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Totally real parallel submanifolds in P"(C)
By Hiroo Naitoh(*)

Introduction. In the study of submanifolds in symmetric spaces,
parailel submanifolds often play an important role. For example, in
the study of minimal submanifolds in the Euclidean sphere the éym—
metric R-spaces, which are parallel submanifolds, provide abundant
- examples for testing various conjectures. Hence it seems to be use-
ful to classify the parallel submanifolds in a specific symmetric
space. Actually, these submanifolds have been classified by D.Ferus

[5],[6],[7] when the ambient space is the Euclidean space or the
Euélidean sphere, and by M.Takeuchi [17] when the ambient space is
the real hyperbolic space. Moreover H.Nakagawa and R.Takagi [10]
and M.Takeuchi [16] have classified the parallel Kahler submanifolds
in the complex projective space with constant holomorphic sectional
curvatures.

In this paper we study n-dimensional complete totally real parallel
submanifolds in the n-dimensional complex projective space P (C)
with constant holomorphic sectional curvatures. it is known that a
riemannian manifold which admits a parallel isometric immersion into
‘a symmetric SPace is a locally s&mmetric space. Fix an n-dimensional
. simply connected symmetric space M". Let Ty ( resp. Sy ) be the
set of all equivalence classes of totally real parallel isometric
immersions of M into Pn(c) ( resp. of éomplete totally real

parallel submanifolds in Pn(c) with the universal riemannian cover-

(x) Partially supported by the Yukawa Foundation.



ing M ). Moreover, in‘section 3 we define an equivaience relation
among symmetric tfilinear forms on a tangent space of M satisfying
certain conditions, and denote by .ﬁh the set of all equivalence
classes of these trilinear forms.v In sections 2,3, we shall show
that there are the natural correspondences among these sets jﬂu, Qﬂu,

‘”M.

space M without Euclidean. factor. Moreover, in section 6, we shall

© In section 4,5, we shall determine the set .ﬂﬁ for a symmetric

study the set J@u for a symmetric space M with Euclidean factor
and an important example in the geometry of totally real surfaces in
p?(c).

The author wishes to express his hearty thanks to Professor M.
Takeuchi and Professor Y.Sakane for their useful comments during the

preparation of this paper.
1. Preliminaries

Let MO ( resp. M? ) be an'm—dimensipnal ( resp. n-dimensional )
connected riemannign manifold. Denote by VA( resp. V ) the rieman-
nian connection on MV ( resp. Mp ) and by R ( resp. R ) the
riemannian curyature tensor for vV ( resp. V). Now let £ be an
isometric immersion of M® into ﬁm, We denote by the same notation
< , > the riemannian metrics on the both riemannian manifolds.
Moreover denote by O the second fundamental form of M°, by D
the normal connection on the normal‘bundle N(M) of M® and by R*
the curvature tensor for D. For a point p in M and a vector 4

in the normal space NP(M) at p, the shape operator AC is defined



by
<A§(X),Y> = <of(x.Y).c>

for all vectors X,YEETP(M). The shape operator A _ is a symmetric

C
endomorphism on the tangent space TP(M) at p. It is also charac-—
terized by the equation that

V.

X; = - AC(X).+ D

x5

for any tangent yector field X of M and any normal vector field

r of M.
Now we recall the following fundamental equations, called the
equations of Gauss, Codazzi-Mainardi, and Ricci respectively.

(1.1)  <R(X,Y)Z,W> = <R(X,Y¥)Z,W> + <0 (X,2),0£(Y,W)>

- <0g(X,W),0.(¥,2)>
(1.2) {RELYVZY = (Vjop) (¥,2) - (V§op) (X,2)
(1.3) <R(X,¥)g,n> = <R°(X,¥)g,n> - <[A A ](X),Y>

for all vectors X,Y,Z2,WE€ Tp(M) and all vectors ¢¢,n GNP(M) . Here
we denote by '_{;e}’L the normal component of « and by V* the
covariant derivation associated to the isometric immersion f :M-+M,

defined by

- (V30¢) (¥,2) = Dy(0g(Y,2)) = ag(Vy¥,2) = 0g(¥,Vy2)



for tangent vector fields X,Y,Z of’ M. The second fundamental
form* 0y as well as the isometric immersion £ is said to be
‘parallel if V*s. = 0. Moreover when f is an imbedding, the sub-

manifold £(M) is called a parallel submanifold in M. If the second

fundamental form o £ is parallel, we have

for all tangent vector fields X,Y,Z of M.

2r _ PY(c) be the r-dimensional complex projective

Now let M
space with constant holomorphic sectional curvatures c¢ (>0). The
complex structure of pT(c) will be denoted by J. An isometric
immérsion £ :M"+ Pr.(c) is called totally real if JTp(M) C Np(M)
for every point p in M. Moreover when £ is an imbeddipg, the

submanifold £(M) is called a mmug reql . submanifold.  in PY(c).

Then we have the following

Lemma 1.1 ( cf. See [11] ). Let f be a totally real isometric

immersion of M into Pr(c). Then

<0¢(X,Y),J2> = <0.(X,2),JY>

for any point peM and all vectors X,Y,2 eTp(M) .

From now on we assume that the complex dimension r equals n.

For a totally real isometric immersion f£f: M?+p™(c) we define the

assoctated _ tensor 5f of M as follows:



éi(x,y) = Jog(X,Y)

for vectors X,Y‘E_'I‘p (M), peM. If we identify the téngent space

A Tp(M) with the cotangent space T;(M) through the riemannian
metric on M, the associated tensor 6f is a symmetric covariant
tensor of degreg 3 on M by Lemma i.l. For a vector X in- Tp(M),

we define a symmetric endomorphism Gf(x) of TP(M) by

§.(X) (¥) = 3:(X,7)

for a vector Y in TP(M) . Since the isometric immersion £ is
totally real in P™(c), we have R(X,Y)2 GTP (M) for all vectors

X,Y,Z € Tp (M) and hence the equation of Gauss reduces to
(1.5) R(X,¥)Z = R(X,Y)Z - .[G£(X),3:(¥)](2)
foi‘ all vectors X,Y,2 ETP(M) . Moreover we have the following

Lemma 1.2, Let f be a totally real parallel isometi;ic immersion
£ M into P"(c). Then V3. = 0, that is,

Vy (Bp(¥,2)) = 5.(V,Y,2) + §.(Y,V,2)

for all tangent vector fields X,Y,2 £f M.

Proof. Since JC is a tangent vector field of M for any



normal vector field ¢ along M,

IV JL f JV Jg + Jo g (X,Jz)

for every tangent vector field X of M, while

= Ac(x) - ng

JVgIT = = Vgt

éihcé Jka = VXOJ; Hence, comparing normal components ﬁe‘get
JDx; = VXJ;.

Thus, substituting ‘é = of(Y,Z), together with (1.4) we'haVe
Vx(af(Y',Z)) = :fff(VXY',_Z) + Of(Y’.VXZ)

for all tangent yector fields X,Y,2 of M.

q.e,d.

Let @:KTP(M)) be the Lie a;gebra-of all skew symmetric endo-
-morphisms of Tp(M) and ®(p) the Lie subalgebra in @(TP(M))
_generated by the set { RP(X'Y) ;X,YEETP(M) }. since the isometric
immersion £ is parallel, the manifold M is a locally symmetric
space and hence the Lie algebra ®(p) is spanned by the set
{ RP(X'Y) ;X,YGETP(M) } and coincides with the holonomy algebra of

M at p. Thus, by Lemma 1.2, we have the following



Corollary 1.3. Let £ be a totally real parallel isometric

jmmersion of M"™ into P™(c). Then ®(p) -Bf = 0, that is,

TG £(X,Y)) = G (T(X),Y¥) + T (X,T(¥))

for étnLendomorghism' T€®(p) and all vectors X,YeTp (M) .
2. Equivariant immersions associated to trilinear forms

Assume that the manifold M" is a simply connected symmetric

space and fix a point o in M®. Put

®=T,, ®=®) and @=®+®
and define the' bracket product [ ,. ] on @ as follows:

[T,S] = ToS - SeT, [T,X] = - [X,T] = T(X) ,

[x,Y] ’_f - RO(X,Y)

for endomorphisms . T,S in ® and vectors X,Y in (®. Then

@,[ , 1) is a Lie algebra over R "and there exists a simply
connected Lie group G acting on the symmetric spéce M isomet-
rically and transitively, such that the Lie algebra of G 1is iso-
morphic to (@ and that the Lie subgroup K = { g€G;g(o) =0}
is connected and has the Lie subalgebra & ( cf. See [8] ). Let
"(M be the set of all (®-valued bilinear form G ~on ® »satisfyipg

the following conditions:



(1) @ is a symmetric trilinear form on @ under the canonical
identification of @P*®@*@@ with @P*8@*@®@* through the riemannian

metric < , > on @,
(2) ®s=o0,

(3)  (c/4) (<Y,Z>X - <X,Z>Y) = R(X,Y)Z - [5(X),51Y)](2)

for all vectors  X,Y,Z€(®.

.Let £ be a totally real parallel ijsor-netrf:i.‘c immersion 6f M® into

Pn(ci. Then
R(X,Y)Z = (c/4) (<Y,2>X - <X,Z>Y)

for all vectors X,Y,_ZE@. Hence we have that (&ff)oeJJM by Lemma
1.1, Corollary. 1.3 and (1.5).

Now .the r.i,emanniéﬁ manifold Pn.(c) is a_ls_o a simply conn.ected
symmetric space. For P"(c), we use notations o, @ & @ G, X
_bfo'r. corresponding objects o; ®, ®: @, G, K. Note that G ( resp.
@) 1is isomorphic to the compact Lie group SU(n+l) ( resp. the

compact Lie algebra Gu(n+l) ) and that & is given by

~

®=@@ = { TE@@ ;JoT'=. ToJ }.

A linear subspace @ in @ is called totally real if the subspaces
©® and J9 are orthogonal. Totally real subspaces in ® of the
same dimension are conjugate?each other under the natural action of

K on (. Fix an n-dimensional totally real subspace @ in )



-~

and set

® ={Te®:T@ c@} and &, ='{ TeE®: T@ CcIP}.

Then ®l ( resp. ®2“) is a Lie suiiélgebra ( resp. linear subspace )
in ®, and ® is the direct sum of & and ®,. In fact, take
an orthonormal basis '{el,---,en} of @ and identify @ with ¢®

_by the correspondence:
= : ' n
®> (ijej) + J(Zyjej)+_—>(xj+/—lyj) e'c .

Then ®, ® and ®, are identified with the Lie algebra @(n) of
all skew hermitian matrices of degree n,. the Lie algebra @Eo(n) of
all real skew symmetr:.c metrices of degree An, and Athe linear space
/-Is"®R) ={ yIA;A is a real symnefrie matrix of degree n }
r'e'spectivelvy. . ThlS implies the assertion.

Let s be an Eticlidean'isometi'y of ® onto @ We define an-

injective Lie homomorphism 1t s of (@) into ® by

Tt (T) (s(X) + Is(Y)) = s(T(X)) + Is(T(Y))

’

for TEEO(P) and vectors X,Y€E€@. Next, for an element § in 7TfM "

we define a linear mapping jxs = of ® into ®2 by
. 14

i‘s,a(x) (s(Y) + Js(2z)) = s(5(X,2)) - Is(3(X,Y))



for vectors X,Y,Z 6_@. Here note that the condition (1) for ©
impiies that ¥y &(x)€®. Now we define a linear mapping Ps. 5 of
7 : r .

@© into @ by
Pg,g(THX) = 15(T) + pg 5(X) + s(X)
for Te€® and X€@.  Then we have the following

Lemma 2.1. The linear mapping Ps & of @ Ainto @ is an
Ps, G . A 1S an

injective Lie homomorphism.
Proof. At first we shall prove the following three formulas:

(2.1) [t g(T) g 5 (0] = ug 5 (T(X)
(2.2)  Ipg 5K g (M1 = 1 ([E(¥),5(X)])

(2.3) R(s(X),s(¥)) = 1 (R(X,¥) - [6(X),5(¥)])

for any Te® and all vectors X,Y €@. By the condition (2) for G

we have

~['rs(_T)_,us,6(X)] (s(Y) + JIs(2))

s(T(§(X,2))) - Is(T(5(X,¥))) + Is(F(X,T(¥))) - s(G(X,T(2)))

= s(6(T(X),2)) - Is(3(T(X),Y))

Mg 5 (T(X) (s(¥) + JIs(2))



for all vectors Y}Z €(®, and hence (2.1) is proved. Next, by the
definitions of T,s and us,& we have
[]-ls’a(x) 'uS,G(Y) ](S(Z) + Js(W))
= - Js(§(x,8(¥,W)) - s(@FX,F(Y,2))) + Is(3(Y,5(X,W))
+ s(3(Y,5(X,2)))

s (13 (¥),5(X)]1(2)) + Is([3(¥),3(X)] (W)

T ([3(¥),8(X)1) (s(2) + Is(W)

for all vectors Z,W in '@, and hence (2.2) is proved. Since the

subspace @ in @ is totally real, we have
R(s(X),s(¥))s(Z) = (c/4).(<Y,2>s(X) - <X,2>s(¥))
for all yectors X,Y,Z €@®. By the cbndition (3) for G we have

R(s(X),s(¥)) (s(2) + Is(W))

R(s(X),s(¥))s(2) + TR(s(X) ,s(¥))s W)

1

s((c/4) (SY,2>X - <X,2>¥)) + Js((c/4) (Y, W>X - <X,W>Y))

S(R(X,Y)Z - [3(X),5(¥)12) + Js(R(X, Y)W - [5(X),5(¥)IW)

1

T (R(X,¥) - [3(X),5(¥)]) (s(2) + Js(W))

1

for all vectors -.2,We@- Hence (2.3) is proved.



Now by (2.1), (2.2) and .(2.3) we have

[og, 5 (T+X) sog < (S+Y)]

(15 (1), g ()] + Lr () sug 5 (D] + [1g(D),5(V)]
*+ Ing, 5 (X) 15 (8)] + [ng 5 (X),ug (D] + [ng 5(X),5()]

HIsX) T (8)] + [5(X) g (D] + [s(X),5(0)]

1l

TgCIT/S]) + ug < (T(V)) + s(T(¥)) - g 5(S(X))
1 U (),E(X)]) - Is(E(X,Y)) - s(S(X) + Is(3(L,X)

- 15(R(X,Y) - [6(X),5(¥)])

1

15 (IT,S] - R(X,¥)) + ps,&'('T'(Y) - S(X)) + S(T.(Y)_ - S(X))

= psla ([T+X,S+Y])

for all T,S €® and all X,Ye€(@, and hence pS 5 is a i.:ie homo-
. L ’

morphism of (@ into (@ Moreover, since . T, and s are injective,
~ 1is injective.
Ps,§ ]
g.e.d.

Since @ is a cbmpact Lie algebra, we have the foll.obwi_ng-

Corollary 2.2. If the set JLM is not empty, the Lie algebra

© is a compact Lie algebra.

We call Ps. 5 the Lie homomorphism associated to s and G.
r




Since G is a simply connected Lie group, there exists the
unique Lie homomorphism 65 5 of G into G such that the
r .

differential dﬁs = is p
14

maps the Lie subalgebra (k) into the Lie sﬁba_lgebra ® and the

~ . The associated homomorphism p_ .
S,0 s,0

isotropy subgroup K is connected. Hence we can define a G-

equivariant C™-mapping £, 5 of M® into P"(c) by
. - r R
fs.E‘r‘-(g(o)) =Pg,5(9) (0)
for g€G. Then we have the following

Theorem 2.3. Let M" be a simply connected symmetric space.

Then, for any Euclidean isometry s and any deM, , the associated

G~equivariant mapping £, 3 gﬁ_.Mn into P%(c) is a totally real
14 ..

parallel isometric immersion such that

(f. ~) . =s and (& ) =3.
. fsla O

Proof. Note that G divided by the center is the_gfoup of all

holomorphic isometries of Pn(c). The claim (fS 6)*0 = s 1is obvious
- 7

by the definition of £_ .. Now we show that f_ ~. is a totally

) _ s,0 . 'S, 0

real parallel isometric immersion. Since fS 3 is G-equivariant, it
» :

is sufficient to see our claim at o. The linear mapping s is a
isometry and the. image @ of s is a totally real subspace in ®-
Hence fs,& is a totally real and isometric immersioﬁ at o. More-
over, to show that fs,a is parallel, it is sufficient to seerthat



(2.4) oy 5. [pg 5(X)g . Py, 5 (K511 €@

~ for any vector X in (@ ( See Proposition 5.2 in [11] ). Here the
suffix ® ( resp. @ ) means the &-component ( resp. @—coinpcinent )
with respect to the decomposition @=@® +@®. In f.act, since

pS'ﬁ(){)@: Mg, 5(X) and ps,a(X)@= s(X) ,

the left hand of (2.4) equals - ,S(B(X,B(X,X)))e@. Now the second
fundamental fonn at o of the G;equivériant immersion fs' 5 is
. . [ 4

_giyen by

2.5) (3 X,Y) = 2) (X)s L) (¥) =

( ) ( fs,8)°( /Y) [(ps,c)_(- )®, (Ds'q)( )®]J@
for all vectoré -}l(.,Y_ J.n ® ( See Proposition 5.1 in .[11] ). Here
the suffix Jg means the J@-’-éomponent with respect to the decdmpo—
sition @ =@+ X Hence we' have .(cfs 6)0 = - Js(G(X,Y)). This
. . f 4
implies (,Sf ). = d.

s,G °
g.e.d.

3. Frenet curves and rigidity problems

Let M be a riemannian manifold and c(t) be a C*-curve in

M defined on an 6pen interval I containing 0 which is para-

metrized by arc-length. The curve c(t) is called a Frenet. curve in

M of osculating rank r (21) if for all te€I its higher order



15
derivatives

&) = (T &) (v), (Fa_ &) (t),-=-, (T L & (t)
ot 0 ot

are linearly 'indépendvent but

E(t) = (o &) (8), (Va_ &) (), (T5_ &) (v)
ot . ot ot
are linearly depéndent in Tc( £) (M). Then there exist the unique

c’-positive functions Kl(t) ,»"',Kr_l'(t). on I and the unique

C°°—orthonorma.1 véctb.x' fields Vl(t) ,---,Vi_,(t) along the curve c(t)

such that

(. cle) =V (t)
(Ta_ Vi) (£) = ik (£)V,4(E)
R 1 2
(“5Lt. Vo) (£) = = iy (£)Vy (£) + ky (£)V5(2)

(3.1) :

T Vpy) () = - k(B 5 (8) + kg (B)V, (£)

(Va_ V) (£) = = ko (B)V _(£). _
ot

‘Here we call K5 (,f) (l<jgr-1) the Frenet curvature funetions on I,

the vector fields '{ Vj (t) ;1gjsx } the Frenet r-frame along c(t),

and the equations (3.'1) the Frenet formulas. For a given integer r (:21)




and given Cm;positive functions Kl(t),---,nr_l(t) on I, the Frenet
formulas.(3.1) may. be regarded as a system of differéntial equations
with variables c,Vl,---,Vr . It is known that this system of differ-
ential equations has the unique local solution for_given_initial con-—
ditions; a point c(0) = p€M and an orthonormal r-frame { V;(0) =
Vl,--;,Vr(O) = Vr'} of Tp(ﬁ). If the riemannian manifold M is
complete, the Frenet curve c(t) is defined for ~—o<t<+o ( cf. See

[4] and [15] ). Now we have the following

Lemma 3.1 ( W.Stribing [15] ). Let M and M be riemannian

manifolds and f a parallel isometric immersion of M into M.

Suppose that a curve c(t) defined on I containing 0 is a geo-

desic_in M parametrized by arc-length. Then

a) the curye (fec)(t) on I is a Frenet curve in M,

b) the Frenet curvature functions .Kl(t),"',Kr_l(t) are constant

( and positive ), where r denotes the osculating rank of_ (foc)(t),

c) the integer r (:21), the constant positive numbers Kyr®®*s

and the orthonormal vectors Vl = Vl(O),-°~,Vr = Vr(O) are

Kr-1
determined only by the initial point p = c(0) of c(t), the initial

tangent vector X = ¢(0) of c(t), the differential (f*)p at p.

- and the second fundamental form (df)é at_ p.

-

Now, by Lemma 3.1, we have the following fundamental lemma.

Lemma 3.2. Let g and f be parallel isometric immersions of

a complete riemannian manifold M into another riemannian manifold M.
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If there exists a point o in M such that

L9(0) = £(0) =3, (gg), = (£)y: T, () > T5H), (o), = (og),

then the mapping g and £ coincide on M.

Proof. For any point p.  in M, there exists a geodesic c(t)
in M parametrized by arc-length, such that c(0) = o and c(2) = p.
Then (goc)(t) and (feoc)(t) are Frenet curves in M bj Lemma 3.1,a).
By Lemma 3.1,c), the above assumption implies that the Frenet curves
(fec) (t) and (goc) (t) are solutions of same Frenet formulas for
the same initial conditions. Hence, by the uniqueness for solutions
of the system of differential equations, we have (foc) (t) = (goc) (t)

and paticularly £(p) = g(p).
g.e.d.

Now let Sﬂu be the set of all totally real parallel isometric
immersions of a simply connected symmetric space M? into the rieman-
_nian manifold Pn(c), I(M) the group of all isometries of M, and
G the group of all'holomorphic isometries of P™(c). Then we can
define an action of 'G_>§I(.M) on J, by

(G,9) £ = Gofog™t

for geG, geI(M) and f €Jy - Let j‘M be the set of all orbits

of the G X I(M)-action on Ty - The orbit [f], of f£ in Ty is



18

called the equivalence class of £.

Secondly, let 8, be the set of all complete totally real
parallel submanifolds with the universal riemannian'covering Mt

Then we can define an action of G on 4, by
.g-N = g(N)
for ge€G and Ned,. Let 3, be the set of all orbits of the

G-action on xSM. The orbit [N],s of N in ’SM is called the

equivalence. class of N.

Lastly, set
F (M) = { geI(M) ;_9(0)' = o0 }.
Then we can define an action of .Fo (M) on JI.M by
(k3) (X,¥) = (k) (3 (k) J1%, (k) J1¥))
for k GFO(M), g€ 'HM and X,Y €@. Let .JZ'M be the set of all orbits

of the FO(M) -action on J&M. The orbit [6], of G 1in J{M is

called the equivalence class of G&.

Now we study the relations among three kinds of equivalences.

At first we have the following

Lemma 3.3. For any ge€G, g€I(M) and fe7,, there exists

some kGFo(M) such that




©

?Eﬁng'l)

o~ k'(.‘Sf)o'

Moreover, if ge€F_ (M), the very same element g can be taken as

the above element k.

Proof. Since g, and J are comutative, we have

(3.2) @

§°f99-l)° (XIY)‘ = (6 f?g-l)o (XIY)_

1l

= 9657 (o) Ugw) X, (g4) 1Y)

for all vectors X,Y e@. Let Y (t) be a geodesic joining o to

'g_l(o) . Since M is a symmetric space, there exists some h € I(M)

such that h(o) = g *(o) and that h‘l-(af)h(o) is the parallel

translate of '(6f)vhb(o) along the geodesic Y (t), where

-1 S .
h ~- (af)h(O) (XIY)' = _h* ((Of)h(O) (h*x,h*Y))

for all vectors X,Y€@® ( cf. See [8] ). Putting k = goh, we have

keFo(M)-. Since. 8f is parallel by Lemma 1.2, we have
the last term of (3.2) .
-1, ,~ -1 -1
= k, (h, ((-of)h(o) (hy (ks X) shy (k,7Y)))

=k (Bg) o 31X,k = (ke (B0 ) (X,1)
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The second assertion is clear from the above proof.

Now we define a mapping i, of j—M into J_CM by
lM(F.f]J) = [(Gg) 1y

. for £ in ‘7M . By Lemma 3.3 the mapping iM is well-defined. Then

we have the following

Theorem 3.4.  The mapping i, of jM into TLM is bijective.

Proof. By Theorem 2.3 it is obvious that iM is onto. We show

that the mapping iM is injective. Take two mappings fl'f2 in 7 M

and suppose that .(qfl)o = k- (ofz)o for some keFo(M). Then,

putting £, = _f2°k_l, we have (Zifl)o =.(6f3) by Lemma 3.3. Since

are totally real, there exists some ge€G such that

(o)

£ and f

1l 3

(gefi) (o) = £,(0) =8 and (gof,), (T (M) = (£;),(T (M) =@

Moreover, since any Euclidean isometry of the totally real subspace

@ is the differential at o of some holomorphic isometry of P™(c) '

‘we may assume that (gef;).o = (f;)40. Here note that (§§of3)o =
(6f ) by Lemma 3.3. Hence, by Lemma 3.2, we have _?;_of3 = fl on
3

M and thus [fll.'f = [f3]J = [f2]\7 .

o]

g.e.d.
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Theorem 3.5. Any totally real parallel isometric immersion of

) M? into Pn(c) is G-equivariant.

Proof. Let £ be a totally real parallel isometric immersion

and put f(o) = o. Then we have f = f by Theorem 2.3

(f*) O, (6f) [e)
and Lemma 3.2. This implies the theorem.

g.e.d.
Now let jM be a mapping of ,iﬁ into Zﬁ defined by
inllfly) = [£EM) ],

for':Eejqa. Here note that the image £(M) is a submanifold in

P’(c) by Theorem 3.5. . Then we have the following

- Theorem 3.6.  The mapping Jj, gf_.ih into Zﬁ is bijective.

Proof. It is obvious that jM is onto. We show that the
mapping jM is injective. Take two mappings fl,fzejb1 and suppose
that £,(M) = g(f,(M)) for some geG. Put o = f,(0) and N = f;(M).

Taking some g€ I(M) and putting £, =_§of29g, we have
fl(o) = f3(o) = o and fl(M? = f3(M) = N.

" Let (ON)S be the second fundamental form at o of the sﬁbmanifold

. N. Then we have



(a)5(XTD = (ofl)o((fl)zli,(fly;;f)

(0p ) o ((£3) 27K, (£5)70T)

3

for all vectors X,Y € TS(N) . Hence we have

(af3)o(x,x)'=-((f3);1o(fl)*)((afl)o<(f1{:io(f3)*X,(fl);lo(f3)*é))'

for all vectors X,YETO (M). Note that f3-]‘of:L defines a local iso-

metry of M around o. Since M 1is a simply connected symmetric
'space, there exists a unique element k€ Fo (M) that coincides with
1 around o. Hence we have (Bf )o = k- (E'rf )o . By Theorem
3 1
3.4 we have [f3]\7 = [f1]J and thus [f2].7 = [fl]J .
g.e.d.

4. The set JTM for a simply connected symmetric space ' M

without Euclidean factor

In this section we assume that M" is a simply connected sym-
metric space without Euclidean factor, thus, M is decomposed as a

riemannian manifold as follows:

n

il
~1
|

Mt =M nlx.’.-mrnr ( n

1
where Mjnj is an nj—dimensional irreducible simply connected sym-
metric space for each j. Then the tangent space T (M) =® ( resp.

" the holonomy algebra ® ) is decomposed as follows:
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= r _ r
@ - zj:l @j ( resp. ® = zj=l ®j )

where the subspace- ©jc@ ( resp. the subalgebra ®j c® ) denotes
the tangent Vspace T, (Mj) ( resp. the holonomy algebra of Mj ).
For a ®-valued symmetric bilinear form ¢ on ® and any ordered
s e o3 . . . ~ k . .

triple {i,j,k} (1lgi,j,kgr), a mapping oij :.@i X@j +@k is defined
by

~ k —_ . ~

G355 (Xi'Yj) = 1:he®k component of . O'(Xi,Yj)

for X; e@i and Y-j e®j. Then we may write symbolically as

r ~ k

9% %i,3,%=1 %ij

Assume that. ge¢ Hyy Since each holonomy algebra ®j (1l jgr) acts
on the subspace @J irreducibly and on the other subépaces @x (3#k)

trivially, the condition (2) for. . & implies that

4.1) § =3.%. 5.3
(4.1) & =I5 953

Qal

Now we have the following

Lemma 4.1. Assume that the set 'H'M is not empty. Then the

simply connected symmetric space M without Euclidean factor is

irreducible and of compact type.

Proof. Suppose that r22 and Ge Hy - In the condition (3)
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for G, let X be a nonzero vector in @J and Y = Z a nonzero

vector in @k with j # k. Then, by (4.1), we have

(c/4)<Y,¥>X

R(X,¥)Y - [3(X),3(Y)]1Y = - [6(X),5(Y)]Y

4

6(y,o(X,Y)) - 6(x,6(Y,Y)) = 0.

. This is a contradiction. Hence we have r = 1.
Moreover Corollary 2.2 implies that M is of compact type.

g.e.d.

Hereafter we assume that M is a simply connected compact

irreducible symmetric space. Let @ be a maximal abelian subspace

in ( and W . the Weyl group of M relative to @. Denote by S3(®)

(- resp. S3(@) ‘) the vector space of all symmetric trilinear forms

on (® ( resp. on @ ). Then it is known that the vector subspace

{ qe 53 ®) ;3 = 0} is isomorphic to the vector.subsp.ace 1 Xe S3 @) ;

w-x = A for all. wew } by the restriction to the subspace Q.

Noti_ng that the Wéyl_ group W acts on (p) irreducibly, we can see the

following

Lemma 4.2. Let M be a simply connected compact irreducible

symmetric space and set 4, = dim { § es3(@) ®- G

if M is one of the following spaces and dM = 0 otherwise:

SU(n)/s0(n) (n23), SU(2n)/sp(n) (n23), SU(n) (n23), Eg/F, .

AO}. Then dy =1
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Now we determine the set .Rﬁ.

Proposition 4.3. Let M2 be a simply connected compact irre-

ducible symmetric space satisfying dM = 0. Assume that the set .RM

is not empty. Then the riemannian manifold M is the sphere Sn(c/4)

with constant sectional curvatures c¢/4. and the set .Rh consists of

one point. Moreover the unique element in M, corresponds to the
q

natural totally geodesic isometric immersion - f :Sn(c/4)-*Pn(c).

Proof. Take. EG‘KM' Then the assumption that dM = 0 implies

that § = 0. Hence, by the condition (3) for U, we have

R(X,¥)2 = (c/4) (<Y,2>X - <X,2>Y)
for all vectors X,Y,Z €®. This impliesAthat M®  has Constant sectional
curvatures c¢/4. The other assertions are obvious.

g.e.d.

Now we consider the case when dM = 1. . Then we have the follow-
ing

Proposition 4.4. Let M® be a simply connected compact irreduc-

ib;e symmetric space satisfying dM = 1. Assume that the set -RM

is not empty. Then the metric of M"  is determined uniquely by the

constant ¢ and the set .Rh consists of one point.

Proof. Let (M,<,> and (M,<,?2) be symmetric spaces with

1)



the same underlying manifold M. Suppose that X and

(M,<,>l)-
‘K(M,<,>2) are not empty, and take. Eje.H(M'<,>j) for j =1,2.
Then, . noting that ‘M is not a sphere,rwe can see that each Ej is
nonzero by the same proof as in Proposition 4.3. Since M is ir-
reducible, we have . <>, = a<,>l for some a> 0. Moreover the

assumption that dy = 1 dimplies that &, = pG; for some B. By

the condition (3) for 8j (3j=1,2), we have

(c/74) (<Y, Z>,X = <X,2>,¥) = R(X,¥)2 - [3;(X),3;(¥)]1(2)
" and thus

(c/4) (8% - a) (<¥,2>,X - <x,2>,¥) = (82 - L)R(X,V)z

1l

for all vectors X,Y,Z2€@. Since M is not a sphere, we have

"2 _ S . _ ~ o~

B =1 and o = 1l. Hence we have . <,>l = <,?2 and . o, e.iol.
Note that the éymmetry € FO(M) at o acts on the set S3Q9) by

¢'o

= - g for any. 66’S3Q9). Then we can see that the set 'HTM <,>.)
14 14 l

Qi

=H M, 4,5.) consists of one point.
.I.I2
g.e.d.

In the next section we shall construct a model of a totally real
parallel isometric immersion of M? into -P"(c) for M" satisfying
dM = l. Hence, summing up Lemma-4.1.and Propqsitions 4.3,4.4, we
haye the following |

‘Theorem 4.5. Let M" be a simply connected symmetric space

without Euclidean factor. Then the set .ﬂﬁ is not empty if and only




- if the symmetric space M® is one of the.foliowings:

SU(n)/s0(n) (n23), Su(2n)/sp(n) (n23), SU(n) (n23),

EG/F4’ SO0(n+l1)/s0(n) (nz2).

In this case, the metric on the manifold M - is determined uniquely

by the constant . ¢ and the set .Rh consists of one point.

5. Models of totally real parallel isometric immersions

Let V be an (n+l)-dimensional complex vector space furnished
"with a positive definite hermitian inner product ( , ). Then we
can define the associated inner product < , >V' on V as follows:

. <X, ¥>y, = Re (X,Y)

for vectors X,Y€V. Let P(V) be the complex projective space
associated to <V furnished with the Kahler metric < , > with
constant holomorphic sectional curvatures ¢, and S the unit sphere
in .y furnished with the following riemannian metric < , >g3

= (c/4)<X,¥>., -

L RX,Y> v

S.
for tangent vectors X,Y of S.- Then the Hopf fibring = :S-=+P(V)
is a riemannian submersion. For a point pé€S, the horizontal sub-

space Hp at p is given by
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HP ={ XeV;<X,p>y = <x,,/—1-'p_>V =0 }.
Here note that the linear mapping 1w, : HP+T (p) (P(V)) is an Euclidean
isometry,satisfyipé n*(J-IX) = J(m,X) for any X€H_. Let y(t)

. p
be a curve in S. Then a vector field Z, along vy (t) is called

horizontal if 2, € H_ (¢) for all t. The curve vy (t) is called horizontal

t
if Y'(t) is a horizontal vector fi_eld along vy(t). Moreover an iso-
metric immersion % of a riemannian manifold M into S is called

'horizontal if 3\5* (Tp(M»)) CH%(p) for any point p Ain M. And a hori-

~zontal isometric immersion f is called totally real if the subspaces

S

;‘:‘* (TP (M)) and /-I%* (Tp (M)) are orthogonal. Let V" be the rieman-

nian connection on S for the riemannian metric < , > Then we -

S -
haye the following

V Lemma. 5.1 -( K.Nomizu [12] and B..O'Neilli' [13] ). Let y(t) be

a horizontal curve in § parametrized by arc-length. Then (Vi‘?) (t)

is a horizontal yector field along 'y(t). Moreover

-

= s
Ty (1a2,) = 1, (V5 2,)

for any horizontal yvector field Zt along v(t).

Let # be a horizontal ( resp. horizontal and totally real )
isometric immersion of an n-dimensional riemannia;n manifold M" into
S. Then the mapping £ = mof : M*+P(V) is an isometric immersion
( resp. a totally real isometric immersion ). Now we have the follow-

ing
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Lemma 5.2. Let vy(t) be a geodesic in M parametrized by arc-—

length. If the horizontal part of (Vi)zg*(i(t)) is contained in

%*(TY(t) (M)), the normal vector (Via.) (Y(t),¥(t)) at £(y(t))

equals zero.

Proof. Since the vector field Vi%;(?(t)) 'is horizontal and

ﬁ*(Vi f* (i(t))) = -V—t(.f* (?(t))) = Gf'(Q (t),Y(t)) by Lemma 5.1, we have

by Lemma 5.1 again
(5.1) m (VD 25, (7(1))) = T (o (1 (1) ,T())).

Note that
(V3og) (¥(£),7(€)) = Dy (o (¥(£),¥(£)))

= the normal component of ?£(af(§(t),f(t)))h

By (5.l)>and the assumption, the vector field V£(Qf(§(t),?(t))) is

a tangent vector field of M and thus (Viap) (Y(£),¥(t)) = 0.
g.e.d.

Now we give the models of totally real parallel isometric immer-
sions into P?(c) of irreducible compact simply connected symmetric

spaces M satisfying d, = 1.

Model 1. Let M be the manifold SU(n)/SO(n) (n23) and V
the complex vector space Sn(c) of all complex symmetric matrices of

degree n furnished with the hermitian inner product:



(X,¥) = TrxXy*
for X,Y€V. An imbedding f:M+S is defined by
2(g-so(n)) = (1/vm) tg-g

for g €8SU(n) and thus the manifold M is. furnished with the rieman-
nian metric induced from that of S. Let e, “be the identity element

of SU(n) and put o= en-SO(n)e M. Now we can see easily the follow-

ing facts:

(1) The tangent space T_(M) at o is identified with the space
®='{ Yy=IA ; A€ Sn(_IR), TrA = 0} and the following set ® 1is a

maximal abelian subspace in ®:

(2) The isometric imbedding f is equivariant relative to the

representation p : SU(n) +~SU(V) defined by
_ t
p(g) (X) = "gXg
for gesU(n) and XEeV.

(3) £(o) = (1//n)e~ and (?‘*)o@) =@®. Hence £ is horizontal

and totally real at o.



.. Then the riemannian metric of M is invariant under SU(n) by
(2) and hence M is a symmetric space, and the isometric imbedding
% is horizontal and totally real by (2) and (3). Hence f£f = no%
is a totally real isometric immersion.

Now we show that the isometric immersion £ has the parallel
secoﬁd fundamental form. Since £ is totally reél in P(V), the
equation of CodazzifMainardi implies that V*s. is a normal bundle
valued symmetric ténsor of degree 3. Note that f is equivariant
by (2), and that maximal abelian subspaces in (@ aré conjpgatet,feach
other under the naturél action of K = SO(n) on (P. Hence it is.
sufficient for our claim to see that (V§gf)(x,x) = 0 for any unit

vector

in @. Let y(t) be the.geodesic in ‘M such that vy(0) = o and

y(0) = X. Then we have -

e-2t(ZXj)./T.[ 0
A ) e2txl/:I
£(y(t)) = (1/v/7) - . :
| 'Ethn—lf:I

and

) .
=2 H(}:xj) e—2t (Exj) )/‘_I

0

2x /:Iethl/:I ,

O *2x l/—Iethn—l -
\ n= )

£, (y(£)) = (1//mA) -
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Note that V Z dt(Zt) + (c/4)<f (v (t)), Z f(Y(t))

for any vector
field 1z, along £(y(t)).

Thus we have

: 3
(c/4 4x12) 2tx, /”_

52 s
Vefi(y(®)) = (1/Vn) - .
£ 0 “riers -ax_ Pe?nT

)

and

2
| . (c/4 ".4 (zxj) 2) (zxj) O
PR (G () | g = (2/7I/vE) - | (c/4 ~4x) )% ,
J O " (e/4 -4xn—l )xn—l

Hence the horizontal part of (Vi)zf*(i(t))|t=o is given by

s, 23 ' : <(V ) f (Y(£)) | ,/F_f(Y(O))>

Vo) TE (e [ - '--i--i; ....... —
|/~IE (v (o)) |5

-/=I£(y(0))

~2(2x4) (c/4 -4(2x)%) - A/e/2

0

e 2x, (c/4 -4x,%) - A/G/2
- EIE - | 1 - .
O ‘anfl(c/4 =4x %) - Me/2

where A = (lG/n/E)((ij)3 - (ij3)). Here note that the trace of

the above matrix equals zero.

Hence the horizontal part of
S,2% ¢
(Vo) “E, (Y (£)) |

is contained in (P. This implies that

(V*qe) (¥(0),¥(0),¥(0)) = 0 by Lemma 5.2. Hence £ is a totally

real parallel isometric immersion of M into P(V)



Model 2. Let. M be the manifold S8U(2n)/Sp(n) (nx3) and V

the complex vector space €oX2n;C) of all complex skew symmetric

matrices of degree 2n furnished with the hermitian inner product:

(X,Y) = TrXyY*
for yectors X,Y€V. Aan imbedding £ :M+8S is defined by

t(g-spm)) = (/v g3 g

e 0

0 —en} € V, and thus the manifold M: is
n

for ge€sSu(2n), where Jn = [

furnished ‘with ‘the riemannian metric iinduced from:that of 8S: :Put -

o = e, -5p(n) € M. Now we can see easily the following-fdcts: -

(1) The tapgent space To (M) at o is identified with the

space

W "z

fz w)
® = {[ t ]; Z €su(n), WG@(n;C‘)}

~and the following set @ is a maximal abelian subspace in @:

N r-(Z:xj) _ ] )
xq O
ox - )
— n-1
@= . —l' _(zx.) H XjeR r.
x J
0 B
"x
L \ n-1 / J
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(2) The isometric imbedding f is equivariant relative to the

‘representstion P : SU(2n) +SU(V) defined by
t
P(g) (X) = "gXg

for gesu(2n) and X€V. t

~ A W --"2
(3) £(o) = (I/VM)J, and (%) @ = {[ 2 W

WeE®(n;€) }. Hence f is horizontal and totally real at o.

i Z e@B(n),

Then, by the same way as in Model 1, we can see that f = -no%

is a totally real parallel isometric immersion.

Model 3. Let M be the manifold SU(n) x SU(n)/SU{(n) (n;3)
and V the complex vector space Mn(c) of all complex matrices of

degree n furnished with the hermitian inner product:
(X,¥) = TE X Y*

for yectors X,Y €V. An imbedding % : M+ S is‘ defined by

£((g, ) -SUM) = (1//mght

for g,h€sU(n) and thus the manifold ‘M is furnished with the
riemannian metric induced from that of S. Put o = (en,en) -SU(n) € M.
Now we can see easily the following facts:

- (1) . The tangent space To (M) at o is identified with the
space ® = { (X,~X) ; X€ED(n) } and the following set @ is a maximal

abelian subspace in (P:
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@=1{ (X,-X) e@®: X is diagonal }.

(2) The isometric imbedding f is equivariant relative to the
representation p : SU(n) x SU(n) » SU(V) defined by

o((g,h)) (X) = gxh~t

v fof g,h€sU(n) and XE€V,. » _

- (3) (o) = _(_l//ﬁ)en and ('f\*)é@) =@®(n). Hence £ is hori-
zontal and totally reél at o.

Then, by the same way as in Model 1, we can see that f = 1[0%

is a totally real parallel isometric immersion.

Model 4. Let @ . be the Cayley algebra ovef R furnished with
the caninical «::onjjugati.on . —, and set F =‘{ X €Mqy ) ;t'}?.= X }. on
the real vector space ¥, we define the Jordan product "o, the inner
product ((,)), the cross product x, and the determinant det as

follows respectiyely:

XoY

(1/2) (XY '+ ¥X), (X,Y)). = Tr(XoY),

X%Y

(1/2) (2XeY - Tr(X)Y - Tr(Y)X + (Tr(X)Tr(Y)-Tr(XoY))es),

det (X) = (1/3) (XxX,X))

for X,YeF. Let V be the complexification of the real vector space

F and extend these o, ((,), %, det C-linearly and naturally on V.
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Denote by .. 1. the complex conjugate on . V with respect to F. Then
(X,¥) = ((tX,Y)) is a positive definite hermitian inner product on

V. We define

det(g(X)) = det(X), (gX,gY) = (X,Y)

E = € GL (V) ;
6 {g C(') for any X,YeV

and

F, = { g€E;;gle;) = e, }.

Then E6 ( resp. F 4)' is a simply connected compact simple Lie group
of type E6 ( resp. of tjpe F4 Y. ( cE. O.Shuk_ugawa—Ib.Yokota [14] )

Let M be the manifold E./F,. An imbedding £:M+S is defined
by |

£(g-Fy) = (1/V3)gley)

for g€ E; and thus the manifold M is furnished with the riemannian
metric induced from that of S. Put o = e3-F4eM and set 550 =
{XeF;TrX = 0 }. Now we c;:m see easily the following facts:

(l) Define the right translation R, on F for X€%F by
Ry(Y) = YoX for Ye¢F. The tangent space T (M) at o is identified
with the space ="{ HRXG‘@(V) ;_Xéjo' } and the following set @

is a maximal abelian subspace in (P
@=1{ /FIR,e@DV) ; X€ F,, X is diagonal }.
X 0 :

(2) The isometric imbedding f is equivariant relative to the

representation p: E.~+SU(V) defined by
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fox g€E. and XeV.

6 .
(3) f(o) = (1//§)e3 and (%*)o(p) ='/:I5% . Hence -

Hh>
-
7]

horizontal and totally real at o.

Then, by the same way as in Model 1, we can see that f = Tof
is totally real parallel isometric immersion.

Remark 5.3. It is known that the isometric imbeddings f:M+s
in the above models are minimal. Since the imbeddings £ are hori-

zontal, the isometric immersions f are minimal.

. Remark 5.4. Wg can see easily that the above isometric immersion
f:M+P(V) is (V/c/2v2)-isotropic ( that is,lbf(X,X)[ = J/c/2V/2 for
any unit tangent vector X of M ) if the symmetric space M is of
rank two. Hence these isometric immersions £ are ekamples of Theorem

4.13 in [11].

6. The set ﬂﬂﬁ for a simply connected symmetric space M

with Euclidean factor

In this section we assume that M is a simply connected sym-
metric space with Euclidean factor, thus, M is decomposed as a

riemannian manifold as follows:

M? = RPoxM nlx.--xmrnr (n=7¢%

1 5 ng . no>-0 )

where Mjnj is an nj-dimensional irreducible simply connected sym-



metric space for each j. Then the tangent space . T, (M) =@ ( xesp.

the holonomy algebra ®) is decomposed as follows:

_ r o
® =@, +‘zj=l®j ( resp. ® = Ej:l ®j )

where the subspaces (Bj and @0 in @ ( resp. the subalgebra ®j

in ®) denote the tangent spaces To(Mﬁ) and TO(RHO) ( resp. the
holonomy algebra of Mj ). For a @r-valued symmetric bilinear form

¢ on (® and any ordered triple {i,j,k} (0s5i,j,kgr), a mapping

~ k . . . . .

'Gij ‘®i x®j +®{ is defined as in the section 4. Assume that oe J(M .
Since each holonomy algebra .®j (1 jgr) acts on the subspace @J
irreducibly and on the other spaces ®k (j3#k) trivially, the con-
dition (2) for G implies that

0

r 63.+z.’__716_..+z.

6.1) &= I, , :
(6.1 *5=0 933 ] 3 j=1 "03

Now we define the Euclidean j-th mean curvature vector I-Ij (1l jsr)

in @0 by

n.
= 5.0 = 3.0
Hj (l/pj)Tr Ujj (l/nj)zk___l ojj(ejk'ejk)

n.
. . J .
where {ejk}k=l denotes an orthonormal basis of @j, and call the

length hj of the vector Hj the Euclidean j-th mean curvature. Then

we have the following

Ql
o
3

Lemma 6.1. Let
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<X.,Y.

375573

Q
O (X.,Y.
GJJ(XJJ J) J

~ J _

- J
O’jo(lezo) 5

for any j (1lgjs<r) and Zoe@o, xj’yj e@j.

Proof. Since ®j-8 0, we have

fl
(=]

. .0 .0
6.2 o (T.X.,Y.) + .. (X.,T.Y.
(6.2) GJJ( 5%5 J) 033( 5075 J)

and

. j ~ 3
6.3 2 (TLX.,Y.) + G.a(X.,T.Y.
( ) 033( §%57 J) oj ( 5 J)

.3
. j . Ty (843 (X5.%50)

J

n _
. 0
for any Tj €®j and all vectors Xj'Yj G@j . Let {ea}a=l be an

orthonormal basis of (@,. Since Mj is irreducible, the condition

'(6.2) implies that
<3.9(X.,Y.),e.> = c3<X.,Y.>
S 33 3 3 a J 33
for some c?& R and thus

i)

. _ A
a=1 cj e.) = <Xj'Yj>Hj

~ 0
.. e Y. = <X.,¥.>
. GJJ(XJ' J) < J' 3 (z a

11 - Y. €D -
for all vectors XJ,XJ ®J | |
The second equality is obtained by the symmetry condition (1)

for G and the first equality.
g.e.d.
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We denqte by \Kg

replécipg the number . ¢/4 in.the condition (3) with the number d.

the set defined in the same way as \KM by

Then we have the following

2
Lemma 6.2. Let ¢ in Jﬁu. Then GJgeuK§/4 +h3 for each j.
c/4 +h. 2 ;
Proof. The conditions (1) and (2) for J{ 3 is obvious

-~

J .
by the condition (1) for ¢ and (6.3). We show that ng satisfies
c/4 +h.2~
M. J -

J
.of Mj' Then, by the condition (3) for 4,

the condition (3) for M Denote by RMj the curvature tensor

M - N
4) (<Y.,2.>X. - <X.,2.>Y.) = R j(X.,Y.)2. - X.),0(Y.)12
(c/4) ( YJ,ZJ XJ XJ 5 YJ) il 5 J) j [o( J), ( J)] -

for all vectors Xj'Yj'Zje(Eﬁ‘ By (6.1) and Lemma 6.1, the second

term of the right hand side is calculated as follows:

- . o ~ 5
. X.) Y.)]1Z2. = 2 {(X.),0.2(Y. Z.
[a( J),o( J)] j ° [QJJ( 3)"33(Y3)] 3
2 i
4+ h. <Y.,Z2.>X., - <X.,Z2.>Y.).
3 ( s s M| 3 R J)

2

c/4 +h.
/ J

Hence ajg satisfies the condition (3) for JtM
j

q.e.d.
Lemma 6.3. Let. G in W, . [Then ”OOG.R n, and

~ 0 _ _
a 0(xo,Hj) = <x0,Hj>Hj (c/4)X0
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for any Xoec90. Moreover <Hj,Hk> = - ¢/4 for distinct indeces

j.k (1g3j,kgr).

Proof. Note that the condition (2) for J(]Rn0 is obvious since
R70 is flat. Moreover by the conditions (1) and (3) for ¢ we can
see eésily that . &Og satisfies the conditions (1) and (3) for ‘KRnO‘
Put X = xoe@o, Y ='Yj’ Z = Zj e@). in the condition (3) for o.

Then we have

(c/4)<,Yj,Zj>x0

- [:c”:(xu),,a(szj.)]zj .
The right hand side is célculated by (6.1) and Lemma 6.2 as follows:
- [6(xy),a(¥s)lz, = <k0'Hj><Yj’Zj>Hj = <.Yj,Zj>608(XO,Hj) .
Hence we have
(c/4)X, = ;X JH.>H. - @ 0(X JHL) .
/ 0 (i M 0077073

Now, putting X = Xj(-.‘@j and Y =Y, z =2, €@ (lgi#ksr) in

the condition (3) for &, we have

(-0/4)<Yk'zk>xj = - <Yk'zk><Hj 'Hk>xj

by (6.1) and Lemma 6.2, and thus <Hj,Hk> = - c/4.
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Summing up Lemmas 6.1, 6.2 and 6.3, we have the claim (A) in

the following

Theorem 6.4. Let M® be a simply connected symmetric space

with Euclidean factor decomposed as M® = r"0 x I[j:lenj and n =

T n
j=0 73"

() - Let &ewKy, . Then

I

Then the following claims are true:

0 r.~3j

1) =55 53+ 594553457 53
(1) @ Z'J_=° G353 * Iy G55 5=1%50 5=1 903
. R 2

~ J c/4 +h.
(2) d;5¢€ JLMj 3

(3) Gpge Aghgs <HyH> = - c/4 (1giksr),

~ 0
ooo(zo,Hj) <zo,Hj>Hj - (c/4)zo_

~ 3 _
G093 (ZgrX3) = <Zg,H;>Xgs

4) #.3(x.,2

- 0. S
. . e s Y. <X.,Y.>H.
Q55 (X50¥3) 3735775

for any Z0 €®0 and all vectors Xj’Yj e@J..

(B) Conversely any p-valued bilinear form ¢ on ® satisfying

the conditions (1),(2),(3),(4) of (A) is an element in ‘HM'

Here the proof of our claim (B) is omitted since it is straight-

forward. .

Remark 6.5. Let M® be a simply connected symmetric space
with Euclidean factor. Changing the metric on M® componentwise,

we can construct infinitely many elements in J(M . In facty



decompose M as ahoye and suppose tbhat - Dy = rx21l. First we shall

r

j=1 ©f R" and an RF-valued

show that there exist a basis '{Hi}
bilinear form 608 on R satisfying the condition (3) of (a). If

there exist such basis and R ~valued form, by (B) of Theorem 6.4,
r

an element in M, can be constructed. -Let '{ej}j=l be an ortho-
) . r _er J. - j
normal basis of R and set Hi = ;j=l aiej, A (ai). Moreover,

for positive réal numbers hl,---,hr, we set .

hlz ~c/4 ----c/4

—c/4 hzz‘ :
S(hl'...’hr) = : .. "C/4‘ .

F) . ) 2
-c/4 .-« -c/4 hr

Then the condition for that .{Hi} is a basis of RFY such that

IHjl = h,

5 (l¢jsr) and <Hj,Hk> = -c/4 (j#k) 1is written as follows:

(6.4) det A # 0, A%A = S(hy,*--,h ).
Since the matrix’ S(hl,---,hr) is symmetric, for sufficiently large
numbers. h,,--*,h_, there exists a positive definite symmetric matrix

A satisfying the condition (6.4). Then we define an R*-valued bi-

linear form. Bog on RF as follows:
. 0 _ _
Gog (HyrBy) = <Hg H>H = (c/4)H; .

By easy calculations, we can see that the R*-valued bilinear form

~ 0

dgp ©R RY satisfies the condition (3) of (A). Thus we get infinitely



many elements in.J-(M by taking suitable metrics on Mj (1< jgr).

Now, in the case when M =.R2, we have the fdilowipg

Theorem 6.6. There exists a unique complete totally real ...
2

parallel flat minimal surface M in Pz(c) ( up to holomorphic

isometries of Pz(c) ). The norm lol of the second fundamental

form o of M? is given by |o|? = (1/2)c.

Proof. Let '{el,ez} be an orthonormal basis cf RZ. Then the
condition Ee.ﬁRZ is equivalent to the condition that

[4

NG G(ey,e)) = ae; + Bey)

(6.5)

A

a(el,gz) = Bel + ve, b and c/4 = 62 + 72 - ay - BA4.

{6(e2,e2) = ye; + GeZJ

2

Suppose that the totally real parallel immersion of R corresponding

to 4 is minimal. Then o + y =8+ § = 0 and thus 82 + Yz = c/8
by the second equality of (6.5). Put B = /c/8 cos® and Y =

' 1 : 2
/c/8 sin@ for some 6 and define a linear isometry g of R™ by

(g(ey),g(e,)) = (ey.e,) cos$6/3) sin(6/3)

-sin(6/3) cos(9/3) .
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Then we have
(g-3) (ey,ey) = -(g-3) (e,,e,) = /c/Be,, (g-d) (e;,e,) = /c/8 e -

Hence all elements in K 2 corresponding to minimal immersions belong

to the same equivalence class. Now by Theorem 3.4 and 3.6 we get

our first claim. The second claim follows from ]g-8|2 = (1/2)c.
g.e.d.

Remark 6.7. S.T.Yau [18] has shown that if M2

is a qoﬁplete
non-negative curved totally real minimal surface in Pz(c), M2 is
totally geodesic or flat, and moreover in the 1a$t case the second
fundamental form is parallel. The minimal Sﬁrface of Theorem 6.6

- gives a unique example of such surfaces in the flat case. This has

been constructed concretely in my previous paper [11] and it is

compact.

Remark 6.8. B.Y.Chen and K.Ogiue [3] has shown that if M
is a compact totally real minimal submanifold in P"(c) such that

|2< (n(n+l1)/4(2n-1))c for any point p in M, then M?  is
2
I

lag

totally geodesic. Suppose that |qp = (n(n+l)/4(2n-1))c for any

point p in M. Then, along their proof, the second fundgmental

form is parallel. In the case when n = 2 ( then (n(n+1)/4(2n-l))c

= (1/2)c ), the universal covering of the compact totally real parallel
'minimal surface M2 has Euclidean factor and thus is flat. Hence

our minimal surface in Pz(c) of Theorem 6.6 is a unique compact

totally real minimal surface M2 in Pz(c) such that ,Ioplz = (1/2)c



for any point p in M7,

2

Remark 6.9. In the next paper together with M.Takeuchi the

complete classification of n-dimensional complete totally real

parallel submanifolds in P?(c) shall be given by a different way.
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