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ABSTRACT

- The ground-state eneréy and the momentum distribution
of a many-boson system are obtained in the high-density
limit by using a method of coherent states. Dealing with
the problem in a lattice space, some difficulties encountered
in previous collective variable theories have been overcome.
In particular, it is shown that the objection about the
non-existence of the canonical conjugate to the density is
not fatal to the previous theory of the density and phase
operator approach. The ground-state energy 6btained here

agrees with that given by Brueckner and Lee.
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§1

§1 Introduction

The theory of many-boson systems is yet a fascinating subject
" in the gquantum mechanical many-body theory in relation to the

1) After the pioneering work of

superfluidity of liquid “He.
Landau titled "Theory of Liquid He II",2) a number of papers have
been presented to make a foundation of his theory, the so-called
quantum hydrodynamics. These microscopic theories are common in
considering that a many-boson system is a collection of quasi-
particles instead of that of strongly interactihg real atoms.
Among these theories, we can name the following three classes.

3)

The first one is originated by Bogoliubov , assuming that a

number of atoms occupy the single particle state of zero momentum.
The sécbnd one is the theory of collective variables'4-z) consider-
ing the density fluctuation of the system as the fundamental quantity.
" To the third one belong the theories which intend to solve the
Schrgainger equation under some assumptions such as the Bijl-Dingle-
Jastrow approximation. One of these theories is known as the method
of correlated basis functions of Feenberg.s)
In this thesis, the main object is the second one, i.e. the
theory of collective variables. It is not yet sufficiently clear
what interrelations have the various theories in this class to each
other and how to answer several objections raised by a number of
authors against this theory. Recenﬁly, Rajagopal and Rama Rao (R—RR)9

lo) 11)

have invoked the coherent state représentation, frequently

/2)

used in the theory of radiation, to develop a collective variable

(1)
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theory which is free from the objection that the conjugate variable
to density assumed in previous collective variable theories does

not exist in the Fock space ( Frohlich's Objection).l3)

) who

Coherent states were first discovered by Schrédinger
was looking for wave packets for a harmonic oscillator which
oscillate without spreading. They are the minimum uncertainty
states for position and momentum and thus are the most classical
states. In the second quantization repreéentation, a coherent
state |X). appears as a right—eigenstate of the annihilation oper-
ator b with complex eigenvalue a, where b and its conjugate pt

10) , 1) This

satisfy the bose commutation relation, [b, b+] = 1.
definition of coherent states can be generalized to other systems.
In the radiation theory, a coherent state can be defined as a

right-eigenstate for the positive frequency part E (i, t) of the

quantized electric field E_UF,I>), namely, it satisfies

Ear,t) £y = Er t)y &) |
| + * ' . (1)
<&l E'trt) = Eur vy <€l

2

where E' is the negative frequency part of E. The name, coherent

10)

state, was introduced by Glauber taking into the fact that the

mutual coherence function

>

(2)
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CEwn, by ETGn, ta) )

V<CE ) En 1)) < Efon,t.) Ean t> 1732

2

which measures the visibility of fringes in Young's éx?eriment,

takes the largest absolute value (Y| =71 for a coherent state as

is clear from eq. (1) (05|yY|Zl from the Schwarz inequality)lz).
In the case of a mahy—boson system, coherent statesvlycz are

- defined as the right-eigenstates for a quantized boson field

¥ (x) and satisfy

Fao (v = Yo ¥ S 4 .&U(x) = ’}‘”ix) LY, _ (3)-

¥ oo | P2 Yo % o

> (4)

¥ Vo) Doy I¥), = Voo Yoo | (5)

[iE_(x) ) Ty )= Sx-Xx")

>
among which egqs. @) and () clearly show the relevance of coherent
states to the thebry of the superfluidity of liquid l*He.l";) The

» » . . r +
factorization of the one-particle density matrix ©(Xx,x’) = (P&’ &oo)
shown in eq. (5) reminds us of the Penrose-Onsager criterion

for the Bose-Einstein condensation defined by the existence

of non-zero asymptotic limit, 1lim  $0,x" 16)(the off-
: {x-xX'1r

(3)
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diagonal-long-range-order). Noﬁ-vanishing of the average of
the quantized field shown in eq. (4) allows us to define a
macroscopic wave function (or order parameter) given as the

17)

local average of the quantized field , which provides us with

a powerful method for investigating the superfluiditle).
Coherent states have another aspect that they form a over-
complete set and thus are the basis for a representation (the

coherent state representation). The completeneSs is shown by the

resolution of identity written in the form
N | |
S v =1, (e

where 6%y is the element of functional integration over a complex

)

function wct).’o By means of eq.l(e), the grand-canonical partition
function Z =Tr exp[—(H—uN)/kT]_can be written as a functional
integral of LV)eXpl-(H -u N)/RTIV) = expl- F¥IAT), where F(y)
?7)

was shown by Langer to have the same form as that of the free-

energy functional assumed in the Landaﬁ theory of phase transition
of second kind applied to liquid "He by Ginsburg and Pitaevskii.zo)
Langer suggested that the order parameter for liquid “He can be
identified with the most probable value of Y. Using the coherent
state representation, he has also derived the Gross-Pitaevskii
equation for the order parameter.z')

The use of coherent-state representation made by R-RR aimes

at quite a different purpose to derive the excitation spectrum of

(4)



§1-82

quasi-particles. Considering the intimate connection of the
coherent-state representation to the order parameter mentioned
above, this is very interesting. Unfortunately, the appearanée
of twice as many sets of conjugate variables as the degree of
freedom of the system seems to prevent R-RR from obtaining aﬁy'

&)= 7)

substantial results compared with other theories, though
their formalism is free from Frohlich's objection to the use

of canonical conjugate to density. It is the purpose of this

thesis to present a formulation free from this kind of inconvenience
by the aid of coherent states. Difficulties of the usual coherent
state représentation based on the completeness relationv(é) for

_ the treatment of a many boson system at ébsolute zero.(or in a

pure state) will be shown in 83. The formulation and its results
given in §4 and 5 will shed some light on the relationships between
previous collective variable theories and into points of ambiguity

contained in them. We will giVe a brief account of these points

in the next section.

§2 Surveys of Microscopic Theories

Assuming the two-body interaction, the Hamiltonian is given by

H=L 7z Vx *'EA‘ZE Vix, - x;) ’ (1)

(5)
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where N is the number of bosons and V(x) are is interaction
potential. In the second quantization representation, the

Hamiltonian becones
2 + - ’
H = E%J“"" Vi vho : (2)

+% ﬁ‘cbcel;;~ \/(x-—*}_) Voo Py, q:‘_(\})‘q:' (x)

-

. +
where the quantized fields W (x> and NLNES) satisfy the Bose

commutation relations:

[Poo,¥en) = Sx-%) [(Poo,ep] =[ T Pwl=0 (3)

+
Introducing the Fourier transform of q?(x) and ;Ecx) by

kx

+i k x (4)

| -2 I
a, =J—v—fdx V) e L C(: =\/—v—_(clx \y+<1) e

where V is the volume of a box in which the system is enclosed
with the periodic boundary condition, the Hamiltonian (2) can also

be written as

klhl
H=Zh' 2mk a;ah M

Y,
k

_ .\ - A
R’ 9 \/‘1 ak*& ak'~‘l Ay O - (5)

i
2

In (5) \Q is the Fourier transform of the interaction potential

defined by

(6)
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l s
Vg = 5 Jax e8> Voey | (6)

Q, and (l: satisfy the commutation relations

(e, 00)= s | Loy, ae3=Lai,ap3=0 . (M

‘1. Exact Results

The fact that the linked-cluster expansion is impossible for
a boson system makes the situation very difficult. Under some
limited conditions, however, exact results have been obtained.

Lieb and Liniger22)

solved exactly the case of a one-dimen-
sional Bose gas interacting via a repulsive §-function potential
(the LL model). Putting Vk=zc/L and 2m=hi=l in (1) (L(=V) is

the length of the box), their results are given in terms of one
dimensionless coupling-parameter, y=S/n , where n=N/L, which is
small in the weak-coupling and high-density limit. Takahashi23)

has solved their integral equation numerically and obtained the

expansion of the ground-state energy ES for small y written as

E:L=|4n3[Y‘—§% G 0.00b54 Y+ ] . (8)

The high-density expansion to second order of the ground-

'state energy for a charged Bose gas has been obtained rigorously

2¢) 25)

from the modified Bogoliubov theory due to Brueckner and Lee.

(7)
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Bogoliubov, in his treatment of a weakly interacting Bose
gas, has argued that, as the average occupation numbér <(l:ll,>
for the zero-momentum state remains to be a macroscopic number |
much larger than the commutator UQ,,033=71, the replacement
of d, and aj by a c—-number IRE is a reasonable approximation
(the Bogoliubov approximation). Applying this approximation, the

Hamiltonian (%) becomes

Ho = Hy ~ H, ~ Hy T
| 7, [ BR o s MeVeygota, »al af +a,a-.))
H, = it 2m Ok Q- 2V “ Y YR kR k A=k
sz
+ 2V Viws ,,

where Fﬁ (Hq) contains the terms of the form " a* & . and
araa (ata*aa ) . If one neglects H3 and Hq, as was
done by Bogoliubov, the resulting Hamiltonian P{o can be diagonalized

by the Bogoliubov canonical transformation defined by

Q= Uy o« =V Ao, Lol o T= 8, (10)

to yield
~—B — B '
Ho~ B, ~ . € olf oy, ’ . (11)
B _ No ler o8 RR? !
E - vk:o * Z{:( Ek - Zm ) - 2 N V(o

(8)
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B - 1{1 Na CR2 klkz 2
e [ R (B . G

. B . .
The Bogoliubov spectrum Eh becomes linear in k for small k
(the phonon spectrum). To the same accuracy, ch can be replaced
/’
by N. In general, the neglect of the depletion N =N-N, violates

the sum rule and (Vu should be determined by

4 +

N'= N-N, =< & ap ay 7 : (12)
D

With this prescription, the Bogoliubov approximation is able to

*
yield exact result for the correlation functions.

Using the coherent states, Giniblezé)formulated.the'Bogoliuboy
approximation as follows. The Fock space o can be written as

a tensor product D{Jb){,, where M, is the Hilbert space 6f the
zero-momentum oscillator. Denoting thé coherent state for Q, as
I%,> € }fo , the Bogoliubov approximation for an operator A on

H is defined by the replacement of A by the operator A () =
<N,|A 1%, 2 on ){/. Ginible showed that the pressure given in
the Bogoliubov approximation, i.e. obtained from the grand'canonical
partition function Z(x) = Tr' exp[- g H(x)] is equal to the exact
pressure obtained from Z = Ty exp[-ﬁ}%] in the thermodynamié

limit.

(9)
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Treating the kinetic energy part in (%) as the unperturbed
Hamiltonian, the leading term of E, in the high-density expansion
is given by one-ring diagrams ( N, = O(N) ). This sum can be
evaluated by the Bogoliubov canonical transformation applied to H,.
The next term is given by two-ring diagrams. This sum can be
evaluated by the first- and second-order perturbation in the Bogoliubov

24)

representation. Determining N. by (/2 ), Brueckner obtained E,

of a charged Bose gas at high density in the form

-3/ 3
Eopy = —0.8031°1 T 400250+ 00r%) | g

where Vi is the spacing per particles measured in units R/ m e?
and the energy is measured in Ry.
Leezs) extended the Brueckner result to a more general interaction

by introducing a new parameter, (N~ A“‘LQV, regarded as the expansion

parameter. Lee's result can be written in the form

BL -8 - X

E,” = E, * E,(1-nwmg) + Ey ~ By, , (14)
— | . g2 2
S S TEN Sanee X0 (172 0=207 0= A7
E, = — N A=) (e Aae) (1=A2)

X BZN hotemeo Xy o X (1 20 =Ae kAe m 7/,

£ — ¥ ! L
—— = ha ) x

: Y2 96N RY¥f+m=p E:*S:+£: Ak'A‘Q A

2
xU EE =22 ) =AyXp) + Sym. ]

(10)
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where Ei is given by (11) except that N, is replaced by N and

)\h , the unperturbed structure factor, is given by

X ) .
/\“{g}‘/(%ﬁ‘*wwv&/v)}’z , (15)

BL .
When applied to the LL model, Eo given by (14 ) is shown by

Takahashi to give the exact result (&).

27)

Recently, Rajagopal and Grest have pointed out that the

Bogoliubov approximation neglects the condensate fluctuation and

proposed to replace Q. and Q4 by
. [}
a.z 0 = (N-Z 0,0,)% . (16)

Making an expansion in powers of l/N (the l/N expansion), they
obtained the same ground-state energy as that given by Lee. The
meaning of the l/N expansion, which is frequeﬁtly used in the collec-
tive variable theories.(see below), is not clear, but is sufficient
for the calculation of the energy per particles, say, to the order

of magnitude of (V/N)Zformally.

Beliaevzy)

analysed the Green's function for a many-boson system
and found that the inapplicability of the linked-cluster expansion
simply results in the replacement of @, and a: by \ffﬂ . where

"N, should be determined by (/72), and in the appearance of anormalous
Green's functions. This matrix Green's function formalism was trans-
formed into a more conveniéht form by Hugenholtz and Pines??) In the .

low-momentum limit, Gavoret and Noziéresgo) have obtained exact

(11)
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results by means of the Green's function method of Hugenholtz and
Pines. To all orders of the perturbation series, they have found
that a) the excitation spectrum Wr has no gap, i.e. Wy approaches
the value ¢k [c is the true sound velocity] in the limit k=0,

and b) the momentum distribution MNp =<ia;'ﬂr> approaches the value
(N, /N) (mc/2hp) for p +0. They have also shown that the poles of
one-particle Green's functions and those of two-particle Green's
functions coincide in the same limit, 6wing to the presence of

condensate.

2. Collective Variable Theories

The relevance of the density fluctuation in describing the
elementary excitations in a boson system have clearly been demon-
strated by Feynmenfw) He presented a véry convincing physical
argument for the shape of the low excited state and, by applying
the variational method, could show that the state }1'¢; ( Ph==§3€;kx‘
and ¢, is the true ground state) offers a good approximation for
the excited states for all momenta with the excitation spectrum
written as

€, = MR 2m Sy (17)

where S(k) is the structure factor. With S(k) obtained from the
x-ray measurement, the Feynman spectrum (/7 ) shows qualitative
agreement with the experimental phonon-roton spectrum. Feynman

22)

“and Cohen improved this theory by introducing the back-flow

(12)



§2

effect to the trial wave function. Their method culminated into

the method of correlated basis functions(CBF) developed by Feenberg
8) B ' -

and co-workers. .
An expression equivalent to EDBL is obtained also from the
method of correlatea basis functions,in the uniform limit definéd
by X=1- ¢ < 1 , where g(r) is th-eullaa}i'r distribution funétion.‘?s)
The variational energy obtained by erﬁploying the Bijl-Dingle-Jastrow
type trial function ¢° e togethef with the perturbational correction
evaluated by including the three—phonon states, f;'kas"’h ‘f,, , Where

3 kX, . '
Ph:% e “, yields an expression which can be written aszs) ,34)

(X3 sl "ﬁ" . (l"hh)‘z(l“}\g)i
R R L s v W as)

kR, 2

Soon after the work of Feynman, Bogoliubov and Zubarev (BZ

have presepted a theory in which the density fluctuations, '53& ‘-'Z:e e
are introduced as (aﬁxiliary) variables. BZ have noticed that the
wave function ¢( X, , X3 -..., Xy) for a many-boson system can always
be expressed in a pélynominal of §k as 9>(f§h}). Given the wave

function written in this form, H $00 = E # 0 becomes

Hey (P = BBy, (19)

R R ~ 9 —_ 2 3
HBZ = % zm (Ph?éh N 3% 3?1;.).

’ +2 A 2

+ 22 5= (k.p) B Y

ktp+o 2m ’ L R J L4
AV LN Ve -

(13)



by means of the relations, 52

~

s = N 2 and » - : (20)
d_ . 3 ik etR* B
X, & ¥ ’ (21)

- where Z' means the exclusion of k=0. Regarding the ?h 'S as
independent Variables Pk , (ie. f’k is not related to x-variables
by Ph = ; exh’x,\ ), we obtain the so—ca-lled 9h -repreéentation. The-
solutions for the Shrodinger equation in the original
x-representation are -all contained in the §, -representation
(by replacing § by );.é’ihxi ), but the inverse is not true.

The most striking feature of the BZ theory .is that the Hamiltonian
Hpz is not hermitian in the sense that H:z defined by Sedp ¢tmH, pi=
Jap (Hz. @ 92 ) * Pep) is not equal to Hp;. In connection to this,
the variables 9&:. are superabundant, ie. there are infinite number
of them in spite of 3N degrees of freedom of the system. The latter
point is not serious, when formulated in the second quantization ‘
representation.7‘) The non-hermiticity,, however, needs further
investigations.

The non-hermiticity has not been taken into account properly

by BZ. Their probcedure is as follows. Introducing a new wave

function ®(p) = exp [~ ﬁ LR AP, Hpe $ = E 9 becomes

Hy; @< EQ ~ 0 (22)

(14)



. | R -y BRT D1
'H,, = ED an (Ve o VAR, TN e 3f 9F ] (22)
~3)§’¢a‘(2‘7—;+nvh) ‘+;th° 2

T

Hl. PZ,'h, 2_;71 (k-p) 9k+P (‘TP T AN P—")(SR* 2N ) ?
pthto - ‘ |

(n= N/v )

H, in (22) can be diagonalized by introducing

. |

‘_ | 5. ~ A _ 2
By = 2[n g, -k +INXe 5p, , Br Tafun v INnSE, 22

R*R* 7, B R°
)\:z (2171’2 +2hvh)

2m ’
to give
— 8 B + » \
Ho = B, 7 )T:) Efi B, Br ’ (24)

where E:} and Ehe have the same form as that given by Bogoliubov
(eq. (11)), except that N, is replaced by N*. BZ have shown that

- to lowest order, the wave function for the first excited-state has

* Eg. (23 ) is the Bogoliubov canonical transformation. From (23),
we have ?h- Qjm( B; + B_p). On the other hand, in the Bogoliubov
approximation, we have @, = 0, @, * a;a,, + I Q;*g Ge 2N (a_y + QL)
= Jﬁ:(u;‘\)h)(d: + &_p) where o and 0(: are defined in (i10).
Thus in the weak-coupling limit, two expressions for P, agree

with each other (N,= N ).

(15)
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the same form as that given by Feynman ige. d = £ @, . BZ have
obtained the first correction to E, by applying the second-order
perturbation to H, as if it were hermitian. The result of BZ can

be written as 34)

_ BX BF { fi2
E, = E  ~Tw Ty am (R (= XD=2,) , (25)

When applied to the LL model, E.,Bz does not agree with the exact

result (8) in the term of order Y= 23)

Hiroike‘;) pointed out that the inner product should be defined
with a weight factor. Accordingly, the energy should be calculated

from
KHY = feapy e™ 9%y Hipy) @) ’ (26)

where e is the weight factor and §(dp) stands for ;F:njd(Rg Fr)d (Tm £,)
( Per = f),f ) . In order to have a explicit form for e"W, Hiroike
introduc}ea a F:ut-off wave number R,. Then, assuming that ¢ ( Sgh )
includes only those ?’h's with lki< k., he carried out the trans-
formation of variables from X 's to $§,'s through the use .. >

of eq.(!9) modified by the cut-off and of the relation written as

Sd”;c Foo = S(dP) Sc(’"x Foo T :Ckﬁ-h (27)
- o< Ikl < R, e<thi< ke,
kz)p ’ k2>c o
{ A - } A
Fo= 8(R P~ FR B, .= S(Tup,-mh b)),

A \
[P, =2 e*hXs

—
-

(16)
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Hiroike found that the weight factor is given by

e =Dy =§ T %, . (28)
lt|<k¢,
2>0

H(p) agrees with HBZ if the cut-off is neglected. Introducing a-

‘new wave function ®(P)=[D P(9), eg;(26) with (28) can be written as

<HY = Sudpy ey Mgy o , o (29)
where Mg, is given by
L 4
Heen = D)* Hip) (D} ® . (30)

and is found to be hermitian. Thus ¥ D can be considered as to
generate a non-unitary transformation. Treating the cut-off

carefully, Hiroike obtained, in the N expansion,

' _._'_v __‘ ' [
D(P)=(_,m14j_xeXP[ .zl,:fk?,h"'émz hﬁe?‘m

R+l+ m=o

| . |
-—Y, S L P — 23
12 N h-'uzﬂ-fn:o 29m Im 4-N Rk,

2 ?h fih -j » (31)

)

(We have taken the limit R in Hiroike's eq.(3=8))s-. To lowest
order the relation between ® and ¢ are the same as in BZ theory.
The principal part of Hgey agrees with that of H;Z given in (22),
but the interaction term is different and contains infinite series

-1
of order N 2 . The ground-state energy evaluated up to order 1/N

CBR

Bz
o and not to E, .

is equivalent to E

The need for a weight factor was also noted by Chan and Valatin .35)

(17)



§2

However, their result written as

-~

ew=e)(|> [-fdx(fcx),@nPtx)~ch3)] A (32)

—

= conad. x exp [~ 3 O T

R D, HRAS re(nT))

Ltm+nzo

differs from D by the absence of the term,

|
AW = 7 2, P fe | (33)

', which leads to the appearance of absolutely divergent terms of the

form

Z k) XA, (34)

4

in the expression for Eu.s)

In the second quantized representation, the super-abundance
of the § -variables is not serious as mentioned befofe, and the
.use of the density opérator Pxr= Ttx> T x> as the basic frariable
together with its conjugate variable has been made by many authors.
These collective variable theories can be looked upon as the
microscopic version_of the quantum hydrodynamics»presented by Landau;

£) 138) presented a theory,

Prior to the work of BZ, Nishiyama
now called the density and phase operator approach (DPO), by

introducing the phase operator ¢{X)'through

(18)

2)
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| :
- A b 3 1o
Yoo = e $eo? , ‘nlc'*bo = Peo* e pex) (35)

Qx> = T_,_B—r(x) P (x) R

where ¢(X) and $(x) satisfy the commutation relations

EP‘X), ¢(x/)j '—‘-J.\ S‘X“x,) ) [ PCI)I P(x’)] = [¢(I))'¢[X,)j =0 . (36)

The assumption of the existence of the canonical conjugate to density
(such as @ (x)) typical to the collective variable theories has
been criticized by several authors, and we will turn to this point

later. Using (35) in the Hamiltonian (2), we obtain Hpp,. given byé)

HDPoc = Topoe * V ’ (37)
- o R et Koper > £ 5
Topoc = Sax {% P> v* P +§71|V?’| + 5z (P wwpr ~vpi.v P’];,

Vv ='%_ Sfdxdg Vix-3) [ P - Six-4>7 Py,

where the velocity operator Ww iS defined by

Vix) = %— YV ¢ (0 , : (38)

and satisfies

2%

¥ S(x~-x’)

[ FCI)) w (xX j = . (39)

(19)
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The kinetic energy Tppoc can also be written as

. - —
~rDPoc = Inpo T | > (40)

K ., R ~
Tupe = Solx f%‘ vew v oo (V) 7' 4 o Cw,ve] } ,

ST Sax T rpwar e v g tewa v e ]

(where MPO stands for the modified phase operator approach).
Here, the Hamiltonian of MPO defined by Hyp, = ITypo*V is related

to the BZ Hamiltonian by a non-unitary transformation of the form

Q = axp §~'; ex €T P fn Px) -~ £ oo ] )7 ’ (.41)

which is identical to the root of Chan and Valatin's weight factor (33).

By means of the relation
- A 1 :
S ¢ S = g - 3 An PO | (42)

we obtain
S Thp, S = Sdx o (wé-Pyd -— ¥p¥p] =T
Mpo = XZ'W\ Py N P “ Bz « (43)
Now introducing the Fourier transform of P(x)y and ¢(x) by

| N ~a k ' :
9(1‘) = LV zk‘ Pk e kx , ¢(x) = % ¢h€ * p) (44)

[Pqu’l]':a‘gh_o_ s (45)‘

(20)
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we rewrite (44) in the form

12 -
Toz = zm L- Ep Ch-2) ¢k Prez ¢, -3 % k* A ¢"‘ ] . (46)

Noting that the commutation relation (45) is realized by setting
¢k "‘*;»3f1 (ie. in the representétion which diagonalizeS'pk), w¢'
see that S’"HHPDS' is identical to Hgy given in (/?) (as ¢ is a
>cyclic coordinate; fﬁ can be replaced by c-number N)f
The kinetic energy given in (43) has been obtained by Berdahl37),

who noticed that the commutation relations given in (3) are realized

by a set of quantized fields, $,(x) and ¥, (x) , defined by
< e A dix) T ¢ = P0o '€£¢‘-’U
T = e and  Fa 00 | ’ (47)

respectively, whefe ¢ and § satisfy the commutation relation (36),
and replaced P(x) and Tl by @,(X) and P,00 , respectively,
to obtain Ty, and the non-unitary transformation S. Arguing that
[ Poo, Pé0I= T kR =+iv8(°) wvanish from the symmetry, Berdahl
neglected T' and concluded that Hpp,e is equivalent to Hp,.

Grest and Rajagopal3g)

have shown that Hg; and the Hamiltonian Hg
given by the old "Sunakawa theory, in which a velocity operator
conjugate to density ié introduced, are only different versioh
- of the method of the current algebra. Thus the\equivalence of the
BZ theory, the old Sunakawa theory and tﬁe method of DPolseemed to be
confirmed.

The neglect of T', however, is not permissible, as pointed

6)

out by Nishiyama. Setting $ =N and regarding §, (k#0) is of order

(21)
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YN, we can e%pand Hppee in powers'of 1/IN (the 1 /N expansion).
The leading term (for both Hppoe and Hyp, ) is identical to the
principal part of H}, given in (22) and we can introduce the
Bogoliubov operator B} and B, through (23) (i¢, < g, ). The
ground state can be evaluated by applying the Rayleigh—Schr&dinger

perturbation theory and, up to order 1/N, H y,, yields

r _ ~8r _ _h* i
E, = E, TR hZ,,Q (R-2) Ap Ny . (48)

The expectation value of T', which can be written, up to order 1/N,

as

~—

- o |
T T fmN ?:,Q (Rek) (1 + %Pkf—h) ) (49)

is given by

’y = LR : .
KT = = Fmp 2, (R-B)CI=24, 0 . (50)

Following Berdahl, both the additional term in (48) and <T'> is
equal to zero and we obtain EE* . However, these terms are absolutely
divergent and cannot be simply put equal to zero. Nishiyama has

shown that these divergent terms add to give a conVergent result

EiBF with an appropriate choice of the sign of them. Thus the

conclusion of Berdahl that Hgz; is equivalent to Hppoe does not

cBF.

apply at least to the LL model, in which Efz and E, are different.

Recently, Yamasaki, Kebukawa and Sunakawa (YKS)39) have

modified the definition of their velocity operator and obtained EfBF .

(22)
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More recently, Nishiyama has calculated the kinetic energy through

40)

the momentum distribution function M, given by DPO (DPOM) and

found that in this case the ground-state energy is'equal to ESL .

Though the difference between EzL and EfBF

is negligible
numerically (at least for the LL model) only Efl’ yield the correct
'nP'which satisfies the Gavoret-Nozieres condition, when the

adiabatic theorem is applied. (Following the adiabétic theorem

applied by Berdahl37),'np is obtainable from
- 2_ T
Mp = 3, 5o b ’ (51
-ELPZ
regarding the energy parameter E;f=2,n N as the adiabatic parameter).

Thus we conclude that though previous collective variable theories,
the DPO and the theory of YKS, present a very poWerful way to deal
with a many-boson system at high density, there remain some points
left to be discussed.

Apart from these points, the collective variable theories have
faced several objections. Mathematically speaking, the canonical
conjugate.to the density (or numbef) operator in ahy form does not
exist in the Fock space, due to the fact that the density operator

13) 41)

is bounded from below. In the case of the phase operator,

the situation is as follows.”) ¥2

For simplicity, we consider the
case of a system with one degrees of freedom, i.e. a harmonic
oscillator described by a set of Bose operators b and bt satisfying

b, b+]=l etc. Now, we define the lowering and raising operator,

x- and X+ by the relation

(23)
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b=x[¥p , b =JFE X', (52)

Then the matrix elements of ¥ between the number states [n>

(b'b Im>=nnd>) are given by

<X lm) =ign+1,m (m>o0)

8] ‘ (m = o ) ’ (53)

I XFlm> = Sy a0y

For m>0, eq. (4%3) is obvious from

<nlblim> = [ Snst,m = Jm <n|X|m)> s

(54)
<nlbtm> = (n Sou,mey = A0 <mixt|m> .

This relation (&4) does not determine <1/X 10 and we expand the

state Xley> as

[Je

X)) = 8y MDD ] | (55)

3

=6

Then noticing X* X In) =/myfor m>0, we have

0= <m|Xxlo> =L Q <mIxtIn)> = Qe (m>o0) , (56)

/

which leads to X8> =p i.e. to eq. (53). From -eq. ($3) , we have

X'x=1-~FR Xx* =1

P

’ (57)

where P, = 100<6] . Eq. (3%) shows that X and X! are not unitary

(24)
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and any hermite phase operator cannot be introduced. However, as
far as thé states ln)lwith n >0 are concerned, we have <nlxtxind=
fx Xtm> =1  and the prescription (35) of DPO is expected to |
be a reasonable approximation at high-density. (Recently, the use
- of a larger space than the Fock space has been suggested by Kobe

43), YKS, and Rajagopalj4))

and Coomer
There are other objections in connection to the use of super-
abundant variables in a collective variable theory, for example BZ,

45)

formulated in the N~th configuration space and to the assumption

of existence of a continuum density P(x)!s)

The first point is not
seriouslin principle in the second quantization representation, as
mentioned before, and for the second point, we only mention that
the expectation value for density is really continuous. In the
following sections, we_will develop a formulation utilizing the

coherent states and the lattice space, which will shed some light

on the problems to be answered in this thesis.

§3 Coherent State Representation

Non-existence of the phase operator in the Fock space-has-led
Rajagopal and Rama Rao (R-RR)?)
10) 1)

to use the coherent-state represen-

tation (C.S.R.) or the phase-space method for the evaluation

of the ground-state energy and the excitation spectrum. The phase-

space method developed by Cahill and Glauber¢£), Sudarshan¢7), and

)

Agéfwal and Wolf (AW) is a generalization of the method of the

%)

Wigner distribution function and contains the C.S.R. as a special

case.

(25)
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For simplicity, we consider a one-dimensional oscillator
described by using the annihilation and creation operator, b and b,

which satisfy the Bose commutation relations:

b, 53=1 , L[b,b3=1Lb K1l=0 . @

A coherent state |¥). is defined as a right eigenstate of b with

¢

an eigenvalue X =7 e* , namely, it satisfies

. + o g F
b’&)c = X [&)>, , | B = &7 Ll . (2)
In terms of the normalized Fock-state In) defined by

Imy; = ('n.’)‘é (b)) 1o s (3)

where [0> is the vacuum state satisfying bia)>=0 , the coherent

state [¥). has the form

' L

- 2 -
% (n!) *«("ny =€ % e (e, (4)

), = €

2
2,
h=o

and the scalar product of a coherent state [X). and a Fock state

Jn> is given by

oy * .
<n[§<>c=e T = (<«Im>) . -3

From eq. (4), we have

(26)
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¢ - [‘mz_ lgi* X .
plod. = exp -5 -5 +xp*] Ll >, =1 , (6)

and the resolution of identity of the form

(7)

V4

S‘%‘x J& ), Lo =_§ Im><m | =17

> ©0 by (¥
where S’d%o( stands for (ld(Reet)ol(Tmot) = SodJ'S‘ %?:_ . Thus, the
-0 ~T
coherent states are not orthogonal to each other, but form a
complete set (the over-completeness). Using eq. (7), the trace

of an operator A can be obtainable from the formula

. dl()(
T A = [2% <ul Aoy . (8)
A coherent state [X), can be generated from the vacuum state
[ by means of a unitary operator (J&) defined by

= o
Uty 1o | >c‘ , 9

Ute) = exp L bY = x*b ]

logr® Tk W ey +
= e 2 e"”’e““>=e2e edb

The operators { Lud)j are. complete in the same sense that any
physical quantity can be expressed in terms of b and b+, i.e. a
physical'quantity can be represented completely by using U) .
From this completeness, various kinds of one-to-one correspondence

between c-number functions and functions of Bose operators can be

(27)
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set up. Introducing a weighted Fourier transform of (J () defined

with weight N (%, x*) as

"'LZ

A“(mb,o(ht;) = (42 (3 5%) e°‘§*‘°‘*§ U(\;_) , (10)

AW have shown that an arbitrary operator A(b,b™) given in powers of

b and bt can be expanded uniquely in the form

A N . . o | o _
A, b) = §d Bl,a% A (x-b «r-b%) . (1)
In the case with D (¢ &*)=eXp [«*X/27 =N, they found that
y )
Pa (. 4*) is given by £X|A(b, B IK).. Then, from the uniqueness
of the expansion (!]/), we have a one-to-one éorrespondence

(12)

)

ACh, b)) <> BlU,a*) = oA lx>,

between c-number functions and operators. Further, the c-number

function corresponding to the product A1¢A2=A1of two operators

A (b 5') ana A.cb, bt

V)
Fﬂ: and EA, as

can be shown to be expressed in terms of

N — N | —N
.FAlAz(u‘O('*) = l-"*l (-b(‘ ¥ g&"" 2 0('*) }—'Az (& / M.*) W= o )(136‘)

o« = *
or alternatively as

= ¥, 9
FA.AQ("('“") h/\l.(“' S UTE S ) Ry (o, &) qud )(13b)
A X = o

(28)
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where the differentiation is carried out regarding & and & as
. *
being 1independent of each other . In other words, 53—0( f*> =0

and 2. f() =0 hold, where

Sor*
2 _ o3 -a 3 N
S = TreT T L(E) - 53T
(14)
3 e - 2 3 A
é?(* = J2* e ¢ [-(aj + 27 (%6)] ,

and = T3 et .

Thus, in the case with N (,o*) =N, we have the C.S.R. (If we
choose O («,0*)=1= W(HA,4*), we have another one-to-one correspondence
such that the density matrix corresponds to the Wigner distribution

function.).

In the case with A,‘= b anda A.= };, we have F*'Ah:= CUEbIx> =y ,
FA':‘-N* and the r.h.s. of egs. (13a) and (I3b) become f{o*(«(+ a/ao(x)} o ¥
and (o*+ %4y ) (4*x) , respectively, which are both equal to
¥+ o = SAICEHRTh )10, = LX) B b BT IXD . As another example,
consider the case of two operators 'H=b+b and § (the dehsity matrix).

In this case, we have

N - x 5 N - . A

Flp 0,0 = & (€2 ) R, a*) = (T + 3% + 22 004 7)
by using (13 a ) and

N ‘ — .
Boy @) = ot (ot*+ 20 ) Flwwa®) = (372 - 42 ) pcg7)

by using (13 b ) ,where P4,7) = F:(o(,o(*).

(29)
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R-RR have noticed that the existence of one-to-one correspondence
enables one to avoid an ad hoc use of canonical cor;juéate to density.
Their argument starts from replacing the Schr8dinger equation HI¥>=EI¥>
into an equivalent set of equations for the density matrix P =|¢><P|

written as

Hp+eH=2E  Hp-er=0 . s

Then, 1n the case of one degree of fréedom, two.operator equations
in (f5) can be transformed into two c-number equations for 'ﬁfp (oL, &)
by using egs.(13a ), (13b ) and (i4).

In the case of a many-boson system describéd by the Hamiltonian
(2—2), a functional $£r¥PI = Y|PV, takes the place of £XIPIxXD>. ,
where [¥J, satisfies (1~ 3), i.e. ‘;’OC) $> = Yo N_’7c. Accordingly,
there appear the functional derivatives S/S Y, and S/S '\P"'(x) in
place of 24 and 2/3¢* . R-RR have noticed that the c-number
functional correséonding to the density Bl Boc) is given by
P Bofyy = Ve Yy | Then, introducing the pollar form
Vx> =[pw eI : they considered that p@ and qx) take
place of £he density and phase operator used in the collective-
variable theories. Regarding the Fourier transform Pk( 1,0 of
chc) ( 9¢x») as quantities of order JN (!/AN ), R-RR applied the the
1/N éxpansion to solve the resulting set of c-number functional
~equations and, up to the lowest order, obtained E}B and 5: .

Thus, the formalism of R-RR is free from _ 7 Fr&hlich's objection.

Unfortunately, they did not succeed in obtaining correction terms,

(30)
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due to the appearance of the superabundant variables, {Pk , 29/;3 P. ;
a {, %9} ", whi d to be reduced owing to th
an k, 703, + which are supposed to be reduced owing to e
presence of two equations in (15).
Here we present an argument, which suggests that this kind of
inconvenience can be removed if only those coherent states with
[M[=J =1 are used. In so doing, we note that the expectation value

of an operator A(b,b+) can be obtained from

CAY= T AP = JL¥ iapiud, (16)

o (dy =n o . .
= S?;T FA fog-x* , %) F;’La, o*)

’

where we have used egqs. (&), (/) and (13 a ). a1"1d in F: all b(*'_',o
are placed to the left of /3 «* given by ( 14).

For a pure state, F,:N(d.?(*) has an'important property that
it factorizes with respect to X and ¥, Since a Fock state 192

can be written in the form I¥>=% % INM> , using eq. (&), we obtain

Fo (,0%) = Y|P x> = S¥[9><pud, (17)
o el 1 n . L
{Z P = (wom ) {8 9F (myy™ o
-l«ll o ~ .
T e Py Px) |

In the case of one degree of freedom, we have two sets of

conjugate variables, {7, 333- }  ana {#4. 375 , which is easily
seen from the equations given in the foot note to eq. (/3).

(31)
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Noting that the differentiation with respect to x* (ie. 2ow*)
is to be carried out regarding ¥ and ®* as independent variables

in (/8 ), we have

2 —~ ek
>~ L Fuor Bl Yo ) gy 00
2 —arX ~

where use has been made of the relation

) - o ¥ - &* - - x*¢ D
sar € = -xe Te e . (19

Here, we note that a function of X* alone appears to the right of

®/3¢*¥ in (/8 ). Then, by means of a formula

. Tle*) = 4 T3 eif 575 {73 e%) , (20)

i

L .
which holds for any function of x*=Jze #alone and is derived from

/35y fte*)=0 and the definition (%), ( /§) can be transformed into
SAD> = (Tay (48 o7 {2 P* (m 3 (7% o4 ¥ ™
= a7 [ 5% e % P (mf)72 (T )
X ﬁ"(‘ 2 243 —3 A -t o3
WAT e " S, Tre"?) {%S"h(n.’)z(,;ze ) }

E s

In this form the integration over J can be carried out under

N
quite a general condition. Writing FA as

(32)
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the integration over ¢ yields a factor 'Sm-k+1—n,o and the
" integration over J becomes

o0
Sd]— =7 3_(nn—tz~.£2‘-n)/;_ R :
(dT7 €T 3™ = ons

Thus, we have

- (T g L
CAY =§ 2% 12 m! 9 nsyieterm) (21)

B G (SR (e 2 R R ) E (e )

#
= §" d¢ Fle'®y B (ref 2 o) coif
J_om <PIT e KiGhe 55, €7F) Letfle>
where [7=T(tb*1) (I” is the gamma function). The integration over

J results in the appearance of the I'-factor and in the reduction

of (X2, ‘t0'|ez¢>c.

§4 Formulation

A many-boson system with two-body interaction can be described
by using a Hamiltonian expressed in terms of a field dperator Y (x)
and its Hermite conjugate Yﬂx), satisfying the Bose commutation
relations, [‘I’(X),‘IJW)J= s(x —-%) , etc. In the previous theories

worked in the continuous space, the second order perturbation terms

(33)
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involve several absolutely divérgént terms which should not be put
equal to zerofa’e) Although we obtain a convergent result by summing
these divergent terms, there appear some ambiguities in obtaining
the final result (see §2). No ambiguities of these kinds do ﬁot
- appear in this theory of lattice space as shown in the following“
section. In this section, a representation based on coherent
states is formulated in a lattice space with the lattice constant Q&.
Weifirst repiace ¥ (x) and ﬁf(x) by a set of operators P(i) and
?+(i),.satisfying the Bose commutation relations, [%<1>,@*Q>]==aﬂ‘8;5
etc. where d is the dimension of the lattice space. Then, ¥ (i)
and ¥'%)  are replaced by b; = a* Ty ana E); = a% T
satisfying [bi,B;J: g&;, etc. For simlicity of notations, we
consider a one-dimensional lattice space (d=1). Then, in the case
of the density-fluctuation operator, the correspondence -among the

. three sets of operators becomes
: - .. kX, + -2 kx,
de o T et » ZaldnmThe ™™ o % bib, e ™4 , (@
A . :

where R=2n/L (L is the length in which the system is enclosed.)

In this one-dimensional lattice space, the Hamiltonian (2-2)

s2)

assumes the form
" + |

H =z T (B = bi )by, = by) @

+5 T V6i-5) bi bl b, b

2 J A Y5 Pi bx

< .
A,)

(34)
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where V(-7)=Vx:-X;) is the two-body interaction potential, and

the current operator becomes

L= GRg) (b by —bibin) . )
" The extension to the three-dimensional case is straightforward,
and is discussed briefly:in Appendix C.

As an illustrative example of the present cohefent state
theory, we consider the problem of a single harmonic oscillator.
A coherent state I¥). is defined as a right eigenstate of the
annihilation operator b with an eigenvalue.c{=J3:e3¢(see §3).

The repfesentation based on the usual completehess relation (3-7)
however, gives two sets of conjugate variables, {¢.,3 23 } and
{:T,ig% ; , as mentioned before, and we would find a different
,'form-of the completeness relation from eq.(3—7), which is more
suitable for our present purpose, taking the argument in §3 into
account.

'Denotiﬁg a coherent state with the amplitude J=1 as (#£> , we
define D by

L
D= J, zn 1#¥»<¢l (4)

1%
(#» = expLe'fprIfoy = T mY= e in> |

where the normalization is changed to <¢| $>»=1. O0f course, ¢

satisfies eq. (3-2), which can be written explicitly as

bl = e fig» | «pibt = e «pl (5)

(35)
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Performing the integration over ¢, D becomes

o | .
D = E’o —,h—!' Iny <n| . (6)

Using this expression D, we obtain

JFOIF =T {3 pmxpr 37 =1 (7)

7= T (b+1)
where [7(z) is the gamma function. Eq.( # ) is the desired
completeness relation (C.R.).

Noting eq. (%), we introduce the notation @ (¢) by

MR

Pep) = «$IJF 19> = ®, eFnp | (8)

>

=0

for a Staté ISD>=§ 90,‘ In) in the Fock space. Then, by means of eq.(7)

the inner product of states ISO, 7 and l%) becomes

i
<P 18> = S‘_ %% <P,*(¢) P d) . - (9)

bl 18

We would call @(¢) the representative‘ of 19>, and more in general
&PITF ACb, 6" 19> the representative of A (b,EDIP> where A (b, )
is an operator given in terms of b and b+. For the number state
l‘}’):ln), P = Sn,n we have P, (F)= e-;nsé. Noting the relation
biny={wIn-1) and b+l'n> =[n+l|n+l), we see that the representatives

of the state b|n) and b+ln> are given respectively by

(36)
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KENF bIn>y = [n expl-sm-13¢7 = e;ﬂf%ﬁ' S #)
- (10)
+ = - - N -a

and KNP bt Iny> = n+ expl-A(n+idgy < Aa%p e % P (4) ,
where Ji954 is defined by the equation (i35, e~"7¥¢ = [j ewng

More generally, the representative of'A(b,b+) 9> is given by

CHIPACE LDIP> = Ale? iy g o) 96y,

where we need not expand A in the hormal order (see Appendix A).
We shall call A( e’:¢J—AT/a¢, ; **-) the representation of A(b,b+) ; Or
say that A(b,b+) is represented by A( e"‘\"\/% , ++--+). In particular,
the number operator b'p  is represented by « 3/a¢ . In the following,
the notation A will also be used to denote the representation of
an operator A.

Further, for the raising operator X7 and the lowering operator

X defined in (2-%2) , hamely by

Xiny=1n-1> , x*Im>=1In+1> , (12)

we have X 10)=0, and the representative of the state X M) becomes

y i ~an -2 = - . .
(l" Sn,o)e ¢e # . Noting Sn,o c né P e ”5, where P, is defined
by

—

. T ’
P o) = S_E g—f PPy = P, | (13)

] ’
— 2' —

(and so is a projection operator satisfying P =P ), we see that

(37)
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the representatives are given by

KPIP x1e>= e (1 -B) Py

«plpxtie> = (1-PB) et ? Pg) ,
' (14)

n

KNP XxHp> = T P e™"f = 94y,

T e, e "o (1-B)em) .

M2

1]

1P Xty 1 9>

By means of egs. ( ? ) and (// ), we can calculate the expectation
value of a quantity A .by the formula

» T  f — — .
CA>=[ 8L o) A3, i5 %) wip) . a®)

i 19

This particular representation used here is different from the
usual one, but is sufficient to consider our problems at the zero

*
temperature, for which we have only to deal with pure states (see §3).

* . .
In order to treat a system at finite temperatures (or in a mix

state) by the present formulation, we will need the off-diagonal matrix
element of the density matrix <<K¢|PI1#'» , which is related to

N )
FP («, %) = KX P %>, used in the usual C.S.R. by

o T R
e’ | dr (T T*e™") <R+ L 1P IR-ED = gx[pPlad

-

where R+¥=§, R-T=¢’, «=JT €' and we have used the fact that <«#IP|g">

‘l L) A
has the form 2 (m/{n/)"*§, e imd b’

(38)
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In order to gain a familiarity with the collective variable
theories, we define the Fourier transform of the representative P(¢)

by

B(p) = lim (I (Tag e gigy (16)

G oo

Then, the operators, A‘¢ and & 8/a¢ , are transformed into 3/99 '
and » b, respectivély, and the representation of the operator A (b, b%)

is given by
A, Bie) = ACexpt &I 0 Jpexpl-23) B . an
The new representative @ ($) (eq. ( /16 )) is normalized as

S dp @’ﬂv )y = 1. . (18)

~-00

Now, the coheren{: state representation of the lattice .space

problem is easily obtained by applying eq.(/7 ) to each set of

u ‘ . .
operators, b; and b,\ . The Hamiltonian and the current operator

"(egs.( 2 ) and (3)) are represented by
- 2 ' o e ‘(b -
H = (Gg) T4 %0, & ~J5, BT B [E - J5 et Ha SR

-i-LQ \/(;\‘-I)JEQ"“Q'J'E_ e % e*‘¢;.ﬁ=j e“‘é‘\ﬁzt , (19

4
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respectivély, where aﬁaﬁi is denoted as A¢. for simplicity of
notations. Egs.(/7) and (20) are precisely of the form as expected
from the method of DPO applied to the lattice space problem. It
should be emphasized that the representation of the lowering

operator X is not et P but equ( i [3:' )‘ as given in eq.(/%). iThe"l
final results of the ground-state energy and the momentum distribution,
however, are not changed by omitting 5; in the course of calculation,
because these operators X and X' appears only in such products.as
I X (=) or xR (=b). 1In other words, it is not necessary that
Vail the representations are completely equivalent to those of physical
quantities defined in the Fock space (the Fock representation).
However, from our rather conservative point of view, we prefér to
make the representation equivalent to the Fock representation
imposing the following subsidiary condition on the representative
P(¢), which is a periodic function with periodOZTL and allows
negative values n=-l;-2,.--- for the representation of the number
operator A %695- Noting that the inverse of the gamma function
f’q(Z) has zero's at z=0;—l,—2,f¥fv and only there, we impose the

subsidiary condition written as

r,-'("';%?,) P(¢) =0 s or V-l(“f’) é(f’) =0 (21)

which prevents us from £reading out of the representation equivalent

to the Fock representation.

* _
We can show that also in the R-RR theory some subsidiary condition

should be imposed on P(«,«*), in order that P(o,«*) corresponds to

a Fock state.

(40)
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In our coherent-state theory, we ére allowed to use formal calculation
-Xa/éf . bearing in mind that the projection operator is involved
in the representation of the lowering operator X . In this lattice
theory, the subsidiary condition (2] ) assures that every §; takes
on zero or positive integers. In.this way, we have overcome 4
FrBhlich's objection that the canonical conjugate to the number
operator does not exist.

| Before we go‘over to the continuum limit, we would introduce
the lattice Fourier transform of fh . thing the correspondence
.( 1 ), we define the density fluctuation § by

?k': ):"; 9; Q—ahx; ?‘ =

’

cle

% é)bx;ﬁ (22)

J

where L. is the length in which the system is enclosed with periodic
boundary condition, and the wave number k runs over the first

Brillouin zone only.. Then, %;=‘X;%§Qi is given by

= T d e o B (3% dehXe | 2

From eq.(23), 95“,-9';: becomes Z. (expl-ikald~1) ¢, eXPC—4hI l,

which is of order q@. We also 1ntroduce v; given by

v + - AkX"
Vi = 50a (6 — %) *l )Z» ‘F 4’ € r (24)
where the factor f, is given by

f =1~ ek | (25)

(41)
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This factor Fh plays a crucial role in our lattice theory and
relations it satisfies are given in Appendix B. £, appears in
the lattice Fourier transform of an operator, for example v; ,
defined with respect to two neighbouring lattice points.

By means of the correspondence given in eqg.( 1 ), the density
in the continuum limit g»o is given by -P(i)€+lfd53 . To complete
the connection with the collective VAriable theories formulated
in the continuous space, we introduce the phase operator in the
continuum limit $(x) by the corréépondénce $ix)e P =-A a/a_?j. .
Introducing the projection operator and imposing the subsidiary
condition (2/), we can arrive at a correct result even if we used
the commutation relation L P>, ¢(x) =i Swx-x7) (¢ 10§, ;7in the

course of calculation. Eqg. (/7 ) reduces to

A\¢(I) -x?(’(JC) (26)
’

VYix)y © e Poy T o JFo e

which agrées with the prescription of DPO, because the lowering
operator X; stands always in the l.h.s. of J¥; and the raising

operator X§ does in the r.h.s. of J§;

; in DPO, as long as we

considef the problem in the lattice space.

So far, our discussion is based on the C.R. (7 ). As JT’(EL*IJ
and D, whiéﬁ are diagonal in the number representation , are
commutative with each other, the C.R. ( # ) can also be transformed

into

D TP(gth+ :)' =1 (27)

(42)
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and the inner product of a state becomes

. | |
lp> = §° 3 <oipn «biPiv> . 28
\-R )

Thus, we have two representatives of a state the rrrépresentative
P.$)=«¢IT 19> and the .L-representative @f($) =<PIF>. Here,
SDquS) and (,03 $) can be regarded as the representatives of the
states T’l’ f®> and <] l"“’l‘ ,- respectively, which are obtained
by a non-unitary transformation:
1 - ) )
e - TEIe> <l — <®|T=

)l ’

_ ' (29) -
Ab E) — TEA(b b*) 773

where [7=T(¥b+1). By similar arguments as given below eg.( 9 )
the r-representative of the state A(b,b+) {¢> becomes
&FITAIP> = A(e*f1-F) i

2 -A
35 e7?) Py, O

which is a non~-hermitian representation. The r-representation
R ’ . 1 _l__
6’75 (1- T’L) ~is nothing but the representation of GRS and

connected with e”‘]}% by a non-unitary transformation S given by

\ —, | T, .
S =exp[§/q,n|‘(/t%+l)_] '=J| C.&%ﬁ*‘l) , (31)

in such a manner as

S"et?1-PF) s = e*‘¢J4‘\§76' . (32)

(43)
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The more detailed account will be given in Appendix A, where the
\ -t v - .
relation S'e‘¢ P. S=0 is also shown. So, as far as the calculation
is made after the hermitization process as introduced previously?l) (l-ﬁé)

factor in the representation (30) can be safely omitted. Then,

in the continuum limit, the representation ( 3¢) reduces to .

E’_()Z) & ex¢(x) , E’.*(x) > P e—xqscx) ,. (33)

with the same §ix» and ¢ as in eq.( 24). Eq.(33) coincides
with the non-hermitian prescription givén by Berdahl,37) from which
a Hamilténian equivalent to that given by BZ is obtained. (In his
paper @¢(x) is denoted as 6-(x) .)

In this way, the‘equivalence of BZ and DPO can be proved.
In showing this equivalence, it must be noticed that the expecta-
tion values of physical quantities should be taken before going

over to the continuum limit.

§5 The ground-state energy and the momentum distribution

On the basis of the formulation described in §4, we now evaluate
the ground-state energy E, and the momentum distribution np, up
to order 1/N (N is the total number of bosons) in the 1/N perturbation

expansion scheme.5_7)

The subsidiary condition is neglected.
First, we consider the kinetic energy part in eq. (4-19).
Using V; given in eq. (4-24), we expand the exponential factor in

power series to obtain

(44)
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T= Zme g’{(ﬁﬂ*%‘ﬂﬂ*.E) (1)

(n.’)-l (—Z’?\a)n (E: (-2 Vi )HJ_A. +J§a‘ (« Vi )hJ-_P;-H ) } .

Taking the continuum limit @0 in eq.( 1 ), terms with n >73
vanish and we obtain Thpoc given by DPO in the continpous space.
However, it should be mentioned t_hat the factor f, /& in V; becomes
of order 1/a for such k's as hkaxTL. These k's always exisvt and
contribute to E,. This seems to be what Hiroike's cut-off procedures)
méans, ‘and we would retain these terms with m 22 in the following
calculation.

For a N-boson system, Ph__c given by eq. (4-22) is equal to
N. As ¢hw = <A a/af,k‘o Adoes not appear in eq.(4-2¢) and so in the

Hamiltonian, we can safely put §, , = N. The 1/N expansion is

attained by setting

| Plz '-'J—-N_P,: , ¢k '(“iga’ssh) = ¢;/J_[\T , (2)

and expanding JT’; ~in the ascending power of 1/VN as

As V; (eq. (<r~2<}-)v) is of order 1/vN, we see that the terms with n=3

and 4 in eq.( 1 ) also contribute terms of order 1/N. For instance,

(45)
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the second term in the n=3 term becomes

h r o~k
\/: = v.” vt = = 25 ‘F e A .
fUomagN H Reo ° R
Using the equality
FE - RX; »:QX‘; w:mxﬂ. AN X ANQ
T & € e e < e t o= @ Sh+n+m,n , (5)

A

and similar ones, where Sh,l is the Kronecker's delta and wave
numbers differing by a reciprocal lattice vector are regarded as
equal, eq.( 4 ) becomes

is

(rhs of e1(4)) == B Al fu bbb (@

Ltm

zl
AN

LY

3 .
* 3 Z, {on 'Fm 'Fh P"h (#'_Q SAM ¢n +e”’ ke FJZ {m ,{:" %Q ¢m ¢h‘ ‘P‘k } 2

2N retemen =

where dashes are omitted. Other terms can be evaluated in a similar
manner. Then, using the relation [i¢,, fr 1= Sk,p and the propérty
of 'Fh given in Appendix B such as 'ﬁ;& =*Fh+ 'F_Q-'Fm_e, the final

expression for T becomes up to order 1/N

—_—

T-T+T~T-T , g

(46)



. 85

-K?.

=
To = smm T <k-k>(F 4, + 3 Fu o= ) . _ (7)
' 2MO*JN  krgem=o q' ~k "Q ‘Q)
—
- +H* ' '
Tz m E_n+h‘+)1=o|: <k,~kR> ?hﬁo ?1.?71 ,
= 2
ngn_j\ Z T‘aﬂe,ﬁ,mm) x

2m Qa2 N Rt+L+tmtm=o
{ 3
"{ 7; 1.1 ﬁn P~k * ¢1> ¢m ¢'n ¢k» ¥ o Sm,~b 8n,~.¢

+3Sﬁ'-k(#9‘hﬁh~¢m¢n)+§: ? ¢ ¢ ¢ P ?}n)}

where <....> is defined by

<h/'Q) L, mY = (.F‘Q‘F—Qx Jt'ﬂn * -F-h {:-.mex ¥-m )/2 (8)

H

and by means of the definition of 'Fk given in eq. (4-25), the
expressions <R,2> and <Rk,0 m,m) reduce to -@*k-2 and a*kR-2m-n,
respectively, in the limi.t a-~0. The 9&95,,, ¢h term in eq.( & ) does
not appear in eq.( 7 ) due to the relation (B-5). The total

Hamiltonian (4-19) becomes
- — -~ ,ﬁ_ L ‘ﬁ} Vio) + N _Z \ P
H=T+V V= AN )T 5T kR Sor , (9)

Vo= ' T Va-jy et RO
J

where ? is given by eq.( 7).

(47)
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Here, we would introduce the annihilation and creation operators

Bx ana B; for the Bogoliubov excitation defined by
& +
¢h=ﬁ(8~h-8h) , rf;z'-‘JIh(Bk-l- BL) (10)

o o H<kk>

Xe = &/ +aN/L) , E = a5 .

—
Then, the lowest order Hamiltonian Hs= T,+V can be diagonalized

to give
H=E+% € BB - (11)
°_. [} h h h h )
—& _ N? N oo dees_co e . Eu
t,~2L§-3V(0)+%2(Eh~Eh) , Eg ==k

)\k_'

On applying these operators Bj and 13: in place of §, and ¢;2,

we denote the representative §(§) as |$). 1In particular, the

unperturbed ground-state is denoted as |0), which satisfies Bjl0)=0
Y —B ' - -

and H,l10)=E]I0), 1In this notation, eq.(4-15) becomes E =(&[H |3)

= == = )
T,* T, * 1, as the perturbation in the usual Rayleigh-

Then, treating
_ Schrgdinger perturbation theory, the ground-state energy up to order

1/N is obtained from

Eo= EF+ Gl = T10)+ ol +Fp10) + o(N™) | (12)

-—

8 o

where Q is a projection operator defined by Q = |—10)(o\,
Using the property of 'Fh given in Appendix B, the evaluation of
(12 ) is straightforward, and we obtain the expression for E, given

by

(48)
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E,= EJ+EF+E ~ES I

Eaz___l_( R \2 A Xe A . .
¢ N \2m 0/ pRoem=o 8 (€7 Ef&-‘é’fn)

{ <k 0> (14 g, )M 2 <R <2m> () O4 1o0

U A

N Ttmaqz ﬁ2+1n=a<w’-”1>')\‘z)\'q 5
—b g2 |
Ebs —% & [<k2> C(1-A)CI=Ag) * Sym. ]

24Mm Q>N Rerem=o

Ec h*

__k* | =X )2 (1= )
) 26émaxN ER+”‘=D[<k,£> b <

J‘\h 1.2

1

+ sym. ]

As <{2,,Q >/a*? reduces to ~k:8 in the continuum limit a-= 0, Eo
obtained in eqg. (13) completely coincides with EX% obtained from
the modified Bogoliubov theory due to Breuckner and Lee, in the
high-density limit. Ef* E-Bz is equivalent to the expression
given by Bogoliubov and Zubarev, and .EaB*'E.BZ * .E.I> gives EoCBF
obtained by the method of correlated basis function, which proves
to be exact.in the high-density limit for the Liéb-—Liniger model.
Thé difference EfL“‘E:BF is given by E.c (see eq. (2-18)).
Here, the sign of the expressions E.‘) and E.c can be determined
uniquely. In the continuous space, manipulations like Z_;,e ReL -

:-‘):.’,xk-l'--* are admissible, which raise some ambiquity about the
4 b .
sign of the expressions E, and E,c .. Although both <k,-22 and

~<k, 2> reduce to G k-2 , Rk,~2? is not equal to —<k,2>and

(49)
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manipulations like X <k2>- =X (k0> = X% = {k,2)- are not
k.2 k.2 R,2
admissible in our lattice treatment. (h,,Q) can also be rewritten as
(<k~kD> + <R ,~0>~<m,~m>) /2 in egq. (13). (See eqg. (18).)
Next, we consider the momentum distribution Mp. 1In the continu-

ous space, TLP is given by the expectation value of a; C(F  where

]
-3 -ipx
Qp = L‘fdx Pox) e™P . In our lattice space, Qp corresponds

) N .
to bp=(asy)? g- b, e P , whose representation is given by
'n lg, 5 A‘¢A' . ~A P X
b,=(asu)* T e g e , (14)

—_—3

-—
By means of eqg's. (2), (3) and (4-23), bP and b-;, can be expanded
in powers of 1/vN, and the representation of b; bt’ takes the form

i

Sy = ) - . . (15)
by by =M + Mg+ MG+ o(NT) ) M = (g £, 4’r)(%9v*"¢-r{)

7

where ?i;, (ﬁ;) is a complicated expressions of order 1/vN(1/N)
composed of three (four) —‘fold products of Ph and C}Sh , and so
of B; and B'{; through eq. (10). As Qp in the continuous space
is defined without the gradient of ﬂ,}(x) , its 'counterpart ‘Dp in
the lattice space does not contain the factor {:h . Therefore,
its expression canAbe obtained from that in the continuous space
only by regarding the summations I and so on as those of

R¥Rtm =0
lattice space, and we would refer the reader to'ref. 40 for the
explicit form of .\;P and _QF _\—;P .
Thus, in our lattice theory, the momentum distribution 'ﬂf up
to order 1/N can be obtained from (éolt*ft?‘ﬁo)/c‘@o\ﬁo), where
l@c) is the perturbed ground-state. The unperturbed value TL",’ is

easily obtained by means of egs. (15) ‘and (10), and becomes

(50)
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Mp = COATRI0) = (1= X' /4 2, (16)

The evaluation of the correction terms is cumbersome but straight-
forward, and we obtain

DP (l"-)\z) - 'Y -
Tp = <M °>*Tfifﬂﬁ53% 2ma*<Ph>(' ApdTA, AN

where (Tlppo) is a expression obtained by replacing the factors

like ~p k by <p.k> in the expression for M given by Nishiyama

from the method of DPO.40)

The difference from <71F PeS is a single
summation over wave number, say k, and essentially vanishes after

the integration.* This situation is compatible with the fact that
the double summations encountered in the expression for the ground-
state energy (13), éuch as o Q7<k, Q)(lvkh)(l-/\_g) , cannot be

hd 23) 6),34),39)

put equal to zero, as emphasized by Ta?ahashl and others.

Thus, the additional term to <n§P°> can safely be discarded and

oPO
reduces to 'nP , which have been shown to satisfy the Gavoret-

Nozieéres condition,BO)

namely, T, approaches the value (No/N)(mc /2%p)
as the wave number p tends to zero, where N. and c are the number
of the condensed particles of zero momentum and the true sound

velocity, respectively.

* Indeed, owing to the fact that po becomes much less than- 7,

for 0.-*: 0 , we can safely approximate <P.-R> by EPQ("Fn"{-h) and

the s1ngle summatlon vanishes due to its symmetry.

(51)



§5

Following the adiabatic theorem applied by Berdahl37) in

obtaining 7p, MNp is obtainable from (Q@g;)]Eo, regarding the energy
parameter E; as the adiabatic parameter. Rewriting TE? r by
means of the identity <k,£> = Ji (<Rh~k> +<0,-2> ~<m,-m)) (eq. (B.4)) as

EC=-g L& &7- €0y U A ) (- 2)? (18)
! ktOtn=o 6 N Ak Ag ¢

and using the equality (9,3 €0) Ap = Xp01- A;)/z E;,’ ;, the contribution

¢ . .
from 'E, is obtained as

(19)

- s (- U= A A=A Y (1= A (U= 2g )

' 16 N p+oem=o )\P}\_g | 2 Ao A }‘*‘47’(? )

o

|

-

 where ASYlF is the difference 71P-<71:P°2 in eq. (17). Here i£

should be noted that 'Ef contribute not only to 4MNp , but also
terms contained in COfﬁglo), which is independent of the way how the
limit 4> o is taken. So, in order to have a result consistent
with the adiabatic theorem, E? is indespensable as pointed out

40) Indeed, Ef is directly obtainable

previously by Nishiyama.
in the lattice theory, in which the continuum limit is taken
after the final expression for E. is obtained. The expression

40)

E}BL can be obtained also from
= K2 - N 5 - -
ED\ 2Mm ZP’ PInP'* E_)F‘VP(SPN‘) “<|>+<V> » (20)

where S?? is the structure factor. Thus. the pfesent lattice theory

is consistent with the adiabatic theory. The inconsistency between
DPOC and DPOM is related to the fact that the order of taking the
continuum limit and taking the expectation value cannot be interchanged.

Further discussion will be given in §6. Since the structure factor

(52)
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and the excitation energy are equivalent to those given by DPO,

as is clear from the argument below(/7), we do not discuss them.

§6 Summary and discussion

The discussion.of 85 is based on the representation given in
(4-17). However, the same result can also be obtainable from the
representation given in (4—3b). In this case, neglécting the
factor Fi , & non-hermitian Hamilfonian which reduces to that given
by BZ is obtained. Working in the lattice space; this Hamiltonian E;.h.
can—be transformed intb the Hamiltonian  (5-9) by non-unitary |
trahsformation S given by* |

ih_f"h Ph P.Q '?’m ‘ 37 Ph ?1 ?m ?n - __P&Q
Ln S = % 4 -IZZ-:JZ*YM-D 12N ! ii:h-m-t-h-»o 24N Z:;’& 3N Vs (l)

which coincides the weight function JO given by Hiroike (eq. (2-3I)).
S givén in (1) is nothing but a 1/N expansion'of the Stirling-formula

approximation :327%{(?;‘*“5.)2»1 - 1) of %, %’Q‘" F(St+1),

51), we have presented a coherent-state theory

In a previous paper
in whiéh the occupation numbef n. of the i-th lattice point is’
restricted to 0 or 1, and obtained the same result for the ground-
state energy Eo and the transformation S as given in this thesis; i
The restriction ni=0 of 1, however, is neglected in the course of
Calqulation and.this expression EO cannot be applied to a one-dimensional
system at low density. By taking account of this restriction, it is

expected that this theory is useful for investigating a system at

low density.. = ... . L L co
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If we approximate Mn I'(S+1) by $ & $ , the Chan-Valatin transform-
35) |

ation is obtained. This approximation, however, yields the
divergent terms as encountered in the old collective variable A
theories.s) Thus, tﬁe meaning of Hiroike's cut-off procedure has
been elucidated by introducing a limiting procedure a; given in §S;

The relations of the present lattice theory described in §4

and 5 to other collective variable theories can be summarized as in

the figure.

= Figure:
n.h. “~~~% implying that the continuum

limit is taken, <—— connected

by non-unitary transformation {I~ (JD )

expectation value is (isn't) derived.
The importance of taking a proper
continuum limit becomes clear from

H
I with each other, and —— ( —%—>)
H

this figure.

Hppoc and Hp; are obtained by taking the continuum limit of H and

ad

—

Hx.h. expanded as in eq. (5-1), respectively. Only H yields TEfL
obtained from the Bogoliubov theory reformulated by Breuckner and
Lee and is therefore consistent with the adiabatic theorem applied
CBF

by Berdahl in obtaining Mp . HBz gives E? and prac ylelds [=

The Hamiltonian Hgzn given by the improved BZ theory due to H1r01ke

yields E, cBF

(54)
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Ts

_BL
In order. to obtain E, r in eq. (5-7), which is formally

higher order in a, is indispensable. As pointed out previously
) '

by Nishiyama6 ; V. gives absolutely divergent sum, which in our

formulation is written as N~ Ei(ﬁﬁﬂérna‘)<khﬁ>.Akag in addition

to the contribution to 'EEY . This, together with the contribution
from'ﬁi , gives the difference between E.~Es and Eo°. However,

- the ground-state energy obtained from DPOC is Es™ and not 1=
This is because the terms of the form #¢@$ # and S, ,¢¢ in ?r;
comeé from the terms with n=3 and 4 in eq. (5-1), and therefore is

missing in TDPOC’ although these terms do not affect the exact

values of the ground-state energy for the one-dimensional L-L model

and for the charged Bose gas in the high-density limit. These terms

5)

are also missing in }42 given by Hiroike (his eq. (3.15)), which

———3
corresponds to T .

Though DPO (described in the coordinate space (DPOC))G) gives

EgBF, it gives EgL when the kinetic energy is calculated by using

the expression for the momentum distribution function (DPOM)40).

This situation can be interpreted by the present formulation as

follows. The lattice Hamiltonian (4-2) can be rewritten as

kS

% , .
H = % 2m Q2 <h,"h> ‘nk + (A/H/t Tonm ) (2)

\
o+ 1A \E -AkRX;

My = by b , b = (L) obse .

contrary to the representation Fi given in eq. (5-9), the represen-

tation obtained from (2) does not involve terms which vanish in the

continuum limit, because the representation of bk (or b;bk) does not
contain the factor £, (see discussions below (4-25)), This is the

k
. ' BL . CBF
reason why DPOM yields the ground-state energy EJ instead of Eo .
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In general, the continuum limit should be made after taking the
expectation values.
The relation to the velocity field approach of Yamasaki,

Kebukawa and Sunakawa (TKS)39)

is not so clear as in the case of
the BZ theory and the method of DPO. Recently, Nishiyama has shown
that the Hamiltonian of DPOC is unitarily equivalent to the Hamiltonian

given by the new Sunakawa theory of YKS and expressed in the so

called small-b operator of Yamasaki up to order 1/N.
It has also been shown that introducing the canonical conjugate

to density causes no trouble, because the repfesentations-of the
raising and lowering operators X' and X include a projection
operator as shown by (4-14) and the quantity ¢ (the phase operator)
appears only in such forms as expCi¢I]f and Jpexpl-i¢1 ., Although
the method of calculation taking the subsidiary céndifion into
account is left as a future problem, the ground-state energy obtained
by néglecting this condition coincides with the exact result obtained
for the one—dimensionalkLieb—Liniger model and for the charged Bose
gas in the high-density 1imit. Thié situation suggests that the
subsidiary condition can be safely neglected in the high-density
limit.

Finally we would like to make a remark on the superfluidity
of this system. As mentioned in §5, the zero-th Fourier transform
of the phase operator ¢O is a cyclic coordinate. Let us consider
two systems with the total number of particles Nl and N2 and the

chemical potentialjx‘ and/u1 , respectively which are allowed to

(56)
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trahsfer a small number of partiéles to eaéh other through a narrow
channel. We consider that each of the two systems is sufficiently
small compared with the macroscopic scale but large compared with
the atomic scale so that the bulk property of the system can be
preserved. The zero-th Fourier transforms of the phases of the two
systems are donoted by ¢, and ¢, , respectively and the total numbers
N; and N, can be written as ‘ia/afl and A %/a¢, in our coherent
state represeﬁtation, respectively.

. Here we assume a symbolic expression for the Hamiltonian of

the two systems in the form

My = MNG+ g Na + Vya (3)

where the interaction Hamiltonian V is considered as commutative

1,2
with the phase difference ¢ = ¢,~ ¢, and may depend upon ¢ as in the

case with the problem of the ac-Josephson effect®?). Hence the

“temporal change of the phase difference is given by

B 4= A
st P = FOH , ¢ =- /g (4)
where'ﬁtis the difference of the chemical potential; M= Mo
53)

On the other Hand, according to the two fluid theory, the driving
force of the superfluid is given by the spatial gradient of the
Gibbs'free energy per unit mass; G and the superfluid velocity
satisfies

2

= U =-%kad G

= . (5)

When the curl-free superfluid velocity has the velocity potential
of the form %i¢s/m, the difference of the velocity potential at the
two ends of the channel should be equal to the time derivative of

the difference of the Gibbs free energy, i.e.'h(¢%|-$&g)/m =-G,r G,
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Since the chemical potential is given by mG, we can identify the
phase difference ¢ to the difference of the velocity potential

(multiplied by m/h) as

¢ = ‘}Ss,n_ ~ %2 . (6)
In.this paper we have considered £he homogeneous system,_therefore
the phases are homogeneous in each system. In the above consideration
we have found that the phase difference is closely related to the
superfluid'velocity potential hég/m . It is.promissing to
approach to the phenomenological two fluid theory from our microscbpic
point of view bj considering several average quantities, together
with such constants of motion as the total number of particles and
the total momentum, as local quantities which vary spatially from

one place to the other.
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Appendix A Proof of egs. (4-11), (4-30) and

the relation S e** RS =0

In this appendix, we _first show eq. (4-11) in its general
form and i:hen derive the representation (4-30) togeth‘e‘r with
another representatibn. We also show the relation Sr_‘e“#";a S=0.

We first consider a state written as bB(bb)1¥®>, where
B is an operator given in powers of b'and pt and 19> is given
below eq. (4-8). As the state B(E, kt)1 P> can also be w-ritten

as % ‘Ph' In> , from arguments given below eq. (4-9), we obtain

KOUFbBIP> = T 9/ «¢pbiny = e* i35, T 9! <1 n>

=T «oiPBIv> = € T ig B 90 (a.1)

, where B stands for the representation of B=B(b, b)),

similarly, we have

P B BIvy= ig, e B o) @)

As an operator A(b,L*) given in powers of b and bt can always
be written as b B, (b)) + b B, (b,b"), from (aA.1) and (A.2), eq. (4-11)

follows immediately. It is clear form the transformation in

eg. (A.l) that eq. (4-11) can be generalized to include the operators

X,X* and P. . 1In particular, the number operator btp is repre-
sented by 49/3¢ .

- Next, we consider the representation (4-30). From (4-7),

we obtain

DRt =1, TR (2:3)
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and the inner product of a state can be expressed as

919> =" 4L <pIFSFIs» <SP P19y (. 4)

Thus, we have the r—representativé <<¢]JT’ ‘r"glgo) and the l-repre-
sentative <PIP3[FI$% . putting S‘*‘:—jl , we obtain eqgs. (4-27)
and (4-28). Usiﬁg thé representation (4-11) given in the text
andA proved'in the above, the r-representative of a state |%> given

in eq. (A.4) becomes

P 6) = P T S19y = { TG+ DY ey = (P eier, (a5

' Where @(¢$) is given by eq. (4-8) and the r-representative of

a state bi®> becomes

PP T bie> . < |JF r"sbffg P;S|9’> (A.6)
. F‘sef°‘f@ Pl pPsiey= e P U-POGE ST
where the last equality follows from
P NE P e e P et R (el e )

_ { h,(n);-sm {-P(H*l)zge-.:(h“l)?s (nto)

0 | (m=o0)

. 1 .
= ett n2*¥ (1= Sp,) e

—-—

and P, is defined by eqg. (4-13). Similarly, we obtain

wl=

v ~S —_ ~A
PP Iy = 65) (=P e*f o @
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where the factor (I— P,) is insérted considering that 4 9/0¢ has
negative eigenvalues. Putting S=—“5 , we obtain eq. (4-30),
because in this cace (I*E) factor in (A.8) can be safely omitted.
In this way, the relation to the non-unitary transformation (4-31)
has become clear. )

The relation S-'e""b E S=0 can be proved in a similar manner

as in eq. (A.7), namely

\

. ' ; d .
ST P g e = P et R PR (2.9)
| - L .
= Fiet? Sh,o {Paen]? e = (o)) e o= 0 )

which follows from the fact that the inverse of the gamma function

have zero at z = 0.

Appendix B Property of 'Fh and <k,Q, >, m>

In this appendix, we will show geveral relations satisfied
by ‘Fh and <k 9,--,m) , which are frequently used.
They are defined in eq. (4-25) and in eq. (5-8). From the

definition, we readily obtain

‘thb = O Z .f_k = Zk 1 ’ (B.l)

) k¥o

Bof, = (1= ePR0) (1~ e R) = o gmika _o0a | ~atkenda

-Fk+ .F‘Q - {:_m ( h_-}-/ﬂ-i-'}ﬂ‘: o ) . (B.2)

The relation (B.2) is most important and clearly shows that 'Fh
should not be simply regarded as of order . Other relations

can be obtained by using eq. (B.2). In particular, we have
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<k,-k> = f o, = f.fop (B.3)

<R, 2>

i

(Fufo+ ffod/2 = (B o -f+ £~ F-f ) /2

]

(<R,=k>+ <0,-0> « <m,-m>) /2 . (B.4)

(kR+0+m =0 )
We also obtain, by a simple calculation, the following relations

<k, 2, m> =0 (R+L+m =0 ) (B.5)

7

n

<k,,0,m,'h'>' 2<k, L, m> (Rtltm+n=0) (B.6)

"

Kk, 0,mmn)y = 2{<h,~k>+<Q,~L> +<m,~m>+ <m,~n>

~ SRt ~kL >~ <kRtM,~k-m D ~ <Rn,~k-n) } (B.7)

(ktR+m+n = 0 )

In the continuum limit G>0, ¥, /q reduces to 4k and

<k.0> /0% (or <k,~k>/3%) +o —k'Q (ev R®) . Thus, the relation
(B.4) reduces to =—k-R =. (R*™+2%-m>)/2

Appendix C Extension to 3-dimensional case

In the three-dimensional lattice space, the kinetic energy

assumes the form

T a*(k/2mar) [BE+8p-FaoHEE+3o -2 ) |, (o)

where ol runs over x, y and z and @x ,53 and 51 is given by

(a,0,0), (0,a,0,) and (0,0,a), respectively. Correspondingly,
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: : x .
there appears three ¥h’s, namely,'fh ,'ﬁ? and 4& given
respectively by

-3

o _ ke
'Fh =1-¢ ) . ) (c.2)

<R,0,~,m > in the one-dimension is replaced by

<k, ,m> =D (e £2 + £2 €34 f% ) /2 . (c.3)

From (C.3), we see that the relations in Appendix B hold also
in the three-dimensional case. The interaction term does not
contain derivatives and so does not change. Thus, the resulting

expressions remain the same as in the one-dimensional case.
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Appendix p The phonon Hamiltonian

From the Hamiltonian (5-9) of bosons written in terms of
the density fluctuation Py and the phase operator ¢k , we obtain
the phonon Hamiltonian given in terms of the phonon field-operators

Bk and B; (see eq.(5—10$) having the following form

H=H, +H, , +H _ +H + +H, (D.1)

0" F1,1 T Fy,2 Py FHy o HHy 4 HY
2 2 + (0) (1) |
H. =
o= (%/2m) ﬁ (k /%) BB, f Eg '+ E ’ (D.2)
0 : 2 ._ ‘ .
Eé )o (1/2)N v, - @8 1 k%(1 - b, (D. 3)
: k : _ o
Eél)= (G2/16MN) I {k2(1 = 2r. + 2% 1)
k Kk 1
. ,1 ;
2.2 .2 2 2 '
+ [(k+1)%-k%- - - .
[0c1) "=k5-1%0 (-0 T (-0 7 eana) 3 (D.4)
H = ET (x l)B+ﬁ (D.5)
1,1 5,1 ok :
Sy . : '

H = XT (k l)B+B+ B, B (D.6)
1,2 5 01,2V eI BB By By A A
H, .= T, (188 + n (D.7)
2,1 7 2,1 Bk (G )

) _ N
H = xr., .x,)BBT B .B ' ' (D.8)
2,2 2,2\ ~k°-1°1 ¢ )
< x,1
H, =, L & O k1 meiefet + b (D.9)
3,a  k,{,m °k+l+m,0 '3,a Kt/ MB BB “Ce v
H _ F (D.10)

3,¢ 7k, Em Skelim,0 T3,c K/ LMBL BB, + hoe.

where M, Vk and Ak are the particle mass, the Fourier transform of

the interaction potential and the unperturbed structure factor,

1/2

respectively; Ak=k/(k2+4MNVk/ﬁ2) and
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2 2 2. .2 - :
LU,1) = (2/2m) [+ )Akxl—-k A (D.11)
L Uc,1) = (62781 [2 (k+1) Ak L+ ke l(Ai)\i + A A+ AL/A
- 3, )] - (D.12)
l(k'l.) = Vri,i(k,l)/z ’ - | (D.13)
I, .(k,1) = (B2/16MN) [2&k+1)2>\ Ay + k-1 -1, /h. + 4
2,2k 1) = (& ] Ay k1
- NN BNADT (D.14)
9 -1/2 , o
Py L 0k1,m) = (B2/24m) (A / alk,1,m (D.15)
a(k,l,m)_: kel(A A + 1.)‘)\,’“ + Lim (WA + DA+ mek(A A+ DA,
(D.16)
Py, (k,lm) = (B2 /8M) (N;\‘kxlxm)-”l/z'c'(k,l,m) , (D.17)

c(k,l,m) = k. l(kkkl 1)_)\m + l-m(kllm+l)lk + m-k(lmlk—l)ll r

(D.18)
These vertex functlons characterlstlc of DPO are related to
those characterlstlc of CBF by |
oaflk,1,m) = a(k,l,m) + b(k,1,m) _
= k-l(Ak—l)(Al~l)Am+1-m(Al—l)(Am—l)kk+m-k(lm—l)(Ak-l)ll R
: (D.lg)
y{k,1,m) = c(k,l,m) + d(k,1,m)
= k-l(%kfl)‘Al;l)lm+l-m(ll~})(Am~l)kk+m-k(km~l)(Ak+l)kl -
(D.20)

N 2 2 . .2 2
v‘yhere b(k,l,m)=k Alk +1°A Ak+m Akkl and d(k,1l,m)=-k Alkm+l Amlk
+m21leIIn the above the continuum limit is taken properlyl.
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