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Abstract

The role of thé'd symmetry of atomic orbitals in défer—
mining thé'eléctronic structure of transition metals is
discussed by ﬁse of a real sbace expansion of the Green
fﬁnction! Terms whiph”are Sénsitive'tO’the crystal struc-
.tﬁrés aré'séparatéd from thdsé'correSponding to thé‘path
intégrals on a Béthé type'lattice: On the basis of this
discussion a simplé'méthdd is dévelopéd for calcﬁlating the
éieétronié Structuré of transition metals. By use of ﬁhe
méthod the correSpondéncé.betWeén’thé'band theory and atomic
interaction models can be’éstablishéd; It is foﬁnd that
‘thé dénsity of statés for bece and-fcc‘transition metals are
satisfactorily reproducéd with thé information from the
- interactions among néar neighboring atoms, and that the
'differencé'betweén bee and fec arisés mostly from three or
four atoms interactions, while distant neighbors contribute
' mostly to the strﬁctﬁre inSensitiVe sélf—energy.

The methdd is hext,applied.to magnetic states, i.e.
‘férrbmagnetic, antiférromagnetic, helical spin density wave
and paramagnetic states. It is found that the unenhanced
susceptibilitiés for bece and fcc are also satisfactorily

réprodﬁced; By ﬁsé of the méthod;rthe magnitude of local
>moments; ene?gy, etc..are'calcﬁlatedrwithin thé Hartree-Fock
approiimation. The relative'étability of those states is
investigatéd,for a_givén Valence;,and phase diagrams of bce

and fcc'transition’métals are constructed. It is fouhd that



the most stable state changes continuously from an antiferro-
magnetic’oné,to a ferromagnetic oné'via a helical spin density
wavé one when the‘valénéé”changés,from-five to ten; The
correspondence betweénrthé'obtained.phase'diagrams ahd ex-

periméntally observed ones for 3d metals is discussed.
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I. Introductioh -

The electronic strﬁcture'of transition metals; which is
an indispensable knowledge in intérpreting thelir cohesive
and magnetic properties, is_usually obtained through band
strﬁcture'calcﬁlations based on the Bloch theorem. On the
othér hand; oné sometimés usés.in'the'discussion of transition
metals somé‘atomic intéraction modéls which'ekpress the
‘strﬁcture4 and atomic—state—sensitivé enérgy’as a sum of
single atom terms and inferactions among a small clusterrof
-atoms. An example of such models is thé interécting virtual
staté approach which has béén sgccéssfully ﬁséd in the dis-
‘cussion of magnétic propérties¥’2) Thbﬁgh the atomic inter-
action models are supérficially'far.from the band theory,
'qualitative a?gﬁments based on the models are consistent with
those based on the band theory. We suppose that the dvsymmetry
of atomic orbitals may play some roles in connecting the atomic
intéraction models to the band theory, since the d electrons
in transition metals are not so free aé the sp electrons in -
fransition metals. The purp@se of this ‘investigation is to present
a justification for these atomic interaction quels on the
‘basis of the band theory, which enables us to obtain a deeper
ins;ght into the role of the d symmetry of atomic orbitals
" and local atomic afrangements.in determining the local elec-.

tronic structure. Moreover, the justification leads us to

a new approach to thé calculation of,the’électronicVstructure
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which is simple enough to apply it to aperiodic systemé as
well as péniodic ones.

| We start from the methods whichfhavé been proposed for
calculating thé'local electronic structure at a given atomic
site. in view of the local environment produced by near neigh-
boring atoms. These methods; 1.e. the moment method3’4)
and the recﬁrsion meth0d5f7)'are based on a real space
(lqcator) éXpansion of the Ghéen fﬁnction; and do not involve
the'BlochAthéorem in ény way: Théfmethdds can therefore be
applied to thé éléctronic Structuré'of'apériédic systems such
as the surface, an 1mpur1ty in the bulk solids, disordered
alloys and noncrystalllne solids Even for a perfect crystal,
the methods haﬁe some advantages in carrying out numerical
calculation;-especially for:a crystal of compléx structure.
'However, the moment method or the recursion method is not
transparent enough to yield an insight into the naturerof
atomic interactions; since a calculation over a fairly large
number. of atomé is involved. We therefore simplify these
regl space approach and develop a new approach which enables
us to calculate-the electronic structure with less number of
atoms. |

The basic idea of the present approach is to reorganize

thé real space expénsion of the Green fﬁnCtioﬁ to renormalize
thé'atomic locators and the electron trénsfer matrix elements
: by.summing up a special type of terms which are insensitive

to atomic arrangements. We then taken into account remaining
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néarvneighbor interaction terms with renormalized locators
and intérdfomicAtransfers: Through this approach we can
détérﬁinéithe.terms which are responsible for producing, for
example, the difference of the density of states of the d
band between bcc metals and fce ones. It will be shown also
that the d symmetry of atomic brbiﬁals plays a very important
role in détermining relative weights of structure-sensitive
- terms and insensitive'onés?

In thejfirsﬁ half of this theSis; we dévote ourselves
to the derivation of’thé‘prééént approach, and discuss some
~applications of the.préSent apprdachz Wé briefly outline
‘the real space'éXpansion oﬂitheJGreén.fﬁnction in §1. In §2
wé discﬁssAthe'role'of the 4 symmetry of atomic orbitals.
In §3 we dévelop a new scheme of calcﬁlating the electronic
structuré{ The density of statés in bee and fec transition
métals is taken as an illustrating,eiample. In §4 we extend
thé'présent approach to the case of disordered alloyé! We
discués in §5 the correspondénce between the present approach
and the interacting Viftual.state'approach, and summarize our
‘conclusion. |

| In the latter half of this thesis, we discuss the magnetism

"in transition metals on_thé basis of the electronic structure
' calculated by ‘the présent approach. As Was mentioned above,
thé'préSent;approach yilelds a justification for the interacting
virtual state approach, in which the concept of local moments

and that of itinerant electrons are ﬁnified. Thé presént
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'approach appreciates theiconcepﬁ of local moments in the
_itinerant electrons system morejfﬁlly than the interacting
virtuél State approach'ddés. The local moment attaching to
a given atomic site is no more rigid as that in insulators,_
and 1is influenced by theicircﬁmstances of the whole crystal,
i.e. the configuration of local moments with variable
magnitude and direction. We can easily apply the present
approach to magnetic cases either ordéréd or disordered,
which enablés ﬁs to comparé'varioﬁs kinds of magnetic states
within the Samé'framework'and on the'ﬁasis of a réalistic
 band‘sﬁructﬁre.

We calcﬁlate'ﬁhe électrdnié Strﬁbfﬁré of férromagnetic,
antiferromagnetic, helical spin dénsity wave (SDW) and
paramagnetic states by détermining thé'magnitﬁde of local
moments in a. selfconsistent way, and investigate the relative
stability of those states. As a result of this investigation,
we construct the phase diagrams of becc and fee transition
metals for a given number of the d eleétronsrand_given
strengths of the intra-atomic interactions. It will be shown
‘that the obtained phase diagrams can explain the wide variety
of the observed magnetism in 3d transition metals not only
for the.groﬁnd state porperties but also for thé properties
at finite temperature.

We réview in §6 some previous attémpts in which the
' magnétism in transition metals is discussed. We present the

model Hamiltonian in §7. In §8 the details of the method
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for calculating the electronic structures of ferromagnetic,
antiferromagnétic,'helica1.SDW and pafamagnetic states are
discussed. In §9 wé compare theiﬁnenhanced susceptibility
obtained throﬁgh the usual band structure calculation and -
that through the.present apbroach in order to check the
accuracy of fhe present approachf"We discuss the calculated
phasé'diagrams in §10. Finally we summarize our conclusion

in §11.



II. Real Spacé Approach to the Calculation of the Electronic

Structure of Transition Metals

§ 1. The Real Space Expansion of the Green Function

We start with a ‘general tight binding model in which
fivé d orbitals of each atom only are taken into account.
Oﬁr treatment can be extended to the case where nearly free
~electron statés corresponding to s and o) atbmic states are
: includéd: thdﬁgh'Such'an extension will not be discussed in

this papér. The modél Hamiltonian can be expressed as

=_Z ’ Lo ¥

S IV A - I N . .
i,m,j,n (1*J)t13 2im %jn 21,m im %im %im>

(1. 1)
whére'i and j. dénote'the'sites of atoms, and m, n, =--
‘specify the type of atomic d orbitals (m=1,2, +++5). The

" matrix éleménts,of the Green function are defined by
615 (0) = <i,m [(w - M7 g;n > . (1. 2)

" The local density of states of the orbital £ at the origin

”is;giveh by

o2 (w)= ~(1/m) TmleE (urie)] | (1. 3)
ST © g O+,



We denote the locator of the state |i.m»> by

m 1 .
gr(w) = (u - Byp) . (1. 1)
The wellknown locator expan31on of G (w) 1s given by
28, - 2 £ zm m£ L
- = + .
£ ,m m.m n ,nf% _%
+ § ] gt g, t.. 8. .0 8 e,
i,m j,n 0 "0i =i ;J J 0-=0 .
(1. 5)

where the v—th order term is the sum of all closed paths
starting at the origin and returning to it by v steps. We
can rewrite eq.(1.5) by use of the irreducible sum for the
v;th'ordér térm in which the paths are not allowed to return
to the origin at intermediate steps. (see Fig. la) We then

obtaln

Gzz(w)— L(g fy-1 -1 t%? gm. t?g
: i,m

. " .t_. . _ _ e
Jj,n vOL'gl 13-53 Jo .

2

- 2 m‘E tkm m. . mn n tnﬂ, .]—l
(1. 6)

whéré'thé sums are taken over thefirreducible paths.
Regardlng eqs (1 5) and (1. 6) as the expan31on in powers

'of 1/w, we can rewrite them as -
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%) 9 +1 ' |
,G"Oo_(w)': 1(1/&))_ +. 2\) Mv-/m\’ > . : : | (1.

and

Ao (w)= [w = I, /w17, | (1.

mn
_ 1J
and Mi corresponds to the v-th moments of the density of

wheré'Mﬁ and ﬁﬁ are expressed in ferms of ¢ and Eim’

states;

Mv=J vaé(m) dw. ' (1.

An approximate‘Ggg(w) which is obtained by truncating

7)

8)

9)

the series in egs.(1.5) - (1.8) at a finite v-th order term

is not always a Herglotzvfunction8’9)

Valué'of-theAdensity of states is.gﬁaranteed. Therefore

we rewrité'Ggg(m) as a continued fraction such that

(1.

- If all b ?s are positive, Ggé(w).is a Herglotz function

évén when the fraction. is terminated by assuming bN+l£0.

for7arbitrary”N. The continued fraction coéfficients (av,

- 10 -
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are. compllcated functions of Mz and hence tlJ and E.
Both belng based on the contlnued.fractlon expansion; the
homeﬁt‘methdd and the recursion method differ in the way of-.
determining the coefficients (a > b)). In the moment method
one first calculates the moments of the density  of sfates,
and then determines the coefficients by use of sophisti—
' cated numerical'methods.x On the other hand, one determines
directly thefcoefficients by tridiagonalizing the Hamiltonian
matrié in the recursion method. : The'tridiagonal matrix is
‘one whose non- zero elements appear only on the main diagonal
and two sub—dlagonals, upper right and lower left. The
correspondlng Goo(m) of the trldlagonal matrix is easily
Verlfled to be equal to the continued fraction (1.10). 'Oﬁr
approach is a130'based on the continued fraction; the
coefficients.are'calcﬁlated in a,someWhat different way from
thdse'used in the previous method. |

- For the'diSCQSSion given in. §3, we 8ummafize the usually
ﬁsed.techniqueffor terminating the continued fraction in the
'-moment method or the recursion method. After computing
_(av, bv)-te y=N‘(which.corresponds to computing the y'—th
'moment'to~v'=2N), we assume asymptotic values ( a,s bm)'fer

v >N. Then the'fraction after N is given by

(1. 11)
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- which can be solved as

T(w) = [1/(2b,)] - [(w-a) -/ (v-a_)? - hb_7, (1. 12).
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§ 2. The Role of the d Symmetfy of Atomic Orbitals
In order to simplify the following discﬁssipn, we assume
that all E; °s and_g? ’s are équal to each other irrespective

of 1 and m. By shifting the zero of energy we assumé then
_g?(m9= l/w? : ‘(2. 1)’

Thé contribution of a path of v steps to thé series in
eq.(l;5) and eq.(1.6) is given eicept_for a factor 1/w’™! or
1/¢V+l by

g0 I e

1 e s -— =, R d
mv( sd > > V l) zm’n,..., m' 0i “ij v-10"

(2. 2)

The vy-th moment M%nin eq.(1.7) is reduced to the sum of m%
of all the v-th order paths including those passing the
origin at.intermediaté steps, and correspondingly Mﬁ “in
éq.(1.8) is redﬁcéd.to the sum of irreduéible paths.

..Théitransfér matrix elements.t?? can be expressed as a
‘linear combination of the Slater—Koster integrals ddo, ddw
and ddd? Beforé‘going into”the_discussion based on the
réalistic.Valﬁes of these integrals, we present a qﬁalitatiVe
discﬁSsionyof,thé'role szthé d symmetry of atomic orbitals
by-usé of.thé_ésymptotic.behavior.of the integrals,for a

1argeiséparation R of interacting atoms. Pettiforlo)

. has
shown that. ddr and dds arejaSymptotically equal to zero for

large R, ﬁhilejddd is proportional to an OScillating:fﬁnction

- 13 -



with a factor 1/R. If we assume ddp=dds=0 for each step,

we can show easily that
’ 2, ' O . L W' s
_2£ m, P2(cosel) P2Qc9562)_ Pz(cosev), _ (2f 3)

whére'the sﬁm is taken over'thejfive atomic orbitals at the
origin; ej is the inflection angle of a given path at the
J-th atom; ev corresponds to tha angle between the initial
vstép aﬁd théffinal one (see Fig. 1), and P2 is the Legéndre
polynomial P2 of.£=2; If we consider'the nearest-neighbor
transfér on a fecc 1attice;'possib1e values of P2(cosej)

aré given by
1 or -(1/8) or -(1/2).

Similarly the corresponding values for the nearest and

néit—neareSt neighbor transfers on a bce lattice are
1 or 0 or -(1/3) or -(1/2).

Thus the angﬁlarifactor reduces the contribution of those
paths which involve the inflections ’ej§ o_or 7. For

L

-éiamplé‘thé'angular factors ofiii m,

of typical fourth

 order paths of the fec lattice, ,Al,'_BZ and Cg defined in
~ Fig., 2 are 1, 1/4 and 1/256, respectively. In the case of
l~thé”S'band whérefthe'transfer matrix elements have no

angﬁlaf dependence, all paths mentioned above will make the

- 14 —



contributions of the same magnitude..

In order to carry out a more realistic calculation;
We take into account again the nearest neighbor transfers
only.in the case of a fcec lattice'and the nearest and next
nearest heighbor ones in the case of a bec lattice; We
adopt the values of ddd;.ddn and ddé for these transfers

11,12)

estimated by Pettifor which are listed in Table 1I.

The numerlcal estlmates of . Z of the foﬁrth order paths

v
shown in Figs. 2 and 3 are listed in Tables I and IT
tpgether with the ratios estimated by use of the asymptotic
' relation (2*3)]- We can see from- Tables I and IT that the
reductlon due to the angular dependence of d orbitals
inferred from the asymptotic behavior of the integrals is
sﬁpported semi gquantitatively by the calculation using
realistic values of‘therintegrals.

»Inspectihg the forth order terms, we classify the paths
‘into three'eategories; A, B and Cv(See Figs. 2 and 3);‘ To
the.category A, redﬁcible'pathsabelohg; their eontribution
to the ‘sum Mﬁ; MﬁA satisfies MﬁA= (Mg)2. The. categery B
'_comprises.thOSe paths in which we go from the.origin to
atom 1, then to atom 2 and come back to the origin, tracing
the ‘same path.  Those paths which visit three different
atom fall in category C; we'list'the numerical values of
Mé; M%a” Mﬁ, My, MﬁB and My, for fec and bce lattices in
Tables IV.and V. We show also the relative magnitudes of

-theééﬁSﬁms;_ 3/(M )3/2 /(MQ)Z’ ete. there together with

- 15 -



the corresponding quantitiesffor the s band.
The irreducible sums3'ﬁﬁ appearing in eq.(1.8) are
given by

_ [ S |
3= Mz and My= Mg + M. | (2. W)

From Tables IV and V we can see that M%/(M§)3/2'and Mf’m/(Mg)2
of the d band is much smaller th&n.thdse'éf the s band, while
MﬁB/(Mé)z‘of the d band is comparable with that of the s
band. This sitﬁation can.beAUnderstood; since the paths
contribﬁtingAtd>M§»andVMﬁC-corréSOnd to (twisted) polygons
having ej%o.or T, Exténding thé'discussion ﬁo higher ordef
.terms; we may conclude that among the irreducible path those
which go on a broken line and tfacé it back to the origin

' maké a rélatively large contribution compared with those
corréSponding.ﬁo (twisted).pblygons. . Utilizing this reasoning,
we dévélop avnéw tréatment'of.the.real space expansion in
theinéxt&éection, where we renormalize the locator by summing

ﬁp the contribution of the paths of type B.

- 16 -



§'3; The Effective Locator and its Application

We have noticed in thetpréceding section that the
paths of the type B on which”onelgoés to a lattice site
withoﬁt makingva loop and'traces back the same way maké a
dominant contribution to tﬂe self-energy. We divide the
whdlé'irfédﬁcible paths into two parts, Zé(w) consisting
of the typé B paths and Zg(m).cdrresponding to the remainder;

wé’write the Green function ggg(m) as
2L, U S | | ~
Goo(w)= [o ~Z5(w) = Eg(w)]7, (3. 1)
wheré‘zé(m) is éXpandéd into.powérs of 1/w such that
Lpine mb 8,3, 8 5 |
. N
and Zc(w) is expressed as
2 2,2, .8 , 3 ’ :
ZC(U))= MB/(L) + ML}C/(’JB + ..’A. (3- 3)
The purpose of thé following discussion is to derive an

-ekpréSsion of Ggg(m) in terms of the effective 1ocatorlk&(w)

which includes the B type self-energy Zé(w). We express

Oo(w) as
2
ST Moo .
foot) b = ey T e B8



The effectlve locator A (w) should satisfy the condition that

.A (0) vo for |w| + « and
2 :{,g‘ o . L
t¥w)= M/ (w) . - (3. 5)
B - Mo .
Then if we choose

N ) I ) 2.2 (3. 6)
a —,M3/M2 and b= MMC/MZj—‘(a ),

we can éasily see that the self-energy part of the Green func-
tion is correctly réproduced ﬁp,to l/w3;: The expréSsion

(3. 4) yields a non-negative density of states proVidéd that
| A(uw)] + b~ > 0. (3. 71

This condition is satisfied in the calculations which we

préSent later.

: §"3: liAThe'dérivation of the effective locator

Thé’éfféctive locator~X&(m) is defined by eq.(3.5).
Wé'note‘thét Z;(w) is equivalent to the self-energy in the
© caSé[of thé.Bethe‘lattice'if we negleCt_some'doﬁble'counting
of highéh'order paths and the five-=fold degeneracy of the
d orbitals. If we deal with the s band on the Bethe lattice,

we obtain -

- 18 -



B . :_
w - .
..... (5-1)2
W -
w o=t , . (3. 8)

. ) '\;s_
"where z denotes the coordination number. Thus A (w) is
_given by

s o, hs
A () = e - (z2-1)87/ A (w)

= (1/2) 6+ / 92 - i(z-1)52) . (3. 9)

In the’casé of fhe'd band we cannot derive a'simple expression
such as éq.(3;9)Afor.X2(w), However, it behaves to good
approximation very much like the.self—ene?gy on the Bethe
latticé: Thus in the'eipréssion.(3.ﬂ) the crystal sﬁructure

) v
» while A (w) remains

manifests itself only through az and b
almost indepéndent of the crystal structgre. In the following
wé derive an approximate expression for_xz(w) on the basis
of eq.(3.5). _ |

, Thejgﬁiding principle'ofAderivingvxz(w) is again to ~
,réproducé'the 1/w expansion of ié(m) correctly up ?o 1/w3.
We—béliéVé‘that oﬁr procédure,yields a good approfimation
evén;for.térms of higher order than l/@3, sihéé our method
is'éiaét,for.théicaSe'pf the s band on the Bethe'lattice.

We introduce the‘average'éffectiveflocators Aa(m) for the

- 19 -



_ orbiﬁals:belongiﬁg to an'irrEducibleirepresentation of the
point gr6up“déhoted byvd.. Spédifying-tﬁe types of the
»irréducible'repréSentations'to which thé d orbitals at
Vintérmediate steps belong, we first express Zé(w) as

rp)= Lg(ai/o + [ mypla,e) /0’ + ooy (32 30)

o, B

where'Mg(d), MﬁB(a,B).... are defined by

2, im _.mf
Mi(a) =5 ) &, t,

CEUSRERIAE
Note that the superscript 2 specifies one of the d orbitals
and thé Gréék letters the irreducible representations. In
the éipréSsion‘(3.ll) we excluded from Zé(w) such terms
corrésponding to those paths on which the aﬁomic orbitals
used on the return belongs to a differentlf?presentatibn
from that used initially (note that ped in MﬁB(q,B) in eq;
(3;11)); iheSe'terms are included in Eé(w); they turn out
in any case to be negligibly small. We now express Zé(m)

in a continued fraction given by

- 20 -



R,
.Mz(q)A.......

N ) S
R H l(d:B) . cee

a8
I

Y oy = eee (3. 12)

The choice of the parameters ui(d,BL p%(a,s,y),--- is not
ﬁniqﬁé, since the’ekpression of Zé(w) dépends only on the

~sum over a, B,+++ at intermediate steps. Nevertheless we

may as Sumé
uyCes8) = Mypla,8)/M(a), | (3. 13)

which yilelds the l/w3 term correctly. Since we are summing
up the Bethe lattice type paths, we expect that the parameters
,u (a a2,°--, v? av+l) converges 1nto a value independent
of 2 and Oys *°°s Oy 45 though it may depend on a, and
dv+1’ Wé therefore introduce an approximation, aséuming

2

B'Y )
Uv ‘

! ‘e s e = v
al: az) 3 B: Y) H (30 lll’)

which is independent of % and dl’ d2 eee for v > 2
(seé Fig.f%). Then we can define the average locator

1%(w) by

- 21 -



2%wy=w = § 3B/ aBw)
B

SIS R (3. 15)

We obtain then

B2w)= § Mi(a)/lo ~ Jula, 8)/AP(w) 3. (3. 16)
B

o

n
We determine 1f by the condition that

) zé(w)=;_2 M;(a)/Aa(w) . (3. 17)
L o,

In other words the'averagé locatbrs_Aa(w) weighted with

Mg(a) can reproduce the total‘selféenergy summed over_z.

. With er.(3.l3)h (3.15) and (3.17) we can determinelAa(w)

with the knowledge of M% (a) and MQB(G ,B8). Then we can

calculate the effectlve locatOrIA (w) in the expression (3 by,
By expandlng eq.(3.4) in powers of 1/A£(w) we can see

that.eq.(3uu) is equlvalent to the approximate expression

(see Fig. 5)
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zhw= ml/ (X )? + /K3 e (3. 18)

Thus by replacing 1/w2-and 1/w3-in the original eipression
(3.3) by l/kxz(w))2'and 1/(Xg(m)53, we claim thaﬁ higher
order térms'are taken into. account by renormalizing the

~locators at intermeaiate'steps. One may question that a

more straightforward renormalization would give

Zé(w)= ) Mg(a;B)/‘A“.AB

a,B

+ ) Mp(a,B,y)/A%EAY (3. 19)
8,7

where'the'averagé locators replace ‘Kz(w), Equation (3.19)
combined with eq.(3.1) yields almost the‘same‘results,as eq.
(3;4): 'Howe§ér eq.(3.4) is free from the pathological
négativé density of states, while the direct use of eq.(3.19)
sﬁfférs from it sometimes, though only in a restricted energy

region.

§ 3. 2 . Improved aVérage locator

We show thé.result of our calculation based on eq.(3.4)

for bcc and fee in Fig.6, and the numerical values of
a¥, b$, etc.Zaréi1istéd in Table VI. We show also in Fig.6

thé réSult'of thé band structuré?calcﬁlation in which the
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same parameters are used. We calculate eigenvalues at 3311
points for bece and at_3345=pointsifor,fcc'in.fhe irreducible
1/48 Brillouin zone. Considering the fact that our calcu-
‘lation is very simple, we may conclude from Fig.6 that the
expression. (3.4) can reprodﬁce.well thevband structure calcu-
lation espédiélly the difference[betweén bee and fce crystal.
Oﬁr calcﬁlation, however;fdoes not. describe well the difference
of thé band limits bétween bce and fee. Then we improve our
calculation without changing thé‘eipréSsion (3.4). |
The'averagéflocator given by‘éq.(3;15) aloné ‘yields a
dénsity of statés of the‘sémi—elliptic type which does not
show structufés characteristic of a given crystal. Therefore

wé’redéfineAthe average locators by

a qaB B, Vab
A ()= -] u*/A(e) -2 ], (3. 20)
g
in placé”of eq;(3;15). The term 3°F enables us to include

thé‘triangular.path;(ia)—(js)—(ks)—(id) with i,j,k indicating
neighboring-sités (see Fig.ﬂ). Wé calculate gaB by the |
condition that it can reproducé.the effect of the triangle '
correctly. We then express Zg(m) as

B

Ip(w)= I Mi(a)/lo -] phia,8)700fw) -2 11 (3. 21)
B ¢ 1 8
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In this expression we include in Zé(m)Asome.odd order paths,
but we’neéd not alter the expression (3.3) for Zé(w) as far
as the term M§ and Mﬁc are .concerned and then the eipression '
(3.4) for Gég(w). |

-Theiavérage locators given by eq.(3.20) and the effective
locators glven by eq1(3;5)_50mbined'with eq.(3.21) depend,_
though'slightly; on a given crystal structure because of the
térm %@B For eiample; the width of the locators and their
center chénée their values according to crystal structure.

Wé'Show the result of thé'improved version of our calcu-~
létion in Figs?.? and 8. We conclude from Fig. 7 that a con-
sidérable"improvémenﬁ is achieved for-the density of states
for ECC and'fcdl Not only the structures characteristic of
a given érystél bﬁt also.the band limits are well reproduced;
the band liﬁits from our calculation are (-0.096, 0.100) for
‘bee and (;0;123,’0;083) for fcc, while those from the band
stfﬁctﬁré'calculation are (-0.119, 0.097) for bcec and)(—0.13l,
‘ '01685) for fec (in Rydbergs).

In conclusion we may say on the baSiS'of'Figs.'6,7 and
"8 that oﬁrscalculation can reproduce well the band structure
calculation even withouf the modification (3.20). The Bethe
latticé'typé self—enérgy or the improved version of it including
thé'triangle'diagréms do not depend on the crystal étructure

very mﬁch'and'léads us to a monotonous density of states of

L
3

hand,'aré‘mainly responsible for producing the difference

‘the locatbfs.'.The self-energy part M7 and Mﬁc, on the other
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between bce and fcecj; in particular the contribution of Mﬁc

is predominant.

§ 3=3. Simplified expressions of Zé(w) and A%(w)

As abdvéTmentioned, we ca1culate the’effective locators
in a léngthy,manner on account of the five-fold degeneracy
of the d orbitals. However,vthe'essential propérties of'
the éfféctive'loéators aré'notﬁfér from those of the s bandA
oﬁe_givén by éq;(3:9) or the s band one withithe modification
of triangle paths. Wé discﬁSsihere'some simplifiéd expressions
of tX(w) and A%(w). | |

The éxpreésion (3.21) of Zé(w) which can reprdduce the

1/w expansion of Zé(w) up to 1/w3 is reduced to

pw)= § M)/ A%w) , | (3. 22)
‘ a ' .

, : , o _
when we assume ui(a,6)=,uas Furthermore this expression

can bé approkimated as
£ .2 L oy - 2
ZB(w)—Mg / (g Mo () A (w) /M5 ), (3. 23)

where the harmonic mean of the average locators Aa(w) is
E replacéd by the arithmetic mean. ~In both expressionS'(3 22)
and - (3 23), 2 P> (m) is correctly reproduced up to l/w3

account of the condition (3. 17), though P (m) itself is an
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approximation even in the order of 1/m3. TheAdeviation of
Zg(w)_frdm these approximations, which turns out to be
small, is taken care of in Zé(w) in the present calculation.
By adopting the expression (3.23), the effective locator

is reduced to

vy, o
(@)= ] ukeo) 0%wh | (3. 24)
[0}

"We show in Fig: 9 the results of the calculation in which
eq.(3.23) is used in place of eq.(3.21). The results of
the original calcﬁlation in which eq.(3.21) is used are
also shown‘in_Fig.9; We can see from Fig.9 that these two
resﬁlts aré almost idénﬁical,to each other. We may add
that the calculation in which éqh(3.22) is used also yields
almost Same’résﬁlts;

_In thé'neit;place; we simplify the expressidn (3.20)
of_Aa(w). We calculateAAa(w)’s by solving numerically
simultaneoﬁs equations'(3;20), which impairsAthe compu-
tationai mérits of thé present appreach when the number of

!Aa(w)’s is increased. Equation (3.20) is rewriten as

A% (w)= w —'% N8, [y - XOB Y RBY (e )]
Y
e L N
=W - — - (3. 25)
' w_‘ga;'f'%Q"- :
ai_...



where. ﬁ“:;zsﬁas, 3“=.28ﬁ“5'3a3/ ¥, .-+ . We expect that
the first few coefficients of the continued fraction N*, a*
and B% may. decide the essential properties of'Aa(m), then

we express_Aa(m) as
%) =w - 1T /T, (3. 26)
where

()= w - 3% = B* /T%(w)

= (1/2)[ (o- 8%) + /(w- 3% )° - 4B%7. (3. 27)

We show also ianig:Q the results of the calculation in which
the simplifiéd éipression (3.26) of_Aa(w) is used coﬁbined
with thé'eipréSsion (3;23):.uThdugh slight changes are
obsérvéd forffcc; the esséntialjfeature is not changed.

It may bé emphasized that these simplifications are'
still consisteht with the idea which we followed in deriving
the original expressions of Zé(w) and A%(w), and that they
do not caﬁsé'any serious error. Whéen we apply the present
approach”to fhé'cases of disordeiedvalloys and magnetic
metals which will be discussed later, we use chiefly the
éXpreésion (3:26) for_xx(m)'in*order to diminish tpe cpmgu—ﬂ'

- 28 -



tational efforts and the expression (3.23) for Eé(“) and
hence the expression (3.24) forlxz(m) in order to avoid

a pathological negativé’density of states.
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§ 4. Application to Disordered Alioys

In this section we discuss the case of disordered alldys,
which is a typical example'of_raﬁdOm systems. The atomic
level of the i-th site takes two values according to the
typé of atom on the site;

. Ep - 1= A atom
E, = { for

E i:_Biatom , (4. 1)

here we assume all E, °>s of the 1-th site are equal to each

other irréSpeCtivé of m. The locator is thén_givén by

1/Lp(w) = 1/(w - Ey) i = A atom
m, , _
B (w)=
' + for
1/Lg(w) = 1/(w - Eg) i = B atom.
(b, 2)
The transfer matrix elements tquaré assumed to be independent

iJ

of the typé of atoms on the. i-th site or the j-th site,
though ﬁe]can easily extend fo the case where the transfer
matrix eléménts between A and B atoms, t??(AB),vare equal
to the geometrical meanof.t??(AA) and t??(BB)%3)

| To discﬁss the localzdénsity of states at the origin,
~wé“neéd_<Ggé(w)> or_<G§§(m)>€,4 where <+-+> denotes the

7 avéragéiovérjall.possible.configurations and <°‘->&

denotes’ that with & (£=A or B) atom on the origin.
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Denoting the concentration of A and B atoms by Cp and Ch

reSpeCti&ely, we obtain

<Ger(@)> = ¢

, A~<G§g(m)> A + CB <G§§(w)> B : (4.‘3)

Thevavérage of locators and that of the products of

locators aré giVen by

M, yo_ _ - _
<g;(w)>= cp/Ly + ep/Ly = <1/L>
m n, . _ 2_ 2 » .
‘gi(w)fgj(w)>>" (CA/LA + CB/LB) f4<l/L> I*J
for
‘ 2 . 2_ 2 L
CA/LA + CB/LB =. <1/L > i=] .

(4. )

irrespective of i1,j,*** and n,m, *++ . Then we obtain

29, 2 Am mb
SGoglw)>e = 1/Lg + 1/Lg iim tgy By <1/L>
. -]

2 gm . mn ,nf 2
+ 1/L,.° Y ) 650 TN thT <1/L> 4+ ese . (4. 5)
£ ism §on 0i "ij “jo

Correspondingly we obtain approximately

L, o < ' 2m o.m& .. m . mn,nf 2 -1
<Gr (w)>n [Lo = - ) @ ths Bi0<1/h> — Y ) 60 LNt 1 <1/L>0. ]
0077 &~ ~TE i.m 0i 40" C itm g,n 0i “ij~jo- s

4. 6)
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~wWhere the inequality 1s due to‘the.miscalculation for.some'
reduciblétpaths. The lowéSt'order one of such paths is
~the fourth order one in which wé;go and return from the
origin to an atom 1 thén;go and:return again to the same
atom 1y thé contribution of the pths which is equal to
l/LS3-<1‘/L2 > | ekcepé‘for'transfer matrix elements
is treated as'l/Lg “Q/L>2jin eq.(4.6). Therefore the
approkimaté eqﬁation (4.6). for .<G%§(w’)}g which corresponds
to taking.thé'configuration aﬁerage‘of the‘irréducible paths
only_isvvalid so far as théilow order paths:are concerned.
We divide the configuration average of the whole

irreducible paths into two parts, as is done in § 33

<o (w)>= (L) ~<Tf()>T =L () ~<zf(6)> ~<zf(w)>17

(4. 7
where
<Z§(w)_>= M§<1/L> + MﬁB <1/L2$<1/L>+>---, ‘ (4. 8)
and
<2§(m)> = Mt <1/L>2,+ MﬁC <1/L}3 + e, (4. 9)

3

Wéinoticé}from eqs.(4.8) and (4.9) another aspect of the
division of thé paths than that derived from thé’discussion

aboﬁt théfrole'of d symmétry of atomic orbitals in §3.
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. To obtain the expression Dfﬂ<g§§(m)>g:corresponding
to eq.(3.4), we define the effective locators 1X§(m) and
.Xg(w) by

<xli(w)> = mie, /K (e) # ep/KE(w)). . (4. 10)

We express  <I%(w)> as

_ ey ... Cn _ BN ... C
T Y - ¥ w X
Ao At A B
(4. 11)
which is équivalént to the‘approkimate expression of
'3 _ 2.{ch e 2, 2 ¢ Ca % 3 e
) <ZC(U))>—~ M3(W + —,KET) ) + MHC(’KE( ) + '1\"2'( )) +
Ay (e  Ag(w Aple Agtw) -
(4. 12)

vﬂmre.LE in.thé original expression (4h.9) is replacéd by Xéﬂ

Thé derivation of the effective locators is as follows.

We can rewrite eq.(L.8) as

<zé(w) >=: z Mg(a)< I R 5
L= T(e,R) <
B ]_\ -y .7 L *° :

(4. 13)
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where the same kind of errors as eq.(l4.6) involves are’

neglected. Defining the avérageilocatofs.Ag(w) by
%y m v B By aB o hBe oy VaB
Mg (w)= tLE(W)—E3 W Lo, Aa (w)= a F)+ep/ (Ag(w)-a )1,

(L. 14)

we obtain

<Z§(w)>=2 Mg(d)‘{-?‘ :".ﬁ'f:' ﬁ'f::'A'::‘;:  """ _
* - LA<w)—gu§(a,e)ccA/(A§<w>—”“§HeB/(A§<m)-gas)3

: ! B S e
: § | . | )
 Lg(w) -% u%(a,s>[cA/(A§<m>-2“B)+cB/(A§<w)_3“3)J .

(k. 15)
Ih numerical'calculation we.usé thé'Simplified ekpression of

.Ag(m) which corresponds to eq.(3.26) in place of éq.(u.lu);

AF()=L ()= (e p/Ty(w)4ep/Th(w)), | (4. 16)
where
TE()= L(w) - &% - B%(ep/TH(w) + ep/Th(w)) . (4. 17)
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"We also use the'simplified expreSSion of.<2é(d)> which
correspoﬁdsito éq.(3.23) in place of eq.(4.15), and then

we obtain
ng, S
: % o, L
,Ag(w)=.§ Mp(a) Aglw)/ M3 . | (4. 18)

We show in Figs;10-13 some'reSults of the present calcu-
lation in:which egs.(4.16)-(4.18) are used. We also shoﬁ
in Figs. 10 and 11 the results of the CPA (coherent potentlal

' 'approx1mat10nl3 15) calculatlon for the sake of comparison.
It is found from Flgs 10 and 11 that the general features

of the density of states obtalned from the present calcu-
lation and those from the CPA calculation are similar to
each'othef;

In the CPA calculation we'determine.the coherent

v
locator L (w) by the condition

_'i i ey L Leg ..
B L, - ) Ly - B (FHTT
(4. 19)
where
gz =;[gg‘ .M%vtj ........ = . 209
| ?{’%ﬁ" R o

and X*(2*) is obtained from egs.(3.24), (3.26) and (3.27)
. - g o .

by replacing w by L (w). "The corresponding condition in

- the present’calculation.is eq.(4.17); which decides the
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‘the essential features of &he density of states. We can

rewriteﬁeq;(u.l7) as

S T
e m e By SN PR .
L T e S e T A T R

(4. 21)
g, :

" where (T )fl=~CA/TK ¥ cB/Tg. We ‘can notice from eqgs.(4.19)
énd (4;21) some similarity between the présént approach
and the CPA calculation; in the case of the s band on the
Bethe lattice with 2z béing_infinite; eq.(4;2l) is in
practice reduced to eq.(4.19)16)

We have mainly discussed the case of disordered alloys
in this séction; Howévér, wé'can easily éxtend the present
approach to the cases of ailoys with short-range orderl6)
and those with long -range ordér,Awhich enables‘us to
“discuss thé'ordering energy of'alloys%7’ 18)_ In addition
' wé’can investigate‘directly the local environment effects%g’zo)
We expect that the_presént.approach may servé as useful tool
for the problems of tranéition,metal alloys, though we will-

not discuss such problems in this paper.



-§ 5. Discussion and Sﬁmmary
We.aiscuSS'hére'the'significancé“of the effective
-locators. The’éssential propérties of the efféctive'
locators aré; as mentionédlbéforé; not far from those of
the s band one, which enbles us to express the effective

locator in an approximate expression as

g Ly M
A (w) =0 - pu" /A (w)

(1/2)(w + vo? — m¥y, (5. 1)

where p- is determined by the condition MﬁB=M§ﬁ“.' With

this eXpréSsion wé obtain
g N N
w-2iw)= M@ - - 1/ o). (5. 2)

o ‘ g
Then Ggg(w) is.expressed as the expansion of 1/A (w);

Goplw)= [A () - (13 ")/ ()
-5/ (K*w)? -y /(a (0))3-0007h (5. 3)
The above discﬁssion can bejfurther. éxtended to the caée of

disorderéd»allpys:discussédﬁinn§:Uf Wé'can'expreSS the

effective locators in the same way as eq.(5.1) as
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2 9 ’ -Wz v :
A (w)— L (w)— (e /AA(w) + cB/AB(w)) (5. )

Similarly to egs.(5.2) and (5.3), we obtain

. AL e MR g
Lg(w) - <2B(M)>=;Ag(w)‘(M2 - u-)(QA/AA(w)+CB/AB(w)),

(5. 5)
and
28, ’ 8 gyenla °p
<G (w)>_= [A (w) - (M5 -p™)( +
00 :E w 2 ~H "Xi(w). Xg(w)
- M + . )= M ( + : )T=cec ]l
X2<w) KWy M k@) kw)

(5. 6)

We can notice from egs.(5.3) and (5.6) the correspondence
between théfpreseﬁt.approachvaﬁd the interacting virtual
statefapproach. ,The effective locators_xg(w) and _ké(m)
" correspond to the 1o¢ators of thé,virtual state with the
'résonancéfléyélmbeingvo,and'Eg.respectively, and (Mg _uz)

L : - o
: M3»and Mﬁc correspond to the interactions among the virtual

3

 states. While the width of the virtual state in the original
séncéAcomes;from theladmixtﬁré with the condﬁdtion band21),
 that of the effective locators comes from the band effect .

by the itinerancy of d electrons and depends on the -
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circumstances pf the whdlé crystal. HowéVer;_the crudest
approximétion may lead thé'width'othhé effective locators
A(w) (where X*(w)= w+ 1a(w) orlkg(m)=_Lé<w) + 1A(6)) to a
constant valué; and héncé'leadrthé effedtivé lqcatorsAto
the locators of the virtual state. Thus the interacting
virtﬁal statéﬁapproach caﬁ,be'jﬁstifieduto bé consistent
with the band theory.

In this part wé first elucidatéd.the role bf d symmetry
of atomic.orbitals; in détérmining thé énérgy band and we
dévelop a new method which is considefably'simple in com-
’parison with'thé momént method or the'récursion method.

- It may béfemphasized,that.thé methdd yiélds a conceptual
simplificatidn; that is; thé.éléCtronic structure of
transition metals can bevdé3cribed with the effective
iocators and the interactions among the néar neighboring
'effectivé-locators. We can éxamine the effect of these
interactions and investigate the orlgin of the'différence
between bee and fee. As a result, it is shown that the band
width is- decided by the effective locators, and that the
féature characteristic of bee. and fee structure is decided
by the interactions among three or four sites.

We have mainly discussed the cases of nonmagnetié metals
and alloys in ﬁhis part. ,waever, thé applicatidﬁ to other
-'systéms soméfof.which wéldiscﬁsséd—in Intfoduction is ‘.
straight forward after some modification and. the argument

based on the interactions among near néighbdripg sites will
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.be useful for these systems. Especially the application

to amorthus'metals seems to be very inﬁeresting. It may

be possiblé”that we parametrize the'electronic structUre of
-aﬁorphous metals in terms of the'threeé and four-site

A intefactions reflecting the local arrangément of atoms and

the structure insensitive effective locators.
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L. Magnetism in Transition Metals

'§ 6. Review of Some Previous Attempts -

Several attempts have: been made to explain the systematic
changé of the magnetism in‘transition'metals; Thére have been
two stréams in.theSe'attémpts; one 1s based on the band theory
in which thé interactions bétwéén.the Bloch electrons in the

_ momentum spacé”aré diséusséd, the other is based on the
picture of intéracting local moménts which was first suggested
by Friédel; Leman and OlszewskigZ)._Thopgh the streams start
frdm opposite points, they join. into the’samé conclusion
discussed bgléw, Which is_éasily realized from

‘the above—mentioned_discﬁssion of the'correspondénce between
the bénd ﬁhéory and'thé atomic,intéraétion'mOdels. Here we
briéfly réview these attempts;

Moriyal) treated the model which consists of two adjacent
local moments in a metal. Hé pointed out that the sign of

: the intéractiqn between two local moments is_goVernedAby

'thé occupied fraction of the local orbitals. When the
orbitals are nearly half-filled the coupling of two local
moments 1is antiferromagnetic, and when the océupied or empty
fraction of the orbitals are small the couplingvis.ferro—
:m_agnétic». ﬁoliowing the band theory combined with the

:géneralized'Hartree—Fock approximation, Penn23) studied

the stability of a.férromagnetic,State; an antiferromagnetic
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state and some speclal type of statés in the case of the

s band 6n a simple cubic lattice}'AHejfound that ferro-
magnetism is found for those metals with a valence well

- away from fivé and that'antiférromagnétism is found for

a valence of around five. Asano and Yamashité2u)'investi—
" gated the stability ofAférrOmagnetic and antiferromaghetic
states on the basis of a réalistic enérgy band strﬁcturé,
and drew - the same'conclﬁsion: .Théy alsb.foﬁnd that the
observed magnitude of local moménts_of each 3d metal can
bé'reproducéd_with.an almost*Unchangéd valﬁe of the effective
éxchange‘intéractions: Thﬁs conclusions of these attempts
havé béén rathér similar to éaéh'othér;

Howevér; most of the discussions have béen restricted
within férromagnetism and antiférromagnetiSm whose spatial
variation is described by thé wave véctor 353 and §=K/2 (K:
‘reciprocal lattice vector) respectively. Thereforé the
stability of a ferromagnetic state itself or that of an
antiferromagnetic one with respect to a general 5 state has
not been. investigated. In this connection, Roth25) discussed
a state with disordered local moments besides a ferro-
"magnétic state and an antiferromagnetic one by use of CPA.
Similarlyafiétitious short—rangé ordered states where each

26)

local momeﬂt’may point up or down. was discussed by Liu™,

: for.the'caséxpf the s band on the Bethe lattice. They both
found that theIabové4mentiqned.conclusion holds true, and
also that thé'staté.with'disordered local moments or the

short-range - ordered states can be stable in an intermediate

- Lo _



region bétwéen a_ferromagnétic‘région and an antiferro-
magnetic one. -We expect that such'disordéred state and
short—rangé‘ordered states may bé'réplaced by the long-
rangé ordered state with 6+3 and 6+K/2 ; We can mention
helical, conical énd sinuéoidal SDW states as the eXample
" .of the state characterized by a»géneral 5; of which a
sinusoidal SDW state is observed expérimentally in chromium
and itsnalloys. Thus such statesvcharacterized by general
'Q should be included in the discussion of the magnetism in
“transition metals; |

In thé'nekt section we préSént'a‘mbdel Hamiltonian in
which a ferromagnétic state; an antiférromagnetic one, a
state with a;general'a and also disordered states are equaly.

tréated within the Hartree-Fock approximation.
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'§ 7. Model Hamiltonian

| Assﬁmipg that d electrons aré principaliy responsible
for the'magnétism in transition’metals; we adopt a tight
binding model in which‘only the fivéfatbmic d orbitals are

taken into account. The Hamiltonian is assuméd to be .

~given by
H= . W, +V - .
with
% % - %
.= ). a,. . + U ' '
wl % g Edalmo'almc v 2 aim+aim+ain+ain+
- . 3
~ 1j % K
* 2)_(UEJ)'2 1 #1mo?imo®ino®ino
m,n_ G
(min)
L . .
—————J ). a
2 ming ®1me“im-0%1in-0%ino , (7. 2)
. 2 . .
(m$n) '
and
o % ' : N
v=1 11 ¢ a (7. 3)

ij imoajno 2
i,jm,n @ A

"-wheréfa.dénotés>the'spin state;.xThéiatomic energy level

is deroted by Ey, the intra-atomic Coulomb and exchange
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integrals are denoted by U and J respectively. Other
notationé'are same as those in eq;(ﬁl;l).

We next apply the Hartree-Fock approximation to Wi
with due consideration for the spin rotational invariance
of Wi. Then we obtain

: s
?F -2'2 Eimocimocimc
m o

®

: %
- U ) < : !
Umxn Cim+cim+><cin+cin+>
3 .
-—(UJ)zz sce’ e >, (7. 1)
1m0 img” Cinc%ing” ° ,
(m+n)
with
E E+U2< ¥
imo cln -o° in- ~g”t (U"J)'X <cinccino>’

n(Fm)
(7. 5)

: *

. Wwhere c, and c,. are electron operators referred to the
imo imo

local spin quantization axis parallel to the direction of

the local magnétic moment of a given atom. On the other

hand a; apd a; g in the eqs.(7,2) and (7.3) are referred

to a common quantization axis denoted by the laboratory gz

axis. Whén the local spin axis on the i-th site is rotated

by the polar anglé‘ 6. and thé'azimﬁthal'anglé'wi with
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respect to thé'laboratory z axis, the relation between

a. and c, is ‘given by -
imo imo > 8 Y

im? 2imt
c.
imy - I
(7. 6)
By this rélation eq.(7.4) is rewritten as
W= Y] (E,) . a a ) “ (7.7)
i : ¢ im ' "imo“imo'! :
mo,0 ofe}

~ (the term corresponding to the double counting) ,

where

L 0. T =
2 Vi 2 i 1 .. |
oS —= Byt sin 5= Eypy 5sindy e By By )

(E; )

im

g iy, 6. 5 8,
) i : .2 U1 2 Vi
5 sindy e TEypyEyny) sin 7By teos =R, 0y

(7. 8)
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We define the Green function in the laboratory frame by

- G??(w)%é;iF<imo|(w e |jno’> , . (7. 9)

R H HE ' g _ '
with H F= XiWi +.V. The matrix.elements of HHF are given:

by

HF, . ... -

<imo| H | ing > =3 (B Voo

. HF | . mn ' ' v
<imo| H | jno'> = £33 Sogr = (7. 10)

% _
i <¢g... c. > 1is ermine 1f-
The expectation value Cimo 1mo det ined se

consistently by the condition
<c > = (1o Il)rEFd (R(O. ,0.)0 ™ w)R(O )
imo®imo T 0 } aw 12¥17/513 ;0¥ oo °
(7. 11)

The number of d electrons on the i-th site and the magnitude

of the local moment on the i-th site are_givén by

* .

| ¥
= Y . <o .
Ni= (S Cppp O™ * Oy Cumy> )
M= Y (< > - <c. e, > )
170 bm'S Camg Camt” T CamyCame™ )0 (7. 12
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In the following discussion we neglect the orbital

- % . R
difference of <c. c, >in egs.(7.4) and (7.5) for the
imo imo 7 _ .
sake of simplicity, and we substitute -<Ciccio> for
% .
<cimocim0> ~Where
* . 1 ® . _
< > — < > .
CiOCiO’ - 5 Zm cimocimo . ‘(7- 13)

-Then Eimo is reduced‘to Eio whlchvis‘deflned‘by

X * *
E, = E, + ~J). <
107 Bq T o0 <0y o0y o> F H(U-I) <cyiey4”
SE. 4 QUM g Uk (7. 14)
Fa 10 i 10 M1 :

irrespective of m.

In the caseﬁof ferromagnetic, antiferromagnetic, helical
SDW and paramagnetic states, there is no spatial variation
of the charge or the magnitude of local moments; Thus we

can impose the conditions

- _ - CE - *® ¥ :
Ni— NO_ Nd 5 Mi MO— M, ci.OT ic> <COG cog;<ccco>
and Eicé~EooE E, irrespective of i. (7. 15)
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-The spatial Variation of the directions of local moments which
distinguishes the above-mentioned states from each.other is
characterized by the set of (ei, ¢i); In the ne%t section
we discuss the method for calculating Gég(m) of férromagnetic,

antiferromagnetic, helical SDW and paramagnetic states.
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§ 8. Real Space Approach Applied to Magnetic States

We define the locator'matriijgi(m) by

- 0. "y 0, R =iy,
2 Tir =1 - W s T 1, -1 . —-1
cos _§fL+ + sin —= L+ 55—51neie (L+ —L+ )
g (w)=
1. lwi 1. -1. .-2.eiv 1. 261 -1
g sinby e T(Ly "L, 7)) sin®—= kydcost5- Ly
(8. 1)
with Lé(m)ém - E;. The locator expansion of Géé(w) is
~given by
28, \_ -1 am m
Goolw)= Lgg™ - -1 tgy 8 tig
i,m -
gm mn ng -1 |
-y ¥y g, t,  — oo ] 7, (8. 2)
1;m 3,n 0i-~i "ij-=J jo

where the sums are taken over the irreducible paths. As 1is
done in §3, we first divide thé whole self-energy matrix

into two parts; that is,

ot - PH@ 1T et - 2hw) - sl T

| (8. 3)
where thé'dominant part Zé(w)zcohsists of the paths which
one goes to a lattice site without making a loop and traces
back the same Way; and Zé(w) corresponds to the remainder.
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g
"We next define the effective locator matrix A (v) which
A Ly o i o
includes ZB(w). : ZB(w) and thus the effective locator can
be calcﬁlatedAto the infinite order of electron transfers,
though approximately, since Zé(w) has a close resemblance
to the self-energy of the Bethe lattice. We finally
derivé an approximate ekpression of Gz

0
e :
A (w) so that the whole self-energy Zg(m) may be correctly

g(w) in terms of

réproducéd up to 1/w3.

We disduss the further details of the méthod for each
case; that: is; ferromagnetie,,antiférromagnetic, helical
SDW and paramagnefic cases.

§8-1. Ferromagnetic state

A férromagnetic state is described by the conditions
éi= Gd and wi= wo irrespective of i, which can be put to
60= 0 and w0= 0 without thé loss of generality. Then the

sélf—energy matrix is reduced to

L L 2
. z+(w) 0 Epp(w)+ S C 0
Z(w)= 2‘ =
: : L L
0 () 0 Egy(0)+ 5 (w)
(8. 4)
whére
&,y R L 3, ...
zBo(w)_MQ /Ly + Myp /Lc +
g, 8.2 b 3 | |
Zcq(w)- _M3/L0 + MuC /L0 + . (8. 5)
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The procéduré.to obtain the expression of Zg(w) is quite
identical with that in the'nonmagnétic case which was
discussed in”§3; éxcept that w is réplaced by»Lo(m).

As a resﬁltnge obtain

9

. ng
ph(w)= M0 Kl -a* b/ a (0], (8. 6)

where the effective locator is defined by

I Y : ‘ |

o (w) =My / Ko(w) . (8. 7)

The Bethe-like part 1§ () is expressed in terms of

the average'Iocator_Ag(m)‘for the orbital belonging to an
irreduéible representation .. In ordér to simplify the
calculatibn particularly for thé hélical SDW case, we
adopt a simplified eipression of.Ag(m) discussed in §3,
which is given by

@)= (w)- F %) . | (8. 8)

where

(8. 9)
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We furthermore. adopt a simplified expression of ch(“): then
we obtain |
D= 5 @A) /1 (8. 10)
Thé_definitﬂxm of the parémetérs~ﬁa;'ga; %a and Mg(d) are
referred to §3.
§8-2. Helical SDW and antiferromagnetic states

A helical SDW state is described by the conditions
éi= Q ﬁi + § and ¢i=¢0_irre3pective.of i. An anﬁiferromagnetic
staté ahd also a ferromagnétic one correspond to the special
types of helical SDW states with 6= §/2 and §=3 respectively.
Wé'chOose’Gﬁq so that 90 may equals to 0, and choose w0=0.
We obtain again'the expression (8.4) for the self-energy
matrix,'since both beec and fec lattices have the inversion

symmetry. We can write Zﬁ(w) as
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¥ ()= z RT% tmlk [(1+A;) /Ly + (1-A,)/L_]

+ 77 tﬁm' mn [(1+A; ;¥B35) /L 24 (2= 2B; )/ (LgL_g)
lmJ, J T g -0

, 2
+ (1-Aij+}_3i-j)/L_0 ]

_ _ m . np pL 3
+.2 .Z L tO:L ty tgk tko 8 ta Ale Ble le)/L
i,mj,n k,p

2

+ (34, (1,21 )+(3-, )/ L2

ijk— le 3Cle)/ ijk Bljk le

/L 31+ e

+ -
(1 Ale ijk™ le

2

2 )t (M /L +M32/(L L_;)+M 3/L g )

P I
- (M2l/Lc.+ M

+ ce s s : (80 11)

“where
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ijk

A = = . ... =cos@. + .o+
1 _cose.i,Aij ,Qosei + coseJ, A _QosQl coseJ cosek,

Bij=cos(ei—ej), B, .

Jk=cos(6i—ej)+ cos(ej—ek)+cos(ek—ei),

Cijk= cos(Qi—eﬁ +ek), s : (8. 1?)

and

1 em ,mg 1
T( 1+Ai) s, M

5 gm g _
M= 1 to1 Big 22~ 1 oy tip (1 - Ay,

) > 1,m

L - fm ,m ,nf 1. .
My, = I Y toy tig typ ~H(1+A35¥Byy), . (8. 13)

i,m j,n
o . Xz L
We define the effective locators Jl\(m) and +(w) by
PN R Y IS -
Log(@)= My /8 () + Myo/R (w) . (8. 14)

Since an electron can be transferred from the o state of
an:ion to ﬁhe'—o state of adjaqent_ions, the expression of
£ (w) corréqunding to.gql(8;6) should be modified to
include bOth;kﬁﬁu) and.de(w); We choose the expression

_given by
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oo S L Zp” . ..Dp 1 - |
¥ (w)= M2/[( AL -bﬁ<__p° £ ——Poyq,
(OO N KX (w) X S (w)
(8. 15)

where pz = Mgl/Mg and 1 - p£= Mgz/M; representing the

relative ratio between the transfer from the o state of

: the“central atom to the ¢ state and -o one of neighboring
- atoms, respectlvely,‘a -(M31+M32+M )/M2 which is inde-
“pendent of 6, ;783 bg pé and b (1 - po) represent the
'welghts of.g01ng to the ¢ state and -0 one in the second
step which are to be determlned so as to be. cons1stent

with the expansion (8 3) up to l/w in pr1n01ple; For

the ferromagnetic state, the antiferromagnetic state in

bee with the'nearest neighboretransfer only and the para-
‘magnetic state with randomly oriented local moments'which
will be discussed below, we can show that the choices

bg =~zi MﬁiC/Mg - (a*)? ana Bg correspending to the
prebability of finding a neighboring atom with parallel
moment can reproduce the expansion (8.11) up to the order
of l/LG3; 1/(L§'L-O), l/(LOLEq) and l/L_3_0 . For a general
5; however, we cannot achieve the consistency in the

expansion‘initerms of 1/Lo and 1/L

1/1,

—g* Thus we reexpand both

a, ) .
sg @nd 1/A3:(6) up to the order of 1/w” to achieve the

2w ana M”

fconSlstency to that order within M2, 3 g We obtain

then
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v¥= [nf./ Mé»- (a*) 2 1+(E_g-B)[ -5y i1l 5 (20%1) 1/

By = pt- {(E_ -EO)[M§1(9412p“)+M§2_+ M§3 (-3+12p")

+ Mg(ZOpz(pz— 1)+ 3)]

+ 2030 Mypg + Myze* 3ot SMye(2p"- 1)1/ (M5hg)

(8. 16)

which are free of the terms proportionai to (EO - E_ ) in

g
thé caseé mentioned above;‘i.é, thé ferromagnetic one, etc.
(the details are discﬁssed iﬁ Appendix A).

In order to calculate,xﬁ(w), we need to treat the
sélf-energy oﬁ the Bethe lattice, introducing the average
locators as before. .The average locators denoted by.Ag(w)
previously éan now have off-diagonal elements between o
and -¢ in prihciple,for a general 5, since no symmetry
argument can bé invoked to suppress them. Wé assume in the
following argument, however that .the average'locators are
| diagonal with repect to 0,-sincé”the off-diagonal contri-
bution is expected +to be the order of 1/z° compared with

the diagonal . contribution, whéere z is the coordination
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: ' * ’
number of a given lattice. We assume that the average

locator 'is given by

Ag ()= I 5(0) = ul/ Ty (w) - u2/ T25w) (8. 17)
T (w)= Lg(w) - &% - BY/T%(w) - B3/T% (w) , (8. 18)

R n - .
where a* is the same as that in the case of the ferromagnetic
state (see eq.(8.9) and follow1ng discussion ) and u% R %g,

%% and b2 are defined by use of ﬁaandta "defined previously as

oo L o Vo vl
Hy=He M21:/M2’ U5 e M5 /M > (8. 19)

¥ As was discus;ed in 83, the average locator includes
the self-energy arising from the interaction with (z-1)
atoms; If we add the contribution from one missing
neighboré, the self-energy can recover the full symmetry
of lattice which eliminates the off-diagonal part. The

estimate mentioned in the text.is based on this fact.
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and

Y YIS SO ) 2 na o, R 3 3
By = B (Myyg#Mlyup) My > by = D (MyopHly 3p) Myp,

(8. 20)

where g stands for %e€0, . With _Ag(w) thus defined we
calculate .X§(w) by use of éq.(8:14), which 1s reduced to
éq.(8.10) by adopting a simplifiéd eipréssion of Zéc(w).
We show in Figs. 14 and 15 some eiaﬁples of the dénsity

of states of helical SDW states.

The éxpreSsion (8.15) can lead us to a pathological
négative density of states for 5%6 in a certain region of
énérgy; i |E; - E_] exceeds a critical value, i.e. when .
the magnitudé of local mggnétic‘moment.becomés large
particularly in the_antiferromagnetic case of fecec. A
conceivable origin of this fault may lie in eq.(8.16).

It is possible to use in place Qf,eq.(8.15) an alternative
éxpression which is free from this fault, though its

' derivation involves an arbitrary assumption (refer to-
Appendii A)l It turns but, however, that the calculated
density of states, energy and magnitude of local moment

dépénd little on the choice of the self-energy expression.



- § 8-3. Paramagnetic state with randomly oriented local moments
Though the paramagnetic state with randomly oriented

local moménts is never of lowest.enérgy in the pfesent

calculation, we mention it for thé'pﬁrpose of discussing

the ordering enérgy and hénce the transition temperature of

an orderéd state.: In the paramagnetic case the self-energy

matrix is reduced to

1 0 :
=zl Ll ], - (8. 21)
and Zgara(w) is written as
2l pa(@)= M5 2-(1/n, + 18+ wd i, + 1/1))°

My 3-8, 5 1/L,2) (/L)
+ mE

ic 8 5 1/L, + 1/L, 13 4 el (8. 22)

The expression of nd (w) isbeasily derived from eqgs.(8.15)

_ para
and (8.16) as
(w)- N Vi i N NN T VRS Ve SR L )
pa‘"a 7 M) K _?(i(m X (o)

(8. 23)
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‘where the effective locator is given by éq.(8.10), and

the avéfage.locator is obtained from eqs.(8.17) and (8.18)

with
g _&d;;g 1i&a ¢&_ o ;511-&a |
],ll -"112 .H ——2—11 and bl'— b2 -— '—2—b -} . (8. 2“)

A B
that the paramagnetic state coincides with the state of a

Thus one can notice by replacing Eo and E_G'by E, and E

disordered alloy with'cA=cB=l/2,in the present calculation.
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§ 9. Unenhanced Susceptibility

Béfore proceeding to the presentation of the results
of calcﬁlation; we compare here the calculation of the
unenhanced.suscéptibility in the nonmagnetic state based
on the préSent method wifh a more orthodox calculation based
on the bandAstructure calculation. The purpose of the
~discussion is to demonstrate the reliability of the present
method which has been so far téSted in the célculation of -
the density of states only.

The unenhanced suSceptibility24’27) is usualyvcalcu—

lated by ﬁsing the Lindhard expression

X(§)= 2 2 ‘EOCcv 2 | : Xm C“m(i{))cvm(i‘z_‘a) |2
BT S =g ’ e

(ﬁB: the Bohr magneton)

Where the summation-~2300 is taken over the océupied state,
E% is the energy eigeﬁéglue’of the (k,n) Bloch state, and
C,n(K) is the hybridization coefficient of the m-th d
~orbitals. of the (%,u) Bloch state. On the other hand, we
can relate X(@) to the Green function by

(9. 2)
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where G(w, G, h) is the Green function of a helical SDW
state with a wave vector 5‘under-the condition Ec=~f Opgh.
Thﬁs thé’méthdd déveloped so far for the Greén function
can be applied to the calculation of X(a).

In Figs; 16(a) and 17(a), we show 2<6) of bece and fecc
transition métals obtained by eVaiuating the summation in
the éxpressian(9.l) for various Q corrésponding to
férromagnetic; antiferromagnetic. and helical SDW states.
Here we confine ourselves to the case Q= 2/a(0,0,Q) (a:
lattice'cqnstant). For the eValuétion, the eigenvalues
and the eigenvéctors were calculated at 3311 points for
bece and at 3345 points for feec in the irreducible 1/48
Brillouin,zoﬁé. Corresponding X(8) by our method is shown
in Figs. 16(b) and 17(b). We may conclude from Figs.l6 and

17 that our calculation can reproduce well the band struc-
ture calculation for the unenhanced susceptibility (note

that the density of states corresponds to x(g)).

As is well known, the SDW state with a wave vector
60 is the most favorable state to occur when X(a) has the
maximum value at 60, though the discussion is restricted
“to infinitesimal moments. We can find from Fig.1l6 and 17
that x(ﬁ),is maximum near the end of band and that x(E/Z)
is maximum,afound the'middlé'of band; which is naturally
éxpédtéd., Wé can also find that:k(ﬁ) of a general 6 can
be makimum in an intermediaﬁefrggion. We calculate Xx(Q)

of several values of Q, and invéstigateithé‘region'in which
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x(Q) of a general Q is maximum;'in other wOrds, QO%Q and
Qo+ﬂ, wﬁich‘is.shown in Figs.16 and 17; In the case of-
bee we also calculate x(Q) of Q being close to m (in
practice; Q/ﬁ=36/40; 37/#0;’38/40_and'39/uo) for the
pﬁrpose'of inﬁéstigating the nesting mechanism which haﬁe
béén discusSéd to~explaiﬂ the'sinﬁsoidal SDW of chromium
as arising from its characteristic Fermi surface%8’29)
We find the region in which x(Q): of Qur is maximum by the
band structﬁré'calculation_bﬁt not by oﬁr method (see Fig.
18). The disagreement between ﬁhe band structure calcu-
lation and our method is natﬁrally expected by cohsidering
that our method is a real space apﬁroach which does not
involve any knowledgé of Fermi surface. We show in Fig.l6
(a) the region Qo¢n separately from the region QO%O, oo,
though the reglon Q vr ought to be included in the region
QO%O, 7, since these two regions are different from each
other as to the mechanism how x(Q) of a general Q is maximum.
' We discuss here another mechanism than the nesting one
which is an analogy of the mechanism in the case of insulator
helical magnet30’3l)’ We introduce the non-local suscep-

tibility32)'which'is defined as follows;.
%57 O/ a0 | (9. 3)

whére'émi.représents the'indﬁced moment on the i-th site

‘when  a magneticffield:hj’is applied locally at the j-th
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site. Denoting the Green function of a nonmagnetic state

by G(w), we can obtain

' _ _ Eg : . - ,
Xq35= (211B2/Tr,)1m J dm'.'mZn. CT? (w) - G?I;(w). | (9. 1)

In terms of Xij’ the unenhanced susceptibility is expressed

as

x(@= I, xo5 exp(i8R), | (9. 5)

where Rj is éhé lattice vector of the j-th site. The

local term in eq.(9.5); XOO? is responsible for the
appearéhce of the local moment. at the originzg) and is
identical to the unenhanced susceptibility of a paramagnetic
‘state with randomly oriented local moments. Another terms
than XOO; on thé other hand, responsible for the formation

an -
of # ordered state.

In the case of beec, eq.(9.5) is rewritten as

x(Q)= Xgq +'8095Q Xo(111)"* (H+2cos2Q)X0(200)

+ (4+8cos2Q) X0(220)+’80032Q Xo(222) $oeee

(9. 6)
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by taking @=2/2(0,0,Q). If the higher terms than X, (222)

are negiected, the optimum valué'QO_can be solved as -

f o : oo
0 Xo(111)70> XR> “Xg(111)

@ Xo(111) %> Xg>Xg(111) >

(9. 7)

where XR=-XO(26Q) + 4X0(220) + 4*0(222). In the case of
fee, XO(iil)’is replaced by XO(llO).+ 2XO(211),jand XR
stands for Xd(200) + uX0(2ll) + 4x0(220). In Figs. 19 and
20, we show XOS calculated by our method, the details of
which we discuss in Appendix B, and show the each region
obtained by eq7(9;7). It is found thaﬁ the obtained
'régions coincidé almost with the corresponding regions in
Figs.l6 and 17. Therefore we can say that x(Q) 1is expected
to have the maximum value at a_general Q when IXO(lll)l is
sufficiently . small and XR is negative. In other words,

the unenhancéd susceptibility is governed by the effective
interaction among near nelghboring sites, which is coﬁsistent
with the general conclusion given in §3.

Though'thé'dichssion baSéd on the unenhanced suscep-

tibility is principally restricted to infinitesimal moments,
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we expect that the discussion holds true even when a state

“has finite local moments. In thé'next'section we present

some numerical results as to thé'states with finite local

moments.
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§ 10. Phase Diagrams

- By use of the method discussed in §8, we look for
seélf- consistent solﬁtions of_férromagnetic,‘antiferromagnetic,
helical SDW and:paramagnétic states for bece and fecc lattices.
We again confine ourselves to the case Q= 2/a(0,0,Q), then
helical SDW and antiferromagnetic states have uniaxial
symmétry except that an antiférromagnétic state of bece
1atﬁice'has cubic symmétry. Comparing thé enérgies of
thosé solutions, we investigate the state of the lowest
enérgy, and constrﬁct the phase diagrams; bThé phase'diagram
consists of two parameters, that is, a number of d electrons,
Ny and a reduced intra-atomic intefaction, UR=(U+4J)/5.

We‘show'in Figs.21 and 22 the calculated phase diagrams

for bcc and fec respectively. The region in which no
solutions can exist but a nonmagnetic one (no local moment)
appears when UR is small. We determine thé phase boundary
above which a nonmggneticvstate is unstable from thé
invérse of the unenhanced susceptibility. When UR is
sufficiently large, the region AF in which an antiferro-
magnetic state is stable 1s found if N, is around five.
Increasing Nd from five, the region H in which a,heiical
SDW state is stable appears, and. the reglon F in which a
ferromagnetic state is stable follows it. In the region H
the optimum value Q) by which we mean Q of the lowest

enérgy statélchapges continuously from ﬁ to 0.
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Although it involves sOme:ambiguity to choose the
points eorresponding to pﬁre'3d metals br, Mn, Fe, Co and
Ni in the‘calculated phase'diagramséuwe'have shown the
approiimate'positions by,qhbosing‘Na’s and UR’sllisted in
Table VII. The magnitude'of local moments'for each metalh
is shown also. ~ When the dlfference of the band w1dth among
3d elements 1s taken 1nto account the chosen values of
UR are nearly unchanged through.3d elements, which is
consistent with the discﬁSsion;by Asano and Yamashitazu),
eicept'for Cr: AThe'obtained magnitude'of iocal moments
for each metal is in good egreement with the observed one.
The chosen point corresponding to bcc Fe (dFe) is located
in the regioﬂ F; which'leads us to somewhat large values
“of Nd and M for Fe. We expect that another set of tight-
binding.pérametersrmay 1eads us to more plausible values
of’Nd ande.33) As for fcc Fe (YFe), we choose the point
in the regidn H With COSQ0§ -0.5. Our treatment, hewever,
contains. some ambiguity, and we-eannot say definitely
whether the ground state of vyFe is an antiferromagnetic
one or a helical SDW one. .In the case of Cr, we have only
an antiferromagnetic solution except for a trivial non-.
magnetic oné{,‘wé find that the appearance of the solution
is nerely first;order wifh'reSpeCt to UR and Nd’ which
‘supports the dlscu831on by Teraoka and Kanamorlz) as for

‘the'origin_of the sinusoidal. modulation. . However, as 1is

indicated by our band structure calculation of x(Q) shown

- 69 -



in Fig.l16(a), the nesting mechanism will be important also.
We do nct_go into the'problem of the'groﬁnd state of Cr
in this paper, since the presentcmethod cannot be applied
to it easily.- 7

In the next place, we discuss the character of local
moments for each metal. In the phase diagrams we show
the region in which a paramagnetic solution is found,
though paramagnetic states never have therlowest energy.
We find from Figs.21l and 22 that a paramagnetic solution
is not found for Cr; fee Mn (yMn) and Ni, which implies
that the'local moments of these metals are expected to
be redﬁced.to a considerable extenﬁ when temperature is
'raised; In other words, the local character of Cr, yMn
and Ni is weak . We show in Fig.23 and 2l the magnitude
of local moments.and the energy difference from a para-
magnetic state of several magnetic states in the vicinity .
of bee Mn, aFe, yFe and Co. Tmeemﬂgy difference between a
’ paramagnetic state and the lowest energy state, AE

‘ para
ought to be pelated to the ordering temperature Tb or T

N2
while that between a nonmagnetic state and the lowest
energy state, AE o is related to the critical temperature
“for the'disappearance of local moments. Therefore we can
conjecture how strong the local character is by the
,knqwledge cf AEpara and AEnon; the larger AEnon/AEpara is,

”the'stronger.the local character is. We may say from

Figs.23 and 24 that the local character of bce Mn and yFe
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Lt

is considerably strong,GOmparéd with that of oFe and Co.

It is beyond the scope of oﬁr caléulation to estimate

- the ordering temperature from AEpara’ but we can discuss

some trend of thé ordering températuréffrom it. We find
from Figs.23 and 24 that AEpara of bee Mn and YFe is
considerably small compaféd with that of oFe and Co. The

ordering temperature of yFe is theréfore expeéted to be

low compared with that of «Fe ‘and Co, which is consistent

with ekperiments; The ordering temperature of bee Mn, if
it éxists; is also‘éxpectéd to béfléw: Strong local
character and low ordéring témpératﬁré'of vFe and also
bee Mn can be ascribed to the helical SDW ground state

with cosQoﬁoﬁ -0.5, since a helical SDW state with cosQ,= -

0v -0.5 and a paramagnetic state are similar to each

other.with'respect to thé short-range order of spins.

We suppose that the magnetism of dMn may be related to
thé aboveeméntioned situation, thdﬁgh the crysfal structure
of aMn obviously plays an important role. v

| As for the transition metal alloys, it is questionable
to discuss the calculated phase diagrams in the rigid—band
model, especially when the average number of d electrons

falls into the région H. The energy difference between

‘a helical SDW statéfand a paramagnetic state is small as

‘above-mentioned, and moreover the energy difference between

~a helical SDW state and a certain state with short-range

magnetic Order26) is expected to. be eVen‘moré'small.
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Therefore the long-range magnetic order of a helical SDW
state will bé.violated by alloying effects, and the helical
SDW ground state will be replaced by a certain'ordéred

state;3u)
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§il. Concluding Remarks

in tﬁis part we have shown thatvour.method can reproduce
well the band structure calculation for the electronic struc-
ture of magnetic states; particulafly for the unenhanced
susceptibility. On the basis of the discussion about the
unénhanced.susceptibility,itheveXistencé of the states whose
spétial variation is described by a_géneral § is predicted,
and is ascértained by the successive calculation of the
pPhase diagrams. It is found that thé.occurreﬁce of a state
with a general Q is governed by the effective interactions
among hearvneighboring sités; which is in contrast to the
nésting mééhaniSm of chromium:' Thé dbtained phase diagrams
ekplain the wide variety of thé obsérvéd magnetism in 3d
transition métals, not'only for thé_groﬁnd state properties
but also fdr propérties at finité témpérature, such as, the
character of local moménts and thé ordefing temperature.

It shoﬁld be emphasized that the difference of the méénetism
among 3d metals is derived chiéfly from the electronic
structure and the.number of d eleétrons and slightly from
the strengths of the intra-atomic interactions.

We have mainly discussed the case of pure metals in this
part. Thé discussion extended. to the case of trahsition metal
alloys 1is intereéting; but is not so simple asvpure metals.
We can discuss the instability of a ferromagnetic state§4’35)
but it isivery.difficult to inveStigate the ground state when

- a férromagnetic state is unstable.
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Appendix A. Further Discussions about the Expression of Zi(m)
We present‘heré some discussions about the expression

of zi(w). First we discuss eq.(8.16) for the choices of bﬁ

L

and Bi. In the case of a ferromagnetic state M§1; M22,

Mgl,--- are given by

2 _ R 2 _
Mop= My, Mpp= 0,

T A s

2 YR SR WY SIS
My1c™ Myg> Mypc= Myse= Myye= 0, . (A. 1)

then we obtain from eq.(8.16)

p*=1 , b¥ =b* ana B = 1. (a. 2)

Thus the expression (8.15) is reduced to the expression (8.6).
In the case ofran antiferromagnetic state in bcc with the

néarést nelghbor transfer only, we have

M21= O’ M22= M2 5

2 2 [}
My = Map= Moo= Mi= 0,

S Ny A T A '
My10™ Myoc= 05 Myzc= Myg> Myye= 0, (A. 3)
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then we obtain

p*= 0, by= b* ana Bl= 1, (.

the meaning of which is obvious. As was already discussed

in §8, we have

A S T
Mo1™ Map = 5 M5
L - 1 [ S A 1.8
M31™ 5 M3p= M3z = == M3
o1 e 1 e o1
| My1c™ 737 Myoc™ 3 Myse = Myye = 5 Miye o (A- 5)

in the case of a paramagnetic state with randomly oriented
local moments. Then we obtain

p*= 1/2 , bk= v* and pl= 1/2. . (A. 6)
Thus eq.(8.16) are free of the terms proportional to
(E, - E_;) in the case of such simple magnetic states. We
"may add that eq.(8.16) can yield proper choices of bg and
'52 also in the casé of an alloy analogy state where each

local moments may point ﬁp or down26)'

5

2"— R jz': ’?‘ ’\12= .
p’=py » b=Db" and p =p,, _ (A.7)
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where.pl denotes the probability of finding a‘neighboring
atom in the first shell with parallel moment and pé denotes
that in the second shell.

‘As mentioned in theAtext; thé‘eXpression (8.15) sometimes
sufferes from a pathological negative density of states for
§ being near X/2 and IEO—'E_éL~being large. In such a
case we prefér to the expression (8.15) an expression which

is free from such a faﬁltAgiven by

pi(w)= M/ [2h(w) - a® - bl /2T, (A. 8)
where

L L ) 1
(w)= ( + )7 (A. 9)
o Ky KE(w) |

We determine 0(m) by following equation;

L, 2 2 2
Cut apt(1-ph) (B, -E_ )
Ei(w)=<w - (p2E0+ (l—pZ)E_U) - - o g — ee.
e, 8 % 2
= v - (p'BE+ (1-pME_) - ——— — 0 =0
, ' v g
L8 (m) E)
a
(A. 10)
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where u2= MﬁB/Mg. We can easily see that the expression
(A.8) with (A.10) is free from a pathological negative’
density of states when

W+ p*(1-p*)(E - E_)°

L A
5 + bo_ >0. (A. 11)

The condition is satisfied in.a practical range of IEU— E_O[
Though eq.(A;lO) is chosen arbitrarily, the expression (A.8)
can reproduce the 1/w expansion of Ei(m) ﬁp to l/w3, and in -
practice yields the almost'samefrésﬁlts as the eXpréssion

(8.15). We show in Fig.25 some'ekamples of the density of

states obtained by the expression (8.15) and by the expression

(A.8).

- 78 -



Appendix B. Details of the Calculation of X4 j
. _mn - : N :
We can calculate Gij(w) as well as Géé(m)'on the basis

of the locator expansion discussed in §1 sﬁch that

mn ’
rel = o gIn N, m .mp- p .pn . n . ..,
Gij(0)= 85 Ti; &5 kXp_gi tix Bk ki &;
. D
= m 2 mp pn '. 3 P Y
tij/‘“ + ) tik itk.j/ w” + . (B. 1)

k,p

Considering the reducible paths, we rewrite eq.(B.l) as

Gin¢, )= gom £ 0 4§ oglP gbny 2
Gij(w) G.ll(w) [tij/w kgp tik tkj/ ™+ 1,

(B. 2)
where such paths that return to the i-th site at intermediate

steps are included in G??(m). Alternatively we can rewrite

eq.(B.1) as
—mn _ r.Jon mp .,pn, 2 ... )

(B. 3)

wherélsﬁch'paths that return to the j-th site at intermediate

stéps are ‘included in G??(m).. Then we obtain
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] B TG e)= (Gog(w))?
L _

Lm mz am £ ng Ln .nm ,mg 3

+ see

% Z [tOl / * JE (t01 ij th _ tOj tji tiO)/w * 1 s
m

(B. 1)

s ’ R e . L
which can be approximately rewritten in terms ofk (w) as

Am
I Gy, ()80 (0)= (Tx2(0))2
& Gogts

mg(i)i. ........ mﬁ(i)
x [<'K’L<w> _atl D )2+(X2(w) et B 32(%% ()2 b
. .Xz(w) o Vkl(m)
(B. 5)
where
my(1)= 1 6} *i
m
. ' N -
mp= 5 E T e) T R o - mben s @b
(B. 6)
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We. can easily show that the. expression (B.5) satisfies the

sum rule which is given by

T == T EMWT (). (B. 7)
( yby for |
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Fig. 1.

Fig. 6.

Fig. 7.

Fig. 8.

‘Fig. 9.

Figure Captions

(a) A réduciblé'path P .P_P_ consists df thrée'
irreducible paths Pr; PS and Pt‘ (b) A péth'of

v stéps and 61; eé; r--év are the inflection angles
of the path. ' |
The fourth order paths of fcec strdcture and the.
classification of them. -

The fourth order paths of bece structﬁre.

Schematic éxpression ofAZB;-(a) on a Bethe type
lattice (b) improved one in which we include
triangles.

Diagrams of thé first few terms in the expresseion
(3.2) for Iy and those in the expréssion (3.3) or
.(3;18) for ZC;

Density of states for bece and fcc d band from the

present calculation by use of the average locators

~gilven by eq.(3.15). Histograms are those from the

band structure calculation.
Density of states for bee and fce d band from the

improved calculation by use of the average locators

given by'eq,(3.20).

Partial density of states belonging to de and dy

‘symmetry from the improved_calculation.

Results of the simplified expressions. The solid

lines indicate the results in which’éq.(3.20) for
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Fig.

Fig
Fig.

 Fig.

Fig.

10.

11.

12,

. 13.

14,

15,

16.

,Aa and eq.(3.21) for g are'ﬁsed (i.e. the same

figuré as Fig. 7). The ‘dashed lines indicate
the Tesults in which éq.(3.23) is used in place

of eq.(3.21) and the dot-dashed lines indicate

_those in which eq.(3.26) and (3.23) are used.

Some examples of‘thé'dénsity of states and

Pa

PR for various values of EA—EB.obtained from the

present calculation (left side) and those from the

CPA calculation (right.side) in the case of fcec
trags1tlon metal alloys A50B505

Results similar to Fig. 10 in the case of bece
transition métal alloys ASOBSO'_

Change of 'the density of states p, and pg obtained
from the present calculation with the alloy concen-
tration in the case of fecc. We fix the value of
EA—EB at -0.04 Ry.

Results similar to Fig. 12 in the case of bcec.

and p

Change of the density of states p of helical

4+ ¥
SDW states with the value of Q in the case of bce
trahsition metals. -We'fik the value of E+— E+ at

-0.04 Ry.

‘Results similar to Fig. 14 in the case of fcc

transition metals.

The unenhanced. susceptibilities of bec transition

" metals obtained from (a) the Lindhard expression

(9.1) and from (b)_thezeipréssion (9.2), for the
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wave. vector 6=2/a(0;0,Q) where Q=0 (ferro),
Q=1/2 and Q=w (antiferro); We show the region
in which x(Q) has the maximum valﬁe‘ at a general
Q and also the region in which x(Q) has the
maximum value at Q~ m. TIn the inset the dotted
'1inés correspond to those for sOme»other wave
vectors.
Fig; 17; Results similar to Fig. 16 for fcc transition
metals.
Fig. 18; The unenhanced susceptibilities of bee transition
"metals for'varioﬁs valués of Q@ in the vieinity of

‘chromium; i.e. E_=0.004, 0,008, 0.012 and 0.016

F
(Ry). The solid lines indicate those from the
expression (9:1) and the dahsed lines indicate
thOsé from the eipréSsion (9.2).

o Fig. 19. The'calculated X0s for wvarious neighbors in-
cluding XOO,Of bee transition metals. We also
show p(EF) which‘is reSponsible.fbr the Stoner

. eriterion, while X00 is responsible for the
Friedel one. We show the region where Q.0
and Q0¥n obtained from éq.(9.7).
Fig. 20. Results similar to Fig. 19 for fcc transition metals.
Fig. él; Thé,phase.diagram of bece transition_metals._ The
dashed lines indicate the phase lines corresponding
to cquOfQ,5, 0}0,and -0.5. The dot-dashed line

indicates the phase boundary above which a para-

- magnetic solution can be found.
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Pig. 22.

- Fig. 23.
Fig. 2.4,
Fig. 25.

The phase diagram of fcc transition metals.

.The magnitude of local moments (solid line) and

the energy difference from the paramagnetic state
(dashed line) of various states in the vicinity
of (a) bee Mn (U=0.0272 Ry) and (b) bee Fe
(UR=0.0336 Ry). .The scales of the magnitude of
local moménts and the energy difference are shown
on left and right vertical axes, respectively.'
The numbers .5, .0, ete. indicate the helical SDW
states with cosQ= 0.5, 0.0, etc.. .

The same quantities as Fig. 23 in the vicinity

of (a) fec Fe (UR= 0.0312 Ry) and (b) Co (U=

0.0344 Ry).
Comparison between the expression (8.15) and the
expression'(A.lo) in the case of fece transition

metals.
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Table I. Slater-Koster parameters used by Pettiforll’lZ)_

(in Rydbergs).

structure _ 7 ddo ddnw _ ddeé
fce © ~0.027784 0.012535 -0.001554
bee (nearest) -0.03248 0.01538  -0.00200

(next nearest) ~0.01341 0.00487  —0.00049




Table II . The numerical values of mﬁ for the fourth order
paths of fcc structure shown in Fig. 2.
n? (1078 ry")
asymptotic
de ay total relation
N 15.721  8.684 12.906 (1.000) 1
: A3 : 7.521 -2.420 3.544  (0.275) 1/4
AM’AS 3.294 3.079 3.208 (0.249) 1/64
Bl’B3 3.667 2.519 3.208 (0.249) 1/64
B, 4,212 2.544 3.544 (0.275) 1/4
BM‘ 15.721 8.684 12.906 (1.000) 1
Cl 1.039 -1.248 0.124 (0.010) 1/4096
02 _—0.928_ 0.398 -0.397 (-0.031) 1/256
C3’C6 0.193 ~-0.203 0.034 (0.003) 1/4096
c, 2.732  0.324  1.769 (0.137) 1/16
C -0.405 -0.386 -0.397 (-0.031) 1/256




Table III . The numerical values of mﬁ for the fourth order
paths of bce Structure shown in Fig. 3. |
mﬁ (1078 ryty _
) asymptotic
de dy total relation
Ay ,h, 38.341  3.731  24.497 ( 1.000) 1
A3 9.197  2.128  6.370 ( 0.260)  1/9
A, 0.645  1.432  0.960 ( 0.039) O
As. A 0.038  1.617  0.669 ( 0.027)  1-a”
A, 0.019  0.407  0.17h4 ( 0.007)  1/L-oP
BB 0.977 0.93%  0.960 ( 0.039) 0
B2,B3 71.723 4.339 6.370 ( 0.260) 1/9
By 38.341  3.731  24.497 ( 1.000) 1
Bg»B, 0.645 1.432 0.960 ( 0.039) 0
Bg 0.019  0.407  0.174 ( 0.007)  1/h-a’
By 0.038  1.617  0.669 ( 0.027)  1-ob
Cq,C5 -4.380 -2.449  -3.607 (-0.147)  1/81
c, 0.537  0.422  0.491 ( 0.020)  1/81
Cyy»Cq -0.145  -0.010  -0.091 (-0.004) 0
C5,Cg 0.250  0.761  0.454 ( 0.019) 0
G -0.362  0.316 -0.091 (~0.004) - O©
Cy 0.020 0.354 0.153 ( 0.006) 0
C1q 0.019  0.14  0.070 ( 0.003)  1/16-a"
‘where o = t(next nearest)/t(nearest)



Table W . The numerical values of the first few terms in

1

eq. (1.7) for fecc structure (in units of 10 — Ry).

s band : d band
_ total de dy

Amg 12 0.26185  0.29564  0.21116

Mg' -48 -0.01528  -0.02177  =0.00555

My 540 0.12642  0.15858  0.07819

o 144 0.07028  0.08740  0.04459

My, 132 0.05479  0.06418 ° 0.04071

My, 264 0.00136  0.00700 -0.00711
wy/ (1332 -1.155  -0.114 0.135 ~0.057
My/(15)° 3.750 1.844 1.814  1.754
My, /(M52 1,000 1.025 1.000 1.000
My /(M2 0.917 0.799 0.734 0.913
My /(M3)?  1.833 0.020 0.080 ~0.159

In the calculation of the s band we set t=-1.



Table V . The numerical values of the first few terms in

1

eq. (1.7) for bce structure (in units of 10~ Ry).

s band ' d band
total de dy

i | 9.5 0.27310  0.33433  0.18124

Mg' -36.0  -0.01760 . 0.00926 -0.05789

My 365.625  0.12970  0.16773  0.07266

My, 90.25 0.08020  0.11178  0.03285

My 81.875  0.06021  0.07560  0.03712

Mi, 193.5 ~0.01071 -0.01964  0.00269
ui/f)3/2 1,229 -0.123 0.048 ~0.750
M/ (32 I, 051 1.739 1.501 2.212
MﬁA/(Mg)g 1.000 1.075 1;060A 1.0007
Min/ (M2 0.907  0.807 0.676 1.130
Mﬁc/(Mg)z 2.144  —0.143  -0.176  0.082

In the calculation of the s band we set t(nearest)=-1

and t(next nearest)=-1/2.



Table VI .

‘use in the calculations (in units of 10~

The numerical values of the parameters which we
1

Ry) .

LEde gedy ede gedy
Mé 0.29564 0.21116 0.33432 0.18124
a* -0.07363  -0.02627 0.02770  -0.31943
bt -0.00349 - -0.05180 ~0.06060  -0.09477
H* -0.00218  -0.05454 -0.06929  ~0.07073
M5 (de) 0.24404 0.07740 0.29853 0.05370
M (ay) 0.05160 0.13375 0.03580 0.12754
uy(de,de)  0.20672 0.19899 0.19900 0.29709
u%(de,dY)r 0.04207 0.03870 0.03563 0.02909
uy(dy,de)  0.06450 0.07359 0.04699 0.04983
uf(qy,dy) 0.12717 0.12074 0.11835 0.11464
a=de a=dy a=de a=dy
yo.de 0.20537- 0.07026 0.20951 0.04899
yo-aY - 0.04149 0.12310 0.03493 0.11574
- yo.de -0.27722 0.14089 0.03997  -0.10230
§%»dy 0.0 ~0.20273 -0.05970 ~0.15830
s 0.24686  0.19336 0.24443 0.16473 .
ac -0.23063  -0.07787 0.02573  -0.1h4i6L
B 0.24861 0.24011 0.23426 0.18909

$) The value of b~ when the

used in place of the expression (3.21).

expression (3.22) or (3.23) is



Table VIL. The chosen positions in the phase diagrams corre-

sponding to 3d transition metals.

Ya UR(Ry) _ °03% M(UB) ch:Z:zier
Cr 4,56 0.0165 -1. (AF) 0.5 weak
bee (Mn) 6.4 0.0272 -0.2 (H) 2.3 very strong
Fe 7.4 .0.0336 1. (F) | 2.5 strong
Mn 6.0 0.0272  -1. | (AF). 2.3 weak
Fe 7.0 0.0312 -0.5 (H) 1.7 very strong
tee Co 8.2 0.0344 1. (F) 1.8 strong

Ni 9.4- 0.0388 1. (F) 0.6 weak
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