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Abstract 

The role of the'd symmetry of atomic orbitals in deter

mining theelect'ronic structure of transition metals is 

discussed by use of a real space expansion of the Green 

function. Terms which are serisitiveto the crystal struc

tures are separated from those corres'ponding to the path 

integrals on a Bethe type lattice. On the basis of this 

discussion a simple method is developed for calculating the 

electronic structure of transition metals. By use of the 

method the correspondencebetwee'ri the band theory and atomic 

interaction models can beestablished~ It is found that 

the density of states for bcc and fcc transition metals are 

satisfactorily reproduced with the information from the 

interactions amo~g near ne?-ghbori~g atoms, and that the 

'difference between bcc and fcc arises mostly from three or 

four atoms interactions, while distant ne?-ghbors contribute 

mostly to the structure insensitive self-energy. 

The method is next applied to m~gnetic states, i.e. 

'ferromagnetic, antiferrom~gnetic, helical spin density wave 

and param~gnetic states. It is found that the unenhanced 

susceptibilities for bcc and fcc are also satisfactorily 

reproduced. By use of the method, the magnitude of local 

moments, ene~gy, etc. are calculated within the Hartree-Fock 

approximation. The relative stability of those states is 

invest'?-gated, for a given valerice, ,and phase di~grams of bcc 

and fcc transition metals are:construct~d. It is found that 
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the most stable :statecha~ges continuously. f'rom an antif'erro

m?-gnetic one to a ferromagnetic one 'via a helical spin density 

wave one when the valence cha~gesf'rom f'ive to ten. The 

correspondence betwe'eri the obtained .phasedi?-grams and ex

perimentally observed ones for 3d metals is discussed . 
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I. Introduction 

The electronic structure of transition metals~ which is 

an indispensable knowledge in interpreti~g their cohesive 

and magnetic properties, is usually obtained through band 

structure calculations based on the Bloch theorem. On the 

other hand~ one sometimes use~ in the discussion of transition 

metals some atomic interaction models which express the 

'structure- and atomic-state-sensitive ene~gy ~s a sum of 

single atom terms and interactions ~mong a small cluster of 

atoms. An e x'amp le of such models is the interacting virtual 

state approach which has been successfully used in the dis

cussion of m?lgn~tic prop~rties;',2) Th6~gh the atomic inter

action models are superficially Tar from the band theory, 

qualitative a~guments based on the models are consistent with 

those based on the band theory. We suppose that the d symmetry 

of atomic orbitals may play some roles in connecti~g the atomic 

interaction models to the band theory~ since the d electrons 

in transition metals are not so free as the sp electrons in, 

transition metals. The purpose o,f this Investigation is ,to present 

a justification for these atomic interaction models on the 

basis of the band theory, which enables us to'obtain a deeper 

insight into the role of the d symmetry of atomic orbitals 

and local atomic arrangements, in determining the local elec-, 

tronic structure. Moreover, the ',justification leads us to 

a new 'approach to the' calculation of the electronic structure 
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which is simple enough to apply .it :to aperiodic systems as 

well as pe~iodic ones. 

We start from the methods which 'have been proposed f'or 

calculating the local elect~onicstructure at a. given atomic 

site. in view of' the localerivironment .produced by near neigh

boring atoms. These methOds, i.e. the moment method3,4) 

and the recursion method5-:-7 ) 'are based on a real space 

(loca tor) expansion of' the Gr:eeri f'unct ion, and do not involve 

the Bloch theorem in any way. The"methOds can theref'ore be 

applied to the electronic structure of' aperiodic systems such 

as the surf'ace, an impurity in the bulk SOlids, disordered 

alloys and noncrystalline solids. Even f'or a perf'ect crystal, 
- . 

them.ethods have some advant?-ges in carryipg out numerical 

calculation, especially f'or a crystal of' complex structure. 

However, the momerit methOd or the recursion method is not 

transparent enough to yield an ins~ght into the nature of' 

at~mic interactions, since a calculation over a f'airly large 

num.ber of' atoms is involved. We theref'ore simplif'y these 

real space approach and develop a new approach which enables 

us to calculate the electronic structure with less number of' 

atoms. 

The basic idea of' the present approach is to reo~ganize 

the real space expansion of' the Green f'unction to renormalize 

the atomic locators and the electron transf'er matrix elements 

by summing up a special type of' terms which areinsensitlve 

to at'omic 'arr?-llgenient S.· We then ·taken into account remaini~g 
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nearne~ghbor interaction terms withrenormalized locators 

and interat'omic transfers. Through this approach we can 
., 

determine the terms which are responsible ror producing, for 

example ,the: difrerence of the density of states or the d 

band between bcc metals and.fce ones. It will be shown also 

that .thed symmetry of atoniicorbitals plays a very important 

role in determini~g relative we~ghts of structure-sensitive 

terms and insensitive ones.' 

In the. first half or this thesis, we devote ourselves 

to the derivation of the pres'erit approach, and discuss some 

applications of the. present approach. We briefly outline 

the real space expansion of the:. Greeri function in §l. In §2 

we discuss the -role of the d symmetry of atomic orbitals. 

In S3 we develop a new scheme ~f calculating the electronic 

structure. The density of states in bcc and rcc transition 

metals is taken as an illustrati~g example. In §4 we extend 

the present approach to the case or disordered alloys. We 

discuss in §5 the correspondence between the present approach 

and the interacti~g virtual. state approach, and summarize our 

conclusion. 

In the latter half 0:(' this thesis, we discuss the m~gnetisI11 

'in transition metals on. the basis of the electronic structure 

calculated by the present approach. As was mentioned above, 

the present a~proach yields a justification for the interacti~g 

virtual state approach, in whIch :the concept of local moments 

and that of itinerant electrons are ·unified. The present 
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. approach appreciates the concept. of local moments in the 

. itinerant "electrons systerri more. fully than the ·interacti~g 

virtual state. approach does . The :local moment attachi!lg to 

a given atorriic site is no morer?-gid as that in insulators., 

and is influenced by the circumstances of the whole crystal, 

i.e. theconf?-guration of local momerits t'lith variable 

magnitude and direction. We can easily apply the present 

approach to In?-gnetic cases either ordered or disordered., 

which enables us to compare ·various kinds of magnetic states 

within the same framework and on the basis of a realistic 

band structure. 

We calculate the electronic structure of ferromagnetic., 

antiferrom?-gnetic., helical spin density wave (SDW) and 

paramagnetic states by determini!lg the magnitude of local 

moments in a sel~-consistent way, and investigate the relative 

stability of those states. As a result of this investigation, 

we construct the phase diagrams ofbce and fec transition 

metals for a given number of the d electrons and. given 

strengths of the intra-atomic interactions. It will be shown 

that the obtained phase di?-grams can explain the wide variety 

of the observed m~gnetism in 3d transition metals not only 

for the. ground state porperties but also for the properties 

at finite temperature. 

We review in §6 some previous attempts in which the 

m?-gnetism in transition metals:.is discussed. We present the 

model: Hamiltonian in §7. In §8the :details of the method 
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for calculati~g the electronic structures of ferrom?-gnetic~ 

antiferrom?-gnetic ~ helicalSDW and param?-gnetic states· are 

discussed. In §9 we compare the ·unenhanced susceptibility 

obtained thro~gh the usual band structure calculation and 

that through the present approach in order to check the 

accuracy of the present approach.· ·We discuss the calculated 

phase diagrams in §lO. Finally we·summarize our conclusion 

in §ll. 
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IT . Real Sp-ace Approach to the Calculation 01' the Electronic 

Structure 01' Transition Metals 

§ 1. The Real Space Expansion of the Green Function 

We start with a ·general tight binding model in which 

1'ive d orbitals of each atom only are taken into account. 

Our treatment can be extended to the case where nearly 1'ree 

electron states correspondi~g to sand p atomic states are 

included, th6~ghsuchan extension will not be discussed in 

this paper. The· model Hamiltonian can be expressed as 

H 

(1. 1) 

whe·rei and J denote the sites· 01' atoms, and m, n, • -: 

speci1'y the type 01' atomic d orbitals (m=1,2, -- -5). The 

matrix eleJtients.o1' the Green f'unction are de1'ined by 

mn Gij (00) (1. 2) 

The local derisity 01' states of' the orbital R, at the or?-gin 

is. given by 

R, . R,R, 
PO(w)= -(lhr) Im[GOO .(uitiE)]·. 

. . ,E+ ·0+. 
(1. 3) 
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·We denote the locatorof .thestate I i.m l> by 

(1. 4) 

R.R. The wellknown locator expansion .of GOO(w) is given by 

+ \ \ . . goR. t oR.~ g~ t~ gr: tr:oR. goR. 
L L .~. J.. J..J' J J' i,m J,n 

+ ••• , 

(1. 5) 

whe"rethev-thorder .term is the sum of all closed paths 

starting at the or~gin and returni~g .to it by v steps. We 

can rewriteeq.(1.5) by' use of the irreducible sum for the 

v-th order term in which the paths are not allowed to return 

to the or~gin at intermediate steps (see F~g. la). We then 

obtain 

GR.R. (w) = [( gR,) -1 _ \ '. t:R,Y!l gm. trnR. 
00 '. O. L OJ..· J.. iO i,m 

I I t R,m m ·tmn n tnR. . '. o· g. .. g. J·O J..,rn J,n )..').. l..J'J 
-1 - ... ] , 

where 'the sums are taken over their-reducible paths. 

(1. 6) 

R~gardi~g eqs.(1.5) and (1.6) as ,the expansion in powers 

of l/w, we: 'ca'nrewri tethem as 
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(1. 7) 

and 

ii( ") [ \ Mi/w"V-IJ-l GOO W = w ~ Lv V ' (1. 8) 

where "Mi and Mi are expressed in :terms of t mn
i . and E. , 

v v J 2m 

and Mi corr~sponds to the v-th "moments of the density of 
v 

states"; 

(1. 9) 

An approximateG~~(w) which is obtained by truncating 

th~ series in eqs.(1.5) - (1.8) at a finite v-th order term 

is not always a Hefglotzfunction8,9) for which a positive 

value of the" derisity of states is" guaranteed. Therefore 

we reW"riteG~~(w) as a continued fraction such that 

""""hI 

w- a··· 
3 

-1 ] . 

ii( ") If all b~?S are positive, GOQ ~is a He~glotz funct~on 

(1. 10) 

everiwheri the" i'ractionis "te';rminated by assumi!lg bN+l;"O 

forarbttrary" N. The "continued "fraction coefficients (av' bv ) 
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are .complicatedfunctions OfM~ ~nd he"nce t~ and Eim . 

Both being based on the continued "fraction expansion, the 

moment method and the recursion method differ in the way of 

determining the coefficients (a , b). In the" moment method " " v v 

on~ firstcalculate~ the moments of the den~ity- of states, 

and then determines the :coefficients by use of sophisti

cated numerical methods. On the other hand, one determines 

directly the co"efficients by tridi?-gonalizing the" Hamiltonian 

matrix in the" recursion method. : The~ridiagonal matrix is 

one whosenon-zero- "elements appear only on the main di?-gonal 

and two sub"":di?-gonals, upper right and lower left. The 
"" fa 

correspondi~g GOO(w) of the tridi?-gonal matrix is easily 
-

verified to be equal to the continued fraction (1.10). Our 

approach ~s also based on th~continued fraction; the 

coefficients" are calculated in a somewhat different way from 

those used in the "previous method. 

For the discussion given in"§3; we summarize the usually 

used technique" for terminati~g the continued fraction in the 

moment metho"d or the recursion method. After computi~g 

(av' bv)to ~=N (which corresponds to computl~g the v'-th 

moment to v'=2N), we assume asymptotic values ( b ) for 
00 

v" >N. Then the" fraction after N is. given by 

" " " " " T 
= 

" " " T" " " 

..... 
(1. 11) 
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which can be solved as 

T(w) ~ [1/(2b )]. [(w-a' ) -I {w-a )2 - 4b ] 
. 00 00 ex:> 00· 

(1. 12) . 
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§ 2.· The Role of the d Symmetry .of Atomic Orbitals 

In order to simplify the followipg discussion, we assume 

that all E. 's and gI? 'S are :equal to each other irrespective 
~m . ~ 

of i and m. By shifting· the" :zero of' energy we assume then 

. g~ (w,:= l/w. (2. 1)· 

The contribution of a path of v steps to the series in 

eq.(1.5) and eq.(1.6) is given except for a f'actor l/wv - l or 

l/wv+l by 

t~m tt;n: ___ t m r l~O . 
Oi ~J v- . 

(2. 2) 

The v-thrrioment M~· in eq. (1·.7) is reduced to the sum of mt v v 
of all the v-th order paths includipg those passipgthe 

origin at intermediate steps, and correspondi~gly M~ in 

eq.(1.8) is reduced to the sum ·of irreducible paths. 

mn . The: transfer matrix el·emerits t. . can be expressed as a 
~J 

. linear combination oftheSlater-Koster int~grals ddcr, ddiT 

and dd<S. Before. goi~g into the discussion based on the 

realistic values of theselnt~grals,we present a qualitative 

discussion . .of the· role ·ofthe d symmetry of atomic orbitals 

by use of .the.asymptotic behavior.ofthe integrals for a 

la~ge :sep·aration R of interactipg .atoms. PettiforlO ) has 

shown .that. ddiT and dd<S areasympt.otically equal :to .zero for 

la~ge R, While. :ddcr is proporti:onal ·to an oscillati~g :f'unction 
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with a factor liRe If we assume dd1T=ddo~Ofor each step, 

we can sho"i'I easily that 

(2. 3) 

where the sum is taken over' the five atomic orbitals at the 

or?gin, 8 . is the inflection a!lgle of a given path at the 
J. 

j-th atom, 8 corresponds v to tha a~glebetween the initial 

step and the. final one (see F?-g. 1), and P2 is the Legendre 

polynomial PR, ofR,=2. If we consider the nearest-neighbor 

transfer on a fcc lattice, possible values of P2 (cos8
j

) 

are. given by 

1 ur -(1/8) or -(i/a). 

Similarly thecorrespondi~g values for the nearest and 

next-nearest ne?-ghbor transfers on abcc lattice are 

1 ur' 0 ~r -(1/3) or -Cl/a). 

Thus the a~gularfactor reduces the contribution of those 

paths which 'involve the inflections 8j ,' Oor 1T. For 

ex'amplethe a~gular factors of: I · mR. .. R, v of typical fourth 

order paths of the "fcc lattice;. AI' B2 and C
5 

defined in 

F~g .. 2 are '1, 1/4 and 1/256 ,resp·ectively. In the case of 

the' 'sband whe'rethe:transfer matr.ix el'ements have no 

a~gular dep'endence, all paths' mentioned above 'will make the 
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contributions of the same m?-gnitude.: 

In order to carry Dut ~ more ~e~listic calculation, 

we take into account ?-gain the nearest neighbor transf'ers 

only in the case of a fcc lattice and the nearest and next 

nearest ne?-ghbor ones in the case of a bcc lattice. We 

adopt the values 'of ddcr, dd1T and ddo for these transfers 

estimated by Pettiforll ,12) which are listed in Table I. 

The riumerical estimates of IR,m~ of the fourth order paths 

shown in F?-gs. 2 and' 3 are listed in Tables 1I and m 

ts>gether w;tththeratios estimated by use of the asymptotic 

relation (2.3). We can see from Tables ]I and m that the 

reduction due to the 'a!lgular deperidence of d orbitals 

inferred from the asymptotic behavior of the int~grals is 

supported serrii quantitatively by the calculation usi!lg 

realistic values of the integrals. 

Inspecti!lg the forth order terms, we classify the paths 

into three'cat~gories, A, Band C (see F?-gs. 2 and 3). To 

the ,cat~gory A, reducible pathsbelo~g; their contribution 

to the' 's'um M~'-, MtA satisfies M!A= (M~)2 The cat~gory B 

compr.lsesthose paths in which ,we go from the origin to 

atom l,theri to atom 2 'and come back to the or?-gin,traci~g 

the same path. Those paths which visit three different 

atom fall in cat~gory C. We 'list the numerical values of 

M~; M~, M~; N~A' M~B and M~c.forfCC and bcc lattices in 

Tables' IV and V. We show also ,the relative m?-gnitudes of 

, thes'e 'sumS~'M~/(M~)3/2., M~/(M~) 2 ,- .etc. there ts>gether with 
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the corresponding quantities. for the.s band. 

The irreducible sums.,· JVI~ appeari~g in eq. (1.8) are 

given by 

d MR-- R- R-
an . 4~ ~4B +~4C· (2. 4) 

From Tables IV and V vIe can see· ~that M~/(M~)3/2and M~C/(M~)2 

of the d band is much smaller. than .those of the s band, while 
R- R- 2 M4B/(12)of the d band is c·omparable with that of the s 

band. This situation can be understood, since the ·paths 

contrib~ti~g to M§ and M~C corres·ond· to (twisted) polygons 

having ej\Oo~ 7T. Extendi~g the discussion to higher order 

terms., we may c6ncludethat ·among the irreducible path those 

whfchgo on a broken line and trace it back to the or~gin 

make a relatively large contribution compared with those 

correspondi~g .to (twisted) polygons .. Utilizing this reasoning, 

we develop anew trea·tmentofthe· real space expansion in 

the next· section, where we renormalize thelocator by summing 

up the contribution of the paths of type B. 
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§ 3. The- Effective Locator and .its Application 

\ve have noticed in the :precedi~g section that the 

paths of the type B on which one. goes to a lattice site 

without making a loop andtrace's ba·ck the same way make a 

dominant contribution to the' self-energy. Wedi vide the 
.. . i 

whole irreducible paths into tw'o parts, LBCW) consisting 

of the type B paths and L;CWJ .correspondi~g to the remainder; 

we write the Green· function .G~~CW) as 

(3. 1) 

whereL~(w) is expanded into .powers of l/w such that 

~iCw")_- Mi; R- /·3 MR. / 5 ~B . 2 w + M4B w + 6B w + ••• , C3. 2) 

i and LCCW) is expressed as 

(3. 3) 

The purpose of the followi~g discussion is to derive an 
. . ii . R-

expression of GOO(w) in terms of the effective locator 'K .(w) 

whIch includes the B type self-ene~gy L~CW). We express 

R-i 
.. GooCw) as 

i 
M2·· ..... ' . 
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, "'~ 
The effective .locator A(w) should satisfy the condition that 

"'~ A (w) "'w for Iwl + ex> and 

Then if we choose 

(3. 6) 

we can easily see that the self-ene~gy part ot: the Green t:unc

tion is correctly reproduced up to l/w3 . The expression 

(3. 4) yields a non-n~gativedensity of states provided that 

'V~ 

I.A'(ui)1 + b.t >'0. 

This condition is satisfied in .the 'calculations which we 

present later. 

§ 3. 1 : The derivation of thee,ft:ective locator 

The'e,ffective locator ~~(w) is defined by eq.(3;5). 

We 'note that E~(w) is equivalent .to the selt:-eriergy in the 

case'ot: the Bethe' lattice 'if we n~glect some double counti~g 

ot: h~'ghe'r. 'order paths and et,he Tive:-Told degeneracy, ot:the 

dorbi'tals. .If we deal with the 's band on the Bethe lattice> 
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2' .zt: ..... . 

. tZ'~:1}t2 
00 -------~~~~------

00 -
.. :(z~1)t2:. ' . 

w _ ••• 
~ . (3. 8) 

"'s 
where z denotes the coordination number. Thus A (w) is 

given by 

"'s 2 "'s 
. A (00) = 00 - (z-l)t / A (00) 

= (1/2) (ui + I 00 2 - 4(.z-1)t2). 

In the case .of the'd band we cannotderi ve a simple expression 
!\r~ 

such as eq.·(3.9) for A (00). However., it behaves to good 

approximation very much like .theself-ene~gy on the Bethe 

lattice. Thus in the expression (3.4) the crystal structure 
"'~ 

manifests itself only thro~gh a~ and b~~ while A (00) remains 

almost independent of the crystal structure. In the fol1owi~g 

"'~ we derive an approximate expression for A (00) on the basis 

of eq. ( 3 .5) • 

The guidi~g principleof.derivi~g. /(~(oo) is ~gain to 

r~p'roducethe 1/00 expansion .of l:~(oo) correctly up to 1/003 . 

We believe t'hat our procedure.y.ie.lds a. good approx'imation 

everi. :for .terms of higher order than 1/003 ~ since our inethod 

is ·exact .. for . the' :case .. of the 's band on the Be the lattice . 

We :introduce' the' aver~ge.effectivelocators.ACt(w) for the 
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orbitalsbelo~gi~g to an irreducible representation of the 

point ,group de'noted by a. Sp'ecOiTyi!1g the types of the 

irreducible' representations to which the d orbitals at 

intermediate steps belo~g) we 'first express L~(W) as 

R, I 
R, . . 

I 
R, 

w3 L (w) =. M
2
(a)/w ;:- M4B (a, t3) / + ... B 

, 
a a,t3 

(3. 10) 

where 
R, . 

M2 (a) ) 
R, M4B (a,t3) ... are .defined by 

(3. 11) 

Note that the superscript R, specifies one of the d orbitals 

and the Greek letters the irreducible representations. In' 

the expression {3.11) we excluded from E~(w) such terms 

co'rrespondi~g to those paths on which the atomic orbitals 

used on the return belo~gs to a different representat~on 

from that used initially (note that pGa in MtB(a,6) in eq. 

(3.11». These terms are included in tE(w); they turn out 

in any case to be n~gligibly small. We now express L~(W) 

in a continued fraction given by 
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R, .) 
, M

2
·(·a .. 

L--------~--------
a R,( ) .... 

. ,].1 .a,B . , , , ' , 
,I' 

W -L -----"=----------
B 

W -
L . ,~~,«i,~,~y,) .. 

y W - ••• (3. 12) 

The choice 
. , 

of the parameters 
R, . 

~l (a ,B), 
R, , , , 

P2(a,B,y),··· is not 

unique, since the' expression of L~(W) depends only on the 

sum over a,' B,··· at intermediate steps. Nevertheless we 

may assume 

(3. 13) 

which yields the 1/003 term correctly. Since we are summing 

up the Bethe lattice type paths, we expect that the parameters 
, 'R, 
~v(al' a 2 ,···, av' av+l) conve~ges into a value independent 

of R, and aI' ••• , aV_I' tho~gh it may depend on av and 

av+lo We therefore introduce an approximation, assumi~g 

~13 . 
••• , B, y)= .~ .• Y, 

which is independent of R, and aI' a 2 ••• for v ~ 2 

(seeF~g ° 4,) ° Then we can define the aver?-ge locator 

Aa(ui) by 

- 21 -
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A a ( 00 ) = '.00 _. I ~a B / 1\ B (00 ) 
B 

'YaB 
....... Jl 

=00 - I 
13 . ~I3Y 

00 - I 
y 00 

We obtain then 

.'Val3 
We determine Jl by the condition that 

(3. 15) 

(3. 16) 

(3. 17) 

.. a 
In other words the aver?-ge locators. A (00) we~ghted with 

i M2(a) can reproduce the totalsel;f-ene~gy summed over i. 

With eqs.(3.l3), (3.15) and (3.17) we can determine Aa(oo) 

with the knowle~ge of M~(a) and ~~B(a,I3). Then we can 

calculate the ~ffective locator. 11."(00) in the expression (3.4). 
'Vi 

By ~xp~ndi~g eq.(3.4) in powers of 1/11. (00) we can see 

that.eq. (3.4) is equivalent to. the approximate expression 
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o 0 ~1 2 1, ~1 . 3 
E"'() "'/( A ( ).) + ~4C/,(.A ('w)') + C w ,= ,M3 '. W 

... (3. 18) 

2 . 3 . 
Thus by repl~cing l/w and l/w in the or~ginal expression 

, ~t . ~t.· 

(3.3) by 1/(A (w»2 and l/CA (wn 3 , we claim that h~gher 

order terms are taken into, account by renormalizing the 
" 

locators at intermediate steps. One may question that a 

more straightforward renormalization would, give 

+ ,.I M~c(a,B,Y)/AaA~AY, 
a,B,y 

(3. 19) 

where the aver?-ge locators replace. 'Kt(w). Equation (3.19) 

c'ombined with eq.(3.1) yields almost the same results as eq. 

(3.4),. However eq. (3'- 4) is i'reefrom the pathol~gical 

negative density 01' .states, while· the direct use 01' eq. (3.19 ) 

suffers from it sometimes, tho~gh only in a restricted energy 

r~gion. 

§' 3. 2 Improved aver?-ge locator 

We show the result of our calculation based on eq.(3.4) 

- foroc'cand 'fcc in F~g. 6, and the numerical values 01' 

t t· a ,b " .etc 0', are listed in Table YI. We show also in Fig.6 

the 'res'ult. ',of the' band structure :calculation in which the 
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sam~paramet·er.s are. used .We calculate eigenvalues at 3311 

points for .bcc and at 3-345 ,points for .fcc in the irreducible 

1/48 Brillouin zone. Cons~deri~g th~fact that our calcu

lation is very simple> we may conclude from Fig.6 that the 

expression (3.·4) can reprodcice well the band structure calcu-

lation especially the difference between bcc and fcc crystal. 

Our calculation> however, 40e~ not de~cribe well the difference 

of the band limits between bcc and fcc. Then we 'improve our 

calculation without changi~g the 'ex'pression "( 3.4) . 

The aver?-gelocator given by. eq.(3.15) alone ·.yields a 

density of states of the' semi-elliptic type which does not 

show structures' characteristic of a. given crystal. Therefore 

we redefine the aver?-gelocators by 

(3. 20) 

in place of eq .. "(3.15) . The term ~(lS enables us to include 

thetria!lgular. path (ia)-(j S)-(kS)-(ia) with i>j,k indicati~g 

neighbori~g·sites (see F~g.4). We calculate 'V(lS a by the 

condition that it can reproduce the effect of the tria!lgle 

correctly. We then express E~(w) as 

} ] . (3. 21) 
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In this expression we include inl;~(w)some odd order paths, 

but we need not alt·er the ·expres·sion (3:3) for ~~(w) as far 

as the term M~ and M~C are "concerned and then the expression 

(3:4) for G~~(W). 
The aver~ge locators. giveti by eq.{3:20) and the effective 

locators" given by eq. (3.5 )c·ombined with eq. (3.21 ) depend, 

though sl~ghtly, on a. given crystal .structure because of the 

t~rm ';kc;f3 For ex·ample, the width :of the" locators and their 

center cha~ge their values accordi~g to crystal structure. 

We show the result of th e ·improved version of our calcu

lation in F~gs. 7 and 8. We conclude from Fig. 7 that a con-

siderable "improvement is achieved for the density of states 

for bccand fcc·. Not. only the structures characteristic of 

a given crystal but also.the band limits are well reproduced; 

the band l·imi ts from our calculation are (-0.096,· o. IbO) for 

bec and (-0.123,0 .. 083) forfcc, while those. from the band 

structure ·calculation are (-0 .. 119, 0·.097) for bce and (-0.131, 

. O~~85) fo~ fcc (in Rydb~rgs). 

In conclusion we may say on the basis of Figs. 6,7 and 

·8 that our 'calculation can reproduce well the· band structure 

calculation even without the" modification (3.20). The Bethe 

lattice type self-energy or the ·improved version of it including 

the ·tria~gledi~grams do not depetid on the crystal structure 

very much ·and leads us to a monotonous density of states of 

'the locators . The self-energy part. !1~ and M~c' on the other 

hand, ·are·· mainly responsible for produci!lg the difference 
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beti'veenbccand fcc; in particular the contribution pf M~C 

is predominant-. 

§ 3~3. Simplified expressions of r~(w) and Aa(w) 

As above.mentioned, wecaTculate the effective locators 

in a lengthy" manner on account :of the five-fold d~generacy 

of the d orbitals. However, the ~ssential prope~ties of 

the effectivelocators are not far from those of the s band 

one gi veri by: eq. (3.9) or thes band one wi ththe modification 

of tria~gle ·paths. We discu·ss. here some simplified expressions 

of r~(w) and Aa(w). 

The expres'sion (3.21) of r~(w) which can reproduce the 

l/w expansion of E~(W) up to 1/w3 is reduced to 

r~(w)~I M~(a)/ Aa(w) , (3. 22) 
a 

R, 'VaS 
when we assume ~l(a,S)= ~ Furthermore this expression 

can be approximated as 

(3. 23) 

a 
where the harmonic mean of the .aver?-ge locators A (w) is 

replaced by the arithmetic rnean.·lnboth expressions (3.22) 

and ( 3·.23)~· IE~(w) is correctly reproduced up to l/w3 on 
. .. . R,. .. 

account of the· condition (3.17), ,tho~ghr~(w) itself is an 
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appr.oximation even in the order. pf 1/w3 . The deviation pf 

L~(W) fr'om these' approximations, which turns out to be 

small> is taken care of in L~(W) in ,the present ·calculation. 

By adopti~g the expression :"( 3 .-23) > the effective locator 

is reduced to 

( 3. 24) 

'We show in F?-g. 9 the results pf the' calculation in which 

eq.(g.23) is used in place ~f eq.{3.21). The results of 

th~ or?-ginal calculation in ~hich eq.(3.2l) is used are 

also shown in.Fig.9. We can seefr6m F?-g.9 that these two 

results are almost identical to each other. We may add 

that th~ 'calculation in which eq .. (3.22) is used also yields 

almost same results. 

In the next place, we simplify the expression (3.20) 
(l 

We calculate A (w»s by solvi~g numerically 

simultaneous equations (3.20), which impairs the compu-

tational merits of the present approach when the number of 

A(l(w»s is increased. Equation (3.20) is rewriten as 

. A(l(w)= w -I ~(lB/ [w - ~(lB - I ~BY/(w ••• )] 
B Y 

IV ex: :t>.~ '. . (3.' 25) 

w- a - , 
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where. We expect that 
'\j '\la 

the first~ :few coefficients of the: :continued fraction l-1a, a 

and ~a may de~ide the essential properties of. Aa(w), th~n 

we express Aa(w) as 

, (3. 26) 

where 

a '\la 
T (w)-= w - a 

(3. 27) 

We show also in F~g.9 the results of th~ calculation in which 

the simplified expression (3;26) of. A<l(w) is used combined 

with the expression (3.23).Tho~gh sl~ght cha!1ges are 

observed forfcc, the essential. feature is not cha~ged. 

It may be emphasized thatthese.simplifications are 

still consistent with the idea Which we followed in deriving 

the or~ginal expressions of E~(w) and AaCw), and that they 

do not cause any serious error. When we apply the present 

approach to the cases of disordered alloys and m~gnetic 

metals which will be discussed later, we use chiefly the 
'\I.Q, 

expres'sion '( 3. 26) for A (w) in order to diminish the compu-.· , , 
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i tationalefforts and the expression (3.23) for LB(W) and 

hence the: expression ( 3 :24) for '}{i( oi) in order to avoid 

a pathol~gical n~gativedensity of states. 
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§' 4. Application to Disorde~ed Alloys 

In this section we discu~s th~ ~ase or disordered alloys, 

which is a typical example 'of random systems. The atomic 

level of the i-th site takes, two va'lues accordi~g to the 

type or atom on the site; 

EA i;::; A atom 
E. ;:::: '{ for 

lm 
EB i;::; B atom (4. 1) 

here we ass'ume all Eim' s of thei-th site are equal to each 

other irrespective of m. Th~locator is then, given by 

m { l/LA(w) - l/(w - EA) 
g. (w);::; , 'l ' for 

I/LB(w) - l/(w - EB) 

i ;::; A atom 

i ;::; B atom. 

(4. 2) 

The transfer matrix elements t~ are assumed to be independent 

of the type of atoms on the i-th site or the j-th site, 

though we can easily extend to the case where the transfer 

matrix elements between A and Batoms, 

to the geometrical mean of t~(AA) and 

t~j(AB), are 

tr:u:(BB)~3) lJ ' 

equal 

To discuss the local rlerislty of states at the or~gin, 

~1'( . 11( ') . we' 'need <GOO w) > or <Goo w > ~" ' where < ••• > deriotes the 

aver~geove~: allpossibleconf,?-gurations and < ••• >~, 

deriotes" that with~ (~=A or B) :at'om on the 'or?-gi~,. 
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Denoting the concentration ,of A and B atoms by. cA and cB 

respectively,we obtain 

The aver?-ge of locators and that of the products of 

locators are, g1ven by 

={(CA/L

A2

+ CB/LB)2~<1/L>2 

cA/LA + cB/LB2~ <1/L2> 

for 

i=j 

irrespecti ve of i, j .) ••• and n,m, •••.• Then we obtain 

+ IlL 2 
S I 

i,m 

tm rnn t 2 . I t01 t ij tjo <IlL> + 
j,n 

Correspondi~gly we obtain approximately 

I 
I,m 
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(4. 3) 

(4. 4) 

(4. 5) 

'(4. 6) 



where theinequali ty is due .to ,the' miscalculation for some 

reducible~aths. The lowe~t Drde~ one of such ~aths ~s 

the fourth order one ,in whi'ch we, :go and return from the 

origin to an atom 1 then, ,go and ,ret:urn ?-gain to the same 

at'om 1; the' cOntribution of thepths which is equal to 

1/L~3 e<1/L2 > except for transfer matrix elements 

is treated as' l/L~ e <J:./L> 2 'in eq. (4,.6) . Therefore the 

approximate equation (4.6)., ,for <G55(w»~ which corresponds 

to takIng the 'configuration aver?-ge of the irreducible paths 

only is valid so far as the :low :order paths are concerned. 

Wedi vide 'the conf~gurationaver?-ge of the whole 

irreducibl'e paths into two parts, as is done in § 3; 

where 

, 

and 

We :notice;from eqs. (4.8) and(4,.~9). another aspect of the 

(4. 7) 

(4. 8) 

(4. 9) 

division of the'paths than that :derl ved from the discussion 

about the' :roleof d s'yrnmetry of at'omic orbItals in '§ 3. 
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.. To obtain the expression of. <,GS~(w) > t;. correspondi~g 

to eq.(3:4), we define the ·ef.fec:t:ivelocators. lt1(w) and 

. It~( w) by 

... 

<ER, (w) >=M~ /[('V~A . 
. AA (w) 

n . cA· 
bN(" _. + 

It! (w) 

which is equivalent to the approximate expression of 

(4.: 10) 

(4. 11) 

, 

(4. 12) 

'Vi 
where L~ in the or~ginal expression (4.9) is replaced by A~ .. 

The derivation of the errective locators is as follows. 

We can rewrite eq.(4.8) as 

> 
-' 

> 

(4. 13) 
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\vhere the same' kind of errors as eq. (4 .. 6 ) involves are 

neglected. Defining the average :locators. A~(W) by 

. . . 

A~(W)= .L~(W) - L ~aS TcA/({Cw)-' ~aS)+cB/(A~(W)- ~a(3) J, 
13 

(4. 14) 

we obtain 

(4. 15) 

In numericalcalculation we use 'the simplified expression of 

. A~(w) which corresponds to eq.(3~26) in place ot eq.(4.14); 

(4. 16) 

where 

(4. 17) 
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,R, . 
We also use ~the'simplified expression or <E B (w') > which 

corresponds ,to eq.(3.23) in place' 'of'eq.(4.15), and ,the'n 

we obtain 

(4. 18) 

We show in F~gs.10-13 some results of the present calcu

lation in;which eqs.(4.16·)-(4.18) are used. We also show 

in Figs .10 and 11 the results of the"CPA(coherent potential 

. approximation13- 15) calculation for the sake or comparison. 

It is found from F~gs.lOand 11 that the, general features 

of the density of states obtained from the present calcu

lation and th~se from the ~PA calculation are similar to 

each other. 

In theCPA calculation we determine the coherent 
IVR.: 

locator L(w) by the condition 

1 = 
~J(; 

where 

(4. 19) 

(4. 20) 

and ,)(R,(I:R,) isobt~ined from eqs.(3:24),(3.26) and (3.27) 
. IV R, 

by replaci~g Cl} by L (w) •. The: :correspondi~g condition in 

the present calculation is eq.(4.17), which decides the 

- 35 -



. the essential. :features of the density of states. We can 

rewrite. ~~.{4.17) as 

......... cB" ...... . 

(4. 21) 
~a 1 a a 

where (T )- = cA/TA + cB/TB" We can notice from eqs.(4.19) 

and (4.21) some similarity between the present approach 

and the CPA calculation; in the case of the s band on the 

Bethe latti~e with z beipg infinite, eq.(4~21) is in 
. .. .. 16) 

practice reduced to eq.(4.19). 

We have mainly discussed the case of disordered alloys 

in this secti-on. However, we can easily extend the present 

approach to th~ cases of alloys with short-range or~er16) 

and those withlopg -rapge order, which enables us to 

discuss ~h~ ~rderipg energy of alloys~7, 18) In addition 

we can invest~gate ~irectly the local environment effects~9,20) 

We expect that the present. approach may serve as useful tool 

for the probl·enis of transition metal alloys, though we will 

not discuss such problems in this paper. 
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§ 5. Discussi'on and Summary 

We discuss' herethesignLficance'of the' 'effec'tive 

locators. The essential properties' of the effective' 

locators are~ as mentioned. be"fore, not far from th6se of 

the s band one, which enb1es us to express the effective 

locator in an approximate 'expression as 

. ~!1 ~! 
A (w) ~ w - ~ lA (w) 

(5. 1) 

"There p1 is determined by the condition M!B=~~!. 
this expression we obtain 

With 

'\i1 
Then G55(w) is. expressed as the expansion of 11A (w); 

(5. 2) 

(5. 3) 

The above. discussion can be. "further. extended to the case or 

disordereda11.oys. discussed in §4. We. ca'nexpres's the 

effective Tocators in the' s'ame wa'y as eq. (5.1) as 
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(5. 4) 

Similarly to eqs.C5.2) and (5.3), we ~btain 

(5. 5) 

and 

, ' 

9. .. ,c'A cB") 2_ MR. 'c' '"cA ' . CB 3 -1 M (' + + 'I ) _ ••• J. 
3 ,:K1(w), 'X~(w) 4c ,il!(w) ,'XB(w) 

(5. 6) 

We can notice from eqs.(5'.3) and (5.6) the correspondence 

between thepreserit approach and the interactipg virtual 

state approach. The effective locators. f(9.(w) and ,'X~(w) 

correspond ,to thelocators of the virtual state with the 

resonancele.veL,beipg o and E~respectivelY, and (M~ _1lR.), 

9. R. 
M3 and M4G correspond to the interactions among the virtual 

states. While the width of the virtual state in the or~ginal 

sericecomes', 'from the admixture with the conduction band2l ) , 

that :.of ,the::,effectivelocators'comesfr'om the band ,effect 

by the' :Itinerancy .of d el'ec:tronsandciependson the' ' 
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circumstances :of the whole crystal. However, the crudest 

approximation may lead the width ·of·the: effective locators 
. . 

~(w) (wh~re.ll~w)= w+ iA(w) or.l:(~)= L~(W) + iA(~» to a 

constant value, and hence lead the: ef'fective locators to 

the locators of the virtual state. Thus theinteracti~g 

virtual state approach can be justified to be consistent 

with the .band theory. 

In this part \'le first elucidated the' role of d symmetry 

of atomic orbitals, in determini~g t;he' ene~gy band and we 

develop a new method which is considerably simple in com-

parison with the nioment method or the recursion method. 

It may beeniphasized that the' methOd yields a conceptual 

simplification; that is, the electronic structure of 

transition metals can be described with the effective 

locators and the interactions amo~g the near neighbori~g 

effective locators. We can examine the effect of these 

interactions and invest;igate·the or;igin of the difference 

between bcc and fcc. As a result, it is shmm that the band 

width is decided by the effective locators, and that the 

feature characteristic of bcc. and fcc structure is decided 

by the interactions amo~g three or four sites. 

We have mainly discussed. the cases of nonm?J.gnetic metals 

and alloys in this part. However, the applicatio'n to other 

systems some of Which we discussed in Introduction is 

stra;ightforwardafter some modification and the a~gument 

based on the interactions amo~g near ne;ighbori~g sites will 
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be useful :for these systems. Especially the application 

to amorphous metals seems to be :ve.r-y interesting. It may 

be possible that we par-ametrize the:el-ectronic struc_ture of 

- amorphous metals in terms of the -three--- and four-site -

interactions reflecti~g the local arrangement of atoms and 

the struc_tureinsensitive e_fTective locators. 
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I., 

ill. M~gnetTsm in Transition Me't'als 

§ 6. Review of Some Previous Attempts 

Several attempts have: been made 'to explain the systematic 

change of the m?-gnetism in 'transition metals. There have been 

two streams in these attempts; one is based on the band theory 

in which the interactions between the Bloch electrons in the 

momentum space are discussed, the other is based on the 

picture of interactipg local moments which was first suggested 

by Friedel, Leman and Olszewski~'2) Tho~gh the streams start 

from opposite points, they join, into the same conclusion 

discussed b~low, which is .easily realized from 

the above-mentioned discussiori of the correspondence between 

the band theory and the atomic interaction models. Here we 

briefly review these attempts. 

Moriya1 ) treated the model which consists of two adjacent 

local moments in a metal. He pointed out that the sign of 

the interaction between two local moments is. governed by 

the occupied fraction of the local orbitals. When the 

orbitals are nearly half-filled the couplipg of two local 

moments is antiferrom~gnetic, and when the occupied or empty 

fraction of the orbitals are small the coupli~g is ferro-

:magnetic. Followi~g the band theory combined with the 

generalized Hartree-Fock approximation, Penn23 ) studied 

the stabili,ty of a ferromagnetic state, an ant;iferrom~gnetic 
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state and some special type of states in th~ case of the 

s band on a simple cubic lattice''- He found that ferro

magnetism is found for those metals with a valence well 

away from ;Ci ve and thatal?-ti.ferrom?-gnetism is found for 

a valence 'of around five. Asano and Yamashita24 ) investi-

'. gated the stability offerrom?-gnet'ic and antiferromagnetic 

states on the basis of a realistic energy band structure~ 

and drew the same conclusion~ They also found that the 

observed m?-gnitude of local moments of each 3d metal can 

be reproduced with an almost uncha~ged value of the effective 

exchange interactions. Thus conclusions of these attempts 

have been rather similar to each ~th~r. 

However~ most of the discussions have been restricted 

within ferrom?-gnetism and antiferrom?-gnetism whose spatial 

variation is described by the wave vector Q~O and Q=K/2 (K: 
reciprocal lattice vector) respectively. Therefore the 

stabili ty. of a .ferromagnetic state itself or that of an 
+ 

antiferrom?-gnetic one with respect to a. general Q state has 

not beeninvest~gated. In this connection~ Roth25 ) discussed 

a state wlthdisordered local moments besides a ferro-

m?-gnetic state and an antiferrom?-gnetic one by use of ePA. 

Similarly.,fictitious short-ra~ge ordered states where each 

local moment" may point up or down was discussed by Liu2~) 

forthecase.of the s band on the Bethe lattice. They both 

found that .the·above-mentioned .conclusion holds true ~ and 

also that :the ·state. w'ithdisordered local niomentsor the 

short-ra~ge"ordered states can be stable in an intermediate 

- 42 -



region betweeri a ferrom~gnetic region and an antiferro-

magneti·c one. "We expect that such ·disordered state and 

short-ra~ge ordered statei may be ~eplaced by the lo~g

range ordered state with (Ho and QfK/2·. We can mention 

helical> conical and sinusoidal SDVl states as the example 

. of· the state characterized by a gerieral Q> of which a 

sinusoidal SDW state is observed exper-imentally in chromium 

and its alloys. Thus such states characterized by general 

Q should be included in the discussion of the" magnetism in 

transition metals. 

In the next section we pres·ent a model Hamiltonian in 

which a ferromagnetic state> an antiferrom~gnetic one> a 

state with a: general a and also disordered states are equaly 

treated within the Hartree-Fockapproximation. 
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§ 7. ModelHamiltonian 

Assumi~g that d eTect"rons are principally responsible 

for them?-gnetism in transition metals":. we adopt a t~ght 

binding model in which only the five" :at"omic d orbitals are 

taken into account. The Hamiltonian is assumed to be " 

" given by 

with 

and 

H= " \' W + V " Li i :I 

* Wl·=" I" I Eda. a. m 0 lm (J lmo 
* """ * a. ta~ ta. la. I lm lm In,.. lny 

" "1 
+ 2 * * (U~J) \' \' a a ~ a 

l. l. imo imo ino ina m n a 
(m*n) 

" " "1 
- - J I" I 

2" m:.na 
"(mtn ) 

V=" I " I " I 
i,jm:.n 0 

* * a. a. a. a. lm(J lm-a In-a lna , 

(7. 1) 

(7. 2) 

(7. 3) 

where "odenote.s the spin state; "The :at"omicene!gy ,level 

is "denoted .by "Ed:' .theintra-at"oniic Coulomb and excha~ge 
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integrals are denoted by U and J respectively. Other 

notations "are same as those in eq. ( :1.1) . 

We next apply the Hartree-Fock approximation to Wi 

with due consideration fo~ the spin ~otational invariance 

of \'1
i

. Then we obtain 

* * - u I <c. t C. t: ><~·IC. I> m,n lm lm lny lny 

"1 
-2-(U-J) I L 

m,n 0 
"(m4n) 

* * <c. C.><c . c. >, 
lmo lmo "lno lno 

(7. 4) 

with 

(7. 5) 

* where c. and c. are electron operators referred to the 
lmo lmo 

local spin quantization axis parallel to the direction of 

the local m~gnetic moment of a
o 

given atom. On the other 

* hand a imo and a. in the eqs.(7..2) and (7.3) are referred 
° lmo 

to a common quantization axis denoted by" the laboratory z 

axis. Whe°ri the local spin axis on thei-th site is rotated 

by the polar a~gle 8i and theazimuthala~gle lP
i 

with 
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' .. 

respect to the laboratory z axis, the relation between 

a. and c. is. given by 
lmo lmO 

C . ..f-. lm, 

= 

i . i 
2" ~. 8. -~~. . B. l . l ~ l. l 

e cos2 e sln-2- a im+ 

a im+ 

By this relation eq.(7.4) is re~ritten as 

R(a.,~.) 
l l 

(7. 6) 

(7. 7) 

- (the term correspondi~g to the double counti~g) , 

where 

(7. 8) 
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We define the Green function in the' laboratory f'rame by 

. HHF _ \ ·WHF 
wlth - .£i.i +.V. The matrix. 'elements of HHF are given· 
by 

<imo I HHF I ino"> = <5 (E .) 
mn im aa' 

(7. 10) 

The expectation value * <c. c > is determined self-lma ima 
consistently by the condition 

* <c. c. > lma lma 

(7. 11) 

The number of d electrons on the i-th site and the m~gnitude 

of the local moment on the i-th site are given by 

I « * * ) N.= ·c. 't Cimt > + <cini+c im+ > 
1 m . lm 

. I( < * > * ) . (7. 12) M.= C
imf cimt - <ci ni+ clm+> 1 . m· 
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In ,the "following discussion we :neglectthe orbital 

difference .01' * .~) <c. C. > in eqs. (T.Lt .. and (7.S) for the 
lmo lmo 

sake of simplicity., and we substitute 

* <cimocimo>'" where 

* . . '1 <c c>;::-
io io . S 

*. I <c c > m imo imo 

* <c. c. > for 
10 10 

Then Eimo is reduced to Eio which is.defined by 

El·."= Ed + SU <c~ c. > + 4(U-J). <~~ c. > 
v 1-0 1-0 10 10 

irrespective of m. 

(7. 13) 

(7. 14) 

In the case of ferrom?-gnetic, antiferromagnetic, helical 

SDW and param?-gnetic states, there is no spatial variation 

of the cha~ge or the magnitude of local moments. Thus we 

can impose the conditions 

* ** • M.= MO=. M. <c . c·· >= <c Co >=<c c > 
~ 1 J iO iO 00 0 <J <J 

(7. 15) 
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The spatial variation of the directions of local moments which 

distinguishes the above-meritionedstates from each other is 

characterized by the set of (8., ~.). In the next section 
. ~ ~ 

R,R, 
we discuss the method for ~alculati'~g Gaa (w) of ferrom?-gnetic, 

antiferromagneti'c, helical SDW and param?-gnetic states. 
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§ 8. Real Space Approach Applied .to M?lgnetic States 

We ~efine the loc~to~ matrix·g.(~) by 
. l 

with Lo(w)~w - Ea. 

given by 

. 2 

tR-The locator expansion of GOO(w) is 

i,m 

- 2 2 -1 
- ... ] " 

i,m j,n 

(8. 1) 

(8. 2) 

where the sums are taken over the irreducible paths. As is 

done in §3, we first divide the wholeself-ene~gy matrix 

into two parts; that is, 

(8. 3) 

where the' dominant part ~~( w) :cohsists of the paths which 

one. goes to a lattice site without maki~g a loop and traces 

back the same way, and L~(W) corresponds to the remainder. 
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"'1 
° We next define the effective locator matrix A (w) which 

includes E~CW).o E~(oo) and thus th~ etfect~ve locator can 

be calculated to the infinite order of electron transfers, 

though approximately, since E~Coo) has a close resemblance 

to the self~ene~gy of the Bethe lattice. We finally 

derive an approximate expression of G~~Coo) in terms of 
"'1 . 
A Coo) so that the whole self-ene~gy E1 Coo) may be correctly 

reproduced up to 1/003 . 

We discuss the further details of the method for each 

case; that is, ferrom?-gnetic, antiferrom?-gnetic, helical 

SDW and param?-gnetic cases . 

. § 8-1. Ferromagnetic state 

A ferrom?-gnetic state is described by the conditions 

8i = 60 and Wi= ~O irrespective of i, which can be put to 

8
0

= 0 and ~O= 0 without the loss of generality. Then the 

self-energy matrix is reduced to 

( ~;(w) 0 

( 

1 R- a EBt(oo)+ EctCoo) 
ER- Cw )= ° = 

1 ~ ~) o ° E+~oo~ 0 EB+(w)+ EC+(oo) 

(8. 4) 

where 

+ ••• 

1 1 2 i ·3· 
E c 0: ( 00 ) =OM 3/L cr + M 4 C /L cr + . . . (8. 5) 
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The procedure to obtain the expression of I 1 (w) is quite o 

identica.l w;tth ·that in thenonmagnet"ic case which was 

discussed in~3~ except th~t w is replaced by Lcr(w). 

As a re~ult~~e ~btain 

where the effective locator isd.efined by 

(8. 6) 

(8. 7) 

The Bethe-like part IBl (w) is expressed in terms of . cr 
the average Iocator Aa(w) for the orbital belonging to an 

cr 

irreducible representation a. In order to simplify the 

calculation particularly for the helical SDW case, we 

adopt a simplified expression Of. A~(w) discussed in §3, 

which is. ·gi veri by 

where 

a ~a a 
A (w)=L (w)- ~ / Tcr(w) , cr cr . 

"'a - a 'Vb a / Ta ( .) 
cr w 
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We furthe"rmore" adopt a simplified expression of L~cr(W) ~ then 

we obta:Ln 

(B. 10) 

The definitions of the par·amet~rs" ~(\" ~Cl~ 15Cl and I~~(Cl) are 

referred to §3. 

§B-2. Helical SDW and antiferrom~gnetic states 

A helical BDW state is described by th~ conditions 

Si= Q Ri + 0 and ~i=~O irrespective of i. An antiferromagnetic 

state and also a ferromagnetic one correspond to the special 

types of helical SDW states with Q="K/2 and Q=O respectively. 

We choose "0=0" so that 80 may equals to 0, and choose ~O=O. 

We obtain ~gain the expression (B.4) for the self-energy 

matrix, since both bcc and fcc lattices have the inversion 

symmetry. We can write L~(W) as 
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~ '\'R.m· mn nR. 1 ) .2 ( ) ( ) + L.. L. toot. 0 t· O--r.-[(l+A .. +Bo. /L rT + 2-2B. 0 / LrTL 0 o 0 1. . 1J J Lt 1J 1J v 1J v -1,m J,n 

2 2 
+ (3+A. ok-B. °k-3Co ·k)/(L L )+(3-Ao ·k-Bo 0k+3C1oJok)/(L L ) 1J .1J 1J 0 -0 1J 1J 0 -0 

+ ••• (8. 11) 

where 
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A = cose., A •• = cose. + cos8
J
., A •• k=cose. + cose. +cose.k , i· 1 lJ· 1 lJ . . .1J 

, (8. 12) ... 

and 

t R.m t mR.··1 (1 A) MR. - \ t R.m t m R. 1 ( 1 A) 
Oi iO .-2- + i' 22- . L . Oi iO -2- - i' 

J.,m 

... (8. 13) 

We define the effective locators /{;(w) and. ~!(w) by 

(8. 14) 

Since an electron can be transferred from the (J state of 

an : ion to the .-0 state of adj acentions, the expression of 

L~ (w) corresp~ndi~g to eq. (8.6) should be modified to 

include both AR.(w) and 'X.R. (w).Wechoose the expression 
.. (J. . -(J 

given by 
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+ 
. 1 .. £ 
. ·-·P· -1 . £ 
---) -a' 

'0£ 

'VJI, 
.1 - p 

+ o)J, 

. A:..:o(w) , 'K:o(W) 

(8" 15) 

£ £ £ 
and 1 - P =M22/Iv12 representi~g the 

relative ratio between the transi'er from the 0 state of 

the central atom to the 0 state"and -a one of neighbori~g 

atoms, respectively;. a£=(M~1 +M~2+M~3')/M~ which is inde-
£ '0£ £. 'V£ 

'pendent of 61 ,'s; b o Po and ba (1 - Pa) represent the 

weights of, goi~g to the 0 state and -0 one in the second 

step which are to be determined so as to b~consistent 

with the expansion (8.3) ~p to I/w3 in principle. For 

the ferrorn?-gnetic state, the antiferromagnetic state in 

bcc with the nearest neighbortransfer only and the para

rn?-gnetic state with randomly oriented local moments which 

will be discussed below, we can show that the choices 

(a£)2 and P~ correspondi~g to the 

probability of' finding a ne~ghbori~g atom with parallel 

moment can reproduce the expansion (8.11) up to the order 

3 '2 2 ) 3 of I/La' l/(L(J L_o)' l/(LoL_<J and IlL_a. For a general 

Q, however, we cannot achieve the consi:stency in the 

expansion in terms of IlL and IlL a" Thus we reexpand both 
o -

l/L±a and 1;'~~cr(W) up to the order of l/w2 to achieve the 
JI,' £ £ 

consistency ,to that order within M2 , ,M3 and M4 ., We obtain 

theri 
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(8. 16) 

which are free of the terms proportional to (Ea - E_a) in 

the cases mentioned above, i.e, the ferrom?-gnetic one, etc. 

(the details are discussed in Appendix A). 

In order to calculate ~;(w), we need to treat the 

self-ene~gy on the Bethe lattice, introducing the average 

locators as before. The avera, ge locators denoted by Aa(w) , a 

previously can now have off-di?-gonal elements between a 

and -a in principle for a general Q, since no symmetry 

a~gument can be invoked to suppress them. We assume in the 

followi!1g a~gument, however that ,the averagelocators are 

diagonal with repe~t to a, since the off-diagonal contri

bution is expected to be the order of 1/z2 compared with 

the' 'di?-gonaL.,contribution, whe,r'e z ,is the coordination 
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* number of a given lattice. We assume that the aver?-ge 

locator"is. giveri"by 

a( ) L () "~al/ Taa(w) - ~a2/" Ta ( ) Aa W = 0 W - ~ ~ . -0 w , 

'Va 
a 

(8. 17) 

(8. 18) 

'Va . 
where a ~s the same as that in the case of the ferromagnetic 

t t ( " (8 9)" d f 11 . d· .) d 'Va 'Va s a e see eq. . an 0 ow~~~ ~scuss~on an ~l' ~2' 

15~ and 15~ are defined by use of 1Xaarid f>Ct: defined previously as 

.. ,I. 

'Va 'Va 
II =~ • 

1 (8. 19) 

* As was discussed in §3, the aver?-ge locator includes 

the self-energy arising from the interaction with (z-l) 

atoms. If we add the contribution from one missi~g 

ne~ghbors, the self-ene?=,gy can recover the full symmetry 

of lattice which eliminatesthe.off-diagonal part. The 

estimate mentioned in the text.is based on this ract. 
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'-' 

and 

tla 
1 

, ' 

~a ,R, R, R, 
= 15 (M4lB+M44B)/M4B ' 

where R, stands for R,ea • With An(w) thus defined we 
. eJ 

(8. 20) 

calculate . ~!(w) by use ~f eq.(a.'14), which is reduced to 

eq.(8.l0) by adopti~g a simplified expression of 

We show in F~gs. 14 and 15 some examples of the density 

of states of helical SDW states. 

The expression (8.15) can lead us to a pathological 

negative density of states for' QfO in a certain region or 

energy, if lE - E I exceeds a critical value, i.e. when 
eJ -eJ 

the magnitude of local magnetic moment becomes large 

particularly in the antiferromagnetic case of fcc. A 

conceivableor~gin of this fault may lie in eq.(8.l6). 

It is possible to use in place ofeq.(8.l5) an alternative 

expression which is free from this fault, tho~gh its 

derivation involves an arbitrary assumption (refer to' 

Appendix A). It turns out, however, that the calculated 

density of states, ene~gy and m~gnitude of local moment 

depend little on th~ choice of theself~ene~gy expression . 

. ' 

.' 



(" 

I, 

§ B-3. Param?-gnetic state with randomly oriented local moments 

Th6~gh the paramagnet·ic state ·wi thrandomly oriented 

local moments is never of lowest energy in the present 

calculation, we mention it for the ~urpose of discussing 

the orderi~g ene!'gy and hence the transition temperature of 

an ordered state. In the paramagnetic case the self-energy 

matrix is reduced to 

·1 1 (1 .1
0

) E (w)= E (w) ° ·.para 

and El (w) is written as para 

, (B. 21) 

. . . (B. 22) 

The expression of E~ara(W) is easily derived from eqs.(B.lS) 

and (B.16) as 

(B. 23) 
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where the effectivelocator is given by eq.(8.10), and 

the aver?-gelocator is obtained from eqs.(8.17) and (8.18) 

with 

and (8. 24) 

Thus one can notice by replacing E and E by EA and EB 
. 0 -0 

that the paramagnetic state .coincides with the state of a 

disordered alloy with ~A=cB=1/2in the present calculation. 
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§ 9. Unenhanced Susceptibility 

Be"fore proceeding to the presentation of the results 

of calculation~ we compare here the calculation of the 

unenhancedsusceptibility in the nonmagnetic state based 

on the pre~erit method with a more ~rthodox calculation based 

on the band structure calculation. The purpose of the 

discussion is to demonstrate th~ ~eliability of the present 

method which has been so far tested in the calculation of 

the density of states only. 

The unenhanced susceptibility24~27) is usualy calcu

lated by usi~g the Lindhard expression 

(9. 1) 

(~B: the Bohr magneton) 

t~CC where the summation L~ is taken over the occupied state, 
k,p + . 

E~ is the ene!'gy e?-genvalue .of the (k,P) Bloch state~ and 

C (k) is the hybridization coefficient of the m-th d pm 
+ . 

orbitals of the (k,p) Bloch state. On the other hand, we 

can relate X(a) to the Green function by 

(9. 2) 
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-+-. 
where G(~,: Q,~) is the Green runction or a helical SDW 

-+-
state with a wave vector Q under the condition E = - O"llBh. cr . 

Thus th~ me~hdd developed so rar ror the Green runction 
-+

can be~pplied to the calculation or x(Q). 
. .-+-

In Figs. 16(a) and 17(a), we show x(Q) or bcc and rcc 

transition metals obtained by evaluating the summation in 

the expression (9.1) for vario~; a corresponding to 

ferromagnetic, antiferromagnetic. and helical SDW states. 

Here we confine ourselves to the case ~= 2/a(O,O,Q) (a: 

lattice constant). For the evaluation, the eigenvalues 

and the e?-genyectors were calculated at 3311 points ror 

bcc and at 3345 points ror fcc in the irreducible 1/48 

Brillouin zone. Corresponding X(a) by our method is shown 

in Figs. 16(b) and 17(b). We may conclude from Figs.16 and 

17 that our calculation can reproduce well the band struc

ture calculation for the unenhanced susceptibility (note 

that the density of states corresponds to X(O». 

As is well known, the SDW state with a wave vector 
-+- -+-
QO is the most favorable state to occur when X(Q) has the 

-+-
maximum value at QO' tho~gh the discussion is restricted 

to infinitesimal moments. We can find from F?-g.16 and 17 

that X(O') is maximum near the end or band and that X (j{/2 ) 

is maximum around the middle ·of band, which is naturally 

expec·ted. We can also find that X(Q) of a. general Q can 

be maximum in an intermediate ·r~gion .. We calculate X(Q) 

of sever:al values· of Q, and invest?-gate the r~gion in which 
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x(Q) .of a general Q is maximum~ 'in ,other words~ Qo:fO and 

QOfTI~ whi'ch 1s shown in Figs.16 and 17. In the case of 

bcc we also calculate X(Q) of Q being close to TI (in 

practice ~ Q/TI."" 36/4 0 ~ 37 /49 ~ 38/40 and 39/40) for the 

purpose ~f investigating the nesting mechanism which have 

been discussed to-explain the sinusoidal SDW of chromium 

as arisi~g from its characterist~c Fermi surface~8~29) 

We find the region in which X(Q) of Q'YTI is maximum by the 

band structure calculation but not by our method (see Fig. 

18). The dis?-greement between the band structure ca1cu-

1ation and our method is naturally expected by considering 

that our method is a real space approach which does not 
. 

involve any knowledge of Fermi surface. We show in Fig.16 

(a) the r~gion QO'YTI separately from the region QOfO~ f TI~ 

though the region QO'YTI ought to be included in the region 

QO+o~ fTI, since. these two regions are different from each 

other as to the mechanism how X(Q) of a general Q is maximum. 

We discuss here another mechanism than the nesti~g one 

which is an ana1~gy of the mechanism in the case of insulator 

helical magnet~O~31) We introduce the non-local suscep

tibi1ity32) which is defined as follows; 

(9. 3) 

where ·Qm .. represents the induced moment on the 'i-thsite 
l. 

. when a m?-gnet"ic field h.. is applied locally atthe'j -th 
J 

- 64 -



site. Denoti!lg the Green function of a nonm?-gnetic state 

by IT(oo), wecah obtain 

~. (00)' ,.,..nm(oo) ij u j i • (9. 4) 

In terms of Xij' the unenhanced susceptibility is expressed 

as 

. 
where Rj ls the lattice vector of the j-th site. The 

local term in eq.(9.5), ~OO' is responsible for the 

appeartnce of the local moment at the origin2;) and is 

identical to the unenhanced susceptibility of a paramagnetic 

state with randomly oriented local moments. Another terms 

than XOO' on the other hand, responsible for the formation 
aJt.; 

of p ordered state. 

In the case of bcc, eq.(9.5) is rewritten as 

X(Q)=: XOQ + 8cosQ XO(III) + C4+2COS2Q)XO(2()O} 

+ (4+8cos2Q) XO(220)+ 8cos2Q XO(222) + ••• , 

(9. 6) 
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by taking Q=2/a(O:t 0 ,Q). If the h~gher terms than Xo (222) 

are neglected:t the optinium valueQo can be .solved as 

Q = o 

o 

7T 

(9. 7) 

where XR= Xo(.~boY + 4X O(220) + 4~0(222)' In the case of 

fcc, XO(lil) is replaced by XO(llO) + 2XO(21l):t and XR 

stands for XO(~OO) + 4XO(21l) + 4XO(220). In Figs. 19 and 

20, we show X08 calculated by our method, the details of 

which we discuss in Appendix B, and show the each region 

obtained by eq.(9.7). It is found that the obtained 

r~gions coincide almost with the corresponding r~gions in 

F~gs.16 and. 17. Therefore we can say that X(Q) is expected 

to have the maximum value at a. general Q when 1XO(111)I is 

sufficiently.small and XR is negative. In other words, 

the unenhanced susceptibility is. governed by the ef'f'ective 

interaction among near ne~ghbori~g sites, which is consistent 

with the gerieral conclusion. given in§3. 

Tho~gh·thediscussion based on theunenhanced suscep

tibility is principally restricted to infinitesimal moments, 
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we expect that the discussion holds true even when a state 

has finite local moments. In the "nextsec"tion we present 

some numerical results as to the states with finite local 

moments. 
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§ 10.. Phase Di~grams 

By use of the method discussed in §8> .we lookf'or 

self- consistent solutions of ferrom?-gnetic >antiferrom?-gnetic., 

helical SDW and· paramagnetic states for bcc and fcc lattices. 

vIe again confine ourselves to the· case Q= 2/a(0.,0.,Q) > then 

helical SDW and antiferromagnet·ic states have uniaxial 

symmetry except that an antiferrom?-gnetic state of bcc 

lattice has cubic syrnmetry. Compari~g the energies of 

those solutions., we investigate the state of the lowest 

energy> and construct the phase di?-grams. The phase diagram 

consists of two parameters> that is> a number of' d electrons., 

Nd and a reduced intra-atomic interaction, UR=(U+4J)/5. 

We show'in Figs.21 and 22 the calculated phase diagrams 

for bcc and fcc respectively. The r~gion in which no 

solutions can exist but a nonmagnetic one (no local moment) 

appears when UR is small. We determine the phase boundary 

above which a nonm~gnetic state is unstable from the 

inverse of the unenhanced susceptibility. When UR is 

sufficiently la~ge> the r~gion AF in which an antiferro

magnetic state is stable is found if Nd is around five. 

Increasing Nd from five> the r~gion H in which a helical 

SDvl state is stable appears> and the region F in which a 

ferromagnetic state is stable follows it. In the region H 
. . 

the optimum'valueQO .by which we mean Q of the lowest 

ene~gy statecha~ges continuously from 1r to· 0 .. 
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AlthO~gh l,t involves some amb~guity to choose the 

points correspondi~g to pure' 3d metals Cr, .Mn, Fe, CO and 

Ni in the calculated phase dl,~grams., .. wehave shown the 

approximate positions by c.hOosi~g Nd' sand UR' s listed in 

Table VII. The m~gnitude of local moments for each metal 

is shown also. When the difference' of the band width among 

3d elements is taken into account, the' chOsen values of 

UR are nearly uncha~ged thro~gh3d el"ements, which is 

consistent with the disc~ssionby' A~ano and Yamashita24 ) , 

except for Cr. The obtained m~gnitude '01' local moments 

for each metal is in. good agreement with the observed one. 

The chosen point corresponding to bcc Fe (aFe) is located 

in the region F, which leads us to somewhat la~ge values 

. of Nd and ~for Fe. We expect that another set of tight

binding parameters may leads us to more plausible values 

ofNd and M. 33 ) AS.for fcc Fe (yFe), we choose the point 

in the r~gion H with cosQO~ -0.5. Our treatment, however, 

contains. some ambiguity, and we cannot say definitely 

whether the. ground state of yFe is an antiferromagnetic 

one or a helical SDW one. In the case of Cr, we have only 

an antiferrom~gnetic solution except for a trivial non- . 

magnetic one. We find that the appearance of the solution 

is nerely first-order with respect to UR and Nd , which 

'supports the discussion by Teraoka and Kan'amori2 ) as for 

the or?-gin of the sinusoidal modulation. However, as is 

indicated by our band structure calculation .01" X(Q) shown 
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in F~g.16(a), .the nesti~g mechanism will be important also. 

We do not. go into the problem of the ground state of Cr 

in this paper, since the present method cannot be applied 

to it easily.· 

In the next place, we discuss the character of local 

moments for each metal. In the phase diagrams we show 

the region in which a paramagnet:ic solution is found, 

though param~gnetic states never have the lowest energy. 

We find from F;tgs.2l and 22 that a paramagnetic solution 

is not found for Cr, fcc Mn (yMn) and Ni, which implies 

that the local moments of these metals are expected to 

be reduced to a considerable extent when temperature is 

raised. In bther words, the local character of Cr, yMn 

and Ni is weak. We show in F;tg.23 and 24 the magnitude 

of local moments.and the ene~gy difference from a para

magnetic state of several m~gnetic states in the vicinity 

of bcc Mn, aFe, yFe and Co. The energy difference between a 

paramagnetic state and the lowest energy state, ~E para 
ought to be related to the orderi~gtemperature Tc or TN, 

while that between a nonmagnetic state and the lowest 

energy state, ~E is related to the critical temperature . non 

. for the disappearance of local moments. Therefore we can 

conjecture how st-ro~g the local character is by the 

knowledgeoTAE and ~E ; the larger ~E /~E is, . . . para non . non para 
the ·stro~ger- the local character is. We may say from 

Figs.23 and 24 .that the local character of bee Mn and yFe 
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is considerably stro~gcompared with that or aFe and Co. 

It"is beyond the scope or our calculation to estimate 

the ordering temperature from AE , but we can discuss o para 
some trend of the orderi~g temperature from it. We find 

from Figs.23 and 24 that AE or bcc Mn and yFe is para 
considerably small compared with that or aFe and Co. The 

orderingterriperature of yFe is theOrooefore expected to be 

low compared with that of aFeand Co, which is consistent 

with experiments. The orderi~g tOemperature or bcc Mn, ir 

it exists, is also expected to be:~ow. Strong local 

character and low orderi~g temperature or yFeand also 

bcc Mn can be ascribed to the helical SDW ground state 

with cosQo~O~ -0.5, since a helical SDW state with cosQo= 0 

o~ -0.5 and a paramagnetic state are similar to each 

other with respect to the short-ra~ge order or spins. 

We suppose that the magnetism of aMn may be related to 

the above-mentioned Situation, tho~gh the crystal structure 

of aMn obviously plays an important role. 

As for the transition metal alloys, it is questionable 

to discuss the calculated phase di~grams in the r~gid-band 

model, especioally when the aver~ge number or d electrons 

raIls into the r~gion H. The energy difrerence between 

a helical SDW state and a paramagnetic state is small as 

above--mentioned, and moreover the ene~gy dirference between 

a helical SDW state and a certain state with short-ra~ge 

magnet
O
tcorder26) is expected too be even° more ·small. 
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1 I 

Therefore thelong-ra~ge magnetic order .of a helical SDW 

state will be violated by alloyi~g effect~> and the helical 

SDW ground state will be replac~d by a certainorde~ed 
. 4) 

state. 3 . 
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§ll. Concludi~g Remarks 

In this part we have shown that our method can reproduce 

well the band structure calculation for the electronic struc-

ture of m?-gnetic states, particularly for the unenhanced 

susceptibility. On the basis of the discussion about the 

unenhancedsusceptibility, the existence of the states whose 

spatial variation is de~cribed by a.general ~ is predicted~ 

and is ascertained by the succ~saivecalculation of the 

phase diagrams. It is found that the occurrence of a state 

+ 
with a general Q is governed by the effective interactions 

aIno~g near ne?-ghboring sites~ which is in contrast to the 

nesting mechanism of chromium. The obtained phase diagrams 

explain the wide variety of the observed magnetism in 3d 

transition metals~ not only for the. ground state properties 

but also for properties at finite temperature~ such as, the 

character of local moments and the orderi~g temperature. 

It should be emphasized that the difference of the magnetism 

amo~g 3d metals is derived chiefly from the electronic 

structure and the number of d electrons and slightly from 

the strengths of the intra-atomic interactions. 

We have mainly discussed the case of pure metals in this 

part. The discussion extended to the case of transition metal 

alloys is interesting~ but is not so simple as pure metals. 

We can discuss the instability of a ferrom?-gnetic state~4~35) 

but it is very difficult to invest?-gate the ground state when 

a ferrom?-gnet·ic state is unstable. 
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Appendix A. Further Discussions abo.ut the Expression of ER-(w) . a 

\ve present here some discussions abo.ut the expres·sio.n 

First we discuss eq.(6.I6) for the cho.ices o.f bRa 

and 
R-. R-

In the ease o.f a ferro.m?-gnetic state M2I , M22 , 

are given by 

o , 

(A. 1) 

then we o.btain fro.m eq.(8.I6) 

(A. 2) 

Thus the expressio.n (8.15) is reduced to. the expression (8.6). 

In the case of an antiferrom?-gnetic state in bce with the 

nearest neighbo.r transfer onIy,we have 

R- . R- R- R-
M31= M32~ M33= M3= 0, 

CA. 3) 
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then "we obtain 

(A. 4) 

th~ meani~g of which is obvious. As was already discussed 

in §8 3 we have 

MR- = " "I R- R- "I R-
2. M32 = M33 - -4- M3 31 3 

R- " "I R- "I R- R- "I " R-
(A. 5) M

4lC 
= -3- M42C 

= -3- M43C = M44C 
= -8- M4C ~ 

in the case of a param~gnetic state with randomly oriented 

local moments. Then we obtain 

R- R- R- ~R-P = 1/2 "3 b = band p = 1/2. a a CA. 6) 

Thus eq.(8.16) are free of the terms proportional to 

(Ea - E_q) in the case of such simple magnetic states. We 

may add that eq.(B.16) can yield proper choices of bR. and 
a 

pR. also in the case of an alloy analogy state where each a . 

local moments·may point up or down26 ); 

CA .7) 
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where Pl denotes the probability of. findi~g a neighboring 

atom in the first shell with parallel' momeritand P2 denotes 

that in the :second shell. 

As mentioned in the text, the 'expression (8.15) sometimes 

sufferes from a pathological n~gati.ve density of states for 

Q bei~g near K/2 and IEcr- E_;lbei!lg large. In such a 

case we prefe~ to the expre~sion (8.15) an expression which 

is free from such a fault given by 

(A. 8) 

where 

(A. 9) 

tUR. 
We determine =a(w) by followi~g equation; 

R. R. R. 2 
R. R. R. .p +p .(l-p) (Ea -E_a) 

=a(w)=w - (p Ea+ (l-p )E_a ) - ------------------- - ••. 
W 

"R. R. R. 2 
p . .+p.(l-p.)(E .-E .) 

a -a 

(A. 10) 
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where !/,= !/, Jl. We can easily see that the expression II M4B/M2 · 

(A.8) with (A.ID) is free"" fr"om a pathological negative 

density of states when 

(A. 11) 

The condition is satisfied in a practical range of /Ea- E_a /. 

Though eq.(A.IO) is chosen arbitrarily~ the expression (A.8) 

R." 3 can reproduce the l/w expansion of E" (w) up to l/w ~ and in a 

practice yields the almost same ~e~ults as the expression 

(8.15). We show in Fig.25 some examples of the density of 

states obtained by the expression (8.15) and by the expression 

(A.8). 
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Appendix B. Details of the Calculation of Xij 
-fin ~~~ 

We can calculate G .. (w) as well as GOO(w) on the basis 
. lJ 

of thelocator expansion discussed in §l such that 

_mn m mn n 
G •• (w)= g. t .. g. + 
lJ . l lJ· J 

t mp tpn/ ·w 3 + ••• . 
ik . kj , 

+ ..• 

(B. 1) 

Considering the ~educible paths, we rewrite eq.(B.l) as 

(B. 2) 

where such paths that return to the i-th site at intermediate 

steps are included in ~(w). Alternatively we can rewrite 

eq. (B.l) as 

t rnp tpn/ 2 
ik kj w + ••• 

(B. 3) 

where.such paths that return to the·j-th site at intermediate 

steps are ·incl·uded in U:r::r:(w). The'nwe obtain 
JJ 
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x. L [t,V,m tmR.j 2 + L' ( R.m t mn tnR. + t,V,n tt;~ t~~)/w3 + . . . ] Oi iO w to· .. jO Oj j,n 1 lJ Jl , 
, - m 

(B. 4) 
",r. 

w'hich can be approximately rewritten in terms of'A (w) as 

_R.m . JIlR. 2 
t G ()G () '(GoR.oR..(w)) l.. Oi w iO.w = 
m 

x ] 

(B. 5) 

where 

m~(i)=. L 
j,n 

(B. 6) 
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We ~an easily show that the. expression (B.5) satisfies the 

sum rule which is. given by 

d -ii 
--'-d-w- GOO(w) - - I 

i,m 

- im . -:-TIli '. 
Go . (w) G. 0 ( w) • 
'l. l. 
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Fig. 1. 

Figure Captions 

(a) A reducible path PrPsPt consists of thtee 

irreducible paths Pr' Ps and Pt. (b) A path ·of 

" steps and 8
1

, 8
2

, .• -8" are the inflection a~gles 

of. the path. 

The "fourth order paths of fcc structure and the 

classification of them. 

Fig. 3. The fourth order path~ of bcc structure. 

Fig. 4. Schematic expression of L
B

; (a) on a Bethe type 

lattice (b) improved one in which we include 

triangles . 

. Fig. 5. Di?-grams of the first few terms in the expresseion 

(3.2) for LB and those in the expression (3.3) or 

(3.18) for LC. 

Fig. 6. Density of states for bcc and fcc d band from the 

present calculation by use of the average locators 

given by eq.(3.15). Hist~grams are those from the 

band structure calculation. 

Fig. 7. Density of states for bcc and fcc d band from the 

improved calculation by use of the aver?-ge locators 

given by eq.(3.20). 

Fig. 8. Partial density of states belongi~g to d~ and dy 

symmetry from the improved calculation. 

·F?-.g. 9. Results of the simplified expressions. The solid 

line~ indicate th~ results in which eq.{3.~O) for 
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Aa and eq.(3.21) for EB are used (i.e.th~ same 

f~gure as Fig. 7)'. The 'dashed lines indicate 

th~ ~esults in wh~ch eq.{3.23) is used in place 

of eq. (3.21) and the dot .. -dashed lines indicate 

those in which eq.(3.26} and (3.23) are used. 

F~g. 10. Some examples of the density of states PA and 

Fig. 11. 

PB for various values :of EA-EB obtained from the 

present calculation (l~ft side) and those from the 

CPA calculation (r~ght':side) in the case of fce 

transition metal alloys AsoB50. 

Results similar to F~g. 10 in the case of bce 

transition metal alloys ASOBSO. 

Fig. 12. Change of the density of states PA and PB obtained 

from the present calculation with the alloy coneen-

tration in the case of fcc. We fix the value of 

EA-EB at -0.04 Ry. 

F~g. 13. Results similar to F~g. 12 in the case of bcc. 

Fig. 14. Cha:nge of the density of states Pt and P ~ of helical 

SDW states with the value of Q in the case of bce 

transition metals. We fix the value of E
t

- E~ at 

~o.04 Ry. 

F~g. 15. Results similar to F~g. 14 in the case of fee 

transition metals. 

F~g. 16. The unenhanced susceptibilities of bec transition 

metals obtained from (a) the Lindhard expression 

(~:j.l)· and from (b) the: expression (9."2), for the 
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wave. vector Q=2/a.(0.,O.,Q) where Q=O (ferro)., 

Q='IT/2. and Q=7T (antiferro). We show the r~gion 

in which x(Q) has the maximum value at a.general 

Q and also the region in which x(Q) has the 

maximum value at Q", 7T .In the inset the dotted 

. lines correspond to those for some other wave 

vectors. 

Fig. 17. Results similar to Fig. 16 forfcc transition 

metals. 

Fig. 18. The unenhanced susceptibilities of bcc transition 

metals for various values of Q in the vicinity of 

chromium; i. e. EF;"O·.004., 0.008 -' 0.012 and 0.016 

(Ry"). The solid lines indicate those from the 

expression (9.1) and the dahsed lines indicate 

those from the expre~sion (9.2). 

F:?-g. 19. The calculated xOo for various neighbors in

cludi~g XOO of bcc transition metals. We also 

show p (EF ) which is responsible for the Stone.r 

criterion., while XOO is responsible for the 

Friedel one. We show the r~gion where Qoto 

and QO~7T obtained from eq.(9.7). 

F:?-g. 20. Results similar to F~g. 19 for fcc transition metals. 

Fig. 21. The phase diagram of bcc transition metals. The 

dashed lines indicate the phase lines corresponding 

to c~sQO=O.5.,0~0 and -0.5. The dot-dashed line 

indicates the phase boundary above which a para-

. m?-gnetic solution can be. found • 

- 86 -



Fig. 22. The phase diagram of fcc transition metals. 

Fig. 23. The magnitude of local moments (solid line) and 

the energy difference from the paramagnetic state 

(dashed line) of various states in the vicinity 

of (a) bcc Mn (UR=0.0272 Ry) and (b) bcc Fe 

(UR=0.0336 Ry) .. The scales· of the magnitude of 

local moments and the energy difference are shown 

on left and right vertical axes, respectively. 

The numbers .5, .0, etc. indicate the helical SDW 

states with cosQ= 0.5, O.O,·etc .. 

Fig. 24. The same quantities as Fig. 23 in the vicinity 

of (a) fcc Fe (U
R

= 0.0312 Ry) and (b) Co (UR= 

0.0344 Ry). 

Fig. 25. Comparison between the expression (8.15) and the 

expression (A.IO) in the case of fcc transition 

metals. 
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Table I. Slater-Koster parameters used by Pettiforl1~12) 

(in Rydbergs). 

structure 

fee 

bee (nearest) 

(next nearest) 

ddcr 

-0.027784 

-0.03248 

-0.01341 

ddn 

0.012535 

0.01538 

0.00487 

ddo 

-0.001554 

-0.00200 

-0.00049 



Table 1I . The numerical values of mt for the fourth order 

paths of fcc structure shown in Fig. 2. 

m~ (10-8 E.y4) 
asymptotic 

dE dy total relation 

A1 :}A 2 15.721 8.684 12.906 (1.000) 1 

A3 7.521 -2.420 3.544 (0.275) 1/4 

A4:}A5 3.294 3.079 3.208 (0.249) 1/64 

. B
1

:}B
3 3.667 2.519 3.208 (0.249) 1/64 

B2 4.212 2.544 3.544 (0.275) 1/4 

B4 15.721 8.684 12.906 (1.000) 1 

Cl 1.039 -1.248 0.124 (0.010) 1/4096 

C2 -0.928 0.398 -0.397 (-0.031) 1/256 

C3:}C6 0.193 -0.203 0.034 (0.003) 1/4096 

C4 2.732 0.324 1.769 (0.137) 1/16-

C
5 

-0.405 -0.386 -0.397 (-0.031) 1/256 



Table m . The numerical values o.f m~ for the .fourth order 

paths of bcc structure shown in Fig. 3. 

mt (10-8 Ry4) 
4 asymptotic 

dE dy total relation 

A1 ,A2 38.341 3.731 24.497 ( 1.000) 1 

A3 9.197 2.128 6.370 ( 0.260) .1/9 

A4 0.645 1.432 0.960 (- 0.039) 0 

A5,A6 0.038 1.617 0.669 ( 0.027) l·CL 4 

A7 0.019 0.407 0.174 .( 0.007) 1/4.0.4 

B1 ,B5 0.977 0.934 0.960 ( 0.039) 0 

B2,B
3 7.723 4.339 6.370 ( 0.260) 1/9 

B4 38.341 3.731 24.497 ( 1.000) 1 

B6,B
7 

0.645 1.432 0.960 ( 0.039) 0 

B8· 0.019 0.407 0.174 ( 0.007) 1/4.0.4 

B9 0.038 1.617 0.669 ( 0.027) 1.0.4 

C1 ,C 3 -4.380 -2.449 -3.607 (-0.147) 1/81 

C2 0.537 0.422 0.491 ( 0.020) 1/81 

C4,C
9 -0.145 -0.010 -0.091 (-0.004) 0 

Cs ,C 8 0.250 0.761 0.454 ( 0.019) 0 

C6 -0.362 0.316 -0.091 (-0.004) 0 

C
7 

0.020 0.354 0.153 ( 0.006) 0 

C10 0.019 0.146 0.070 ( 0.003) 1/16·CL4 

where a. ~ t(next nearest)/t(nearest) 

\ ' 



Table N. The numerical values of the first few terms in 

eq. (1.7) for fcc structure (in units of 10-1 Ry). 

s band d band 

total de: dy 

MR. 
2 12 0.26185 0.29564 0.21116 

MR. 
3 

-48 -0.01528 -0.02177 -0.00555 

MR. 
4 540 0.12642 0.15858 0.078l9 

R. 
M4A 144 0.07028 0.08740 0.04459 

R. 
M4B 132 0.05479 0.06418 0.04071 

R. M4C 264 0.00136 0.00700 -0.00711 

MR./(MR.) 3/2 
3 2 -1.155 -0.114 -0.135 -0.057 

MR./(MR.)2 
4 2 3.750 1.844 1.814 1.754 

MR. /(MR.)2 
4A 2 1.000 1.025 1.000 1.000 

MR. /(MR.)2 
4B 2 0.917 0.799 0.734 0.913 

MR. / (l\1R. ) 2 
4c 2 1.833 0.020 0.080 -0.159 

In the calculation of the s band we set t=-l. 
j 



) 

Table V. The numerical values of the first few terms in 

( ) ( -1 eq. 1.7 for bcc structure in units of 10 Ry). 

s band 

9.5 

-36.0 

365.625 

90.25 

81.875 

. 193.5 

-1.229 

4.051 

1.000 

0.907 

2.144 

d band 

total 

0.27310 

-0.01760 

0.12970 

0.08020 

0.06021 

-0'.01071 

-0.123 

1.739 

1.075 

0.807 

-0.143 

dE 

0.33433 

0.00926 

0.16773 

0.11178 

0.07560 

-0.01964 

0.048 

1.501 

1.000 

0.676 

-0.176 

dy 

0.18124 

-0.05789 

0.07266 

0.03285 

0.03712 

0.00269 

-0.750 

2.212 

1.000 

1.130 

0.082 

In the calculation of the s band we set t(nearest)=-l 

and t(neit ne~rest)=~1/2. 



Table VI. The numerical values of the parameters which we 

use in the calculations (in units of 10-1 Ry) • 

fcc bcc 

R.f dE R.6dy R.~ dE R.6dy 

MR. 
2 0.29564 0.21116 0.33432 0.18124 

aR. -0.07363 -0.02627 0.02770 -0.31943 

bR. -0.00349 -0.05180 -0.06060 -0.09477 

(bR.)* -0.00218 -0.05454 -0.06929 -0.07073 

M~(dE) 0.24404 0.07740 0.29853 0.05370 

M~(dY) 0.05160 0.13375 0.03580 0.12754 
R. 0.20672 0.19899 111(dE,de;:) 0.19900 0.29709 -
R. 

111 (dE,dY) 0.04207 0.03870 0.03563 0.02909 
R. 111 (dy,dE) 0.06450 0.07359 0.04699 0.04983 
R. ( . 111 dy,dy) 0.12717 0.12074 0;11835 0.11464 

a=dE cx=dy a=dE a=dy 

'Va,dE 
11 0.20537 0.07026 0.20951 0.04899 
'Va,dy 
11 0.04149 0.12310 0.03493 0.11574 

~a,dE -0.27722 0.14089 0.03997 -0.10230 
'Va,dy a 0.0 -0.20273 -0.05970 -0.15830 

'VC( 
0.24686 0.19336 0.24443 0.16473. 11 

'Va a -0.23063 -0.07787 0.02573 -0.14i64 
'VC( 
b 0.24861 0.24011 0.23426 0.18909 

*~ The value of bR. when the expression (3.22) or (3.23) is 

used in place of the expression (3.21). 



Table VII .. The chosen positions in the phase diagrams eorre.:... 

sponding to 3d transition metals. 

Nd UR(Ry) eosQO M(llB) 
local 

character 

Cr 4.56 0.0165 -1. (AF) 0.5 weak 

bce (Mn) 6.4 0.0272 -0.2 (H) 2.3 very strong 

Fe 7.4 .0.0336 1. (F) 2.5 strong 

Mn 6.0 0.0272 -1. (AF) 2.3 weak 

Fe 7.0 0.0312 -0.5 (H) 1.7 very strong 
fce 

Co 8.2 0.0344 1. (F) 1.8 strong 

Ni 9.4' 0.0388 1. (F) 0.6 weak 
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