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Introduction. Let A be a commutative ring with unity and 

let A be the integral closure of A in its total quotient 

ring Q(A). An intermediate ring R between A and A will 

be called a birational-integral extension of A. In this paper, 

we are mainly interested in birational-integral extensions of 

rings. A birational-integral extension of rings is closely 

related with prime ideals of depth one, and, in section 1, we 

study various properties associated with prime ideals of depth 

one. Let A be a noetherian ring satisfying the sl-conditlon 

( i.e., the ideal (0) has no embedded prime divisor) ,and 

let p be a prime ideal with depth A = 1 
P 

and of ht p > 1. 

Then such a prime ideal p is characterized by many equivalent 

conditions, say, p is a prime divisor of a principal ideal, 

p is a divisorial ideal and so on. Among others it is proved 

that if A is a finite A-module, then {p"ESpec AI ht p > 1 

and depth A = I} is a finite set. 
p 

Let R be a birational-integral extension of A and assume 

that R is a finite A-module. For an element a E Q (A), we set 

I = {a E AI aa EA}. I is an ideal of A and is called the 
a a 

denominator ideal of a in A. For a non-negative integer i, 

we set Fi (A,R) = {aERI ht la ~ i + I}. Then each F. (A, R) 
1 

an intermediate ring between A and R, and FO(A,R) = Rand 

Fd(A,R) = A for some non-negative integer d. The subring~ 

F. (A,R) 's play important roles in this paper. 
1 

is 

In section 2, we mainly treat the seminormality and the glueing 

of rings which appears in [6]. First, we prove in (2.1) that 

the proof of seminormality can be reduced to the case of birational-



2 

integral extensions. In (2.2), we give a criterion of relative 

seminormality of A that A is seminormal in R if and only 

if the conductor ideal ~(Fi (A,R)/A) is radical in F. (A, R) 
1 

for all i, 1 ~ i ~ d. As an application of this criterion, we 

shall show the stability theorems of seminormality under the 

etale finite extensions and, in case of an affine domain, the 

separablY generated extensions of the coefficient fields. On 

the other hand, Traverso proved that if A is seminormal in R, 

then A is obtained by a sequence of glueings of R with 

respect to a certain prime ideals of A c. f. [ 6] ). Here, we 

prove that A is seminormal in R if and only if A is obtained 

by a glueing of R with respect to the prime ideals in AssA(R/A). 

For an integral extension R/A, let +A 
R be the seminormali-

zation of A ( c.f. [6] ) • Then +A 
R is seminormal in R and 

the seminormalization of A in +A is equal to + Hence, for 
R RA. 

the study of integral extension, we divide it into two cases, 

the case where A is seminormal in R and the case where + 
R = RA. 

In section 3, we treat birational-integral extension R of A 

such that + R = RA. Such an extension is called a cusp type extension. 

In section 4, we assume that A is a homomorphic image of 

a regular ring and satisfies the sI-condition. For such ring A, 

it is proved in [2 ] that tJ,=h::>ESpecAlhtp>l and depth A p 

= I} is a finite set. Let x be a non-unit of A and let R be 



," 
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a birational-integral extension of A and assume that R is 

a finite A-module. If x is a non-zero divisor and x ~ q for 

all q e AssA (R/A) Ut:., we call such an element x a good section 

of R/A. With the help of this notion, we prove that, for any 

P E Spec R, depth A (AnI') < ht P. 

Let A be an integral domain and let K be the quotient 

field of A and let B be a subring of K containing A. We 

call such an intermediate ring B an over-ring of A. In the 

paper [8], we studied the relationship between flat over-rlngs 

of a Krull domain and prime ideals of height one. Replacing a 

Krull domain by a noetherian domain and prime ideals of height 

one by those of depth one, we develop a similar theory as is done 

in [ 8 ] ( c. f. § 5) • 



1. Prime ideals of de~th op-e 

Let A be a noetherian ring which satisfies the SI-condition 

i. e., the ideal (0) has no embedded prime divisor. We denote 

the total quotient ring of A by Q(A) and the integral closure 

of A in Q (A) by A. and the conductor ideal by (§(A/A). 

Pronosition - definition 1.1. Let R be a birational
AA~-~--~~----~~~~~~~~ 
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inteqral extension of .A and 2.ssume that ,R is a finite A-lI'.odule. For 

an element aeQ (A), we denote the denominator ideal fatAl. aaE~1._ 

in A by I . For an integer i ~ 0, cefine F, (A,R) = {aeRt ht I 
1 a 

> i + I}. 

and R, and 

a 

Then F, (A,R) 's are intermediate rings between A 
1 

F, (A,R) "2 F, (A,R) 
J 1 

for j < i 

Define. Di(A,R) = {PEHti(A)1 p ~·.CJFi_l(1".,R)/A)} and D(A,R) 
::.---:.-'~ ...... ,_ ... -.. _-_ ..... -----_. 

= UDi (A, R), Vlhe::-e Hti (A) = {p E Spec At ht p = i}. Then ht g3F i-I 

(A,R)/A) ~ i, so each' element of. Di(A,R) is a minimal ~ri@e divisor 
I 

of c'JF, l{A,R)/A) .. 
- 1-

There is an integer d > 0) such that 

Fd(A,R) = A, hence D(A,R) is a finite set. 

Proof. Let a and B be elements of F, (A ,R) . Since 
'" ........... -- 1 

Ia+B 2 I a nIB and I :::> Ia·I B, we have ht I , ht I > i + 1, 
aB = a+B aB = 

that is a+B, aBEF, (A, R) • Therefore F, (A, R) is an intermediate 
1 1 

ring between A and R. 

Next ~B ~how that E6(A,R) ~,R. Let a be an element of R • 

. Th'en I, contains an element of A which is not zero-cIi visor fo= 
a 

Hence ht I > 1 a = 
for all aE R. Thus we haye F..,(A,R) = R. 

.: 

- Since A l'S noetherl'an and R l'S a f' 't A d 1 ~. 1nl e -~o u e, Lne 

submodule F, l(A,R) is also a finite A-module, say, F. l(A,R) = 
1- 2-

Aa l + •• 0 + Aan . Then we have @(Fi - l (A,R)/A) = Ial(\O 0 0 f'\Ia
n 

and 



ht I > i for all 
Q.. 

J 
Thus each element of 

~(Fi_l(A,R)/A) . 

j . Hence we have ht ~(F. l(A,R)/A) > i. 
l-

D. (A,R) is a minimal prime divisor of 
l 

From the sequence R = FO(A,R) ? Fl(A,R) '2 ... , we have 

a sequence of ideals ~(FO (A,R)/A) ~ ~(Fl (A,R)/A) S ... . Since 

A is noetherian, there is an integer d ( ~ 0) such t~at 

Suppose that 'C(Fd(A,R)/A) 

i- A. Then there exists a prime ideal p containing (c(F d (A,R) /A). 
;0··. • 

Let ht p = m. From the choice of d, p ~/C(Fm(A,R)/A), so 

ht p > m by the above result. This contradicts ht p = m. Hence 
.. --. 

i.S(Fd(A,R)/A) = A, that is Fd(A,R) = A. 

From the definition of F. (A,R) and D. (A,R), the following 
l l 

lemma is easily seen, so we omit the proof. 

~. Let RI and R2 be birational-integral exten

sions of A. If RJ ~ R2 , then we have F j (A,R, )? F j (A, R2) for 

all i, i > 0, and Di{A,Rl ) 2 Di (A,R2 ) for i ~ 1. In particular, 

if A is a finite A-module, we have D(A,R) C D(A,A) for any 

intermediate ring R between A and A. 

5 



-
Let 1(0) = P1(\' •• (\ Pt' Since A satisfies the sI-condition, 

we have Q (A) = A x . . . x A . Let P be a prime ideal of A 
PI Pt ... = 1 < < t and Then and let {e (1) I I e(p)} { j I = j 

= P ~ P j }. 

is a subring of A x ••• 
Pe (1) 

x A 
Pe (p) 

Denote the projection; 

Then A x ••• x A 
PI Pt 

is a subring of 

---+~ A x ... x A 
Pe (1) 

Q(A) containing 
Pe (p) 

A. 

by 

~. ~et P. be a birational-integral extension 

- of A ru~d assu..rne that P. ·isa.firiite. A-rnodu1e~ Then ~.t!e have 

have A = R . n .. tf..-t( ) 

n' . 1 . 
F .(A ~ R) F. -'1' (A ~ R) 11 'D' (;.. R" ')':'cp ~ (A)" for 
.~ .. . ~ pE; . C". I P P 

i > 1. Es~ecia11v we ... -I 

. flPED (A,R) . 'l"p Ap' 

Proof. 
~ 

D, (p., R) • 
~ . 

Let aa"i (A,~), From tile Ciefini tion, ~!e have a E F i-I (A,R). Let 

pE Di (A,R). Then ht p = i and ht la ;, i + 1. Thus \-:e have 

p p.Ia . Let: PI,"',P
t 

be all ninimal prime divisor of A. It 

is vleII kno'w'~ tila t if ''0 U· •• up V p ::>. I 
,"I t .. = a 

for some j (ct. [3]. ~ ft} ,"or;; ). 
- -.- . --~ ---. '-

~ I .i.e., there is a non-zero divisor 
a· _ ... 

in p. P.ence xa EA and x -t- p, that 
. -

or .Lt'), -::> I 
J = a 

Hence v7e have nU' •• V r> 'V' P -'I .L't 

xof I a 
not contained 

is a E cP -1 (A ). 
r> P 

COI?-verse;ty{ let·· a E-B and l~t . P be ,a prime ideal such :that 
.-"-. ...~---; . -.. '; .-.-" . .,' 

_" - - - - '::.:;,- ~~. '0 -: .:. - ." "___ • - - :' -:' -- • .... - ,......". .-' 

.'p ~·.1 -~, _~. SincJ 'ex € E'<_l (A, R) ,-- p-'~' I : ~ \S~(F ;- .... 1 (A,R) lA); so' i·7e- have 
." . , _"" __ ~~':;:.:-,::--:,.::~:-:-- ' .. : ..... ~ .. :_ ... ,:.~: ..• ~:.:-.... >"_:a.,,.: __ .:. _~ .. 
-.tit '0 >i-' b~l .(1.1). :" I"f''':'h1: '0' >' i, then , .. ,e have nothing to ·9rove. " 

"i'~~;~~=~~fha/;<~:t·~-~:-:-~::·~.· ~h~n~""~ 'ED ,·(A,R). ,.Thus a E~ -1 (A ). Hence 
'~.' ~. P r> 

. "::; -:.- -:.: .... ~,' . -. -. • .-- - -:=: ~ .• -.- -.- - " 

_.-_-_:we- have 'p-;6 r .- This contradicts.:. p :2 'r . 
. : .. ' ... '~._ ... , .' .-: ..... , . a ~'-, .. ," "'.-:-=--'. ;. . ._- .' - a 

Remark 1. '4. 
. s. c " 

- '.;.~ ",-C" _ . '. 
If .. p ~ @.~R/A), then Indeed, since 

6 . 

A 
P 
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R is a subring of Q(A) and a finite A-module, ,there exists a 

non-zero divisor in ~(R/A) not contained in p. Thus R C ~-l(A ). = p p 

Let A be a ring. We ~ay that A satisfies the sk-condition 

if it holds that depth A > inf(k,ht p) 
p 

for all pE Spec A. 

~ Let A be a noetherian ring satisfying 

the SI-condition. The ring A sF~~fies the S2-condjtjoD jf 

and only if A = peHt~A)<P~l (A~r. If' A' satisfies ~he s2~c6nditi.9.n.#
then D(A,R) =,Dl (A,R) for any intermediate ring "R, betv,een ',"':" 

A' I ·and. A such that R is a finite A-module. 

n -1 
~ Let B - pE-Ht

l 
(A) cj>p (Ap ). 'ro s hO"7 the 

inverse inclusion, let a. EB. Since 

Then A C. B. 

a. Ecj>-l(A } 
D ,p 

::or all p E Htl (A) , 

denominator ideal I is not contained in a prime ideal of height a. 

one. Suppose that A satisfies the S2-conditi?n and 

and let p obe a ,minimal prime divisor,of ,la.. Since 

I is not contained in a prime ideal of height one, we a. 

ht p > 2. By the S2-condition, depth A > 2. Since p 
= p = 

I f A, a. 

have 

is a 

minimal prime divisor of I a.' I A is a primary ideal belonging a. p 

to pA. Thus there exists an A -sequence consisting of two 
p P -

elements of la.' say, a and b. Since a, b E la.' we have c = 

an, d = ba. E:. A , so ad = bc. 
I 

Since a, b tft.,~~ A -sequence, we 
p 

obtain c E.. aA. Thus we have a. EA, therefore la. et p. This pp, 

contradicts Ia.~ p. Hence we have I = A, that is a. EA. 
n 

Conversel~ let A = B and let p be a prime ideal of A. 

If fit p = Q, then depth A > 0 = inf(2,ht p) • If ht p = 1,· 
P = 

- --
then depth A > 1 = inf(2,ht p) . Let ht p > 1 and let a be p = .' - --.~.,", ----- ---

a DOD-zero divisor contained in p • If it is shown that p is not 



I' 

a prime divisor of aA then depth A > 2 = inf(2, ht p) 
P 

and 

we are done. In the following we shall show that p is not a 

prime divisor of aA. Before proceeding further \'le prove a 

~ Let a be a non-zero ojvjsor of A ana Jet 

aA = q{\. 0 0 0qt be an irredundant primary decomposition of aA 

and Iq. = p. 0 When t = 1, put a = ! 0 When t __ > 2, 
1 1 a 

an element b of qnooo~ not contained in ql' and put . 2t 

Then the denominator ideal la is primary for PI. 

take 

a = 

~. When t = 1 I we have la = ql I so we may assume 

b 
a 

t > 20 Let x be an element of I 0 Then we have bxE aA S qlo = a 

Since b is not contained in ql' "VIe have x E PI' that is 

la ~ PI· It is obvious that ql <;; I a ' so 11 = Plo' a 

and x ~ PlO Then we have xyb E aA ~ qlo Since x rI-

bE q2t"\°OO(\ qt' we obtain ybGql("\ooo",qt = aA, that is 

Hence la is a primary ideal belonging to PlO 

Let xy El 

PI and 

Y El 0 a 

Assume that' P i~" a pl:"~.i:rrie, divisor of aAo From' the lemma 

;'"e" see that there' e-x1sts" an element' a E Q (A) such that : la :is 

a 

primary for, po Hen'ce 1--- is not contained in any pri~e ideal of a 

8 

height one. - Thus a E '" -1 (A) 'for all Ht (A) By our hypothesis , ~p p PE 1 . -

A = B,we have ,d. E A~" This contradicts la ~ po 

, " 

.: 

.-- .. , 



To prove the second half, 'tIe assume that A satisfies tIle S2-

concIi tion~ Let pEHt1 (A)."_ If P r£ Dl (A, R), then p 1> c (F 0 (A, R) /A) 

. = c (R/A), hence F 1 (A, R) ~ R ~ cf>~l (Ap ). If P e Dl (A, R), then 

9 

F 1 (A, R) ~ cf>~I (Ap) by (1.3).' Therefore we have F 1 (A, R) S: / 
(\ -1 

PcHtl(A)cf>P (Ap) = A. Hence D(A,R) = Dl(A,R). 

In (1.11) we shall see that the condition D(A,A) = DI(A,A) 

implies the S2-condition for A when A is a finite A-module. 

Pemark 1. 7. D (A,A) = DI (A,A) implies that the prime 

di visol;"s of @(A/A) are all of ·height one by the followins Iernr~1a. 

But the converse of this assertion is not true .in general. 

~ Let R be a birational-integraI extension of 

A ana assume that '0 .... is a finite A-module. 

..... ~ ' .... ::(i)-Let-· a. ER) and,..:le.t:,~.p·'be· a prime. diyisor,·of.·: ·I
D

.• Then._ 

;~~e·~~~e;.~t~ts:·~~ .. ·~~~¥..:i~t2~~i).~~~t·~I~.;~~~~?r,irQ~'ryfor .~ 

'_·:~:.::_::.~.~:~,?, .. ;.·.:·tett~:;~"·~~"be-,~~ri'·~e~~~ri~·?,~kt:~~~£~.'""~~·" IQ is a 

primary ideal belonging to 'p • . Then pE D (A,R) .' 
... -

.. '(iii) . Let p be a prime'divisor of . 'c (R/A). Then there is 

an--element -Whose denoininator ideal is primary for p, so pED (A,R). 

Let a. ER and let p be a prime divisor of I . a. 

Let I = q(\q (\ 0 0 0 (\ q be an irredundant primary decomposi -tion 
a. 1:. t 

and Iq = p. If t = 0, then la. = q is primary for. p. Assume 

that. t.·~ 1. Then there exists an element b of . q f'l0 0 ° (\q 
1 t 

not contained in q. Let f3 = ba. ER. We shall show that 



-, 

is primary for p. Let x be any element of IS. Then bx E. I a 

10 

S q. Since b is not 'contained in q, x ~ p. This prove that IS 

~ p. It is obvious that Let 

and x ~ p. ,_Then bx~r E:lex S-,q. ,Since x rt p, by Eg. On the other 

hand -bE-ql' ..• (\qt. Hence byElex , i.e., ,ySEA. Thus YEI
S

• 

T~erefore IS is a primary ideal belonging to p. We have (i). 

Let a E Rand, "la primary for .' p and let ht 'p = i ( > 1)_ 

ht la - 1. fo~, .!Ia .7 p. By (1.1), aEFi_l(A,R), hens:;ewe 

p;? la ~ ~(Fi_l(A,R)/A), so have pE D. (A,R) CD (A,R) , 
1. ' = i.e., (ii) . 

To prove (iii), let R = Aa
l 

+ - •• + Aa
n

. Then CC/(R/A) = 

I ('\ •.• III Since 
exl an 

prime divisor of I a. 
J 

p is a prime divisor of ©(R/A), p is a 

for some j. The rest, fol10v15 from (ii). 

-In the }ollo~ing we shal.l,study prime' 'ideals belonging to 

D (A,~), under the assumption tha~_., A is a finite A-module. 

Speaking of a prime i~eal of height one, the matter is rather 

.. ,simple. In .fa.ct, if "p: i_s:a prime,ideal of height one, then 

P ED '(A,A) , 
. r;::. - . 

if and only if p 2 IS(A/A), 1..,e., Ap is not integrally 

closed. We prove in the following that a prime ideal p of 

height > 1 belongs to D (A,A) if and only if depth A = 1. 
p 

For the proof of this assertion we need the next tv'm ' 

proposition::;_ 

. - .. -'- - ~ .. _ .. - .... '-._- - ~-. - -- ... 

. -; .. '. -
._. - • -0- __ • 
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R..£g.Dosi tion "1. c:t.~ Let P. be a birat:.ional-integ"ral extension 

of A anG assume that R" is a fini te" ;~-rr:odule. Let P pe a 

prime divisor of· ;:C(?/A) in 1:) ThEm P (\ A is an element of 
~~~--------------~~~~--------'~.----~----~---------

Let p = Pn A and let ~~'(R/A) = Q (\ ••• - f1Q 
1 t 

be 

an irredundant primary decomposit~on in Rand IQ 0 = Po, Pl..o = 
l.. l.. 

Pi f' A.· We assume that p = PI" = = p s 
and p t po, j > s. 

J 

Since ~"(R/A) is a ideal of A, we have c (R/A) = qi(\ .•. () qt' 

where qi = Qi () A. Let q = ql f" ••• (\qs· Then q is a primary 

ideal belonging to p. 

Firs~ suppose that q;? qs+l(\··· f\qt. Then f9~(R/A) = 

qs+l(\· •• (\qt· Let a be an element of QsL'l·"· {\ Qt not 

contained in Qi , I <i ~ s. Since aq ~ Q
l 

(\ ••• f\Qt = 0'(R/A) <; A, 

we have q ~ Ia. We shall prove that Ia S p. Let x be an 

eleWlent of Ia· Then xa E Qs+lf\· .• nQt 1\ A = qs+l(\ •.• (\ qt = 

@.(R/A) s= Q
l 

(\ •.• (\ Q
s

. If x ~ p, then x is not contained in 

PI' ••• P so we have , s' a E QI"· •• n Q
s ' it contradicts the choice 

of a. Thus q ~ Ia So p, that is 11 = p. a Hence p is a 

prime divisor of 
. " 

I . a 
By (1. R), we have pE D (A,R) . 

Next suppose that q t; qs+{'··· nqt· Then p is a prime 

divisor of ° @(R/A). By (1. &), we have PE D (A, R) . 



A prime ideal p of A with ht p> 1 and depth A = 1 
p 

is characterized by the following equivalent conditions. 

Therefore such prime ideals are special one ln Spec A and the 

set of such prime ideals is a finite set. 

12 

~. Assur:le that _ A', sc3.:tisfies the -Sl-condi tion. 

Let· p E Spec A and ht p > 1: Then the follmving are equivalent. 

(i) Depth A, = 1. 
P 

(ii) For any .non-zero divisor a EP, p is a prime divisor 

of aA.· 

(iii) There exists a non-zero divisor a of A such that 

p is a prime divisor of aA. 

(iv) p is a prime divisor of for some element aEQ(A). 

Cv) There exists art ~le~ent of Q(A) such that I = p. a 

(vi) p is a divisorial ideal over A, i.e., p = A : (A pl. 

(vii) p is a primc .. divisor of a certain divisorial ideal. 

Moreoverzif A is a finite A-modul~ and ht p = i > 2, then 
--- ~- -~ .. -- - -- . --". 

the following are equivalent to eac~ o~1er anuto the above conditions. 

(viii) 'i'here is an elenent a EA of la = p, hence p EAssA (.A/A) . 
. -'" ---

(ix)· There existsan-i'~ter'mediate ring B'-between A· and 

-
A. 

" - -.". -'~~-. o· "1:':':'-' . - ".' -. 
suc~' .th~L ~JB{!~t ~: c .... -, 

- ~'''(X)----The're e~is:ts~:~~'--{ritermedia-te ring B between A and A 

such that p is - it prime divisor of- ~§;<B/A) . 

-- (xi) p 

- - - --_ ... --_.-- - .- . - ------.-.--

_.- :~_:-pr?o_f. _ First,~,~_'~;;-ve-:---"-----' 
. - -

" .. - - -.":" : .. - -." 
~~~ (i) + (ii) + (iii) + (iv) + (v) + (vi) + (vii) + (i). 



(i) -+ (ii): Let a be a non-zero divisor of A and let aA 
p 

:= qJ!' •.• nqt be an irredundant primary decomposition in A . 
P 

Assume that Iq. --e; pA for all i, that is p is not a prime 
1 =r p 

di visor of aA. Hence there exists an eleI11ent bE pA such 
p 

as b ~ I~ for all i. Then a is a non-zero divisor of A 
1 P 

and 'b is a non-zero divisor on A /aA. Therefore we have p p 

depth A > 1. This is a contradiction. Thus p is a prime 
p 

divisor of aA. 
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(ii) -+ (iii): Since ht p > 0 and A satisfies the sI-condition, 

there exists a non-zero divisor in p. Hence (ii) implies (iii). 

(iii) -+ (iv): It is proved in (1.6) ~ 

(iv) -+ (v): Let a. be an element of Q (A) "whose denominator 

ideal I is primary for p. Then there exists a positive --a. 

integer h such he and h-l be as I p ~ I Let x an p == a. a. . 
element of h-l not contained in I and S Then IS p == xa. .J p. a 

Let a be an element of IS· Then ax l:. I . Since I is a a a. 

primary ideal -belonging to p and x ~ I , we have a p. - a 

Therefore IS=='p 

(v) -+ (vi) : Let a be an element of Q(A) such as I := p. a 

Then A A + Aa. := I == p. Since A : (A : A .+ Aa.» ? A + Aa., we 
a. 

have A A + Aa. 2A : (A : (A : A + Aa» ::::>A : A + Aa. Thus 

A : A + Aa == p is a divisorial ideal over A. 

(vi)-"-::;--(vii) This is obvious .-

(vii) - -+ -- (i) - : Le~~J?-~be a-prime-divisor of a divisorial ideal 

_ -J.------Then-A : -J- is_,.a_-_~~n"H:e-A':'I11?dUle, say, A : J:= Aa
l 

+ + Aa. 
n 

c-: ::..z--~- .. 
--.~ .. 

- -. -- ... ' - .. 

- - .. "- - ... -=, _.,. 
'.-.:;,_~:..c.:. -_. _ ... _.~ ~--"-. ~ .•• ----

, -- -- --.-- - ... .:. .. : ". ;," .. -- :".' 



Hence we have J = A (A : J) = I (\ •.• (\1 . Since p is a 
a l an 

prime divisor of J, p is a prime divisor of I for some j. a. 
J 

Iq= For a convenience we put a = a .. Let I = q(\ql(\ •.. (\qt' 
J a 

be an irredundant primary decomposition and let x be an element 

of q (\ ••• (\q 
1 t 

not contained in 

that lIS = p. Let aE. IS. Then 

q and let 

ax E la S q. 

s = XCl. 

Since 

We show 

x is not 

contained in q and q is primary for p, we have a E p. Hence 

we have lIS = p. 

Assume that 

A -sequence p 

depth A 
P 

Let 

> 1. Since p = lIS' there exists an 

in Q(A). Hence ad = bc. 

'But a, b is an A -sequence, so we have 
p SEA. This contradicts 

Therefore depth A = 1 , that is 
p 

P 
.( i) . 

Thus the first half of this theorem is proved. Next we 

assume that A is a finite A-module and ht p ='i > 2 and 

we show that 

(v) + (viii) + (ix) + (x) + (vii) and (viii) + (xi) + (x). 

(v) + (viii) We have to show that there exists an element of 

A whose denominator ideal is equal to p. 

Firs~assume that A is an integral domain. Since A is a 

noetherian domain--.and A is a finite A-module, A is a normal, 

domain. Let a be an element of Q(A) with I = p a and let 

I be the denominator ideal of a in A. If I = A, then a a 

a EA. Assume that It-A. Since A is a normal domain, the 
Cl 

denominator ideal has an irredundant primary decomposition and 

- - -each prime divisor has height one, say, I = Q {\ ••. ('\Q and 
a 1 t 

. "-~. ~ .. ' .' .. ': 

14 
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(" 

IoQ-. = P.. Since I Cl, we have P. n A J p. Suppose that 
J J a = a J 

P. n A ~ P for all j. Then there exists an element x of 
J i 

is (\ ••• {\ is (\ A not contained in p. Let B = xa. Then BE A 
1 t 

and IB = P for x ti p. Suppose that P j nA = p for some j. 

If P ~ C(A/A) , then we have A = A-. This contradicts 
p P. 1 = 

ht P. < ht p. 
J 

Hence 
_ r-- J . 
P j ~ P ~ ~. __ (A/A). Since ht P. = 1, P. 

J J 

is a prime divisor of @.(A/A). From (1. 9), we have P.f"\ A 
J 

= pE-

D(A,A). Since ht p = i, p is a minimal prime divisor of 

@(Fi - l (A,A) /A) by (1.1). By (1.8. (iiiJ) and the first half of 

this theorem, our assertion is proved in a domain. 

Next,we pass the general case. Let a be an element of 

Q(A) of I = P and let I be the denominator ideal of a in a a 

A. Let (0) = gIn··· () gt be an irredundant primary decomposition 

in A and Iq: = p.. Since A satisfies the sI-condition, 
J J 

the ideal (0) has no embedded prime divisor, so Q(A) = A x 
PI 

Then A. = A/g. is a subring of 
J J 

A ,and Al x p. _ J 
is an intermediate ring between A and A. LetA. be the 

J 
integral closure of A. 

J 

our assumption that A 

- -
in . Ap . Then A = Al x 

J 
is a finite A-module, each 

x At' By 

A. is also 
J 

a finite A.-module, so A. is noetherian. Let a = a
l 

+ 
J J 

and' i; =: {a EA., aa. EA. } . 
J J J J 

-Let P be 

- -Since P is a prime ideal of A = Al x 

••• x At' there exists an integer k, 1 ~ k ~ t, and a prime ideal 

- -such as P = Al x ••• x Q X··· 
- .-- - _ . .,...- -_ .. _. 

ht Q and Q is a prime divisor of 

- -
I'Iow, vle sha~,~ __ ~h<?~: _~~~~",each prime divisor of 

Then ht p = 

-
I has 

a 

hEdsht one in A. By the above discussion, - it I S enough, to show 

15 
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the proof under the assumption that the nilpotent ideal of A 

is prime in A. 

-Denote the residue class of Cl in Q (A) /nil (Q (A» by Cl. Let p 

be a prime divisor of I 
Cl 

and assume that ht P > 1. From the 

first half of this theorem, there exists an-element 8 EQ(A) of 

I8 = P. Then we have I13 = {a E A/nil (A) 1 a13 E A/nil (A)} "2 P /nil (A) 

and ht P/nil(A) > 1. Since A/nil (A) is the integral closure 

of a noetherian domain A/nil (A) . and a finite A/nil (A)-module, 

we have j3 € A/nil (A). Hence there is an element sE. A such that 

8- s Eo nil (A), so 8 is integral over A, that is BE A. This 

- - -contadicts I8 = PiA. Thus we have ht P = 1. 

- - -Let 1=1(\---(\1 
Cl 1 n be an irredundant··primary. decomposition 

Ir. = P.. Let 
J J 

p. = P.(\ A. 
J J 

Then I C.r CP., 
Cl = Cl.= J 

in A and 

hence P S- P j for all j . If P ¥- P j 
for all j, then there 

exists an element x in I AA not contained in p and let 
Cl 

8 = XCl. Then 8 E A and I = P 8 
for x «: p. ~uppose that 

P. is lying over P and 1 = ht 
J 

P = Pj for some j. Then 

-< ht p. If P 1> @(A/A), then A = A- so pP. ' . ht P = ht P. 
J 

= 1. 
J _ 

P. 
J 

This contradicts ht P = i > 1. Hence P.") 
J = P ~ ~(A/A) . Since 

ht P. = 1 and ht (e;(A/A) > 1, P. is a prime divisor of tC;(A/A). 
J --~. = J 

By (1. 9) we have pE D. (A,A), so P 
J. 

is a prime divisor of 
.-

.• f'(F·l(A,A)/A) by (1.1). From (1.8.(iii»and the first ilalf of ....... J.-

. this theorem, we see that there exists an element 8 E A of 

.18 = p. Hence we have (viii) . 
.. . _- -_.- . -- --- - -- -- .-- --.---- _ .. - . 



17 

(viii) -+ (ix) Put B = {BEil Sp~A}. We show that B is a ring. 

Let S be an element of B. Since SEA, there exists some 

elements a ..• a EA l' , n 
n n-l such that S + alS + ••• + an = o. 

Let x be any element of p. Then we have (xS)n + alx(xS)n-l + 

n n + x a = o. Since xS EA and x Ep, we have (xS) E p, so 
n 

xSEP. Hence if a, SEB then 0.+ S, aSEB. i.e., B is a 

subring of A. By the assumption (viii), there exists an element 

of A whose denominator ideal is equal to p. Hence B:; A 

and @)(B/A) = p. Thus we have {ix}. 

(ix) -+ (x) : This is obvious. 

:{x) ~',-+ (vii) : Let B 'be an intermediate ring betvleen A and 

A. Then (§XB/A) = A : B. Since A : .(A :B) "2 ~ follows in general, 

A : B SA: (A : (A : B» SA : B, so A: B = @(B/A) is divisoriai. 

(viii) -+ (xi) : Let a be an element of A with I = p. a 

Then a E P. 1 (A,A) by the definition. Hence we have 
1-

@(Pi - l (A,A) /A) S la = p. Thus pE Di (A,A) . 

(xi) -+ (x) : 'If p is an element of D. (A,A), then p is a 
1 

prime divisor of ~Pi_l{A,A)/A) by (1.1). Hence we have (x). 

=:_,-.. _ ,_S2;211ary ~. g. Assume that A is a finite A-module. If 

D(A,A) = Dl(A,A), then A satisfies the S2-condition. 

Proof. For the proof, it suffices to show that if ht p > 
~ 

1, 

then depth A ? 1. Let pE Spec A of ht p = i. > 1 and assume p 

that depth A < 1.'-; If depth A = 0, then ht p = O· for A p = - p 
satisfies the S l-condi tion. __ Hence depth A = 1 and i > 1. 

P 



By (1.10); pED. (A,A). 
1 

~Tf 

subset of Spec A. 

This contradicts 

, 
is a finite~~le. th~n the set 

~. Let p be an embedded prime divisor of aA. Since 

A satisfies the SI-condition, a is a non-zero divisor. Hence 

ht p > 1, and PEASSA(A/A) by (1.10). If A is a finite 

A-Ii1odule, then ~_ssA (A/A) is 9- finite subset of Spec l~, hence \\Te 

are done. 

Let R ~e a birational-intearal extension 
-' 

of A and assume that R is a finite .A-!Ilodule. Then vie have 

D(A,R) = AssA(R/A). 

Proof. 
~ 

Let p be an element of D. (A, R), i >. l. 
1 = 

T~en p 

is a prime divisor of ~S(Fi_l(A,R)/A), hence there is an element 

a in Fi_l(A,R) S R such that la = P by (1.8) and (1.10). 

'i'herefore we have '.' p EASS
A 

(R/A) . 

Conversely, let p EAssA (R/A) and let ht p = i. Then 

there is an element a of R_. vi~lcse denominat?r ideal is equal 

to p. Since R is a 5ubring of Q.(A) and a fini te A_~module, 

-. there exists a non-zero divisor x in :~~c(R/A). Hence la = p =;? 

€(R/A) :3 x. Thus ht p = i > 1. By (1.1) we have aE-F. l(A,R). 
1-

18 



Hence p = la. ::?~ (F i-I (A, R) lA) • Thus pE D. (A,R) C D (A,R) . 
1 

2. A criterion of the seminormality 

rAre recall the definition of the seminormalization and f!le 

serr.inormality in [6] Let R be a ring coritainina ·a" ring A 

and assume that R is integral over A. The serninormalization 

of A in R is defined by 

" ;A = {u E RI Up E Ap + J (Rp)' for all "pr~ITle ideal p of 

A}, where J(R) is the Jacobson radical of R~ 

If + 1>_ = "OA, then \,-ie say that A .... is seminormal in R. 

19 

~ Let R/A be an intecral e;:tensi~n of domains 

and C = Q(A)nR, where O(A) is the quotient field of A. 

Then we have 

(i) +A + and = CA, R 

(ii) A is seminormal in R if and only if A is -crl.""§f2-

" seminorr.::al in C. 

Proof. Let p be a prime ideal of A. We shmv that 
,...."..". ......... -

J(C) = J(R )/"\.C. Let M be a maximal ideal of R and let p p'" p p 

m = M f'\C • 
P 

ideal of 

Since R 
P 

is integral over C ,m is a ~aximal 
p 

Hence we have J (C ) C J (R ) n C • p = p p 



Conve~selYJlet m be a maximal ideal of C . 
p 

Since R 
P 

is integral over C , there exists a maximal ideal of 
p 

lying 

over m, that is 

we have J (C ) = 
P 

BEA + J(C ) c 
p p = 

11ave +p, S ;A. C--

m=Mi\C. 
p 

J (Rp) 1\ Cp. 

A + J (R ) 
P P 

Hence J(C ) J J (R ) n C . Thus 
P = p p 

Let B be element of + Then an CA. 

for all p €. Spec A. T~erefo!:"e we 

Since (0) 

= Q (A). Hence 

is a prime ideal of A, \>le have ;A s: A(O) 

;A ~ Q{A) nU = C. Let B be an element of 

and let p be a prime ideal of A. Then there exists an element 

a€A such as B - al:.J(R ). Since a, B EC B - a EJ(R ) nC p p p' p p 

= J(C ). Therefore we have B~A + J(C ) for all p € Spec A. p P P 
Thus we have (i). 

It is obvious that (ii) follows from (i). 

In [1] it is proved that the seminormality is equivalent to 

the- (2,3)-clbsednes§, i.e., if and 2 3 a , a E A, then a EA. 

20 

By using our notaion we have another criterion of the seminormality 

when R is birational integral over A. and a finite A-module. 

~ Let ~ be a noetherian domain and let R 
---

be a birational-integral -ex-tension of A and assume that 

-- is a finite ;"-module. Then the following are equivalenti 

(i) A is seminormal in R. 

(ii) 

(iii) 

A is seminormal in Rp for all pE D (A, R) . p 

The conductor ideal ~(Fi(A,R)/A) is a r~dical ideal 

in Fi(A,Rl~- for all i ~ o. 



Proof. (i) + (ii) and (i) + (iii) are proved in [6]. 
~ 

Since A = RnpE~,R) Ap' (ii) implies (i) by the (2,3)

closedness. 

We shall show that 

it suffices to show that 

(iii) implies 

+ RA S r i-I (A,R) 

for Fd(A,R) = A by (1.1). Assume that 

D. (A,R) 
1 

and let ex be an element of 

(i). For this purpose 

implies +A C F. (A,R) 
R = 1 

+ 
'CA C F '-1 (A,R) ... , - 1 

and let 

+ RA. Then ex EA + J (R ) • 
P P 

Therefore ex = x + B for some x EA 
P 

and B EJ (R ). Since 
p . 

21 

R 
P 

is integral over A , we have 
p 

J(R )(\F. l(A,R)b= J(F. l(A,R) ). _ p 1- ~ 1- P 

-Since p is an element of Di(A,R) and ,blFi_l(A,R)/A) is a 

radical ideal in F. 1 (A,R) , we obtain J (F. 1 (A, R) ) = pA c.. A 
1- 1- P P = P 

+ . 
Therefore B is contained in Ap. Hence we "see that RA S F i (A,R) • 

~klary 2.3: Suppose that A satisfies the s2-condition. 

Then A is seminormal in R if and only if ©(R/A) is a radical 

ideal in R. 

In [7lit is proved that 

F. (A [ [Xl] ,R [ [X] ]) = F. (A, R) [ [X] ] , 
1 1 

F. (A[X] ,R[X]) = F. (A,R) [Xl, 
1 1 

(S:(F
i 

(A[ [X]] ,R[ [X]] )/A[ [X]]) = ~~-;(Fi (A,R)/AJA[ [X]] 

and :c-(F. (A [Xl, R [X] ) lA [X]) ='-c (F. (A, R) lA) A [X] . 
~ 1 . 1 . 

Using this result and (2.2), we have the following; 



Proposition 2.4. Let A be a noetherian Qomain and let 
~ 

R be a birational-integral extension of .7.'.,. and assume t::'1at 

R is a finite A-module. If A is seminormal in R, then A Dn 

is seminormal in R[X] and A[[X]] is seminormal in R[[X]]. 

In the following proposition (2.5~ we give a useful result 

to prove that A is seminormal in R. 

~~2~5~ A is seminor~al in R if and only if 

F. (A, R) is seminormal in F. 1 (A, R) 
1 1-

for all i. 

Proof. If A is seminormal in R, then F. (A,R) is 
~ 1 

seminormal in R for F. (A,R) = R (\ D "(A R). A , j ~ i. Hence 1 pE j , . p 

Fi(A,R) is seminormal in Fi_l(A,R). Next, suppose that Fi(A,R) 

is seminormal in F. l(A,R) for all i. By (1.1) there exists 
1-

an integer d such that Fd(A,R) = A. From ([6J, Lemma 1.2), 

we see that A is seminormal in FO(A,R) = R. 

~. Let A be a noetherian domain~_4-let R 

be an intermediate ring between A and A and assume that R 

is a finite A-module. Let B be a ring and etale (unramified 

-
flat) and finite over ,~. Suppose that R~B is a dOIT,ain and 

- ... ---- - --- - -, .. 

canonical nomo!!lorphisms of rings; B ~R B and R ---?>- R B 

injective, hence'we may assume that· B and :a are subrings of 

and 

the 

are 

,R~B. Then A is seminormal in R if and only if B is semi-
+ 

normal in R~. B., _____ . 
= 

Proof. To see the seminormali ty, we have only to show the 
~ 

~2,3)~qlosedness. Let .. ·Cl...L:.. T.) d' 2 . '- ..... an Cl, .Cl 3 C A. Then and 

22 



B are linearly disjoint over A, RnB = A. Hence we see that 

if B is seminormal In R@AB then A is seminormal in R. 

Suppose that A is seminormal in R. We prove that B 

is seminormal in R~B. By (2.2) it is enough to prove this 

assertion when A is a local ring. Let A be a local ring. 

Then B is a free A-module. Let e • • . e 
l' 'n 

B over A. For a convenience we denote R®B 
A 

FirstJwe show that Fi(B,~) = Fi(A,R)~B. 

element of Fi (B,~) and I = {aEBt aaE..B}. a,B 

be a basis of 

Let a be an 

Then ht I B a, 

~ i + 1. Let a = Sle l + + S e for S . E. R. Since B is 
n n J 

flat and integral over A, vie have ht I B(\ A = ht T > i + 1 a,· -a,B 

(I~]. Theorem 20. p.Sl). 

Then 

xS. EA for all j , 1 < j . J = 

Let x be an element of I BnA. a, 

xS e E: Ae
l 

e3 ••• E9 Ae . n n n Hence we have 

< n. Thus I Bn A ~ IS .. Therefore = a, -
J 

ht IS. > i + 1, so we have S . E F. (A, R) . Hence a E F i (A,R) ®AB. = J 1 
J 
Conversely, let a = Slel + ... + Snen' for· SI' 

. .. , Sn E 

F. (A,R). Then ht IS.~ i + 1, so we have ht IS(\ ••. {\I > i 
l Sn = 

J 1 
+ 

Since B is flat and integral over A, we obtain ht (I (\ ••• f\ 
SI 

IS )B > i + 1 ([Lt]. Theorem 19. p. 79) • Since I J (I ("\ .•• {\ 
= a,B SI n 

IS )B, we have ht I B > i + 1. Hence a EFi(B,RB). Thu8 
n a, 

Fi(B,~) = Fi(A,R)~B. 
Since "F. (B,R_) is a free F. (A,R)-module, we see that 

l -13 l 

rc·(F. (B,RB)/B) = ;-(F. (A,R)/A)F. (B,RB). Since A is seminormal 
-...." l - l 1 

in is a radical ideal in F. (A, R) • 
l 

is unramified over A, Fi(A,R)®AB is unramified over 
F\ . 

Therefore ~(Fi(A,R)/A)Fi(B,~) is a radical ideal in 

Hence B is seminormal in ~ by (2.2). 

Since B 

F. (A, R) • 
l 

23 
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Let A be an affine domain over a field k and let K 

be a field separably generated over k. Suppose that A and K 

are linearly disjoint over k. Since K is separably generated 

over k, there exist some transceridental ~lements t
l

, ... , t E K 
.n 

over k such that K is separable algebraic over k(tl,···,tn ). 

~~ Let A be an affine domajn over k and 

let K be a field separably generated over k and let R be 

a birational-integrai extension of A and ~ finite A-module. 

If Ais seminormal In R, then -A®kK is seminormal in R&k~ 

_40" _ _ . 
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Proof. Let A be seminormal in R. By·" (2.4) A®k[t ..• t ] -------- k l' , n 

= A[tl ,'" ,tn ] is seminormal in R~k[tl'··· ,tn ] = R[tl ,··· ,tn ]. 

Let S = k[tl,···,tn ] \ {DJ. Then S is a multiplicatively 

closed set and and 
. -1 
S R[tl,···,tn]=""R~k(tl,···,tn)' Hence A~k(tli···,tn) is 

seminorrnal in R~k(tl,···,tn). Since A1kK is etale finite 

over A~k(tl,···,tn)' we have that A~K is seminormal in 

R~K. 

Iri- [6], Travers~ defined a glueing of R with respect to 

one priwe ideal of A and proved that -if .. A is seminorrnal in 

R b~en A is obtained by a sequence of glueings of R. We 

shall define a "glueing" of R with respect to a finite subset 

of Spec A as follows. If the subset consists of only one prime 

ideal of A, then the definition of Traverso and ours are the 

same. 



Definition 2.8 . Let R be an intermediate ring between A 
~" 

and A and let PI' Pt be prime ideals of A. Let Pil , 

P. (.) be all prime ideals of R lying over p .. Denote the 
le 1 1 

residue field of p. 
1 

by k (p.) 
1 

and the residue class of an element 

f with respect to a prime ideal p by f(p). Let 

G (PI"" ,PtiA;R) = {fERt f (p il) = 

all i l . 

= f (P. (.» E k (p. ) for le 1 1 

Then G(Pl,···,pt;A;R) is a subring of R which will be called a 

glueing of R over A with respect to PI' 

Lemma 2.9. 
~ 

Let Then P.3: O·G-= 
l:~ ---

.'. ~ ,-=. 

F. (.) n G = p!, hence p! is the only prime ideal of Glying le 1 1 1 

oV2r D., and we have 
-'-1 

k (p .) = k (p ! ) . 
1 . 1 

~. Let a be an element of G. Then a(Pil ) = •.• = 

a(P. (.»Ek(p.). le 1 1 
Hence '<1e have P

1
.
1
{\ G = ••• =·P. . ('\ G and 

le(l) 

k(P!) = k(p.). 
1 1 

Using these notations, the result given by Traverso [6] is 

stated in the following form; 

~. Let A be a noetherian domain and let R be a 

birational-integral extension of A and assume that R is a finite 

A-module. Let ~ssA(R/A) = {Pl"",Ptl. Then A is seminormal in 

R if and only if A = G(Pl",·,ptiAiR). 

25 
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Proof. 
~ 

Wc shall show that if' A = G(n_,···,n.J...;AiR) then 
-.1 ~L. 

Ais se~inormal in R. By [6]; -the seminormalizatiun is 

characterized by,the'following j 

;A is the largest subring B of R such that : 

(i) for any prime ideal p of A, there is exactly one prime 

ideal pI of B above p. 

(ii) the canonical homomorphism k(p) + k(pl) is an isomorphism. 

Let ex be any element of There is exactly one prime 

ideal p! of +A 
1 R 

above p .• 
1 

Therefore Pil , • •. ,P. (.) are le 1 

k(p.) = k(p!). 
1 1 

exactly all prime ideal of R above p! and 
1 

= k(p.). Thus 
. 1 

Hence we have ex (P il) = = ex (P . ("» E k (p! ) le 1 1 

ex E: G (PI' •.• 'Pt ;A;R) = A by the definition (2.8). Therefore 

;A = A, this means that A is seminormal in R. 

Next we show tpe:converse of this theorem as the following 

lemma. 

. . 
Lemma 2 oIl'. Assume that A is seminormal in R and let 
~ 

As sA (R/A) = {p. '. t h t p. . = i, 
" r.',' lJ lJ 

~. ~ -
i ~ u iA;R) for an integer 

, . 
u ~ O. Then G 

u 

Let G = G (p .. i 
u lJ 

= F (A, R) . 
u 

~ He. show this lemma by an induction on u. If u = 0, 

tp~n _ GO := ~R = F 0 (A,R). ,Suppose. that G 1 = ~ I(A,R). Let u- u- . ex 

FU(A,R) ~~. Since .Fu(A,R) ~ Fu- l (A,R), exE.Fu _ l (A,R) = Gu_1o Let 

P =0 Pun ,: f9r an 'integer 
_. 

n and let PI' 
. . . P be all prime , 

v .. 
", 

ideals of R lying over p. Since ex E F (A,R) and p = Pun u 

D (A, R) , we have exEA by (1.3). Thus there are elements a u p 



,0, 
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and b of A such that b and a r;£ p. Then a ~ P •.• P a = 

b(Pk ) 
a l' , v 

and -a (PkJ Thus weohave aEG Hence F (A ,R) C G -0 a (P
k

) . . . u u u 

Let a be an element of G . Since aGG C G = 
u u u-l 

F u - l (A,R), it suffices to show that aEA for all q E D (A, R) • q u 

Let q be an element of D (A, R) and let PI' , P be all u v 

prime ideals of R above q. Since aEG =G(p",i<u~A;R) 
u 1J 

and for integer there is an element b 
of Aq q = p some n, -un a 

such that a (PI) a(P ) b b = . . . = = a (gAq) • Hence a - - E\P (\ •• ·liP ) R 
v a I v q 

= J (R ). Therefore we have aEA + J(R ). Let p be a prime q q q 

ideal of A properly contained in Then ht 
. Since q. p < u. 

we have a EA, thus 
P 

+ a E RA. By the seminor-
'qq 

mality of A, A q is also seminormal in R. Therefore we have q 
+ a E A = A . Hence 
Rqq q 

G = F' (A, R) • 
u u 

Remark 2.12. Let 
S.C 

By (1.1) ,'we have A= G. 

be prime ideals of A and 

G = G(Pl'···'Pt;A;R) and let Pij , 1 ~ j ~ e(i), be all prime 

ideals of R above P
l
'. BY- (2.9) o~-le!see that 0' p', = 'p 'l'n G

O

= ., 
:. 1 ~ 

••• " = p, " "n G·· . 
~.o 1e(l) ...... ; 

is the only prime ideal of G above p" and 
1 

k(p,) = k(P,). 
1 1 

Hence we have and G is 

seminormal in R . 

. ' '~'.: .... : / .. - ," " .. ":. 
-. -" 

", ' ..... - .~ ." 

:.- . '" ,. -, 
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Let p ••• p 
l' 't be prime ideals qf_~_ 

and G = G(P1'···'Pt;A;R). For this ring ~1 we have 

~. In the above remark we have G = G(PI,···,Pt;G;R). 

We may assume that G(PI,···,Pi_I,Pi+I,···,GiR) 1 G for each 

i =l,···,t. Changing the notation, let {PI,···,Pt } = {Pijl 

ht Pij = i, I < i ~ d, 1 < j < n(i)} and G = G (P. ., i < U; G; R) • 
u 1J. = 

We show that {p E ASS G (R/G) I ht P = u} = {p • •• P } 
ul' , un (u) 

inductively. Suppose that {p € AssG (R/G) I ht P 2 u-l} = {P .. , i < 
1J 

Then we have Gu- l = Fu_l(G,R) by (2.11). We show that ©(Fu-i-

(G, R) /G) = . (\ P ..• 
1~U 1J 

a proof of xf EG, let 

Let x€ f\ P .. 
1~U 1J 

and f EF 1 (G, R) ~ u-

P E {P .. }, say, P = P ., 1 < n < d 
1J nJ = 

For 

and 

u-l}. 

let Ql,···,Qm be all prime ideals of R lying over P. First, 

let n < u-l. By our assumption, pE AssG (R/G) and ht P = n ~ u-l, 

hence we have Fu - l (G,R) £ Gp by (l.3)-. Since xf E.Fu _1 (G,R) ~ Gp' 

we have - xf (Ql) = •.• = xf (Qm) E k (P). Next, let n·~ u. Then 

x E (\ P. . C P C Q (\ ••• f"\ Q. Hence 
1~U 1J = R I m 

xf(Ql) = ••• = xf(Q ) = o. 
- m 

Therefore we have xf E G, that is x E~(F u-l (G,R) /G) . 

Conversely, let xE ~(Fu-l (G,R)/G) and suppose that x $ P . 
nJ 

for some integers n(~ u) and j. Therefore 

Case (i) there is exactly one prime ideal 

x (P .) 
nJ 

Q of 

='- !') I v. 

G n-l above P .• 
nJ 

If k(Q) = k(P .), then we can omit 
nJ 

P . 
nJ 

from the set {P .. }, but 
1J 

G(PI,···,Pi_I,Pi+I,···,PtiG;R) ~ G. This is a contradiction. 

Hence there is an element f of G u-l such that f(Q) fi k(P .). 
nJ 

So we have xf(Q) f/ k(P .) for x(Q) Ek(P .) and x (P .) -:f O. 
nJ nJ nJ 

Thus xf ~ G, it is contrary to x E ©(P u~l (G,R) /G) • 



Case (ii): Let Ql' ••• , Qm' m ~ 2, be all prime ideals of Gn- l 

lying over P .. 
nJ 

Then there exists an element f of G n-l such 
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that f ':::Ql and fEQ2· 

This contradicts xf E G. 

Hence we have xf(Ql) ~ 0 and xf(Q2) = o. 

T". 
Therefore we have ~(Fu_l(G,R)/G) 

(1.13), T·;le have {p E JI.ss G (R/G) I ht P = 

3. A cusp type extensions 

= i~U Pij · By (1.1) and 

u} = {p l'···'P ()}. u un u 

If ;A = R, then we call that the extension R/A is a cusp type. 

From the characterization of the seminormalization, R/A is a cusp 

type if and only if the canonical map Spec R ----~~ Spec A is 

bijective and the corresponding residue fields are coincident. 

The following elementary results are easily seen by the above 

fact, so we omit the proof. 

ProE-osi tion 3.1,. (i) Let 
~ 

S be a multiplicatively closed 

set in A. If R/A is a cusp type I then RS/AS is also . 

(ii) Let R/A is a cu.l2P type and let D be a prime ideal of A. 

ThllS ther:e exists a unique prime ideal P of R lying: over P, _ 

then tlt~_xt.ensjqI]..-!RLP..J./_(.fI.Lp)--1-2.A.._~1J.~E....!YE~,· 

(iii) If B/A and RIB are cusp types, then R/A is also. 
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A criterion of a cusp type is given by the following; 

Proposition 3.2. Let A be a noetherian domain and let 
~ 

r: De a birat::~Gll2.l-;ntecral extension of A and a finite A-module. 

and 9nly if there exists a unigue prime ideal 

p. for all i = 1, 
J: 

is a cusp type. 

P. 
l 

of R above 

Proof. We prove the.,·" if part" :., by an induction on t. 
"""'.,....-~ 

If· t = 0, then A = R. by __ .(J.3t. Hence R/A. is.a cusp type. Let 

t > 0, and a minimal element of D (A,R) • 

by B~~ Rand (1.2). 

Put 

If 

B = R r'\A • 
P 

p = p E - t 

,D (A,B)~' then there is an element of B whose denoIL"tinator iaeal is 

primary for p, but B~A. 
P 

and 

B s~tisfiescthe~n~cessary.condition. By the inductive hypothesis, 

B/A';' is ·a cusp type ~ We show that RIB ' ... :is a cusp ::y~~·e ~ 

SiDC~.A~B = R(\A CA , we have Ap = Bp' where P = pA (lB. 
- P P P 

Hence B = Rr\Bp' We show that D(B,R) = {plo Let Q be a 

prime ideal in D{B,R) and Q i P. Suppose that Q C P and 
r 

let q = Q nA. Then q c. p for A = 
1=- P 

p is a 

minimal element of D (A, R), q P ©(R/A). by (I ~ ~) . Hence \·1P. 

have B
Q

;? Aq~ R. Thus Q ~ D (B, R). Therefore Q q:, P. Since 

QED(B,R), there exists an element a of R whose denominator 

ideal I is equal to Q. Then I = Q ~ P, hence we have 
a a 

I = B, this is a contradiction. 
a 

If B = R, 



then D(A,R) = D(A,B) C {Pl,···,Pt-l}' this contradicts Pt E 

D(A,R). Hence B C; R, so we have D (B, R) = {p}. 
r 

At last, we show that +B = R by using the ~haracterization R 

of the seminormalization. Let Q be a prime ideal of B. 

Assume that Q-:PP. Since D (B, R) = {p}, ©)(R/B) is a primary 

ideal belonging to P, hence we have Q ? @(R/B) • Thus BQ ~ R. 

Therefore there exists a unique prime ideal Q of R above Q, 

and k (Q) = k (0) • Next assume that Q:::> P and let Q be a 

prime ideal of R above Q. By our hypothesis there exists a 

unique prime ideal P of R above p. Then P is a unique 

prime ideal above P. From (1.c:t) and D(B,R) '='{p} we see that 

c (RIB) is a primary ideal of R belonging·· to P. Since Q? Q 

:::> P ?e(R/B), we have Q :::> P. By our hypothesis; ... (Rip) I (Alp) 
'"'" 

is,a cusp type,.Q is a unique prime ideal of R above Q and 

k(Q) = k(O). Hence ~';B. anc. E/A are cusp types, so R/A is 

a cuspty~e by (3.1). 

The "only if part" is easily seen by (3.1). 

~ If D(A,R) = {P1,···,P L} and each residue 

ring A/p. 
I 

is integrally closed in it'sauotient'field~-then 

we have 

~ Let B = G(Pl'···'Pt,A,R). Since B is seminormal 

in R and contains A, we have By (1.2) vlehave 

D(A,B) k D(A,R). Since B is given by a glueing at PI' , Pt 
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over A, there exists a unique prime ideal P. 
l 

of 
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B above 

for all i, and k (p .) = k (p . ) • 
l l 

Since the residue ring A/p. 
l 

is integrally closed in k(p.), we have A/p. = B/P., hence 
l l l 

A/p. is a cusp type in B/P .. By (3.2) we see that A is a 
l l 

cusp type in B. Therefore we obtain that +A 
R ~ B, so we 

have +A = G(PI'··· 'Pt,A,R). R 

Let R be an integral domain containing a field k. Let 

P be a prime ideal and Q a primary ideal belonging to P. 

Then the total quotient ring Q(R/Q) is an Artin local ring, 

so a complete local ring of eguici1.ara·cteristic. !fence 

Q(R/Q) has a coefficient field K satisfyi?g the following 

commutative diagram; 

P2 
~ 

Rp/QRp K --« i 

lil -PI ji2 , P °i = I K· 2 
R/Q 

;> 
R/P 

Let P be an intermediate ring between K and Q (R/Q) = ~/Q~, 

and let P =I- Q(R/Q). Let Ap = {fERI f(Q)EP}, where f(Q) 

is the residue class of an element f in R/Q. Then we have 

the following; 

~o:e?si tio~ Let R be a noeth er:i3.lL.do..L:@..iJL.QOuta j n j ng 

a primary ideal b~l~nginq to P. Let K be a coefficient field 

of Q(R/Q) and P a'nrober'subrlnq"'6f ,··Q(Ri'Q) such that F- ~ k-. 

ffE.i,-·-'i(O-rE·-F}' -~-."'lf·-'~:R/-Q .. :- ,'.: .L.' . 1 -
- _ _ _ _ lS' In l-egra ~:over 

(R/Q)0 K, then- tEe following holds; 



(' 

• 

(i) R is intearal over A 'h~nre A -"-'-----'=-=--=.=...::...=...;;~=.......:::._=_==__'_'f '-l<"K~-r. ove~ __ F ' 

(iii) 

Proof. 
~ 

~ is a cusp tvpe in B. 
L 

Fir?t,we tirove '(i) > By' the- aefinitibn of A~;, -, 
I\. 

we:,liave : AT' ~:Q and so', we,:easil:7 -see that (R/Q) (lK =' AK/Q • .. \. -

Si,rice -'R/Q is_ integral over (R/Q) f\ K,',R is integral ove:t~ AK• 

Hence R is integra~::over ::A
F

,. 

Next, we prove (ii). Denote AF by A and P f\ ~ by p. 

By the definition of ~,we have ©(R/A) ~ Q and Q is a 

primary ideal belonging to p. Let p' be a prime ideal in 
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D (A, R) . By (1. J.) we have p' ~ @(R/A) ,_ so p.' ~ p. , Supp'ose that 

p' 1 p. Since p'ED(A,R), there exists an element a of R 

whose denominator ideal Ia is equal to pt. Since pi ~ p, 

there exists an element x of p' not contained in p. Then 

x (Q) is an invertible element of F.;,:' On the other hand: xa EA 

implies j(Q)a(Q)E:F. Thus we have- a'(Q)E'F.'-·By'the definit?-on,~-' 

a E A, this contradicts I 'I A. a From the hypothesis F 'I Q(R/Q), 

R 'I A~ Hence we obtain that D (~, R) = {p nAF } • 

We prove (iii). Applying (3.1) it suffices to show that 

~ is a cusp type in R. Since K is a field and (R/~~K = 

~/Q, Q is a prime ideal of ~. Therefore P {\A
K = Q, hence 

we have D (1"~K' R) = {Q}, and -0 (~/Q) = Q (R/P) .. :Let _pi be a 

prime ideal of R above Q. Then pi 2Q and Q is a primary 

ideal belonging to P, thus P' ~ P. Since R is i.Rtegral over = 



AK and P (\A
K 

= p' flAK' we have P = P'. Hence P is a unique 

prime ideal of R lying over Q. Let f be an element of 

R.~ Then we have i'i2 (f(P» 

i l (R/Q) n i (K). Since (R/Q) r. K 

= i'i2 'Pl(f(Q» = il(f(Q» E 

= AK/Q, we obtain f (P) E AK/Q. 

Hence AK/Q = R/P. Applying (3.2), we conclude that R/AK is a 

cusp type, so R/~ is also. 

4. Good sections 

In this section assume that A is a homomorphic image of 

a regular ring and satisfies the SI-condition. In Ul, for such 

ring A, it is proved that· b = {p E Spec ~r ht p > 1 and 

depth A = I} is a finite set. Let x be a non-unit of A 
p 

and let R be an intermediate ring between A and A and 

assume that R is a finite A-module. If xtf;.q for all q E. 

LJ b, then we call the element x a good section 
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ASSA (R/A) 

of R/A. If depth A >1, then there is a good section of R /A • 
P p P 

~ Let x be a good section of R/A. If.--.p 

i"s a prime divisor of xA, then we have ht p- 1. Hence the -

nrincipal ideal xA has no embedded prime divisors. 

£.£oq,t._ Suppose that p is a prime divisor of xA· and 

ht P > 1. By (l.tO) we have depth A = 1, i. e., pE!:, . 
P 

But, 

since x - is a good section, x E p." This is a contradiction. 

-' -----.--.~~~=-;--=::.-... ---- - - .-"-... " 
.. - - ;: ... , -"- ".' 

-. :- - .... - -.": 

~ --" -. -. -- .... = -. -- ... 

~-- Let x: be a_ good section of R/A. Then 
--. . -."-:--;---:--.-_._-

. ...;...-~.-

. _." .. -



P~oof. Let x be a good section of R/A and let xA = 
~ 

q (l ••• n q be an irredundant primary decomposition and Iq. = 
1 t 1 

p .. Let y = XCL Eo- xR (\ A for some CLE R. By (4.1) r ht p. = 1 
1 1 

for all i. Hence,if Pi ~ @(R/A) , then p. is a prime divisor 
1 

of (C(R/A) , so p. E D (A,R) = AssA(R/A) by (1. &) and (l.l~) . 
1 

But x is a good section of R/A, so we have x ~ q for all 

q 6- AssA (R/A) . 

all i. Put 

Y E-xRp . = xAp . 
1 1 

not contained 

and a. d p .. 
1 1 

Thus yE xA, 

Thus we have p.? (C)(R/A), that is 
1 -

A ~R 
p. = 

1 

for 

P. = p.A ~ R. Then A = Rp. Hence we have 
1 1 Pi Pi i 

in 

Therefore there exists an element a. of A 
1 

p. and a.y ExA for each i. Then a.yEq. 
1 1 1 1 

Since q. is primary for p. , we have YE q .. 
1 1 1 

i. e. , xR{\A = xA. 

Then Q. 
1 

is a 
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Put Qi = xRp0 Rand 
1 

primary ideal belonging to 

J = Q
l 

(\ . . . f\ Qt. 

P. and Q. n A = 
1 1 

q.. Hence 
1 

JflA=xA, 

i.e., A/xA is a subring of R/J. 

we have Q(R/J) = ~ /Ql~ x ••. x 
1 1 

Rp /xRp = A /xA x ••• x A /xA 
~ t PI PI Pt Pt 

is birational integral over A/xA. 

Since ht P. = 1 for all it 
1 

~ /Q ~ = R /xR x •.• x 
--Pt t-~t PI PI 

= Q(A/xA). Therefore R/J 

Corollarv 4.3. 'l'~sSU!TIe t~1atA is'a finite A-moQule . . "'" ....-
Let x be a non-unit arl"d non-zero divisor of A. Then x is 'a 

good section'of 'A/A'ir and only if . xA (lA = xA. 

":: . ".":. :. 
~. It;,~s .al~_e~~y prqved that:if .. x isa good section 

of A/A then we have xA {\A = xA. 
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Conversely, let Y~Z\nA = xA. By (1.10), Vle ha.ve !J. ~ AssA (A/A). 

Hence it suffices to prove that x ~ q for all q E.ASsA (A/A) . 

Let q be an element of AssA (A/A) and suppose that XE q. 

Since q E.ASS
A 

(A/A), there is an element a EA with Let 

y = xa. Then v ... is an element of xA ('\A = xA. Since x is a 

non-zero divisor of A, we have a EA. This contradicts I = q. a 

Theorem 4.4. Let A be a homomorphic image of a regular ring 
~ 

and satisfy the s1-condition and let R be cl birational-integra1 

extension of A and assume thct. R is a finite A-module. 

Then, for any P ESpec R,it holds that 

< ht P. 

REoot: Let p = pn A. For this proof, we may assume that 

A is a local ring and p .is the only maximal ideal of A. If 

ht P 0, then we have ht 0 for R . ' a subring of Q (A) , = p = 1S 

depth A = 0 < ht P. Assume that = 
ht P > O. If depth A = 1, 

so 

then 1 = depth A ;, ht P. Suppose that depth A > 1. Hence there 

exists a good section x of R/A. Then A/xA is a homomorphic 

image of a regular ring and satisfies the Sl-condition. Let xA = 

q n··· flq 1 . t be an irredundant primary decomposition and ;q:- = p .• 
1 1 

Then A =:J R. 
p. = 

1 

Q
l 

{\ ... n Q~. 
Put 

Then 

P. = p. A n Rand Q. = xR_ n R 
1 1 p. 1 -? 

-1 . 1 

and 

R/J is birational integral over A/xA 

a finite A/xA-module, and we have (P/J)0~/xA)= p/xA. 

Applying the induction Qn depth A, we have depth A/xA = 

J = 

and 

depth A - 1 < ht P /J < ht P - 1. Therefore \"le have depth A < 

ht p. 
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§5. Flat over-rings of an integral domain 

Let A be an integral domain and let K be the quotient 

field of A. Hereafter,we are mainly concerned with a subring 

B of K containing A. We call such an intermediate ring 

an over-ring of A. The purpose of this section is to study 

the relationship between an over-ring B and subsets FA{B) 

(resp. FI: rB)·) : of Spec A defined by 

respectively. 

FA{B) = {PESpecAI A :bB} 'and 
P" 

'~A *. (B) = {p E F~~ (B) t depth Ap = I} 

In the paper [~], we studied the relationship 

between flat over-rings over a Krull domain and prime ideals 

of height one. Replacing a Krull domain by a noetherian 

domain and prime ideals of h~ight one'by those. of ,depth ong, we 

develop;a 'similar'study as is.:.done in [81. 
• l' '~" ',:- .... -.#--:-- ... ~:- .. -.,." ': : ...... . 

~. Any minimal element of FA (B) PAS depth 1. 

Hence the suRset of FA{B) consisting all minimal elements 

Of FA (B) is contained inF;Jl!.L .. 

Proof. Let p be a minimal element of FA (B) and 
~ ... 

that depth A > 1. 'J;l~.~:t;l_ A -n7'-q runs all pr;irne suppose 
p J? 

~. 'c'1.q," ~ 
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.iqy~+s. . p~oI!erlyconta.ined. ·in. p' and depth A = l' (cL [3.] • 7~ I~ • 

• ' _~i~';_~_-~ is a,,~;~i_el~~en t 0 f:· FA (B) , we ~ave . q'; FA (B) , Whe~1D 
-

--.. .. .-_. q is properlyc~~taine-d in'" p. - Therefore we have 
) .... 

..' '2 B, it contradicts ,P E FA (?) .-
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For a convenience we write down the following well-known 

fact without proof (cf. [5]). 

Lemma 5.2. Let A be a ring and B an A-algebra contained ,....",.....,. _____ t& • 

in the total auotient ring of A. Then the following four 

conditions are equivalent to each other; 

(i) B is flat over A. 

(ii) B = B®AAp is flat over A for any pG Spec A. p P 

(iii) AMP = Bp for any PE Spec B. 

(iv) For every EESpec A, either pB = B or A = B . 
P P 

Using this result we have 'the following; 

~. Let B be an over-ring of . A. Then B is 

flat oyer A if and only if either B = A or pB = B holds 
P p 

.. fQr: anv prime ideal '0 of A ~vith depth A - 1. 
P 

Xrpof; From (5.2~ it suffices to prove the "if part" of this 

theorem. If q is a prime ideal of A not contained in FA(B), 

then we have A = B by the definition of FA(B). Hence to prove q q 

the theorem it is sufficient to show that for any q ~FA(B) we 

see qB = B. Let q be an element of FA(B). By (5.1) there 

exists an element p of FA*(B) with q ~ p. Since A =I B , 
P P 

we have pB = B by the assumption. Hence we conclude that 

qB = B. 



Femark 5.4. If p-~ FA (13), then vle have A = B . 
P P 

Hence 

we see that - B is flat over A if and only if pB = B for 

all P(;FA*.(B). 

, ~si -tion 5. ~. Let A be a noeth8rjsm dofua j b ~nd ::Let -12 

be an over-r+na of A. If B is flat over AT then B is also 

flat over A. 

~ Let P be a prime ideal of A and let p = pn A. 

If P ~F A (B), then we have Ap ~ B, hence (Ap) ~ B, so we have 

- -
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Ap = Bp' If· p~FA (B), then we have pB = B, hence pB = PB = B. 

Therefore B is flat over A. 

In the following we see that if B is flat over A then 

B is uniquely determined by the set FA*(B). 

~~.i t~on 2. ~ Let B be an over-ring Q fA. If B is 

flat over A, then B n A where b. = {p E Spec At depth A = I 
PEb. p' P 

Proof. 
~ 

Put R = r\ A • 
PtC-Ll P If P E b., then Hence 

we have A :> B. 
p = Thus we have R ~ B always. It is well = 

known that B = n BM' M runs all maximal ideals of B. Let M 

be a maximal ideal of B and let m = M (\ A. Then we have 

= A 
m by (5.2). Hence By ([~], 1.2) the set 

FA(B) is closed under the specializations, therefore all prime 

ideals of depth one contained in rn are elements of ~. Thus 

we see that -~M = Am ~ R 

have B ~ R. Thus B = R 

Hence we 



Let a be a non-zero element of A. Then it is easily 

seen that F A* (A [ _~ -]) "= {p E Spec AI p is a prime divisor of 

aA}. Let B be a finitely generated over-ring of A. Then 

there exists a non-zero element a of A such that B is 

contained in A[ 1 ]. 
a 

Applying ([8], Lemma 1.4), we have 

1 
FA*(B) ~ FA~(A[ a])· Hence the set FA*(B) is a finite 

set. But the 'cor..verseassertion does n6t hold in general. 

Here is a counteJ:"example 'j' - 'let -_:k be a field and let' x, y 
. -l:Je indeterminants -over. k. '"Let A = k [x, y] and B :::; A[ Y Y2 

x'x ' 

•.•• ]. -.'~'hen ;.:-Fi:..* (B) = {xA};' but: B . is not finitel.y:generated 

'over .. A. Under an additional' assumption, the follovTing holds j 

B be an oyer-ring of A. If' B is finitely oenerated over At 

then F '* (B) j S a fj nj te set. If we impose! an additional 
A 

assumptjon that B is flat oyer A, then the con~rRe. also 

holds. 

Proof. The_first_h~lf_i~'already prov~d~ 
~ 

Let 'B be 

flat over A and FA*(B) = {PI' ••• , Pt}. By the definition 

of FA :(;B) , we have 

(Pl(\· •• ('\ Pt) B = B. 

A ~ B Apllying (5.4), we obtain p. p. 
]. ]. 

Therefore there exist some elements 

aI' ••• , a E p (). • • () p and 
u I t 

aI' ••• ,au E B such that 

E aiai = 1. Let C = A[al , .···,au ]. Then we have PiC = c, 
- . 

1':; i -i t. Hen~e._·-:_~ ~*'<'B) ~ FA * (c~ .. ~_ ·On -the',other hand "le have 
'.:~:-.-- ----.. ~:: .. -<:.-. -_ .. ---...... - --.. -. .",..-~--.' ."; ---.~ .... ---~.: ..•.. , .... ..:.:\.,' '''''-'' . 

__ ~_.,.·~A *~~>. ·;?::F~*-~(C~ __ ·~~F. __ ~ -~_-~. - Therefore FA * (B) = FA * (C). Hence 
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: .-- .. -:. . . -- ~ . -' --: . -.:.- -':-'" -..... : -... ~ '., ..••.. : ~ - . -. ..,..-':--. ...' 
. . -' :: -'we--' see that ;B"- and .- C :'are flat over A. Since FA * (B) .= FA * (C) , 

I - .'- :_~.:_ ;<_~. - _:~.<_.~'.~_:_. ___ A' ."-." .- .-._-.~---:~.- ._. 

we have -B = C" by (5.-6).- :;. Hence B is fini~ely generated over A. 
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