, 25 (1975) 123.
15) D. Agassi, H. A. Weidenmüller and G. Mantzouranis, Phys. Rep. 22 (1975) 145.
16) M. Blann, A. Mignerey and W. Scobel, Nucleonika, 21 (1976) 335.
17) H. Hofman and P. Siemens, Phys. Lett. 58B (1975) 417.
18) W. Nörenberg, Phys. Lett. 58B (1974) 289.
19) W. Nörenberg, Z. Phys. A274 (1975) 241.
20) G. D. Harp, J. M. Miller and B. J. Berne, Phys. Rev. 165 (1968) 1166; ibid. Phys. Rev. C3 (1971) 1847.
21) C. K. Cline and M. Blann, Nucl. Phys. Al72 (1971) 225.
22) M. Blann, Phys. Rev. Lett. 27 (1971) 337; ibid. 28 (1972) 757.
23) M. Blann. Lecture Notes in Phys., Vol 22 (Springer Veriag, Berlin 1973).
24) E. Gadioli, E. Gadioli-Erba and P. G. Sona, Nucl. Phys. A217 (1973) 570.
25) M. Machner, Phys. Lett. 86B (1979) 129.
26) G. Mantzouranis, H. A. Weidenmüller and D. Agassi, Z. Phys. A276 (197.6) 145.
27) S. Yoshida, Proc. IPCR Symposium, (1977) 359.
28) J. M. Akkermans, Phys. Lett. 82B (1978) 20.
29) M. Blann and A. Mignerey, Nucl. Phys. Al86 (1972) 245.
30) P. Mädler and R. Reif, Nucl. Phys. A337 (1980) 445
31) M. Blann, Nukleonika 21 (1975) 335.
32) E. Godioli and E. Godioli Erba, Nucl. Instr. Method 146 (1977). 335.
33) T. Tamura, T. Udagawa, D. H. Feng and K. -K. Kan, Phys. Lett. 66B (1977) 109.
34) T. Tamura and T, Udagawa, Phys. Lett. 71B (1977) 273.
35) H. Sakai et al. to be published.
36) H. Sakai et al., Phys. Rev. C20 (1939) 464.
37) Y. Nakai, T. Shibata, H. Sakai, T. Kishimoto and H. Ejiri, J. Phys. Soc. Japan 46 (1979) 1025.
38) M. Ogawa, P. Kleinheiz, S. Lunakah, O. W. Schult, and M. Fenzl, Z. Phys. A284 (1978) 271.
39) W. J. Ockels, M. J. A. de Voigt and Z. Sujkcuski, Phys. Lett. 48B (1978) 4.
M. A. J. de Voigt, W. J. Ockels, Z. Sujkowski, A.

Zglinski and J. Mooibroek, Nucl. Phys., A323 (1979) 317.
41) D. G. Sarantites, L. Westenberg, R. A. Dayras, M. L. Halbert, D. C. Hansley, and J. H. Barker, Phys. Rev. Cl7 (1978) 601; ibid., C18 (1978) 774.
42) H. Suzuki et al., private communication.
43) H. Ejiri et al., private communication.
44) L. Westenberg, D. G. Sarantites, D. C. Hensley, R. A. Dayras, M. L. Halbert, and J. H. Barker, Phys. Rev. Cl8 (1978) 796.
45) M. Kondo et al., Proc. 7th Int. Conf. Cycl., 1975.
46) F. M. Lanzafame and M. Blann, Nucl. Phys. Al42 (1970) 545.
47) M. Blann and F. M. Lanzafame, Nucl. Phys. Al42 (1970) 559.
48) S. A. Hjorth, H. Ryde, K. A. Hargemann, G. L申vh申iden, and J. C. Waddington, Nucl. Phys. Al44 (1970) 513.
49) J. Boutet, and J..P. Torres, Nucl. Phys. Al75 (1971) 167.
50) R. M. Lieder, H. Beuscher, W. F. Davidson, J. John, J. H. Probst, and C. Mayer-Bröke, Z. Phys. 257 (1972) 147.
51) A. Johnson, H. Ryde and S. A. Hojrth, Nucl. Phys. Al79 (1972) 753.
52) E. Grosse, F. S. Stephans and R. M. Diamond, Phys. Rev. Lett. 31 (1973) 840.
53) H. Ryde, S. A. Hjorth, D. Barneoud, A. Johnson, G. B. Hargemann and B. Herskind, Nucl. Phys. A207 (1973) 513.
54) K. Krien, R. A. Naumann, J. O. Rasmussen and I. Rezanka, Nucl. Phys. A209 (1973) 572.
55) W. Andejtscheff, P. Manfrass, H. Pradé, K. D. Schilling, G. Winter, H. Fuia, R. Ion-Mihai, A. B. Khalikulov, V. A. Morozov, N. Z. Marupov and T. M. Muminov, Nucl. Phys. A220 (1974) 438.
56) M. V. Banaschik, C. Günter, H. Hübel and A. C. Rester, Nucl. Phys. A222 (1974) 459.
57) W. Andrejtscheff, P. Manfrass, K. D. Schilling and W. Seidel, Nucl. Phys. A225 (1974) 300.
58) R. Broda, M. Ishihara, B. Herskind, H. Deschler, S. Ogaza and H. Ryde, Nucl. Phys. A248 (1976) 356.
59) R. Janssens, Y. El-Masri, J. M. Ferte, C. Michel, J.
(- Steyaert, and J. Vervier, Nucl. Phys. A283 (1977) 493.
60) O. C. Kistner, A. W. Sunyar, and E. der Mateosian, Phys. Rev. Cl7 (1978) 1417.
61) P. Sperr, H. Spieler, and M. R. Maier, Nucl. Instr. and Meth. 116 (1974) 55.
62) K. Shin, private communication.
63) V. V. Verbinski, J. C. Courtney, and N. Betz, Nucl. Instr. and Meth. 52 (1969) 181.
64). I. Katayama and H. Ogata, PCNP Annual Report 1976153.
65) R. H. Loveberg, Phys. Rev. 84 (1951) 853.
66) R. Batchelor, W. B. Gilboy, J. B. Parker, and J. H. Towle, Nucl. Instr. and.Meth. 13 (1961) 70.
M. Drosg, Nucl. Instr. and Meth. 105 (1972) 573.
67) M. M. Abd-Razaek and J. H. Thorngate, Nucl. Instr. and Meth. 141 (1977) 477.
68) H. W. Bzofk and C. E. Andeson, Rev. of Sient. Instr. 31 (1960) 1063.
69) V. V. Verbinski et al., Nucl. Instr. and Meth. 65 (1968) 8
70) R. A. Wingard et al., Nucl. Instr. and Meth. 95 (1971) 141; ibid, 98 (1972) 525.
71) C. K. Cline, Nucl. Phys., Al93 (1972) 417.
72) I. Ribanski and P. Oblozinsky, Phys. Lett., 45B (1973) 318.
73) C. Kalbach, Z. Phys., A283 (1977) 401.
74) T. Ericson, Adv. In Phys., 9 (1960) 425.
75) F. C. Williams Jr., Phys. Lett., 31B (1970) 184.
76) P. Oblozinsky, I. Ribansky and E. Betak, Nucl. Phys. A226 (1974) 347.
77) I. Dostrovsky, Z. Frankel and L. Winsberg, Phys. Rev., 118 (1960) 781; ibid., 116 (1959) 683.
78) E. Gadioli, E. Gadioli Erba and J. J. Hogan, Phys. Rev. C16 (1977) 1404.
79) J. Blatt and V. F. Wiesskopf, Theoretical Nuclear Physics, John Wiley \& Sons, Inc., New York, 1952.
80) K. Kikuchi and K. Kawai, Nuclear matter and Nuclear Interaction, North Holland Publishing Co., Amsterdam, 1968.
81) E. Gadioli et al., Phys. Lett. 65B (1976) 311.
82) M. Blann, Phys. Lett., 67B (1977) 145.
83) J. Ginocchio and M. Blann, Phys. Lett. 68B (1977) 405.
84) J. R. Wu, C. C. Chang and H. D. Hogan, Phys. Rev., Cl9 (1979) 370; ibid., C19 (1979). 659; ibid. C19 (1979) 698.
85) H. Sakai et al., Proc. IPCR Symposium, (1977) 400.
86) D. L. Hills, J. D. Garret, O. Christensen, B. Fernandez, G. B. Hargemann, B. Herskind, B. B. Back and F. Folkmann, to be published.
87) D. G. Sarantites, J. H. Baker, M. L. Halbert, D. C. Hensley, R. A. Dayras, E. Eichler and N. R. Johnson, Phys. Rev. Cl4 (1976) 2138; ibid., Cl7 (1978) 774.
88) K. Wilcrinski, E.'H. de Marchei van Voorthuysen, J. van Papfa, R. H. Siemssen and J. Wilcrynski, Phys. Rev., Lett. 42 (1979) 1599.
89) T. Inamura, M. Ishihara, T. Fukuda, T. Shimoda and H. Hiruta, Phys. Lett. 68B (1977) 51.
90) C. F. Williamson, S. M. Ferguson, B. J. Shepherd and I. Halpern, Phys. Rev. 174 (1968) 1544.
91) S. Ferguson, H. Ejiri and I. Halpern, Nucl. Phys., A188 (1972) 1; H. Ejiri and I. Halpern, Bull. Amer. Phys. Soc. 13 (1968) 700.
92) W. D. Myers and W. J. Swiatecki, Nucl. Phys, 81 (1966) 1.
93) M. El-Nadi and M. Wafik, Nucl. Phys, 9 (1958) 22
94) P. O. Tjøm et al., Phys. Rev. Lett. 33 (1974) 593; G. B. Hargemann et. al., Nucl. Phys. A245 (1975) 166.
95) E. der Mateosian, O. C. Kistner and A. W. Sunyar, Phys. Rev. Lett. 33 (1975) 99; J. O. Newton et al., Phys. Rev. Lett. 34 (1974) 99.
96) J. O. Newton et al., Phys. Rev. Lett. 38 (1977) 810

Table I

Target	Target Isotopic Enrichmrnt (\%)	Thickness $\left(\mathrm{mg} / \mathrm{cm}^{2}\right)$	Target Form
${ }^{162} \mathrm{Dy}$	95.0	4.0	depositing oxide powder onto thin mylar $(30 \mu \mathrm{~m})$ depositing oxide powder onto thin mylar $(30 \mu \mathrm{~m})$
${ }^{165} \mathrm{Dy}$	98.4	3.3	5.48
${ }^{158} \mathrm{Gd}$	100.0	2.6	metallic foil
metallic foil			

Table III
Parameters in the calculation for charged particle
inverse cross section.

Z	k_{p}	c_{p}	k_{α}	c_{α}
10	0.42	0.50	0.58	0.10
20	0.58	0.28	0.82	0.10
30	0.68	0.20	0.91	0.10
50	0.77	0.15	0.97	0.08
≥ 70	0.80	0.10	0.98	0.06

In the table, p and α mean proton and α-particle, respectively.
It turned out that, at all values of $Z, c_{d}=c_{p} / 2$ and $k_{d}=k_{p}+0.06$. Similarly, it is assumed that $c_{t}=c_{p} / 3$ and $k_{t}=k_{p}+0.12$, and that ${ }^{c^{3}} \mathrm{He}=4 \mathrm{c}_{\alpha} / 3$ and $\mathrm{k}^{3} \mathrm{He}^{=\mathrm{k}_{\alpha}}-0.06$, where subscripts d and t denote deutron and triton, respectively.
Table II

Target	Energy of Projectile (MeV)	Initial Compound System	Initial Excitation Energy	Mode of Experiment	Obseved Angle(deg.)
$1^{62} \mathrm{Dy}$	120	${ }^{166} \mathrm{Er}$	116.6	single γ-ray	125 (LEPS)
	110		106.8		
	90		87.3		
	70		67.8		
	50		48.3		
$1{ }^{64} \mathrm{Dy}$	120	${ }^{168} \mathrm{Er}$	116.3	single γ-ray	125 (LEPS)
	110		106.5		
	90		87.0		
	70		67.8		
	50		48.0		
${ }^{165} \mathrm{Ho}$	110	${ }^{169} \mathrm{Tm}$	106.2	single γ-ray	125(LEPS)
				proton- γ coincidence	130 (GAMMA-X)
					25,40,125 (counter telescope)
				proton-neutron coincidence	30(counter telescope)
					$20.3,23.9,33.6,53.8,63.2,69.2$
					$108.6,139.1,-69.2,-53.8,-20.3$
$1{ }^{58} \mathrm{Gd}$	70	${ }^{162} \mathrm{Dy}$	68.2	neutron- γ coincidence	(NE213)
					$\begin{aligned} & 130(\text { GAMMA }-X) \\ & 35,70,110,140(\text { NE } 213) \end{aligned}$

Table VI
Energy blance analyzed with two phase approximation in the ${ }^{158} \mathrm{Gd}(\alpha, x n)$ reaction at $E_{\alpha}=70 \mathrm{MeV}$.

| | $\left\langle n^{\mathrm{e}}\right\rangle$ | $\left\langle\mathrm{E}_{\mathrm{n}}^{\mathrm{e}}\right\rangle$ | $\left\langle\mathrm{n}^{\mathrm{p}}\right\rangle$ | $\left\langle\mathrm{E}_{\mathrm{e}}^{\mathrm{p}}\right\rangle$ | E_{n} | E_{γ} | $\left.\mathrm{E}_{\text {out }} \mathrm{b}\right)$ | $\mathrm{E}_{\mathrm{in}}^{\mathrm{c})}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha, 4 \mathrm{n}$ | 2.3 | 2.0 | 1.7 | 12.0 | 24.3 | 12.1 | 36.4 | 38.3 |
| $\alpha, 5 \mathrm{n}$ | 3.7 | 2.0 | 1.3 | 8.0 | 17.8 | 10.0 | 27.8 | 29.2 |
| $\alpha, 6 \mathrm{n}$ | 5.0 | 1.8 | 1.0 | 4.4 | 10.4 | 11.1 | 21.5 | 22.2 |
| $\operatorname{error}(\%)$ | ± 20 | ± 15 | ± 20 | ± 15 | ± 20 | ± 10 | ± 25 | ± 1 |

a) All energies are given in MeV. Far meaning of the simbols, see text. b) $E_{\text {out }}=E_{n}+E_{\gamma}$ with $E_{n}=\left\langle n^{2}\right\rangle\left\langle E_{n}\right\rangle+\left\langle n^{p}\right\rangle\left\langle E_{n}^{p}\right.$ and E_{γ} is the average energy release of the quasi-continuum anddiscrete γ-ray cascades ${ }^{86)}$. c) $E_{n}=E_{C M}-E_{b}$ where $E_{C M}$ stands for the excitation energy of the compound nucleus and E_{b} for the binding energy of the x neutrons in the nucleus.

Table V

Angular momentum balance analyzed with two phase approximation in the ${ }^{158} \mathrm{Gd}(\alpha, x n)$ reaction at $E_{\alpha}=70 \mathrm{MeV}$

	$\ell_{\mathrm{n}}^{\mathrm{e}}$	$\ell_{\mathrm{n}}^{\mathrm{p}}$	$\ell_{\mathrm{n}}^{\text {tot }}$	$\bar{\ell}_{\gamma}$	$\bar{\ell}_{\text {out }}$	$\bar{\ell}_{\text {in }}$
$\alpha, 4 \mathrm{n}$	1.0	2.0	3.0	17.2	20.2	
$\alpha, 5 \mathrm{n}$	1.7	1.2	2.9	15.8	18.6	21.0
$\alpha, 6 \mathrm{n}$	2.4	0.6	3.0	16.2	19.2	
$\operatorname{error}(\%)$	± 15	\cdots				

Estimated average input angular momentum from the calculation with computer code ALICE. ${ }^{24)}$

Figure Captions.

1-1. Schematic picture of the particle-hole door-ways for the PEQ and EQ processes.

2-1. Typical counter arrangement for charged particles, neutrons and γ-rays.

2-2. A schematic view of a typical arrangement for the particleγ correlations.

2-3. F-beam transport system in the M experimental room at RCNP.
2-4. Target chamber for various coincidence measurements for in- and out of the reaction plane.

2-5. Breeder circuit diagram for charged particle measurements with $1 \frac{1}{2}$ " photomultipliyer (R580).
2-6. Pulse height response of the NaI(Tl) crystal (31.75 mm ϕ $\times 31.75 \mathrm{~mm}$) for various energy protons.

2-7. Mounting of the $\mathrm{Si}+\mathrm{NaI}(\mathrm{Tl})$ counter telescope system.
2-8. Typical particle identification spectrum following the 165 Ho +110 MeV a reaction.

2-9. a) Neutron-үpulse shape discrimination spectrum. b) Neutron- γ pulse shape discrimination spectra for ten different neutron energies selected by the neutron-TOF. For a) and b) the ${ }^{165} \mathrm{Ho}+110 \mathrm{MeV} \alpha$ reaction was used.

2-10. a) Pulse hight response of NE213 (5" $\times 3^{\prime \prime}$) scintillator for monoenergetic neutrons following ${ }^{7} \mathrm{Li}(\mathrm{p}, \mathrm{n}){ }^{7} \mathrm{Be}$. reactions. b) An example of the comparison between the experimental neutron response function and a Monte Carlo calculation (full line) ${ }^{62 \text {). }}$

2-11. Neutron detection efficiency of a 125 mm diameter x 125 mm NE213 scintillator. Closed circles are the results of Monte Carlo calculation. ${ }^{62)}$.

2-12. Neutron energy vs. electron energy for an NE213 scintillator. Open circles represent experimental results for the monenergetic neutrons. Full line is the calibration taken from ref.63.
2-13. Time and energy calibration of neutrons with the ${ }^{165}$ Ho $+110 \mathrm{MeV} \alpha$ reaction.

2-14. Time spectrum of neutrons and γ-rays in the case of neutron-charged particle coincidence experiments with the ${ }^{165}$ Ho $+\alpha$-particle reaction. Large and small dots represent the discriminated spectra for neutrons and γ-rays, respectively.

2-15. Effects of the front shields with lead(20 mm) and brass (5 mm). Closed circles represent the attenuation due to the shields. Full and dotted line are the neutron detection efficiencies with and without the shields, respectively.

2-16. Background of the time spectrum measured with ${ }^{165}$ Ho target and without target.

2-17. Typical example of absolute efficiency curve for γ-rays. a) GAMMA-X, b) LEPS.
$2-18$. Block diagram of electronics in the case of neutroncharged particle coincidence experiment. Simbols mean NIM modules; PA(Pre-Amp.), SA(Spectroscopic-Amp.), TFA(Timing-Filter-Amp.), TSCA(Timing-Single-Channel-Analyzer) CFD(Constant-Fraction-Disc.), GDG(Gate \& Delay-Generater), LGS(Linear-Gate \& Streacher), DA(Delay-Amp.), PI(ParticleIdentifier), PSA(Pulse-Shape-Analyzer).

3-1. Typical singles γ-ray spectrum following ${ }^{164}$ Dy +120 MeV α-particle reaction.

3-2. Total reaction cross section for each reaction channel of the reaction ${ }^{162,164} D y+\alpha$-particle at $E_{\alpha}=50,70$, 90 and 120 MeV . Open circles are experimental results deduced from singles γ-ray spectra, and plotted as a function of the energy sum E_{T} (see text).
3-3. Total reaction cross sections for each reaction channel following the ${ }^{164} \mathrm{Dy}$ and ${ }^{165} \mathrm{Ho}+120 \mathrm{MeV} \alpha$-particle reactions.
3-4. Neutron multiplicity distributions of ${ }^{165} \mathrm{Ho}+110 \mathrm{MeV}$ α-particle reaction, which gated with five energy bins of the protons at lab. angles $\theta_{p}=25,40$ and $129 \mathrm{deg} .$.
3-5. Differential neutron spectra following ${ }^{165} \mathrm{Ho}+110 \mathrm{MeV}$ α reaction at lab, angles $\theta_{\mathrm{n}}=20.3$ and 140 deg.
3-6. Angle integrated neutron spectra following ${ }^{165}$ Ho +110 MeV α reaction.

3-7. Neutron momentum distributions in coincidence with protons for three energy bins following ${ }^{165}$ Ho +110 MeV a reaction. Solid lines describe each half yeld.

3-8. Cross section ratios of high-(>5 MeV) and low-energy ($<5 \mathrm{MeV}$) neutrons in three proton energy bins.

3-9. Mean energies of neutrons at each detection angle in three proton energy bins.
3-10. a) Proton spectra following the ${ }^{165} \mathrm{Ho}(\alpha$, xn yp γ) reaction at $E_{\alpha}=109 \mathrm{MeV}$ in a neutron multiplicity range $x=2-8$ at $\theta_{p}=25 \mathrm{deg}$. b) at $\theta_{p}=129 \mathrm{deg}$.

3-11. Four γ-ray spectra obtained from the ${ }^{158} \mathrm{Gd}(\alpha$, xn $\gamma)$ reaction at $E_{\alpha}=70 \mathrm{MeV}$ in coincidence with neutrons in the energy intervals (from top to bottom) of 1.2 3.1 MeV, 3.1-9.5 MeV and 9.5-30 MeV. The peaks corresponding to the main transitions in $156,157,158$ Dy.

3-12. Neutron energy spectra for the three exit channels measured at four angles for the ${ }^{158} \mathrm{Gd}(\alpha, \mathrm{xn}$) reaction at $E_{\alpha}=70 \mathrm{MeV}$.

4-1. Ratio $\Gamma_{c} / \Gamma_{\text {tot }}$ vs, excitation energy and exciton number for ${ }^{166}$ Er* system, where Γ_{c} and $\Gamma_{\text {tot }}$ represent particle and total decay width.

4-2. Entry lines of each reaction channel to the EQ stage as a function of the excitation energy for the ${ }^{168}$ Er* system. Dotted line denotes the mean value of the entry energy.

4-3. Ratios f_{p} and f_{e} as a function of the order of the cascades, where f_{p} and f_{e} are the PEQ and the $E Q$ fractions, respectively, defined in text.
4-4. Neutron spectra following ${ }^{164} \mathrm{Dy}(\alpha, \mathrm{p} x \mathrm{n})$ reaction at $E_{\alpha}=90^{\circ} \mathrm{MeV}$ decomposed to each reaction channel ($x=3 \sim 8$).
4-5. Neutron spectra following ${ }^{164} \mathrm{Dy}(\alpha, \mathrm{p} x \mathrm{x})$ reaction at $E_{\alpha}=90 \mathrm{MeV}$ de composed to order of emissions.

4-6. a) Comparisons between experimental and calculated neutron multiplicity distributions for the ${ }^{162,164}$ Dy (α, xn) reactions at $\mathrm{E}_{\alpha}=50,70,90$ and 120 MeV . Closed and open circles represent ${ }^{162}$ Dy and ${ }^{164}$ Dy target, respectively. The calculations are dotted line. b) ${ }^{165} \mathrm{Ho}(\alpha, p \times n)$ reaction at $E=120 \mathrm{MeV}$. c) 158
$\mathrm{Gd}(\alpha, \mathrm{xn})$ reaction at $\mathrm{E}_{\alpha}=70 \mathrm{MeV}$.
4-7. PEQ fraction $f_{p}(x)$ for each reaction channel defined in eq. (4-2l) vs. neutron multiplicity x in the $162,164 \mathrm{Dy}(\alpha, x n)$ reactions at $E_{\alpha}=50,70,90$ and 120 MeV . Each point is deduced from the comparison between the experiments and calculations.

4-8. Total PEQ fraction f_{p} vs. initial excitation energy for the ${ }^{162,164} D y(\alpha, x n)$ reaction at $E=50,70$, 90 and 120 MeV .
4-9. Angle integrated proton spectrum following the ${ }^{165}$ Ho (α, $x n$ yp) reaction, where solid line represent the calculation:
4-10. Angle integrated neutron spectra following the ${ }^{158}$ Gd (α, xn) reaction at $\mathrm{E}_{\alpha}=70 \mathrm{MeV}$ gated by characteristic γ-rays of the reaction channel $(x=4 \sim 6)$, where . closed circles represent experiments; and solid and dotted lines are the exciton model calculation and Maxwellian distributions $k T \cdot \exp (-E / k T)$.

4-11: Angular distributions of the $P E Q$ and the $E Q$ neutrons in coincidence with characteristic γ-rays of the ($\alpha, 6 n$), $(\alpha, 5 n)$ and $(\alpha, 4 n)$ reaction channel for the ${ }^{158} G d(\alpha, x n)$ reaction at $E_{\alpha}=70 \mathrm{MeV}$. Closed and open circles clenote the neutron cross sections of the $E Q$ and $P E Q$ processes, respectively.

5-1: a) Average neutron energy for ($p, x n$), ($\alpha, x n$), $\left({ }^{12} \mathrm{C}, \mathrm{xn}\right)^{44,87)},\left({ }^{20} \mathrm{Ne}, \mathrm{xn}\right)$ and $\left.\left({ }^{40} \mathrm{Ar}, \mathrm{xn}\right)^{87}\right)$ reactions vs. initial excitation energies. b) vs. $\left(E^{*}-30\right) / A_{i}^{1 / 3}$, where E^{*} is the initial excitation energy and A_{i} is the projectile mass number.
5-2. Schematic de-excitation energy balance of the $\alpha-$ particle induced reaction at $E_{\alpha}=70 \mathrm{MeV}$.
5-3. Schematic angular momentum balance of the α-particle induced reaction at $E_{\alpha}=70 \mathrm{MeV}$.
5-4. Angle integrated neutron spectra following the ${ }^{165}$ Ho (α, xn yp). reaction at $E_{\alpha}=109 \mathrm{MeV}$. Neutrons were measured in coincidence with protons detected at $\theta_{1}=$ 30 deg.. Full and dotted lines are the exciton model calculations and fittings with two approximation, respectively.

5-5. Exciton model calculations for the angle integrated proton spectra of each reaction channel following the ${ }^{165}{ }_{\mathrm{Ho}}(\alpha, \mathrm{p} x \mathrm{n})$ reaction at $\mathrm{E}_{\alpha}=109 \mathrm{MeV}$.
5-6. Average neutron energies and exciton particle number of the PEQ phase for the ${ }^{165} \mathrm{Ho}(\alpha, p x n)$ reaction at $E_{\alpha}=109 \mathrm{MeV}$.

A-1. Flow diagram of the exciton model calculation for multi-particle emissions.

Program List; Computer Code for the exciton model calculation for multi-particle emissions.

PRE-EQUILIBRIUM PROCESS

Fig. 1-1

Fig. 2-1

Fig. 2-2

Fig. 2-3

Fig. 2-5

Fig. 2-6
Magnetic shield

$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \mathrm{~cm}$

Fig. 2-7

Fig. 2-8

Fig. 2-9-a

PSA CHANNEL NUMEER

Fig. 2-9-b
NEUTRON GANIRIA DISCRIVIINATION

Fig. 2-10-a

Fig. 2-10-b

NEUTRON ENERGY (MEV)

Fig. 2-11

Fig. 2-12

Fig. 2-13

ADC6 CHANNEL NUMBER

Fig. 2-15

Fig. 2-16

Fig. 2-17-a

Fig. 2-17-b

.Fig. 2-18

COUNTS/CHANNEL (k count)

Fig. 3-2

Fig. 3-3

Fig. 3-4

Fig. 3-5

Fig. 3-6

Fig. 3-7

Fig. 3-8

Fig. 3-9

Fig. 3-10-a

Fig. 3-10-b

Fig. 3-11

Fig. 3-12

Fig. 4-1

Fig. 4-2

Fig. 4-3

Fig. 4-4

Fig. 4-5

Fig. 4-6-b

Fig. 4-6-c

Fig. 4-8

Fig. 4-9

Fig. 4-10

Fig. 4-11

Fig. 4-7

Fig. 5-1-a

Fig. 5-1-b

Fig: 5-2
(กวพ) x^{x}

Fig. 5-4

Fig. 5-5

Fig. 5-6

Fig. A-1

SUBROUTINE OUTPUT(AMEVP,AMEVE,ISEP,IOUTMO,ITYY)

6

पRITE(b,2030) JJ2,(ANUCL(X,J),K=1,20)

COMMON IINFBKI/ NORAND,IPARTASTOP,IESGAP,IRAND,ISET
 COMMON /LEVELZ AK(10),AZET(10),AQVAL(10),DELTA(10) GOMMON TEXTON1/ GAMP(10)OACPH(5)OAPH(S),ARCOMP(10) COMMON /LYM1/ BE(10,20,6)
 COMMON INERI IAZ/IAMPN
COMMON INUCLEI/ ARZERO COMMON /GAMHID/ GAM(10), PGAM(10)
COMMON $11 \subset 1 / 1 \operatorname{CO}(20)$
COMMON $/ A S E X 1 /$ ASUP(8)
 COMMON MAUCRK/ AUCBUF(9,20), 日UCBUF(5,5,5,12),1COMT
COMMON IEXDATA/ CMEXDA(100,6),CBEXDA(20,100,6) COMMON JEXDATA/ CMEXDA(100,6),CBEXDA(20,100,6)
COMMON JEN/ ANESCA, ENESCA, ANBSCENGSCA GOMMON JDATABXI GMOATA(100,6) CCBDATA(20,100,6), ANUCL(20,10)

OATA BUFFER INITIALIZE

2 CONTINUE

AZET(B)=ZP+2T
AMASS(S) AT +AP
ANP=APGIP $A N P=A P=2 P$
$A N T=A T=2 T$

3
2
2
2
2
0
n ALEE $=2 P+Z T$
$A M A=A P+A T$

IAZ=AZEE
$1 A M E A A M A$
NNZI $=10$
NHZI $=10$
NNAA $=20$
MHCE=O
MMPP=
NA=1
NZ
1
o-value table calculation
OVALUE TABLE GALCULATION
CALL LYMASS(AZEEAAAHAONNI IF(AEQB.LT.0.0) GO YO 36

EAD(5,1005) APOATOZP,ZT,EQ,AX,AYOAU
 WRITE(6,206D) KEY,AA1,AA2,AAJ,AA4,AAS,AAG/AR7
$A P E X=A A 1$
AMEX=APEX+AHEX
APEXOEAPEX
AHEXO=AHEX
AKAAN

WRITE(G,206O) KEY,AA1,AAZ,AAJ,AA4OAASOAAGAAAT
MOD =AA1
RAN=AA?

READ(S,1010) KEY,AA1-AA2,AAJOAAL,AASOAAB,AA7
WRITE(G, 2060) KEYOAAIOAA2,AAS,AAKOAASOAAGOAAT
IF (XEY.EQ,IGATE MOOE I) IOUYMOMIO
IFXXEY.EQ.IGATE MOOE I) GALIMREADAN(IOUTMO)

CONTHE(2000$)$
HRITE(6.2005) (RNAME(I),I-1.20)

IF (IOUTMO.GE.IO) 60 TO 3
AMEVPGAA1
ISEP=AAJ
IOUTMO=AA

0
\leftrightarrow

HRITE(6,2020$)$ ASUMP
WRITE(6,2015$)$ 1,AGPOS(1, 1),AGPOS(1,2)
 $00 \quad 210 J=1 ; 9$
$1 Y-10+(J=1)+1$ $\left.\begin{array}{l}A J=J \\ A Y=10.0 .(A J-1.0)\end{array}\right)$
$12=A Y$
AS $1=0.0$
AS2F0.
00150 IS
0
AS2=CBEXDA(I,IS,IP)+AS2
IF(IS,EGAIY+h) ASI=ASZ
CONTINUE
AS2-AS2-AS
WRITE 6,20

AS9 $=0.0$
$A S 2=0.0$

ω

SUBROUTINE REAOANCIOUTMOJ
COMMON /GATEI/ IGPAGOIGPASOIGNO,AGPOS(10:2)
GNO- -4 NO. OF GATESE
AGPOS -4∞ GATE POSITION (IN MEV) START AHD STOP

[^0]

151	CONTINUE AS2=AS2-AS
6	
	WRIYE(6,2035) لZ, (CBDATA(I,K,IP),K=IY,IY+9),ASI,AS2
215	CONTINUE
	WRITE (6,2050)
	0020 If 01.20
	11J(IF)=IAM+1-1F
20	CONTINUE
	WRITE (6,2059)
	WRITE(6,2055) (IIJ(IJK),IJK=1.20)
	DO $25 \mathrm{JF}=1,10$.
	JJIEIAz-Jf+1
.	HRITE(6,2060) JJZ, (ANUGAY(1F, JF,IX), 1F=1,20)
25	CONTINUE
10	CONTINUE
216	CONTINUE
205	CONTINUE
217	CONTINUE
2000	
2003	FORMAY(lol* GAYE MODE **!)
2005	FORMAT(I/I NO OF PRYAL IIIIO,I NO OF RANDOM =1,110)
2010	
2015	
2025	
2020	
2030	FORMAT $(9 x, 10(8 x, 13), 2 \mathrm{C}, 1 \mathrm{MEVI})$
2035	FORMAT (1x, 13, 2x, 10, 10,0,2F8,0)
2040	FORMAT $5 x, 10$ (7x, 3) , 5x, $12,51,5 x, 17,5 \mathrm{MEV}$)
2050	FORMAT(1, Sx, ${ }^{\text {P }}$ (EINAL NUCLEOUS DISTRIEUTIONI)
2051	
2055	FORMAT ($8 \times 20161)$
2060	FORMAT(16,20F6,0)
	RETURN
	END
	SUGROUTINE EXNO(AEQB)
	RETURN
	ENO SUBROUTINE ROCMAS
c	DETERMINATION OF ROCAL MASS AND VELOCITY
	RETURN
	END
	SUEROUTINE TRANS
	COMMON / OATAEK/ CMDATA (100,6), C日DATA(20,100,6), ANUCL(20,10)
c	CH LAB TRANSFORMATION
	$\begin{aligned} & \text { RETURN } \\ & \text { END. } \end{aligned}$

ANUGAT(1.IENEX,II)=ANUGAT(1, IENEX,II) \&AME
ANUGAT(I,IENEX,II)=ANUGAT(1,IENEX,II) IAME
ANUGAT(2,IENEX,II) MANUTAT(2,IENEX,II) \&AUCBUF(9,II)

CONTINUE
1 CO(I) $-1 C O(I)+1$
CBDATA(IIIENE,II)=CBDATA(IOIENE,II)+1.0
CBDATA(I,98,II)=CADATA(I,9A,11) +AUG8UF(9,11)
0 200 CONTINUE

ANUGAT(G,IENEX,II) =ANUGAT(G.IENEX,II) +AME
ANUGAT(S,IENEX,II) \&ANUGAT(S.IENEX,II) +AUCBUF(9,II) ANUGAT(SOIENEXOII) mANUGAT(S.IENEX,II) +AUCBU
ANUGATIG,IENEX,II) MANUGAT(G.IENEX,II) +1.0 102 CONTINUE
105 CONTINUE

INEUU1
DO 205
$D O 205$ In
II 1 AUCBUF

IFIII.EO.
IFIII.EO.
IFIII.EQ.
 205 CONTINUE

C IF(IPRO.EQ.O) GOT099 $\quad \begin{aligned} & \text { DO } 2101=1.1 G O M F\end{aligned}$
 IF 1 IMAUCBUF(2,I)
 OG CONTINUE

DO 5 I\＃T，MEX
 CONTINUE
PREEXUXE（PMEX＋1．0） 0 PI／RERE

PRBEXMX
REYURN
CONTINUE

Nunl3y
END
SUBROUTINE RCOMP
CALCULATION OF PARTICLE OISTINGUSHABI
PROBABILITY OF GETTING THE RIGHF CONF

PARTICLE
COMMON／INIT／AP，AT，IP，IT，EQ，AU，AY，AB，ANP，ANT

 COMMON ILEVEL2 AX（10），AZET（10），AQVAL（10），DELTA（10）
COMMON IEXTON1／GAMP（10）AACPH（5），APH（5），ARCOMP（10）

COMMON IEXTONZI AKA，APEX，AHEXOAMEX，AG，AGA，AMAT

$001 I E 1=10$
ARCOMP（I）＝0．0
CONTINUE
ICOMAAPEX－AP
AICOM＝ICOM
And S I＝1．ICOM

AJMJ
IFCAI
$I F(A I \sim A J+1.0 . L T-0.1) G 0$ TO 9
$A=((A P E X-A P-A J+1)+.A /(A I \sim A J+1)$.
$I F(A-L T .0 .1)$
CONTINUE
IF（APEX．LT：O．1） 60 TO 99
a

10 GONTINUE

DO $15 \mathrm{I}=1.6$ CONTINUE
CONTINUE

SUBROUTINE PAEX（AI，XE，PRBEX）

COMMON IINFEXI／NORANDOIPART，ISTOP，IESCAP，IRAND，ISET COMMON／INFBX2／ALPRA，BETAFAX
COMMON／LEYELI／ALEV（IO），VEOUL（10），AMASS（10），RENERG（10）

に。

999 CONTINUE
 SET=5
\qquad
IENEREET(T) lF(IENE.LT.10) $15 E T=1$
IF (IENE.LT.ZO) ISET=1
IF(IENE.LT.JO) ISET=2
F(IENE.LT.30) ISETaZ
S(IENE.LT.SO) ISETa
K PARAMETER
AK (1)
AK AKPOAT (ISET)
AK (2)=AKPDAT(ISET) +0.06
AK (3)=AKPDAT(ISET) +0.12
AK $(6)=A K A D A T(I S E T)=0.06$
AK (6) AAKADAT (ISET) 0.06
AK (5) ARKADAT (ISET)
AG(1) =ACPDAT(ISET)

GMMON ILEVELI/ ALEV(10),VCOUL(10) OMASS(10), RENERG(10), AC(10)
OMMON ILEVELZ/ AK (10),AZET(90):AQVAL(10),DELTA(10)
ETURN
ETURN
COMMON IGAMHIOI GAM(10), PGAM(IO)
COMMON IINFBKI/ NORAND,IPART,ISTOP,IESCAP,IAAND,ISET
AC(5)=ACADAT(ISET)
NO
COMMON IINFBKZI ALPHA,BETAOAX

\bullet
4
\bullet
\bullet
\bullet
COMMON MEVEL2) AK(10),AZET(10), AQVAL(10).DELYA(10)
CALCURATION OF ESCAPE WIOTH
IF (RENERG(7).LT.0.001) RENERG(7):0.
YEUTRON ESCAPE HIDTH
GEUTRON
GAM(6)=1-O
CHARGED PARTICLES

AN=2:0*(AR1-ARN)
RIM-EXP(RIN
SAI=((ALEV(6)/ALEV(1))**2.0)*((1.0+AC

- 1 $2 R=2 . O *(A R N * * 2.0)+(1 . S-A L E V(6)$
(1) GONTINUE
GAM(1) $-G A$
COHTINUE
GETURN

 COMMON ILEVELZI AX(10),AZET(10).AQVALI(10), DELTA(10) ALEV(7)=AMASS(7)/AX
ATHTE(AMASS(7)=2,0*AIE
ATHT=(AMASS(7)=2.0*AIET(7))/AMASS(7)

ALEV $(6)=A L E V(7)=((1.0-1.0 / A M A S S(7)+1.3 * A T H$
$A L E V(S)=A L E V(7)=((1.0-1 . S / A M A S S(7))+$ © 20$)$
앙

GAM(S) $=2.0$ © GAM(S)/3.0
 \bullet

$0151=1.6$
$15 \begin{aligned} & \text { IF (GAM(I).LE.O.OSTMUE. } \\ & \text { COAM(I) }=0.0 \\ & \text { RETURN. }\end{aligned}$
SUBROUTINE STAPARA
PARAMETER DETERMINATION
LEVEL OENCIIY, 2 COULOM
LPHA ANO EETA FOR

$\operatorname{ALEV}(6)=A L E V(7) *(1,0-1,3 / A M A S S(7)) * 2,0)$

continue
ㅇN

[^1]
-שט
XK(1)=0.6*(EMP(1+1.)-EMP(1))/(EM(1+1)-EM(1))

260 URITE(6,2280)
6

NO OB.FIE ON OUTPUT (OT). ***********)

RIFERGA
ONTINUE
WRITE(6,2300)
270 CONTINUE
1270 FORHAT(6FIO, 5)
2065 FORMAY(1OX,I LIOUID OROP MASSESI)
2070 FORMAT(10X,I SHELL CORRECTEO MASSESI)

2070 FORMAT (1OX,I SHELL CORRECTEO MASSESI)
2075 FORMAT (1OX,I ZERO PAIRINGI)
2080 PORMAT (1OX,I YITH PAIRINGI)

Non
*

[^0]: dadsyedadsnewriezyi /Zani/ NOWWOg

[^1]:

