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,ABSTRACT 

The ground-state energy and the momentum distribution 

of a many-boson system are obtained in the high-density 

limi t by using a method of cohe.rent states. Dealing with 

the problem in a lattice space, some difficulties encountered 

in previous collective variable theories have been overcome. 

In particular, it is shown that the objection about the 

non-existence of the canonical conjugate to the density is 

not fatal to the previous theory of the density and phase 

operator approach. The ground-state energy obtained here 

agrees with that given by Brueckner and Lee. 

(ii) 
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§1 

§1 Introduction 

The theory of many-boson systems is yet a fascinating subject 

in the quantum mechanical many-body theory in relation to the 

superf1uidity of liquid 4 He .l) After the pioneering work of 

Landau titled IITheory of Liquid He IIII,.2) a number of papers have 

been presented to make a foundation of his theory, the so-called 

quantum hydrodynamics. These microscopic theories are common in 

considering that a many-boson system is a collection of quasi-

particles instead of that of strongly interacting real atoms. 

Among these theories, we can name the following three classes. 

The first one is originated by Bogo1iubov 3), assuming that a 

number of atoms occupy the single particle state of zero momentum. 

The second one is the theory of collective variables 4-~) consider-

ing the density fluctuation of the system as the fundamental quantity. 

To the third one belong the theories which intend to solve the 
11. 

Schrodinger equation under some assumptions such as the Bij1-Ding1e-

Jastrow approximation. One of these theories is known as the method 

of correlated basis functions of Feenberg. 8 ) 

In this thesis, the main object is the second one, i.e. the 

theory of collective variables. It is not yet sufficiently clear 

what interrelations have the various theories in this class to each 

other and how to answer several objections raised by a number of 

a~thors against this theory. 
9) 

Recently, Rajagopa1 and Rama Rao (R-RR) 

have invoked the coherent state representation, 10) IiI frequently 

used in the theory of radiation, 12) to develop a collective variable 

(1) 
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theory which is free from the objection that the conjugate variable 

to density assumed in previous collective variable theories does 

not exist in the Fock space ( "hl' h' "b . " . ) 13) Fro 1C s 0 Ject10n • 

Coherent states were first discov"ered by Schrodinger 14) who 

was looking for wave packets for a harmonic oscillator which 

oscillate without spreading. They are the minimum uncertainty 

states for position and momentum and thus are the most classical 

states. In the second quantization representation, a coherent 

state I~k appears as a right-eigenstate of the annihilation oper­

ator b with complex eigenvalue a, where b and its conjugate b+ 

satisfy the bose commutation relation, [b, b+] = 1. ~) ,11) This 

definition of coherent states can be generalized to other systems. 

In the radiation theory, a coherent state can be defined as a 

right-eigenstate for the positive frequency part IF- (IV-,t) of the 

quantized electric field lE. (Ir I "t ), namely, it satisfies 

E (Ir ,t) lE) = E tir , t) I Co ) , 
(1) 

>\' ' 
- L (tr, t) (£1 

where E+ is'the negative frequency part of E. The name, coherent 

state, was introduced by Glauber~) taking into the fact that the 

mutual coherence function 

(2) 
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(2) 

which measures the visibility of fringes in Young's experiment, 

takes the largest absolute value \VI ~ 1 for a coherent state as 

is clear from eq. (1) (O~IYI~l from the Schwarz inequality) 12) • 

In the case of a many-boson system, coherent states I·t~ are 

defined as the right-eigenstates for a quantized boson field 

't (X) and satisfy 

I (3) 

(4) 

, (5) 

, 

among which eqs. (4) and (5) clearly show the relevance of coherent 

states to the theory of the superf1uidity of liquid 4 He • IS) The 

factorization of the one-particle density matrix S>(l::',):') = <,£"\):I)~<.)=» 

shown in eq. (5) reminds us of the Penrose-Onsager criterion 

for the Bose-Einstein condensation defined by the existence 

of non-zero asympto~ic limit, 1im S'(X,X') 16) (the off­
I:x:-x'l~a> 

( 3) 
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diagonal-Iong-range-order)0 Non-vanishing of the average of 

the quantized field shown in eqo (4) allows us to define a 

macroscopic wave function (or order parameter) given as the 

local average of the quanti zed field I7 ), which provides us with 

a powerful method for investigatirig the superfluidity18) 0 

Coherent states have another aspect that they form a over-

complete set and thus are the basis for a representation (the 

coherent state representation) 0 The completeness is shown by the 

resolution of identity written in the form 

I , (6) 

where 02~ is the element of functional integration over a complex 

function ~(X) 010) By means of eqo (6), the grand-canonical partition 

function Z = Tr exp [- (H-]lN) /kT] can be written as a functional 

integral of ~i"le)('r(-( H /-'- N)/k TJI1Jr)c t:.. exp[- ~('t),4TJ, where F(~) 

was shown by Langer~) to have the same form as that of the free-

energy functional assumed in the Landau theory of phase transition 

of second kind applied to liquid 4 He by Ginsburg and Pitaevskiio 20 ) 

Langer suggested that the order parameter for liquid 4 He can be 

identified with the most probable value of ~o Using the coherent 

state representation, he has also derived the Gross-Pitaevskii 

equation for the order parametero 2 /) 

The use of coherent-state representation made by R-RR aimes 

at quite a different purpose to derive the excitation spectrum of 

(4) 
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quasi-particles. Considering the'intimate connection of the 

coherent-state representation to the order parameter mentioned 

above, this is very interesting. Unfortunately, the appearance 

of twice as many sets of conjugate variables as the degree of 

freedom of the system seems to prevent R-RR from obtaining any 

substantial results compared with other theories,$)- 1) though 

their formalism is free from Frohlich's objection to the use 

of canonical conjugate to density. It is the purpose of this 

thesis to present a formulation free from this kind of inconvenience 

by the aid of coherent states. Difficulties of the usual coherent 

state representation based on the completeness relation (6) for 

the treatment of a manyboson system at absolute zero (or in a 

pure state) will be shown in §3. The formulation and its results 

given in §4 and 5 will shed some light on the relationships between 

previous collective variable theories and into points of ambiguity 

contained in them. We will give a brief account of these points 

in the next section. 

§2 Surveys of Microscopic Theories 

Assuming the two-body interaction, the Hamiltonian is given by 

N 

H = E 
..\ ~ I 

-t- .L 
2 

(5) 

V (x.: - XJ ) , (1) 
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where N is the number of bosons and V (x) are is interaction 

potential. In the second quantization representation, the 

Hamiltonian becomes 

H (2) 

where the quanti zed fields 
-+ 'i' ex) and '£ eX) satisfy the Bose 

commutation relations: 

~ (X-,,}) , (3) 

Introducing the Fourier transform of ~ + lX) and 'f (X.) by 

I J \T. -; b x a ~ ::. IV d x yex) e / . (4) 
I 

where V is the volume of a box in which the system is enclosed 

with the periodic boundary condition, "the Hamiltonian (2) can also 

be written as 

In (5) Vi is the Fourier transform of the interaction potential 

defined by 

(6 ) 

(5) 
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• (6) 

i" a.k and a~ satisfy the commutation relations 

• (7) 

1. Exact Results 

The fact that the linked-cluster expansion is impossible for 

a boson system makes the situation very difficult. Under some 

limited conditions, however, exact results have been obtained. 

Lieb and Liniger 22) solved exactly the case of a one-dimen-

sional Bose gas interacting via a repulsive a-function potential 

(the LL model). Putting Vk=2c /L and 2m=fi=1 in (1) (L (=V) is . 

the length of the box), their results are given in terms of one 

dimensionless coupling-parameter, y=c/n , where n=N/L , which is 

small in the weak-coupling and high-density limit. Takahashi2~) 

has solved their integral equation numerically and obtained the 

expansion of the ground-state energy E for small y written as 
. 0 

ELL 
o L 3 [ 4 0/,2. 1. J ::. 11. 'Y - 3Tu ')J -+ 0,0065""1- Y -+ •••• (8) 

The high-density expansion to second order of the ground-

'state energy for a charged Bose gas has been obtained rigorously 

from the modified Bogoliubov theory due to Brueckner2~) and Lee~~ 

(7) 
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Bogoliubov, in his treatment of a'weakly interacting Bose 

gas, has argued that, as the average occupation number < Cl; aD) 

for the zero-momentum state remains to be a macroscopic number 

much larger than the commutator (" 0. 0 I a: J -::. 1 , the replacement 

of ao and Q1 by a c-number !No is a reasonable approximation 

(the Bogoliubov approximation). Applying this approximation, the 

Hamiltonian (5) becomes 

, (9 ) 

H -= 
" 

+ NoVh. (2 n-+ Cl -to I\"t ai"' Q Q » 
2. V 1.-, h. R. '-"\ ~ -h. T k - ~ 7 

where H3 (Hit) contains the terms of the form n.-t Q't Ct . and 

If one neglects H 3 and H4 as was 

done by Bogoliubov, the resulting Hamiltonian l-l () can be diagonalized 

by the Bogoliubov canonical transformation defined by 

, (10) 

to yield 

, (11) 

I 
2" N V{o) 1 

(8 ) 
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(11) 
• 

c~ The Bogoliubov spectrum c K becomes linear in k for small k 
(the phonon spectrum). To the sa~e accuracy, Ne can be replaced 

by N. In general, the neglect of the depletion NI' = N - N D violates 

the sum rule and No should be determined by 

(12) 

with this prescription, the Bogoliubov approximation is able to 

* yield exact result for the correlation functions. 

* 2(,) 
Using the coherent states, Ginible formulated the Bogoliubov 

approximation as follows. The Fock space ~ can be written as 

'DI':7\\OI '11 a tensor product ~o~~ , where ~o is the Hilbert space of the 

zero-momentum oscillator. Denoting the coherent state for a o as 

, the Bogoliubov approximation for an operator A on 

J{ is defined by the replacement of A by the operator A(~) = 

<N A I A I N A '> on" 0 '. ~v ~v/ ~ Ginible showed that the pressure given in 

the Bogoliubov approximation, i.e. obtained from the grand canonical 

partition function Z{~) = Tr' exp[- p ~I{~)] is equal to the exact 

pressure obtained from Z = Tr exp[- P~I] in the thermodynamic 

limit. 

(9) . 
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Treating the kinetic energy part in (?) as the unperturbed 

Hamiltonian, the leading term of ED in the high-density expansion 

is given by one-ring diagrams ( No -: 0 ( N) ). This sum can be 

evaluated by the Bogoliubov canonical transformation applied to 1-1 0 • 

The next term is given by two-ring diagrams. This sum can be 

evaluated by the first- and second-order perturbation in the Bogoliubov 

representation. Determining Ne by (12), Brueckner2.4) obtained (0 

of a charged Bose gas at high density in the form 

- 3/..;.. . $/-
ED IN = - o. 8- l> 3 I . V-s 1- 0, () Z ~ D -+ 0 (rs 4- ) (13) 

where y~ is the spacing per particles measured in units t~/ln e~ 

and the energy is measured in Ry. 

Lee<-S) extended the Brueckner result to a more general interaction 

by introducing a new parameter, (N - ND J/N, regarded as the expansion 

parameter. Lee's result can be written in the form 

~ BI.. _ 
o 

16 N 

32. N 

l=" 'r~ :: 

, (14) 

c~ e", ,. ,\.l. 

A~ .i\~ ( 1 1" Altt ) ( I - A~) (I - /\..R. ) 

" x ( 'E: ( I - AR2. ) ( I - AA A'tK) ;- ~ y 111. ] 

(10) 

, 

, 
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where is given by (11) except that f-J o is replaced by Nand 

.A h , the unperturbed structure factor, is given by 

• (15) 

r- oeL. When applied to the LL model, e gi ven by (14-) is shown by 

Takahashi to give the.exact result (8). 

Recently, Rajagopal a~d Grest 27) have pointed out that the 

Bogoliubov approximation neglects the condensate fluctuation and 

proposed to replace et" and l\~ by 

• (16 ) 

Making an expansion in powers of l/N (the l/N expansion), they 

obtained the same ground-state energy as that given by Lee. The 

meaning of the l/N expansion, which is frequently used in the collec-

tive variable theories (see below), is not clear, but is sufficient 

for the calculation of the energy per particles, say, to the order 
2 

of magnitude of (V/N) formally. 

Beliaev~~) analysed the Green's function for a many-boson system 

and found that the inapplicability of the linked-cluster expansion 

simply results in the replacement of Ct o and a: by JNo , where 

N I> should be determined by (/2), and in the appearance of anormalous 

Green's functions. This matrix Green's function formalism was trans­

formed into a more convenient form by Hugenholtz and Pines~9) In the ~ 

low-momentum limit, Gavoret and Nozieres 30) have obtained exact 

(11) 
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results by means of the Green's function method of Hugenholtz.and 

Pines. To all orders of the perturbation series, they have found 

that a) the excitation spectrum W~ has no gap, i.e. w~ approaches 

the value eR. [c is the true sound velocity] in the limit ~- 0, 

and b) the momentum distribution . ')1 p : < 0.; Ar> approaches the value 

(No/N) (mc/2lip) for p +0. They have also shown that the poles of 

one-particle Green's functions and those of two-particle Green's 

functions coincide in the same limit, owing to the presence of 

condensate. 

2. Collective Variable Theories 

The relevance of the density fluctuation in describing the 

elementary excitations in a boson system have clearly been demon­

strated by Feynmen}t) He presented a very convincing physical 

argument for the shape of the low excited state and, by applying 

the variational method, could show that the state .Pk 1>0 (f.k -= ~ e.;t~ x:" 

and ~D is the true ground state) offers a good approximation for 

the excited states for all moment a with the excitation spectrum 

written as 

J (17) 

where S(k) is the structure factor. With S(k) obtained from the 

x-ray measurement, the Feynman spectrum (11 ) shows qualitative 

agreement with the experimental phonon-roton spectrum. Feynman 

and Cohen J2) improved this theory by introducing the back-flow 

(12) 
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effect to the trial wave function. Their method culminated into 

the method of correlated basis functions(CBF} developed by Feenberg 

and co-workers.8 } 
_ BL 

An expression equivalent to CD is obtained also from the 

method of correlated basis functions,in the uniform limit defined 

by eX:: 1- d- (0) <.< 1 , where g (r) is th~ ··~air distribution function. 33} 

The variational energy obtained by employing the Bijl-Dingle-Jastrow 

type trial function ~ , together with the perturbational correction 

evaluated by including the three-phonon states, it, fk~ fR3 cfo , where 

fk '" 1;: e,au:;., yields an expression which can be written as 25 }, 34} .. 

(18) 

Soon after the work of Feynman, Bogoliubov and Zubarev (BZ}4) 

h d h . h· h h d . fl . '" '=""P .: kx,( ave presente a t eory l.n w l.C t e ensl. ty uctuatl.ons, s>~ ~ J e , 

are introduced as (auxiliary) variables. BZ have noticed that the 

wave function ~ ( x, , X~ •••• " 'X N ) for a many- boson system can always 

A " be ·expressed in a polynominal of S'~ as ~npR.p. Given the wave 

function written in this form, H rj ex) ":::. 'E ~ ex) becomes 

I 
+-2:, 

2 R 

, 

(13) 

, 

(19) 



by means of the relations, 
§2 

.... 
.1'0 ... N , cthc{ (20) 

;) E' ~R 
• R x' d 

-= e'" A 

OFR 
, 

() X
A

, R (21) 

... 
, d' h °L 's where Z means the exclusion of k=O. Regar lng t e J R 

as 

independent variables ~k ' (i~. Pk is not related to x-variables 

"" "\~X·. 0 t' Th by P
b 

-:: ~ e. "') , . we obtaln the so-called J~ -represen atl0n. e 

solutions for the Shrodinger equation in the original 

x-representation are all contained in the ~k-representation 

(by replacing Pi::. by Te~ \;!.x,t ), but the inverse is not true. 

The most striking feature of the BZ theory is that the Hamiltonian 

HB:g is not hermitian in the sense that H!'i defined by Sot? c;;/Ir.f)H~l~lf)= 

5df (H;,;! <P (P) ) * ~(P) is not equal to H 01 • In connection to this, 

the variables 5'k are superabundant, i.e. there are infinite number 

of them in spite of 3N degrees of freedom of the system. The latter 

point is not serious, when formulated in the second quantization 

representation.~} The non-hermiticity, however, needs further 

investigations. 

The non-hermiticity has not been taken into account properly 

by BZ. Their procedure is as follows. Introducing a new wave 

function ~(P) ~ e.xp (- ~N Z'Pkl. 1o J ~lP), H~~ 9' ~ I:: P becomes 

1 (22) 

H ~ ~ ~ Hoof- 1-1 I , 

(14) 



HI !:. 1: 
1i1. 

P, It, 21n 

HI> in 

to give 

where 

,,-tt .. ~ 0 

(21) can be. 

H - B -.:: f::. 
" 0 

and E. B 
b. 
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(22) 

(R' p) ?hP (~p. ~ J.1N P-r )( :B -t 2\~ ~-Io) 
~ p ~ 

(11 .... N/v) • 
diagonalized by introducing 

7 

:1 

+ (24) , 

have the same form as that given by Bogoliubov 

(eg. (11 ) ), except that N" is replaced by N*. BZ have shown that 

to lowest order, the wave function for the first excited-state has 

* Eg. (.23) is the Bogoliubov canonical transformation. From (.2 3) , 

we have 5>h. -: 2jN )...11. ( B: + B_~). On the other hand, in the Bogoliubov 

T + 'r I Ct-t- a 1'77 ( T approximation, we have p~ ~ Cl" U-k -;. a~ Q o T.w k+i 2.. ~ -IN" Cl_ R + a.~) 
:: IN: (lA It - 'VI>.) (ci: ... ii -k), where 0( Rand C(: are defined in (ID). 

Thus in the weak-coupling limit, two expressions for ~k agree 

wi th each other (N ~ ~ N ). 

(15) 
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the same form as that given by Feynman i.e. q; ~ f~ 15 c' BZ have 

obtained the first correction to ~: by applying the second-order 

perturbation to H1 as if it were hermitian. The result of BZ can 

be written as 34) 

_ Bl 
1:0 

::: I CB}:: 
o 4N • (25) 

t- B~ When applied to the LL model, i:= 0 does not agree with the exact 

result (~) in the term of order y2.. 23) 

Hiroike$) pointed out that the inner product should be defined 

with a weight factor. Accordingly, the energy should be calculated 

from 

(H) = SCefP) e.- W c.p~(5') HlP) lp(P) 

where e-w is the weight factor and )eelP) stands for 

In order to have a explicit form 

(26) 

IT J ~H Rt f .. ) (.UIl)\ P.,.) 
kt>o 

for e-W, Hiroike 

introduced a cut-off wave number Rc' Then, assuming that ~ (P~ ) 
"'-

includes only those P~'s with I~\< k~, he carried out the trans-

formation of variables from )(.' s to 
-" 

:PR'S through the use ,: .. -" 

of eq.( 1'1) modified by the cut-off and of the relation written as 

S ct3~ r; ex) -= S (et P ) S c(3NX 

o < I~J < Rc ; 
~l >p 

(16) 

f; c)(.) n f k . ~ h 
0<. Jh.I< kc.", 

~l )c 

(27) 



Hiroike found that the weight factor is given by 

IT +~ ~R 
I~I <be. 
!?a>O 
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(28) 

H(p) agrees with HBZ if the cut-off is neglected. Introducing a 

new wave function ~(J')=JDg>(S'), e9.(26) with (28) can be written as 

(H) ":: S (o{p >. (J? "l.f' ) H I3~H ~ CP) (29) 

where HB~H is given by 

I I 

H~~H -.; ~D(p)J;: H (f') D(p) }-;: 
) (30) 

and is found to be hermi tian. Thus '/-I) can be considered as to 

generate a non-unitary transformation. Treating the cut-off 

carefully, Hiroike obtained, in the VN expansion, 

L ~) (We have taken the limi t Kc.~OO in Hiroike' s eq. (3· 8 ) ) . To lowest 

order the relation between ~ and p are the same as in BZ theory. 

The principal part of He~H agrees with that of H;~ given in (2Z), 

but the interaction term is different and contains infinite series 

of order N-~. The ground-state energy evaluated up to order l/N 

is equivalent to E~B~ Bt 
and not to E D 

The need for a weight factor was also noted by Ch an and Valatin .35) 

(17) 
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However, their result written as 

e -w ::: e)( r (- f 01 x ( f eX) ~ P ex) - P ex) ) 1 (32) 

e.X'p [-

differs from D by the absence of the term, 

I -4N , (33) 

., which leads to the appearance of absolutely divergent terms of the 

form 

6} in the expression for E D • 

J 
(34 ) 

In the second quanti zed representation, the super-abundance 

of the ~~-variables is not serious as mentioned before, and the 

use of the density operator P('x) = '£1::X:J ~(X) as the basic variable 

together with its conjugate variable has been made by many authors. 

These collective variable theories can be looked upon as the 

microscopic version of the quantum hydrodynamics presented by Landau.2 } 

Prior to the work of BZ, Nishiyama 6} ,3b} presented a theory, 

now called the density and phase operator approach (DPO), by 

introducing the phase operator ~(X) through 

(l8) 
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~ ~ ~CX) 
I I 

pex) :!. 'P -+c;x:) = -~ tPCX) 
eX) -= € .p ex):!. e. . 

I 1 
(35) 

~ (X) = ~+(X) ,±,(X) 
1 

where rp{X) and PCX) satisfy the commutation relations 

The assumption of the existence of the canonical conjugate to density 

(such as ~ (X) typical to the collective variable theories has 

been criticized by several authors, and \ve will turn to this point 

later. Using (35) in the Hamiltonian (2), we obtain Hcpoc given by6) 

, (37) 

) 

where the velocity operator "'(VU) is defined by 

'\J eX) 
1;, 

= m v 1> (x) 1 (38) 

and satisfies 

A_"1\ t pex).J "\U 0:')"] - 'n1. V ~ (x- X') (39) 

(19) 
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The kinetic energy Topoc can also be written as 

T T -t-I' . r>poc ':. HPO (40 ) 

. . T' :: 5 d x 1 - ; I ( ? :un ,). ? -I -t :~ [f>, ll'.J . w P ,? - I } 

(where MPO stands for the modified phase operator approach) • 

Here, the Hamiltonian of MPO defined by H tH•O = TMPO+V is related 

to the BZ Hamiltonian by a non-unitary transformation of the form 

g 'Co e. )( p { - ~ S cl X L P ex) .2 ... .P ex) - P ex.>"] } , ( 41) 

which is identical to the root of Chan and Vala.tin's weight factor (33). 

By means of the relation 

r) (X) -
1 
:l' 1m fex) 

A 
, (42 ) 

we obtain 

• (43) 

Now introducing the FOil ri er transform of PCx) and r;, eX) by 

i'CX) 
I Z i\ e. ~ ~ x 1> (X) -:. ~ rp~ e--' ~ x (44) = - , 
V k " R 

[ Pk. J CPJl J 
, 
~k~ ... J\ (45) } 

(20) 
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we rewrite (~~) in the form 

• (46) 

Noting that the commutation relation (45) is realized by setting 

'i
k 

~ -A o/aP
k 

(ie. in the represent~tion which diagonalizes -P
k
), we 

see that Z-' HHPO S' is identical to H s! given in (/9) (as ~"is a 

cyclic coordinat~; Po can be replaced by c-number N) . 

The kinetic energy given in (43) has been obtained by Berdahl)1), 

who noticed that the commutation relations given in (3) are realized 

by a set of quanti zed fields, '£,(:x.) and iI'~()() , defined by 

, (47) 

respectively, where ~ and f satisfy the commutation relation (36), 

and replaced l£ eX) 
--t and ~ (X) by ~,(X) and I'2. (X) , respectively, 

to obtain Ta-i!: and the non-unitary transformation S. Arguing that 

[ PCX), V cpex»:: 'Z h ";:, +; W S (0) vanish from the symmetry, Berdahl 

neglected T' and concluded that Hppoc is equivalent to H Bl • 

Grest and Rajagopa1 38) have shown that HB~ and the Hamiltonian H£ 

given by the old ·Sunakawa theory, in which a velocity operator 

conjugate to density is introduced, are only different version 

of the method of the current algebra. Thus the equivalence of the 

BZ theory, the old Sunakawa theory and the method of DPO seemed to be 

confirmed. 

The neglect of T', however, is not permissible, as pointed 

out by Nishiyama. 6) Setting ~~=N and regarding ~R(ktO) is of order 

(21) 
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I'N, we can expand H OPoc in powers of l/IN (the l/N expansion). 

The leading term (for both H OPoc and H MPO is identical to the 

principal part of H~~ given in (22) and we can introduce the 

Bogol~1L.bov operator Bt and Bk through (..22,) (i~ .. ~ a/aS\~ ). The 

ground state can be evaluated by applying the Rayleigh-Schr~dinger 

perturbation theory and, up to order I/N, H 1-11>0 yields 

( 48) 

The expectation value of T', which can be written, up to order LIN, 

as 

Tt -I E (k·)) (1 + 2 
Pk f-" ) -:: -- -I'm N R • .£. N -J 

(49 ) 

is given by 

<T") 
ii4 

E (~ • .Q) (I - 2Ak ) = 8-1n N • R,...£ 
(50) 

Following Berdahl, both the additional term in (48) and <T'> is 

equal to zero and we obtain E~~. However, these terms are absolutely 

divergent and cannot be simply put equal to zero. Nishiyama has 

shown that these divergent terms add to give a COhYergent result 

with an appropriate choice of the sign of them. Thus the 

conclusion of Berdahl that H ~z is equivalent to HOPOc. does not 

apply at least to the LL model, in which E:~ and E;BJ< are different. 

Recently, Yamasaki, Kebukawa and Sunakawa (YKS) 39) have 

modified the definition of their velocity operator and obtained E~B~ • 

(22) 
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More recently, Nishiyama has calculated the kinetic energy through 

the momentum distribution function np given by DPO (DP'OM) "}-o) and 

found that in this case the ground-state energy is equal to E:L 
Though the difference between E:I.. and E DC B F is negligible 

numerically (at least for the LL model) only E:L yield the correct 

~pwhich satisfies the Gavoret-Nozieres condition, when the 

adiabatic theorem is applied. (Following the adiabatic theorem 

applied by Berdah1 37) , np is obtainable from 

n -r - , (51) 

regarding the energy parameter E;'1:' !::; as the adiabatic parameter) • 

Thus we conclude that though previous collective variable theories, 

the DPO and the theory of YKS, present a very powerful way to deal 

with a many-boson system at high density, there remain some points 

left to be discussed. 

Apart from these points, the collective variable theories have 

faced several objections. Mathematically speaking, the canonical 

conjugate to the density (or number) operator in any form does not 

exist in the Fock space, due to the fact that the density operator 

is bounded from below. 13 ) 41) In the case of the phase operator, 

the situation is as follows ./1) 4-2.) For simplicity, we consider the 

case of a system with one degrees of freedom, i.e. a harmonic 

oscillator described by a set of Bose operators band b+ satisfying 

[b, b+]=l etc. Now, we define the lowering and raising operator, 

X and X+ by the relation 

(23) 
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I· (52) 

Then the matrix elements of X between the number states In> 

( b+ bin> "'- n I'n» are given by 

<'ttl X \111) 

('l1t -= 0 ) , (53) 

<'hI X+ l11t >:::. ~n..I'M"'" I 

For m>O, eq. (S3) is obvious from 

(54 ) 

This relation (S~) does not determine (l/X 10) and we expand the 

state X 10> as 

~ 

X I j) > -== 23 Q.., / i1. ) 
'n =:0 

(55) 

Then noticing "Xi" X Ihl> ::./1l1)for m>O, we have 

(b1>0) J (56) 

which leads to X ID) -::.0 i.e. to eq. (S"3). From eq. (53), we have 

1 (57) 

where Po ~ I ():> < 0 I. Eq. (S~) shows that X and Xt are not unitary 

(24) 
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and any hermite phase operator cannot be introduced. However, as 

far as the states 111) with 11) 0 are concerned, we hav~ Ol/Xtx \')1>= 

and the prescription (3~ of DPO is expected to 

be a reasonable approximation at high-density. (Recently, the use 

of a larger space than the Pock space has been suggested by Kobe 

and Coomer 4-3), YKS, and Rajagopal.#» 

There are other objections in connection to the use of super-

abundant variables in a collective variable theory, for example BZ, 

formulated in the N-th configuration space4~ and to the assumption 

of existence of a continuum density P(x) !3) The first point is not 

serious in principle in the second quantization representation, as 

mentioned before, and for the second point, we only mention that 

the expectation value for density is really continuous. In the 

following sections, we will develop a formulation utilizing the 

coherent states and the lattice space, which will shed some light 

on the problems to be answered in this thesis. 

§3 Coherent State Representation 

Non-existence of the phase operator in the Pock space has led 

Rajagopal and Rama Rao (R-RR)9) to use the coherent-state represen­

tation (C.S.R.) /0) 11) or the phase-space method for the evaluation 

of the ground-state energy and the excitation spectrum. The phase­

space method developed by Cahill and Glauber~6), sudarshan~7), and 

Ag~rwal and Wolf (AW)4J) is a generalization of the method of the 

Wigner distribution function~9) and contains the C.S.R. as a special 

case. 

(25) 
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For simplicity, we consider a one-dimensional oscillator 

described by using the annihilation and creation operator, band b+, 

which satisfy the Bose commutation relations: 

'[ b bot J '>: 1 [b~b) - [b"+,,6+J = '0 • (1) 
; .I 

A coherent state I ex' >c is defined as a right eigenstate of b with 

an eigenvalue ()(:JJe-'s6 , namely, it satisfies 

(2) 

In terms of the normalized Fock-state In) defined by 

(3) 

where (0) is the vacuum state satisfying bill) ': 0, the coherent 

state r~)c has the form 

, (4) 

and the scalar product of a coherent state r~~ and a Fock state 

I Tt > is given by 

- (<;"0( 111 > )* (5) 

From eg. (~), we have 

(26) 
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;} 
(6) 

and the resolution of identity of the form 

(7) 

where r~1>( 
11.. 

stands for Thus, the 

coherent states are not orthogonal to each other, but form a 

complete set (the over-completeness). Using eq. (7), the trace 

of an operator A can be obtainable from the formula 

(8) 

A coherent state I c( >c. can be generated from the vacuum state 

f 0.> by means of a unitary operator U to!) defined by 

U to() 10) 
(9) 

u (cl) = e.X p (0( b -t - 0{7f b J 

The operators f U(()()J are, complete in the same sense that any 

physical quantity can be expressed in terms of band b+, i.e. a 

physical quantity can be represented completely by using U(~). 

From this completeness, various kinds of one-to-one correspondence 

between c-number functions and functions of Bose operators can be 

(27) 
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set up. Introducing a weighted Fourier transform of U t«) defined 

with weight n( IX, ()(~) as 

AW have shown that an arbitrary operator A(b,b+) given in powers of 

band b+ can be expanded uniquely in the form 

(11) 

In the case with 11 (O(,O(;>() = e.Xp [O('''{)(/2) :=: N, they found that 
tJ 

'FA Co( ,~Jf) is given by ~o( I A ( b I b+) 10<)<:.. Then, from the uniqueness 

of the expansion (11), we have a one-to-one correspondence 

(12) 

between c-number functions and operators. Further, the c-number 

function corresponding to the product Al. A2 :A of two operators 

A I (b, b-+) and A~ (b; bT
) can be shown to be expressed in terms of 

and as 

,(13a) 

or alternatively as 

-r-:-tJ -"Cf\J a. l:.'" I 
jiA.Al. ex. C(7Y) = r }.:/..( Cl(, ~ fX,~ -t ~) "A, ( ~; D<;.\") fl(, -=- C( (13b) 

J 
rX.,"" -.:. 0( 

(28) 
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where the differentiation is carried out regarding 0( and o(:it- as 

being 

and 

and 

. * 
:~ndependent of each other . 

2.. f(o() -=. D hold, where 
00(11 

d I -,,' ? ( (B) J~ ~ 
:.. e 

~ I e.~rb 
~~ 

:: T~ [ (~ 

, 
eJ. ~ . 0(= J"i 

In other words, 

" .A 

(;9S) J 2J 
J 

" 
(14) 

~~ c :~ ) J .2.J J 

Thus, in the case with ..n. ca ,e<:>\') -=- N , we have the C. S. R. (If we 

choose ..n. (cl. ;0<.'1( ) '::: ] ~ W leX, c(~), we have another one-to-one correspondence 

such that the density matrix corresponds to the Wigner distribution 

function.). 

* In the case with A, "'- b+ 6 and A 2. -=:. 6;', we have H:':::' ~<o(, I;t b I 0<>( .~ ~~ I 

H~-=-tX* and the r.h.s. of eqs. (t3a) and (I3b) become f({:>\'(o(+ ~o(;t)l C(~ 

and (o(~"t %0<) Cd..it'o() , respectively, which are both equal to 

()(kc(~\J( T c(*" ::: c(o(l (1)1- b+ b t- bi- ) IcX>t -= ~rJ. I bot b bot IO()(.. As another example, 

+ consider the case of two operators H=b b and ~ (the density matrix). 

In this case, we have 

" 
;- :: ~) P(tp,"J) 

by using (13 Q ) and 

N· , 
l=f.P11 (c<,c<:ir) ::: 0( (0(;)( +~ ) Ji;lOl.I<X*) '= Cl + 'J ;7 - ~ ~ ) f C<P,J) 

by using (13 b r ,where Perl"J)::: Ti~(O{,c<~). 

(29 ) 



§3 

R-RR have noticed that the existence of one-to-one correspondence 

enables one to avoid an ad hoc use of canonical conjugate to density. 

Their argument starts from replacing the SchrBdinger equation H Pp) -:::: t:: 11/1> 

into an equivalent set of equations for the density matrix .? -= I1P> <"P I 

written as 

)-1'p-f'H -0 (15) 

Then, in the case of one degree of freedom, two operator equations 

in (15) can be transformed into two c-nurnber equations for 

by using eqs. ( 13 a. ), (, 3 b ) and (14-). 

In the case of a many-boson system described by the Hamiltonian 

(2-.2), a functional f["/JJ ':: $"l>I.pIi'~, takes the place of ~O(I.PIO<>c. I 

where I",,), satisfies (1 - 3 ) , i. e. ~ eX) /1j.-/c.. = 1'(X) IIJ->C • Accordingly, 

there appear the functional derivatives ~/S YCX) and ~/.s '\f'~(X) in 

place of C)ho( and ~/ao("-- R-RR have noticed that the c-number 

-+ ;T, 
functional corresponding to the density '±' (X) ';1: Ix:) is given by 

Then, introducing the polar form 

r{X)-::.JpC(J e.A!lCX) , they considered that ?(x) and 9.rx) take 

place of the densi~y and phase operator used in the collective· 

variable theories. Regarding the Fourier transform P
k

( i~) of 

as quanti ties of order IN ( I/JN ), R-RR applied the the 

l/N expansion to solve the resulting set of c-nurnber functional 

_8 c8 
equations and, up to the lowest order, obtained 1::0 and Ch • 

Thus, the formalism of R-RR is free from FrBhlich's objection. 

Unfortunately, they did not succeed in obtaining correction terms, 

(30) 
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due to the appearance of the superabundant variables, f p~ ()/a P
k 

~ 

* and , which are supposed to be reduced owing to the 

presence of two equations in (15). 

Here we present an argument, which suggests that this kind of 
,. 

inconvenience can be removed if only those coherent states with 

lill/"'"J .... 1 are used. In so doing, we note that the expectation value 

+ of an operator A(b,b ) can be obtained from 

(16) 

, 

where we have used eqs. (~), (12) and '- 13 Cl ) and in 1=i; all tX",·~ 

are placed to the left of C>/o O(~ given by (14-). 

For a pure state, ~~(~,~~) has an important property that 

it factorizes with respect to ~ and ~* Since a Fock state I rp) 

can be written in the form 19')"" ~ 9')& In> , using eq. (~), we obtain 

(17) 

-1(l(1~ - e CjJ(O(-K,) 

* In the case of one degree of freedom, we have two sets of 

conjugate variables, {J; ;y j and I? ... ~ 1 ,which is easily 

seen from the equations given in the foot note to eq. (13). 

(31) 
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Noting that the differentiation with respect to o(l' (i.e.. d/O~(\t.) 

is to be carried out regarding 0< and o(?r- as independent variables 

in (15), we have 

(A> (18) 

1 

where use has been made of the relation 

(19) 

Here, we note that a function of ~* alone appears to the right of 

'9/'(Jo(J(- in (/8). Then, by means of a formula 

1 
(20) 

which holds for any function of C(~:::. J'; e- lp 
alone and is derived from 

dldOt' f(o(~)""o and the definition (Ilf-), (18) can be transformed into 

<A) 

In this form the integration over J can be carried out under 

quite a general condition. Writing H: as 

(32) 
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the integration over ~ yields a factor g~-~T~-n,D and the 

integration over J becomes 

Thus, we have 

§3-§4 

(21) 

where r = i(bi-bi-l) (r is the gamma function). The integration over 

J results in the appearance of the P-factor and in the reduction 

of (O</c.to I e~~>c • 

§4 Formulation 

A many-boson system with two-body interaction can be described 

by using a Hamiltonian expressed in terms of a field operator ~(x) 

and its Hermite conjugate ¥t(x), satisfying the Bose commutation 

relations, ['t:(X) .. ~t(1j)J = S ( X - ~ ) , etc. In the previous theories 

worked in the continuous space, the second order perturbation terms 

(33) 

, 
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involve several absolutely divergent terms which should not be put 

equal to zero .2.3, G) Al though we obtain a convergent r'esul t by summing 

these divergent terms, there appear some ambiguities in obtaining 

the final result (see §2). No ambiguities of these kinds do not 

appear in this theory of lattice ~pace as shmvn in the following 

section. In this section, a representation based on coherent 

states is formulated in a lattice space with the lattice constant a. 

We first replace it (x) and 'l!-t(x) by a set of operators if'(i) and 

~+(i), satisfying the Bose commutation relations, Cif'(A};\f-tej») -=a.- cl S"'j 

etc. where d is the dimension of the lattice space. Then, ~(i) 

and i'Ta) are replaced by b: = a. 0112. ~ho and b ~ ~ II d/z if+ c.o 
A ~ 

satisfying , etc. For simlicity of notations, we 

consider a one-dimensional lattice space (d=l). Then, in the case 

of the density-fluctuation operator, the correspondence 'among the 

. three sets of operators becomes 

(1) , 

where k:2na/L(L is the length in which the system is enclosed.) 

In this one-dimensional lattice space, the Hamiltonian (2~2) 

assumes the form se) 

(2) 

(34) 
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where V(i.-j)-:. Vex,,--X j ) is the two-body interact;ion potential, and 

the current operator becomes 

(3) 

The extension to the three-dimensional case is straightforward, 

and is discussed briefly: .in·Appendix c. 

As an illustrative example of the present coherent state 

theory, we consider the problem of a single harmonic oscillator. 

A coherent state r~>~ is defined as a right eigenstate of the 

annihilation operator b with an eigenvalue· c(-= IT eA~(see § 3) • 

The representation based on the usual completeness relation (3-7) 

however, gives two sets of conjugate variables, f rj " A ;~} and 

f J " .; ::r ~ ,as mentioned before, and we would find a different 

form of the completeness relation from eq. (3-7), which is more 

suitable for our present purpose, taking the argument in §3 into 

account. 

Denoting a coherent state with the amplitude J=l as lp» , we 

define D by 

D ~ S:.g{ I s6» «cp I ) (4) 

ftp»~ , 

where the normalization is changed to (01'/»>=]. Of course, \<;» 

satisfies eq. (3-2), which can be written explicitly as 

(5) 

(35) 



Performing the integration over ~, D becomes 

I 
'11/ 112)(11.1 

Using this expression D, we obtain 

, 

I 

where r(z) is the gamma function. Eq. ( 7 ) is the desired 

completeness relation (C.R.). 

Noting eq. ('7 ), we introduce the notation CP(rf) by 

oD 

c:P (f/» :: «~ I JF I cP> "::. ~ D Cf>-n. e -A n rp , 

§4 

(6) 

(7) 

(8) 

for a state lep):: 't. P'L In) in the Fock space. Then, by means of eq. (7) 
")t 

the inner produc:t of states I Cpl > and I CfJ2) becomes 

We would call g>C4') the representative of I Cf», and more in general 

«P IJP' A Cb, b+) I g» the representative of A (b, b-+) 19') where A C 6, b+) 

is an operator given in terms of band b+. For the number state 

/9') -::.1 n>" <Ph' = S tt, n.' we have <Ph ul» ': e-;h f. Noting the relation 

bln)-==,fllll1-l) and b+{"tl)=Jn+lln+l), we see that the representatives 

of the state bIn) and b+'n) are given respectively by 

(36) 



§4 

, 
(10) 

ahc{ , 

where Jl %; is defined by the equation Ji ~/r;-; e-... 'nc} -::. Jh e.--'\''n~ _ 

More generally, the representative ofA(b,b+) I~) is given by 

where we need not expand A in the normal order (see Appendix A). 

We shall call A( e~t1JAa.4{J, ..... ) the representation of A(b,b+), or 

say that A (b,b +) is represented by A ( e;~ J,: %c;6 I •• ~ •• ). In particular, 

the number operator b +b is represented by .... ' c9/a rp. In the following, 

the notation A will also be used to denote the representation of 

an operator A. 

Further, for the raising operator 'X. + and the 10'ivering operator 

X defined in (2-$2), namely by 

X In) '= In - I> x+ In.) -= Ion + 1 > , (12) 

we have 'X 10)=0, and the representative of the state X 111) becomes 

( I - S ?t,C) e
l 

s6 e-A 
'11. ~. Noting ~n/o e --,'h '" -:. P: e-'" h~ where p:, is defined 

by 

D Sll cA rfi I 
.1 0 'P £if> ) = ~ ("() ('" ") ~ en 

_~ ~~ J Y To (13) 

-->:t -.. 
(and so is a projection operator satisfying p~ -= Po ), we see that 

(37) 
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the representatives are given by 

.J 

(l4) 
«1> I [f X X+ IIp > ~ ~ P-n e -~' It rp ': Cp (rp ) , 

CP')f e-':' 11'; :: ( I - Pt) ) cP (rp) 

By means of eqs. ( ? ) and (11 ) , we can calculate the expectation 

value of a quantity A by the formula 

This particular representation used here is different from the 

usual one, but is sufficient to consider our problems at the zero 

* temperature, for which we have only to deal with pure states (see §3). 

* In order to treat a system at finite temperatures (or in a mix 

state) by the present formulation, we will need the off-diagonal matrix 

element of the density matrix <<'1'.P I 1>'», which 

F;(~/~~)·~ ~~IPJ~~ used in the usual C.S.R. by 

(38) 

is related to 
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In order to gain a familiarity with the collective variable 

theories, we define the Fourier transform of the representative ~(4) 

by 

.. (16) 

Then, the operators, i'rf and ,\ %r/> ' are transformed into o/';)? 

and p , respectively, and the representation of the operator A Cb, b+) 

is given by 

-.l . 

A (b J b -t) @ (P) =: A ( ex p [ ~) JP ~ n e X p (- ~ p) ) ~ Cf' ) (17) 

The new representative per) (eq. ( /6 » is normalized as 

• (18) 

Now, the coherent state representation of the lattice space 

problem is easily obtained by applying eq.(/1) to each set of 

operators, b" and bj The Hamiltonian and the current operator 

,(eqs. ( 2 ) and (3}) are represented by 

(20) 

(39) 
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respectively, where d/J p.~ is denoted as }. ~A.' for simplicity of 

notations. Eqs. ( I?) and (20) are precisely of the form as expected 

from the method of DPO applied to the lattice space problem. It 

should be emphasized that the representation of the lowering 

,'" ',I. ~ 
operator 'X is not e.l't' but e"'t' ( I - Po) as given in eq. (Il.j-). The' 

final results of the ground-state energy and the momentum distribution, 

however, are not changed by omitting Po in the course of calculation, 

because these operators X and Xi" appears only in such products as 

·K X-t (-:. 61
) or X J1i. (:. b). In other words, it is not necessary that 

all the representations are completely equivalent to those of physical 

quantities defined in the Fock space (the Fock representation) • 

However, from our rather conservative point of view, we prefer to 

make the representation equivalent to the Fock representation 

imposing the following subsidiary condition on the representative 

cp (p), which is a periodic function with period 2)1., and allows 

negative values n=-I,-2, •••• for the representation of the number 

operator ;. C)/a rp. Noting that the inverse of the gamma function 

p'-I(~) has zero's at z=0,-1,-2,······ and only there, we impose the 

subsidiary condition written as 

-I r (-A :1> ) CfJCcp) = 0 , or (21) 

which prevents us from treading out of the representation equivalent 

to the Fock representation. 

* We can show that also in the R-RR theory some subsidiary condition 

should be imposed on P(~/~~), in order that r(~.~*) corresponds to 

a Fock state. 

(40) 
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In our coherent-state theory, we are allowed to use formal calculation 

Aa/af , bearing in mind that the projection operator" is involved 

in the representation of the lowering operator ~. In this lattice 

theory, the subsidiary condition (2/ ) assures that every p~ takes 

on zero or positive integers. In this way, we have overcome 

Fr5hlich's objection that the canonical conjugate to the number 

operator does not exist. 

Before we go over to the continuum limit, we would introduce 

the lattice Fourier transform of PJ • Noting the correspondence 

( 1 ), we define the density fluctuation 5'R by 

(22) 

where L is the length in which the system is enclosed with periodic 

boundary condition, and the wave number Po runs over the first 

Brillouin zone only. Then, rp.J = -J ()/o P-, is given by 

(23) 

From eq. (23), ~-iT' - if'J, becomes ~ (exp (--'RD.J -1.) cfiR eJCp(-.ilY. Xl] J 

which is of order a. We also introduce vi given by 

, (24) 

where the factor f~ is given by 

(25) 

(41) 
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This factor fk plays a crucial role in our lattice theory and 

relations it satisfies are given in Appendix B. f~ appears in 

the lattice Fourier transform of an operator, for example vA ' 

defined with respect to two neighbouring lattice points. 

By means of the correspondence given in eg. ( L ), the density 
. -c( 

in the continuum limit a.-+ 0 is given by ~ (x) ~ lX f'.l. To complete 

the connection with the collective variable theories formulated 

in the continuous, space, we introduce the phase operator in the 

continuum limit l/Jex.) by the corr'espondence q, (X)~) ~A ~ -A C)/dJ'.l •• 

Introducing the projection operator and imposing the subsidiary 

condition (2/), we can arrive at a correct result even if we used 

the commutation relation t. PCX) .. cf>(X')J -=-18cx-x') (~.A o.-ct~ . .q)in the 

course of calculation. Eg. (I? ) reduces to 

J 
(26) 

which agrees with the prescription of DPO, because the lowering 

operator ~A stands always in the l.h.s. of ~ and the raising 

operator X! does in the r.h.s. of in DPO, as long as we 

consider the problem in the lattice space. 

S f d . .. b d h C ( h) As J r ( 1+ b of I ) oar, our 1SCUSS10n 1S ase on t e .R.,. b 

and D, which are diagonal in the number representation , are 

commutative with each other, the C.R. ( 7 ) can also be transformed 

into 

, (27) 

(42) 
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and the inner product of a state becomes 

(28) 

Thus, we have two representatives of a state the r~representative 

9'.,..Ccfi)=«</>IT"I(P) and the J-representative %.~(rfJ) = <'1f1It/»>. Here, 

~r(~) and ~:(~) can be regarded as the representatives of the 

states p~ I cP> and <cP I f?-~ ,. respectively, . which are obtained 

by a non-unitary transformation: 

I 

) 
< cp I ~ < (p 1 J7--;: 

(29) 

, 

where p,:: F( b1"b+ I). By similar arguments as given below eq. ( 9 ) 

the r-representative of the state A(b,b+) t~> becomes 

which is a non-hermitian'representation. The r-representation 

e~P (I - Po) is nothing but the representation of and 

connected with e.A'ri li f}/o1> by a non-unitary transformation S given by 

S:: exp[~j,,\ P'(-":sa + I)J o::JP'(.i~~ -t I) , (31) 

in such a manner as . 

(32) 

( 43) 
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The more detailed account will be given in Appendix A, where the 
,,/. -' 

relation S-Ie,,'f' Pc. ;;:0 is also shown. So, as far as the calculation 

is made after the hermitization process as introduced previously~l) (I-Po) 

factor in the representation (~D) can be safely omitted. Then, 

in the continuum limit, the representation (3D) reduces to 

J 
} (33) 

wi th the same ~ (;0 and cf (X) as in eq. ( ..2 {,). Eq. ( 33) coincides 

with the non-hermitian prescription given by Berdahl/'n from which 

a Hamiltonian equivalent to that given by BZ is obtained. 

paper . ~ (X) is denoted as ()'-ex).) 

(In his 

In this way, the equivalence of BZ and DPO can be proved. 

In showing this equivalence, it must be noticed that the expecta-

tion values of physical quantities should be taken befor~ going 

over to the continuum limit. 

§5 The ground-state energy and the momentum distribution 

On the basis of the formulation described in § 4, we nmv evaluate 

the ground-state energy Eo and the momentum distribution n , up 
p 

to order l/N (N is the total number of bosons) in the l/N perturbation 

expansion scheme. 5 - 7 ) The subsidiary condition is neglected. 

First, we consider the kinetic energy part in eq. (4-l9). 

Using V; given in eq. (4-24), we expand the exponential factor in 

power series to obtain 

(44) 
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-' 

T-= (1) 

00 

E ( 1)-' (l1t et)lt ( re;- 11 r,::; 1I} 
It:., n. r J ~-tl (-A V;.) "f!~ -t ft· CA V",) ~"tl ) ~ 

Taking the continuum limit a.~ 0 in eg. ( 1 ), terms with 11. ~ 7> 

vanish and we obtain TDPOC given by DPO in the continuous space. 

However, it should be mentioned that the factor .f~ la in Vi becomes 

of order l/a for such k's as kA~~. These k's always exist and 

contribute to E~. This seems to be what Hiroike's cut-off procedureS) 

means, and we would retain these terms with '11. ~ 3> in the following 

calculation. 

For a N-boson system, p~~c given by eg. (4-22) is egual to 

N. As 'Ph. ... c -:::-,\ O~P~""D does not appear in eg. (4-2.1-) and so in the 

Hamiltonian, we can safely put Pho :' N. The l/N expansion is 

attained by setting 

(2) 
) , 

and expanding ~ in the ascending power of l//N as 

As VA (eg. ('4-21-» is of order l/IN, we see that the terms with n=3 

and 4 in eg. (1 ) also contribute terms of order liNo For instance, 

(45) 



the second term in the n=3 term becomes 

Using the equality 

-Ak:x· e A 
. . 

§5 

(4) 

• 
(5) 

and similar ones, where Sh/~ is the Kronecker's delta and wave 

numbers differing by a reciprocal lattice vector are regarded as 

equal, eq. ( 4- ) becomes 

( r. h. s. of e i . (4- ») (6) 

where dashes are omitted. Other terms can be evaluated in a similar 

manner. Then, using the relation [; rp.,D..1 f'h ] = S R,..£ and the property 

of fk gi ven in Appendix B such as f~ -t..t -: fk T f...Q. - fk.'U' the final 
...... 

expression for T becomes up to order l/N 

(7) 

(46) 
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(7) 

, 

where < •••• > is defined by 

(8) 

and by means of the definition of ·Fh given in eg. (1--25"), the 

expressions <RJ..Q> and < R,..Q, trtl n > reduce to - a~ k·.Q. and 0.4 k·,.e·m· n , 

respecti vely, in the limit fA.. ~ o. The tP.J. <fi)1I ~h term in eg. ( b ) does 

not appear in eg. (7 ) due to the relation (B·S). The total 

Hamiltonian (4-11) becomes 

V h -=. L;" I ~ V U - J ) e. ~ ~ (x.; - X J ) 
J 

} 

..l. 

where T is given by eg. ( 7 ). 

(47) 
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Here, we would introduce the" annihilation and creation operators 

Bft and B: for the Bogoliubov excitation defined by 

" 
CPk = 2 ~ ( B_~ - B ~ ) 

I 
(10) 

-s ~ 
Then, the lowest order Hamiltonian HD~ lo~ V can be diagonalized 

to give 

--.l -B ;-~ £B B+ H= Co Bh. (11) 
0 R ~ ~ 

-~ N~ N I E B -::. Eke 1::.0 -::; 2L V~ - 2, V(O);- Z_(EB_~O) R 2 Iq ~ I k .A.k 
. 

On applying these operators B~ and B: in place of PR and CPk , 

we denote the representative ~(?) as I~). In particular, the 

unperturbed ground-state is denoted as 10) , which satisfies Bh 10) -= 0 
-.l 8 -1 

and Holo)-::E~ /0). In this notation, eg. (4-15) becomes 'E ""(~IH I~). 
-.s --" --> 

Then, treating I. et- 11 "I- 'a as the perturbation in the usual Rayleigh-

SChrodinger perturbation theory, the ground-state energy up to order 

l/N is obtained from 

(12) 

where Q is a projection operator defined by Q::: 1- \a)(o\. 

Using the property of +k given in Appendix B, the evaluation of 

( 12) is.straightforward, and we obtain the expression for ~o given 

by 

( 48) 
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r- -B "rB~ _b-+-rC 
1::0 - f::.c + t=., T \::.. t:., (13) 

J 

-I:: b : 1\.2. ~ [ J 
, n - L....J <R,.Q> (I-A ... )(I-An) -t- 'i:~f1Yl • 

.c.4-1l1Q.l!..N R-t-.h-'ltl"=-D "'"'" 

As <k"jl) / a~ reduces to - R·.Q in the continuum limit Q ~ 0 , 1: 0 

"E Bl. obtained in eq. (13) completely coincides with 0 obtained from 

the modified Bogoliubov theory due to Breuckner and Lee, in the 

high-density limit. ,-B T E B~ .. 
1::0 I ~s equivalent to the expression 

.,.. B -+ i:: Bl ~ l b 
given by Bogoliubov and Zubarev, and Co 1...:1 1::, 

- CB1=' 
gives t.o 

obtained by the method of correlated basis function, which prov~s 

to be exact in the high-density limit for the Lieb-Liniger model. 
'1"""131.._ LC.BF ~e 

The difference 1::0 Co is given by C I (see eq. (2- IS) ) • 

Eb _Co 
Here, the sign of the expressions , and t, can be determined 

uniquely. In the continuous 

::; -)3 k·l .... are admissible, 
~ • .l 

b 
sign of the expressions El 

space, manipulations like Z k·1. .... 
~/..12 

which raise some ambiquity about the 

and t=, C Al though both <. R ,- ..Q > and 

- <~ .. £> reduce to Ct'l.~·..Q, <kJ-..Q;> is not equal to -<~,Q>and 

(49 ) 
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manipulations like E <k,.Q> --.::: r; < R,-J?) ... 
k,~ hi; 

:. E - (k .. .Q) ..• 
R/..c 

are not 

admissible in our lattice treatment. <~,..Q) can also be rewritten as 

in eq. (13). (See eq. (18).) 

Next, we consider the momentum distributionnr. In the continu­

ous space, np is given by the expectation value of "apt Gp ,where 
I 

0. 1> ':: I -';. fttx ~'ex) e-" r:x: . ,u 1:' In our latt~ce space, Q p corresponds 
I , 

to b r ~ (a IL)~ ~ b..( e-" PXA ,whose representation is given by 

(14) 

~ --! 

By means of eq's. (2), (3) and (4-23), bf' and b~ can be expanded 
-..1 -" 

in powers of l/ffl, and the representation of b; br takes the form 

-.l -.l~ 

"lhere TIp (n p ) is a complicated expressions of. order l/lN(l/N} 

composed of three (four) - fold products of PR and c:P R , and so 

of Bk and {St through eq. (la). As o.p in the continuous space" 

is defined without the gradient of ~(X), its counterpart bp in 

the lattice space does not contain the factor f~ Therefore, 

its expression can be obtained from that in the continuous space 

only by regarding the summations ~ and so on as those of 
R-t-.Q-t-l't! .... 0 

lattice space, and we would refer the reader to~ref. 40 for the 
~ -l --1 

explici t form of bp and bY; br • 

Thus, in our lattice theory, the momentum distribution nr up 

to order l/N can be obtained from (~o I b'f ti' \ ~ t.) / (~o \ <Po ), where 

I ~ c) is the perturbed ground-state. The unperturbed value n ~ is 

easily obtained by means of eqs. (IS) and (la), and becomes 

(50) 
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(16 ) 

The evaluation of the correction terms is cumbersome but straight-

forward, and we obtain 

where < n r po> is a expression obtained by replacing the factors 

like - p- h by < P,R) in the expression for n p given by Nishiyama 

from the method of DPO. 40 ) The difference from <n :po > is a single 

summation over wave number, say k, and essentially vanishes after 

h . t . * t e l.n egratl.on. This situation is compatible with the fact that 

the double summations encountered in the expression for the ground­

state energy (13), such as E (C2.<~,.Q>(I-A~)(I-.i\..Q) , cannot be 
R • .12 

put equal to zero, as emphasized by Takahashi 23 ) and others. 6 ) ,34),39) 

Thus, the additional term to <n pPO) can safely be discarded and 
DPO 

reduces to ~r ' which have been shown to satisfy the Gavoret-

Nozi~res condition, 30) namely, TIp approaches the value (No IN) (m C /21\ p ) 

as the wave number p tends to zero, where No and c are the number 

of the condensed particles of zero momentum and the true sound 

velocity, respectively. 

* Indeed, owing to the fact that pC\. becomes much less than· It. 

for Cl-'> 0 , we can safely approximate <P/~:> by ;.. po. (f~--f-~) and 

the single summation vanishes due to its symmetry. 

(51) 
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. 37) 
Following the adiabatic theorem applied by Berdahl in 

obtaining 'rIp ~ np is obtainable from ( () /J ~ r ) f: c , regarding the energy 

parameter EO r as the a,diabatic parameter. Rewriting t=~ , by 

means of the identity <p.,iD :: ~ «~/-~> T <.Q,-.Q> - <lIt ... -lU» (eq. (B. 4) ) as 

Et: ~ _ Z ,( ~: T-

t ~"t"..Q -I111'=-l> 

f; - f ~ ) ( I - A k ) ~ ( I - Ai! )"2. 

I b N .it. it A-2 ' 
(18 ) 

and using the equality (a/;)€;) Ap::: A p (I-A.r)/2 £; , the contribution 

from 'Ec, 
I is obtained as 

(19) 

( I - A.o )' ( I - i\ 1tt )'2.] ;- .::l Yl 

2. A~ A'I1, r 

where .& n r is the difference 'n p - <n~Po.( in eq. (17). Here it 

should be noted that "E.~ contribute not only to A l1r , but also 
...J 

terms contained in coin; 10), which is independent of the way how the 

limi t Q -:} 0 is taken. So, in order to have a result consistent 

with the adiabatic theorem, 

previou~ly by Nishiyama. 40 ) 

\:::: e. is indespensable as pointed out 

re 
Indeed, c. is directly obtainable 

in the lattice theory, in which the continuum limit is taken 

after the final expression for Eo is obtained. The expression 

EoB~ can be obtained also from40 ) 

, (20) 

where srp is the structure factor. Thus. the present lattice theory 

is consistent with the adiabatic theory. The inconsistency between 

DPOC and DPOM is related to the fact that the order of taking the 

continuum limit and taking the expectation value cannot be interchanged. 

Further discussion will be given in §6. Since the structure factor 

(52) 
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and the excitation energy are equivalent to those given by DPO, 

as is clear from the argument below (/'1 ), we do not discuss them. 

§6 Summary and discussion 

The discussion of §5 is based on the representation given in 

(4-17). However, the same result can also be obtainable from the 

representation given in (4-30). In this case, neglecting the 
-... 

factor Po , a non-hermitian Hamiltonian which reduces to that given 

by BZ is obtained. Working ~n the lattice space, this Hamiltoniah ~ 
n.h. 

can-be transformed into the 

transformation S given bY* 

Hamiltonian' (5-9) by non-unitary 

(1) 

which coincides the weight function ID given by Hiroike (eq. (2-31). 

S given in (1) is nothing but a l/N expansion of the Stirling-formula 

approxima tion i ~ ~ (S'; + -i ) ...ell ~..\ - S'.; 1 

* 51) In a previous paper ,we have presented a coherent-state theory 

in which the occupation number n. of the i-th lattice point is' 
~ 

restricted to 0 or 1, and obtained the same result for the ground-

state energy E and the transformation S as given in this thesis. 
o 

The restriction n.=O of 1, however, is neglected in the course of 
~ 

calculation and this expression E cannot be applied to a one-dimensional 
o 

system at low density. By taking account of this restriction, it is 

expected that this theory is useful for investigating a system at 

low density. 

(53) 
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If we approximate h r l£. + I) by ~"~ P; , the Chan-Vala tin transform-

at1." on" 35) 1."s obtal"ned. Th" "t" h " ld th 1S approx1ma lon, owever, Yle s e 

divergent terms as encountered in the old collective variable 

theories. G) Thus, the meaning of Hiroike's cut-off procedure has 
f,,' 

been elucidated by introducing a limiting procedure as given in §S. 

The relations of the present lattice theory described in §4 

and 5 to other collective variable theories can be summarized as in 

the figure. 

...l; ~ 

H~ H n.h. 

\ 
HBZ 

Figure: 

~ implying that the continuum 

limit is taken, ~(--~) connected 

by non -uni tary tr ans forma tion IF (JD ) 

HDPOC 
Eo 

1 
HBZH 

~ / ~ 

with each other, and -~'( X» 

expectation value is (isn't) derived. 

The importance of taking a proper 

continuum limit becomes clear from 

EBL 
0 

this figure. 

Hl>pocand H8~ are obtained by taking the continuum limit of Hand 
--' 

expanded as in eg. (5-i), respectively. Only H yields - BL t::c 

obtained from the Bogoliubov theory reformulated by Breuckner and 

Lee and is therefore consistent with the adiabatic theorem applied 

by Berdahl in obtaining np . )-1 t:: S~ H " .. CB .. 
B~ gives 1= 0 and I)po c Ylelds C" 0 

The Hamiltonian HBcH given by the improved BZ theory due to Hiroike 

"ld ,.. CB F Yle s Co 

(54) 
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't"'OB I.. In order. to obtain c , in eq. (5-7), which is formally 

higher order in a, is indispensable. As pointed out previously 

by Nishiyama6), lr2 gives absolutely divergent sum, which in our 

formulation is written as N- ' ~ (iC"//6 In Q.1 ) (RI .Q > A~ J...J. in addition 
~.J 

to the contribution to £~~. This, together with the contribution 
~ 

from I~, gives the difference between 'Ec-""E:t. and "E::<t. However, 

L. oC ~ft L:: B L. . the ground-state energy obtained from DPOC is ~ and not ~o • 

-.1 

This is because the terms of the form cfi 1> rf cp and ~k,~.e tp tp in 11 

comes from the terms with n=3 and 4 in eq. (5-1), and therefore is 

missing in TDPOC ' although these terms do not affect the exact 

values of the ground-state energy for the one-dimensional L-L model 

and for the charged Bose gas in the high-density limit. These terms 

are also missing in H2 given by Hiroike (his eq. (3.15»,5) which 
---l 

corresponds to T~ . 

Though DPO (described in the coordinate space (DPOC»6) gives 

ECBF it gives EBL when the kinetic energy· is calculated by using 
o ' 0 

the expression for the momentum distribution function (DPOM) 40) • 

This situation can be interpreted by the present formulation as 

follows. The lattice Hamiltonian (4-2) can be rewritten as 

1\2. 
H = ~ 2wQ.~ <R,-R> TIR + (Mvt. tuvm. ) 

) 

~ 

(2) 

contrary to the representation H given in eq. (5-9), the represen-

tation obtained from (2) does not involve terms which vanish in the 

+ continuum limit, because the representation of bk (or bkbk ) does not 

contain the factor fk (see discussions below (4-25)). This is the 

reason why DPOM yields the ground-state energy EBL instead of ECBF • o 0 

(55 ) 
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In. general, the continuum limit should be made after taking the 

expectation values. 

The relation to the velocity field approach of Yamasaki, 

Kebukawa and Sunakawa (TKS)39) is not so clear as in the case of 

the BZ theory and the method of DPO. Recently, Nishiyama has shown 

that the Hamiltonian of DPOC is unitarily equivalent to the Hamiltonian 

given by the ne'!,.; Sunakawa theory of YKS and expressed in the so 

called small-b operator of Yamasaki up to order l/N. 

It has also been shown that introducing the canonical conjugate 

to density causes no trouble, because the representations of the 

raising and lowering operators X+ and X include a projection 

operator as shown by (4-14) and the quantity ~ (the phase operator) 

appears only in such forms as expO t/'J If and JP e.xi) (-~ ~). Al though 

the method of calculation taking the subsidiary condition into 

account is left as a future problem, the ground-state energy obtained 

by neglecting this condition coincides with the exact result obtained 

for the one-dimensional Lieb-Liniger model and for the charged Bose 

gas in the high-density limit. This situation suggests that the 

subsidiary condition can be safely neglected in the high-density 

limit. 

Finally we would like to make a remark on the superfluidity 

of this system. As mentioned in §5, the zero-th Fourier transform 

of the phase operator ~O is a cyclic coordinate. Let us consider 

two systems with the total number of particles NI and N2 and the 

chemical potentialjA, and;U1 , respectively which are allowed to 

(56) 



§6 

transfer a small number of particles to each other through a narrow 

channel. l\1e consider that each of the t,",o systems is sufficiently 

small compared with the macroscopic scale but large compared with 

the atomic scale so that the bulk property of the system can be 

preserved. The zero-th Fourier transforms of the phases of the two 

systems are donoted by cf., and £p2,. , respectively and the total numbers 

NI and N2 can be written as A a/()~, and .A o/arpl. in our coherent 

state representation, respectively. 

Here we assume a symbolic expression for the Hamiltonian of 

the two systems in the form 

(3) 

where the interaction Hamiltonian Vl ,2 is considered as commutative 

wi th the phase difference ~ ': 4>,- "''- and may depend upon cfo as in the 

effect52). Hence the case with the problem of the ac-Josephson 

tempora,l change of the phase difference is given by·· 

(4) 

where ~ is the difference of the chemical potential; P-=.fI,"}I2. 

On the other hand, according to the two fluid theory, 53) the driving 

force of the superfluid is given by the spatial gradient of the 

Gibbs'free energy per unit mass; G and the superfluid velocity 

satisfies 

(S) 

When the curl-free superfluid velocity has the velocity potential 

of the form ti 4s Im, the difference of the velocity potential at the 

two ends of the channel should be equal to the time derivative of 

the difference of the Gibbs free energy, i. e. h. (~S;I - ~S,.l.) /'n\ -:. - q ,T C:r:.z. • 

(57) 
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Since the chemical potential is given by mG, we can identify the 

phase difference ~ to the difference of the velocity potential 

(multiplied by m/n) as 

~ -=. cf>s. I - 4s.2. (6) 

In this paper we have considered the homogeneous system, therefore 

the phases are homogeneous in each system. In the above consideration 

we have found that the phase difference is closely related to the 

superfluid" velocity potential l\ cP.s /m It is promissing to 

approach to the phenomenological two fluid theory from our microscopic 

point of view by considering several average quantities, together 

with such constants of motion as the total nu~ber of particles and 

the total momentum, as local quantities which vary spatially from 

one place to the other. 

(58) 



Appendix A Proof of egs. (4-1l), (4-30) and 

the relation 8'-' €J.~ Po S "'- 0 

In this appendix, we first show eg. (4-11) in its general 

form and then derive the representation (4-30) togeth~r with 

another representation. . -/ ~'" ~ -We also show the relatlon S e PD S - 0 • 

We first consider a state written as b B (b. b+) I CP) , where 

B is an operator given in pml7ers of band b + and I <P) is given 

below eg. (4-8). As the state BCb, 6T ) I Cp> can also be written 

as :r; CP: 111> , from arguments give"n below eg. (4-9), we obtain 
II 

«q,lJf b B I 9) :: ~ CP: «4> IW b In) ~ e; '" J;. ~if> ~ Cf}: «4>IJf \11) 

=: e;-cpJ;';q; «</>IJF B I'"'P) :: e"' ~ JA ~cj B c:P ( rp) 

, where 8 stands for the representation of B -::. B ( b~ b+) • 

similarly, we have 

(A. 1) 

(A.2) 

As an operator A (b,b1-) given in powers of band b+ can always 

be written as bBj <b
J
l1");- b+B~(b.;b+), from (A.l) and (A.2), eg. (4-11) 

follows immediately. It is clear form the transformation in 

~g. (A.l) that eg. (4-11) can be generalized to include the operators 

v ."V~ d D I\. _ ,.... an J c • In particular, the number operator b+b is repre-

sented by .; CJ 10 cp 

Next, we consider the representation (4-30). From (4-7), 

we obtain 

(A.3) 
) 

(59) 
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and the inner product of a state can be expressed as 

(A.4) 

Thus, we have the r-representative «.pIJPP-s l9') and the l-repre-

sentative <rpl pS If' I rp» • -I 
Putting S' ":::. 2 , we obtain eqs. (4-27) 

and (4-28). Using the representation (4-11) given in the text 

and proved in the above, the r-representative of a state I~> given 

in eq. (A.4) becomes 

(A.5) 

Where ~(~) is given by eq. (4-8) and the r-representative of 

a state b I CP) becomes 

(A. 6) 

• I 

e p-Se~fj,J;;~ rS«cf>ISPF-sICp):: ~A~(I~Po)(~~)"i"tS<Pr(~) J 

where the last equality follows from 

(A.7) 

Cl1't-D) 

(11= 0) 

~ 

and Po is defined by eq. (4-13). Similarly, we obtain 

l 

«p IJP F-s b+ 1',0) -= (A ~ y-S ( 1- Po) €-~ ~ CP,..c~) (A.8) 

(60 ) 



..... 
where the factor (/- Po) is inserted considering that i.. d/<J~ has 

negative eigenvalues. Putting 
, 

S ... -'2 , we obtain eq. (4-30), 
..... 

because in this cace (I-~) factor in (A.8) can be safely omitted. 

In this way, the relation to the non-unitary transformation (4-31) 

has become clear. 

The relation S-Ie"'f ~ 3":: 0 can be proved in a similar manner 

as in eq. (A.7), namely 

(A.9) 

) 

which follows from the fact that the inverse of the gamma function 

have zero at z = o. 

Appendix B Property of +~ and < R ... ..Q ....... , 111 > 

In this appendix, we will show several relations satisfied 

by f~ and < k/..Q, '-, '111 > , which are frequently used. 

They are defined in eq. (4-25) and in eq. (5-8). From the 

definition, we readily obtain 

J I (B .1) 

f~f~ ~ (1- e-~kQ)(I- e-J.Q Q
)-::: \- e.-~Rq -e-~~Q +e-"(k.+.Q)Q 

= fk -t f.,l1 - f_ bt • (B.2) 

The relation (B.2) is most .important and clearly shows that f~ 

should not be simply regarded as of order Cl. Other relatiOns 

can be obtained by using eq. (B.2). In particular, we have 

(61) 



(B. 3) 

(B.4) 

We also obtain, by a simple calculation, the following relations 

(B.5) 

(B. 6) 

-.( ki-..Q,. -h-..,e > - < k"t-'h1" - ~ -ht > - < k-rl1 J -~ -11'> J 
(R"t.e"t- h1""t- n -= 0 ) 

In the continuum limit a-;>D, f.k la reduces to 1 Rand 

<~,~>/a2 (Ol- <;~.I-.~>lo."2) TO -p . ..Q (01-- R2.). Thus, the relation 

(B. 4) reduces to - t?..Q ::: (k '2.. -t-.Q '2.. _ 'h12.) /2 

Appendix C Extension to 3-dimensional case 

In the three-dimensional lattice space, the kinetic energy 

assumes the form 

(C.I) 

-> --l --" 

where 0{ runs over x, y and z and ex , e~ and e~ is given by 

(a,O,O), (O,a,O,) and (O,O,a), respectively. Correspondingly, 

(62 ) 
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f ~ f x fL'J there appears three h S , namely, 1\ I ... given 

respectively by 

(C.2) 

< R (\ ... 'I1t) 
~)I. I J in the one-dimension is replaced by 

(c. 3) 

From (C.3), we see that the relations in Appendix B hold also 

in the three-dimensional case. The interaction term does not 

contain derivatives and so does not change. Thus, the resulting 

expressions remain the same as in the one-dimensional case. 

(63 ) 



Appendix D The phonon Hamiltonian 

From the Hamiltonian (5-9) of bosons written in terms of 

the density fluctuation Pk and the phase operator ~k ' we obtain 

the phonon Hamiltonian given in terms of the phonon field-operators 

Bk and B~ (see eg. (5-10» having the following form 

H = 

H = (n
2/2M) L 2 t + E(O) + E(l) 0 (k /Ak ) BkBk 0 0 k 

E(O)= (1/2)N2VO - (fl2/8M) L k 2 (1 _ 1.-1)2 
0 

k k 

Eci
l

) = (n
2
/l6HN) L {k2 

(1 - 2Ak '+ 2AkAl) 
k,l 

, 

, 

+ [(k+l) 2_k2_l2] (l-A
k

) 2 (I-AI) 2/ (4A
k

A
l

}} , 

L r l 1 (k,l) Bkt Bk 
k,l , .. 

, 

+ h.c. , 

H2 ,2 = k~lr2,2(k'l)B~B~kB_lBl , 

H = L ~ .' ( +tt 
3,a k,i,m uk+l+m,O r 3 ,a k,l,m)BkBlBm + h.c. , 

H 3,c 

(D.l) 

(D. 2) 

(D.3) 

(D.4) 

(D.5) 

(D. 6) 

(D. 7) 

(D.8) 

(D. 9) 

(D .10) 

where M, Vk and Ak are the particle mass, the Fourier transform of 

the interaction potential and the unperturbed structure factor, 

respectively; Ak=k/(k2+4MNVk/n2}1/2 and 
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rl,l (k,l) = (n
2

/4HN) [(k2+12)A~AI-· k 2A
k ] , (0.11) 

r l ,2 (k, I) = (11
2

/ 8 HN) [2 (~+l) 2AkAl + k·l (~;;:fi + Ak/Al + Al/Ak 

(0.12) 

(0.13) 

Al/Ak -3Ak Al )], ' (0.14) 

, 2" -1/2 ' 
r 3,a (k,l,m) = (fl /24H) (NAkA l Am) a(k,l,m), (0.15) 

a(k,l,m) = k.l(AkA l + l)Am + l~m(AIAm+ l)Ak + m.k(AmAk+ 1)1..1 ' 

(0.16) 

(0.17) 

c(k,l,m) = k.1(Ak A1-1)Am + J..m(A1Am+l)Ak + m.k(AmAk-l)A l ' 

(0.18) 

These vertex functions characteristic of DPO are related to 

those characteristic of CBF by 

a(k,l,m) = a(k,l,m) + b(k,l,m) 

= k.1 (Ak -1) (AI-I) Am +l·m (AI-I) (Am-I) Ak +mok (Am-I) (Ak -1) Al ' 

(0.19) 

y(k,l,m) = c(k,l,m) + d(k,l,m) 

= k o1(Ak+l) (A1-"1) Am+1-m(A l -l) (Am-I) Ak+m-k(Am-1) (Ak+l)Al ' 

(0.20) 

2·2 '2 2 2 
where b(k,l,m)= k A1Am+1 AmAk+m AkAl and d(k,l,m)=-k AIAm+l AmAk 

2 ' 
+m AkAl.£rn the above the continuum limit is taken properly]_ 
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