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Abstract 

In order to get the information on whether neutrinos are 

Majorana or Dirac particJes, the double S decay is examined. 

The effective weak charged current Hamiltonian is used which is 

motivated by the grand unified gauge theories. The 0+ + J+ 

nuclear transitions for both the two neutrino and neutrinoless 

modes are investigated in the two nucleon-:- and N*-mechanisms. 

The condition is proposed to determine whether neutrinos 

are Majorana particles. In order to derive this condition, it 

is sufficient to know only the theoretical estimate on the (SS)2v 

mode. By using the data on the ratio of l28Te to l30Te half-

lives _obtained by Missouri group, we conclude from this Majorana 

condition that neutrinos are likely to be Majorana particles. 

It is found that, for the neutrinoless mode, only the 

° + + 0+ transition in the two nucleon mechanism takes place if 

there is no right-handed current. By using the data on the ratio 

of the l28Te to l30Te half-lives and Vergados' estimation of the 

nuclear matrix elements, we get the neutrino "mass" to be around 

32 eV if there is no right-handed current. 

The 0+ + 2+ transition for the (SS) OV mode occurs only if 

there is the right-handed current in addition to the left-handed 

current, so that the measurement of this transition gives the 

direct information on the right-handed current. 
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§l. Introduction 

(I-a) Majorana neutrinos: 

The interpretation of the so-called "negative energy states" 

proposed by Diracl ) leads to a symmetric description of electrons 

and positrons. Majorana, however, thought that it is not satis-

factory because the symmetric result is obtained only after 

anti-symmetrizing the Dirac fields. In 1937, Majorana2 ) 

showed that it is possible to construct the theory without negative 

energy states by taking account of only the real part of spinor 

field which is called as the Majorana field. It is clear from 

the analogy of the real scalar field that there is no distinction 

between··particle and anti-particle in the Majorana theory. 

Therefore, this theory can not apply to the charged spin 1/2 

particle. However, it is perfectly possible to formulate a 

theory of the neutral spin 1/2 particle which is completely 

different from the ordinary Dirac theory. 

Racah3 ) discussed that the neutron can not be described by 

this Majorana theory because it has an anomalous magnetic moment. 

However, even at the present time, the question whether neutrinos 

are Majorana or Dirac particles is still open. 

On the other hand, the neutrino hypothesis has been proposed 

by pauli 4 ) in 1933. Subsequently, by taking this hypothesis, 

FermiS) has constructed the theory of B decay in 1934. The first 

observation of free neutrinos from a reactor was made by Reines and 

Cowan 6) during 1953 to 1956. Since the discovery of parity non-
7' 

conservation in the single B decay was made by Columbia-NBS group, . 
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following the proposal by Lee and Yang,8) the V-A charged weak 

interaction theory based on massless neutrinos has been estab-

lished. 

1 " 9)"" 10) 11) Pau 1, Gursey, and Ryan and Okubo have proved that 

the Majorana and two-component neutrino theories do give the same 

result, if neutrinos are massless and the charged weak interaction is 

the V-A type. 

n+p+e 

Let us consider two elementary processes 

+ "p"+"n"+e +v 
2 ' as examples. In the Dirac 

theory vI = Ve and V 2 = v e ' while in the Majorana theory vI = 

helicity - 1 state, v
2 

= helicity + 1 state. In the Majorana 

theory, the helicity plays the role to distinguish the particle and 

the anti-particle in the Dirac theory within the framework of 

the massless V-A theory. This is the reason why few attention 

have been paid to the Majorana theory of neutrinos. However, 

if neutrinos are massive and/or if the V+A interaction is added, 

the Majorana and Dirac neutrino theories give different results. 

According to the recent theoretical development of the 

d "f" d h" " I" k 1 b "12) gran unl le t eorles, neutrlnos are 1 e y to e masslve 

because leptons and quarks are treated on the equal basis. Also, 

the recent experiment of tritium S decay13) seems to show that 

the electron neutrino has a finite mass. Under these circum-

stances the following questions are revived: Are neutrinos 

massive? Whether are neutrinos Majorana or Dirac particles? 

Let us consider how the Majorana neutrino is distinct from 

the Dirac neutrino: (a) By its nature of the self-conjugate 

field, the Majorana neutrino can not have the magnetic moment. 

(b) Since there is no freedom of the phase transformation for 
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the Majorana neutrino, the lepton number is not necessarily 

conserved. Thus, a test for the Majorana neutrino could be 

performed by the observation of the total lepton number non-

conserving processes such as 

(i) The neutrinoless double 6 decay,14) ,15) 

(ii) The ].1 - e conversion,16) ].1- + (A, Z + 2) + 

(A,Z - 2) + (A,Z) + 2e , 

+ (A,Z) +e etc., 

(iii) The K decay, 17) ,18) K- + 7T+ + e - + e - etc., 

( .) h . t' 19) - -lV T e antlneu rlno capture, v + n-+p + e e etc .. 

(c) If there are a neutrino and its antineutrino in the final 

state, we can expect to have interf~rence terms between them 

because they are indistinguishable from each other in the Majorana 

neutrino theory. In the Dirac neutrino theory, we have)of course, 

no such interference terms. The ].1-decay provides this kind of 

t t 
20) 

es . (d) The CP-violation pattern of the charged leptonic 

current sector in the Majorana neutrino system is different from 

that in the Dirac neutrino system, as shown by Billenky, Hosek, and 

21) 
Petkov, 

Okuda, and 

by Schechter and Valle,22) and by Doi, Kotani, Nishiura, 

Takasugi. 18 ) We shall discuss this CP-violation problem 

in §2. This may also serve to discriminate between Majorana and 

Dirac neutrinos. 

In this thesis, we shall .examine the double 6 decay as 

a tool to investigate whether neutrinos are Majorana or Dirac 

particles. ' 

(l-b) The double 6 decay: 

In the double 6 decay of nucleus, there are two decay modes, 

i. e. the neutrinoless mode, (66)Ov' 

-3-



( A ) Z -2 ) ~ (A, Z) + e - + e (1.1) , 
and the two neutrino emitting mode, (00) 

1-'1-' 2v ) 

(1.2) 

The double S decay can occur in the case where the single S decay 

of the parent nucleus (A, Z - 2) to (A, Z - 1) is forbidden energet-

ically or at least strongly suppressed due to a large change of 

spin between the initial and final nuclei. As typical examples, 

130 48 the level structures of Te and Ca are shown in Fig. 1. 

The (SS)OV mode takes place only when neutrinos are Majorana 

particles. This is because this process changes the total lepton 

number by two. But if the Majorana neutrinos are massless and 

the weak charged current interaction is the V-A type, the (S S) Ov 

mode does not occur because of the ~mismatch of neutrino helicities.· 

On the other hand, the (SS)2V mode can occur both for Dirac and 

Majorana neutrinos. Therefore the observation of the (SS)ov mode 

gives the direct information on the property of neutrinos. 

The counter (chamber) experiments have advantage to examine 

the (SS)Ov and (SS)2V modes separately. Among this kind of 

experiments, in 1970, Columbia group23) found one event which 

might be from the (SS)ov mode for 48ca . Recently Moe and 

Lowentha1 24 ) reported the observation of 23 events which are 

82 considered to be from the (SS)2V mode for Se. The other groups 

have obtained the lower bounds for the half-lives, which will be 

discussed in §6 individually. It is worthwhile to note that the 

observation of the transitions to the excited states has some 
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· t 1 d t . t d b F' .. 25) experlmen a a van age, as pOln e out y lorlnl. This is 

because those tranisitions are followed by de-exciting y-rays, 

detection of which reduces the background. 

The geological method has such advantage that the accu-

mulated decay products (daughter nuclei) for a long period are 

observed. This method, however, is unable to discriminate the 

(SS)OV mode from the (SS)2V modes. In order to get some informa­

tion on the (SS)Ov mode, it is necessary to choose the nucleus with 

a small phase space so that the yield from the (SS)2v mode is sup­

pressed relative to the (SS)Ov mode. Since the half-life of the 

nucleus with the small pahse space is much longer than that of the 

double S-decay nuclei with normal-size phase space, the measurement 

of the ratio of its half-life to that for the nucleus with normal~ 

size phase space is preferred. In addition, the measurement of 

the ratio may be free from the experimental ambiguity due to the 

absolute half-life measurement. Consequently the ratio of the 

128 130. 26) 
Te to Te half-llves measured by Missouri group may be 

considered to meet the condition given above. Note that in the 

analysis of the half-life measured geologically, the transitions 

to the excited states should be taken into account in addition to 

the ground state to ground state transition. 

Let us discuss the theoretical aspects of the double S decay. 

Two mechanisms for the double S decay have been considered. One 

is the two nucleon (2n) -mechanism of successive S decays of two dif-

ferent neutrons, (nl and n 2 ) in one nucleus are involved in the double S 

decay, as shown in Fig. 2. The reason why two neutrons participate 
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in this decay process is due to the fact that two units change 

is required in the hadronic part. In the (SS)ov mode, 

a virtual neutrino emitted by n l 
is reabsorbed by another n 2 

* in the same nucleus. The other is the N -mechanism introduced 

by Primakoff and Rosen. 27 ) This mechanism is based on the fact 

that the nuclei may contain the admixture of the nucleon resonance 

with J (P) = ;+ , 1=; and m = 1232 MeV [6 (1232)]. In this mechanism, 

the double S decay is considered to occur through the transition 

- - - -- -- ++ --either 6 (1232) -+p+e +e + (v +v ) or n-+6 (1232) +e +e + 
e e 

-- -- * (v + v ), as shown in Fig. 3. The participation of one hadron is e e 

enough in this case, because . the isospin difference between the initial 

and final hadrons is 2 (= 6Iz). In the (SS)Ov mode, a virtual 

neutrino emitted by one quark in a hadron is reabsorbed by another 

quark in the same hadron. Note that the average propagation 

distance of this virtual neutrino is much shorter in comparison 

with the case of the 2n-mechanism, so that the magnitude of the 

neutrino exchange potential is enhanced considerably. Therefore 

* the N -mechanism becomes important relative to the 2n-mechanism, 

although the admixture probability of 6(1232) may be small. The 

* idea of this N -mechanism comes from the argument by Kerman and 

Kisslinger 28 ) that the deuteron has the possible admixture of 

the nucleon resonance, N(1688). The brief discussion for 

these two mechanisms is given in Appendix B. 

Many theoretical works have been done on the double S decay. 

The (SS)2V mode was first discussed by Mayer29 )andlaterbyprimakoff 

and Rosen1 5 ) in the 2n-mechanism. For this mode, it is enough to 

. d 1 h V . t . 30) conSl er on y t e -A ln eractlon. 

* E .. . 73) Oht b d H 74 ) . d h f ]lrl, u 0 an osoya pOlnte out ot er types 0 

diagrams shown in Figs. 12 and 13. These possibilities are 

now under consideration. 
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T. 

Concerning the (SS)Ov mode in the 2n-mechanism, Furry14) was 

the first to investigate it, and later Primakoff and Rosen1 5 ) 

discussed it in detail for the case where a massless Majorana 

neutrino couples to an electron in the leptonic current with 

the various tensor structures. Greuling and Whitten31 ) have 

analyzed the case with the V-(SA ((S =\= 1) leptonic current for a 

massive neutrino. Assuming a ~issless neutrino, Molina and Pascua132 ) 

. . d + + + lnvestlgate 0 -+ 1 and 2 transitions in the framework of V - (SA 

interaction without nuclear Coulomb corrections. Concerning the 

N* -mechanism, Primakoff and Rosen1
7) discussed the massless neutrino 

case with the V+A type leptonic current in addition to the ordinary 

V-A current. The hadrons are treated within the SU(6) quark model. 

Smith, Picciotto 33) 
and Bryman have analyzed the (SS)Ov and 

(SS)2V modes by using the pion core model of~. The extensive 

investigation of the double S decay was done for the 0+ -+ J + 

* transitions in the 2n- and N -mechanisms recently by Doi, Kotani, 

Nishiura, Okuda and Takasugi. 34 ) ,35) 

In this thesis, we will consider the following effective 

weak charged current interaction Hamiltonian: (i) Massive neutrinos 

are considered. (ii) The mixing among neutrinos is taken into 

account. (iii) The right- as well as left-handed currents are 

considered both for leptonic and hadronic sectors. 

In §2, the general form of the effective weak interaction 

Hamiltonian is presented in connection with the grand unified gauge 

theories. The CP-violating phases characteristic to the Majorana 

neutrino system are discussed ,and., as an illustration, the case for 

two generations is presented in Appendix D. In §3 the (SS)Ov 

mode is investigated for the 0+ -+ J+ transitions both in the 

-7-



* * 2n- and N -mechanisms. The brief description of the 2n- and N -

mechanisms in the double S decay is given in Appendix B. The 

(SS)2V mode is analyzed in §4. The general properties of the 

double S decay formulae are discussed in §5. The data on the 

half-lives of typical double S decaying nuclei are analyzed and 

theoretical predictions are given in §6. The summary and the 

concluding remarks are given in §7. 
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§2. The weak interaction Hamiltonian 

In the grand unified gauge theories,36)-38) a general form* 

of the effective charged current weak interaction Hamiltonian 

will be 

, (2.1) 

where JL~R) (x) is the left(right)-handed hadronic current and the 

leptonic current jL(R)~(x) is expressed as follows 

JL~ (X) = e (X) 'if (1- '(s-) YeL (x.) + , (2.2) ... 
• I 

j Rt" (x) = e(x) Ir (\ + 1s) }Je~O.:) + • (2.3) 

Here e (x) is an electron field and veL (x) (V~R (x» is a left (right)­

handed electron-neutrino field -appeared in the leptonic current. 

This neutrino field is referred to as the current neutrino. 

(2-a) The right~handedcurrent 

This effective Hamiltonian is derived from the underlying 

fundamental interaciton among quarks and leptons. The appearance 

~ of A-term is due to the additional gauge boson WR which couples 

to the right-handed current and the K-term comes from the mixing 

between wi and W~. This mixing is expressed in terms of the 

mass eigenstate gauge bosonsWl and W2 with masses Ml and M2 as 

f 11 
39) ,40) 

o ows, 

* The effects which come from Higgs particles are not taken 

into account. 

-9-



W L = W, COS1 + W2. Ain "S-, (2.4) 

In this notation, the parameters G, A and K in Eq. (2.1) are 

expressed in the left-right symmetric mode1 40 ) as 

G:/'{2 = (f/ ~) (OS2:> (MI21Ctn.2~ + M; )/ (M1 tvh.Y~ , 

A = (M,2+M:t~~ )/(MfiM.~~ +Mi) ) 

K == ( Mt- M;) tevn j / (M1
2 iaM~~ t- tvt:) . 

(2. 6) 

(2.7) 

(2.8) 

By eliminating s from Eqs. (2.7) and (2.8), two parameters A and 

K satisfy the relation, 

+ 
{A - t(Ac -I-I/Ac) }.2 

( Ac. - 1/ Ac. y. 
1 
4 

2 
where AC = (Ml /M2 ) . We assume Ml « M2 for simplicity. This 

(2.9) 

constraint is shovm in Fig. 4 schematically. Note the following 

remarks: (i) The physically expected A-value is around 

2 
A ~ A « 1, i. e., A = A + tan sand K = -tan s in the limit c c 

A -+ O. (ii) If we write A = A + 0, K behaves like K - +/8 for 
c . c 

0« 1. If 0« r;::-, A» I K I (iii) On the other hand there is c 

a possibility that the magnitude of K dominates over A, e. g. 

if 0 ~ A ,I KI~ r;::-» A = 2A. It is of interest c c c in this situation 

to observe that IKlis the order of (Ml /M2)' while A is order of 

(Ml/M2)2. 

In the following sections, we shall treat A and K as the 

-10-



small free parameters (A, IKI« 1). 

( 2 - b) The hadronic current 

In the 2n-mechanism, the hadronic currents are written as 

~tl\X)= 'tex)'l+YP'C9v- ~Af5")~(X) , (2.10) 

Jr/fex) = 'VN(X)l+yP.(~:t ~~~)~(X), (2.11) 

T + where 'l/IN = (p, n) and T is the isospin raising matrix. Here 

I 
gv = cos e and gv = cos e I where e (e I) is the left (right) -mixing 

angle between u and d quarks. We expect e ~ e where e is the 
c c 

Cabbibo angle. Also 

(2.12) 

is taken. This deviation from unity is due to the strong inter-

action renormalization. 

* In the N -mechanism, the hadronic currents are considered 

to act on quarks in a hadron and are obtained by replacing 'l/I~ 
. T 
with 'l/Iq = (u, d) and taking gA/gV = g~/g~ = 1. The effect from 

strong interaction will be taken into account by evaluating the 

matrix element in the SU(6) quark model. 

(2-c) The neutrino mixing and CP-vioZating effect 

Let us discuss the diagonalization of mass terms of neutrino 

fields ~8),2l),22),4l),42)Three. types of mass terms are considered; 

case (i), a Dirac-type mass term is 

L trl = - )J{ M l/L + h. c. . (2.13) 

case (ii), a Majorana-type mass term is 

(2.14) 

-11-



case (iii) , a mixed-type mass term is 

where v~ (R) = (VlL (R) , v 2L (R) , ••• , vnL (R) ), n is the number of 

generations, and (vL (R) ) c = CV~ (R) with the charge conjugation 

matrix C. The Majorana mass matrices M. (i=L, R) are in general 
1 

T complex symmetric n x n matrices, i. e., M. = M. due to the property 
1 1 

c c 
of Vex Vs = v S Vex 

Case (i): The Dirac-type mass term becomes 

+ h. c. , 

after taking the unitary transformations, 

})L = U(f}NL 

))~ = V(i)NR 
') 

The mass matrix M can be diagonalized by choosing some appro-

priate unitary matrices U and V, i. e. 

VC1> t M U(1) = (rea.l dio.~Oho..l). 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

Note that we have n mass eigenstate Dirac neutrinos. Since u(l) 

and v(l) are unitary matrices, respectively, there are n (n - 1) /2 

rotational angles and n (n + 1) /2 phases in each matrices. By the 

redefinition of n charged lepton and n neutrino fields appeared 

in the leptonic currents in Eqs. (2.2) and (2.3), (2n - 1) phases 

out of total n(n + 1) phases in u(l) and vel) can be absorbed. 

This freedom is used to reduce the number of phases in the left­

handed current sector so that U (1) includes (n - 1) (n - 2) /2 

CP-violating phases (the Kobayashi-Maskawa scheme43 » and vel) 

has the remaining n (n + 1) /2 phases. 

-12-



Case (ii): The Majorana-type mass term becomes 

after the unitary transformations, 

l-t == U(1) NL , 

(yLf= U WT NR . 

Note that u(l)T appeared instead of v(l)t in Case (i). 

(2.20) 

(2.21) 

(2.22) 

Since 

ML is the symmetric complex mass matrix, we can diagonalize it 
(1) . 

by choosing some appropriate unitary matrix U . In this case 

there are n mass eigenstate Majorana neutrinos, N . Since 
n 

there is no freedom of the phase transformation for the Majorana 

fields, only n charged leptons can absorb n phases. That is, 

/ 
. . h .. (1) 18),21),22) . n (n - 1) 2 CP-v101at1ng p ases rema1n 1n U. . It 1S 

worthwhile to point out that there is no right-handed current 

(A = K = 0) in this case. 

after 

42) 
Case (iii): The mixed-type of mass term becomes 

the transformations, 

l.{ = U(1) N(( + U(2)NL(2.) , 

V~= y(n N~t) + V(1)N~:D 

(2. 24 ) 

(2.25) 

(
ML ' MT) . 

The 2n x 2n mass matrix M M 1S a complex symmetric matrix. 
, R 

Therefore, similarly to Case (ii) we can diagonalize the mass 

-13-



(
U(l) u(2)) 

matrix by choosing some appropriate unitary matrix (1)*' (2)* ' 
V , V 

i. e. 

(2.26) 

In this case there are 2n mass eigenstate Majorana neutrinos 

N(l) (L-type)=(Nl,·.·,Nn)T and N(2) (R-type)=(Nn+l,··.,N2n)T~ Since 

(

u(l) u(2)) . 
(1) *' (2) * is a 2n x 2n unitary matrix, there are n (2n -.1) 

V ,V 

rotational angles and n (2n + 1) phases. Only n charged leptons 

can absorb n phases so that 2n2 CP-violating phases remain in 

u(l), u(2), vel) and v(2). We use this phase freedom of leptons 

to reduce the number of phases in U ( 1 ) and V (1). Thus, n (3n - 1) /2 

CP-violating phases are in u(l) and v(l), and the remaining 

n (n + 1) /2 phases are in U (2) and V (2) . 22) In Appendix D, we shall 

show an explicit illustration for n = 2 case. 

In order to treat the three cases simultaneously, we shall 

use the following relations among 2n current neutrino fields v aL,R 

and 2n mass eitenstate neutrino fields N, with mass m" 
J J 

n l~ . 

\) - \" (U(1) N.(1) + UC.2) N (2) ) == 'U N" 
VL - L rX" J l C<J' J" L - J,f--l O(j J L , 

j= 1 J 
(2.27) 

.2h. 

~ I = ~ ( V (1) , N "(1) + 
R L C<J JR 

j= 1 

en N~»)=\V "N" V et" J'R -~ ciJ JR· 
J J=1 

(2.28) 

It should be understood that U (1) ~ 0, V (1) ~ 0 and others = 0 for 

Case (i), u (1) ~ 0 and others = 0 for Case (ii). 
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Generally speaking, the mixing between neutrinos turns off 

in their massless limit. In the Dirac neutrino Case (i), the 

(1) (1) mixing matrices should be taken as U . = V . = 0 .• While, in 
Cl.J Cl.J Cl.J 

the Majorana neutrino case, we have U(~) = 0 . in Case (ii), and 
Cl.J Cl.J 

U (~) = V (~) = 0 . and others = 0 in Case (iii). However, we keep 
Cl.J Cl.J Cl.J 

the possibility that mixings still remain in u(l) and v(l) on 

the phenomenological basis even in the massless limit. 

(2-d) The properties of various gauge models: 

Let us discuss briefly the magnitudes of parameters appeared 

in the weak Hamiltonian Eq. (2.1) in the various typical gauge 

models. 

(I) The SU(2) L x U(l) models: 

In the standard Glashow, Salam and Weinberg model,44) only 

the massless left-handed neutrinos are present (m. = 0) • 
J 

Resultantly there is no neutrino mixing, u(l) = 1 and u(2) = 0 and 

no right-handed current, A. = K = 0 (V = 0) • It is not impossible 

to generate neutrino massess by introducing a Higgs triplet. 

In this case, neutrinos:areMajorana particles (corresponding to 

Case (ii) in the subsection (2-c)). A natural way to generate 

neutrino masses is to introduce a right-handed neutrino. If 

singlet right-handed neutrinos are added, neutrinos become massive 

Dirac particles naturally (Case (i)). By introducing the Higgs 

triplet in addition to the above singlet right-handed neutrinos, 

Barger et al. 45 ) showed it possible that neutrinos are massive 

Majorana particles (Case (iii)). Note that there is no right-

handed charged current, A. = K = O,in these theories because the 

weak charged bosons do not couple to the right-handed neutrinos. 
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(11) The SU(2) L x SU(2) R x U(l) models: 

In the typical model of this type,35) neutrinos are massive 

Dirac particles since there exist the left-and right-handed 

neutrinos (Case (i». An interesting alternative model has been 

d b M h t d . . 46) h b h' d propose y 0 apa ra an SenJanovlc were ot Dlrac an 

Majorana mass terms exist (Case (iii». Now, neutrinos become 

massive Majorana particles. They obtained the values of parameters; 

7 
mN.(l) (L-type) :::: meMwL/MW :::: O(eV), m (2) :::: MW :::: la GeV, R N (R-type) R 

u(l) and v(2) :::: 0(1), u(2) and v(l) :::: O(~L/~R) :::: 10-5 and A, 

I K·I - la-la. Presently available data on the charged-current 

interaction give h . . . 40), t e rlstrlctlon, A, I I < -1 
K - la . 

(Ill) The SU(5) models: 

In the standard mode1 37 ) with a Higgs scalar in a 5 and/or 

45 dimensional representation, there is a global symmetry which 

leads to the B-L number conservation. Moreover in the 5 and 10 

quark-lepton multiples, there is no room for the right-handed 

neutrino. Therefore neutrinos are massless. If the B-L global 

symmetry is violated by introducing a two-fermion interaction 

with two 5-representation of Higgs,47) neutrinos become massive 

Majorana particles (Case (ii». 

10-5 eV, A=K=O and u(2) =V=O. 

(IV) The SO(10) models: 

In this case, m (1) 
N (L-type) 

In this kind ofmodels,38) a left-and a right-handed neutrinos 

are assigned in a same 16-plet representation. Therefore the 

mixed type of mass matrix (Case (iii» is generally obtained and 

neutrinos become Majorana particles. In this scheme, the small 

mass of the "left-handed" neutrino can be explained in the 
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following manner. Suppose that the SO(lO) symmetry breaks_down 

to SU (5) at the grand unification mass scale MGUT ~ 1015 GeV . 

Since a right-handed neutrino is assigned to a singlet represen-

tation of SU(5), it can have a mass at this mass scale. 

Therefore, the right-handed Majorana mass term MR in Eq. (2.15) 

is order of MGUT . The mass scale of the Dirac mass term should 

be of the order of quark mass, m ~ 1 GeV. The left-handed mass 
q 

term ML is considered to be much smaller than mq After 

diagonalizing the mass matrix, Eq. (2.26), we obtain m (1) 
N (L-type) 

2 -6 
mq/MGUT ~ 0 (10 eV), m (2) :::: MGUT or 

N (R-type) 

-8 
:::: 10 MGUT . The order of 

magnitude of mixing parameters are u(l) - v(2) - 0(1), u(2) - v(l) ::: 

/ ::! 10-30 
mN(l) (L-type) ffiN (2) (R-type) 

and A::: IKI ~ (MW /MW ) 2 ::: 
L R 

2 -26 48) 
(~/MGUT) ::! 10 • Witten has 

L 
proposed a model where the 

neutrino masses are generated by loop diagrams. In this model, 

the neutrino can get a larger mass in comparison with the above 

. 2 _-2 
1S, m (1) = m ~/ (a MGUT - 10 eV . 

N (L-type) q 
mentioned values, that 

-17-



§3. The (88)Ov mode 

We shall discuss the (88) Ov mode for the 0+ -+ J+ transition. 

In this section we will make a unified treatment both for the 

* 2n- and N -mechanisms. To do this,the effective interaction 

Hamil tonian, Hint = HW + HS is considered as in Appendix B , where 

HS represents the effective strong interaction for the transition 

N + N +-+ t:,. + N by the exchange of 7T, P and so on. In the 2n-

mechanism, the double 8 decay takes place through the second 

order perturbation in Hw and the Oth order in HS as shown in Fig. 2a. 

* In the N -mechanism, the double 8 decay occurs through the 2nd 

order in HWand the 1st order in HS as shown in Figs. 3a and 3b. 

Note that the intermediate nuclear state Nt:,._(t:,.++) which includes 

t:,.-(t:,.++) has the same JP as NA(N
B

) ha~.because the strong inter­

action operates as an internal force. In the following discussion, 

the second order weak interaction parts of these figures are 

singled out and treated collectively by using the expression of 

-
Na+-+N8+e +e transition. 

The (88)Ov mode takes place only if neutrinos are Majorana 

particles. And it is necessary that at least one of three 

parameters, mj' A and K, does not vanish in the framework of the 

weak interaction given in §2~ This comes from the following 

reasons. If the two lepton vertices in the Feynman diagrams for 

the (88)Ov mode are either combination (L, L) or (R, R) as shown 

in Fig. Sa, the contribution from this diagram is proportional to 

the neutrino mass mj of the intermediate Hajorana neutrino. 

two lepton vertices are (L, R) or (R, L) as in Fig. Sb, these 

-18-
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contributions are proportional to the neutrino four momentum q and 

depend on the relative strength A or K as seen from Eq. (2.1). These 

situations can be easily seen from the neutrino propagators 

given in Appendix A. 

Thus the R-matrix element for No. -+- NS + e - (PI) + e - (P2) is 

expressed by 

(3.1) 

where the first 1/12 is the statistical factor for the emitted 

two electrons and 

(3. 2) 

(3.3) 

'" 0 -+- • Here the ~(p, p , x) 1S the Coulomb distorted wave function for 

anelectron,p means the direction at the observation point and 

~c = c"4lT with the charge conjugation matrix C. The other terms are 

"-JK (-\v = K ~v -t- K ( Kr: + K::) + K<Kt: 
LL LL 

K : ( = X K ~~ + A K ( K l~v + K ~~) t- K2 k ~ J 

r'VL plIp _ L~Vf + L \Av f 
LR - ~ LR K LL 

r.../l /Ayr = \ LIAVf T K. L!AV F 
Rl /\ RL lL 

+ XK L~~f + K2 L~~f, 

+ AK Lr~f + K2 Lt;r, 
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(3. 6) 

(3. 7) 



where 

Here a(b) takes L and ~and N is the intermediate nuclear state 
n 

with energy E. The nuclear Coulomb effect on the emitted 
n 

electrons is taken into account through the Fermi factor F(Z, pO) 

by using the following approximation 

° . 49) where u(p) is a free electron spinor and F(Z, P ) lS 

Here R is nuclear radius and 

y =V 1 - (o(~)~ 
) 

~ = «Z1°/r 

(3.10) 

(3.11 ) 

(3. 12) 

(3.13 ) 

The factor (2pR)2y-2 in Eg. (3.11) plays an. important role for 

the heavy nuclei because y deviates largely from 1. In this 

thesis, we do not take into account the other relatively small 

corrections such as the finite de Broglie wavelength effect, the 

finite nuclear size correction, etc. 
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Now we adopt the following further approximations: (i) The 

energy of the intermediate nucleus is replaced by the average 

value<E >. (ii) The non-relativistic impulse approximation is 
n 

used for the hadronic currents J~~(x)and J;~(x) including the 

recoil correction term (vlc term) for the 2n-mechanism. (iii) 

The first two terms of the mUltipole expansion for the leptonic 

.-+ -+ -+ -+ .-+ -+ -+-+ 
wave function are kept; exp [-1 (PI ·x + P2 .y)J::::: 1 - 1 (Pl·X + P2 .y) . 

Under the approximation (i), the intermediate nuclear 

states can be summed by closure. 66 ) By the approximation (ii), the 

hadronic currents may be expressed as follows, 

where the subscript n implies that the operators act on the 

* n-th nucleon in the 2n-mechanism or the n-th quark in the N -

mechanism. The vlc terms are not written explicitly in 

Eq. (3.13) . 1· ·t 50) for Slmp lC1 y. The similar expression is obtained 

for J;~. 
-llV 

with these approximations, the q-integrations in Kab and 

-llVP Lab can be performed and the results are 

(3. 14 ) 

I r~o = ~~ [A1<Hi Cr,tY1j) -Al<Hl(r,tnjJ>1 <N~I;fu l:'l~ 6(X-rh)6($-r~J 
, 

. (fry J~o+ ErA ~j ~rj)( Ev JYO - EA cr-! ~VR) I Ne{ > (3.15) 
) 
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+ ~~ [ <H,/(r, IYIj» + < H; er, il1j» ] (Np I,f,;, ,(:'l:';; S (x -1.).) (~-r", 1 

. t (q.v ~~rD/ + QA J.fAoCn )( tv ~vo_ EA(}rn ~ f'!l ) 
+ ( G-v ~~o + qA q-nP~JAP ) -( £v ~V~ Dm~ - EA J~oCm) ) r tix» (3.16) 

where 

(3.17) 

, (3.18) 

We note that only the first term of the multipole expansion is 

~l1V ~l1vO 
taken into account for KLL and LLR ' and the dipole term is used 

to obtain the first term for Li~k. In order to maintain the 

consistency of the approximation, the vlc term of 

the hadronic current should be included. The second term of 
-l-Li~k in Eq. (3.16) is due to this correction. 

defined by 

Here C and Dare 
n n 

Ch = ~. ( Gn -.2 Pn ) / (2 M) , 

Dn. = [($ h - 2 Pn ) + i- (~n X G h)] /(.2 M) , 

-l- -l-
where P , Q and M are the momentum, the momentum transfer and 

the mass of the nucleon, respectively. In Eqs. (3.14)-(3.16), 

H(r, m.) is the potential-like term due to the exchange of a 
J 

-22-
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r' 

neutrino and is defined as 

e i t·Crn-rm) 
<].0 ( iO + Ai) (3. 21) 

0+2 2 0' 
where q = 11 q I + m. and A. = <E > - MA + p. Also, H. = dH. /dr, 

J 1 n 1 1 1 

-; = -; - -; r = -; / I -; I and r = (-; + -; ) / 1-; I. The 
nm n m' nm nm nm +nm n m nm , 

terms like <H.> and <rH.> mean the average values of "potentials" 
1 1 

* with the weight of nuclear tensor operators. Note that the 

-m'r 
Potential H. (r, m.) behaves like l/r for m. < 0 (MeV) and e J /r 

1 J J -

for mj ~ 0 (GeV). The replacement En by <En> (the approximation (i» 

is not crucial because the main contribution to the potentials 

+ 
comes from I q I ~ 20 MeV which is much larger than A. (!::: a few MeV). 

1 

-~v -~vO -~vk 
The other terms, KRR , LRL and LRL ' are obtained by taking 

the interchanges (G
v 

++ e:v) and (G
A 

++-e:
A

) in the expressions of 

-~v -~vO -~vk 
KLL , LLR and LLR ' respectively. 

The product of the leptonic and hadronic parts can be easily 

calculated and the 'results are as follows; 

~d:(d~ {t~v ~r~ l =- ~~ [<H1)+<H.2> 1 LtCf1) (1+f5 )U.Cc,&) {;:~F -~~~qTl 
t R KlA'" c.Vlvq:- C.A \V\qTJ 

p.v RR , 

(3. 22) 

Sdxd~( lA ~votr~o + uR~vol~~O) = 4\c (A1<H1)-A2<H2>1 

. UJl'.) { t' (frA £v MF - (fA EA MqT ) - yR.2 tr- M k} Ll\t>" (3.23) 

* The average is defined as <f> = <N I L: f 0 IN >/<N I L: 0 INA > , 
B n , m nm A B n , m nm 

where 0 is the nuclear tensor operator. 
nm 
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Sdxd~ ( U~~R It'RR + U~VR t::R) = -irk [<rH!> + <rHi>] 

• Lt (f1) [ (11--P:t)~ { yRp ~R + YOGQ 1 + (f.t+-g)~ ~ { rRQ~R + YOQQ}] UC
CP2) 

(3.24) 

MF =- < 1h.1Vn> ') (3.25) 

MR= < q-j> (3.26) 

p.QR= < rnJ { rn! (try Ev + G-A EA ern· Q-nJ 

+ i CCfvt.A + G-ACV)(rnmXQ:-n/<-.2GAtACrnrn-t-n)VmR » (3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

Here we used the following definition,* 

(3.33) 

1~ ~. d f * The better parameterization would be <rH><-o ·0 > lnstea 0 r nm 
~ ~ .. 

<H><o ·0 > as glven In Eg. (3.25). n m 
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· + + 
It is clear from Eqs. (3.25)-(3.32) that the 0 -+J (J ~ 3) transi-

tions are forbidden within our approxiamtions. 

In the following, a further simplification is made by re-

placing A. in the potentials with their average value, i. e., 1. 

~o = CA1 + Al )/2tne. = [<En> -(tv1A-t~B)/2] /rn~ (3.34) 

As a consequence, we can write H. 's in the single formi 1. 

( 3-a) The 2n-mechanism 

(3.35) 

The R-matrix is obtained from ~ in Eq. (3.1) by replacing 

-
Na and NS with NA and NB' respectively. It should be noted that 

the MF and MGT terms are of rank 0 with respect to the angular 

momentum and the Qt, Mt , Ct and Rt terms are of rank 1. On the 

other hand, the ptk and Qtk terms consist of irreducible tensor 

operators of rank 0, 1 and 2. Consequently, the terms t L K~v 
]..IV LL' 

t R K~v contribute to the 0+ -+ 0+ transition and u L L~vO + u R L~vO to 
~v RR ~vO LR ~vO RL 

h 0+ 0+ d 1+ . . h'l L -~vk R -~vk t e -+ an trans1. t1.ons. W 1. e, u]..lvk LLR + u~vk LRL 

+ + + + contributes to the 0 -+ 0 ,1 and 2 transitions. These features 

and the relative order of magnitudes are listed in Table I. 

(i) The 0+ -+ 0+ transition 

The nuclear matrix elements M
F

, M
GT

, pii /3, Qii /3 and S 

contribute to this transition. We obtain 
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dr~~co~o+) == (llov/ml) (meR)-2 

.[ £, (IXt+X4-XS!2+!Xl+X4+X"n +f02l xr X4f 

+ f03 I Xsl' - f04 Re (XSX6~) + rosl X6 \.2. 

+ i6 Re { (x1+ X2.+ i X3 + ~ X4-)(X3*- xl)} 

+ jo~ Re t (X 1-x1- ; Xs ) x;} - i~ Re t (X I-X2 -Xs)xt } 

- t9 Re{CX1+X4--Xs)(x;+xl+X:)} 1 d6Gov , (3.36) 

,\Alhere 

q.4tne9 

Qo l> ===- .2 (2tr}S" ) (3. 3 7 ) 

dtSG ov = F(Z,1'1°)FCZ,f;)lnlltI6(ft+to+MB-MA)dcos&d1'1od,&o. (3.38) 

Here e is the angle between two emitted electrons, and the 

kinematic factors which show the momentum dependence are 

];4 = (ft~O+~.~ ) CfJ0 +"to) met 

±!) == (~Of20 + ft-11 + -me.2 )/2. , 
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(3.40) 

(3.41) 

(3.42)· 

(3.43) 



r _ (0 0)2 :r 0 6 - 1\ - 1':2 , 

to? :=. Cfl+ f20) me. ) 

fo 9 = 2 rn~ ) 

and the nuclear matrix elements are 

X1 == [(mj/me)U;j <H>R[(~-}MF-Cr~MEtT]) 
J 

X2 =: .[ (Ynj /m e ) Ve~ <H> R [ £; tvh: - El MfrT}} 
J 

)(3 == 2:- Uej Vej <H >R [qv tv M F - SA tAMEtTJ, 
J 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

X4 =- ~ UejVej<rH')R(1/3)[QytvMF+G-AEACMfrT/3-2MT)], (3.51) 

XD"=- t Uej\fej<rH'»RC1/3).2G-_tv1 Q , 
J 

X6 = L U~j 'Vej«H/>R/me}2Er-Ms , 
j 

where MF and MGT are defined in Eg. (3.25), and 

M b == < ~ r nrn· (r VIm X cfn) > , 
Ms = < fhm . ( Dt) )( q-M) > . 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

The inverse of the half-life for the 0+ +0+ transition in 

the 2n-mechanism is 
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v.lhere 

+ Gos I xd - G-06 Re {(Vl0.+ ~X3+; x4 )(xf-xb} 

+ Gro~ Re t (X\-X2- ; Xs)X;} 

Go ~ Re { ex 1-X2 - XS ) xl} 

8-0'} Re { (X1 +X4--Xs )(X;+ xt + Xi) } , (3.57) 

(3.58) 

Let us compare our results with those obtained previously. 

In the limit of A = K = 0 and U . = Q ., we found that the overall 
eJ eJ 

normalization by Greuling and Whitten 31 ) is twice larger than ours.* 

In the other limit of m. =0, our results can be compared with those 
J 

by Primakoff and Rosen15 ) who used the quite general form for HW'** 

* They assumed MS=MQ=MT=O and their result is twice larger than ours. 

* It seems that they did not take into account of the statistical 

factor. See, e. g., Eq.(20) of Ref. 31) and Eq.(33) of Ref. 15). 

** The correspondence between our notation and theirs in Ref. 15) is 
, , 

as follows; Cv=Dv=G[(gv+Kgv)Uej+ (Agv +Kgv )Vej ]/2, CA=DA= 
, , , 

G [ (g A - Kg A) U e j + (A. g A - Kg A) V e j ] /2, Cv QV = DV nV = G [ - (gv + Kg v) U e j 
, , , / 

+ (Agv +Kgv )Vej ]/2, and CAQA =DAnA =G[-(gA-KgA)Uej+(AgA-KgA)Vej] 2. 

We remind also that the result by Molina and Pascua132 ) is four 

times larger than ours. 
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L, 

(ii) The 0+ -+ 2+ transition 

Only the rank 2 part of the p~k and Q~k terms contribute to 

this transition. The final result is 

dr~: (O~2+) = (QO)}/m~ )(meRf.'2 (1/30 ) r r U~jVed <rH/> R 1.2. 

. {t2+ (N{\ Ni9.) + :h_(N~~ N~!l)} d£ov, 

where a Ov is defined in Eq. (3.37) and 

and 

Here 

-J;± = ±3 (=R'"Th)2 + ~·f1[10(ft°B."+m~) ± (I~I!>.+ If!lfl) 1 
+ ~ (1'tr!l° +m~)( r:p,12 + 11'~ 12) + rn r ri1f2 ,. 

( pq 
N2 (3) 

pq) '" ~ NPq* pq . N - ~ ~ N wlth 
2 (3) J z p, q=l 2 (3) 2 (3) 

Pi Pi 
N~ = ~v Cv N:2.(1) 

rl ... J Pt 
N3 = 2 G- 1\13(1) • 

(3.59) 

(3.60) 

(3.61) 

(3. 62) 

[T:vtl(O+-}2+) ]-1 = I IUQjVej <t-H)R 1'- {G-2+ (N~~Ni~) + G2- (Nr,N~~l 
J J , 

(3.65) 

where 

(3.66) 
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(iii) The 0+ + 1+ transition 

JI. £ k kj k' JI. 
The terms Q , P , M ,cJl.kjP ,C£kjQ J and R contribute 

to this transition. After small calculations, the decay formula is 

dr;~(O+--71+) = (Oov/ml) (lTIe R)-2 (1/6) 1'2: UejYej 1.2 

. [ il 16 (R~R'l )m.;-2«H>R f 

+:fo~ 2 { U,ba, N3i ) «tH'>Rf + 2 Re.(N3~ Ni)<rH')R<H>R + (N§, N;) «H)R)!2 } 

+ t [ f (Ni, N;)+4CN!,N!¥tH'>RY + {3(Ns~Nff) +t6(R~R1)m;2}~>Rl 

+ 2 {Re (Ni, Ni) -2.9""-crii,N.:)} <tH'>R <H>R ] 

+ To'7[ 16 (R\R~)m~«H)R)~- [(Nl~N11l)+(N;,N;) K<rH'>Rf ] 

+ £~ 16 {9m1 CN19.
J 
R~) i- Re(N!t~, Rg

)} <r-H') R <H>R, 

J09.24(R\ R~) rn~~KH>R)2 

+ J012 { (Ni, N3~) + o-J~, Nl ) - (N19.}N1
i ) -:l9m (N19., N!t!l ) + 29mCN39., N!)J~n{)R)'-

+ d02 4 (Ni, Ns~ )«H>d + d 03~ { (N,\ Nn + (Nl, N4~) }C<rH'?Rl 

- ~9hn(N:)Ni)<rH/)R<H)~ - ~D4-16 Re(N;,R'l)m~I<"'H'>R<H>R 

-1os2Re(N?,Ni)E::rl-6Ri + ~o62 Re(Nlq,N3'l)«~H'>Ri Jd&.ov, 
(3.67) 
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where fOi (i = 1- 9) are defined in Eqs. (3.39)-(3.47) and 

J03 = (-ptf.2° - ~ .~)C ,?!o+ ~of1l1e-.2./2 ) 

q (0 0 ->0 ->. (0 0 ) -1 
<1'04= 'P1 11 - -Pl' ~) f1 +f.2 111e , 

~os= C'f1o_~O), 

~Ob= (rYf2o +:p;.~ )(r10~ tO~) , 

q q 3 q* q 
and (Ni' Ni) = }z q~l Ni Ni with 

N; = - 2 ~_ < t\m~( t\m· Cf);\) > , 
N; = - 2 q._ < [~1\Yr\ X (f"h\X (T-,,)] ~ ) 

) 

The terms Ni ' Ni ' Nj ,N~ and N~ come from Qq, E q9,kP 9,k, p
q

, 

Eq9,kQ9,k and M
q

, respectively. 

(3-b) * . The N.-mechanism 

* 

(3.68) 

(3.69) 

(3. 70) 

(3.71) 

(3.72) 

(3.73) 

(3.74) 

(3.75) 

(3.76) 

(3.77) 

(3.78) 

The R-matrix for the N -mechanism is obtained by substituting 
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transitions into Eq. (B.3 ) in Appendix B. 

The nuclear matrix elements in the Rw-matrix are given by 

Eqs. (3.25)-(3.32). Since there is no standard method to treat 

the vlc . correction terms in the quark model, these corrections 

(the Rk and S terms in Eq. (3. 24» are discarded. It should be 

* noted that the operators 
+ j A I AI 
Tar r n (m)' n (m)' nm' +nm 

and change the intrinsic part of the hadron. The 

act on quarks 
1+ 

nucleon N(2 ) 

and 
3+ 

~(2 ) are assigned in the SU(6) quark model to the ground 

state i. e., the zero orbital angular momentum states around the 

center of hadron. From these considerations, we conclude that MF ' 

Q, d Q,k d' • MGT ,Q - an Q' ef lned ln Eqs. (3.25), (3. 28) and (3.30) turn 
Q,k Q, Q, 

out to be zero, and the terms P ,M and P contribute. (See 

Appendix B for the detailed discussion.) Consequently, the terms 

L -l1vk R -].lvk L -l1VO R -l1VO 
u 11vk LLR + u 11vk LRL and u 11VO LLR + u 11VO LRL contribute to the 

(SS)ov mode in the N*-mechanism, while t~vKi~' t~vK~~ do not. 

In summarizing the above discussion, the (SS)Ov mode in the 

* N -mechanism takes place only when A ~ 0 or K ~ 0 whether neutrinos 

are massive or massless. These results are listed in Table I. 
51) 

Halprin et al. have derived the bounds of the neutrino mass 

* both in the 2n- and N -mechanisms. However, the bounds they 

* obtained in the N -mechanism seem to be meaningless, because there 

* is no contribution from the m -term within the N -mechanism v 

adopted in the present thesis. We would like to emphasize here 

that the above discussions are independent of the "factorization 

hypothesis" which will be used later. 

* 
AI AI 

rnm and r+nm are defined in terms of the position operators 

of quarks measured from the center of the hadron. 

-32-



The non-vanishing product of the leptonic and hadronic parts 

for the Nll - + NB + 2e transition is 

SdXdU (u l t l-tvf -t-ll R I~Vr) = _1 <rH'> 
<1 p.\J f lR lA~f RL 6'1c: A 

. uc!" {YR [ {&.J. EQkj (fell) 0 + q_ (i\'!.r.o)~Jk } Mi + qA£A (fer,)~ M ~k ] 

- rO Ei-- (1',-r,)QMl } uc(1'.J 1 (3.79) 

where . . 
M~ == < \f~J >1. (3.80) 

MiR= < \T~ CTrnk >A (3.81) 

The nuclear tensor operators in Egs. (3.80) and (3.81) only change 

the spin and isospin of II and leave the remainder unchanged. 
, 'k 

Therefore, M~ and M~ represent essentially the matrix elements 

between II and p. Also, the expectation value of the "potential" 

<rH' > should be taken between II and p. Note that gA = gv and 

* g ~ = g~ should be taken in the N -mechanism as explained in § 2. 

Now we use the "factorization hypothesis"27) (see Eg. (B.1S)) 

* and evaluate the decay formula, 

* 
-j* -k 

Here we have used the following results; LM M = (16/3) 0jk ' 

-j * -k,Q, -jk* -,Q,m 2 
L M M = 0, L M M = 16 (OJ,Q,0km + 0jmok,Q, - '3 0jk0,Q,m)' where 

-j -'k "k 
M and MJ are defined from M~ and Ml by replacing Nll - and 

NB with II and p, respectively. The same relations hold for 

++ 
the matrix elements between nand II . 
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dr:v;( = (UovlinJ )(me Cl f2 (32/27) I~ Uej Vej I ~ P(.6.) I<~fl~i> 12 

. [ { fi-; :f1N
\ (G-A tAi:f;* }C<rH'>",o.f 

+ C/ {f tt<t-H'>'" 0../- f~t~o.)~tH'~Q) +Js~eH~ at ] d660» , 
(3.82) 

. where a (= 0.7 fm) is the range of quarks in ~ and 

L ~ (~..:..."\~ -4 -4 [ (-no. 0 l ..... 2. ..>0..2] .... ,l ~!l ..>0.. ~ ~ 1 
Ji = 11·f.2.)-~··f2 2 nr;.+me )+11'11+lf2\ +(t°fz~m~)(If.I+lr2l )+\1illt.l, 

(3.83 ) 

5~ - 3 (fi·11i-=p;·t UO(1'101io+rni)+ffll\!~I~]+5tPt~+~)(ffil~ftf)- fP.rl~l~ 
. (3.84) 

13N
-t =- [-.2 c1t·~)':.=Pt·r:2 [.2 (1't&~ m~)-I1;I~ltl~J +(ftll~rn~)(ml;'l~f)} /2., (3.85) 

0.86) 

(3.87) 

Here P(~) is the probability of producing ~ per nucleon inside 

the nucleus, and <~fl~i> means the overlap between the initial 

and final nuclei. The NA -+ N ~++ + 2e - transition is also included 

in the above formula. We refer to Appendix B for the detailed 

discussion. 

The inverse of the half-life is 

[To~\ot--?Yr= I ~lkjVej 12 'p(A)!<iJ5f El?i> [2 

.2: . [ { Et: Er~* + (6At,d G-:t}«rW>ACl.) 
+ ~3 { G! ~tt\>Ao..f - ~i'f"<rH>,.,Q<HiP-: +~C<H>",o.)~ (3.88) 

1 
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where 

The above formula is applicable to the 0+ -+ 0 + I 1+ and 2+ 

transitions by the appropriate choice of P(6) 1<~fl~i>12. 
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§4. The (BB)2v mode 

+ + Similarly to the (BB) Ov mode, the 0 -r J transitions are 

investigated. In our Hamiltonian in Eg. (2.1), the (BB)2v mode 

takes place through the process, 

(4.1) 

The contribution from the right-handed current is suppressed 

by A and K (A,IK\«l) so that this is neglected here. 

The Rw-matrix due to the V-A interaction for the 

N + NB + 2e - + ~ + ~ transition is expressed by 
a 1 J 

(4.2) 

where 

- A -~R;.~ 
Ep.y= CPCt1,f10)x)ff-l0-Ys-)LfCR1) e '1: ~ (4.3) 

. cp (r;., f~O ,1f YYy (1- is) LfCR2) e}- ~. ~, 

~f'-" = < N IL{ JtI'cX.lIN.XN,I~) J;:'{~)INnXNnl~Q)} /Ne) (4.4) 

~ 11, E h - ~+1';-t- k; + Eh- Ec<+1'~+R~ . 

Here the term E • . /12 is the statistical factor for the final two 
1J 

electrons and two neutrinos, i. e., E •. = 1/12 for i = j and E .• = 1 
1J 1J 

for i \= j. The full R-matrix for the (BB) 2v mode can be readily 

obtained in the same manner as for the (BB)Ov mode. 

Now we use the approximations (i) and (ii) introduced in §3 
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and take only the S-wave contributions from the electron and 

neutrino wave functions. Under these assumptions, the nuclear 

part J~v can be simplified. It is easy from the similar discus­

sion in §3 to confirm that the 0+ -r J+ (J ~ 3) transitions are 

forbidden. 

(4 -a) The 2n-mechanism 

The R-matrix is obtained from the Rw-matrix by the replace­

ments, Na -r NA and NB -r NB· 

(i) + + .. 
The 0 -r 0 trans~ t~on 

After straightforward calculations, we obtain 

where 

(4.6) 

/ 

dQ~2V= F (2, t;°)FCZ ,f~O) 1~llt! 1~,llf21 R~ R~ 

. 6" Cft°+-g° + ~~+ k; +MB-MA) dcoSG d-god11.° dR: dR; , (4.7) 

D = ~i K LI M~ I~ ~ d;'.l~ (K'+ KL +~ )Re(M~M~~)+ 1 *(21t..,sKL+2r:)IM~I~ 
(4.9) 
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Here F(Z, pO) is defined in Eq. (3.11), and M~ and M~T are defined 

s'imilarly to Eq.(3.25). and 

(4.10) 

(4.11 ) 

The primed sum in Eq. (4.6) should extend over all energet-

ically allowed neutrinos in the final state. Rigorously speaking, 

h · . k O 0 . t e neutrlno masses mj ln 1 and k2 should be taken lnto account 

in this primed sum. If all neutrinos are allowed to contribute 

and the replacement of k? by Ik. I is permissible, then 
1 1 

(2.E~ E .. 21u .1 2 1u .,2) = 1. The factor 1/4 in a
2v 

is to represent 
l~J 1J e1 eJ 

the statistical factor for the case of U . = 0 .• 
eJ eJ 

To perform the phase space integration, we neglect the masses 

of neutrinos and assume the following replacement (within a few % 

errors); P~ + k~ + <P~ + k~> = (MA - M
B

) /2. Then K ~ L ~ 2 ()lOme) -1. 

where 

Now the straightforward calculations lead to 

dr::n(o~o+) == (a,-y/m~) ('at /60) l (~v/~A)2 M~ -M~T{2 ~~2 

.(~Ot~~·t)(MA-MB-1\~r~)'~ d5"G 2V , 

d52 2lJ = Fez 7 nO) Fez ,11°) l~r Itl dcos& dl(d1io 

The inverse of the half-life is 

38-
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where 

Fa (T) = S d&G2y(a.w~t);t6omJ1)(~~o-=Pr·f:J(MA-MB-11°-Bo/) 
. . (4.15 ) 

T being the maximum kinetic energy release in units of m , e i. e. , 

T = (MA - MB - 2me ) /me . 

Primakoff and Rosen15 ) have~derived Eq. (4.5) in the limit of 

U . = 0 .• Note that their result has a few misprints and also 
eJ eJ 

* is four times larger than ours. Concerning this overall normal-

ization, our result in Eq. (4.12) agrees in this limit with that 
. . 30) 

by Konoplnskl. 

(ii) The 0++2+ transition 

For this transition, we have 

dr!co+-'7Y) == (Lhv/m~)(~t/~) (M~\M;l)(K-L ic-rt12°+ ~;g·t) dQ~ , 
(4.16) 

3 pq pq " pq* MPq 
where (M2 ' M2 ) = J~ p,q=l M2 2 with 

(4.17) 

2 To evaluate the term (K - L) , we use the approximation 

p? + k~ ~ <p? + k~> = (MA - MB) /2 only in the denominator of K - Land 
1 J 1 J 

. 0 0 0 0 -3 
obtaln K - L = 2 (PI - P2) (kl - k 2 ) (JlOme) • This approximation is 

valid within several % errors for Jl
O

:: 4. After the phase space 

integration, we get 

* See footnotes on page 28 and Eq. (60) of Ref. 15). Greuling 

and Whitten31 ) give results four times larger than ours. 
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(4. 18) 

The inverse of the half-life is given by 

(4. 19) 

where 

(4.20) 

(iii) The" 0+ -+1+ transition 

Similarly, we" obtain 

dfi~l\O+~1+) ==(a2v/m~)(~~~J /4) (MJ,MJ) 

. (K-L)2(1't&°-l-~]·&) dt5G~)) ) (4.21) 

(4.22) 

Note that the transition formula given above is exactly the 

h f h 0+ 2+ .. . . (4 16) same as t e one or t e -+ transltlon glven ln Eq~ . , 

aside from the overall normalization. Therefore, the decay rate 

f + + .. can be read off from the one or the 0 -+ 2 tranSl tlon. 
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Before closing this subsection, we would like to mention 

h k b l ' d 32) , h + + t e wor y Ho lna an Pascual who estlmated t e 0 + J 

transitions. We found several errors in their foumulae: (i) 

Th showed that r 2n(0+ ~ 1+) 0 h'l t th ' h' ey 2v ~ =, W 1 e we ge e non-vanls lng 

rate as given in Eg. (4.21) . (ii) Their decay rates of the 

0+ + 0+, 2+ transitions for the (SS) 2v mode are twice larger 

than ours. 

(4-b) The N* -mechanism 

* The R-matrix element for the N -mechanism is obtained from 

Eg. (B.3) in Appendix B by substituting the ~-matrices corre­

sponding to the NLl - + NB and NA + NLl++ transitions shown in Figs. 

3c and 3d. The hadronic part of the amplitude for N Ll- + NB + 2e 

+ N-:- + N."" is expressed as follows; 
1 J 

Sdxd~ (J~)= k{Jv~A(cf°~vJ+J~i~YO)Mi+ ~d~(~P.j~)JR+~~~W'j)M~Rl 
(4.23) 

where K, Hj 
Ll 

'k and H~ are defined in Egs. (B.12), (3.80) and (3.81). 

In order to express the origin of 
, 'k 

the H~ and H~ terms 

clearly, we retain gv and g A explicitly "but we take g A = gv 

hereafter. 

By using the factorization hypothesis, the decay formula is 

obtained in the following form; 

dr;~* = (a2.vlm~ )12 CJ.~ P(.6.)I<~:fI~L>I2. 
. (K -L )2 (11°~O + ~ :p;·11) dtfG;v ~ (4.24) 
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where both the N~_ +NB and NA +N~++ transitions are included 

according to the argument given in Appendix B. It is amusing to 

observe that the above formula is exactly the same as the one for 

h + 2+ 0 0 0 hood 11 t e 0 + tranSl tlon ln t e 2n-mechanlsm aSl e from the overa 

normalization. 

The inverse of the half-life is 

where F2 (T) is defined in Eq. (4.20) and a
2v 

is in Eq. (4.6). 

We would like to note that this formula is completely 

different from the one obtained by Picciotto. 52 ) This is due 

* to the fact that he used a crucial approximation for the R-

matrix, instead of taking the spin sum explicitly. However, 

his approximation can not be ragarded as reasonable. Note also 
ok 4 

that he has neglected the M~ term (gA term) in Eq. (4.23) which 

* 

(4.25) 

turns out to be dominant in the N -mechanism for the (SS)2V mode. 

* o 0 52) d hOt 0 { JllV ( ) } P1CC10ttO use t e approxlma lon E
llV 

- PI ++ P2 0:: 

E (1l0 vk+ llk vO)Mk -1 
llvgVgA g g g g 110 We have evaluated the spin 

sum exactly. 
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§S. The general properties of various transitions 

In the previous sections, we presented the formulae of the 

0+ + J+ transitions both for the (SS) OV and (SS) 2v modes. The 0+ -+ 0+, 

1+ d 2+ . . 1 d· an transltlons are only al owe ln the double S decay 

within our approximations introduced in §3. We also found several 

interesting "selection rules" as given in Table I: (i) If A = K = 0 

* (no right-handed interaction), the N -mechanism does not contribute 

to the (SS)ov mode, whether neutrinos are massive or massless. 

(ii) If A = K = 0, the 0++ 1+ and 2+ transitions of the (SS) Ov mode 

are forbidden and the 0+ + 0 + transition is only allowed in the 

* 2n-mechanism. We emphasize that these selection rules for N -

mechanism do not depend on the factorization hypothesis. The 

selection rule (i) seems to nullify the neutrino mass bounds 

derived by Halprin et al. in the N*-mechanism. Sl ) 

In the following we shall investigate the general properties 

of various measurable quantities in some details. 

(S-a) The decay rate 

We first discuss the relative order of magnitudes of the 

decay rates for various processes in both two modes. 

(S-a-l) The (SS)2V mode 

* Let us compare the yields from the N - and 2n-mechanisms 

+ + + d 2+ .. to the 0 + 0 , 1 an tranSl tlons. We obtain the half-life 

formula in the following parameterized forms from Eqs. (4.14) , 

(4.19) and (4.25); 
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[ Gv (O+~O+) ]-1 == 81'10'/ (~v/~A)~M~- tv1~T 12 (10/pO)1 

+ 82 '103'P(A) 1<~fl~t>12C10/~o)6 

+ 

83 .10 (tviX\ Ml1) (10/~o)6 

84-'103 
P(.6)/ I<~f r~L> 1:2 (10 lyto)6 

(5.1) 

(5.2) 

Here unknown quantities which are related to the nuclear structure 

are normalized so that the coefficients B. 's give us a rough idea 
1 

about the contribution from each term. The numerical values of B. 's 
1 

for some typical nuclei are listed inTableII. ~he .first and second 

* terms in Eqs. (5.1) and (5.2) come from the 2n- and N -mechanisms, 

* respectively. Concerning the quantities in the N -mechanism, 

P(~) is the probability of producing ~(1232) per neutron inside 

the nucleus and <~fl~i> means the overlap between the initial 

and final nuclear states. (See Appendix B for the detailed 

discussions. ) 

According to Primakoff and Rosen who introduced the idea of 

* 27) 2 
N -mechanism, we shall consider that P(~) and 1<~fl~i>1 for 

* 10-2 10-1 , the N -mechanism are order of and respectively, 

* The comparison of the yields from N - and 2n-mechanism can 

be easily made from Eqs. (5.1) and (5.2). By assuming IM~I « IM~TI 

and taking I M~T I ~ 0.01, we conclude the followings: (i) The contribution 
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f th N* h' t th 0+ + '" rom e -mec an1sm 0 e + 0 trans1t1on 1S at most 0.1 %. 

(ii) As for the 0+ + 2+ transition, both mechanisms have equally 

important in contributions if we assume p' (.6.) l<rpf1rpi>' 12 ~ 10-3 and 

(M~q , M~q) ~ 10-1 . (iii) The 0+ + 2+ transition is not important 

, " h h 0+ + , , 1n compar1son W1t t e + 0 trans1t1on. + + (iv) As for the 0 + 1 

+ transition, we shall not consider it because there is no 1 level 

near the ground state of the daughter nucleus for the some typical 

nuclei which we shall deal with later. 

+ + In summary, we conclude that in the (SS) 2v mode, the 0 + 0 

transition in the 2n-mechanism dominates over all other transi-

tions. It is expected that this fact simplifies the analysis of 

data, especially those obtained by the geological method. 

(5-a-2) The (SSJ ov mode 

The half-life formula for the 0+ + 0+ transition is given in 

Eqs. (3.57) and (3.88). 
N* 

The numerical values of the GO' and G, 
1 1 

for some typical nuclei are listed in Table III(a). In the following, 

the next simplifications are employed: 

terms of m" A 
J 

and K are retained, i. 

A (g~/gA) gi . and neglecting X2 term. 

(i) Only the second order 

22, 
e. mjGA ::: mj

gA, GAt.A ::; 

(ii) The nuclear matrix 

d d ' h + + " an MS appeare 1n t e 0 + 0 trans1 t10n 

are neglected in order to simplify the discussions. This approx­

imation for MT is good for the spherically symmetric nuclei. 15 ) 

(iii) The potential terms <H(r, mv ' ~O» and <rH' (r, mv ' ~O)> 

are replaced by their values at m = 0 and are taken to be real v 

quantities. This replacement is valid for the terms like 

L U ,v ,<H>, because the potential behaves roughly as a constant 
eJ eJ 

for m, :5 1 MeV and decreases rapidly from m, ;:: 10 MeV as shown 
J J 
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in Figs.lla and lIb. The above replacement for the term 

2 
l: m. U . <H (r, m., 11

0
) > corresponds to assuming that the mixing 

J eJ J 

angles between the light mass neutrinos (m
j 

~ 1 MeV) and the heavy 

mass neutrinos (mj? 10 MeV) are sufficiently small so that the 

contribution from the heavy mass neutrinos can be safely neglected. 

Here we consider only this case and a detailed discussion is given 

in Appendix c. 

According to the above simplifications, we shall express the 

half-life in the following parameterized forms, 

[Tov(o+-7o+) ]-1 = {C1 \I"(mj/me ) UeJ 12 

- C2 (A- Ye) 1~(h1J/h1e)U~ 1·Ir-UejVej I COStfJ 

+ C3 (>"~K)21 I"U~jVej 12 }.10./ MoT \!l. 

+{ (4)(1+ CS (A~ }().l +C 6 1('} II:U,jV<;jI.10.'l PCt".)I<<ff I p..:>1 2
, (5.3) 

The coefficients C. are defined by 
1 
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(5.8) 

(5.9) 

N* 
where GO' and G. are defined in Eqs. (3.58) and (3.89). 

1. 1. 

The numerical values of Cl - C
6 

for some typical nuclei 

are listed in Table IV. In obtaining these coefficients, we used 

the numerical values of the average potentials as follows. (See 

Appendix C for the detailed discussions) 

48Ca 
76

Ge 82Se 128Te 130Te 
150Nd 

<H>R 0.65 0.68 0.68 0.55 0.53 0.67 

-<rH'>R 0.78 0.80 0.80 0.72 0.71 0.81 

<H>/),a 0.94 0.95 0.95 0.91 0.90 0.95 

, 
-<rH >/),a 0.99 0.99 0.99 0.97 0.97 0.99 

It is easy from Eq. (5.3) to conclude that if A ~ 0 and/or 

* + + K:\: 0, the N -mechanism for the 0 + 0 transition gives 10 - 200 

times larger contribution in comparison with A- or K-term in 

2n-mechanism, provided P (M 1 <<pfl <Pi> 12 = 10-3 . This 

dominance may come from two reasons: (i) The neutrino exchange 

* potential in the N -mechanism (-<rH' > - l/a where a is the size 

of /),) is enhanced by the order of magnitude relative to that in 

* the 2n-mechanism «H> - l/R) • (ii) In the N -mechanism, the 
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transition of the single constituent of nucleus triggers the 

double S decay like a single S decay so that the nuclear matrix 

elements are expected to be enhanced by the order of magnitude. 

Once the half-life (Tl / 2 )Ov is given, it restricts three 

parameters Il: m. U
2 

·1, >..1 (gv' /gv) l: U . V . I and I K l: U . V . I to 
J eJ eJ eJ eJ eJ 

the domain which is determined by the ellipsoids as seen from 

Eg. (5.3). We consider the typical cases: (i) >.. »/Kland (ii) >.. «IKI. 
In these cases the allowed domain is, in principle, surrounded by 

two ellipses in mv - >.. (or K) plane, where these ellipses correspond 

to the no-CP-violation case (cos 1/1 = ± 1 ) . If CP-violation phases 

are known (I cos 1/1 I < 1), the allowed values should be restricted to 

be on one ellipse. If the lower limit of the half-life is only 

known from the experiment, the allowed domain becomes the indide of 

* the ellipse. Since the contribution from the N -mechanism dominates 

over the one from the 2n-mechanism and no interference between these 

two mechanisms is assumed, these two ellipses ov~rlap practically. 

Later we shall present some examples which will be shown in Fig. 9. 

+ + As for the 0 -r 2 transition, the half-life is given in 

N* 
Egs. (~.65) and (3.88). The numerical values of G±2 and Gi are 

listed in Table III (b) • If the nuclear matrix elements and 

are assumed to be some appropriate 

values given in § 6 - d, the following are concluded: The 

contribution of N*-mechanism in the 0++2+ transition is as important 

.' . h + 0+ as that of the >..- or K-part ln the 2n-mechanlsm of t e 0 -r 

transition. Note also that the half-life of the 0+ -r 2+ transition 

depends only on >.. and K. 

+ + The 0 -r 1 transitions are not considered here because for 

+ the nuclei listed in Table VI there are no 1 levels near the 
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ground state of the daughter nucleus. 

(S-b) The angular correlation--

For the (SS)2V mode, the angular correlations are given 

from Eqs. (4.5 ), (4.16), (4.21) and (4.24). The 0+ -+ 0+ transition 

in the 2n-mechanism dominateS over others as discussed in §S-a-l. 

Therefore the angular correlations are governed by 1 - cos e . 

Those behaviors are shown in Table v. 

For the (SS)OV mode, the angular correlations are given 

from Eqs. (3.36), (3.59), (3.67) and (3. 8Z). The behaviors of 

the angular correlations are somewhat complicated because of the 

existences of many nuclear matrix elements. We shall only consider 

+ + the 0 -+ 0 transition by using the. same simplifications stated in 

§S-a:-2. The angular correlations of the 0+ -+ 0+ transition are 

shown in Table V. Here we only consider the case where I p~ - p~1 > me· 

(S-c) The single electron kinetic energy spectrum 

The typical single electron kinetic energy spectra for the 

(SS)2V mode are plotted in Figs.6a and 6b. For the (SS)OV mode, 

+ + the 0 -+ 0 spectra are plotted in Fig. 7 for three cases; (a) 

A = K = 0 and mv ~ 0 , (b) A ::f 0 and K = m = 0 in the 2n-mechanism, v 
* (c) A ~ 0 and K = 0 in the N -mechanism. 

(S-d) The sum energy spectrum 

The spectra for the kinetic energy sum of two electrons are 

shown in Fig. 8 both for the (SS)2V and (SS)OV modes. Note that 

as the energy sum tends to its maximum energy value T, the spectra 

for the (SS)2V mode die away rapidly in contrast to the (SS)OV 

mode where the yield appears only at T as shown in Fig. 8.
15

),31) 
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§6. The data analysis 

There are two different approaches to measure the half-life, 

the geological method and the counter (chamber) experiment. In 

the geological method, the half-life is estimated by measuring 

the abandance of the decay product (the daughter nucleus) in the 

geologically old ores with the use of the mass spectrometer. 

The geological experiment has some advantage because the decay 

products are accumulated for a long period. However, there may 

be the ambiguity of measuring half-lives mainly due to the evap-

oration of the decay product (noble gas). In addition, it is 

inherently unable to distinguish directly the (SS)2v and (SS)Ov 

modes. The transitions to the final excited states also contribute 

to the half-life measured in this method, too. This type of 

measurements has been made for the total half-lives of 82se,54) ,55) 

128T 26) d 130T 56)-59) e, an e. On the other hand, the counter 

experiment can distinguish not only the two decay modes but also 

the various transitions in principle. The lower limits of (T l / 2 )OV 

f 48 C 23) 76G 60),61) 82s 62) 150 d 63) 48 23) 
or a, e, e, N, and of (Tl / 2 ) 2v for Ca 

have been measured. Recently, Moe and Lowenthal reported the 

observation of the (SS)2V mode for 82se by using the cloud 

chamber. 24 ) All those data are listed in Table VI . 

(6-a) The nature of the neutrino: 

. 128 130· 
We shall analyze the data on the ratlo of the Te to Te 

. k 1 26) half-lives measured geologlcally by Hennec e et a . Their 

result is 
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(6.1 ) 

The much longer half-life of l28Te than that of l30Te comes from 

the fact that the available phase space is considerably smaller 

for l28Te than for l30Te , because the maximum kinetic energy releases 

are 1.7 and 5.0 for l28Te and l30Te in units of m , respectively. 
e 

This smaller phase space gives us the following expectations: 

. . f h ( Q Q ) d f 128 . . d bl The branch1ng rat10 0 t e ~~ Ov mo e or Te 1S conS1 era y 

enhanced relative to the case of l30Te because of the phase space 

difference between three-body and five-body decays if there is the 

(S8)Ov mode. In other words, if the half-lives of the (SS)Ov and 

(SS)2v modes are denoted by TOv and T2v ' we can expect, 

(6.2) 

Let us rewrite the ratio RT in terms of the half-lives for 

the (SS)ov and (SS)2V modes, 

1 + 
1 + (6.3) 

Note that when there is 

to the trivial relation 

no (SS)Ov mode (TOv=oo), Eq.(6.3) reduces 

R = l28 T /130T . If there exists the 
T 2v 2v 

(SS)ov mode at all, the inequality 

(6. 4) 
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should be satisfied as we can see from Eqs. (6.2) and (6.3). 

Therefore, the accurate theoretical evaluation of the «(3(3)2V 

mode is essential to answer whether there exists the «(3(3) Ov mode 

or not. Fortunately enough, we have demonstrated in §5 that as 

f h ( Q Q) d 0+ 0+ '" h . or t e ..,.., 2v mo e the -r trans1t1on 1n t e 2n-mechan1sm 

dominates over the other transitions as well as the contribution 

* from the N -mechanism. Thus we obtain from Eqs. (4.14) and (5.1). 

12~ ---r 
12lJ 

130-r 
12)1 

* where 

1/30([(~V/~ArM~- ~~,l/rto) 1:1-

II~g ([(~v/~A)~M;- M~TJ/rtO) 12 , 

+ + Here F 0 (T) is the kinematical factor for the 0 -r 0 transition 

in the 2n-mechanism which is defined in Eq. (4.15). 

(6.5) 

(6.6) 

Following the above argument and using Eqs. (6.1) ,(6.4)-(6.6), 

we obtain the (sufficient) condition for the existence of the 

128 
«(3(3)Ov mode for Te. 

Ilsce [(~v/~A)~M;- tv1~,.1 /f-lo) 12 
I \:ll? ([ (~V/~A)2 M~ - /V1~T J / ~o) 1:1-

> 0 . .2 ~ (6.7) 

S · l28T d l30T . hb' . t d th . 1 1nce e an e are ne1g or1ng 1SO opes an e1r nuc ear 

matrix elements are expected to be similar, the above inequality 

is considered to be well satisfied. Thus the existence of the 

«(3(3)Ov mode for l28Te is suggested and neutrinos are likely to 

be Majorana particles. 

* See next page. 
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The above argument is supported by the theoretical estimate 

. 1 64) 1 I 12 of the nuclear matr~x e ements by Vergados '; MGT = 0.32 and 

128 1 I 12 130 110 = 23.4 for Te, and MGT = 0.25 and 110 = 25.0 for Te. 

The M; is neglected in comparison with M~T.15) ,65),67) 

Thus it is concluded that the experimental data on the ratio 

of the l28 Te to l30Te half-lives by Hennecke et al. strongly 

suggest that neutrinos are likely to be Majorana particles. It 

should be noted that the above conclusion depends on both the 

reliability on the data by Henneke et al., the closure approximation66) introduced 

in §3 and the evaluation of nuclear matrix element as seen form Eq.(6.7). 

* Althouth the estimate of r 2v given in Eq. (6.6) is considered to 

be very good, we shall argue that this value is "at least" the 

minimum value. Let us consider the following two effects which 

might change the value of r 2v : (i) The phase space integrations 

for the (SS)2v mode are carried out by ignoring the neutrino 

masses. If there were neutrinos with masses around lMeV, the 

kinematical factors should be modified. However, this inclusion 

only increases r 2v because the available phase space for l28 Te 

is much smaller than for l30Te . (ii) If we take account of the 

contributions from 0+ -r 1+ and 2+ as well as the transitions due 

* to the N -mechanism, they also increase r 2V because their 

common kinematical factor F2 (T) defined in Eq. (4.20) gives 

F
2

(5.0)/F 2 (l.7) =8.6.10 7 which is much larger than FO(5.0)/FO(l.7) 

=5.6.10 3 . 

The fact that the value of r 2v is the smallest gives a 

further support to our conclusion that neutrinos may be Majorana. 

That is, the above effects work only to loosen the condition 

given in Eq. (6.7) • 
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(6-2) The neutrino mass and the right-handed interaction: 

Before going into the detailed discussion, the following 

remarks are in order: 

For the (SS)2V mode, it is sufficient to consider only the 

0+ +·0+ transition in the 2n-mechanism as discussed in §5. 

For the (SS)OV mode: (i) When there are no right-handed 

interactions (A = K = 0), there is only the 0+ + 0+ transition in 

the 2n-mechanism and its decay rate depends on m
j

, MGT and MF . 

(ii) When there are right-handed interactions (A =\= 0 or K ~ 0), the 

+ 1+ d 2+ .. . . . o + an tranSl tlons In the 2n-mechanism are allowed In addl-

tion to the O++O+transition,andalsothe 0++0+,1+ and 2+ transi-

* tions in the N -mechanism should be taken into account. (iii) 

h + 1+ . . . f h T e 0 + tranSl tlons are not consldered here because or t e 

nuclei listed in Table VI + there are no 1 levels near the ground 

state of the daughter nucleus. (iv) The 0+ + 2+ transition is 

not also taken into account in the data analysis because nuclear 

matrix elements are not well known. ( ) h 
+ + . . v For t e 0 + 0 transltlon, 

the matrix elements M
F

, MQ -', MS and MT are neglected in evaluating 

A and K. Thus the estimates of A and K give only the order of 

magnitudes,although the estimate of the neutrino mass is more 

reliable. (vi) As for the N*-mechanism, P(~) 1<~fl~i>12 is taken 

-3 
to be 10 . (vii) The nuclear matrix elements MF and MGT for the 

(SS)OV mode are assumed to be equal to M~ and M~T for the (SS)2V 

mode, respectively. 

Let us derive the constraints on the neutrino masses m. and 
J 

the relative strength of the right-handed interaction A and K by 

using the Vergados' estimation of nuclear matrix elements for 

128Te and 130Te . We obtain from Eqs. (6.1), (6.3)-(6.6), 

-54-



It should be noted that the yield of the (SS)ov mode is more 

128 than 58% of the double S decay for Te. 

It is clear from Eqs.(3. 57 ). and (4.14) that when A=K=O, 

T2V/TOV depends only on ~O because the nuclear matrix elements 

(6. 8) 

I g~ Mp - g~ MGT I and I g; M; - g~ M~T I are canceled out, if we assume 

* these nuclear matrix elements have the same value. Thus we obtain 

32 eV (6.9) 

for A = K = O. If there is no mixing among neutrinos, the above 

limit on neutrino masses is the constraint on the mass of the 

electron neutrino. 

When A:\: 0 or K =\= 0, Eq. (6. 8) restricts three parameters 

l: m. u2
. I, A I (gv' /gv) l: U . V . I and I K l: U . V . I to the domain 

J eJ eJ eJ eJ eJ 

which is determind by the ellipsoid. We derive the relations among 

them as shown in Pigs. 9a and 9b for some special cases. 

Prom these figures,-we get the following values. 

)..1 ( ~~/~v) L:U~j VeJ I == 1. 6 . 10-5 
. J 

for A» I K I and m « 1 eV , v 

I K ~ Ue.j Vej I = 1. 5 . 10-
5 

(6.10) 

(6.11) 

for A« I K I and m « v 1 eV. If there is no mixing among neutrinos, 

* 
2 2 2 

We assumed that 2.l:.E:. ·Iu ·1 Iu ·1 ~ 1 for the (SS)2V mode. 
l~J 1J e1 eJ 
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(1) (2) _ 
i. e., uej = 0jl' Vej +n - 0jl and U(~) = V(~) = 0, the limits 

eJ+n eJ 

on A and K become meaningless because LU , V , becomes zero, 
eJ eJ 

but one may still assume that mixings remain in V(~) from the 
eJ 

phenomenological point of view. 

If the contribution from the 0+ -+- 2+ transition to the (SS) Ov 

mode is taken into account, the smaller values of A and .1 K 1 would 

be obtained. Note that the above estimates of A and IKI are much 

smaller than the bounds obtained from various weak interaction 

40) 
processes, but· they are much larger than the ones expected from 

the grand unified theories discussed in §2. 

So far, we only discussed the data on the ratio 128T /130T 1/2 1/2 

by Hennecke et al .. 26) In order to see the consistency of our 

argument, we evaluated the half-life of 130Te where the (SS)2v 

mode is expected to dominate over the (SS)OV mode. In Table VI , 

, h d" f 130 h' h we glve t e pre lctlons or Te, w lC are a little smaller than 

the measured half_lives~6)-59) 

(6-c) The analysis on other double Sdecaying nuclei: * 

(6-c-l) 48 Ca -+- 48Ti + 2e - (+2v) 
e 

By using the experimental lower limit of (Tl / 2 )2v by Bardin 

et al. 23) in Table VI and the numerical values in Table 11, the 

inequality 1 MGT/110 12 < 7.3 • 10-4 is obtained. In the following 

we adopt the estimates byVergados, 64) 1 MGT 12 ~ 0.012 and ]l0 ~ 12.7 , 

which well satisfy the above inequality. Note that this value 

of IMGTI2 is considerably smaller than the other theoretical 

estimates. 65),67) Bardin et al. 23 ) reported the lower limit of 

(T
l

/ 2 ) Ov for the 0+ -+- 0+ transition. This gives the restriction 

* Hereafter we assume M~T = MGT . 
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on the neutrino masses, A and K from Eg. (5.3). The allowed 

domain is the shaded area in Fig. 9. From these figures, we 

obtain IL m. u2 
. I < 640 eV for A = K = O. 

J eJ 

AI (gv'/gv) LU .'v . 1<3.3 .10-5 for A» 
eJ eJ 

< 2.8 .10-5 for A« I K I'. 

(6-c-2) 76Ge -+ 76se + 2e - (+2v) 
e 

We also get 

Only the data on the lower limit of (Tl / 2 )ov by Fiorini 

et al.
60

) is available. 2 
By assuming I MGT I ~ 0.1 and 110 ~ 10, we 

obtain the outer boundary ellipse in Fig. 9. From these figures, 

we obtain I~m. u2
.1 < 430 eV for A=K=O, AI (gv'/gv)~U . V .1 <9.7.10-5 

J J eJ J eJ eJ 

for A» I K I , I K L U . V . I < 8.4 • 10-5 for A« I K I • 
eJ eJ 

(6-c-3) 82Se -+ 82Kr + 2e - (+2V) 
, e 

By comparing the total half-life54 ) ,55) with the lower limit 

of the half-life for the (SS)ov mode62 ) in Table VI , we conclude 

that the (SS) Ov yield is at most 10%, i. e., Tl/2 ~ (T l / 2 ) 2V' By 

using the data on Tl/2 by Srinivasan et al. 55 ) and the above 

* relation, we obtain 

By assuming 110 ~ 10, I MGT 12 ~ 0.085 is obtained. Then the lower 

limit of (T l / 2 )OV by Cleveland et al.62 ) leads to the outer 

(6.12) 

* We obtain IMGT/11012 ~ 1.7' 10-3 and 2.3' 10-2 from the data by 

Kirsten et al. 54 ) and Moe and Lowenthal,24) respectively. 
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* boundary ellipse shown in Fig. 9 which gives 

eV for A = K = 0 

and 

) 

* If the nuclear matrix element derived from the data by Moe 

and Lowentha1
24

) is used, I ~ m. u2 . I < 54 eV is obtained. 
J J eJ 

(6.13) 

(6.1.4:) 

(6.15) 

However, their half-life for the (SS) 2v mode is 10 ~ 20 times 

larger than the others
54

),55) and the much larger nuclear 

matrix element l!>,lGTI2::::: 2.3 is required. Recently, Haxton 

et al. 66 ) estimated the values of nuclear matrix elements; 

I MF I < o. 02, ]J 0 (F) = 21. 9 (20. 2) , I MGT I = 1. 88 (2. 56) , 

82 76 
]JO(GT) = 19.7 (18.4) for the (SS)2v mode in Se ( Ge), respec-

tively. They showed that these estimates are consistent 

with the data of 82se by Moe and Lowenthal. 
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( 6 -d) The predictions: 

+ + + + . 
To estimate the half-lives of the 0 -+ 0 and 0 -+ 2 tranSl-

tions for the (SS)2V and (SS)ov modes, we used the following 

* values: 

0.012 0.1 0.085 0.32 0.25 0.1 

].la 12.7 la la 23.4 25.0 la 

The nuclear matrix element MGT for the (SS)ov mode is 
, 

assumed to be equal to MGT for the (SS)2v mode. 

0+-+0+ 2 10-3 is used. For the transition, P (lI) 1 <<P f 1 <Pi> 1 ~ 

For the 0+ -+ 2 + tr"ansi:tion, we assume the following values: 

(MPq MPq) ~ 0 1 (NPq NPq ) (A,2 4)-1 ~ 0 1 for the 
2 ' 2" ., 2 '2 gA . 

A »I~I case, (N~q, N~q) (K
2 

g!)-l ~ 0.1 and 

(N~q, N~q)(4K2 g; g~)-l ~ 0.1 for the A« IKI case, 

p' (lI) 1 <<P f 1 <Pi>' 12 ~ 10-3 and 110 (0+ -+ 2+) :::: ].la (0+ -+ 0+). The predic­

tions for the (SS)Ov mode are presented in three caseSj (i) 

A=K=O and 1 :Em. u2
. 1 = 32 eV, (ii) IKI« A\=O and m. ~ 0, 

J eJ J 

(iii) A« 1 K I ~ 0 and m. ~ O. In Cases (ii) and (iii), the values 
J 

in Eqs. (6.10) and (6.11) are used for A and K, respectively. 

* The numerical values for 76Ge and l50Nd , and ].la for 82se 

are the assumed ones in this table. MF , MT , MQ and MS are 

neglected. 
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§7. The summary and discussion 

The O+-+J+ transitions for both (SS)Ov and (SS)2V modes in 

* the 2n- and N -mec~anisms are investigated by using the general 

effective charged current interaction Hamiltonian which is 

motivated by the grand unified theories. 

The condition is proposed to determine whether neutrinos 

are Majorana particles. This Majorana condition Eq. (6.7) is 

derived tbrough the. following steps in order: 

(i) If there exists the (SS)ov mode at all, the branching ratio 

f th ( Q D ) d 128 '1 th h ' 130 T o e..,.., Ov mo e for Te 1S arger an t at 1n e. In 

128 130 
other words, the inequality (T2v/TOV) > (T 2v/T ov )' Eq. (6.2), 

should be satisfied. 

(ii) From the inequality in (i), the ratio of the total half-

I , R h Id t' f R =f.tT (128 T )/T (130T J)<128 T /130 T 1ves, T' s ou sa 1S y T tl/2 e 1/2 e1 2v 2v' 

Eq. (6.4). This is the condition for neutrinos being Majorana 

particles. In order to evaluate this condition, it is sufficient 

to know only the theoretical estimate on the (SS)2V mode, once 

the data on RT is given. 

(iii) Concerning the (1313) 2v mode, the 0+ -+ 0+ transition in the 

2n-mechanism is proved to dominate over all other transitions in 

* both the 2n- and N -mechanisms. In evaluating the half-life of 

this 0+-+ 0+ transition, there is no arnbigui ty except for the 

1 / 2 I I 12 2 () * nuclear matrix elements (gv gA) MF - MGT /110 ' Eq. 5.1 • 

(iv) Thus, the Majorana condition is expressed as the inequality 

between the nuclear matrix elements and the experimental data 

on 

* 

RT as given in Eq. (6.7). 

The information on <En> and MGT may be obtained experimentally 

by examining giant resonances, as pointed out by H. Ejiri. 
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The data on the ratio of the 128Te to 130Te half-lives have 

b d b · . 26) een reporte y Mlssourl group. If we take this value of the 

ratio seriously, we conclude that neutrinos are likely to be 

Majorana particles. This conclusion comes from the observation 

. 128 130 
that, Slnce Te and Te are neighboring isotopes, their 

nuclear matrix elements are expected to take similar values and 

thus the Majorana condition is satisfied. In fact, Vergados' 

estimates 64 ) of these nuclear matrix elements in the shell model 

confirm our conclusion. As seen from the Majorana condition 

Eq. (6.7), our conclusion is not altered even if the experimental 

value on RT is changed by factor 2. 

The data measured by the geological method contain the 

uncertainty which is due to. the evapolation of the daughter 

nucleus (noble gas) from the ore. It is desirable to compare 

the results obtained from samples' of various ages and at different 

locations. 

So far, only the theoretical analysis on the (SS)2V mode has 

been used. Now let us consider the (SS)ov mode. From this mode 

it is possible to obtain the information on the neutrino mass and 

the magnitudes of A and K, if the experimental data on the half-

lives of this mode are given. 

If A = K = 0, only the 0+-+ 0 + transition in the 2n-mechanism 

takes place in the (SS)ov mode. Its decay formula is proportional 

to the square of the neutrino mass in the 

the square of the nuclear matrix elements 

form of 1 l: m. u2 . 1 2 and 
J eJ 

1 2 2 12 gv MF - gA MGT as seen 

from Eq. (5.3). We have used the assumption that MF and MGT in the 

(SS)Ov mode are equal to M~ and M~T in the (SS)2v mode, respectively, 

and then taken Vergados' estimatesf0r them. 64 ) By using the data 

on the ratio of the 128Te to 130Te half-lives,26) the mass of 
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neutrino is estimated to be 1 L: m. u2 . °1 ~ 32 eV. If there is no 
J eJ 

mixing among neutrinos, the above neutrino mass value should be 

interpreted as that for the Majorana electron-neutrino. As an 

example of the finite mixing, we consider the maximal mixing case 

discussed in Appendix D. As shown in Eg. {D.12}, this result can 

be expressed as 

{7.1} 

where SI stands for the CP-violating phase in the leptonic sector 

of the Maj orana neutr.ino system. If SI = 0, the obtained mass 

value means the average of two masses ; {ml + m2 }, while if SI = 1T/2, 

it corresponds to the half of the mass difference, ~Iml - m21 . 

It is interesting to compare this value with the recent experimental 

3 
results for the {antineutrino} mass mv obtained from the H decay. 

The result obtained by Lubimov et al. 13 )is 

14 « mv « 46 eV ( 9 9 % C..L.) (7.2) 

and the other by Bergkvist et al. 68 }is 

'h1- < 60 eV 
V 

( 90 X C. L. ). (7.3) 

In the single S decay, the neutrino mass effect appears in the 

phase space part F{m.}. If there is the neutrino mixing, we have 
J 

the combination ~IU .1
2

F{m.) instead of the simple form like 
J eJ J 

1 L: m. u2 
. 1 for the double S decay. 69) Thus, it should be careful to 

j J eJ 
. th 1 '" u2 d . tl l' f h . th .. 66 } compare m- W1 L. m. . 1rec y, t ere 1S e m1x1ng. 

v J eJ 

Therefore, m- can not be expressed in a simple form of m. 's and 
v J 

the mixing angles. Note that the CP-violating phases characteristic 

to Majorana neutrino system do not appear in the single S decay. 

When A:\ 0 and K =\ 0, the constraints on m., A 
J 

and K are 

obtained from the data on the half-life of the {SS)ov mode as 

shown in Fig. 9. The values of A and K are estimated only by the 

order of magnitudes, because there are various kinds of nuclear 
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matrix elements in this case and some of them are not well-known. 

When we estimated A and K, we neglected all other nuclear 

matrix elements ey~ept MGT . We obtain the values of A and K as 

AI (gv'/gv)l: U . V .1 ~ 1.6 .10-5 for A» IKI and mv = 0, and 
eJ eJ 

I K l: U . V . I ~ 1. 5 • 10-5 for I K I » A and m = 0 These values are eJ eJ v . 

considered to be the upper bounds if m ~ o. We would like to 
v 

mention that the above values of A and IKI are much larger than 

the predicted ones in most of the grand unified theories as 

discussed in §2. 

Th 0+ 2+ . . .l,-.l,-e + transltlon occurs only if A,O and/or KTO, so 

that the measurement of this transition gives the direct informa-

+ + tion on A and K. Note that in the A \= 0 and/or K =t 0 case, the 0 -72 

transition may give the comparable contribution with the 0+ + 0+ 

transition. 

+ + + + ., f th Predictions for the 0 -7 0 and 0 -72 transltlons 0 e 

(SSJ 2v and (SS)ov modes are made by using some appropriate 

values given in §6-d. For the (SS)Ov mode, three extreme limits 

are considered: ffiv ~ 0 and A = K = 0 ; ID = 0 and A » v 

and IKI »A. The results are given in Table VI. 

I K I; and m = 0 
v 

Note that these 

predictions give us only the order of magnitude~ because the 

theoretical estimates of the nuclear matrix elements in the 2n-

* mechanism and the parameters in the N -mechanism are not yet well-

known. 

-63-



Acknowledgement 

The author would like to express his deep appreciation 

to Professor Tsuneyuki Kotani and Dr. Eiichi Takasugi of Osaka 

University, and Professor Masaru Doi of Osaka College of 

Pharmacy for their painstaking guidance, valuable advices and 

discussions as well as their careful reading of the manuscript. 

Many parts of this work were done in the collabolation with 

them and Miss Kazuko Okuda. Sincere thanks are due to Professor 

Masakatsu Kenmoku of Nara Women's University for his helpful 

discussions espetially on the quantization of the Majorana field. 

The author thanks Professor H. Ejiri, Professor H. Ohtubo 

and Professor A. Hosoya of Osaka University for their 

pointing out the additional contributing diagrams. 

Thanks are also due to all members of the high energy theoretical 

group at Osaka University and at Research Institute for Fundamental 

Physics of Kyoto University for their kind encouragement and 

discussions. 

The author would like to thank Iue-Kinenkai and Soryushi­

Shogakukai for their financial supports. 

The author is indepted to Miss Yoshiko Hinohara, Miss Mizue 

Tanaka, Miss Yoshiko Tanaka and Miss Hiroko Matsumura for typing 

this thesis carefully and patiently. 

-64-



Appendix A The quantization of the massive Majorana field 

Let us review shortly the quantum theory of the massive 

Majorana field N(x) following the treatment by case.70 ) The 

free Lagrangian is given by 

with the constraint of 

NC(x) = N eX) . 

{A. 1) 

(A.2) 

Because of this constraint N{x) and N{x) can not be treated as 

the independent quantity in contrast to the Dirac field case. 

Therefore, it is useful to express the Majorana field in the Weyl 

representation by using the two-component spinor field n{x) as 

follows, 

Nex) = (A. 3) 

~(X) 

h 2. 2 1· . were a 1S 2 x Pau 1 matr1x. This N{x) satisfies the condition 

(A-2) automatically. 

In terms of n{x) the Lagrangian becomes 

The field equations. for n (x) are given by 

(00 - Q"ROR ) ~ Cx.) = - YYI (j~'l.*(X) , 

(0 0 + crk 
() k ) cr~ 1~ (X.) = hi ~C:() 
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Note that from Eqs. (A.5) and (A.6) the two-component spinor 

field n(x) satisfies the Klein-Gordon equation, 

( Cl + tn2 
) ~ Cc ) ::: 0 . (A. 7) 

From the above Lagrangian, the canonical conjugate field of 

n(x) is in+(x) . The quantization of the field is performed by 

imposing the equal time cannonical anticommutation relations, 

hcx), 'It «P}:':'='j' = ~ cx- ~) , (A. 8) 

{ ~C() ) ~ (Ic}) ] 0_ 0 == {~+(X) n+c'j) 1 = 0 
X-~ 1 l ):x:.0=~O (A. 9) 

The quantized form of n(x) is 

where the creation and annihilation operators a+(p, s) and a(p, s) 
I 

satisfy the carinonical anti-commutation relation, 

(A .11) 

Then, the quantized form of N(x) is obtained from Eqs. (A.3) 

and (A.l0)as follows 

N (X) == C2~)'/2 5 dpj ~ ~ [ D. Cp, S) lA cp, s) e-;px + D. tep, s) U Ccp, s) e tpx} . 
(A.12 ) 

with the charge conjugation matrix C. 

The propagator of the Majorana field can be calculated 

straightforwardly by using Eqs. (A.ll) and (A.12), 

(A.13) 
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Note also that we obtain 

(A.14 ) 

The latter is only possible for the (self-conjugate) Majorana 

field and makes the (SS)ov mode possible. 

As defined in Eqs. (2.27) and (2.28), current neutrinos veL 

and v~R are the superpositions of massive Majorana neutrinos Nj . 

We obtain from Eqs. (2.27), (2.28) and (A.14) , 

< I ,) \ ) T ] I > . '\ 2 1- t5" S CT (1-«s-)T o T [ Ve L 6:), Vel (~) 0 = J... 4- Uej -2- F CX- ~ ) -2.-
J 

(A. 15) 

(A.16 ) 

The other propagators are obtained similarly. 
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* Appendix B The brief description of the 2n- and N -mechanisms 

(a) The genera l description 

Let us consider the NA + NB + Q, transition, where NA (NB) is 

the parant (daughter) nucleus, and Q, stands for either 2e or 

2e- + 2ve depending on the (88) Qv or (88) 2v modes, respectively. 

* In order to deal with the N -mechanism, the following 

effective Hamiltonian is considered, 

Hi-nt = Hw + Hs 
) 

where HS represents the effective strong interaction for the 

transi tion N + N++l'. + N by the exchange of 'IT, p, •••• 

(B.l ) 

In the 2n-mechanism, the double 8 decay takes place through 

the 2nd order perturbation in HW and the Qth order in HS as shown 

in Fig. 3 and the R-matrix is 

where ~ represents the R-matrix due to the 2nd order weak 

interaction. 

* 

(B. 2) 

In the N -mechanism, the double 8 decay occurs through the 2nd 

* order in HW and the 1st order in HS as shown in Fig. 3. 

* 

Then the 

R-matrix element for the N -mechanism may be expressed in the 

following form; 

* There may be the third possible combination of HW and HS such 

as the sequence HW - HS - HW in contrast to the Hw - HW - HS in 

Fig. 3.. Since this contribution is expected to be small, this 

is not considered in this thesis. 
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(B. 3) 

where MA(MB) is the mass of NA(NB), and E~_(E~++) is the energy 

of the intermediate nucleus N~_(N~++) which includes ~-(~++) . 

p 
Note that the nuclear state N~_(N~++) has the same J as NA(NB) 

has. 

Let us consider, for definiteness, the N~_ -+ NB + 2e 

transition. The nuclear states N~_ and NB are expressed in the 

following forms; 

I£>s ® I~->L ® I RA-> , 
I p >s ® I P >L ® I R B > , 

where sand L in the hadronic states stand for the intrinsic 

(B.4) 

(B.5) 

(spin and isospin) part and the orbital angular momentum part 

with respect to the center of the nucleus. Here IR~_> and I~> 

represent the remainders of the nuclear states. It should be 

understood that there is some appropriate sum with respect to 

the angular momenta. The nuclear matrix elements in Eqs. (3.25)-

(3.32) can be written in this notation as follows; 

where 0 represents one of the nuclear tensor operators appeared in 

~ ~ ~ ~k ~k 
MF ' MGT ' M , Q , P , P and Q • 

Let us discuss what kinds of nuclear tensor operators change 

quark states inside the hadron. Obviously, the operators Tn~m) 

and an~m) act on quarks. As for rnm and ;+nm I some cautions are 
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necessary. Consider the following decomposition of the position 

+ + +, + 
operator for the n-th quark; rn = rG + rn where rG is the position 

operator of ~- measured from the center of N~_ . The relative 

+, 
coordinate r 

n 
changes the orbital angular momentum of quarks 

around the center of the hadron. Thus we conclude that the relevant 

operators for quarks in ~ With 

this caution, the nuclear matrix elements are calculated in the 
3+ 1+ 

SU(6) quark model where ~(2 ) and the nucleon N(2 ) are assigned to 

their S-state. The nuclear tensor operators contributing to the tran-
3+ 1+· +, 

sition ~ (2 ) + N (2) should be of rank 0 with respect to rnm and 

?+' , and of rank 1 or 2 with respect to the spin part. We conclude nm 

from Eqs. (3.25)-(3.32) that MF and MGT do not contribute to this 

£ £ £k £k £ transi tion. The Q , P , P , Q and M take the follm·ling forms i 

GQ == ~ ~{(ii-(crht<TJ )-iCiAEA (Q\xcrm)Q}cf:/ll.r:m) ~ 

. ~ p [.6.->L < Rs I RA-> , 
p9 = _ ~ 6-- ~ U-'h2+o-mQ >s ~ r\6->L <RB I R~-» 

pQR= - t ~ i q.+ EQkj \rn
j + G-A~ q-}\ft! >s (piE >l <Rsl RA), 

(B.7) 

(B.8) 

(B.9) 

(B.IO) 

(B.ll) 

£ £k In the SU ( 6) quark model, we get Q. = Q = 0 which may be understood 

from the following argument. 
. . £ 

Note that the spln operators ln Q 
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and Q~k are antisymmetric under the interchange of quarks so that 

" 1++ ~ ~ it is expected that the sp1.n part of <p L T T [ (0 - (J )-. snm n m n m 

1." (+(J X +(J ) ~] etc. 1." s 1 " t" S" th " a so ant1.symme r1.c. 1.nce e sp1.n wave n m 

f " f IA-" "~~k 0 " 1 d d Th f unct1.on 0 u > 1.S symmetr1.c, Q = Q = 1.S conc u e. ere ore, s 

p~k , M~ and p~ contribute to the (SS) OV mode. The same argument 

also holds for the NA + N6.++ + 2e transition. 

The similar argument applies to the (SS)2v mode. Of course, 

it should be noted that K in Eg. (4.10) should be modified 

as follows; 

(B. 12) 

and similarly for L • 

(b) The factorization hypothesis 

As we have seen in the previous subsection (a), the Rw-matrix 

may be written in the following form; 

(B.13) 

This is valid under the approximations (i), (ii), (iii) introduced 

in §3 and in the framework of the SU(6) quark model. The "factori-

zation hypothesis" means the approximation that the amplitude 

<p,~IR_I6.- > is modified by the following replacement, s -w s 

(B.14) 

where the primed sum means the spin average with respect to 6. 

(B.15) 

where 
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Here we used the relation 

I' I ~p)Ql Rwl.6.-~ 12 == I' I 'ftr,Q1-1 Rwln>s I~ 
s~,srz; S'~ ,~~ 

The factors P(~) and <~fl~i> are introduced to give some 

* 

(B.16) 

(B .17) 

physical images of the N -mechanism. Let us assume the decomposition 

(B.18) 

Now the probability admixture p(~) may be defined as 

(B .19) 

where Nn is the number of neutrons which can contribute to 

the double S decay and the sum of n extends over all those neutrons. 

In other words, P(~) is the probability to make ~ per neutron. 

<W.c./ ~.> ~ <Pl~->L <Rs I Rb.-> < '<si RA) ~ ~PIE~ <RB I RA>. 
~. ~ ~ (B.20) 

Here we used <R~-IRA>~OR~_RA. In this way, the <~fl~i> may be 

interpreted as the overlap between the initial and final nuclear 

wave functions. 
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Appendix C: The properties of the "potentials" due to the 

neutrino propagation 

Let us discuss the porperties of the "potential"-like 

function due to the neutrino propagation defined in Eqs. (3.21) 

and (3.35), 
00 

H (r, mo, fAo) = 'lt~ ~o d9. 
q Aim Cl].r) 

:e ( 9.0 + ~o me) , 
(C .1) 

where the parameter r is the distance between two neutrons 

(quarks) which participate in the double S decay. In this 

Appendix, we shall evaluate the expectation values <H> and <rH'> 

by using the nucleon-nucleon (or quark-quark) correlation func­

tion p(;) as the weight function: 35 ) 

< H > - 5 df .p ct=) H (r, tny , ~ 0) , 

<rH/>~ Sdr fCr) r dHcr,my)po)/dr. 

(a) The averaging sehel71e 

Two types of correlation functions are considered. 

Case S (the spherical shell distribution in 2n-mechanism): 

(C.2) 

(C. 3) 

This case corresponds to the assumption that both neutrons are 

located on the surface of the nucleus as shown in Fig. 10. 

This scheme is condidered reasonable because neutrons which 

actively participate in the double S decay carry the large 

principal quantum numbers so that they are considered to be 

located in the outer shell. We remind that the weak decay must 

. f b + + occur at two dlf erent neutrons ecause T T = O. 
n n 

This is taken 
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into account by imposing a cut for e, i. e., e < 7f - e with 
c 

e c ~ l/R mn · Thus, we assume the following form, 

where e (x) is the step function, R = 1. 2 Al / 3 • 10-13 cm and 

t; = sin (e /2). For A = 48 - 130, R = (1. 1 - 1. 6) • la - 2 Im and 
c e 

t; = 0.11 - 0.16 , respectively. 

* Case ~ (the quark correlation in the N -mechanism): 

Suppose that there is a potential which confines quarks 

within distance (2m
7f

)-1 and does not provide any hard core 

repulsion. According to Halprin, Minkowski, Primakoff and 

51) 
Rosen, the following form of p~(r) is considered, 

.R. er) = (1t: 0.3 fl ex p (- 2.r /0. ) , 

-13 
where a = O. 7 • la cm. 

(b) The global features of the average potentials 

The numerical integrations are made and the mv ' ~O and A 

dependences of <H>. and <rH' >. with i = S and ~ are shown in 
1 1 

Fig. 11 for some typical values of mv ' ~O and A. 

(b-l) The ~ 0 and A dependenaes 

The A dependence of <H>S and <rH'>s comes in through the 

nuclear radius R (ex: A 1/3). As we can see from Fig. 11, the 

(C. 4) 

(C. 5) 

dimensionless quantities R<H>S and R<rH'>s are almost independent 

of A. Of course, <H>~ and <rH'>~ are independent of A. 

The ~O dependence of <H> and <rH'> is not important either, 

because the average of nuclear energy level difference ~O seems 
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to be in the range of 5 MeV < 11 m < 15 MeV - 0 e- for typical nuclei. 

As we can see from Fig. 11, <H> and <rH'> are almost independent 

of 11 0 
in this region. 

(b-2) The mv dependence 

contrary to A and 110 dependences, the neutrino mass depend­

ence is much complicated. As shown in Fig. 11, there are essen-

tially two distinct regions: One is the light neutrino mass 

* region (mv ~ 1 MeV) where <H> and <rH' > behave like constant. 

The other is the heavy neutrino mass region (mv ~ 1 GeV ), where 

* 

<H> and <rH'> are rapidly decreasing functions of mv . 35 ), 'More 

precisely, for mv ~ 1 MeV, they behave essentially like coulomb, poten­

tial, <H>S and <rH'>S ~ XS/R, <H>i1 ~ (l-Xi1A)/a and <rH'>i1~-(l+Xi1B)/a 

where Xi's are independent of mv and depend weakly on 110 and A. 

For mv 2: 1 GeV, the average potentia Is behave like Yukawa 

potential, i. e., <H>S 

2 -1 
exp ( - 2 ~ mv R ) (2 mv R ) 

~ ~exp(-2~mvR)/R and <rH'>s ~ 

-2 -3 
and <H> i1 ~ -<rH I> i1 ~ 4 mv a • 

The following remarks are in order: (i) From Fig. 11 we 

observe that -a<rH'>i1 is greater than R<H>S in the light neutrino 

mass region (mv :;; 1 MeV ). This difference is due to the average 

distance which neutrino propagates. We remind aiR - 1/10. (ii) 

-2 
The milder damping on mv (mv dependence) for the case i1 is 

traced to the assumption of no core repulsion among quarks. 

* This may be understood by the fact that the momentum of the 

virtual neutrino which mainly contributes to the potential 

is larger than 20 MeV so that 110me (~15 MeV) and mv (~l MeV) 

may be neglected. 
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(c) Application to the decay formulae 

In the decay formulae of the (SS)ov mode, the average 

2 
potentials appear in the forms of l: m. U . <H> , l: U . V . <H>S " 

J eJ S eJ eJ ,I..J. 

and l: U . V . <rH' >S " . eJ eJ ,I..J. 

Since <H> and -<rH'> behave like almost constants at the 

region mv $ 1 MeV and the mixing among light- and heavy neutrinos is 

considered to be small, the following approximation is allowed 

to us; 

(C. 6) 

and the corresponding approximation for l: U . V . <rH' > . 
eJ eJ 

For the term l: m. u2 
. <H>S' the situation becomes com­

J eJ 

plicated. In the analysis in §5 and §6, the contributions from 

the heavy neutrinos (m
v 

~ 10 MeV) are neglected and the equality 

rtffijU~<H(rJthj'~D»] ~ <H(r,o,rto»[ttnjU~1 (C.7) 

is used. Rigorously speaking, the values of I l: m. u2 
. obtained 

J e) 

in §6 should be understood as those of Il:m. u2
.<H(r,m·,110»/<H(r,O,llo»I. 

J e) J 

In the following, we discuss some cases where the equality 

(C.7) becomes invalid. 

where 

35) 
We present the approximate formula, 

, (C. 8) 

"As (f) == -2 ['It: C1_~2).f rt { [-2 Qn~ + [2 (OSC~f) + ~J Ain~f) J Cl(~f) 

t [2. AWt (~f) - ~f(D~C3f) ] Si C~f) - [~= 1 ~rn\SJ } . (C. 9) 
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Note that among heavy neutrinos, the lightest one (denoted by h) 

will mainly contribute as a result of the presence of the exponen-

tial damping factor. For definiteness, we restrict our attention 

to the data analysis of tellurium. Note that when A. = K = 0, 

ILl· ht m. u2 
. I ~ 32 eV is obtained. In order that the heavy 

19 J eJ 

neutrino contributes equally, m
h 

~ 2.3 GeV is required, even if 

U eh = 1 is taken. Therefore, if mh > 3 GeV, the heavy neutrino 

contribution may well be neglected. If the masses of some 

neutrinos happen to be in the range of 1 MeV < m < 1 GeV, a v 

careful analysis must be made. Here we shall not discuss this 

case to avoid the complexity. We would like to mention that the 

masses of heavy neutrinos are much larger than 1 GeV in most 

grand unified theories as discussed in §2. 

-77-



Appendix D:.. The cP-violation in the leptonic sector 

Let us first consider the case where only two generations of 

Hajorana neutrinos mix strongly. We assumed case (iii) where roth the left-

and right-handed neutrinos, the Majorana mass terms and the Dirac 

. 20) h h .. .. . b d b 4 4 mass term eXlst. T en t e mlxlng matrlx lS descrl e y a x 

unitary matrix. We start from the following 4x4 unitary matrix,7l) 

x~ 

1 
o 
o 
o 

1 
o 
o 
o 

o 

o 
o 

o 
\ 
o 

o 

o 0 o 
o 
o 
;'~3 e 

i 
o 
o 

o 

o 
1 
o 

o 

o 0 

o 0 
i~, 
e 0 

o \ 

~ (D. 1) 

where s. = sin 6. and c. = cos 6. • Note that there are three phases, l l l l 

The angles 62 and 63 give the mixings between the 

L-type neutrinos (NIl N2 ) and R-type neutrinos (N3 , N4). The most 

general form of a 4 x 4 unitary matrix is obtained from Eq. (D .. 1) by 

the replacement 

( D.2) 

which supplies. seven nontrivial additional phases. Among total 

ten phases, two phases can be absorbed by the redefinition of two 

charged lepton fields. We choose XII and X22 to be real and the 

matrix becomes 

i..( ~ - ft. e 
-78-

for j = 1, 3, 

for j = 2, 4. (D. 3) 



I. 

Thus, there remain eight CP-violating phases, 6
1

, 62 , 63 , Bl = 

62 - 61 , B 2 = P 3 - PI' B 3 = P 4 - P 2' B 4 = (J 3 - crI and B 5 = (J 4 - (J 1 . 

As an illustration, we consider the case where the R-type 

Majorana neutrinos N3 and N4 are heavy enough so that they do not 

contribute to the BS decay. In this case, we only need to consider 

the 2x2 submatrices u(l) and v(l)* which are defined in Eq.(2.23) as 

utI) U (:Z) 

(D. 4) 

since the mixings between the L-type and R-type neutrinos would be 

weak, we.keep only.the firs.t order term with respect to 82 and 83 . 

Now the matrices u(l) and v(l)* take the forms 

(D. 5) 

, 

[Cl C4 - :: C~ C~ e4~1 + S4S~ e4~~)] 
xei.<}J +~) 

[ ch ( is, e.ib.2 ] 
Cl S.,. - 8::/. S4 C&, € - 4 S6 ) 

x e;' P.3 (D • 6 ) 

where s2 ~ 8 2 = 0 and s3 ~ 8 3 = o. As a typical example for the 

maximal mixings , we take 81 = 8 -4-

8 2 = 83 for simplicity. Then we obtain 
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and 

e2 

.2 

- e;'f~ 

(D. 7) 

(\ - €~~, -t e~b~) e if33 

(D. 8) 

Note that there are five complex phases (01' °2 , 81 , 82 and 83 ) in 

agreement with the case of n::: 2 in the general formula n (3n - 1) /2 . 

The remaining three phases are included in u(2) and v(2)* . 

For Dirac heutrinos (Case(i», u(2) :::v(2)*:::0 and also u(l) 

and (1) * -V should be unitary. If we consider the case of two gener-

ations, three complex phases in u(l) can be removed by the redefi-

nition of two charged lepton and two neutrino fields, but three 

phases in vel) remain. Thus we obtain 

u<t> [ -:, SI] -
Cl , (D. 9) 

and 

Vm* e.i.cI, 
C.2 e .i.c{~ S.2 e id3 

- -i~ -.\~ 
-S,2 e (2 e 

(D.IO) 
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Let us discuss the combinations of the mixing matrices 

appeared in the double S decay. 

For the (SS)2V mode, the term 2.~.E~./U . /2/ u ./2 comes in. 
l:::J 1J eJ eJ 

From Eq. (D.7) or (D.9), we obtain 

(D.ll) 

both for Dirac and Majorana neutrino cases. 

For the (SS) Qv mode, two terms / ~ m. u2
./ for Case (ii) and 

J J eJ 

(iii), and / L; u . V ./ for Case (iii) appear. By using Eqs. (D. 7) 
J eJ eJ 

and (D.S), we obtain 

(D.12) 

If Uej v.j I = ~ I c.os('\i,j~) I (D.13) 

As seen from Eqs. (D.12) and (D.13), / L; m. u2 
. / becomes / ml + m

2
/ /2 

J J eJ 

or / ml - m2 / /2 depending on SI = Q (no CP-violation) or SI =:: IT/2, 

and /l: Uej Vej / = 8 2 /12 or Q depending on 01 - 02 = 2nIT or 01-02=·(2n+l) IT. 

Thus the CP-violatingphases play important roles. 
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" 

Table Captions 

Table I. Allowed transitions and relative orders of magnitudes. 

Each parenthesis under the interactions indicates the possible 

transition, and m , A and K represent the typical neutrino v 

mass and the relative strengths of the right-handed currents, 

respectively. 

Table II. The numerical values of Bi in (Tl / 2 )2v. 

B. 's are the coefficients of various terms in the half-life 
1 

+ + + + 
formulae of the 0 -+- 0 and 0 -+- 2 transitions for the (SS) 2v 

mode which are given in Egs. (5.1) and (5.2). T is the max-

imum kinetic energy release in units of m and their values 
e 

are deduced from the data on nuclear masses by Wapstra and 

Bos.72 ) These Bi' s are related to F 0 (T) in Eg. (4.15) and F2 (T) in 

3 -9 -9 
Eg. (4.20) as follows: Bl=FO(T).lO- , B3=F 2 (T)olO , B2=B4=F2 (T).10 /96. 

N* 
Table Ill. The numerical values of GOi ' G2± and Gi in (Tl / 2 )Ov. 

G
Oi 

in Eg. (3.57) and G2± in Eg. (3.65) are the coefficients 

+ + of various terms in the half-life formulae of the 0 -+- 0 

+ + and 0 -+- 2 transitions in the 2n-mechanism for the (13 13) Ov 

mode. 

Table IV. 

N* * G. in Eg. (3.88) are those in the N -mechanism. 
1 

The numerical values of Ci in T(1/2)Ov. 

C. in Eg. (5.3) are the coefficients of various terms in the 
1 

half-life formula of the 0+ -+- 0+ transition for the (SS) OV . 

mode. 

Table V. The angular correlations of the 0+ -+- 0 +, 1+ and 2+ 

tranisitons for the (SS)2v mode (Table (a», and of the 

0+ -+- 0 + transition for (SS) mode (Table (b». ov 
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Table VI. The experimental data and the theoretical predictions 

for half-lives. 

The predictions are made by taking the values of the average 

neutrino mass, ~ and K which are determined from the data on 

tellurium and also by using the parameters related to the 

nuclear matrix elements given in §6-d. The indices (a) and 

(b) correspond to two cases, namely Case(a) where A» IKI 
and Case(b) where A« IKI. The data in Refs. 23), 24), 60), 

61), 62) and 63) have been obtained by the counter (chanrnber) 

experiments and others by the geological method. 
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Figure Captions 

Fig. 1. 130. 48 The level structures of Te (flgure (a» and Ca 

(fiaure (b». 

Fig. 2. The schematic diagrams for the (SS)Ov mode (figure (a» 

and for the (SS)2v mode (figure (b» in the 2n-mechanism. 

and N are the parent, the daughter, and the 
n 

intermediate nuclei, respectively. 

Fig. 3. The diagrams for the (SS)Ov mode (figures (a) and (b» 

* and for the (SS)2V mode (figures (c) and (d» in the N -

mechanism. The N~_ and N~++ mean the intermediate nuclear 

states including ~ and ~++, respectively. 

Fig. 4. The constraint on A and K in the left-right .symmetric 
2 . 

model. The AC represents (Ml /M2 ) . The Ml and M2 are masses of 

the mass eigenstate gauge bosons, W
l 

and W
2

, respectively. 

Fig. 5. The diagrams for the (SS)ov mode corresponding to the 

second order weak interactions. The wavy line represents 

the weak intermediate boson which controls the left- or 

right-handed weak interaction. 

Fig. 6. The single electron kinetic energy spectra for the (SS)2V 

mode. £1 and T are the electron kinetic energy and the 

maximum kinetic energy release in units of m , resoectively. 
e 

h + + .. h 2 d * Note that for t e 0 -+ 2 transltlon, t e n- an N-

mechanisms give the identical spectrum. 

Fig. 7. The single electron kinetic energy spectra for the (SS)ov 

* mode. Note that the N -mechanism contributes only through 

the A- or. K- terms. 
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Fig. 8. The sum-energy spectra for the (SS)2V and (SS)Ov modes. 

£ is the kinetic energy sum of two electrons in units of m . 
e 

Fig. 9. The allowed domain for the neutrino mass and the relative 

strengths of the right-handed currents A and K from the data 

48 on (Tl / 2 )Ov. The allowed domains imposed by the data on Ca, 

76 G d 82 " " e an Se are lnslde the SOlld 11ne ellipses (the shaded 

128 130 areas). From the data on Tl / 2 ( Te)/T
l

/
2

( Te), the allowed 

domain is restricted to the narrow region surrounded by two 

ellipses, corresponding to cos ~ =±l, though its difference 

is too small to be shown. Figures (a) and (b) correspond 

to the cases of A» I K I and A « I K I, respectively. 

Fig. 10. The spherical shell distribution in the 2n-mechanism 

(Case S). The neutrino propagates the distance r from the­

first decaying neutron n l to the second one n 2 , both of 

which are located on the surface of nucleus with radius R. 

The angle cut 8c is due to the size of the neutron n l • 

Fig. 11. The mv and ~O dependences of the average potentials. 

The subscripts S and ~ indicate -two different tupes of 

average described in Appendix C. 

Fig. 12. b 
... 73) 

The diagrams for the (SS)2V mode pointed out y EJlrl. 

Fig. 13. The diagrams for the (SS)2V mode (figure (a» and for 

the (SS)ov mode (figure (b» which appear in the 

74) 
additional mechanism pointed out by Ohtubo and Hosoya. 
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(68) 0\1 mode 0+ - 0+ 

48ca 76
Ge e2Se 128

Te 130
Te 150Nd 

'10- 13 '10-15 '10-14 '10-16 '10-14 .10-13 

G01 0.2932 2.936 1.291 8.139 2.024 0.9763 

G02 2.028 5.666 4.934 3.495 5.958 4.822 

G03 I 15.73 52.90 40.08 55.71 48.99 36.01 

G04 ! 3.038 17.63 10.17 30.11 14.08 8.386 

G05 0.1531 1.654 0.6942 5.344 1.110 0.5199 

.. 
G06 0.2260 1.664 0.9060 2.331 1.373 0,7742 

"" 

G07 1.399 13.41 6.068 34.89 9.470 4.680 

G08 0.1350 2.234 0.7700 9.429 1.361 0.5448 

G09 0.02607 0.7442 0.1954 5.097 0."3913 0.1269 

'10-10 '10-11 '10-10 .10-12 '10-10 .10-9 

d'!* 
1 1.198 0.5089 0.4249 0.6178 0.6940 " 0.5774 

N* 
(;""2 4.132 1. 859 1.503 2.496 2.499 2.039 

d'!.* 
3 0.2842 0.1092 0.09758 0.1005 0.1565 "0.1360 

N* 
0.5910 0.2436 0.2125 Q.3564 0.3073 G4 0.2474 

d'!.* 
5 2.660 1.096 0.9563 1.113 1.604 1.383 

Table III (a) 
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..... .... 
(BB)Ov mode O' ->- 2' 

48Ca 76Ge 82se 128Te l30Te 150Nd 

I 
.10-13 .10-14 

I 
.10-13 .10-16 .10-13 .10-12 

G2+ I 
0.6938 0.2234 0.1658 0.8587 0.2992 0.4072 

G
2

_ I 0.6059 0.1531 0.1314 0.2762 0.2286 0.3486 

.10-11 .10-12 .10-11 .10-13 .10-10 .10-9 

* 
I GN 2.735 1.109 0!9020 0.5215 0.2180 0.3377 1 

N* , 

I G2 9.575 4.189 3.270 2.279 0.8022 1. 201 

N* 
G3 0.6312 0.2192 0.1971 0.05689 0.04690 0.7848 

N* 
G4 1. 329 0.5019 I 0.4390 0.1444 0.1089 0.1787 

GN 
5 

* 
5.908 2.258 1. 975 0.6497 0.4898 0.8040 

Table III (b) 
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