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Abstract

NiAs-type transition-metal pnictidés have attracted much
interest due to their various magnetic ordering and structural
transformation. 1In this thesis the magnetic properties and the
structural transformation from the NiAs-type to the MnP-type
,structurevof Fe-, Co- and Ni-arsenides ére discussed from the
viewpoint of itinerant d electrons on the basis of electronic
- band structures obtained by a self-consistent augmented plane
wave (APW) method.

First, the non-magnetic bands of CoAs, NiAs, FeSb and CoSb
with the NiAs-type structure and those of FeAs and CoAs with the
MnP-type structure are calculated by using the self-consistent
APW method. Energy dispersion curves, density of states and
Fermi surface are shown. Furthermore, for NiAs-type CoAs bonding
nature between a Co atom and an As atom for each band is examined
by calculating bond orders.

Secondly, the structural transformation from the NiAs-type
to the MnP-type structure of CoAs and NiAs is studied. A crucial
question is why the structural transformation to the MnP-type
structure occurs in CoAs but not in NiAs. To answer this
question the generalized electronic susceptibility is calculated
- by evaluating matrix elements of the electron-lattice interaction
with use of the crystal potential and the wave functions
determined by the APW band calculations. The calculated results

indicate that the structural transformation to the MnP-type



structure is likely to occur in CoAs but not in NiAs.

Thirdly, paramagnetic susceptibilities of FeAs, CoAs and
NiAs are caiculated. In FeAs and CoAs the observed paramagnetic
susceptibility shows anomalous temperature dependence. At high
temperatures, the inverse paramagnetic susceptibility obeys the
Curie-Welss law. At low temperatures, with decreasing
temperature it increases passing through a broad minimum. Such a
behavior of the paramagnetic susceptibility is very similar to
that observed in a semiconductor FeSi whose paramagnetic
susceptibility was well explained by a spin-fluctuation theory.
Since the density of states near the Fermi level of FeAs and CoAs
reveals a characteristic behavior simlar to that of FeSi, the
paramagnetic susceptibilities éf FeAs and CoAs are calculated on
the basis of the spin—fluctuation theory, by taking account of
the characteristic shape of the density of states obtained by the
APW band calculation. The calculated result is in agreement
qualitatively with the observation.

Finally, the double helical magnetic ordering of FelAs is
discussed by using the tight—bindingvmodel whose transfér
integrals are taken so as to reproduce the band structure
obtained by using the APW method. Instability of the
paramagnetic phase against formation of a magnetic ordering
described by a general wave vector is studied. Furthermore, the
total electronic energy of double helical spin density wave
(DHSDW) state is calculated as a function of wave vectors. By

minimizing the total energy the wave vector and the relative
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phase angle of the most stable DHSDW state at O K are determined.
The obtained magnetic ordering is very close to the observed one.
From these studies it has been found that the observed double
helical ordering is well understood from the viewpoint of the

itinerant electrons.
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§1. Introduction

Transition-metal pnictides having the NiAs-type or MnP-type
structure have been intensively studied due to their interesting
physical properties. They show a rich variety in magnetic
ordering, depending on their constitutive atoms. Furthermore,
some of them show a structural transformation from the NiAs-type
to the MnP-type structure. The crystal and magnetic structures of
transition-metal arsenids and antimonides are shown in table 1-1.

Among transition-metal arsenides and antimonides, CrAs1),
MnAsz’s) and CoAsw) reveal the structural transformation from
the NiAs-type to the MnP-type structﬁre with decreasing
temperature.‘ The transition temperatures are 1100 K ,398 K and
1250 K, respectively. VAST) and FeAsA) have the MnP-type crystal
structure at all temperatures. NiAs5) and all transition-metal

5,6)

antimonides have the NiAs-type structure at all temperatures.
Podloucky discussed the crystal structure of transition-metal
arsenides by calculating a difference between the band energies
in the NiAs-type structure and those'in the MnP-type structure,
based on a simple tight-binding model taking into account p
states at the As sites and d statesrat the metal sites. He
obtained a structural trend which agrees with observations7).
Katoh and Motizuki developed a microscopic theory of electron-
lattice interaction on the basis of the electronic bands obtained

by the APW method8’9). They studied the instability of the NiAs-

type structure of CrAs, MnAs, CrSb and MnSb against formation of



the MnP-type structure and clarified why the structural
transformation to the MnP-type structure occurs in CrAs and MnAs
but not in CrSb and MnSb. They emphasized that wave number |
dependence of matrix elements of the electron-lattice interaction
plays an important role in the microscopic theory of structural
phase transition.

10)

As for magnetic properties, MnAsz) and MnSb become

- ferromagnets below TC= 319 K and 573 K, respectively. Cer1O)
and'CoSb11) become antiferromagnets below TN: 680 and 40 K,

12)

respectively. CrAs and FeAs4) in the MnP-type phase become

double helical magnets with helical axes along the c-axes below

13)

-TN=240 K and 77 K, respectively, while Mn1_tFetAs and

VT—tMntAs14) in Mn-rich composition become helical magnets with
16)

helical axes along the a-axes. CoAs15) and Nils do not show
any magnetic ordering. The paramagnetic susceptibilities of Fels
and CoAs with the MnP-type structure show anomalous temperature
dependence. At high temperatures, the inverse paramagnetic
susceptibility obeys the Curie-Weiss law. At low temperatures,
with decreasing temperature it increases passing through a broad
minimum. On the other hand, the paramagnetic susceptibility of
NiAs, whose crystal structure is of NiAs-type, is almost
temperature-independent. These facts indicate that the
temperature dependence.of the paramagnetic susceptibility is
related to the crystal structure. The effective moment of FeAs

estimated from the Curie constant is 3.1 uB/Fe, which is much

larger than the saturation moment O.SUB/Fe obtained by a neutron



diffraction measurement at 12 K. This fact indicates an
itinerant character of the d electrons.

The purpose of this thesis is (1) to understand
microscopically the various magnetic properties of MX(M=Fe,Co,Ni;
X=As,Sb) in a unified way from the viewpoint of the itinerant 4
electrons of the transition-metal atoms, and (R) to clarify the
origin of the structural transformation from the NiAs-type to the
MnP-type structure observed in some of transitiom-metal arsenides.

In order to accomplish our purpose, we first calculate the
non-magnetic bands of CoAs, NiAs, FeSb and CoSb with the NiAs-
type structure and those of CoAs and FeAs with the MnP-type

17). We also

structure, by using a self-consistent APW method
calculate bond orders to clarify bonding nature in these
compounds. The results are shown in §2. In §3, we study the
structural transformation from the NiAs-type structure to the
MnP-type structure by calcuiating a generalized electronic
susceptibility with usé of matrix elements of the electron-
lattice interaction evaluated based on the rigid muffin-tin
approximation. In §4 we study the magnetic properties. In §4.1
we study the anomalous temperature dependence of the paramagnetic
susceptibility observed in FeAs and CoAs on the basis of a spin-
fluctuation theory by taking account of a characteristic behavior
of the density of states of these compounds obtained by the self-

consistent APW band calculation. In §4.2 we discuss the double

helical magnetic ordering observed in Fels.



Table 1-1. Crystal and magnetic structures of transition-

metal arsenides and antimonides.

~arsenides

TilAs VAs CrAs MnAs Fels CoAs NiAs

crystal TiP MnP NiAs NiAs MnP NiAs NiAs

structure ++MnP|{ ++MnP +—>MnP
magnetism| para para |double| ferro|double| para para
helix helix

antimonides

TiSb VSb CrSb MnSb FeSb CoSb NiSb

crystal NiAs NiAs | NiAs NiAs NiAs NiAs NiAls
structure

magnetism anti- ferro : anti- dia-
ferro ferro mag




§2. Electronic Band structure
2.1 APW band calculation

The unit cell of hexagonal NiAs-type structure (Déh) and its
1st Brillouin zone are shown in Fig.2-1(a) and (b), respectively.
The unit cell contains two metal atoms 1 and 2, and two anion
atoms 3 and 4, as shown in Fig.2-1(a). Positions of metal atoms
are (0,0,0) and (0,0,c/2) and those of anion atoms are
(2a/3,a/3,c/4) and (a/3,2a/3,3c/4). |

Thé orthorhombic unit cell of the MnP-type structure and its
1st Brillouin zone are shown in Fig.2-2(a) and (b), respectively.
The unit cell of the MnP-type structure is twice as large as that
of thevNiAs—type structure and contains four metal atoms 1,2,3,4
and four anion atoms 5,6,7,8 as shown in Fig.2-2(a). The a- and
b-axes of the orthorhombic MnP-type structure correspond to the

c~ and b-axes of the hexagonal NiAs-type structure, respectively.

The pogi%ions of atoms18) are

| me%al 1 :[ ua , 0 , wvec ] ,
metal 2 :[(1/2+u)a, 0 , (1/2-v)c 1 ,
metal 3 :[(1/2-u)a, b/2 ,(1/2+v)ec ] ,
metal 4 :[(1-u)a , b/2 ,(1-v)ec ],
anion 5 :[ u'a ,b/2 , viel ,
anion 6 :[(1/2+u')a,b/2 ,(1/2-v')c] ,
anion 7 :[(1/2-u')a, 0 ,(1/2+v')c] ,
anion 8 :[(1-u')a , P ,(1=v')el



where (u,v) =(0.0033,0.1993),

(u',v')=(0.1992,0.5773) for FeAs
and (u,v) =(0.0020,0.2002),
(u',v')=(0.1996,0.5807) for CoAls.

The MnP-type distortion is described as a frozen longitudinal
phonon of MZ mode at the M point in the Brillouin zone of the
NiAs-type structure. The atomic displacements of metal and anion
" atoms are shown in Fig.2-3. For metal atoms the displacement in
the c-plane is much larger than that along the c-axis, and for
anion atoms the displacement occurs only along the c-axis.

The APW method is based on the muffin-tin approximation. In
this approximation, the crystal is divided into two parts. One
consists of spheres placed at each,atbmic site, which are called
nuffin-tin spheres. iThe other is the region outside the
muffin-tin spheres. The crystal potential is assumed to be
spherical in the muffin-tin spheres and to be constant outside
the muffin-tin spheres. The crystal wave functions are expanded

in a series of reciprocal lattice vectors as

¥(k,r)=}c,x(k+G,,r) , ‘ (2.1)
1 .
where
{ o Ql \) "
QEO mg_zAzm(k+Gi)R2(|r_Rv|)Yﬁm(r—Rv) (2.2)
x(k+Gy ) = (inside vth MT sphere)
i(k+G.)-r
e + (outside MT spheres)




k is a wave vector in the 1st Brillouin zone, Gi is a reciprocal
lattice vector and Azm is a coefficient which is determined by
the condition that the wave function is continuous on the
muffin-tin sphere. Azm is expressed as

v ik.-rv
Azm(ki) = LTe

L S

Y, ()3, (e 18))/Ry (8,) (2.3)
where k. =k+G,, k,= ki/lkil, J, is a &th order spherical Bessel
function, Sv is a radius of the vth muffin_tin'sphere and R’Q is
a solution of the radial Schrodinger equation in which the
relativistic effect except the spin-orbit interaction is

19)

included The potential in the vth muffin-tin sPhere is

determined by using the charge density as follows:

T S
v 27
V:(r)é —§% [ r'zpv(r') dr' + 8m [ r'pv(r‘)dr‘ - v
- ' 0 ' T T
2(Q,-pn,,) 27 ” (2.4)
+ Z' v 0V - Z' L + 87 r'pydr!
Lu IRv_ Rlull zu[Rv— Rlul S,

+ V)_.:c \)(r) ’

where the sign * denotes the.potential for spin up and spin down
states, respectively, Zv is the core charge of the vth atoé,

pv(r) is the spherical charge density inside the vth muffin-tin
sphere, po'is the uniform chérge density outside the muffin-tin
spheres, Qv is the volume of the vth muffin-tin sphere and Qv is

Xc v
(

the total electron number in the vth muffin-tin sphere. V| T)

is the exchange and correlation potential inside the vth muffin-



tin sphere. The first and the second terms denote the Coulomb
potential from electrons in the vth muffin-tin sphere. The third
term is the potential from the nuclear charge of the Vvth
muffin-tin sphere. The fourth and fifth terms are the Coulomb
potential arising from the electron and nucleaf charges of the
other muffin-tin spheres, respectively. The léttice sum can be
calculated by using the method obtained by Evéld. The sixth term
denotes a contribution from the uniform charge density outside
the muffin-tin spheres. For the exchange and correlation
potential, V?C(r), the local spin density approximation is used.
We have adopted the formula obtained by Gunnarsson and Lundgvist

20)

for the exchange and correlation potential That is given by

Xc VvV _ 2 1

Vt (r)——ﬂarst B(rg) + 5 8(r )g /(140.297¢)]) . (2.5)
B(r ) =1+ 0.0545rsln(1+11:4/rs) (2.6a)
S(rg) =1 - 0.036r_ + 1.36r /(14107 ) (2.6D)

ro= ey (0)/4m1V3 ¢ =lo (x)-p,_(x)1/0,(x)  (2.6c)

where pvi(r) is the charge density of spin up and down states,
respectively. pv(r) is the sum of pv+(r) and pv_(r) and
w=(4/9m) /3.
The procedure of the APW band calculation is as follows:
(1) Calculating the atomic wave function and the charge
density.

(2) Constructing the muffin-tin potential.



(3) Solving the eigen-equation and obtaining
eigen-energies and eigen-vectors.
(4) Constructing new charge density.

The starting chafge density is a superposition of the
self-consistent chargé densities of neutral atoms. The atomic
configurations of neutral atoms are Cr:(3d)5(43)1, Fe:(3d)6(4s)2
, Co:(3a)7 (4s)2 , N1:(30)8(48)% , As:(4s)2(4p)? , Sb:(58)%(5p)°.
Cores are considered to be frozen. Using sampling points such
as T, A, K, H ,M and L for the NiAs-type compounds and
(1/8,1/8,1/8),;(1/8,1/8,3/8), (1/8,3/8,1/8), (3/8,1/8,1/8),
(3/8/3/8,1/8), (3/8,1/8,3/8), (1/8,3/8,3/8) and (3/8,3/8,3/8) for
the MnP-type compoﬁnds, the procedure (2),(3),(4) are repeated
until a change of the eigen-energies becomes small enough. The
aécuracy of the eigenvalues is 0.07 Ryd. We have used the
criterion that Rmax=8 aﬁd |k+G|maX= 3.0x(2n/a). The muffin-tin
radii are taken to be half the nearest ﬁeighbor metal-anion

distance for both metal and anion. The lattice parameters and

the mufﬁih—tin radii are shown in table 2-1.



Table 2-1

FeAs

CoAs(MnP-type)

FeSb

CoSb

.57

.60
.01

4404
L3712
.0259

.2852
.4883
.8675

.06
.13

.87
.19
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Rp

R, =R, =1
o

C Sb

e=1.2415 R

Lattice constants and muffin-tin radii

L2204

.2133

1556

.1805

S

.2908

b=1.3227

=0



*squtod ALxjewmwds UYTM ©0T113®T

sTeABIg TBUOIBXSY 9Y3 JO0J

ou0Zz UTNOTTTIg 1SITJI oyl (Q)

-
-
]

‘oangondaqs Terskao adLy-syIN °UlL (®) MTAR AT

X

Z Vv

- 11



*squtod Axpsuwds yiIm
90T31B] OTQUWOYJIOYRIO 98U} I0J

duoZ UTNOTTTId 3SITI 9YUL (q) *oanqonaqs Te3shao odAy-Jup eyl (®) At AR AT

% .

<

’
‘
O
N4

SR [

N
>
T

7
4
y
’
’
SN IS |
 J] S
/
/
/
/
/
|
!
|
o~
@>
S
-
(f>
¢
Q0

XXTll lllllll P e e

Vi . . |I|||mUm

©
©

N
=~
|
!
T
T

12



adAq-Juy pue

(3+3°7)

~ *(3y8tTa) 90T99B

s0134®] odf3-SYTIN Ueam}aq uoTLBIOY "€-¢ 3Td

- 13 -



2.2 Results and discussion
2.2.1 CoAs, NiAs, FeSb and CoSb (NiAs-type structure)

The energy dispersion curves of the non-magnetic bands of
NiAs—type CoAs and NiAs along the symmetry lines are shown in
Fig.2-4(a) and (b). The lowest two bands consist of s states of
As. Sixteen bands above them mainly consist of As-p states and
metal-d states. Fermi level is denoted as a small arrow.
Density of states are calculated by using the linear

interpolation tetrahedron method21’22)

with eigen-energies of 60
points in 1/24 Brillouin zone. The calculated densities of states
of CoAs and NiAs are shown in Fig.2-5(a) and (b). The dot and |
dot-dashed curves denote the contributions from{the metal-d
states and As-p states inside the muffin-tin sphere,
respectively. The density of states at the Fermi level is

p(Eq)

o (Eg)

46 [states /Ryd unit cell ] for CoAs,

31 [states /Ryd unit cell ] for Nils.
These values are much smaller compared with 158 [states/Ryd unit
cell] of NiAs-type MnAs and 102 [states /Ryd unit cell] of

Nids—type CrasS).

These small values of p(EF) are consistent
with the fact that both CoAs and NiAs do not show any magnetic
ordering, whereas MnAs becomes a ferromagnet and CrAs becomes a
helical magnet. The energy dispersion curves of CoAs and NiAs

resemble each other. But the Fermi level of NiAs is higher than

that of CoAs Dbecause of a difference of the number of valence

- 14 -



electrons.

We have calculated Fermi surface of CoAs and NiAs by using
the spline interpolation method. The results are shown in
Fig.2-6 and 7. The Fermi surface of CoAs consists of three kinds
of hole surface around the TA axis, which are shown in
Fig.2-6(a), (b) and (c), respectively, and an electron pocket
around the H point. The ?ermi surface of NiAs consists of two
kinds of hole surface shown in Fig.2-7(a) and (b) and an electron
surface shown in Fig.2-7(c). TFrom the shape'of the Fermi surface
we can expect for CoAs a good nesting between two hole surfaces
shown in Fig. 2-6(a) and (b) by the wave vector TM. In NiAs,
however, we cannot expect a good nesting by‘the wave vector TM,
because the Fermi surface which corresponds to the hole surface
of CoAs shown in Fig.2—6(b5.vanishes éomplefely. "The MnP-type
distortion is described as a frozen longitudinal phonon of MZ
mode at the M point. Therefore, we can say that the obtained
Fermi surface is favorable to causing the lattice distortion from,
the NiAs-type to the MnP-type in CoAs, but not in NiAs. We will
make further discussion about srtuctural phase transition in §3.

The dispersion curves of the non-magnetic band of FeSb and
CoSb are shown in Fig.2-8(a) and (b). Gross feature of the band
of CoSb is similar to that of CoAs. The calculated densities of
states are shown in Fig.2-9 (a) and (b). The density of states
at the Fermi level is

p(EF) = 97 [states/Ryd unit cell] for FeSb,

o (Eg)

40 [states/Ryd unit cell] for CoSb.

- 15 -



The Fermi surface of CoSb consists of three kinds of hole
surface around the TA axis shown in Fig.2-10(a), (b) and (c) and
a hole pocket around the H point shown in Fig.2-10(d). These

surfaces are very similar to those of CoAs.

2.2.2 FeAs and CoAs (MnP-type structure)

The energy dispersion curves of non-magnetic band of the
MnP-type FeAs and CoAs are shown in Fig.2-11(a) and (b),
respectively. There are 32 bands which consist of metal-d states
and As-p states. The density of states are calculated with eigen-
energies of 48 points in 1/8 zone and the results are shown in
Fig.2-12(a) and (b). For these compounds the Fermi level is
Jlocated at a steéb dip of the dénsity of states, contrary to the
case of MnAs in which the Fermi level is located at a peak of the
density of states. The density of states of CoAs and FeAs
increases steeply below the Fermi level. Such a characteristic
‘behavior of the density of states of MnP-type CoAs and FeAs will
-be reflected in thé anomalous temperature dependence of the.
paramagnetic susceptibilities of these compounds. The density of

states at the Ferml level is

p(EF) 72 [ states/Ryd unit cell ] for FeAls,

p(EF) 62 [ states/Ryd unit cell ] for CoAs.

Gross feature of the band of MnP-type CoAs is quite different

from that of the NiAs-type CoAs. For MnP-type CoAs, large peaks

- 16 -



in the density of states of the p-d band of NiAs-type CoAs become
less sharp. And the density of states above the Fermi level
increases and the width of the p-d bands becomes wider than that
of NiAs-type Coés.

The Fermi surface of FeAs consists of four kinds of hole
surface. They-are shown in Fig.2-13(a), (b), (c) and (d). Two

<

of them are hole pockets around the Z point. bThe other two
surfaces have complicated shapes. From the charactristic shape
of the Fermi surface shown in Fig.2-12(c), we may expect a good
nesting by a wave vector along the I'X direction. The observed
helical magnetic structure is described by the wave vector which

is about (B/A)TXA). We suggest a possibility of a spin density

wave for the helical magnetism of FeAs.

- 17 -
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Fig.2-5(a). Density of states of CoAs.
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Fig.2-5(b). Density of states of NiAs.
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The electron surface is shown.



Fig.2-7(a). Fermi surface of NiAs.

The hole surface is shown.
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Fig.2-7(c). Fermi surface of NiAs.

is shown.

The electron surface
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Fig.2-9(a). Density of States of FeSb.
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The hole surface is shown.
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Fig.2-13(a). Fermi surface of FeAs.

The hole surface is shown.



Fig.2-13(b). Fermi surface of FeAls.

The hole surface is shown.
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2.3 Bond order

In order to clarify the nature of electronic band structure,
we have calculated bond orders within the APW formalism and
examined a character of each band. The bond order between two

23,24)

atomic orbitals is defined as follows:

v ' V!
n (n,k) =<, |0 > <v lor, >0 (2.7)
fm;L'm’

where wnk'denotes the Bloch function defined by egs.(2.1) and
(2.2), (n and k being the band suffix and a wave vector,
respectively). ¢;m represents an atomic wave function, which is
specified by the quantum numbér (2,m), centered on the vth
nuffin-tin sphere and is given by
oya(r) = By ()T, () . | (2.8)

< >v in eq.(2.7) denotes an.integration within the vth muffin-
tin sphere. Subgtituting eqs. (2.1), (2.2) and (2.8) into eq.

(2.7), eq.(2.7) is written as

WV (n,k) = C Joshyy(y DM A (k) (2.9)
fm;%'m! J

The bond order uz;.z, represents a correlation between two
b

m!
. . Y v! . v

atomic orbitals, ¢lm and ¢2'm" in the state wnk' When both ¢2m

t

and ¢z'm' are much contained in the state ¥ nk’ the magnitude of

vv! AR .

ulm;l'm' becomes large. In general ulm .gtpgt 1S a complex

quantity and its phase indicates the bonding nature between two

orbitals.

It is more convenient to specify the real atomic wave
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functions by taking linear combinations with regard to the

gquantum number m as

voo_ v

¢za = g czma¢2m (2.10)
Thus the suffix "a" in eq. (2.10) denotes kind of atomic orbitals
such as Py ,'dxy etc. Using eq. (R2.10) the bond orders between
these real atomic wave functions are given by

vv'! _ vu'!
uza;klal(n’k)_ mz Q,ma 2, m a|U2‘m 2’|m'(n,k) . (2.11)

Considering the degeneracy of two Bloch states (n,k) and (n,-k),

we redefine the bond order between two atomic orbitals as

follows:
vv'! 1 VAV wv'!
Bﬂ,a;ﬂ,'a'(n’k)z—;—[ Uza;£|a|(n)k) + U,Q,a;l’a'(n’_k)] ’ (2-12)

The bond order defined by eq.(2.12) is a real numbef and- the sign
of B is related to the bohding— or antibonding—nature; We take
appropriate sign of atomic orbitals so that 850 means bonding
and RB<0 means antibonding.

Using egs. (2.1), (2.2) and orthogonarity of the spherical
harmonic functions, charge density inside the vth muffin-tin

sphere 1s written as

(Jeg iy )}{zc A ( kj>}*

J7am

g0~

<V klwnk Vv = i zm

(n,k) . (2.13)

|
toad s D1 X°e
Bt~
©
)
=]
)
=]

o~
w
bRt
o<
=
o)
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A%

(n,k) as a contribution of
az;la

Thus we can regard the quantity B;
the charge arising from the atomic wave function ’¢;a
We have calculated the bond érders of NiAs-type CoAs for

wave vectors along the I-line ((1,0,0)- direction). The symmetry
of the I-line is sz and there are four irreducible representa-
tions. As there are some prominent peaks in the density of
states of the p-d mixing bands of:CoAs, we have divided the p-d
mixing bands into four regions as shown in Fig.2-14:

(i) 0.0-0.2 Ryd,

(ii) 0.2-0.3 Ryd,

(111)0.3-0.5 Ryd,

(iv) 0.5-0.8 Ryad.
Vv
Lazla

each band in each energy region. We have taken a new coordinate

Firstly, by using eq. (2.13) we have calculated B (n,k) for
system in which the X'-, y'- and zf— axes are directed from a Co
atom toward an As atom as shown in Fig.2-15, because Co atoms are
surrounded nearly octahedrally by six As atoms. The calculated
results for the bands in the region (i), (ii), (iii) and (iv) are
shown in Fig.16(a)-(e). The bands used for the calculation are
denoted as thick curves in each figure. The calculated charge in
the muffin-tin spheres arising from Co-dy (d3z,2_r,2 and
dX,Z_y,Z) orbitals, Co-de (dx, 4

y'’yta!
As-p orbitals are denoted as a cross, an open circle and a

and dz'x‘) orbitals and
triangle, respectively, in Fig.16(a) -(e). From the results we

may say that the kind of atomic orbitals which contribute mainly

to the bands in each energy region are as follows
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the region (i) ;As-p orbitals,
the region (ii) 3sCo-dy orbitals and As-p orbitals,
the region (iii);Co-dy and Co-de orbitals for the lower energy
bands and Co-de orbitals for the upper energy
bands, |
the region (iv) ;Co-dy orbitals and As-p orbitals.
The Fermi level is located at the upper energy part in the
region (iii) where the states consist of almost de orbitals of Co
atoms.

Next we have calculated bond orders between the d3242 2

!
orbital of Co and the pz;'orbital of As for some bands. The
calculated results shown in Fig.2-18(a) and (b) indicate that the
lower energy part of the p-d mixing bands (the region (i) and
(ii)) has bonding nature and the upper energy part of the p-d
mixing bands (the region (iv)) has antibonding nature. On the
other hand the middle part of the p-d mixing bands (the region

(iii)) has non-bonding nature because As-p orbitals are not

contained in the states of this region.
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Fig.2-14. The density of states and the dispersion curves

along the TM line of NiAs-type CoAs.
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e
o0

Fig.2-15. The coordinate system fixed to the crystal (a) and

local coordinate system (b). The metal atoms and As

atoms are denoted by small and large circles.
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Fig.2~16(é). The bond order B;;Yia(n,k) for Co-dy orbitals( x),
b
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for the bands in the energy region (i).
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Fig.2-16(b). The bond order BE;Yza(n,k) for Co-dy orbitals(Xx ),
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Co-de orbitals( o) and As-p orbitals(4 ), respectively,

for the bands in the energy region (ii).

- 52 —



O— ~—0- ~ —0-——g_ _ X
— -
_ xe-x =K "=
x--xXx-"%
A, A A A A, A A
L™ = L3 L’ L= —_— L="J

05 2473

X~ ,.«0"’—0—__0—_“0*“0 ,
e SOl
Ko = _Xm o Y — =X

| 4
b

»
b
i

18
' g

r T M
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for the bands in the energy region (iii).
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The bond order 8Y)Y (n,k) for Co-dy orbitals(X ),

Co-de orbitals( o) and As-p orbitals(a), respectively,

for the bands in the energy region (iii).
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Fig.2-17. A schematic spatial arrangement of a dBZ,Z_r,Z orbital
of Co and P, orbital of As. Bond orders between

these orbitals are calculated.
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Col;As3

d_,2

(n,k) for the bands

Fig.2-18(a). The bond order R 5.
_ _rt<iPsn

denoted as thick curves. These bands have bonding

nature.
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Fig.2-18(b). The bond order BSO1EASB2-p (n,k) for the bands
g1 p1%3P 0 .

denoted as thick curves. These bands have anti-

bonding nature.
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§3. Structural Transformaton from NiAs-type to MnP-type of
CoAs and Nils.

1)

Among Fe-, Co- and Ni-pnictides CoAs shows 2nd order
structural phase transition from the NiAs-type structure to the
MnP-type structure at Tf='12501K. On the other hand the crystal
structures of FeAséj,amﬂrNiA§5) are the MnP-type and the Niﬁs-type,
- respectively, at all temperatures. Lattice distortion from the
"NiAs-type étructuré to the MnP-type structure is described as a
frozen longitudinal phonon of'MZ'mode at the M point in the
Brillouin zone of the NiAs-type structure.

A microscopic theory of the structural transformation of
NiAs-type compounds has been developed by Katoh and Motizukig).
They calculated the electron-lattice matrix elements from the
first principle by using the electronic bands obtained by using a
self-consistent APW method. The results explained well why the
structural transformation from the NiAs-type to the MnP-type
structure occurs in MnAs, CrAs and VS, but not in MnSb, CrSb and
TiSe.

In the present thesis we study microscopically the structural
transformation of CoAs and NiAs, on the basis of their electronic
bands obtained in §2. The effect of the wave number and mode
dependence of the electron-lattice matrii elements are taken
into account as well as the effect of nesting of the Fermi
surface. We calculate the electron-lattice matrix elements and

the generalized electronic>susceptibility. From the results we
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make clear why the structural change from the NiAs-type to the

MnP-type occurs in CoAs but not in NiAs.
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Fig.3-1. MnP-type crystal stfucture. Thin lines denote

the unit cell of the NiAs-type structqfe.
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3.1 Formulation

The displacement of the vth atom in the 2th unit cell is
expressed as
.

u, = —— § Q ,e(qr,v)etdR (3.1)
v /NM_ a qk

v
where N is the number of unit cells in the crystal, Mv is the
mass of the vth atom, qu is the normal coordinate of a phonon
with wave vector q and mode A, and £(qA,v) is the phonon
polarization vector. As a crystal potential we consider the
following muffin-tin potential:

Vo(r) = z V(IT—R

1)
v AV

v(|r-R, 1) = v (le]) (Iel < 8,)
' 0 (le] > 8,)

S, represents a muffin-tin radius of the vth atom. In the rigid
muffin-tin approximation in which the potential moves rigidly
with associated nuclei, the crystal potential in the distorted

lattice is given by

P

av
_ _ v a
Vd(r) = Vo(r) %vu“aT5T|6T 6R2v . (3.3)
The matrix elements of Vd(r)—Vo(r) between Bloch states ¥_; and
wn,k+q where k and q represent the wave vectors and n and n'

specify the bands, are expressed as
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-p av
Vo _ * a v
Ink;nlk+q - N wnk(r\)+p)( Ipl) d‘pl wn'k+q(r\)+p)dr’ (3‘[4—)

where the vector T, represents the position of the vth atom in

the unit cell. The integration in eq. (3.4) is taken within the

va
nki;n'k+q

matrix element and it represents the strength of coupling between

vth muffin-tin sphere. I is called the electron-lattice
the electronic states (n,k) and (n',k+q) caused by displacement
of the vth atom in the a-direction. For the numerical
. - . va .

calculation we use the explicit expression of Ink;n'k+q obtained
by Katoh and Motizuki.

A change of the electronic free energy due to a lattice
distortion characterizéd by a particular phonon normal coordinate

Q

qA (q denotes the wave vector and A the mode) is expressed as

AT = _X(qA)|QqA|2

(3.5)
1 B*
x(qA) = = —) } ————— e®(qr,v)e”(qr,v')
N vv'aB /MUMV ’ ’
: 0\ 0
x2] 1 1 Ve’ 1V, P £ B =T By 1jeeg)
nn'k nk;n'k+q nk;n'k+q EO _ EO )
‘ : “nk n'k+qg

where Egk is the electronic energy of undistorted bands and f(E)
is the Fermi distribution function. The quantity x(qXA) is called
the generalized electronic susceptibility. If the k and q
dependences of the electron-lattice matrix elements are

neglected, x(qA) becomes proportional to
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0 0
1 £(2 )-£(%, .. )
2 (q)=—7] 1 onk 0 =4, (3.6)
Nomntk BYLo- By

which 1s called the bare electronic susceptibility. The wave
vector dependence of Xo(q) comes only through the electronic band
structure and reflects the effect of Fermi surface ﬁesting. On
the other hand the wave vector dependence of x{(gX) éomes not only
from the electronic band structure but also from the wave vector

dependence of the electron-lattice matrix elements.
3.2. Results and discussion

First, we have calculated the bare electronic
susceptibility, Xo(q), for NiAs-type CoAs. Réflecting a good
nesting of the Fermi surface, there is a remarkable peak at the M
point as shown in Fig.3-2. This result indicates that the
lattice distortion described as a frozen phonon at the M point
is likely to be realized in CoAs.

The MnP-type distortion is described as a frozen
longitudinal phonon of MZ mode at the M point in the Brillouin
zone. This (MZ) mode consists of displacements of metal ions in
the x- and z-directions and those of anions in the z-direction as

follows:

M4 : 01(X1—X2) + c2(z1+z2) ¥ 03(23—24).
We have calculated I;i;n'k+q for the phonon wave vector g=I'M as
functions of the wave vector k.

The numerical calculation of the electron-lattice matrix

elements has been made for three cases of k-points in the

s
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Brillouine zone as shown in Fig.3-3 : case a) k-points are along
the TM, AB, CD, EF-line in the k =0 plane, case b) k-points are
along the TA/3, ML/3, A'B', C'D', E'F'-lines in the kZ=FA/3
plane. case c) k-points are along the 2ra/3, 2ML/3, A"B", CU"D",
E"F"-1lines in the kz=2FA/3 plane. In each case the electronic
bands of CoAs and NiAs have the dispersion curves near the Fermi
level as shown in Fig.3-4 and 3-5, respectively. Since, we
confine our consideration to the MZ mode, it is necessary to
calculate the matrix elements between two bands whose product
representation has a compatibility‘relation with the MZ
representation. Two bands denoted by thick curves in each figure
satisfy this relation. The hatched regions in Fig.3-4 and 3-5
denote the regions in which one of the electronic states (n,k)
and (n',k+q) is above the Fermi level and anotherris below the
Fermi level. 1In these regions the coupling between the
electronic states (n,k) and (n',k+q) can contribute to the
electronic energy gain. In the case a), the electron-lattice

matrix is obtained in the following form

x y 2
metal 1 (0,a) (0,e)  (0,b)

metal 2 (0,-a) (0,-e) (0,b)

anion 3 O 0 (d,c) (3.7)
anion 4 0 0 (d,-c),

where a,b etc. denote real numbers and at+ib is abbreviated as
(a,b). The Cartesian coordinates x, y and z are shown in

Fig.2-1. The z-axis corresponds to the hexagonal c-axis.

- 65 -



Introducing the matrix

va ¥ v!f vao #*

v'B
nk;n'k+q1nk;n'k+q+In—k;n'—k+qI )/2

n-k;n'-k+q
(3.8)

1%f(wi,q) = (I

and making the transformation by the use of the unitary matrix U

given by

— v (3.9)

\

we obtain the following transformed matrix:

Xq-Xy z1+z2 23—24 y1-Yo 23+z4

¢

2a2 2ab 2ac Rae 0
2ab 2b° 2bc  2be
v 1u=| 2ac 2bec  2c°  2ce . (3.10)
2ae 2be 2ce 2e2
| 2d° .
0 N 0

This result indicates that the MZ mode, M; mode (z3+24) and M;
mode (y1—y2) remain. In this paper we consider only the MZ mode.
So, we call |a|,|b| and Icl as the metal x-component, the metal
z-component and fhe anion z-component of the electron- lattice
matrix elements, respectvely. We mention that for the

wave vector k along the I'M-line, the matrix element e appeared in

- 66 -



eq.(3.7) vanishes and therefore the transformed matrix given by
eq.(3.10) does not include the matrix elements which contribute
to the M; mode. |al,|b|] and |c| calculated for CoAs and NiAs are
shown in Fig.3-6(a) and 3-7(a) as functions of k. The

calculated results for wave vectors k which are inside and
odtside the hatched regions of Fig.3-4 and 3-5 are denoted by
solid and dashed lines, respectively. To examine a reduction of
the free energy due to the lattice distortion, we have calculated

the quantities, laIZ/IEnk—E |, lblZ/lEnk_En'k+ql and

n'k+q
|c|2/lEnk_En,k+q| as functions of k. The results for CoAs and
NiAs are shown in Fig.3-8(a) and 3-9(a), respectively. Similar
calculation has been made for the case b) and case c¢c). In each

case the diagonal parts of the transformed matrix U—1IU are

obtained in the form

-13 _ 2 -
(U IUJgg =2a! for £=x,-x, ,
(07'10],, =20'%  for g=z 4z, ,
-17 R _
(U7 1U),, =2h for £=z5-7,.
la'|,|b'| and |h| calculated as functions of wave vector k are

shown in Fig.3-6(b) and (c) for CoAs and 3-7(b) and (c) for NiAs.
Furthermore we have calculated the quantities Ié'[2/|Enk—En,k+q|,
|b'|2/|Enk—En,k+q| and lh|2/Enk—En,k+ql which represent a
reduction of the free energy due to displacements of metal ions
in the x-direction and in the z-direction and those of anions in
the z-direction, respectively. The results are shown in
Fig.3-8(b) and (c) and 3-9(b) and (c). The results shown in

Fig.3-6 and 3-4 indicate that in the wide hatched region of the
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wave vector k the metal x-component |a| has a larger value than
the metal z- and anion z-components |b| and |c|. This means

that the displacements of the metal atoms are most likely to be
Tealized in the x-direction as observed. Furthermore, from the
resulis for CoAs and NiAs shown in Fig.3-8 and 3-9, we have

found that the reduction of the free energy in ColAs is larger
than that in NiAs. This is consisteﬁt with the observations that
CoAs réveals the transformation from the NiAs-type to the MnP-

type but NiAs does not.

- 68 -



X4q) states/Ryd unit cell

]CX)-- ° S o v o

507

r ™M K A L H

Fig.3-2. The bare electronic susceptibility xo(q) of CoAs.

There are peaks at the M point and the L point.
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(a)

Fig.3-3.

electron-lattice matrix elements are denoted by

(b)
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(c)
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k-points used in the calculation of the

cross points.
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Fig.3-4. Dispersion curves of the band of CoAs near the

Fermi level along the directions denoted by the
dotted lines in Fig.3-3.
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Dispersion curves of the band of NiAs near the

Fermi level along the directions denoted by the
dotted lines in Fig.3-3.
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CoAs

metal x

metal z

|=1.0ev/A

' Fig.3-6(a). Electron-lattice matrix elements calcﬁlated for
CoAs as functions of wave vectors k denoted in Fig.3-3 for
the case a). The metal x-, metal z- and As z—components of
the electron-lattice matrix elements represent the

quantities |a|,|b] and |c|, respectively
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[=1.0eV/A

Fig.3—6(b) and (c). Electron—latticeimatrix eleménts calculated
for CoAs as funcﬁions ;f wave vectors k denoted in Fig.B;B
for the case b) and the case ¢). The metal x-, metal z- and
As z-components of the electron-lattice matrix elements

represent the quantities |a'|, |b'land |h|, respectively.
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. metal X-l
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As Z
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Fig.3-7(a). Electron-lattice matrix elements calculated for
NiAs as functions of wave vectors k denoted in Fig.3-3

for the case a).
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Fig.3-7{({b) and (c) Electron-lattice matrix elements calculated

)

or NiAs as functions of wave vectors kX denoted in

ig.3-3 for the case b) and the case c).

o
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|=4.0eV/AZ

. 2 ' 2
Flg-3—8(a)‘ Ial /IEnk-En‘k+ql’ ]bl /[Enk_En'k%-q[’
|c|2/|Enk—En‘k+q] calculated for CoAs as functions of k

for the case a).
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’hlz/!Enk—En'k+ql calculated for CoAs as functions of k

for the case b) and the case c).

- 78 -
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Pig.3-9(a). |al®/|5, - , 101?/]E -

nlk+ql ?

| calculated for NiAs as functions of k

n.Y k+q l

2 -
] /lEnk—bn‘k+q

for the case a).
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Fig.3-9(b) and (c). |a'|*/|E -E |, 1o1|%/]E -E

n'k+q n'k+ql’

{h|2/|Enk—E calculated for NiAs as functions of k

Il'k“"q‘

for the case b) and the case c).
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§4. Magnetic properties of FeAs, CoAs and Nils.

'Among FeAs, CoAs and NiAs, FeAs becomes a double helical
magnet below TN= 77 K with a helical propagation vector of
Q=0.375%x(2m/c) along the c—axisA). The unit cell of FeAs whose
crystal structure is of MnP-type at all temperatures contains
four metal atoms 1, 2, 3 and 4 as shown in Fig.4-1. By a neutron
diffraction experiment it has been found that the magnetic moment
on each Fe atom is in the plane perpendicular to the helical axis
and the phase angles ¢ij between the magnetic moment on the ith
atom and the jth atom‘in the unit cell are given by ¢12=¢34=1400
and ¢23=¢41=~72.50(see Fig.4-1). The magnetic moment observed at
12 K is O.5UB/Fe. On the other hand, CoAs and NiAs do not show
any magnetic ordering. 4 :

15)

The paramagnetic susceptibilities of FeASA) and CoAs show
anomalous temperature dependence: in the high temperature range
the paramagnetic susceptibility X obeys the Curie-Weiss law and
as temperature decreases )("1 vs. T curve shows a positive
deviation from the Curie-Weiss law and it passes through a broad
minimum at a certain temperature (about 200-300 K). On the other
hand, the paramagnetic susceptibility of NiAs whose crystal
structure is of NiAs-type is almost temperature-independent in

16). These facts indicate that the

the whole temperature range
temperature dependence of the paramagnetic susceptibility is
closely related to the crystal structure. The magnetic moment of

FeAs estimated from the Curie constant is 3.1UB/Fe, which is much
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larger than the moment obtained by a neutron diffraction
measurement at 12 K. This fact indicates an itinerant character
of d electrons in these compounds. Further, the magnitudes of
paramagnetic susceptibilities of FeAs and CoAs are much larger
than the values estimated from the calculated density of states
at the Fermi level, D(EF). This fact suggests a strong electron
correlation in these compounds.

Qur purpose is to make clear whether these magnetic
properties of FeAé, CoAs and NiAs can be explained or not on the
basis of the electronic band structures obtained by the APW
method. In §4.1, we study the paramagnetic susceptibilities of
FeAs, CoAs and NiAs. The observed anomalous temperature
dependence of the paramagnetic susceptibilities of FeAs and CoAs

25)

are very similar to that of FeSi which is a nearly
ferromagnetic semiconductor. Takahashi and Moriya explainea the
observed peculiar paramagnetic susceptibility of FeSi by their
spin-fluctuation theory26), in which the longitudinal
spin-fluctuation that is called temperature-induced local moment
plays an important role. They pointed out that the negative
mode-mode coupling at low temperatures gives rise to a rapid
decrease of x_1 with increasing temperature at temperatures lower
than the temperature of the minimun of x-1, and that the effect
of saturation of the local amplitude of spin-fluctuation leads to
the Curie-Weiss behavior in the high temperature side27).
Furthermore, for a semiconducting FeSi a characteristic shape of

8)

the density of states arround the Fermi 1evel2 plays an
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important role in causing the negative mode-mode coupling.

As shown in §2, in MnP-type CoAs and FeAs the density of
states of the p-d mixing bands reveals a characteristic beha;ior:
the Fermi level is located at a dip of the density of states
p(E) and below the Fermi level p(E) increases steeply. Therefore,
for the paramagnetic susceptibilities of FeAs and ColAs we can
expect a similar explanmation to that for FeSi. We calculate‘fhe
paramagnetic susceptibilities of CoAs and FelAs, by taking account
of spin—flpctuations.and a characteristic feature of the density
of stateszg).

In §4.2, we explain the double helical magnetic ordering of
FeAs by using the model Hamiltonian based on the tight-binding
approximation. The transfer terms included in the model
Hamiltonian are determined so as to reproduce the electronic band
of FeAs obtained by the APW method. The Hartree-Fock
approximation i1s adopted to the Coulomb interaction terms.
First, we study the instability of the paramagnetic phase against
the formation of a magnetic ordering. Secondly, the wave vector
Q and the phase angle ¢ of the most stable double helical spin
density wave (SDW) state at O K are calculated by minimizing the
total electronic energy. From the amplitude of the SDW

determined self-consistently, we evaluate the magnetic moment.

- 83 -



e 4 |
A%%\ DI

C- 1"

Fig.4-1. Double helical magnetic structure of Fels. ¢11,=135O
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4.1 Paramagnetic susceptibilities of FeAs, CoAs and NiAs
4.17.17 Formulation

For the purpose of explaining the anomalous temperature
dependence of paramagnetic susceptibilities of FeAs and Cols,
we adopt the unified theory of spin-~-fluctuation developed by
Moriya and Takahashi. The starting Hamiltonian is a single-band
Hubbard Hamiltonian

+ Ho & H', (4.1)

H = HO I
Ho=z Zt..aT a, ., : (4.2a)
fj6 137107 jo
Ho = U§ niyny | : (4.2b)
H'=(ho/2)§(nj+“nj+)’ i, (4.2c)

where aio(aio) is an annihilation (creation) operator of an

electron with spin o0 at the ith site, n.

jo is the number operator

) tij is the transfer integral, U is the intra-atomic Coulomb

integral and ho is the magnetic field applied along the z-
direction. We rewrite Hy as
U

Hiz"Z_E[(nj++nj+

)% =(ngymny R0 (4.3)

The first and the second terms of eq.(4.3) denote charge and spin
density operators, respectively. Using egs.(4.1) and (4.2), the

partition function Z (or free energy F ) of the system is written
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as

_BF ~B(E +H_+H') —B(F . +AF)
Z =e = Trle 0 I ] = ¢ C , (4.4)
where

B=1/T (T :temperature) , (4.5a)
-BF -BH

e 0. Tr e 0 , (4.5D)
~BAF B8

e =<TT exp[—f HI(T)+H’(T)dT]> , (4.5¢)

0
' ' BH -BH BH -BH
H (T)=e OHIe O #wi(t)=e %mre O, (4.5d)

T is a time-ordering operator with respect the imaginary time T,

and < > denotes average value defined as

-B(H,+H,)
CAS>= TrAe ol ] (4.6)
- —B(HO+HI) ’
Trle ]
By evaluating AF, we can calculate the paramagnetic
susceptibility as a function of temperature. The self-consistent

equations to obtain the paramagnetic susceptibility are as

follows26]30’31) (see Appendix B)
X = X00 (4.7a)
1 —2IXOO
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NIX - == 1, (4.7b)

qu= gm 2U  9x
X = so% § ! , (4.7¢)
ANTom 1 - 21X
q Xqn |
-z 15 =
NX o~ Xqm™ —ﬁ—g Xqm (4.74d)
T = —B(E:—OB)
L(x)= - =% 1 dep(e)ogli+e 1, (4.76e)
[RFES
B=(nUx)1/2,

where p(e) denotes the density of states and m is an integer

which is related to the frequency as wm=2ﬁmT. The quantity x

represents
related to

follows

2
{s’;>=
SJ

Furthermore, we replace iqm by the following expanded form

_Xqm
X00

for

where A4,

ol

the average squarée amplitude of the local field and is

the average sduaré amplitude of local spin density as

(x- 23)

. (4.8)

I
U

32)

1 - Ago-ig-& | (4.9)
q
a9 £4qy, 0 = w 2 vg,
» Qg and v are parameters. Among then, a5 and v are

determined as
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volume of the unit cell),

3
43 20

vqg =D (D: band width).
For convenience of the calculation we use the following non-

dimensional parameters instead of A and c

. 3 2 _ch
o>= 5 Aqo y c——ag .
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4.1.2 Results and discussion

Using eqs. (4.7) and (4.9), we have calculated the
paramagnetic susceptibilities of FeAs and CoAs as functions of
temperature. In order to take account of the band structure
calculated by the APW method, we have replaced the density of
states by model density of states which consists of a set of
straight lines as shown in Fig.4-2(a) and (b), respectively. The
characteristic behavior of the density of states, such as the
Fermi level is located at a dip of p(€) and p(e) increases
steeply below the Fermi level, is well reproduced by the model

1 of FeAs and CoAs are shown

density of states. The calculated ¥
in Fig.4-3(a) and (b), respecti§ely. For each‘compound, the
;obsefved anomalous temperature dependence of )(_~1 is qualitatively
explained. Quantitatively, however, the minimum position of the
calculated x_1 is shifted to higher temperature side compared
with observation, and the calculated absolute values of )("1 are
larger compared with the observed ones.

We also calculated’paramagnetic susceptibility of NiAs whose
crystal structure i1s of NiAs-type. In NiAs the density of states
near the Fermi level is quite different from that of FeAs. The
calculated paramagnetic susceptibility is almost temperature
independent as shown in Fig.4-3(c).

In order to clarify the origin of anomalous temperature
dependence of the paramagnetic susceptibility observed in FeAs

and CoAs, we have calculated average square amplitude of local
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field x as functions of temperature. x is related to the local
moment as shown in eq.(4.8). From the results shown in Fig.4-4,
we can see that X increases as the temperature increases. In Fels
and CoAs X increases rapidly at about 300-400 K and 1is saturated
at much higher temperatures. On the other hand, in NiAs x
increases slowly as the temperature increages and it is not
saturated. These results indicate the existence of a temperature-
induced local moment in FeAs and CoAs, but not in NiAs. Both the
rapid increase of x at low temperatures and the saturation of the
longitudinal spin-fluctuation at high temperatures play an
essential‘role in the bahavior of the paramagnetic
susceptibility. The physical picture of the anomalous
temperature dependence of the paramagnetic susceptibilities of
FeAs and CoAs is as follows: at low temperatures, due to an
increase of an amplitude of the longitudinal spin-fluctuation,
')("1 decreases (X increases) with increasing temperature. At
higher temperatures, however, the local moment is induced by the
saturation effect of the longitudinal spin-fluctuation, and
therefore )(—1 obeys the Curie-Weiss law as a function of
temperature.

Such behavior of the longitudinal spin-fluctuation is
strongly related to a shape of the density of states near the
Fermi level. In order to examine the relation between the density
of states and the paramagnetic susceptibility, we consider two

functions as follows:
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agﬁx) = - dEO(E)g%[f(E—B)-f(€+B)] , (4f1oa)
Lo
2 (e
é_ééﬁl = |deo(e) (55 ) { 5lf(e+B)~£(e-B)1-[8(e+B)+8(e-B) 1},
3ax N

(4.10Db)
where f and ¢ denote the Fermi distributién function and -3f/33B,
*esmectively; As seen from eq.(4.7a) and (4.7b) a behavior of
3L(x)/3x is explicitly reflected in the behavior of the
paramagnetic susceptibility. 2 L(x)/ax is related to the
coefficient of mode-mode coupling. When azL(x)/Bx2 is negative,
a longitudinal spin-fluctuation is strongly developed as
temperature increages because of negative mode-mode coupling, and
therefore the temperature-induced local moment easily arises.
From eq. (4,10a) and (4. 10b), we can see that

(1) When p(eF) is small and the Fermi level is located at a
steep dip of the density of states, -9L(x)/9x increases
rapidly with increasing temperature at low temperatures.

2 is positive, 82L(X)/8X2 becomes

F

(2) When 3 p(a)/as2

le=c
négative.

If a band has a characteristic shape of the density of
states as denoted in (1) and (2), we can expect the anomalous
temperature dependence of the paramagnetic susceptibility as
observed in FeAs and CoAs. In fact, in FeAs and CoAs, the
density of states obtained by the APW band calculation satisfies

both conditions denoted in (1) and (2). On the other hand in



Nids the calculated density of states does not satisfy both (1)
and (2).

The self-consistent equations (4.7) and (4.9) contain three
parameters A, ¢ and U. For the Coulomb integral we have adopted
the values of U=0.5 - 0.7 Ryd. This is reasonable for 3d-
transition metals such as Fe, Co and Ni. Moriya pointed out that
the parameter A can be estimated from the spin wave dispersion
curve and A was estimated to be 0.35 [Kz] for Co and 0.77 [KZ]
for Ni33). In the present work we have adopted 0.7 [32] for A

and 0.05 [8 'Rya™'] for &.
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Fig.4-2(a) and (b). Model density of states of FeAs and CoAls.
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Fig.4-2(c). Model density of states of NiAs.
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o' . o [
2 | ce e
200 400 600
Fig.4-3(a). Calculated paramagnetic susceptibility of Fels

:for U=0.5 and 0.6 Ryd (thick curves).

The used parameters are <o>=0.4 and c¢=0.05.

Open circles represent the observed results.
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260 | 400 600 | T(K)

Fig.4-3(b). Calculated paramagneiic susceptibility of CoAs
for U=0.5 and, 0.7 Ryd (thick curves).
The used parameteré are <o»>=0.4 and c=0.05.

Open circles represent the observed results.
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Fig.4-3(c). Calculated paramagnetic susceptibility of NiAs for

U=0.5 Ryd. The used parameters are <g>=0.4 and

c=0.05.
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Fig.4-4. The average square aﬁplitude of‘local field, x, for

FeAs, CoAs and NiAs.
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4.2 Double helical magnetic ordering of FeAs

4L.2.17 Model Hamiltonian

The crystal structure of FeAs is of the MnP-type and four Fe
atoms and four As atoms are contained in the unit cell. From the
results of the band calculation, it has been found that the
electronic states near the Fermi level, which play an important
role in magnetism, arise mainly from Fe-d orbitals. If we pay
attention to Fe atoms only, we can use a smaller unit cell as
shown iniFig.A—S, in which two Fe atoms are contained. 1In this
paper we consider a system having two atoms (a and b) in the unit

cell and use a simplified tight-binding model in whith a single

orbital’ for each atom is assumed. The anisotropy energy is
neglected. The Hamiltonian we consider is
- T T t
H "Z.Z t1(aic jo jo? 10 Z L to 10 jo bjc 10)
ijo ijo
; + ; (4.11)
+ 1 tha. a., + 1t
Yoo 3%ic"i'o j510 3 30 j'o

where al (a ) and bl (b

N
io jo 30) are the creation (annihilation)

operators of the electron on the a-atom in the ith unit cell and
that on the b-atom in the jth unit cell, respectively, and

..].

- ‘ t .
N =8y 85 and nJ _bgobJo t1 and t2 are the transfer integrals
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between nearest and sécond nearest neighbor a-b atonms,
respectively, and t3 is the transfer integrals between nearest
neighbor a-a and b-b atoms (see Fig.4-5). U is the intra-atomic
Coulomb integral for each atom. We apply the Hartree-Fock
self-consistent approximation to the single-orbital intra-atomic

Coulomb interaction terms:

0,05 = <o1>o2 +—01<02> -<01><o2> N (4.12)
where 0, and 05 denote operators such as a;cak+qo etc. and <o1>
and <02> denote average values. By using the Fourier
transformations given by

1 -iker.
2y 5= —7) 215° *
/N k - - (4.13)
and
1 -ike (r.+7)
RV S |
the Hamiltonian becomes
=7 [T,0)af b+ 7o (0)bl a, + T (k)(al a, + bl b, )]
ko 1 ko ko 1 ko % kg 3 ko ko ko ko
20T 7 IA al s 4B bl b NUZ[A B B_,]
kqo a-0“k+tqo ko q o k+qo ko q+ q+ gt q¥
T T - 7T T
‘Uiq[Aq ety k++_Bq Prqe Pirt. AqPuPiceqy B qPict Prerqy )
(4.14)
+ WU L] Ag|#+B01 %,
a q q

where
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_ + ' _ +
Ao — < % SR , By — < £ bl Pyigo”
N 1 < i > BY = 1 <7 bl b > (4.15)
A B e S U
! + i L + &
AT =< >= A B” = <7 bl b >=B
-q 3 é ki *k-qt q’ -a % ki k-g+” Tq
and
ike (r.-r.-1) ik-(ri—rj—r)
T, (k) =t e +t,] e (4.16)
i i
ik-(ri—rj)
T3(k) = tBZ e

The summation in eq.(4.16) is taken for the neighboring pairs
connected by each transfer integral. We denote the poéition
vector of the a-atom in the ith unit cell as T and that of the
b-atom in the jth unit cell as rj+1.

In the paramagneic state, only gq=0 terms among AqO and BqO

are non-vanishing and AO+ (BO+) equals A Then, the

ov (Boy)-

Hamiltonian for the paramagnetic state is given by

_ + * ot ‘ +
H.= %O[TT(k>akobko Ty ()b ay s+ (T5(k)+UAG)ay a)
(4L.17)
. | + 2 . 2
#(T5 (k) +UBG) b by ) - WO(&Z + Bf 1.

Introducing new operators Cyg and Bko defined by
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1/2

T |
a = o -
« 1/2
) T |
= Q +
o
T, (k
+ 1 +
= ( -
akO 2!T1 (k)l akO
) 1/2
T, (k
+ 1 +
by = |————| (a)_ +
ko 21T, (1) | *xo

the Hamiltonian of eq. (4.17)
S 5

H =YY [ B o @, + E

ko k ko kc k

The eigenvalues Ei and Ei are

Eg = |T, (k)| + TB(k) + UA
8 ,
By =—|T1(k)| + TB(k) + UB

T ),

Bko

is diagonalized as follows:

2 1.

2
- NU [AO + By

.i,.
8koBko ]

given by

O!

O)

where ¢ and B denote band suffices.

Using o, , and Bko

beconmes
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(4.

(4.

, the Hamiltonian given by eq.(4.14)

.18a)

.18b)

18¢c)

.184d)

19)

20a)

.20b)



— a 7 g .t
H = Eg [ By %%e®%o * Bx Birofio |
+053 'L (A v (k,q) (af 8t Y(ap -8B, )
kq o q-o" A/ %% 4q0” Pktqo’ \*ko™ ko

.'.

+ By Y(,a) (of, o+ Bl V(0 4By ) ]

q-o

v T t
) z [Aq Y (k;Q)(ak+q+— Bk+q¢)(ak+_8k+)

kq

* t t
+ By v(k,a) ogyq % Byiqy) (0 Byy)
o + + (4.21)
+ A_q Y(k,q)(akf— Bk+)(ak+q¢—6k+q¢)

_ + +
+ B_q Y (k,q)(ak++ Bk+)(ak+q++8k+q¢)]

' 42 o+ 2
where
T3 (k) T (k+q) 1/2
v(k,q) = (4.22)

AIT‘] (k) l IT1 (k+q) |

7' in eq. (4.21) denotes that terms of g=0 are excluded in the
q .

summation.
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2y

Fig.4-5. Unit cell of the lattice constructed by Fe atoms.
Two sublattices are denoted as a and b, respectively,

and transfer integrals are denoted as t1, t2 and t3.
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4.2.2 Instability of the paramagnetic phase
L.2.2(a) Formulation

First, we study the instability of the paramagnetic phase
against the formation of a magnetic order whose spatial variation

34)

is described by the wave vector q We consider the
interaction between a magnetic moment and a magnetic field. In
an itinerant system, z-component of spin density is_wfitten as

2
Sz(r)““BE['¢ (r—ri)I (ai+ai+—ai+ai+)

’ 2
+|¢b(rhri—r)l

T T
CICYSLIFLI o (4.23)
2 and ¢b in eq.(4.23) represent Wannier functions on a- and b-

atoms, respectively. After the Fourier transformation Sz(r) is

written as

_ i(q'+G)er - a a -iGsT b b
Sz(r)—uBg‘ée | [I_q.GsZ(—q')+e I_q,GsZ(—q')] (4.24)
.Wwhere
SZ(‘q)=£(3;+ak-q++a;+ak—q+) ’ (4.252)
by yos(nt t |

- 105 -—



a ; f a 2 i(q+G)'r'

I 47 |65 (x")]| e dr' , (4.25¢)
( 2 i(q+G)-T!

12 =g |1e°(x)] e ar' (4.25d)

q: a wave vector in the Brillouine zone,
G: a reciprocal lattice vector,
V: volume of the crystal

When magnetic field H%(q) and Hb(q) which are conjugate to
.

8 -q) and s:(—q), respectively, are applied to the system, the

S

Zeeman interaction is written as

Bi=upl1?sd (<) B (@)+10 o2 (-8 ()], (4.26)

a
-q, }
except G=0 in eq.(4.24), considering that spatial variation of

where Ifqu 0 etc. To obtain eq.(4.26) we neglected the terms
the Wanniér functions in the unit cell is small.
Wave number dependent magnetic moments of A- and B-

sublattices are defined as

a _ a b _ b _
Within the framework of the linear response theory, we obtain
the following relationBS):

3 - -ab
5% (q) %) %) [IM*(q)| M*(q)
= = x(q) (4.28)
-b - b
E° (q) x°% (@) %°P(a) | |M°a) (@)

by solving equations of motion of the magnetizations (see

appendix C). iaa(q) etc. in eq; (4.28) are calculated as
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1 Iy (@)+ VT (@)?- |T,(a)] %)
%% (q)= - —5—s — S i ,  (4.29a)
1 r,(a)"
X*°(a) = ey = (4.29b)
2ug 21, T7(@) -ITy(a)]
oo, 1@ Ui @ [Tya)|?)
Xbb(Q) == 5 b2 ! 2 ! ) < s (4.29¢)
2ug 1 14| r(a)*-Ir,(a)|
1 r,(a) *
X°%(q) = —m——p ——= 5 = x*°(q) (4.294)
2ug Ip 120 T7(@) -IT,(a)]
where
r.( _L aa BB aB Ba
1(a) = o i[xo (k,q)+xq (k@) +xg" (k,a)+xg (k,a) 1, (4.30a)
1 T)(k+q)T, (k) '
ry(q)=—75— L 1% (k@) +xEP (k@) -xGP (k,0) -xg” (k,a) 1,
4N k| T, (k+q) || T, (k)| |
(4.30b)
£(EY) - £(E, )
XY (k,q)=— K (4, = a,B) (4.31)
Ek - Ek+q

We consider the case where a- and b-gites are occupiled by
the same kind atoms, therefore Iz = Ig and iaa(q)=§bb(

instability condition for the paramagnetic phase is obtained by

q). The

solving the following equation:
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- 2 -ab 2
detlx(a)] = X**(@)° -|X*"(a)|° =0 . (4.32)
By 1nser£1ng eqs.(4;29)‘aﬁd (4.3657into eq ~(4;32), we obtain
1+ 20T, (q) + URr5(a)-|T,(a)]?] = O (4.33)
From eq. (4.33), U is solved as
1
- (4.34a)
ry(a) + [ry(a)]
U =
1
- . (4.34D)
ri(a) - |ry(a)]

If the minimum value of U given by eq.(4.34) is obtained for q=Q,
we may say that the magnetic ordering described by the wave
vector Q is most likely to be realized. From the definition of
F1(q) and rz(q) given by eq. (4.30), it is found that F1(q) is
always negative and |F1(q)|>|F2(q)|. Therefore, U given by eq.
(4L.34b) takes a smaller value compared with that given by eq.
(4.34a). Hereafter, we consider only eq. (4.34b) as an
instability condition of the paramagnetic phase. We denote U

°(

given by eq. (4.34b) as U, - If H*(q)=H"(q)= 0, eq.(4.28) leads

to the relation

22N (q) + 3®P(q)MP(a) = 0 . | (4.35)

For q=Q, eq.(4.35) becomes

& —_— (4.36)
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From eq. (4.32), 1%X%%(Q)] equals Iiab(Q)l. Therefore, we have
found that the absolute value of M2(Q) equals that of Mb(Q). In
real space, the magnetic moments on a- and b- sublattices are
expressed as

M3 (r)= M3 (Q)e YT, MO(r)= MP(Q)e YT . (4.37)
The relative phése angle, ¢12,between the magnetic moments on a-

and b-atoms in the ith unit cell is defined as

M°(r,+1) MP(Q)  -iQet io,, .
= — e z e . (4.38)
M (r) o ME(Q)
By eqs; (4.36) and (4.38), ¢12 is determined as
1045 X*2(Q) _iq.q
e =—-—*_ab—~-e
X~ (Q)
or
-aa
: X - (Q) - q. '
%12 = 7 + argl —5 . 7 arg[e_lQ . (4.39a)
X (Q)
From eq. (4.29), %22(Q) is a real quantity and a phase factor of
iab(Q) arises from FZ(Q)*, therefore ¢4, is given by
by, = T 4 arg[Fz(Q)]_+ arg[e—iQ.T] | (4.39b)
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4.2.2(b) Results and discussion

In order to use the model Hamiltonian given by eq.(4.11) for
the real substance FeAs, we have determined the transfer
integrals t1, t2 and t3 of the tight-binding band so as to
reproduce the density of states of the electronic bands, which
mainly consist of Fe-d orbitals, obtained in §2 by the self-
consistent APW band calculation. Their values are as follows:

t,=-0.07 Ryd, t2/|t1|=—1.0 and t3/|t1|=—0.2. For comparison, we

1
show in Fig.4-6(a) the density of states of the tight-binding
model band calculated by using these values of the transfer
integrals. As seen from the results of Fig.2-12(a) and
Fig.4-6(a), a characteristic feature having two prominent peaks
of the d-band density of states is well reproduced by the model
band. Furthermore, the number of electrons, n, is also a
parameter. We have determined n, namely the position of the
Fermi level, so that the Fermi surface of the tight-binding model
band becomes similar to that obtained by the APW band
calculation as shown in Fig.4-6(b). The value of n is about 1.1.
By using the parameter values determined above, we have
calculated F1(q) and F2(q) as functions of q along the symmetry
lines. 8000 points in the 1st Brillouin zone are used for the
summation over k in eq.(4.30). Then we have evaluated UC given
by eq.(4.34b) as a function of q. The results‘are shown in
Fig.4-7(a) and (b). The smallest Uc is obtained for

q=0.4%(21/c). This value is very close to the observed helical
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wave vector q=0.375x(2n/c). ©Next, by eq.(4.39b) we have
calculated ¢12 as a function of q. The result is shown in
Fig.4~7(c). TFor q=0.4%x(27/c), ¢, 1is obtained as ¢12=1580. This

value is in good agreement with the observed one, 1400.
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states/Ryd unit cell

t] =-0.07 RYd
to/1ty1=-1.0
[ talI1=-02

1.0 ¢

Fig.4-6(a). Density of states of the tight-binding model band.

An arrow denotes the Fermi level for n=7.1.
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v
%

<

Fig.4-6(b). Cross section of Fermi surface of the model band

(right) is similar to that of the Fermi surface of

the APW band (left), when it is folded into the

orthorhombic Brillouin zone.
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Fig.4-7(a). Uc (defined by eq.(4.34b)) as a function of wave

vectors q. An arrow denotes the smallest value.

- 114 -



t; =-0.7Ryd

to/1t41=-1.0
Q%Z , .[1 :].1C)
0.1-
Re [,
TT.:"\/\/
O_
01
._TI:-
0
—();2:‘\\‘—\N\\\\_,/~\
= T orox 0T

Fig.4-7(b). F1(q) and F2(q) as functions of q (left).
(c). LB (defined by eq.(4.39b)) as a function of g

(right).
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4.2.3 Helical SDW state
4.2.3(a) Formulation

In this section we assume that the helical SDW described by
the wave vector Q is realized. In such case the Hamiltonian
4given by eq. (4.14) is rewritten, within the Hartree-Fock
approximation for the Coulomb interaction term, as the following

matrix form:

2
.'. ~ NUH + 2 + 2
H = g Y (k,QH(k,Q)¥(k,Q) + + NU(IAQI +|BQ| ), (4.40)
r
TB(k) T, (k) -UAZg 0
3%
T, (k) T, (k) 0 -UB~
~ 1 3 —Q
H(k,Q) = N (4.47)
+ #*
0 -UBQ T1(k+Q) T3(k+Q) ,
8yt
Piet ¥ oot T
¥(k,Q)= vk, Q)=0 ayy by ay o) Byygy] (4:42)
4x+Qy
Py gy

where n denotes a number of elecrtons of each atom and is given

+ + = -
by n=Ay,+Ay =By, +B,, . AQ’ BQ’ A__Q and B_Q in eq. (4.41)
represent spin densities which are defined by eq. (4.15). With

the use of unitary matrix U, whose elements are expressed as
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%

The eigen-function

Q

QO
§ SRR M

(¢

o= yTy = [ ci

(4.44) a

From egs.

A
to§ ot ot
bkf—U£1U2ucu
4

1.
a =y
kvQy T L

.l..
U3ucu

4
) v, ef
u=1

+ _
bk+Q+— 4uu

With the use of eqgs

1 4
=—1 1

N k u,v=l

+
A

.[.

+
k4

*
U, U

o (H,v=1,2,3,4), H(k,Q) can be diagonalized as

¢

By

Byo

E

vutH(k, Q) uute = of
k3

Ek4

® is obtained as

] 3

cg c; cz 1.

etc. are expressed as

y o PpiqeT

+ + - -
.(4.45), Ay, Bg, AZg and B g

<ol Pty £(E, )
u-3v" % £u£1 Tu"3u” " Tkp'?

;
Cv> _
N
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d.

(4.43)

(4.44)

(4.45)

can be written as



S ! Ly vl rE,)
BN — U, U <c c, > = — U, U, f(E ,
Q N k. U,v= 2U Zl—\) N li=1 2U ZI-U li
1 ; f 00t edte s 1 ; f oo e ) (4.46)
¢ 6,7 = — ,
L R TE LR
T S 14
U < > =
B g~ N %m \Z) 2u V4w % O N £U2=1U2UU4uf(Elm)’
where f(Eku) denotes the Fermi distribution function. From these
eqs.(4.46), we can determine Aa, Ba, A:Q and B:Q self-

consistently as functions of the temperature.
In order to obtain the most stable helical SDW state, we

calculate the total electronic energy of the SDW system as a
function of Q. This energy is expressed as

NUn2 2 2

E +NU|A| +|Ba| ). (4.47)

4 |
SDW = £U£1Ekuf(Eku) +

The second and the third terms of the right hand side of eq.
(4.47) denote a correction of interaction energy contained in
one electron energy, Eku' On the other hand thé total electronic

energy of paramagnetic phase is obtained from eq.(4.19) as

2 .
y+ B or(El)] - Ngn (4.48)

=7 [E® f(EY e .

E ,
para ko k ’ k

, + - = g
If we set AQ = BQ = A_Q— B_Q—O in eq.(4.47) Eqpy becomes equal
+ Lo+ . : .
’to Eparaf AQ and BQ determined self-consistently represent the

Fourier components of the spin densities which are modulated by
the wave vector Q on the A- and B- sublattices, respectively.

Phase angle ¢ 10 between moments of a- and b-atoms in the same
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unit cell is obtained by the following relation:

+ +
boo 3 QT ity (4.49)
a Q

4.2.3(b) Results and discussion

We have calculated Egp, given by eq.(4.47) for zero
temperature. For the parameters t1, t2, t3 and n, the same
values as used in §4.2.2 have been adopted. ESDW calculated
as a function of U for various Q is shown in Fig.4-8(a). For
each Q, if U < Uc’ where UC has the same value with that given by
eq. (4.34b) , ESDW becomes equal to Epara becaﬁse Aa, Ba etc.
do not have self-consistent solutions of finite values, except
zero. In Fig.4-8(b) we show ESDW calculated as a function of Q
for U/|t1|= 6 and 8, respectively. From the. results shown in
Fig.4-8(a) and (b), it has been found that the lowest value of

E is obtained for Q=0.4%x(2m/c). This fact means that the most

SDW
stable helical SDW state is realized for Q=0.4%x(2n/c). This
conclusion is consistent with the result obtained from the
paramagnetic instability studied in §4.2.2. DNext, bqp given by
eq. (4.49) is calculated as a function of Q and the result is
shown in Fig.4-8(c). The Q-dependence of ¢12 is similar to that

shown in Fig.4-7(b). For Q=0.4%(27/c), becomes about 1530.

o)
12
IABI, which is determined self-consistently, is plotted in

Fig.4-8(d) as a function of U for various Q. If we take
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+

Q

Q=0.4%(2m/c). This value corresponds to the observed moment 0.5

U/|ty]=4.5, the amplitude of SDW, |A.|, becomes about 0.25 for
uB/Fe, since the magnetic moment per an atom equals 2|AQ[.
Other MnP-type compounds FePBé), CrAsB7) and MnP38) show
also double helical magnetic ordering with propagation vector
along the c-axis. All these magnetic ordering would be
explained on the basis of similar argument to that described in

§4.2.
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N t;==0.07 Ryd
| to/1t1=-1.0 /
21 t/l4==02 4

n=1.10 ,/

U/t

—— Q=0.4<"
._.___v Q:O
—-— (Q=0.8+2%

Fig./-8(a). ESDW as functions of U for some values of wave
vectors Q. The double-dot-dashed line (—m--—)

denotes E .
para
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t] =-0.07 R}/d

£/ lty]=-1.0
ty/1ty1=-0.2
Espw n=1.10
N
03P\ 7
\X\x\x/x/ ’/L(J//l’[]l =8
0z
-0.27 | B
—03 _ ></
| e
0l e
x\\xxx/x U“t]‘: 6
_QS_-
x s >
[ Q | Tﬂ:

Fig.4-8(b). ESDW for U/|t1l = 6 and 8 as functions of Q.
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t] =-0.07 RYd

to/1ty1=-1.0
(1)]2 | t3/ H]I:—-OZ
| n=1.10
T - |
\
O -
o
2
< Q B

Fig.4-8(c). 015 (defined by eq.(4.49)) as a function of Q.
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1AST t,=-0.07 Ryd ,
041 to/hl=10 =
| ty/1tyl=-02
031 n =1.10

0.2+
0.11
} { : : 4 t LJ/It]I
5 10
— Q=0.6<%
e Q:O
—-— Q=0.82%

Fig.4-8(d). lAal for some values of Q as functions of U/|t1].
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Appendix A Lattice dynamics of a NiAs-type compound

We have calculated phonon frequencies of NiAs—type>CoAs
within the rigid ion model and the harmonic approximation
assuming short range forces between some neighboring atoms. Long
range Coulomb interaction between distant atoms is neglected as
it is considered to be small because of screening effectvof
conduction electrons.

Accompanied with displacements of atoms, crysfal potential

is expanded within the 2nd order of the displacements as

2

oV oV

1
N a
v = VO t ol a Yy ¥ L
Lva BL&v 0

a 8 Ugvug'v'
2 2va £ 'W'B 3 ]
Yyl npal g -

' )
(A1)
where Lgv denotes the displacement in the ¢ -direction of the vth
atom in the £th unit cell. Derivatives in eq.(A.1) mean the
values at the equilibrium points and the 1st derivatives ét the
equilibrium points are zero. The Lagrangian of the system is

written as

2 1 B a
\Y

B8
- V. - — A.2
O 2 léa zzv'8¢2vl'“ EAR ’\< |

where M) is mass of the vth atom and we have defined as

aB _
¢2v2'v'—

By using eq.(A.2) the equation of motion is obtained as
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o aB
M u = - o] A.
Ve AV QZ'\) '3 ,Q,\)Q, IVIUQI\)Y. (A.4)
The equation of motion given by eq.(A.4) can be solved by using

the Fourier transformation. We express the displacement of an

atom as
1 —-i(q-Rg-w t)
e _ q
vT /W, %nQ o e e

where QQA is the normal coordinate of a phonon with wave vector q
and mode A, szk(v) is a polarization vector and(nq denotes a

phonon frequency. Substituting eq.(A.5) into eq.(A.4), we obtain

-

af .
o igq- (R, -R, ;)
wé Q (\)) = Lve 'v! Bq}\(\)') e R:Q, R,Q,' (A-é)
L'vg /M&P%,
Here we define a dynamical matrix as
55" ig (R, -R ,)
DQB(\) V) =7 _Ava vt AL AL N (A.7)
1 v B M

Using eqs.(A.6) and (A.7), phonon frequencies and polarization
vectors are obtained as eigen-values and eigen-vectors of the
dynamical matrix.

The parameter ¢g€l is a force in the a-direction acting on

I\)l
the vth atom in the 2th unit cell due.to a displacement in the
B -direction of the v'th atom in the 2 'th unit cell. We have

treated these forces between atom a and atom b as follows:

We assume that ¢a8 depends only on relative distance between
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two atoms r=[r_—r,|. In this approximation ¢i% is written as
<

aB To 2
d)ab =—[(60'-B— r2 )(bab + rar8¢ab ] y (A'S)

where r, denotes a-component of the vector T, Ty and

1
t 1 4dv 2
¢ab ; E; ) bap~ “;j E;Q (A.9)

We take x'-axis parallel to T, ~Tys and take y}- and z'-axes
perpendicular to the x'-axis. The force which acts on atom b

,F% (ea=x",y',2') , due to displacement of atom a ,uz, can be
expressed as

s

X' r 2 3 4 X"

Fb ~%5b 0 Ya
v! - t y'

¥y = 0 -6, O w ol (A.10)
z! t z !

Fb 0 0 ~bab U

where suffices § and t denote longitudinal and transverse,
respectively. We have taken into account four kinds of force

constants between neighboring atoms (shown in Fig.A-1) as

follows:
¢13 : the nearest neighboring Co-As,
dqiq Co-Co neighboring in the c-plane,

¢33 : As-As neighboring in the c-plane,
dqp Co-Co neghboring along the c-axis ,

The values of force constants used in the calculation are as

follows:
L _ t_
$5,= 2.0 , ¢;,=0.20 ,
t
ob,= 4.0, 07,= 0,40
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054= 2.0 , ¢3;=0.20

055=12.0 ,  ¢3;=1.20 . 10% dyn/co
The transverse components of the force constants are assumed to
be 1/10 of the longitudinal components.

Calculated phonon dispersion curves along the symmetry lines
and density of states are shown in Fig.A-2 and A-3, respectively.
The Density of states is calculated using phonon frequencies at
60 points in 1/24 Brillouin zone. As shown in Fig.A-3 the phonon
density‘of states 1s dividediinto two parts: 0- 290 cm—1 and 290'
~ 400 cm~'. Although the oscillation of Co and that of As
hybridize each other, the lower energy part mainly consists of
the oscillation of As and the upper energy part mainly consists
of that of Co. Phonon frequencies of the MZ mode, by which the
MnP—tjgé distortion is described, are 166.3, 29T.ﬁ and 394.7
cm-1. We expect that these ﬂz phonon fréquencies will be soft
due to the electron-lattice interaction.

In order to fit the calculated phonon frequencies to
experimental result, we show here an analytical expression of the

dynamical matrix at the I point. The dynamical matrix at the T

point is written as
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Xy V1 24 X, ¥y Zp XB y3 23 x4 yA ZA

a 0 O a O O y 0 0 y 0O O
0 a O 0 o O 0 vy O O v O
C 0 b 0 0 B 0 0 ¢ O 0 ¢
a 0 O a 0 O y O O y 0 O
O o« O 0 a O 0 v O 0O vy O
O 0 B 0O 0 b O 0 § 0O 0 ¢
(A.171)
y 0O O y 0 O c 0 O O 0 O
O y O 0 v O O ¢ O 0O 0 O
0O 0 ¢ 0O 0 & 0O 0 d 0 0 O
y O O y 0 O O 0 O c 0 O
0O vy O O v O 0O 0 O 0 ¢ O
O 0 § 0 0 § 0O 0 O 0 0 d
?

where X, denotes a displacement in the x-direction of atom 1

(1, 2: Co and 3, 4: As) and so on.

1

2 t .
a =-—M;[2¢$2+3{¢&3 cos 9 +¢13(1+31n2

)] ,

2

_ 3 9 . 2
b = —M?[ P 3¢1331n

2

o + 3¢$300s 8)] ,

3 2

c = _ME[ ¢ﬁ3cos 8 +¢$3(1+sin26)] R

6

d = —ME[ ¢%3 sin29 +3¢$300526)}] )
2¢$2 2¢%2
Q@ =F- ——— B == ———
/MTME /M1M2
3
y=- [ o%5c08%0 + 035 (1+sin0)}] ,
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3
§=— ——( ¢%33in

/M1M2

2 + ¢§390528)}] ,

M1 and M2 denote mass of a Co atom and an As atom, and

6 = tan—1[ K%%— ] (a,c: lattice constants).

By using the unitary transformation to the normal mode shown in

Table A-1, the dynamical matrix given by eq.(A.11) is written as

- - _+ = - 4+ ¥+ -
F2 1"4 F3 F6 F6 F5 FS F5 F5
b+B 28§
26 d
b-8
d
ata 2y
2y ¢ (A.13)
a+a.2Yf :
2y ¢
c
C
a-uo
a-o

Using eqs.(A.12) and (A.13) the phonon frequencies at the T point

are given by

w?(r7) =0, b+d+s,

wZ(FZ) = b8 ,
Wi (r}) =a (4.14)
wz(Fg) =0, atcta ,
2ty _
(F5) = C ’
mz(Fg) = a-a
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Table A-1 Phonon normal modes at high symmetry points

- + +

r = 2F5 + F4 * Ty + Tg ZFg + Fg
Iy = cqlzgrzy) + cylzg¥z))
FZ : (z1—22)//2
13 (25-2,)/v2
Iy cq(xg-x,)+e,(y5-7,) |
T+ oq(xyxg)reylagix,) s eq(yyyy)tey(yshy,)
Iy« ocq(xy-x5)%e,(yy-y,)
Mo= M) o+ M] 4 MZ + M; b O3M £3My +2M5
My (xgtx,)//2
My (y4-¥5)//2
MZ : (ygty )/v2
My (25+2,)//2
M, s oeq(xg-xy) + cplagtzy) + eg(zg-2))
Mg : 01(x1+x2) + 02(21—22) + c3(x3—x4)
L cq(yqtyp) + c2(y3—y4)

K = K1+ 2K3 + K4 + 4K5+ 4K6

K, ¢ (xg+iyy)/2 -w(x,-1y,)/2

K3 : c1(21—22) + 02[(x3+iy3)+w2(x4-iy4)]

K, = (z1+z2)//2

Kg = c1(x1+x2) + 02(y1+y2) + c3(x3-iy3) + CA(XA—iyA)
K¢ c1(x1—x2) + 02(y1—y2) + C3%4 +0424

= G2mi/3
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A= 2A1+4A3

Ay wocqlzgrzy) v cplzgrs))
c (z-2,) + 02(23—24)
5 c1(x1+x2) + 02(x3+x4)
c (yqtyy) cz(y3+x4)
CT(XT—X2) +.c2(x3—x4)
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Fig.A-1. Neighboring pairs of atoms and the short range forces.
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Fig.A-2. Phonon dispersion curves of CoAs (NiAs-type).
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Fig.A-3. Phonon density of states of CoAs (NiAs-type).
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Appendix B Derivation of the self-consistent equations

for the paramagnetic susceptibility

We summarize a derivation of the self-consistent equations
given by egs.(4.7) to obtain the paramagnetic susceptibility. By
using the Stratonovich-Hubbard transformation, the many-body

problem can be transformed into an one-body problem under

randomly fluctuating fields. o BAF given by eq.(4.5c) is written
as |
~BAF e (® .2 2
o B4 |msg, | 16n expl-g1| dri(g,(v)-ho/&)en (1)%1-8ulE,n 1,
j J j J j’o J J
(B.1a)
where

-8V (&,n]
. =<TTexp{(nUT)1/22

J[dr[gj(r)(n.¢(r)—nj+(T))

j
+inj(T)(nj+(T)+nj+(T))] >,
(B.1b)

5 = (mun) /2 ana h,=(0,0,h,)

Ej(r) and nj(T) are time varying fields acting on the spin and

the charge densities of the Jjth site, respectively. Using eq.

(4.4) and (B.1), magnetization in the direction of hy is obtained

as
_ 1 3%o0gZ _ ,NwT \1/2:,2 N 1/2
M= Tn, = G oo (zmmr) T TRol (B.2)
where N i1s number of atoms. £ is the Fourier component of

qm
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gj(r) defined by

8

;
g =—7Jidt e £.(1) (B.3)

i(q~rj+wmr)

wm=2me (m: integer).

Using eq.(B.2) the paramagnetic susceptibility, ¥,is obtained as
; z
M 1/2 %00  x

X = 38, =(NnT/U). Shy " 20 | (B.4)

Q

Since 500 is a macroscopic quantity, we can replace 500 by the

value at the saddle point as follows:

vNh o
2rT(ely- —2) + <= 0. (B.5)
Cc

340

Taking the derivative of eq.(B.5) with respect Ego, we obtain

oh

O _ (ynur/m) 21+ Z;T 9 3V 5y, (B.6)

3840 " 3850 3800

Substituting eq.(B.6) into eq.(B.4), X is obtained in the form as

1 1 1
« = — - , (B.7)
1 9 9V

2T 1+ 5= 27 3¢’ 21
00 00

where I=U/N

A model functional for ¢[&,n]), which describes the spin-
fluctuations in both an itinerant system and a localized-spin
system, is introduced. We set hO=O and replace nj by the value

at the saddle point. The model functional is as follows
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vlg] =-2nUT équm(aqm-g_q_m) + 7wNL(x)
(B.8)
=-270UT gjxij(gi-gj) + 7NL(x) ,
* = —§_z fqn %-q-u (B.92)
PRCLIRSCE
= -8 (e-0B)
7NL(x) =-T } de p(e)rogli+e o, (B.9b)
o=%1
B=(nux) /2
X;;=0 or ) qu=0 , (B.9c)

q
where p(e) denotes the density of states. The first and the
second terms of the model functional given by eq.(B.8) represent
non-local and local parts, respectively. x is the average square
amplitude of the local field and it is related to the average
squére amplitude of the local spin density as follows

<s§> = T(x- %%) | (B.10)

Substituting eq.(B.8) into eq.(B.la) we obtain

-BAF
e = |ldgg expl-m{} Eqn Eoqon?UL X

£ )NBL(x)}]
Ja qm qm

n(Eqn E_q

q

x |dx&(] &__-& - BNx)
qm qm ~-g-nm

.

= |ndg_ expl-w{] &_ _-& =207 X
Jq 1 qu 3" TR g

g & +NBL(x)}]

qm( qnm —q-m)
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x ideX[dX exp{-2mUA(] Eqm'gqm— BNx)
qm :
=iU[dx[dx exp{-m[NBx +NBL(x)-2UNBx]}
(B.11)

Ve € ).

X fgdgqm exp{-2nU} (A-X qr E-q-m

qn 4

Integration over Eqm can be performed analytically as

-BAF
e =iUde{dkexp{~NnB[(1—2UK)X+L(X)]— % ]} Zog[ZU(k—qu)]}.
qm

(B.12)
In the evaluation of the integral over x and A by the saddle

point method, we obtain following two relations

(1-20A)+ ag(x) =0 . . (B.13)
X
P | (B.14)
2mUNBx = . B.14
REICS #)
We have neglected x-dependence of qu. Using egs.(B.13) and
(B.14), x is written as
3T 1 3T 1
x= ) : = v ) (Bt15)

m 20

e

27N qm 1—2U(Xq ) 27N qm 1-2IX

qm
‘For the last term of eq.(B.15), we have defined as

= 1 9L

X m=Nqu— ‘_'f __X . (B.16)
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Using eq.(B.8) and (B.16), we obtain the following relation

Q>

3 3y o 3Ly _ -
P> = 4nTU (Xt 53) =-47TI Xy - (B.17)

3880 350

Substituting eq.(B.17) into eq.(B.7), we get the expression of

the paramagnetic susceptibility given by

X
X = 09 . (B.18)
1—ZIXOO

Taking sum with respect q in eq.(B.16) and using the relation

given by eq.(B.9c), we obtain

1

- - 1 =
g Xqw ~~ 2T or Nqu_ Xqn™ W L Xqm (B.19)

q

|
S

Solving eqs.(B.15), (B.16), (B.18) and (B.19) self-consistently,

we can calculate the paramagnetic susceptibility.
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Appendix C Derivation of X{(quw)

We derive eq.(4.29), the expression of the wave number and
frequency dependent inverse magneic susceptibility of a systen
with a number of atoms in unit cell. We consider only one
orbital for each atom. We start from following Hubbard
Hamiltonian

t Lt t t
Tt (a ia Tzzz al a. +al a. )
g H iuo®juo ®juoipo Wvijo uv %iuo?jvo jvoTino’

IV a, + [ L uninl, (C.1)
g u lUG ino boi poit 0iy
) is an annihilation (creation) operator with spin

¢ at the uth atom in the ith unit cell, n?o is the number

operator, tu and tuv denote ‘transfer integrals of intra-
sublattice and inter-sublattice, respectively, Vu is an
atomic-site energy of uth atom and Uu is an intra-atomic Coulomb

integral of unth atom. Using the Fourier transformation and the

Hartree-Fock approximation eq.{(C.1) is written as

y T (k)a+ a + ] [T k)a L + %* (k)aT a ]
k

H =17

b ko u vwko“uko o uko vko HV vko uko

u + u u _
+y ¥ ZUUAq _o®uk+q 0% ko™ NZ Z'Uqu,+Aq,+ , (C.2)
u kq'o
where
ik (r -ri)

T (k)=y[t e J 1+ vV, (C.3a)
M j 8t H

_']44_



N ik-(r.—ri)—ik-(rv—ru)

Tw(k>=zj t,° : (C.3b)

v ] t
AQO _N—<§aukbauk+q0>' (C.3¢c)
In a paramagnetic phase only terms of q'=0 in eq.(C.2) are non-

vanishing and the Hamiltonian becomes
B =f 5T (at_a , +7 (T (Kaf, a, + 1" (Ka, a ]
para y i@“ uko "uko Ly RV uko vko v vko uko

+ pot _ T _
I L1088 ket Ny ou AL At (C.4)
H o A u

When the magnetic field H' (quw) is applied on the pth atom in the

unit cell,the Hamiltonian of the Zeeman interaction is written as
"_ t | _ .t TR v
H E i(aukfauk-qf auk+auk—q¢)“BI-qH (qw) (C.5)
It is convenient to transform the Hamiltonian given by egs.
(C.2) and (C.5) with a unitary matrix Uk(u,n)'by which Hpara is
diagonalized. We express an operator 2, kg as a linear

combination of new operators ®nkg 28

(C.6)

a ’

nko

=7 U (u,n)a
pkg T L kM

where n is the band suffix. Using eq.(C.6), eqs.(C.2) and (C.5)

are written as
- n + ‘ '
H = Izl éoEk Ctnko_anko, (C.’?a)

® + oL
+ U At [y U, (u,n)U (u,n')]la a -NYU AM AY
E £o u 49-o gn,k+q ’ k- nk+qo n'ko Y uqt —q}
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+ T (TR
_ZZ[Z U Uk_q(“’n')](ankfan'k—qf_ank+an'k—q+)UBI qh (qu),

uk nn'
(C.7b)

where Ei is the eigen value of H In eq.(C.7a) we have kept

para’

only terms of q'=q non-vanishing. Using eq.(C.6) we obtain

_i..

<aukoauk+qo

>Z [U (n n)Uk+q(u nt)l<al >, . (C.8)

nko%n'k+ qo

The equation of motion for <aT > is obtained as

nkoan'k+qo

8<aT

at nko n’k+qo> = <[a

i
nko® n'k+qo B+ H D

nl

(Ek+q_ By )<ank0 n'k+q0>
£ 5 (U A+ ougI® B (qw) 10, (u,n)U (u,n)
0 U q-o B -q Q k+g*"’ kT
+ t
x<9nkoank0 - O‘n'le:+qo°‘n’1i:+qcr>' (€.9)

We consider that Hu(qw) (and also <a+

nkoan'k+qo>) depends on time

~iwt

as e . Eq.(C.9) is written as
<a+ a >= (kqw [EU tn)U, (u',n){U A +opu IU'Hukqm)}]
nko®n'k+qo Xo k+q ’ kMo n'tg-o “HBt-q ’
(C.10)
where ‘
£(ED)-£ (B, )
B 1equ) k k+q (C.11)
n n'
Ek - Ek+q_w

Substituting eq.(C.10) into eq.(C.8) we obtain
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+ 1 1 !
@ ks kg %.E U, m, Wiyqlu,n')l qum ,n' U (utyn)
(C.12)
xxo(k®)[U Azﬂ%mBﬂq#(®H]

We define here

p-A

t * ’ %
¥ e )= [ O )Ty gm0 DT G B L),
(C.13a)
‘ 1 ' ' )
TH (quw) = i 'Y (kqw) . (C.13b)
Using eqs.(C.12) and (C.13), eq.(C.3c) is written as
1 1 H ! .
Aé+ = Z'r““(qm)[ UU,A‘a+ + uBI{qHU(qm)], (C.14a)
u ,
. ' ' ' ' ' .
AH = HH U LTINS L . C.14b

The wave number and frequency dependent magnetization on the uth
atom is defined as |

M (qw) = uBIg(Ag+— Az+).

(C.15)
Using eqgs.(C.14) and (C.15) we can express the relation between
magnetic fields and magnetizations induced by the magnetic

fields as

™ : : | . ,
-1 —3. ,F““(qw)+6 M (qu)=27 u§1“1“ r*H (qu)u” (qu). (C.16)
o Iq 338 n! qa -9

From now on we consider the case of §4.4.2 when unit cell

contains two same kind atoms. We express (u,u') as (a,b) and
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(n,n') as (e¢,B) and we set Ua=Ub=U and Iz=Ig=Iq. In this case
eq.(C.16) is written as
1+UT, UFZ M* (qu) 5 o Ty Fz* H® (qu)
- = 2]Iq| I (C.17)
b b :
ur, 1+U0T, M~ (quw) F2 I"1 H™ (quw)
We expressed as F1=Taa(qw)=be(qw) and Fzsza(qw)=Fab*(qw) in

eq.(C.17). Using eq.(C.17), the inverse susceptibility X(quw) is

written as

e T1 %
a = - a
H" (qu) ) 1 r, T, 1+UT, UT, M* (qu)
T T2 2
1% (qu) 2upl T, | r, T, ur, 1+, || M°(qw)
( 2 2 * )
T +U[(T5-|T,5]"] T
B — A A
2 2
2upl 1y r, R BN LS|
M~ (quw)
| A A
)—(8.3. )—(ab Ma(qw)
%02 ibb Mb(qw)
~ M (qu)
= X(qu)| 4 , (C.18)
M~ (qw) :
where
2 2
A= T7 - |,]° . : (C.19)

In the case of §4.2.2, as shown in eq. (4.18) the unitary

matrix Uk is
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1 Tw(k)1/2 _T1(k)1/2 |
U, = : (C.20)

[2’T1(k)|]1/2 T1(k)*1/2 Tj(k)*1/2

Substituting eq.(C.20) into eq.(C.13), we obtain the expression

of F1 and F2 as

.FT(qw)=£—%¥[ Xg (kqw)+ xgs(kqw)+ X%B(kqw)+xga(kqw)] ,
) ‘ (Cc.21)
T1(k+q) TT(k) wa

BB, aB Ba .
T, (qw)=} [xq (kqu)+xn (kqw)-x- (kqw)-x, (kqw)l,
2 g ) T, (0[O ° ° °
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Appendix D Various types of ferro- and antiferro-

magnetic ordering

By using the instability theory discussed in §4.2.2, we.
discuss on the special cases of Q, in which Q is given by O or
G/2 (G is one of the reciprocal lattice vectors). As shown in
eq.(4.39), to determine ¢12 we must calculate the phase angle

‘of FZ(Q). FQ(Q) is expressed as

r,(Q) =£TT(k+Q) T, (k) x £(k,Q), (D.1)

-where £ is defined as

£(k,Q)= xaa(k,Q)+xBB(k,Q)-xa8(k,Q)—XBQ(k,Q).

(D.2)
AN| T, (k+Q) | | T, (k) |

Here we study, as an example, a two dimensional lattice which
consists of two kinds of square lattices as shown in Fig.D-1.
Two atoms, 1 and 2, are included in the unit cell. The position
of the atom 1 is (0,0) and that of the atom 2 is T=(Ta,b/2>,
where T, is not a/2. Siﬁce, each atom is not in‘the position
having the invérsion symmetry, we consider two kinds of transfer
integrals t1 and t2 between the atom 1 and the atom 2 as shown
in Fig.D-1. 1In this case, T1(k) defined by eq.(4.16) is written

as

T, (k) = 2 e—ik.(T_b/Z)cos(k-b/Z)[t1+t2eik'a], (D.3)

where a and b are lattice vectors. Thus we can write as
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TT(k+Q) T, (k) = 4etQr (1-0/2) cos(k-b/2)cos[(k+Q)-b/2]

2 2 -iQ

x (87 + 15 e % t1t2(eik'a+e‘i(k+Q)'a)]. (D.4)
From eqé.(D.Z) and (D.3), F2(Q) can be written as
T, = fU (T 2y, f (D.5)
where A(Q) 1is ‘
A(Q)= ) cos(k-b/2)cos[(k+Q)-b/2]
k (D.6)
x[t$ + tg e 12y t1t2(eik.a+e_i(k+Q).a)]E(k,Q)
Inserting eq. (D.5) into eq. (4.39b), 01, 1s written as
by, = argle TV P24 ()] + 7 . | (D.7)

We consider the following cases:
(i) Q@ = 0 (ferro)

From eq.(D.6) it is found that A(0) is real and ¢,, is given by

~ 0 (A(0) < 0) (D.8)

®q15=
T (A(0) > 0).

(ii) q (0, w/b) (antiferro along the b-axis)

From eq.(D.6) it is found that A(Q) is real. ¢,, is given by

B ~m/2 (4(Q)<0)

®q0 (D.9)
/2 (A(Q)>0).
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(iii) Q = (n/a ,0) (antiferro along the a-axis)
In this case A(Q) is written as

2 121 t.t.sin(k-a)l&(k,Q). (D.10)

a(Q) = § cosQ(k-T/z)[tf -t2 1o

k

The imaginary part of A(Q) is zero because £(k,Q) is an even
function of k and sin(k+a) is an odd function of

k. ‘¢12 becomes

_ 0 (A(Q)<0 )
¢45= (D.11)

u (4(Q)>0 ).

(iv) Q=(w/a,n/b) (antiferro along both the a- and b-axes)
In this case A(Q) is expressed as

2

5 +21 tthsin(k-a)]i(k,Q). (D.12)

4(Q)=-1/2 sin(k-b)[t5 -t
| i

In the summation over k of eq.(D.10), terms k=(ka,kb) and
k=(—ka,kb) cancel out each other. Therefore, A(Q) becomes a real

number and ¢12 is given by

B -m/2 (A(Q)<0)

¢q0 (D.13)
w/2 (A(Q)>0). |

The magnetic structures corresponding to the cases (i),(ii),(iii)
and (iv) are shown in Fig.D-2(a),(b),(c) and (d), respectively.
Thus in the case of Q=0 or 1/2 G (G is a reciprocal lattice

vector), complex ferro or antiferromagnetic ordering is expected.

- 152 -



b
=
o, | &
\\\2 //,t]
O B¢ o—"
]

Fig.D-1. A two dimensional lattice with two sublattices.
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(a) Ctszzo | SNCE

12
A A A A\ A \
Q=0 A 0 y l

A A \ . \ A \

(b) =T/ <§2=~Tt/2
A A \' oy . )

—> - €« <

_(n 1L

Q=01 | \ , \ | |

< < — —>
A A A A A A

Fig.D-2. Various types of ferro- (a) and antiferro- (b)

magnetic ordering.
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Fig.D-2. Various types of antiferomagnetic ordering.
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