

Title	Totally real parallel submanifolds in p^n (C)
Author(s)	Naito, Hiroo
Citation	大阪大学, 1981, 博士論文
Version Type	VoR
URL	https://hdl.handle.net/11094/24346
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

複素射影空間 n 全実 / i 平行部分为 様体

Totally real parallel submanifolds in $P^n(C)$

内藤 博夫

Totally real parallel submanifolds in $P^{n}(C)$

By Hiroo Naitoh (*)

Introduction. In the study of submanifolds in symmetric spaces, parallel submanifolds often play an important role. For example, in the study of minimal submanifolds in the Euclidean sphere the symmetric R-spaces, which are parallel submanifolds, provide abundant examples for testing various conjectures. Hence it seems to be useful to classify the parallel submanifolds in a specific symmetric space. Actually, these submanifolds have been classified by D.Ferus [5],[6],[7] when the ambient space is the Euclidean space or the Euclidean sphere, and by M.Takeuchi [17] when the ambient space is the real hyperbolic space. Moreover H.Nakagawa and R.Takagi [10] and M.Takeuchi [16] have classified the parallel Kähler submanifolds in the complex projective space with constant holomorphic sectional curyatures.

In this paper we study n-dimensional complete totally real parallel submanifolds in the n-dimensional complex projective space $P^n(C)$ with constant holomorphic sectional curvatures. It is known that a riemannian manifold which admits a parallel isometric immersion into a symmetric space is a locally symmetric space. Fix an n-dimensional simply connected symmetric space M^n . Let $\overline{\mathcal{T}}_M$ (resp. $\overline{\mathcal{A}}_M$) be the set of all equivalence classes of totally real parallel isometric immersions of M^n into $P^n(C)$ (resp. of complete totally real parallel submanifolds in $P^n(C)$ with the universal riemannian cover-

^(*) Partially supported by the Yukawa Foundation.

ing $\mathbf{M}^{\mathbf{n}}$). Moreover, in section 3 we define an equivalence relation among symmetric trilinear forms on a tangent space of M satisfying certain conditions, and denote by $\overline{\mathcal{H}}_{\mathbf{M}}$ the set of all equivalence classes of these trilinear forms. In sections 2,3, we shall show that there are the natural correspondences among these sets $\overline{\mathcal{J}}_{\mathbf{M}}$, $\overline{\mathcal{A}}_{\mathbf{M}}$. In section 4,5, we shall determine the set $\overline{\mathcal{H}}_{\mathbf{M}}$ for a symmetric space M without Euclidean factor. Moreover, in section 6, we shall study the set $\overline{\mathcal{H}}_{\mathbf{M}}$ for a symmetric space M with Euclidean factor and an important example in the geometry of totally real surfaces in $\mathbf{P}^2(\mathbf{C})$.

The author wishes to express his hearty thanks to Professor M.

Takeuchi and Professor Y.Sakane for their useful comments during the preparation of this paper.

1. Preliminaries

Let \overline{M}^{m} (resp. M^{n}) be an m-dimensional (resp. n-dimensional) connected riemannian manifold. Denote by \overline{V} (resp. V) the riemannian connection on \overline{M}^{m} (resp. M^{n}) and by \overline{R} (resp. R) the riemannian curvature tensor for \overline{V} (resp. V). Now let f be an isometric immersion of M^{n} into \overline{M}^{m} . We denote by the same notation < , > the riemannian metrics on the both riemannian manifolds. Moreover denote by σ_{f} the second fundamental form of M^{n} , by D the normal connection on the normal bundle N(M) of M^{n} and by R^{n} the curvature tensor for D. For a point P in M and a vector V in the normal space $N_{p}(M)$ at P, the shape operator P is defined

by

$$\langle A_{\zeta}(X), Y \rangle = \langle \sigma_{f}(X, Y), \zeta \rangle$$

for all vectors $X,Y\in T_p(M)$. The shape operator A_ζ is a symmetric endomorphism on the tangent space $T_p(M)$ at p. It is also characterized by the equation that

$$\overline{\nabla}_{X}\zeta = -A_{\zeta}(X) + D_{X}\zeta$$

for any tangent vector field X of M and any normal vector field ζ of M.

Now we recall the following fundamental equations, called the equations of Gauss, Codazzi-Mainardi, and Ricci respectively.

$$(1.1) \quad \langle \overline{R}(X,Y)Z,W \rangle = \langle R(X,Y)Z,W \rangle + \langle \sigma_{f}(X,Z),\sigma_{f}(Y,W) \rangle$$
$$- \langle \sigma_{f}(X,W),\sigma_{f}(Y,Z) \rangle$$

$$(1.2) \quad \{\overline{R}(X,Y)Z\}^{\perp} = (\nabla_{X}^{\star}\sigma_{f})(Y,Z) - (\nabla_{Y}^{\star}\sigma_{f})(X,Z)$$

$$(1.3) \quad \langle \overline{R}(X,Y)\zeta,\eta\rangle = \langle R^{\perp}(X,Y)\zeta,\eta\rangle - \langle [A_{\zeta},A_{\eta}](X),Y\rangle$$

for all vectors $X,Y,Z,W\in T_p(M)$ and all vectors $\zeta,\eta\in N_p(M)$. Here we denote by $\{\star\}^\perp$ the normal component of \star and by $\nabla\star$ the covariant derivation associated to the isometric immersion $f:M\to\overline{M}$, defined by

$$(\nabla_{\mathbf{X}}^{\star}\sigma_{\mathbf{f}})(\mathbf{Y},\mathbf{Z}) = D_{\mathbf{X}}(\sigma_{\mathbf{f}}(\mathbf{Y},\mathbf{Z})) - \sigma_{\mathbf{f}}(\nabla_{\mathbf{X}}\mathbf{Y},\mathbf{Z}) - \sigma_{\mathbf{f}}(\mathbf{Y},\nabla_{\mathbf{X}}\mathbf{Z})$$

for tangent vector fields X,Y,Z of M. The second fundamental form σ_{f} as well as the isometric immersion f is said to be $\underline{parallel}$ if $\nabla \star \sigma_{f} = 0$. Moreover when f is an imbedding, the submanifold f(M) is called a $\underline{parallel}$ submanifold in \overline{M} . If the second fundamental form σ_{f} is parallel, we have

$$(1.4) \quad D_{X}(\sigma_{f}(Y,Z)) = \sigma_{f}(\nabla_{X}Y,Z) + \sigma_{f}(Y,\nabla_{X}Z)$$

for all tangent vector fields X,Y,Z of M.

Now let $\overline{M}^{2r} = P^r(c)$ be the r-dimensional complex projective space with constant holomorphic sectional curvatures $c \ (>0)$. The complex structure of $P^r(c)$ will be denoted by J. An isometric immersion $f: M^n \to P^r(c)$ is called totally real if $JT_p(M) \subset N_p(M)$ for every point p in M. Moreover when f is an imbedding, the submanifold f(M) is called a totally real submanifold in $P^r(c)$. Then we have the following

Lemma 1.1 (cf. See [11]). Let f be a totally real isometric immersion of M^n into $P^r(c)$. Then

$$\langle \sigma_f(X,Y),JZ \rangle = \langle \sigma_f(X,Z),JX \rangle$$

for any point $p \in M$ and all vectors $X,Y,Z \in T_p(M)$.

From now on we assume that the complex dimension r equals n. For a totally real isometric immersion $f: M^n \to P^n(c)$ we define the <u>associated tensor</u> \tilde{q}_f of M as follows:

$$\tilde{\sigma}_{f}(X,Y) = J\sigma_{f}(X,Y)$$

for vectors $X,Y\in T_p(M)$, $p\in M$. If we identify the tangent space $T_p(M)$ with the cotangent space $T_p^*(M)$ through the riemannian metric on M, the associated tensor $\tilde{\sigma}_f$ is a symmetric covariant tensor of degree 3 on M by Lemma 1.1. For a vector X in $T_p(M)$, we define a symmetric endomorphism $\tilde{\sigma}_f(X)$ of $T_p(M)$ by

$$\tilde{\sigma}_{f}(x)(y) = \tilde{\sigma}_{f}(x,y)$$

for a vector Y in $T_p(M)$. Since the isometric immersion f is totally real in $P^n(c)$, we have $\overline{R}(X,Y)Z \in T_p(M)$ for all vectors $X,Y,Z \in T_p(M)$ and hence the equation of Gauss reduces to

(1.5)
$$\overline{R}(X,Y)Z = R(X,Y)Z - [\tilde{\sigma}_f(X), \tilde{\sigma}_f(Y)](Z)$$

for all vectors $X,Y,Z \in T_{D}(M)$. Moreover we have the following

Lemma 1.2. Let f be a totally real parallel isometric immersion of M^n into $P^n(c)$. Then $\nabla \tilde{\sigma}_f = 0$, that is,

$$\nabla_{\mathbf{X}}(\tilde{\sigma}_{\mathtt{f}}(\mathtt{Y},\mathtt{Z})) \; = \; \tilde{\sigma}_{\mathtt{f}}(\nabla_{\mathbf{X}}\mathtt{Y},\mathtt{Z}) \; + \; \tilde{\sigma}_{\mathtt{f}}(\mathtt{Y},\nabla_{\mathbf{X}}\mathtt{Z})$$

for all tangent vector fields X,Y,Z of M.

Proof. Since JC is a tangent vector field of M for any

normal vector field ζ along M,

$$J\overline{\nabla}_{X}J\zeta = J\nabla_{X}J\zeta + J\sigma_{f}(X,J\zeta)$$

for every tangent vector field X of M, while

$$J\overline{\nabla}_{X}J\zeta = -\overline{\nabla}_{X}\zeta = A_{\zeta}(X) - D_{X}\zeta$$

since $J \circ \overline{\nabla}_{X} = \overline{\nabla}_{X} \circ J$. Hence, comparing normal components we get

$$JD_X \zeta = \nabla_X J \zeta$$
.

Thus, substituting $\zeta = \sigma_f(Y,Z)$, together with (1.4) we have

$$\nabla_{\mathbf{X}}(\tilde{\sigma}_{\mathbf{f}}(\mathbf{Y},\mathbf{Z})) = \tilde{\sigma}_{\mathbf{f}}(\nabla_{\mathbf{X}}\mathbf{Y},\mathbf{Z}) + \tilde{\sigma}_{\mathbf{f}}(\mathbf{Y},\nabla_{\mathbf{X}}\mathbf{Z})$$

for all tangent yector fields X,Y,Z of M.

q.e.d.

Let $\mathfrak{SO}(T_p(M))$ be the Lie algebra of all skew symmetric endomorphisms of $T_p(M)$ and $\mathfrak{R}(p)$ the Lie subalgebra in $\mathfrak{SO}(T_p(M))$ generated by the set $\{R_p(X,Y); X,Y \in T_p(M)\}$. Since the isometric immersion f is parallel, the manifold M is a locally symmetric space and hence the Lie algebra $\mathfrak{R}(p)$ is spanned by the set $\{R_p(X,Y); X,Y \in T_p(M)\}$ and coincides with the holonomy algebra of M at p. Thus, by Lemma 1.2, we have the following

Corollary 1.3. Let f be a totally real parallel isometric immersion of M^n into $P^n(c)$. Then $R(p) \cdot \tilde{\sigma}_f = 0$, that is,

$$T(\tilde{\sigma}_{\mathbf{f}}(X,Y)) = \tilde{\sigma}_{\mathbf{f}}(T(X),Y) + \tilde{\sigma}_{\mathbf{f}}(X,T(Y))$$

for any endomorphism $T \in \mathbb{R}(p)$ and all vectors $X,Y \in T_p(M)$.

2. Equivariant immersions associated to trilinear forms

Assume that the manifold $\mathbf{M}^{\mathbf{n}}$ is a simply connected symmetric space and fix a point o in $\mathbf{M}^{\mathbf{n}}$. Put

$$\mathfrak{D} = \mathfrak{T}_{\mathfrak{O}}(M)$$
, $\mathfrak{k} = \mathfrak{k}(\mathfrak{o})$ and $\mathfrak{G} = \mathfrak{k} + \mathfrak{D}$

and define the bracket product [,] on @ as follows:

$$[T,S] = T \circ S - S \circ T$$
, $[T,X] = -[X,T] = T(X)$, $[X,Y] = -R_O(X,Y)$

for endomorphisms T,S in R and vectors X,Y in O. Then O,[,]) is a Lie algebra over R and there exists a simply connected Lie group G acting on the symmetric space M isometrically and transitively, such that the Lie algebra of G is isomorphic to O and that the Lie subgroup $\textcircled{K} = \{g \in \textcircled{G}; g(o) = o\}$ is connected and has the Lie subalgebra R (cf. See [8]). Let $\mathcal{L}_{\textcircled{M}}$ be the set of all O-valued bilinear form o on O satisfying the following conditions:

(1) \tilde{g} is a symmetric trilinear form on p under the canonical identification of $\textcircled{p}^* \otimes \textcircled{p}^* \otimes \textcircled{p}$ with $\textcircled{p}^* \otimes \textcircled{p}^* \otimes \textcircled{p}^*$ through the riemannian metric < , > on p,

(2)
$$(\hat{\mathbf{k}}) \cdot \tilde{\mathbf{\sigma}} = \mathbf{0}$$

(3) (c/4) ($\langle Y, Z \rangle X - \langle X, Z \rangle Y$) = R(X,Y)Z - [$\tilde{\sigma}(X)$, $\tilde{\sigma}(Y)$](Z) for all vectors X,Y,Z $\in \mathfrak{P}$.

Let f be a totally real parallel isometric immersion of M^n into $P^n(c)$. Then

$$\overline{R}(X,Y)Z = (c/4)(\langle Y,Z\rangle X - \langle X,Z\rangle Y)$$

for all vectors $X,Y,Z\in \mathbb{Q}$. Hence we have that $(\tilde{\sigma}_f)_o\in \mathcal{U}_M$ by Lemma 1.1, Corollary 1.3 and (1.5).

Now the riemannian manifold $P^n(c)$ is also a simply connected symmetric space. For $P^n(c)$, we use notations \overline{o} , $\overline{\mathbb{O}}$,

$$(\overline{\mathbb{R}} = \overline{\mathbb{Q}})(\overline{\mathbb{Q}}) = \{ T \in \overline{\mathbb{Q}}) ; J \circ T = T \circ J \}.$$

A linear subspace g in $\overleftarrow{\mathbb{D}}$ is called <u>totally real</u> if the subspaces g and Jg are orthogonal. Totally real subspaces in $\overleftarrow{\mathbb{D}}$ of the same dimension are conjugate, each other under the natural action of $\overleftarrow{\mathbb{K}}$ on $\overleftarrow{\mathbb{D}}$. Fix an n-dimensional totally real subspace g in $\overleftarrow{\mathbb{D}}$

and set

$$\overline{\mathbb{Q}}_1 = \{ \ \mathtt{T} \in \overline{\mathbb{Q}} \ ; \ \mathtt{T}(\underline{\mathbb{Q}}) \subset \underline{\mathbb{Q}} \ \} \quad \text{and} \quad \overline{\mathbb{Q}}_2 = \{ \ \mathtt{T} \in \overline{\mathbb{Q}} \ ; \ \mathtt{T}(\underline{\mathbb{Q}}) \subset \mathtt{J}\underline{\mathbb{Q}} \ \}.$$

Then $\overline{\mathbb{Q}}_1$ (resp. $\overline{\mathbb{Q}}_2$) is a Lie subalgebra (resp. linear subspace) in $\overline{\mathbb{Q}}$, and $\overline{\mathbb{Q}}$ is the direct sum of $\overline{\mathbb{Q}}_1$ and $\overline{\mathbb{Q}}_2$. In fact, take an orthonormal basis $\{e_1, \dots, e_n\}$ of $\overline{\mathbb{Q}}$ and identify $\overline{\mathbb{Q}}$ with \mathbf{c}^n by the correspondence:

$$\overline{\mathbb{Q}} \ni (\Sigma x_j e_j) + J(\Sigma y_j e_j) \longleftrightarrow (x_j + \sqrt{-1}y_j) \in \mathbb{C}^n.$$

Then $(\overline{\mathbb{R}})$, $(\overline{\mathbb{R}})$ and $(\overline{\mathbb{R}})_2$ are identified with the Lie algebra $(\overline{\mathbb{Q}})(n)$ of all skew hermitian matrices of degree n, the Lie algebra $(\overline{\mathbb{Q}})(n)$ of all real skew symmetric matrices of degree n, and the linear space $\sqrt{-1} S^n(\mathbb{R}) = \{\sqrt{-1}A; A \text{ is a real symmetric matrix of degree n}\}$ respectively. This implies the assertion.

Let s be an Euclidean isometry of p onto g. We define an injective Lie homomorphism τ_s of so(p) into $\overline{\textcircled{g}}_1$ by

$$\tau_s(T)(s(X) + Js(Y)) = s(T(X)) + Js(T(Y))$$

for $T \in \mathfrak{S}(Q)$ and vectors $X,Y \in Q$. Next, for an element $\tilde{\sigma}$ in \mathcal{M}_M , we define a linear mapping $\mu_{S,\tilde{\sigma}}$ of Q into $\overline{\mathbb{S}}_2$ by

$$\mu_{s,\tilde{\sigma}}(X)(s(Y) + Js(Z)) = s(\tilde{\sigma}(X,Z)) - Js(\tilde{\sigma}(X,Y))$$

for vectors $X,Y,Z\in \mathbb{Q}$. Here note that the condition (1) for \tilde{g} implies that $\mu_{S,\tilde{g}}(X)\in \overline{\mathbb{Q}}$. Now we define a linear mapping $\rho_{S,\tilde{g}}$ of $\bar{\mathbb{Q}}$ into $\bar{\mathbb{Q}}$ by

$$\rho_{s,\tilde{\sigma}}(T+X) = \tau_{s}(T) + \mu_{s,\tilde{\sigma}}(X) + s(X)$$

for $T \in \mathbb{R}$ and $X \in \mathbb{R}$. Then we have the following

Lemma 2.1. The linear mapping $\rho_{s,\tilde{g}}$ of g into g is an injective Lie homomorphism.

Proof. At first we shall prove the following three formulas:

$$(2.1) \quad [\tau_{s}(T), \mu_{s,\tilde{\sigma}}(X)] = \mu_{s,\tilde{\sigma}}(T(X))$$

$$(2.2) \quad [\mu_{s,\tilde{\sigma}}(x),\mu_{s,\tilde{\sigma}}(Y)] = \tau_{s}([\tilde{\sigma}(Y),\tilde{\sigma}(X)])$$

(2.3)
$$\overline{R}(s(X), s(Y)) = \tau_s(R(X,Y) - [\tilde{\sigma}(X), \tilde{\sigma}(Y)])$$

for any $T \in \mathbb{R}$ and all vectors $X,Y \in \mathbb{Q}$. By the condition (2) for \tilde{G} we have

$$\begin{split} & [\mathsf{T}_{\mathbf{S}}(\mathtt{T}), \mu_{\mathbf{S},\widetilde{\mathbf{Q}}}(\mathtt{X})](\mathtt{S}(\mathtt{Y}) + \mathtt{J}\mathbf{S}(\mathtt{Z})) \\ & = \mathtt{S}(\mathtt{T}(\widetilde{\mathbf{Q}}(\mathtt{X},\mathtt{Z}))) - \mathtt{J}\mathbf{S}(\mathtt{T}(\widetilde{\mathbf{Q}}(\mathtt{X},\mathtt{Y}))) + \mathtt{J}\mathbf{S}(\widetilde{\mathbf{Q}}(\mathtt{X},\mathtt{T}(\mathtt{Y}))) - \mathtt{S}(\widetilde{\mathbf{Q}}(\mathtt{X},\mathtt{T}(\mathtt{Z}))) \\ & = \mathtt{S}(\widetilde{\mathbf{Q}}(\mathtt{T}(\mathtt{X}),\mathtt{Z})) - \mathtt{J}\mathbf{S}(\widetilde{\mathbf{Q}}(\mathtt{T}(\mathtt{X}),\mathtt{Y})) \\ & = \mu_{\mathtt{S},\widetilde{\mathbf{Q}}}(\mathtt{T}(\mathtt{X}))(\mathtt{S}(\mathtt{Y}) + \mathtt{J}\mathbf{S}(\mathtt{Z})) \end{split}$$

for all vectors Y,Z $\in \mathbb{D}$, and hence (2.1) is proved. Next, by the definitions of τ_s and $\mu_{s,\widetilde{\sigma}}$ we have

$$[\mu_{S,\tilde{\sigma}}(X), \mu_{S,\tilde{\sigma}}(Y)](S(Z) + JS(W))$$

$$= -JS(\tilde{\sigma}(X,\tilde{\sigma}(Y,W))) - S(\tilde{\sigma}(X,\tilde{\sigma}(Y,Z))) + JS(\tilde{\sigma}(Y,\tilde{\sigma}(X,W)))$$

$$+ S(\tilde{\sigma}(Y,\tilde{\sigma}(X,Z)))$$

$$= S([\tilde{\sigma}(Y),\tilde{\sigma}(X)](Z)) + JS([\tilde{\sigma}(Y),\tilde{\sigma}(X)](W))$$

$$= \tau_{S}([\tilde{\sigma}(Y),\tilde{\sigma}(X)])(S(Z) + JS(W))$$

for all vectors Z,W in \bigcirc , and hence (2.2) is proved. Since the subspace \bigcirc in \bigcirc is totally real, we have

$$\overline{R}(s(X),s(Y))s(Z) = (c/4)(\langle Y,Z\rangle s(X) - \langle X,Z\rangle s(Y))$$

for all vectors $X,Y,Z\in \mathbb{Q}$. By the condition (3) for $\tilde{\sigma}$ we have

$$\overline{R}(s(X), s(Y)) (s(Z) + Js(W))
= \overline{R}(s(X), s(Y)) s(Z) + J\overline{R}(s(X), s(Y)) s(W)
= s((c/4) (X - Y)) + Js((c/4) (X - Y))
= s(R(X,Y)Z - [\tilde{\sigma}(X), \tilde{\sigma}(Y)]Z) + Js(R(X,Y)W - [\tilde{\sigma}(X), \tilde{\sigma}(Y)]W)
= \tau_s(R(X,Y) - [\tilde{\sigma}(X), \tilde{\sigma}(Y)]) (s(Z) + Js(W))$$

for all vectors $Z, W \in \mathbb{P}$. Hence (2.3) is proved.

Now by (2.1), (2.2) and (2.3) we have

$$[\rho_{S,\tilde{\sigma}}(T+X), \rho_{S,\tilde{\sigma}}(S+Y)]$$

$$= [\tau_{S}(T), \tau_{S}(S)] + [\tau_{S}(T), \mu_{S,\tilde{\sigma}}(Y)] + [\tau_{S}(T), s(Y)]$$

$$+ [\mu_{S,\tilde{\sigma}}(X), \tau_{S}(S)] + [\mu_{S,\tilde{\sigma}}(X), \mu_{S,\tilde{\sigma}}(Y)] + [\mu_{S,\tilde{\sigma}}(X), s(Y)]$$

$$+ [s(X), \tau_{S}(S)] + [s(X), \mu_{S,\tilde{\sigma}}(Y)] + [s(X), s(Y)]$$

$$= \tau_{S}([T,S]) + \mu_{S,\tilde{\sigma}}(T(Y)) + s(T(Y)) - \mu_{S,\tilde{\sigma}}(S(X))$$

$$+ \tau_{S}([\tilde{\sigma}(Y), \tilde{\sigma}(X)]) - Js(\tilde{\sigma}(X,Y)) - s(S(X)) + Js(\tilde{\sigma}(Y,X))$$

$$- \tau_{S}(R(X,Y) - [\tilde{\sigma}(X), \tilde{\sigma}(Y)])$$

$$= \tau_{S}([T,S] - R(X,Y)) + \mu_{S,\tilde{\sigma}}(T(Y) - S(X)) + s(T(Y) - S(X))$$

$$= \rho_{S,\tilde{\sigma}}([T+X,S+Y])$$

for all $T,S\in \mathbb{R}$ and all $X,Y\in \mathbb{Q}$, and hence $\rho_{S,\widetilde{\sigma}}$ is a Lie homomorphism of \mathfrak{G} into $\mathfrak{\overline{G}}$. Moreover, since τ_S and S are injective, $\rho_{S,\widetilde{q}}$ is injective.

q.e.d.

Corollary 2.2. If the set \mathcal{M}_{M} is not empty, the Lie algebra g is a compact Lie algebra.

We call $\rho_{s,\tilde{\sigma}}$ the <u>Lie homomorphism associated to</u> s <u>and</u> $\tilde{\sigma}$.

Since G is a simply connected Lie group, there exists the unique Lie homomorphism $\hat{\rho}_{s,\tilde{\sigma}}$ of G into \overline{G} such that the differential $d\hat{\rho}_{s,\tilde{\sigma}}$ is $\rho_{s,\tilde{\sigma}}$. The associated homomorphism $\rho_{s,\tilde{\sigma}}$ maps the Lie subalgebra $\widehat{\mathbb{K}}$ into the Lie subalgebra $\widehat{\mathbb{K}}$ and the isotropy subgroup K is connected. Hence we can define a G-equivariant C^{∞} -mapping $f_{s,\tilde{\sigma}}$ of M^{n} into $P^{n}(c)$ by

$$f_{s,\tilde{\sigma}}(g(o)) = \hat{\rho}_{s,\tilde{\sigma}}(g)(\bar{o})$$

for $g \in G$. Then we have the following

Theorem 2.3. Let M^n be a simply connected symmetric space. Then, for any Euclidean isometry s and any $\tilde{\sigma} \in \mathcal{H}_M$, the associated G-equivariant mapping $f_{s,\tilde{\sigma}}$ of M^n into $P^n(c)$ is a totally real parallel isometric immersion such that

$$(f_{s,\tilde{\sigma}})_{*o} = s$$
 and $(\tilde{\sigma}_{f_{s,\tilde{\sigma}}})_{o} = \tilde{\sigma}$.

Proof. Note that \overline{G} divided by the center is the group of all holomorphic isometries of $P^n(c)$. The claim $(f_{s,\tilde{\sigma}})_{*o} = s$ is obvious by the definition of $f_{s,\tilde{\sigma}}$. Now we show that $f_{s,\tilde{\sigma}}$ is a totally real parallel isometric immersion. Since $f_{s,\tilde{\sigma}}$ is G-equivariant, it is sufficient to see our claim at o. The linear mapping s is a isometry and the image 0 of s is a totally real subspace in $\overleftarrow{\mathbb{D}}$. Hence $f_{s,\tilde{\sigma}}$ is a totally real and isometric immersion at o. Moreover, to show that $f_{s,\tilde{\sigma}}$ is parallel, it is sufficient to see that

$$(2.4) \quad [\rho_{s,\tilde{q}}(x)_{\overline{\otimes}}, [\rho_{s,\tilde{\sigma}}(x)_{\overline{\otimes}}, \rho_{s,\tilde{q}}(x)_{\overline{\otimes}}]] \in \textcircled{9}$$

for any vector X in p (See Proposition 5.2 in [11]). Here the suffix p (resp. p) means the p-component (resp. p-component) with respect to the decomposition q = p + p. In fact, since

$$\rho_{s,\tilde{\sigma}}(X)_{\overline{\otimes}} = \mu_{s,\tilde{\sigma}}(X) \quad \text{and} \quad \rho_{s,\tilde{\sigma}}(X)_{\overline{\mathbb{Q}}} = s(X)$$

the left hand of (2.4) equals $-s(\tilde{\sigma}(X,\tilde{\sigma}(X,X))) \in \mathbb{Q}$. Now the second fundamental form at o of the G-equivariant immersion $f_{s,\tilde{\sigma}}$ is given by

$$(2.5) \quad (\tilde{\sigma}_{\mathbf{f}_{\mathbf{S}},\tilde{\sigma}})_{o}(\mathbf{X},\mathbf{Y}) = [(\rho_{\mathbf{S}},\tilde{\sigma})(\mathbf{X})_{\overline{\otimes}},(\rho_{\mathbf{S}},\tilde{\sigma})(\mathbf{Y})_{\overline{\mathbb{Q}}}]_{\overline{\mathbf{Q}}}$$

for all vectors X,Y in p (See Proposition 5.1 in [11]). Here the suffix Jq means the Jq-component with respect to the decomposition p = q + Jq. Hence we have $(\mathring{\sigma}_{f_{S,\widetilde{q}}})_{o} = - \textcircled{J}_{S}(\widetilde{\sigma}(X,Y))$. This implies $(\mathring{\sigma}_{f_{S,\widetilde{q}}})_{o} = \widetilde{\sigma}$.

q.e.d.

3. Frenet curves and rigidity problems

Let \overline{M} be a riemannian manifold and c(t) be a C^{∞} -curve in \overline{M} defined on an open interval I containing 0 which is parametrized by arc-length. The curve c(t) is called a <u>Frenet curve</u> in \overline{M} of osculating rank $r(\geq 1)$ if for all $t \in I$ its higher order

derivatives

$$\dot{c}(t) = (\overline{\nabla}^0_{\frac{\partial}{\partial t}} \dot{c})(t), (\overline{\nabla}_{\frac{\partial}{\partial t}} \dot{c})(t), \cdots, (\overline{\nabla}_{\frac{\partial}{\partial t}}^{r-1} \dot{c})(t)$$

are linearly independent but

$$\dot{\mathbf{c}}(\mathsf{t}) = (\overline{\nabla}^0 \frac{\partial}{\partial \mathsf{t}} \, \dot{\mathbf{c}}) \, (\mathsf{t}) \, , \, (\overline{\nabla} \frac{\partial}{\partial \mathsf{t}} \, \dot{\mathbf{c}}) \, (\mathsf{t}) \, , \cdots \, , \, (\overline{\nabla} \frac{\partial}{\partial \mathsf{t}} \, \dot{\mathbf{c}}) \, (\mathsf{t})$$

are linearly dependent in $T_{c(t)}(\overline{M})$. Then there exist the unique C^{∞} -positive functions $\kappa_1(t), \cdots, \kappa_{r-1}(t)$ on I and the unique C^{∞} -orthonormal vector fields $V_1(t), \cdots, V_r(t)$ along the curve c(t) such that

$$(3.1) \begin{cases} \dot{\nabla}_{\frac{\partial}{\partial t}} V_{1})(t) = \kappa_{1}(t)V_{2}(t) \\ (\overline{V}_{\frac{\partial}{\partial t}} V_{2})(t) = -\kappa_{1}(t)V_{1}(t) + \kappa_{2}(t)V_{3}(t) \\ \vdots \\ (\overline{V}_{\frac{\partial}{\partial t}} V_{j})(t) = -\kappa_{j-1}(t)V_{j-1}(t) + \kappa_{j}(t)V_{j+1}(t) \\ \vdots \\ (\overline{V}_{\frac{\partial}{\partial t}} V_{r-1})(t) = -\kappa_{r-2}(t)V_{r-2}(t) + \kappa_{r-1}(t)V_{r}(t) \\ (\overline{V}_{\frac{\partial}{\partial t}} V_{r})(t) = -\kappa_{r-1}(t)V_{r-1}(t). \end{cases}$$

Here we call K_j (t) ($1 \le j \le r-1$) the <u>Frenet curvature functions</u> on I, the vector fields { V_j (t); $1 \le j \le r$ } the <u>Frenet r-frame</u> along c(t), and the equations (3.1) the <u>Frenet formulas</u>. For a given integer r (≥ 1)

and given C^{∞} -positive functions $\kappa_1(t), \cdots, \kappa_{r-1}(t)$ on I, the Frenet formulas (3.1) may be regarded as a system of differential equations with variables c, V_1, \cdots, V_r . It is known that this system of differential equations has the unique local solution for given initial conditions; a point $c(0) = p \in \overline{M}$ and an orthonormal r-frame $\{V_1(0) = V_1, \cdots, V_r(0) = V_r\}$ of $T_p(\overline{M})$. If the riemannian manifold \overline{M} is complete, the Frenet curve c(t) is defined for $-\infty < t < +\infty$ (cf. See [4] and [15]). Now we have the following

Lemma 3.1 (W.Strübing [15]). Let M and M be riemannian manifolds and f a parallel isometric immersion of M into M.

Suppose that a curve c(t) defined on I containing 0 is a geodesic in M parametrized by arc-length. Then

- a) the curve (foc)(t) on I is a Frenet curve in M,
- b) the Frenet curvature functions $\kappa_1(t), \dots, \kappa_{r-1}(t)$ are constant (and positive), where r denotes the osculating rank of (foc)(t),
- c) the integer r (≥ 1), the constant positive numbers $\kappa_1, \cdots, \kappa_{r-1}$ and the orthonormal vectors $V_1 = V_1(0), \cdots, V_r = V_r(0)$ are determined only by the initial point p = c(0) of c(t), the initial tangent vector $X = \dot{c}(0)$ of c(t), the differential $(f_*)_p$ at p, and the second fundamental form $(\sigma_f)_p$ at p.

Now, by Lemma 3.1, we have the following fundamental lemma.

Lemma 3.2. Let g and f be parallel isometric immersions of a complete riemannian manifold M into another riemannian manifold M.

If there exists a point o in M such that

$$g(o) = f(o) = \overline{o}, (g_{t_0})_{o} = (f_{t_0})_{o} : T_{o}(M) \to T_{\overline{o}}(\overline{M}), (\sigma_{g_0})_{o} = (\sigma_{f_0})_{o},$$

then the mapping g and f coincide on M.

Proof. For any point p in M, there exists a geodesic c(t) in M parametrized by arc-length, such that c(0) = 0 and c(l) = p. Then $(g \circ c)(t)$ and $(f \circ c)(t)$ are Frenet curves in \overline{M} by Lemma 3.1,a). By Lemma 3.1,c), the above assumption implies that the Frenet curves $(f \circ c)(t)$ and $(g \circ c)(t)$ are solutions of same Frenet formulas for the same initial conditions. Hence, by the uniqueness for solutions of the system of differential equations, we have $(f \circ c)(t) = (g \circ c)(t)$ and paticularly f(p) = g(p).

q.e.d.

Now let \mathcal{J}_M be the set of all totally real parallel isometric immersions of a simply connected symmetric space M^n into the riemannian manifold $P^n(c)$, I(M) the group of all isometries of M, and \overline{G} the group of all holomorphic isometries of $P^n(c)$. Then we can define an action of $\overline{G} \times I(M)$ on \mathcal{J}_M by

$$(\overline{g},g) \cdot f = \overline{g} \cdot f \cdot g^{-1}$$

for $\overline{g} \in \overline{G}$, $g \in I(M)$ and $f \in \mathcal{I}_M$. Let $\overline{\mathcal{I}}_M$ be the set of all orbits of the $\overline{G} \times I(M)$ -action on \mathcal{I}_M . The orbit $[f]_{\mathcal{I}}$ of f in \mathcal{I}_M is

called the equivalence class of f.

Secondly, let \mathcal{S}_{M} be the set of all complete totally real parallel submanifolds with the universal riemannian covering M^{n} . Then we can define an action of \overline{G} on \mathcal{S}_{M} by

$$\overline{g} \cdot N = \overline{g}(N)$$

for $\overline{g} \in \overline{G}$ and $N \in \mathcal{S}_{\underline{M}}$. Let $\overline{\mathcal{S}}_{\underline{M}}$ be the set of all orbits of the \overline{G} -action on $\mathcal{S}_{\underline{M}}$. The orbit $[N]_{\mathcal{S}}$ of N in $\mathcal{S}_{\underline{M}}$ is called the equivalence class of N.

Lastly, set

$$F_{O}(M) = \{ g \in I(M) ; g(o) = o \}.$$

Then we can define an action of $F_O(M)$ on \mathcal{L}_M by

$$(k \cdot \tilde{\sigma}) (X, Y) = (k_*)_{o} (\tilde{\sigma} ((k_*)_{o}^{-1} X, (k_*)_{o}^{-1} Y))$$

for $k \in F_O(M)$, $\tilde{\sigma} \in \mathcal{H}_M$ and $X,Y \in \mathfrak{P}$. Let \mathcal{H}_M be the set of all orbits of the $F_O(M)$ -action on \mathcal{H}_M . The orbit $[\tilde{\sigma}]_{\mathcal{H}}$ of $\tilde{\sigma}$ in \mathcal{H}_M is called the <u>equivalence class</u> of $\tilde{\sigma}$.

Now we study the relations among three kinds of equivalences. At first we have the following

Lemma 3.3. For any $g \in G$, $g \in I(M)$ and $f \in \mathcal{I}_M$, there exists some $k \in F_O(M)$ such that

$$\tilde{\sigma}_{g \circ f \circ g}^{-1} \circ = k \cdot (\tilde{\sigma}_{f}) \circ .$$

Moreover, if $g \in F_0(M)$, the very same element g can be taken as the above element k.

Proof. Since \overline{g}_* and J are comutative, we have

(3.2)
$$(\tilde{\sigma}_{g \circ f \circ g}^{-1)}_{o}(X,Y) = (\tilde{\sigma}_{f \circ g}^{-1)}_{o}(X,Y)$$

= $g_{*}((\tilde{\sigma}_{f}^{-1})_{g}^{-1}_{(o)}((g_{*})^{-1}X,(g_{*})^{-1}Y))$

for all vectors $X,Y\in \mathbb{D}$. Let $\gamma(t)$ be a geodesic joining o to $g^{-1}(o)$. Since M is a symmetric space, there exists some $h\in I(M)$ such that $h(o)=g^{-1}(o)$ and that $h^{-1}\cdot (\tilde{\sigma}_f)_{h(o)}$ is the parallel translate of $(\tilde{\sigma}_f)_{h(o)}$ along the geodesic $\gamma(t)$, where

$$h^{-1} \cdot (\tilde{\alpha}_{f})_{h(o)} (X,Y) = h_{*}^{-1} ((\tilde{\alpha}_{f})_{h(o)} (h_{*}X,h_{*}Y))$$

for all vectors $X,Y \in \mathbb{O}$ (cf. See [8]). Putting $k = g \circ h$, we have $k \in F_0(M)$. Since $\tilde{\sigma}_f$ is parallel by Lemma 1.2, we have

the last term of (3.2)

$$= k_{\star} (h_{\star}^{-1} ((\tilde{\sigma}_{f})_{h(o)} (h_{\star} (k_{\star}^{-1} X), h_{\star} (k_{\star}^{-1} Y)))$$

$$= k_{\star} ((\tilde{\sigma}_{f})_{O} (k_{\star}^{-1} X, k_{\star}^{-1} Y)) = (k \cdot (\tilde{\sigma}_{f})_{O} (X, Y).$$

The second assertion is clear from the above proof.

q.e.d.

Now we define a mapping $i_{\underline{M}}$ of $\overline{\mathcal{J}}_{\underline{M}}$ into $\overline{\mathcal{H}}_{\underline{M}}$ by

$$i_{M}([f]_{\mathcal{J}}) = [(\tilde{\sigma}_{f})_{O}]_{\mathcal{H}}$$

for f in \mathcal{I}_{M} . By Lemma 3.3 the mapping i_{M} is well-defined. Then we have the following

Theorem 3.4. The mapping i_M of $\overline{\mathcal{J}}_M$ into $\overline{\mathcal{A}}_M$ is bijective.

Proof. By Theorem 2.3 it is obvious that i_M is onto. We show that the mapping i_M is injective. Take two mappings f_1, f_2 in \mathcal{T}_M and suppose that $(\tilde{\sigma}_{f_1})_0 = k \cdot (\tilde{\sigma}_{f_2})_0$ for some $k \in F_0(M)$. Then, putting $f_3 = f_2 \circ k^{-1}$, we have $(\tilde{\sigma}_{f_1})_0 = (\tilde{\sigma}_{f_3})_0$ by Lemma 3.3. Since f_1 and f_3 are totally real, there exists some $\overline{g} \in \overline{G}$ such that

$$(\overline{g} \circ f_3)$$
 (o) = f_1 (o) = \overline{o} and $(\overline{g} \circ f_3)_* (T_0(M)) = (f_1)_* (T_0(M)) = 0$

Moreover, since any Euclidean isometry of the totally real subspace g is the differential at \overleftarrow{o} of some holomorphic isometry of $P^n(c)$, we may assume that $(\overleftarrow{g} \circ f_3)_{*0} = (f_1)_{*0}$. Here note that $(\overleftarrow{\sigma}_{\overleftarrow{g} \circ f_3})_0 = (\overleftarrow{\sigma}_{f_3})_0$ by Lemma 3.3. Hence, by Lemma 3.2, we have $\overleftarrow{g} \circ f_3 = f_1$ on M and thus $[f_1]_{\mathcal{F}} = [f_3]_{\mathcal{F}} = [f_2]_{\mathcal{F}}$.

q.e.d.

Theorem 3.5. Any totally real parallel isometric immersion of M^n into $P^n(c)$ is G-equivariant.

Proof. Let f be a totally real parallel isometric immersion and put $f(o) = \overline{o}$. Then we have $f = f_{(f_*)_0, (\tilde{\sigma}_f)_0}$ by Theorem 2.3 and Lemma 3.2. This implies the theorem.

q.e.d.

Now let $j_{\underline{M}}$ be a mapping of $\overline{\mathcal{J}}_{\underline{M}}$ into $\overline{\mathcal{S}}_{\underline{M}}$ defined by

$$j_{M}([f]_{j}) = [f(M)]_{s}$$

for $f \in \mathcal{T}_M$. Here note that the image f(M) is a submanifold in $P^n(c)$ by Theorem 3.5. Then we have the following

Theorem 3.6. The mapping j_M of $\overline{\mathcal{J}}_M$ into $\overline{\mathcal{S}}_M$ is bijective.

Proof. It is obvious that j_M is onto. We show that the mapping j_M is injective. Take two mappings $f_1, f_2 \in \mathcal{J}_M$ and suppose that $f_1(M) = \overline{g}(f_2(M))$ for some $\overline{g} \in \overline{G}$. Put $\overline{o} = f_1(o)$ and $N = f_1(M)$. Taking some $g \in I(M)$ and putting $f_3 = \overline{g} \circ f_2 \circ g$, we have

$$f_1(o) = f_3(o) = \overline{o}$$
 and $f_1(M) = f_3(M) = N$.

Let $(\sigma_N)_{\overline{o}}$ be the second fundamental form at \overline{o} of the submanifold N. Then we have

$$(\sigma_{N})_{\overline{o}}(\overline{x},\overline{y}) = (\sigma_{f_{1}})_{o}((f_{1})_{*}^{-1}\overline{x},(f_{1})_{*}^{-1}\overline{y})$$
$$= (\sigma_{f_{3}})_{o}((f_{3})_{*}^{-1}\overline{x},(f_{3})_{*}^{-1}\overline{y})$$

for all vectors $X,Y \in T_{\overline{O}}(N)$. Hence we have

$$(\tilde{\sigma}_{\mathbf{f}_{3}})_{o}(\mathbf{X},\mathbf{Y}) = ((\mathbf{f}_{3})_{*}^{-1} \circ (\mathbf{f}_{1})_{*}) ((\tilde{\sigma}_{\mathbf{f}_{1}})_{o} ((\mathbf{f}_{1})_{*}^{-1} \circ (\mathbf{f}_{3})_{*} \mathbf{X}, (\mathbf{f}_{1})_{*}^{-1} \circ (\mathbf{f}_{3})_{*} \mathbf{Y})) \quad `$$

for all vectors $X,Y \in T_O(M)$. Note that $f_3^{-1} \circ f_1$ defines a local isometry of M around o. Since M is a simply connected symmetric space, there exists a unique element $k \in F_O(M)$ that coincides with $f_3^{-1} \circ f_1$ around o. Hence we have $(\tilde{\sigma}_{f_3})_O = k \cdot (\tilde{\sigma}_{f_1})_O$. By Theorem 3.4 we have $[f_3]_{\mathcal{T}} = [f_1]_{\mathcal{T}}$ and thus $[f_2]_{\mathcal{T}} = [f_1]_{\mathcal{T}}$.

q.e.d.

4. The set $\overline{\mathcal{H}}_{M}$ for a simply connected symmetric space M without Euclidean factor

In this section we assume that M^n is a simply connected symmetric space without Euclidean factor, thus, M is decomposed as a riemannian manifold as follows:

$$M^{n} = M_{1}^{n} 1 \times \cdots \times M_{r}^{n} r$$
 ($n = \Sigma_{j=1}^{r} n_{j}$)

where $M_j^n j$ is an n_j -dimensional irreducible simply connected symmetric space for each j. Then the tangent space $T_O(M) = \bigcirc$ (resp. the holonomy algebra \bigcirc) is decomposed as follows:

where the subspace $\bigoplus_{j} \subset \mathbb{Q}$ (resp. the subalgebra $\bigotimes_{j} \subset \mathbb{R}$) denotes the tangent space $T_{O}(M_{j})$ (resp. the holonomy algebra of M_{j}). For a \mathbb{Q} -valued symmetric bilinear form $\tilde{\sigma}$ on \mathbb{Q} and any ordered triple $\{i,j,k\}$ ($1 \le i,j,k \le r$), a mapping $\tilde{\sigma}_{ij}^{\ k} : \bigoplus_{i} \times \bigoplus_{j} \to \bigoplus_{k}$ is defined by

$$\tilde{\sigma}_{ij}^{k}(X_{i},Y_{j}) = \text{the } \mathcal{D}_{k}\text{-component of } \tilde{\sigma}(X_{i},Y_{j})$$

for $X_i \in \mathbb{Q}_i$ and $Y_j \in \mathbb{Q}_j$. Then we may write symbolically as

$$\tilde{\sigma} = \Sigma_{i,j,k=1}^{r} \tilde{\sigma}_{ij}^{k}$$
.

Assume that $\tilde{\sigma} \in \mathcal{H}_M$. Since each holonomy algebra \Re_j ($1 \le j \le r$) acts on the subspace \mathbb{Q}_j irreducibly and on the other subspaces \mathbb{Q}_k ($j \ne k$) trivially, the condition (2) for $\tilde{\sigma}$ implies that

(4.1)
$$\tilde{\sigma} = \sum_{j=1}^{r} \tilde{\sigma}_{jj}^{j}$$
.

Now we have the following

Lemma 4.1. Assume that the set \mathcal{H}_{M} is not empty. Then the simply connected symmetric space M without Euclidean factor is irreducible and of compact type.

Proof. Suppose that $r \ge 2$ and $\tilde{\sigma} \in \mathcal{K}_{M}$. In the condition (3)

for $\tilde{\sigma}$, let X be a nonzero vector in \mathfrak{D}_{j} and Y = Z a nonzero vector in \mathfrak{D}_{k} with $j \neq k$. Then, by (4.1), we have

$$(c/4) < Y, Y > X = R(X,Y)Y - [\tilde{\sigma}(X), \tilde{\sigma}(Y)]Y = - [\tilde{\sigma}(X), \tilde{\sigma}(Y)]Y$$
$$= \tilde{\sigma}(Y, \tilde{\sigma}(X,Y)) - \tilde{\sigma}(X, \tilde{\sigma}(Y,Y)) = 0.$$

This is a contradiction. Hence we have r=1.

Moreover Corollary 2.2 implies that M is of compact type.

q.e.d.

Hereafter we assume that M is a simply connected compact irreducible symmetric space. Let (a) be a maximal abelian subspace in (p) and W the Weyl group of M relative to (a). Denote by S^3 (b) (resp. S^3 (a)) the vector space of all symmetric trilinear forms on (p) (resp. on (a)). Then it is known that the vector subspace { $\tilde{q} \in S^3$ (b) ; $\tilde{q} \in S^3$ (c) ; $\tilde{q} \in S^3$ (d) ; $\tilde{q} \in S^3$ (e) ; $\tilde{q} \in S^3$ (for all $\tilde{q} \in S^3$ (e) by the restriction to the subspace (a). Noting that the Weyl group W acts on (p) irreducibly, we can see the following

Lemma 4.2. Let M be a simply connected compact irreducible symmetric space and set $d_M = \dim \{ \tilde{\sigma} \in S^3(G) : (\tilde{G} \circ \tilde{\sigma} = 0 \}$. Then $d_M = 1$ if M is one of the following spaces and $d_M = 0$ otherwise:

SU(n)/SO(n) ($n \ge 3$), SU(2n)/Sp(n) ($n \ge 3$), SU(n) ($n \ge 3$), E_6/F_4 .

Now we determine the set $\overline{\mathcal{H}}_{M}$.

Proposition 4.3. Let M^n be a simply connected compact irreducible symmetric space satisfying $d_M = 0$. Assume that the set $\overline{\mathcal{A}}_M$ is not empty. Then the riemannian manifold M^n is the sphere $S^n(c/4)$ with constant sectional curvatures c/4 and the set $\overline{\mathcal{A}}_M$ consists of one point. Moreover the unique element in $\overline{\mathcal{A}}_M$ corresponds to the natural totally geodesic isometric immersion $f: S^n(c/4) \to P^n(c)$.

Proof. Take $\tilde{\sigma} \in \mathcal{A}_M$. Then the assumption that $d_M = 0$ implies that $\tilde{\sigma} = 0$. Hence, by the condition (3) for $\tilde{\sigma}$, we have

$$R(X,Y)Z = (c/4)(\langle Y,Z \rangle X - \langle X,Z \rangle Y)$$

for all vectors $X,Y,Z \in \mathbb{Q}$. This implies that M^n has constant sectional curvatures c/4. The other assertions are obvious.

q.e.d.

Now we consider the case when $d_{M} = 1$. Then we have the following

Proposition 4.4. Let M^n be a simply connected compact irreducible symmetric space satisfying $d_M = 1$. Assume that the set $\overline{\mathcal{H}}_M$ is not empty. Then the metric of M^n is determined uniquely by the constant c and the set $\overline{\mathcal{H}}_M$ consists of one point.

Proof. Let $(M,<,>_1)$ and $(M,<,>_2)$ be symmetric spaces with

the same underlying manifold M. Suppose that $\overline{\mathcal{H}}_{(M,<,>_1)}$ and $\overline{\mathcal{H}}_{(M,<,>_2)}$ are not empty, and take $\tilde{\sigma}_j \in \mathcal{H}_{(M,<,>_j)}$ for j=1,2. Then, noting that M is not a sphere, we can see that each $\tilde{\sigma}_j$ is nonzero by the same proof as in Proposition 4.3. Since M is irreducible, we have $<,>_2=\alpha<,>_1$ for some $\alpha>0$. Moreover the assumption that $d_M=1$ implies that $\tilde{\sigma}_2=\beta \tilde{\sigma}_1$ for some β . By the condition (3) for $\tilde{\sigma}_j$ (j=1,2), we have

 $(c/4)(\langle Y,Z\rangle_{j}X - \langle X,Z\rangle_{j}Y) = R(X,Y)Z - [\tilde{\sigma}_{j}(X),\tilde{\sigma}_{j}(Y)](Z)$ and thus

$$(c/4)(\beta^2 - \alpha)(\langle Y, Z \rangle_1 X - \langle X, Z \rangle_1 Y) = (\beta^2 - 1)R(X,Y)Z$$

for all vectors X,Y,Z $\in \mathbb{Q}$. Since M is not a sphere, we have $\beta^2 = 1$ and $\alpha = 1$. Hence we have $<,>_1 = <,>_2$ and $\widetilde{\sigma}_2 = \pm \widetilde{\sigma}_1$. Note that the symmetry $\phi \in F_0(M)$ at $\alpha = 1$ and $\alpha = 1$ by $\phi \cdot \widetilde{\sigma} = -\widetilde{\sigma}$ for any $\widetilde{\sigma} \in S^3(\mathbb{Q})$. Then we can see that the set $\overline{\mathcal{H}}_{(M,<,>_1)} = \overline{\mathcal{H}}_{(M,<,>_2)}$ consists of one point.

q.e.d.

In the next section we shall construct a model of a totally real parallel isometric immersion of M^n into $P^n(c)$ for M^n satisfying $d_M = 1$. Hence, summing up Lemma 4.1 and Propositions 4.3,4.4, we have the following

Theorem 4.5. Let M^n be a simply connected symmetric space without Euclidean factor. Then the set $\overline{\mathcal{A}}_M$ is not empty if and only

if the symmetric space Mⁿ is one of the followings:

$$SU(n)/SO(n) (n \ge 3)$$
, $SU(2n)/Sp(n) (n \ge 3)$, $SU(n) (n \ge 3)$, E_6/F_4 , $SO(n+1)/SO(n) (n \ge 2)$.

In this case, the metric on the manifold M^n is determined uniquely by the constant c and the set $\overline{\mathcal{A}}_M$ consists of one point.

5. Models of totally real parallel isometric immersions

Let V be an (n+1)-dimensional complex vector space furnished with a positive definite hermitian inner product (,). Then we can define the associated inner product < , > $_{\rm V}$ on V as follows:

$$\langle X,Y \rangle_{V} = \text{Re}(X,Y)$$

for vectors $X,Y \in V$. Let P(V) be the complex projective space associated to Y furnished with the Kähler metric <, > with constant holomorphic sectional curvatures c, and S the unit sphere in Y furnished with the following riemannian metric <, $>_S$:

$$\langle X,Y \rangle_{S} = (c/4)\langle X,Y \rangle_{V}$$

for tangent vectors X,Y of S. Then the Hopf fibring $\pi: S \to P(V)$ is a riemannian submersion. For a point $p \in S$, the horizontal subspace H_D at p is given by

$$H_{p} = \{ x \in V; \langle x, p \rangle_{V} = \langle x, \sqrt{-1} \cdot p \rangle_{V} = 0 \}.$$

Here note that the linear mapping $\pi_*: H_p \to T_{(p)}(P(V))$ is an Euclidean isometry satisfying $\pi_*(\sqrt{-1}X) = J(\pi_*X)$ for any $X \in H_p$. Let $\gamma(t)$ be a curve in S. Then a vector field Z_t along $\gamma(t)$ is called *horizontal* if $Z_t \in H_{\gamma(t)}$ for all t. The curve $\gamma(t)$ is called *horizontal* if $\dot{\gamma}(t)$ is a horizontal vector field along $\gamma(t)$. Moreover an isometric immersion \hat{f} of a riemannian manifold M into S is called *horizontal* if $\hat{f}_*(T_p(M)) \subset H_{\hat{f}(p)}$ for any point p in M. And a horizontal isometric immersion \hat{f} is called *totally real* if the subspaces $\hat{f}_*(T_p(M))$ and $\sqrt{-1}\hat{f}_*(T_p(M))$ are orthogonal. Let ∇^S be the riemannian connection on S for the riemannian metric $\langle \cdot, \cdot \rangle_S$. Then we have the following

Lemma 5.1 (K.Nomizu [12] and B.O'Neill [13]). Let $\gamma(t)$ be a horizontal curve in S parametrized by arc-length. Then $(\nabla_t^S\dot{\gamma})(t)$ is a horizontal vector field along $\gamma(t)$. Moreover

$$\overline{\nabla}_{\mathsf{t}}(\pi_{\mathsf{t}}\mathbf{Z}_{\mathsf{t}}) = \pi_{\mathsf{t}}(\nabla_{\mathsf{t}}^{\mathsf{S}}\mathbf{Z}_{\mathsf{t}})$$

for any horizontal vector field z_t along $\gamma(t)$.

Let $\hat{\mathbf{f}}$ be a horizontal (resp. horizontal and totally real) isometric immersion of an n-dimensional riemannian manifold \mathbf{M}^n into S. Then the mapping $\mathbf{f} = \pi \circ \hat{\mathbf{f}} : \mathbf{M}^n \to P(V)$ is an isometric immersion (resp. a totally real isometric immersion). Now we have the following

Lemma 5.2. Let $\gamma(t)$ be a geodesic in M parametrized by arclength. If the horizontal part of $(\nabla_t^S)^2 \hat{f}_*(\dot{\gamma}(t))$ is contained in $\hat{f}_*(T_{\gamma(t)}^{(M)})$, the normal vector $(\nabla_t^*\sigma_f)(\dot{\gamma}(t),\dot{\gamma}(t))$ at $f(\gamma(t))$ equals zero.

Proof. Since the vector field $\nabla_t^S \hat{f}_*(\dot{\gamma}(t))$ is horizontal and $\pi_*(\nabla_t^S \hat{f}_*(\dot{\gamma}(t))) = \overline{\nabla}_t(f_*(\dot{\gamma}(t))) = \sigma_f(\dot{\gamma}(t),\dot{\gamma}(t))$ by Lemma 5.1, we have by Lemma 5.1 again

$$(5.1) \quad \pi_{\star}((\nabla_{t}^{S})^{2}\hat{f}_{\star}(\dot{\gamma}(t))) = \overline{\nabla}_{t}(\sigma_{f}(\dot{\gamma}(t),\dot{\gamma}(t))).$$

Note that

$$(\nabla_{\mathsf{t}}^{\star}\sigma_{\mathsf{f}})\,(\mathring{\gamma}(\mathsf{t})\,,\mathring{\gamma}(\mathsf{t})) \,=\, D_{\mathsf{t}}(\sigma_{\mathsf{f}}(\mathring{\gamma}(\mathsf{t})\,,\mathring{\gamma}(\mathsf{t})))$$

= the normal component of $\overline{V}_t(\sigma_f(\dot{\gamma}(t),\dot{\gamma}(t)))$.

By (5.1) and the assumption, the vector field $\nabla_t (\sigma_f(\dot{\gamma}(t),\dot{\gamma}(t)))$ is a tangent vector field of M and thus $(\nabla_t^*\sigma_f)(\dot{\gamma}(t),\dot{\gamma}(t)) = 0$.

q.e.d.

Now we give the models of totally real parallel isometric immersions into $P^{n}(c)$ of irreducible compact simply connected symmetric spaces M satisfying $d_{M}=1$.

Model 1. Let M be the manifold SU(n)/SO(n) ($n \ge 3$) and V the complex vector space $S^n(C)$ of all complex symmetric matrices of degree n furnished with the hermitian inner product:

$$(X,Y) = Tr X Y*$$

for $X,Y \in V$. An imbedding $\hat{f}: M \to S$ is defined by

$$\hat{f}(g \cdot SO(n)) = (1/\sqrt{n})^{t} g \cdot g$$

for $g \in SU(n)$ and thus the manifold M is furnished with the riemannian metric induced from that of S. Let e_n be the identity element of SU(n) and put $o = e_n \cdot SO(n) \in M$. Now we can see easily the following facts:

(1) The tangent space $T_0(M)$ at o is identified with the space $\mathfrak{P} = \{ \sqrt{-1}A ; A \in S^n(\mathbb{R}), Tr A = 0 \}$ and the following set \mathfrak{A} is a maximal abelian subspace in \mathfrak{P} :

(2) The isometric imbedding \hat{f} is equivariant relative to the representation $\rho: SU(n) \to SU(V)$ defined by

$$\rho(g)(x) = {}^{t}g x g$$

for $g \in SU(n)$ and $X \in V$.

(3) $\hat{f}(o) = (1/\sqrt{n})e_n$ and $(\hat{f}_*)_o(p) = p$. Hence \hat{f} is horizontal and totally real at o.

Then the riemannian metric of M is invariant under SU(n) by (2) and hence M is a symmetric space, and the isometric imbedding \hat{f} is horizontal and totally real by (2) and (3). Hence $f = \pi \circ \hat{f}$ is a totally real isometric immersion.

Now we show that the isometric immersion f has the parallel second fundamental form. Since f is totally real in P(V), the equation of Codazzi-Mainardi implies that $\nabla *_{q_f}$ is a normal bundle valued symmetric tensor of degree 3. Note that f is equivariant by (2), and that maximal abelian subspaces in \bigcirc are conjugate coher under the natural action of K = SO(n) on \bigcirc . Hence it is sufficient for our claim to see that $(\nabla^*_{X^q})(X,X) = 0$ for any unit vector

$$x = \sqrt{-1} \cdot \begin{bmatrix} 0 & \ddots & 0 \\ 0 & \ddots & 0 \end{bmatrix}$$

in (a). Let γ (t) be the geodesic in M such that γ (0) = 0 and $\dot{\gamma}$ (0) = X. Then we have

$$\hat{f}(\gamma(t)) = (1/\sqrt{n}) \cdot \begin{bmatrix} e^{-2t(\sum x_j)/-1} \\ e^{2tx_1/-1} \\ 0 \\ \cdot e^{2tx_{n-1}/-1} \end{bmatrix}$$

and

$$\hat{f}_{\star}(\hat{\gamma}(t)) = (1/\sqrt{n}) \cdot \begin{bmatrix} -2\sqrt{-1}(\Sigma x_{j}) e^{-2t(\Sigma x_{j})\sqrt{-1}} \\ 2x_{1}\sqrt{-1}e^{2tx_{1}}\sqrt{-1} \end{bmatrix}$$

$$0 \cdot 2x_{n-1}\sqrt{-1}e^{2tx_{n-1}}\sqrt{-1}$$

Note that $\nabla_t^S Z_t = \frac{d}{dt}(Z_t) + (c/4) < \hat{f}_*(\dot{\gamma}(t)), Z_t > \hat{f}(\gamma(t))$ for any vector field Z_t along $f(\gamma(t))$. Thus we have

$$\nabla_{t}^{S\hat{f}_{*}(\dot{\gamma}(t))} = (1/\sqrt{n}) \cdot \begin{pmatrix} (c/4 - 4(\Sigma x_{j})^{2}) e^{-2t(\Sigma x_{j})\sqrt{-1}} \\ (c/4 - 4x_{1}^{2}) e^{2tx_{1}} & (-1/\sqrt{n}) \\ (c/4 - 4x_{n-1}^{2}) e^{2tx_{n-1}} & (-1/\sqrt{n}) \end{pmatrix}$$

and

$$\left(\nabla_{t}^{S} \right)^{2} \hat{f}_{*} (\hat{\gamma}(t)) \Big|_{t=0} = \left(2\sqrt{-1}/\sqrt{n} \right) \cdot \begin{bmatrix} -\left(c/4 - 4\left(\Sigma x_{j} \right)^{2} \right) \left(\Sigma x_{j} \right) & 0 \\ \left(c/4 - 4x_{1}^{2} \right) x_{1} \\ \vdots & \left(c/4 - 4x_{n-1}^{2} \right) x_{n-1} \end{bmatrix}$$

Hence the horizontal part of $(\nabla_t^S)^2 \hat{f}_*(\dot{\gamma}(t))|_{t=0}$ is given by

$$\frac{\langle (\nabla_{t}^{S})^{2} \hat{f}_{\star} (\dot{\gamma}(t)) |_{t=0}}{- \frac{\langle (\nabla_{t}^{S})^{2} \hat{f}_{\star} (\dot{\gamma}(t)) |_{t=0}, \sqrt{-1} \hat{f}(\gamma(0)) \rangle_{S}}{\left| \sqrt{-1} \hat{f}(\gamma(0)) \right|_{S}^{2}} \cdot \sqrt{-1} \hat{f}(\gamma(0))$$

$$= (\sqrt{-1}/\sqrt{n}) \cdot \begin{pmatrix} -2(\Sigma x_{j})(c/4 - 4(\Sigma x_{j})^{2}) - \lambda\sqrt{c}/2 & 0 \\ 2x_{1}(c/4 - 4x_{1}^{2}) - \lambda\sqrt{c}/2 & 0 \\ 2x_{n-1}(c/4 - 4x_{n-1}^{2}) - \lambda\sqrt{c}/2 & 0 \end{pmatrix}$$

where $\lambda = (16/n\sqrt{c})((\Sigma x_j)^3 - (\Sigma x_j^3))$. Here note that the trace of the above matrix equals zero. Hence the horizontal part of $(\nabla_t^S)^2 \hat{f}_*(\dot{\gamma}(t))|_{t=0}$ is contained in \hat{p} . This implies that $(\nabla^* q_f)(\dot{\gamma}(0),\dot{\gamma}(0),\dot{\gamma}(0)) = 0$ by Lemma 5.2. Hence f is a totally real parallel isometric immersion of M into P(V).

Model 2. Let M be the manifold SU(2n)/Sp(n) ($n \ge 3$) and V the complex vector space $\mathfrak{SO}(2n; \mathbb{C})$ of all complex skew symmetric matrices of degree 2n furnished with the hermitian inner product:

$$(X,Y) = Tr X Y*$$

for yectors $X,Y \in V$. An imbedding $\hat{f}: M \rightarrow S$ is defined by

$$\hat{f}(g \cdot Sp(n)) = (1/\sqrt{2n})^{t}g J_{n} g$$

for $g \in SU(2n)$, where $J_n = \begin{pmatrix} 0 & -e \\ e_n & 0 \end{pmatrix} \in V$, and thus the manifold M is furnished with the riemannian metric induced from that of S. Put $o = e_{2n} \cdot Sp(n) \in M$. Now we can see easily the following facts:

(1) The tangent space $T_O(M)$ at o is identified with the space

$$\mathbb{D} = \left\{ \begin{bmatrix} \mathbb{Z} & \mathbb{W} \\ \overline{\mathbb{W}} & \mathbb{T}_{\mathbb{Z}} \end{bmatrix}; \mathbb{Z} \in \mathfrak{su}(\mathbb{n}), \mathbb{W} \in \mathfrak{SO}(\mathbb{n}; \mathbb{C}) \right\}$$

and the following set @ is a maximal abelian subspace in @:

(2) The isometric imbedding f is equivariant relative to the representstion ρ : SU(2n) \rightarrow SU(V) defined by

$$\rho(g)(x) = {}^{t}g x g$$

for $g \in SU(2n)$ and $X \in V$. (3) $\hat{f}(o) = (1/\sqrt{2n})J_n$ and $(\hat{f}_*)_O(Q) = \{\begin{pmatrix} -\overline{W} & -^tZ \\ Z & W \end{pmatrix}; Z \in SU(n),$ $W \in \mathfrak{SO}(n; \mathbb{C})$ }. Hence \hat{f} is horizontal and totally real at o.

Then, by the same way as in Model 1, we can see that $f = \pi \circ \hat{f}$ is a totally real parallel isometric immersion.

Model 3. Let M be the manifold $SU(n) \times SU(n)/SU(n)$ (n \geqslant 3) and V the complex vector space $M_n(C)$ of all complex matrices of degree n furnished with the hermitian inner product:

$$(X,Y) = Tr X Y*$$

for yectors $X,Y \in V$. An imbedding $\hat{f}: M \rightarrow S$ is defined by

$$\hat{f}((g,h)\cdot SU(n)) = (1/\sqrt{n})gh^{-1}$$

for $g,h \in SU(n)$ and thus the manifold M is furnished with the riemannian metric induced from that of S. Put $o = (e_n, e_n) \cdot SU(n) \in M$. Now we can see easily the following facts:

(1) The tangent space T_O(M) at o is identified with the space $(P) = \{(X, -X) ; X \in SD(n)\}$ and the following set @ is a maximal abelian subspace in (p):

(2) The isometric imbedding \hat{f} is equivariant relative to the representation $\rho: SU(n) \times SU(N) \rightarrow SU(N)$ defined by

$$\rho((g,h))(x) = gxh^{-1}$$

for $g,h \in SU(n)$ and $X \in V$.

(3) $\hat{f}(o) = (1/\sqrt{n})e_n$ and $(\hat{f}_*)_o(p) = \mathfrak{SD}(n)$. Hence \hat{f} is horizontal and totally real at o.

Then, by the same way as in Model 1, we can see that $f = \pi \circ \hat{f}$ is a totally real parallel isometric immersion.

Model 4. Let \mathcal{C} be the Cayley algebra over \mathbb{R} furnished with the caninical conjugation -, and set $\mathcal{F} = \{ X \in M_3(\mathbb{C}) ; {}^t\overline{X} = X \}$. On the real vector space \mathcal{F} , we define the Jordan product \circ , the inner product ((,)), the cross product \times , and the determinant det as follows respectively:

$$X \circ Y = (1/2) (XY + YX), ((X,Y)) = Tr(X \circ Y),$$

$$X \times Y = (1/2) (2X \circ Y - Tr(X)Y - Tr(Y)X + (Tr(X)Tr(Y) - Tr(X \circ Y))e_3),$$

$$det(X) = (1/3) ((X \times X, X))$$

for $X,Y\in\mathcal{F}$. Let V be the complexification of the real vector space \mathcal{F} and extend these \circ , ((,)), \times , det \mathbb{C} -linearly and naturally on V.

Denote by τ the complex conjugate on V with respect to \mathcal{F} . Then $(X,Y) = ((\tau X,Y))$ is a positive definite hermitian inner product on V. We define

$$E_6 \equiv \{ g \in GL_{\mathbb{C}}(V) ; det(g(X)) = det(X), (gX,gY) = (X,Y) \}$$

and

$$F_4 = \{ g \in E_6 : g(e_3) = e_3 \}.$$

Then E_6 (resp. F_4) is a simply connected compact simple Lie group of type E_6 (resp. of type F_4).(cf. O.Shukugawa-I.Yokota [14])

$$\hat{f}(g \cdot F_4) = (1/\sqrt{3})g(e_3)$$

for $g \in E_6$ and thus the manifold M is furnished with the riemannian metric induced from that of S. Put $o = e_3 \cdot F_4 \in M$ and set $\mathcal{F}_0 = \{ x \in \mathcal{F} : Tr X = 0 \}$. Now we can see easily the following facts:

(1) Define the right translation R_X on $\mathcal F$ for $X\in\mathcal F$ by $R_X(Y)=Y\circ X$ for $Y\in\mathcal F$. The tangent space $T_O(M)$ at o is identified with the space $O=\{\sqrt{-1}R_X\in O(V): X\in\mathcal F_O\}$ and the following set O(M) is a maximal abelian subspace in O(M):

(2) The isometric imbedding \hat{f} is equivariant relative to the representation $\rho: E_6 \to SU(V)$ defined by

for $g \in E_6$ and $X \in V$.

(3) $\hat{f}(o) = (1/\sqrt{3})e_3$ and $(\hat{f}_*)_o(p) = \sqrt{-1}\mathcal{F}_0$. Hence \hat{f} is horizontal and totally real at o.

Then, by the same way as in Model 1, we can see that $f = \pi \circ \hat{f}$ is totally real parallel isometric immersion.

Remark 5.3. It is known that the isometric imbeddings $\hat{f}: M \rightarrow S$ in the above models are minimal. Since the imbeddings \hat{f} are horizontal, the isometric immersions f are minimal.

Remark 5.4. We can see easily that the above isometric immersion $f: M \to P(V)$ is $(\sqrt{c}/2\sqrt{2})$ -isotropic (that is, $|\sigma_f(X,X)| = \sqrt{c}/2\sqrt{2}$ for any unit tangent vector X of M) if the symmetric space M is of rank two. Hence these isometric immersions f are examples of Theorem 4.13 in [11].

6. The set $\overline{\mathcal{A}}_{\underline{M}}$ for a simply connected symmetric space M with Euclidean factor

In this section we assume that Mⁿ is a simply connected symmetric space with Euclidean factor, thus, M is decomposed as a riemannian manifold as follows:

$$M^{n} = R^{n}_{0} \times M_{1}^{n}_{1} \times \cdots \times M_{r}^{n}_{r}$$
 ($n = \sum_{j=0}^{r} n_{j}$, $n_{0} > 0$)

where M_jⁿj is an n_j-dimensional irreducible simply connected sym-

metric space for each j. Then the tangent space $T_0(M) = Q$ (resp. the holonomy algebra R) is decomposed as follows:

where the subspaces \mathfrak{D}_j and \mathfrak{D}_0 in \mathfrak{D} (resp. the subalgebra \mathfrak{D}_j in \mathfrak{K}) denote the tangent spaces $T_o(M_j)$ and $T_o(R^n0)$ (resp. the holonomy algebra of M_j). For a \mathfrak{D} -valued symmetric bilinear form \mathfrak{D}_j on \mathfrak{D}_j and any ordered triple $\{i,j,k\}$ ($0 \le i,j,k \le r$), a mapping $\mathfrak{D}_j^k : \mathfrak{D}_j \times \mathfrak{D}_j \to \mathfrak{D}_k$ is defined as in the section 4. Assume that $\mathfrak{D}_i \in \mathcal{H}_M$. Since each holonomy algebra \mathfrak{D}_j ($1 \le j \le r$) acts on the subspace \mathfrak{D}_j irreducibly and on the other spaces \mathfrak{D}_k ($j \ne k$) trivially, the condition (2) for \mathfrak{D}_j implies that

$$(6.1) \quad \tilde{\sigma} = \sum_{j=0}^{r} \tilde{\sigma}_{jj}^{j} + \sum_{j=1}^{r} \tilde{\sigma}_{jj}^{0} + \sum_{j=1}^{r} \tilde{\sigma}_{0j}^{j} + \sum_{j=1}^{r} \tilde{\sigma}_{j0}^{j}.$$

Now we define the <u>Euclidean j-th mean curvature vector</u> H_j ($1 \le j \le r$) in \bigcirc_0 by

$$H_{j} = (1/n_{j}) \text{Tr } \tilde{\sigma}_{jj}^{0} = (1/n_{j}) \sum_{k=1}^{n_{j}} \tilde{\sigma}_{jj}^{0} (e_{jk}, e_{jk})$$

where $\{e_{jk}\}_{k=1}^{n_{j}}$ denotes an orthonormal basis of \bigoplus_{j} , and call the length h_{j} of the vector H_{j} the <u>Euclidean j-th mean curvature</u>. Then we have the following

Lemma 6.1. Let $\tilde{\sigma}$ in \mathcal{H}_{M} . Then

$$\tilde{\sigma}_{jj}^{0}(x_{j}, x_{j}) = \langle x_{j}, x_{j} \rangle_{H_{j}}$$

$$\tilde{\sigma}_{j0}^{j}(x_{j}, x_{0}) = \tilde{\sigma}_{0j}^{j}(x_{0}, x_{j}) = \langle x_{0}, x_{j} \rangle_{H_{j}}$$

for any j ($l \le j \le r$) and $z_0 \in \mathbb{Q}_0$, $x_j, y_j \in \mathbb{Q}_j$.

Proof. Since $\mathfrak{D}_{j} \cdot \tilde{\sigma} = 0$, we have

(6.2)
$$\tilde{\sigma}_{jj}^{0}(T_{j}X_{j},Y_{j}) + \tilde{\sigma}_{jj}^{0}(X_{j},T_{j}Y_{j}) = 0$$

and

$$(6.3) \quad \tilde{\sigma}_{jj}^{\ j}(T_{j}X_{j},Y_{j}) \ + \ \tilde{\sigma}_{jj}^{\ j}(X_{j},T_{j}Y_{j}) \ = \ T_{j}(\tilde{\sigma}_{jj}^{\ j}(X_{j},Y_{j}))$$

for any $T_j \in \mathbb{R}_j$ and all vectors $X_j, Y_j \in \mathbb{Q}_j$. Let $\{e_a\}_{a=1}^{n_0}$ be an orthonormal basis of \mathbb{Q}_0 . Since M_j is irreducible, the condition (6.2) implies that

$$\langle \tilde{\sigma}_{jj}^{0}(X_{j},Y_{j}), e_{a} \rangle = c_{j}^{a}\langle X_{j},Y_{j} \rangle$$

for some $c_{j}^{a} \in \mathbb{R}$ and thus

$$\tilde{\sigma}_{jj}^{0}(x_{j}, Y_{j}) = \langle x_{j}, Y_{j} \rangle (\Sigma_{a=1}^{n_{0}} c_{j}^{a} e_{a}) = \langle x_{j}, Y_{j} \rangle H_{j}$$

for all vectors $X_j, Y_j \in \mathbb{Q}_j$.

The second equality is obtained by the symmetry condition (1) for $\tilde{\sigma}$ and the first equality.

q.e.d.

We denote by \mathcal{H}_{M}^{d} the set defined in the same way as \mathcal{H}_{M} by replacing the number c/4 in the condition (3) with the number d. Then we have the following

Lemma 6.2. Let
$$\tilde{\sigma}$$
 in \mathcal{H}_{M} . Then $\tilde{\sigma}_{jj}^{j} \in \mathcal{H}_{M_{j}}^{c/4+h}^{2}$ for each j.

Proof. The conditions (1) and (2) for $\mathcal{H}_{M_{j}}^{c/4}$ is obvious by the condition (1) for $\tilde{\sigma}$ and (6.3). We show that $\tilde{\sigma}_{j}^{j}$ satisfies the condition (3) for $\mathcal{H}_{M_{j}}^{c/4}$. Denote by $R^{M_{j}}$ the curvature tensor of M_{j} . Then, by the condition (3) for $\tilde{\sigma}$,

$$(c/4)(\langle Y_{j}, Z_{j} \rangle X_{j} - \langle X_{j}, Z_{j} \rangle Y_{j}) = R^{M} j(X_{j}, Y_{j}) Z_{j} - [\tilde{\sigma}(X_{j}), \tilde{\sigma}(Y_{j})] Z_{j}$$

for all vectors $X_j, Y_j, Z_j \in \mathfrak{D}_j$. By (6.1) and Lemma 6.1, the second term of the right hand side is calculated as follows:

$$[\tilde{\sigma}(X_{j}), \tilde{\sigma}(Y_{j})]z_{j} = [\tilde{\sigma}_{jj}^{j}(X_{j}), \tilde{\sigma}_{jj}^{j}(Y_{j})]z_{j} + h_{j}^{2}(\langle Y_{j}, z_{j} \rangle X_{j} - \langle X_{j}, z_{j} \rangle Y_{j}).$$

Hence \tilde{q}_{jj}^{j} satisfies the condition (3) for $x_{M_{j}}^{c/4}$.

q.e.d.

Lemma 6.3. Let $\tilde{\sigma}$ in \mathcal{A}_{M} . Then $\tilde{\sigma}_{00}^{0} \in \mathcal{A}_{\mathbb{R}}^{n_0}$ and

$$\tilde{\sigma}_{00}^{0}(X_{0}, H_{j}) = \langle X_{0}, H_{j} \rangle H_{j} - (c/4)X_{0}$$

for any $X_0 \in \mathbb{P}_0$. Moreover $\langle H_j, H_k \rangle = -c/4$ for distinct indeces $j,k \ (1 \le j,k \le r)$.

Proof. Note that the condition (2) for $\mathcal{K}_{\mathbb{R}}^{n_0}$ is obvious since \mathbb{R}^{n_0} is flat. Moreover by the conditions (1) and (3) for $\tilde{\sigma}$ we can see easily that $\tilde{\sigma}_{00}^{0}$ satisfies the conditions (1) and (3) for $\mathcal{K}_{\mathbb{R}}^{n_0}$. Put $X = X_0 \in \mathbb{P}_0$, $Y = Y_j$, $Z = Z_j \in \mathbb{P}_j$ in the condition (3) for $\tilde{\sigma}$. Then we have

$$(c/4) < Y_{j}, Z_{j} > X_{0} = - [\tilde{\sigma}(X_{0}), \tilde{\sigma}(Y_{j})]Z_{j}$$
.

The right hand side is calculated by (6.1) and Lemma 6.2 as follows:

$$- [\tilde{\sigma}(X_0), \tilde{\sigma}(Y_1)] Z_1 = \langle X_0, H_1 \rangle \langle Y_1, Z_1 \rangle H_1 - \langle Y_1, Z_1 \rangle \tilde{\sigma}_{00}^0 (X_0, H_1).$$

Hence we have

$$(c/4)X_0 = \langle X_0, H_j \rangle H_j - \tilde{\sigma}_{00}^0(X_0, H_j).$$

Now, putting $X = X_j \in \mathfrak{D}_j$ and $Y = Y_k$, $Z = Z_k \in \mathfrak{D}_k$ ($1 \le j \ne k \le r$) in the condition (3) for $\tilde{\sigma}$, we have

$$(c/4) < Y_k, Z_k > X_i = - < Y_k, Z_k > < H_i, H_k > X_i$$

by (6.1) and Lemma 6.2, and thus $\langle H_j, H_k \rangle = -c/4$.

q.e.d.

Summing up Lemmas 6.1, 6.2 and 6.3, we have the claim (A) in the following

Theorem 6.4. Let M^n be a simply connected symmetric space with Euclidean factor decomposed as $M^n = \mathbb{R}^n 0 \times \mathbb{I}_{j=1}^r M_j^n j$ and $n = \sum_{j=0}^r n_j$. Then the following claims are true:

(A) Let $\tilde{\sigma} \in \mathcal{H}_{M}$. Then

(1)
$$\tilde{\sigma} = \Sigma_{j=0}^{r} \tilde{\sigma}_{jj}^{j} + \Sigma_{j=1}^{r} \tilde{\sigma}_{jj}^{0} + \Sigma_{j=1}^{r} \tilde{\sigma}_{j0}^{j} + \Sigma_{j=1}^{r} \tilde{\sigma}_{0j}^{j}$$

(2)
$$\tilde{\sigma}_{jj}^{j} \in \mathcal{A}_{M_{j}}^{c/4}$$

(3)
$$\tilde{\sigma}_{00}^{0} \in \mathcal{H}_{\mathbb{R}}^{n_{0}}$$
, $\langle H_{j}, H_{k} \rangle = -c/4$ ($1 \le j \ne k \le r$), $\tilde{\sigma}_{00}^{0}(z_{0}, H_{j}) = \langle z_{0}, H_{j} \rangle H_{j} - (c/4)z_{0}$

(4)
$$\tilde{\sigma}_{j0}^{j}(X_{j}, Z_{0}) = \tilde{\sigma}_{0j}^{j}(Z_{0}, X_{j}) = \langle Z_{0}, H_{j} \rangle X_{j},$$

$$\tilde{\sigma}_{j0}^{0}(X_{j}, Y_{j}) = \langle X_{j}, Y_{j} \rangle H_{j}$$

for any $z_0 \in \mathbb{Q}_0$ and all vectors $x_j, y_j \in \mathbb{Q}_j$.

(B) Conversely any p-valued bilinear form $\tilde{\sigma}$ on \mathfrak{P} satisfying the conditions (1),(2),(3),(4) of (A) is an element in \mathcal{H}_{M} .

Here the proof of our claim (B) is omitted since it is straightforward.

Remark 6.5. Let M^n be a simply connected symmetric space with Euclidean factor. Changing the metric on M^n componentwise, we can construct infinitely many elements in \mathcal{H}_M . In fact,

decompose M as above and suppose that $n_0 = r \ge 1$. First we shall show that there exist a basis $\{H_i\}_{i=1}^r$ of \mathbb{R}^r and an \mathbb{R}^r -valued bilinear form $\tilde{\sigma}_{00}^0$ on \mathbb{R}^r satisfying the condition (3) of (A). If there exist such basis and \mathbb{R}^r -valued form, by (B) of Theorem 6.4, an element in \mathcal{A}_M can be constructed. Let $\{e_j\}_{j=1}^r$ be an orthonormal basis of \mathbb{R}^r and set $H_i = \sum_{j=1}^r a_i^j e_j$, $A = (a_i^j)$. Moreover, for positive real numbers h_1, \dots, h_r , we set

$$S(h_{1}, \dots, h_{r}) = \begin{bmatrix} h_{1}^{2} & -c/4 & \cdots & -c/4 \\ -c/4 & h_{2}^{2} & \vdots \\ \vdots & & \ddots & -c/4 \\ -c/4 & \cdots & -c/4 & h_{r}^{2} \end{bmatrix}.$$

Then the condition for that $\{H_j\}$ is a basis of \mathbb{R}^r such that $|H_j| = h_j \ (1 \le j \le r)$ and $\langle H_j, H_k \rangle = -c/4 \ (j \ne k)$ is written as follows:

(6.4) det
$$A \neq 0$$
, $A^{t}A = S(h_{1}, \dots, h_{r})$.

Since the matrix $S(h_1, \dots, h_r)$ is symmetric, for sufficiently large numbers h_1, \dots, h_r , there exists a positive definite symmetric matrix A satisfying the condition (6.4). Then we define an \mathbb{R}^r -valued bilinear form $\tilde{\sigma}_{00}^0$ on \mathbb{R}^r as follows:

$$\tilde{\sigma}_{00}^{0}(H_{j},H_{k}) = \langle H_{j},H_{k} \rangle H_{k} - (c/4)H_{j}$$

By easy calculations, we can see that the \mathbb{R}^r -valued bilinear form $\tilde{\mathfrak{q}}_{00}^0$ on \mathbb{R}^r satisfies the condition (3) of (A). Thus we get infinitely

many elements in \mathcal{H}_{M} by taking suitable metrics on M_{j} (liefier).

Now, in the case when $M = \mathbb{R}^2$, we have the following

Theorem 6.6. There exists a unique complete totally real parallel flat minimal surface M^2 in $P^2(c)$ (up to holomorphic isometries of $P^2(c)$). The norm $|\sigma|$ of the second fundamental form σ of M^2 is given by $|\sigma|^2 = (1/2)c$.

Proof. Let $\{e_1,e_2\}$ be an orthonormal basis of \mathbb{R}^2 . Then the condition $\tilde{\sigma}\in\mathcal{F}_{\mathbb{R}}^2$ is equivalent to the condition that

(6.5)
$$\begin{cases} \tilde{\sigma}(e_1, e_1) = \alpha e_1 + \beta e_2 \\ \tilde{\sigma}(e_1, e_2) = \beta e_1 + \gamma e_2 \\ \tilde{\sigma}(e_2, e_2) = \gamma e_1 + \delta e_2 \end{cases} , \text{ and } c/4 = \beta^2 + \gamma^2 - \alpha \gamma - \beta \delta.$$

Suppose that the totally real parallel immersion of \mathbb{R}^2 corresponding to \tilde{q} is minimal. Then $\alpha+\gamma=\beta+\delta=0$ and thus $\beta^2+\gamma^2=c/8$ by the second equality of (6.5). Put $\beta=\sqrt{c/8}\cos\theta$ and $\gamma=\sqrt{c/8}\sin\theta$ for some θ and define a linear isometry g of \mathbb{R}^2 by

$$(g(e_1),g(e_2)) = (e_1,e_2) \begin{cases} \cos(\theta/3) & \sin(\theta/3) \\ -\sin(\theta/3) & \cos(\theta/3) \end{cases}$$
.

Then we have

$$(g \cdot \tilde{q}) (e_1, e_1) = -(g \cdot \tilde{q}) (e_2, e_2) = \sqrt{c/8} e_2, (g \cdot \tilde{q}) (e_1, e_2) = \sqrt{c/8} e_1.$$

Hence all elements in \mathcal{H}_R^2 corresponding to minimal immersions belong to the same equivalence class. Now by Theorem 3.4 and 3.6 we get our first claim. The second claim follows from $|g \cdot \tilde{\sigma}|^2 = (1/2)c$.

q.e.d.

Remark 6.7. S.T.Yau [18] has shown that if M^2 is a complete non-negative curved totally real minimal surface in $P^2(c)$, M^2 is totally geodesic or flat, and moreover in the last case the second fundamental form is parallel. The minimal surface of Theorem 6.6 gives a unique example of such surfaces in the flat case. This has been constructed concretely in my previous paper [11] and it is compact.

Remark 6.8. B.Y.Chen and K.Ogiue [3] has shown that if M^n is a compact totally real minimal submanifold in $P^n(c)$ such that $\left|\sigma_p\right|^2 < (n(n+1)/4(2n-1))c$ for any point p in M, then M^n is totally geodesic. Suppose that $\left|\sigma_p\right|^2 = (n(n+1)/4(2n-1))c$ for any point p in M. Then, along their proof, the second fundamental form is parallel. In the case when n=2 (then (n(n+1)/4(2n-1))c = (1/2)c), the universal covering of the compact totally real parallel minimal surface M^2 has Euclidean factor and thus is flat. Hence our minimal surface in $P^2(c)$ of Theorem 6.6 is a unique compact totally real minimal surface M^2 in $P^2(c)$ such that $\left|\sigma_p\right|^2 = (1/2)c$

for any point p in M².

Remark 6.9. In the next paper together with M.Takeuchi the complete classification of n-dimensional complete totally real parallel submanifolds in $P^{n}(c)$ shall be given by a different way.

References

- [1] S.Araki: On root systems and an infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univ, 13 (1962), 1-34.
- [2] N.Bourbaki : Elements de Mathematique Groupes et Algebres de Lie, Chap. 4-6, 1968.
- [3] B.Y.Chen and K.Ogiue: On totally real submanifolds, Transactions of the Amer. Math. Soc, 193(1974), 257-266.
- [4] P.Dombrowski: Differentiable maps into riemannian manifolds of constant stable osculating rank I, J. Reine Angew. Math, 274/275 (1975), 310-341.
- [5] D.Ferus: Product-zerlegung von Immersionen mit paralleler zweiter Fundamentalform, Math. Ann, 211(1974), 1-5.
- [6] : Immersions with parallel second fundamental form, Math. Z, 140(1974), 87-93.
- [7] : Symmetric submanifolds of euclidean space, to appear.
- [8] S.Helgason: Differential Geometry, Lie groups and Symmetric spaces, Academic Press, 1978.

- [9] S.Kobayashi and K.Nomizu: Foundations of Differential geometry.

 I,II, Wiley(Interscience), 1963 and 1969.
- [10] H.Nakagawa and R.Takagi: On locally symmetric Kaehler submanifolds in a complex projective space, J. Math. Soc. Japan, 28 (1976), 638-667.
- [11] H.Naitoh: Isotropic submanifolds with parallel second fundamental forms in $P^{m}(c)$, to appear.
- [12] K.Nomizu: A characterization of the Veronese varieties, Nagoya Math. J, 60(1976), 181-188.
- [13] B.O'Neill: The fundamental equations of a submersion, Michigan Math. J, 13(1966), 459-469.
- [14] O.Shukugawa and I.Yokota : Non-compact simple Lie group E₆(6)
 of Type E₆, J. Fac. Sci. Shinshu Univ, 14(1979), 1-13.
- [15] W.Strübing: Symmetric Submanifolds of Riemannian Manifolds, Math. Ann, 245(1979), 37-44.
- [16] M.Takeuchi: Homogeneous Kähler submanifolds in complex projective spaces, Japanese J. Math, 4(1978), 171-219.
- [17] ------- : Parallel submanifolds of space forms, to appear.
- [18] S.T.Yau: Submanifolds with constant mean curvature I, Amer. J. of Math, 96(1974), 346-366.

Department of Mathematics
Yamaguchi University
Yamaguchi 753, Japan