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Abstract

Magnetic properties of a two-dimensional antiferromagnet,
Cu(HCO00) 2 *4H20, were studied both experimentally and theoretically with
special interests in its magnetization process. The magnetization
measurement up to 20 kOe was done at 4.2K for single crystals of
Cu(HCO00) 5 *4H20 and the proton nmr of the deuterated salt, Cu(HCOO)2-4D20,
was also studied at 4.2K. It was found that some experimental results
.such.as a magnetization jump observed at 5.3 kOe when an external field
is parallel to the b-axis can not be explained by the two-sublattice
model used by Seehra and Castner. .The four-sublattice theory in which
the inter- and intralayer exchange interactions, the symmetric and
antisymmetric anisotropies and the Zeeman energies are taken into account
was applied to this compound and the experimental results were satisfac-
torily explained. | “

The intra- and interlayer exchange fields, Hex and hex’ were obtained
as 1.5 x 10% and 4.0 x 10 Oe, respectively. Thus the small ratio of
hex/Hex’ 2.7 % 10‘5, guarantees the two-dimensionality of the érystal.

The magnetization curve of a similar compound, copper formate
bis-urea dihydrate, Cu(HCO0)2+2(NH2)2C0-2H20, was studied at 4.2K. The
results indicate that the interlayer coupling of this crystal is about

1/20 of that in Cu(HCO0O0),+4H,0 while the intralayer exchange is of the

same order in both crystals.
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§ 1. Introduction

Many theoretical and experimental investigations have been dedicated

1)

to simple magnetic model systems. Two-dimensional (hereafter referred

to 2d) Heisenberg antiferromagnets afe particularly interesting because
their properties are sensitive to the anisotropy and the inferlayer
coupling. In this paper, magnetic properties of a nearly 2d Heisenberg
S=% antiferromagnet Cu(HCOb)2-4H20 and those of a similar compound copper
formate bis-urea dihydrate, Cu(HCOO)2-2(NH2)2C0-2H20, are studied with
special ihterests in the magnetic structure, the anisotropy aﬁd the
interlayer coupling. |

The two-dimensionality in Cu(HCOO),+4H,0(CuFTH) was first suggested .

)

by Kobayashi and Haseda,2 who investigated various exchange paths in

this crystal considering the layer structures) parallel to the c-plane. The

Néel temperature TN(17K4)) is much lower than the Weiss temperature

(175K5)) and the magnetic susceptibility has a broad maximum at about

2) 6,7)

65K. is anomalously small. ’

The peak of the specific heat at TN

Therefore, the compound seems to be a quasi 2d Heisenberg antiferromagnet.
8,9)

13)

Short range order effects are observed in electron spin resonance,

10,11,12)

in proton resonance and in neutron diffraction experiment.

Magnetic properties below T, also have been studied by many

N
researchers. Kobayashi and Haseda(KH)z) found the induced weak ferro-
magnetism in the LjLp-plane. Van der Leeden et a1.14) did the proton

nmr experiment and concluded the Pj¢2;/a symmetry for the magnetic

structure. Dupas and Renardls) suggested the necessity of the



4-sublattice model with spin easy axis hearly along the a-axis. These
investigations are followed by the AFMR experiment and the analysis by
Seehra and Castner(SC).16)' Their analysis is the first systematic study
of the microscdpic magnetic properties below T

N

is limited within the 2-sublattice model because of the complexity in

, although their treatment

calculating the AFMR frequencies for the 4-sublattice model. Accordingly,
a weak interlayer exchange interaction could not be taken into account.
By using the hamiltonian which consists of the isotropic exchange{ the
symmetric and antisymmetric anisotropies and the anisotropic Zeeman
interaction, they found that the spin easy axis is the a"-direction
close to the a-axis and explained the 90° rotation of the antiferromagnetic
axis caqsed‘by the external field parallel té fhe c-axis. However, they
could not explain the jump of the magnetization observed when the external
fieid is parallel to the b-axis. Ajiro and Teratalo) pointed out that
the jump may be explained by a structure change from the 4-sublattice
state to the 2-sublattice state induced by the external field.  Their
hamiltonian contains the interlayer exchange but the symmetric anisotropy
and the anisotropic part of the Zeeman energies are dropped out.

Ideally sbeaking, it is clear that one should consider the.anisotropic
Zeeman energy, the symmetric and antisymmetric exchange interactions
both for the intra- and interlayer couplings based on the 4;sub1attice
model to understand whole magnetic properties such as the magnetization
process and AFMR. Howevef, it is very tedious for this compound so thaf
many researchers lhiave partly explained various magnetic properties by

truncating the whole hamiltonian. Recently, we succeeded to analyze



the magnetization process without truncating the important hémiltonian
terms. The results show that the treatment can explain all importént
magnetization process satisfactorily‘comparedu with the previous work.
The extended ﬁagnetization and nmr measurements were also performed to
ensure the treatment.

Following the introduction, a summary of the.crystal structure
and the magnetic properties is given in §2. The geneial hamiltonian
and the derivation of the magnetization curves are presented in §3.

In §4, experimentals including the performance of the moving-sample
magnetometer are shown. Results of the magnetization meﬁsﬁrements

up to 20 kOe at 4.2K are compared with the consequences of the theory
in §5, where the intra- and interlayer exchanges, the symmetric and
antisymmetric anisotropies and the anisotropic components of the
g-tensor are estimated consisfently. Results of the nmr experiments
up to 60MHz at 4.2K are discussed in §6, where the angular dgpendence
of the resoﬁance field was studied mostly for the deuterated crystal
Cu(HC00) *4D,0(CuFTD). 1In §7, we deal with the magnetic properties of
the similar crystal, Cu(HCOO),+2(NH,),CO+2H,0(CuFUH), whose intralayer

17)

coupling is nearly equal to that in CuFTH while the interlayer

spacing of the former is larger by about 30% than that of the latter.ls)



§ 2. Crystal Structure and Magnetic Properties

Unit cell of CuFTH crystals) is shown in Fig. 1. The unit cell
contains two chemical units. At room temperature protons of water molecules
migrate around oXygen atoms due to the hindered.rotation.lg) Ordering of
the protons takes place at —38.9°C.19) Symmetry of the crystal is lower
below this temperature.zo’ZI) However, no apparent éhanges of atomic
position were deteced by X-ray,diffraction.zz) Results of recent neutron
diffraction studie523’24) support the conclusions of the earlier works.
No further structure changes were detected down to 12K by specific heat
measurement.zs)

Copper ions are coordinated octahedrally by two water-oxygens and
four HCOO -oxygens. The octahedrons are elongated by about 20% along
the H,0-Cu?* directions which are denoted by Z, for the corner ion and
- Zp for the base-center ion in Fig. 2. Consequently, g-value of copper
ions is expected to be approximately 2.1.in the plane perpendicular to
Zi(i=1,2) and 2.4 alqng Zi' The axes Z; and Z, make an angle of 41° in
the LLy-plane, where L; is a bisector of two Zi's and L, is the b-axis.
A paramagnetic resonance experiment26) has revealed that the principal
- axes of the effective g-tensor of exchange narrowed line are L1, Lo
and L3 perpendicular to L; and L. The effective g-values are g(Lj)=
2.362, g(Ly)=2.116, g(L3)=2.071.%7)

The absolute value |J|(J<0) of the magnetic interaction between

ions in the ab-plane was estimated from the round peak of the suscep-

tibility as about 36K.28) The interlayer exhange J' was first



Cu(HC00),+4H,0

* Fig. 1 Crystal structure of Cu(HC00) ,-4H,0. Cu2* ions linked by HCOOi groups

from 2-dimensional networks parallel to the c-plane and H,0 molecules are

sandwitched between them. The double or triple circles for H,0 indicate

vhether they are linked to Cu2* or not,




f;bJQ'

de=g= un1°
o = 20.5°
-50-205°

Y(hard)

— b, X(second)
ac = 90°(cc =11. 1°)
aL3 cL1 = 9.4°

a"a" = c'e" = 8.5°

o)

cc” = 2.6°

Fig. 2 (a) Relation between H,0- Caz+.directions(21 and Z,) and. the
pr1nc1pal axes of amalgamated g- tensor(Ll, Ly, and L3). 26 27)
(b) Relation between the antlferromagnetlc pr1nc1pal axes

(a", b(Lz) and c') 16) and other axes. ‘The notations X, Y and 2

are used for calculations in §3.



inferred by KH considering possible exchange paths to be about 0.1K. This
implies |J'/J]| = 1073, Ajiro and Teratalo) have suggested from the analysis
of the magnetization jump that the inteflayer exchange field is about
200 Oe(J'/J=10""%) and antiferromagnetic. This value is largef fhan
the newly estimated value, 40 Oé, as will be given in §3 and 85.
Magnetization process was first studied by KH under an external
magnetic field ] up to 9 kOe parallel to Lj, L and L3z. Their data are.
extended up to 20 kOe by the present authorzg) and are shown in Fig. 3.
It is noticed that the spontaneous ferromagnetic moment was not observed
at zero external field. The low field susceptibility for Li and Lp is
much larger than ;hat of L. For ﬁ]/Lz, abrupt increase of the magnetiza-
tion was observed at about 5kOe above which the'magnetization gradually
becomes flat as for L;. The "saturated" value is about 3% of total
copper moments.

Crystal structure and magnetic properties of the deuterated crystal

CuFTD seem to be quite similar to those of light water crystal CuFTH. For

30)
N

angular dependence of proton resonance for the HCOO™ proton.

and exhibit the same
11,14,15,20)

example, two crystals have the same value of T

In this paper, the HCOO™ proton position of the paraelectric state of
CuFTH crystallg) is used for calculating the dipole field for the anti-
ferroelectric étate of CuFTD‘crystai, because the proton position of
‘the latter case is not known. |

Magnetic structure was first studied by van der Leeden et a114) by
using proton resonance of the deuterated crystal, CuFTD. They determined

the magnetic space group P,c2;/a and proposed a magnetic structure of



N
4
.
3

o——h ‘

Mag’netizdti‘onﬂ OzcgsemU/mol)

0 5 10 15 20
- < Magnetic Field(koe)

'Fig. 3 Magnetization parallel to the external field for various field

~directions in a single crystal of Cu(HC00),-4H,0 at 4.2K.
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2-sublattice antiferromagnet. Although their magnetic group was correct,
the proposed 2-sublattice magnetic structure was incorrect. Dupas and .
Renardls) studied the proton resonance again and proposed a 4-sublattice
magnetic structure whose magnetic unit cell consists of two crystalrcells.
Their proposal of the magnetic structure is correct except for the fact
that the spin easy direction a" in Fig. 4(a) was not found precisely. It
is noted that the reported thermal average of spin at zero external field

is only 53% of S=% even in the temperature range 0.1 ~ 0.2T Ajiro and

10)

N

Terata also studied the proton nmr and sgggesied a field-induced

structure change from the 4-sublattice state to the 2-sublattice state.

This conclusion is correét as will be seen later in §5. However, other

two results that the spin eaﬁy axis in the 4-sublattice structure is

parallel to the c-direction and that the weak ferromagnetism is due to

the Dzyaloshinsky-Moriya(DM) interaction are inadeéuate.11’16’29’31’32)
Antiferromagnetic resonance experiments and the analysis by SC

may be the remainihg subject of this section. However, as this problem

has been already considered in §1, a short summary of the results will

be given below. The antiferromagnetic principal axes are a", b and c"

~given in Fig. 2(b). The éasy axis is the a'-direction and the second

or the intermediate axis is the b-direction. fhe antiferromagnetic

axis moves widely by applying the external magnetic field. This movement

was mainly attributed to the tilting in the g-tensors of two copper

ions in the unit cell. These conclusions agree well with those of the

present paper as is seen in the analysis of the magnétization curve in §5.



Eig: 4(a) Spin strﬁétﬁre of Cu(HCO00),-4D,0 at zero ektgfnal field. Thei
magnetic unit cell consists of two cfystal céllS adjoinipg along the
c—direction.- The antiferromagnetic easy axis.a"_is close to the a-axis
in the ac-plane: The cantipg(0.4bj'fo b allowed by crystal symmétry.
occurs between spins in the 2-diﬁensiona1 ab-plane keeping the adjacent-

plane spins antiparallel.

- 10 -




(b)

e e e 7w et saaie $mmt 1t bm

i

Fig. 4(b) Spin structure in the high-field 2-sublattice state. Spins in
the neighboring planes are parallel. The antiferromagnetic axis depends
on the field direction. For example, it is parallel to the b-axis as

shown in the figure for H in the gc—plane.*) For details see Fig. 24.

x) For simplicity, small canting'(gH/4Hex'alopg‘ﬁ plus 0.4°_to a" and -0.1°

to c") is not shown in this figure.



§ 3. Magnetization Process Based on the 4-sublattice Model

In this section, we deal with the molecular field theory of the
magnetization process at T=0. The 2-sublattice hamiltonian introduced
by Seehra and Castner is extended to the 4-sublattice case. Arweak
isotropic interlayer coupling is newly taken into account. Equations
éf'torque balance are derived from the hamiltonian and are solved. The
4-sublattice treatment developed by Joenkss)fbrCuCIZ-ZHZO is not
directly applicable to the present case, because roles of various

“anisotropy terms in these two cases are different.
3.1 Hamiltonian and equilibrium conditions

3.1;1 Torque equations and free energy

We consider four sublattices, 1, 2, 3 and 4. The sublattices 1
and 2 represent, as is sthn in Fig. 5, the cornér and the base-center
ions of one layer and 3 and 4 represent the corresponding ions of
- another layer. The coordinate.system XYZ shown in Fig. 2(b) is usea
after SC. The axes X, Y and Z are parallel to the second easy axis b,
the hard axis c" and the easy axis a", respectively. The hamiltonian
H consists of three parts, namely two intralayer parts H;, and Hgy

and the interlayer hamiltonian Hint’

H = H12 »+ H31+ + Hint

(3-1)



e ———

O Cu

alx) |
| ) | proton below @ proton above |

the plane’. ~ * the plane -

Fig. 5 Four independent copper ions and'gight HCOO -protons in the
magnetic unit cell. The positional parametefs of proton-1 are
0.207, 0.692, 0.071 in the obiique abc coordinate system. The

coordinates xyz are used for calculating the dipole field in §6.

- 13 -



As the present treatment is based on the molecular field approximation,
the following reduced form is used: for example, the isotropic exchange

and Zeeman energies in Hj» are given by

-> . -> o SRR S
-2J 2 gi.gj - uB( 2 H.gl.si + 2 H.gz.sj )
<i,j§> i J

= (%4?){ 2213133, - uBﬁ'.(éfgl +55) 1,

(3-2)

where the summation Z- is taken for all nearest neighbor pairs. N and z

<i,j> ,
represent the total number of spins in 1 and 2 sites and the nearest

neighbor spin number, respectively. Therefore,'the total intralayer

hamiltonian per %N which is written as Hj; hereafter is given as

follows:
.H12 = I 38;+3, + KS17S27 + K'(51x52% - S1752Y)
*+ A(S1yS2g + S1zS2y) - Dy(S1zS2x - S1xS27)
- Dy(S1xS2y - S1ySox) - wph:(£1°51 + £2°%2)
with

I=2z03 , J<o0 , z-=4

The first and the last terms of eq. (3-3a) are, of course, the isotropic
intralayer exchange and the Zeeman interaction treated in eq. (3-2).

The K-, K'- and A-terms are due to the symmetric anisotropic exchange and
DY- and DZ-terms stand for the antisymmetric anisotropic exchange 6r the

Dzyaloshinsky-Moriya interaction. This hamiltonian H;, which contains

(3-3a)

(3-3b)



the most general bilinear intralayer exchange interaction allowed by

monoclinic symmetry for S=% case is first introduced by SC. Hgy is

obtained from eq. (3-33) by changing 1 and 2 to 3 and 4, respectively.

The g-tensors g,(=g;) and §2(=§q)vare given by

él’ éz = g)o( igXY igZX 1
8y Byy Byg
*8rx . 8yz 8y ,

\ 7/
where + and - correspond to g, and g,, respectively.

interaction Hin is given by

t

Hint

=1(8-3;+ 8,8, )

I' = 2z'|J"| Jr<0 , z'=2

The equations of motion are given by

4 d$; >
T dt = [ H, S, ]

i (i=1,2,3,4) .

For example, dSlX/dt is given as

TdS  /dt = I(S.S,, - S.,8,,) + KS;/S,,

* A5 ¢Sy - S17529) - DySiyS,x - DS

' ,
* K'S1.8,v

The interlayer

A IZSZX

(3-3¢)

(3-4a)

(3-4b)

- upl My, + Hygy, + Hyg )8,y - (Hygy + Hogyy + Hygo ]S, }

. 1 -
+IT(S)y83 - Sg8y) -

(3-5)



We take thermal average of these equations with the notation < > .
Quantities <SiaSjB>(1,J=1,2,3,4) are replaced by <Sia><sj8> , where
o and B stand for one of X, Y and Z. For simplicity, normalized vector

components X., Y. and Z. are introduced as
1 1 1

<SiX> = <Si>xi ,
<SiY> = <Si>Yi R
<S;,> = <85, (i=1,2,3,4)

m

Usually, one can assume <S;> = <Sp> = <Sg> = <S,> = <§> . Following

SC the simplified notations given by

He ,  K'<S>/2ug

He, »

I<S>/2uB K

H_, K<S>/2ug

A<S>/2uB

H DY<S>/2uB

A h DZ<S>/2]JB = H

DM ? DM ?

I'<S>'/2uB = hex R

are used.. Then eq. (3-5) is written as

[v|=tax;/dt = H_ (Y122 - Z3Y2) + HY1Zp + He Z1Yo

K K'

+ HA(Yle - 21Z3) - hDMYIXZ - Z1Xo

HDM
- Ugeyy/2 + Hygyy/2 + Hygy,/2)21)

v +h (V123 - Z3Y3)
where '

[yl = 2upm .

(3-6)

(3-71)



The equilibrium condition is given by
dx,/dt = dY,/dt = dZ./dt = 0 (i=1,2,3,4) . (3-8)
Of these 12 equations, dxl/dt = 0 and dXp/dt = 0 are given as follows:
H (Y12 - Z)Y2) + HY1Zp + He Z1Yp + Hy (1Y2 - Z1Z))
- hp1Xe - Hp 21X
- {(ngZX/Z + HYgYZ/z + HZgZZ/Z)fl_

- (ngxy/z + HYgYY/Z + HZng/Z)Zl}

+ hex(le3 - ZIY3) = 0 s . (3—9&)
Hex(ZlY2 - Y1Zo) + HKZIYZ + HK'YIZZ + HA(Y1Y2 - Z1Z3)
+ hDMleZ + HDMXIZZ

- (-ngXY/Z + HYgYY/z + HZgYZ/Z)ZZ}

+ hex(Yzzq - ZoYy) = 0 . (3-9b)

The free energy in unit of magnetic field, f

, is defined as follows:
tot . v

Hh
I

tot <H>/2uB<S>

(3-10a)

+ ] .
fio + £ + £, .



where

fi12 = Hex(XIXZ + YiYo + Z3Z2) + Hy

Z1Z2 + Hp, (X1X2 - Y)Y3)
+ H,(YaZz + 21Y2) - hp(Z1X2 - X3Z3) - Hpy(X3Ys - Y1X2)

1
- 7 WlyegytHyexy Hz8 0 %1 + (HygyyHysyy-Hzgz00 %

le + (-H

+ (Hygyy*Hygyy+Hygy; xBxy*HyByy*H;8yz) Y2

+ (H )Z; + (-H )Z,1} (3;10b)

x8zx*ty8yz 7877 x8zx*HyByz*M7877

and f3, is obtained by changing 1 and 2 to 3 and 4. The term fint is

given by

£ = Doy (XaXa + Y1¥3 + 2123+ XoXy + Yo¥y + ZoZy) . (3-10c)

3.1.2 Simplification of the torque equations and the free energy

We derive the following 6 pairs of equations by adding and subtracting

eqs. (3-8):
dRj/dt * dRp/dt = 0 , dR3/dt * dRy/dt =0 , (3-11)

where R stands for X, Y and Z. An example of these pairs obtained from

eq. (3-9a) for X; and eq. (3-9b) for X, is as follows:



Hy (Y1Z22+21Y2) + Hp, (Y122+21Y2) + 2 H, (Y1Y2-Z122)
+ hp (X1Y2-Y1Xp) + Hpy (X122-21X3)
- {Hy(gz5/2) (Y1-Y2) + Hy(gy,/2) (Y1+Y2) + H;(g;,/2) (Y1+Y2)
= HX(gXY/Z) (21'22) - HY(gYY/Z) (Zl+22) - HZ(gYZ/Z) (Zl+22)}
+ hex(Y123-ZlY3+Y224—Zqu) =0 , V (3-12a)
2H  (Y122-Z1Yp) +Hp (Y122-2Z1Y3) + Hp, (Z1Y2 - Y122)
- {HX(gZX/Z)(Y1+Y2) + HY(gYZ/Z)(Yl‘Yz) + HZ(gZZ/Z)(Yl-Yz)
+ he'x(Y123-ZlY3-Y22q+Zqu) =0 . (3-12b)
Byvusing new vectors (1,m,n), (1',m',n'), (L,M,N) and (L',M',N') given by
1 1 1 )
1= 5(X1#+Xz) , m=35(Y1+Yp) , n = 5(21+Z2) ;
- | B l 1 = 1 t = 1 -
1' = 5(X3+Xy) , m' = >(Y3+Yy) ,  n'-= 5(Z3+Z4) ;
1 1 _ 1 .
L = -Z—(XI—XZ) > M= -z—(Yl—YZ) s N = f(zl—ZZ) »

L' = -1-(x3_x4) R T X O N L l(z3-zl,) ) (3-13)
2 2 2

eqs. (3-12a) and (3-12b) are rewritten as



2 2 2,02
2(HK+HK,)(E-MN) + 2 HA(m_-M -0’ +N<)

+ 2hp (-1M+Im) + 2H, (~IN+Ln)
- Tyegyt + By tzegm - HyexyN - Clygyy*Hzey,)nd
+ 2h_ (mn'+MN*-nm'-NM') = 0, ' (3-14a)

2(2H, +H -Hy ) (-mN+Mn) - 2hDM(-1_ri—_LM) - ZHDM(1_n-LN)

" ez Clygyg e - Higayn - ClysyyHzey )

+ 2h_ (nN'+Mn'-nM'-Nm') =.0 . . (3-14b)

Equations (3-14a) and (3-14b) are the equilibrium condition of the vector
components 1 and L, respectively. Later on, after a simplification, (3-14a)
and similar equations derived from eq. (3-11) are used to determine the
direction of the antiferromagnetic axes, (L,M,N) and (L',M',N').*) Equa-
tion (3-14b) and similar equations are used to determine the direction
and the magnitude of the canting, (1,m,n) and (1',m',n').

Before discuésing the simplification, nature of the terms in eqgs.
(3-14a) and (3—14b) is considered. The first and the second terms of .
(3-14a) represent the time derivative of 1 due to the anisotropy fields

arising from the symmetric anisotropic exchanges. The third and the

*)  Hereafter, (L,M,N) and (L',M',N') are referred to the major
components of the -spins and (1,m,n) and (1',m',n') are referred to

the minor components.



fourth terms are due to the DM-interaction. These terms indicate that
the DM-interaction works as an effective anisotropy for the major components.
The origin is thattheenergy of the system is low when the éntiferromagnetic
axis is close to the plane perpendicular to the DM-vector. The fifth term
with { } gives the effects of the Zeeman interaction. In the brackets,
terms with M or N are due to the tilting of g-tensors. Terms with m or n
are due to the interaction between the external field and the minor compo-
nents. The last term comes from the interlayer eXchange. It is noted
that the interaction is divided into two parts, namely inferactioné between
minor components and those between major componenfs. Next, eq. (3-14b) is
considered. The first term implies that torques arising from the isotropic
and the symmetric anisotropic‘exchanges and acting on m originate the
change of L. The second and the third are due to the DM-interaction. The
spin canting in a DM-type weak ferromagnet is derived by combining these
terms and the first term. The fourth term with { } represents the
Zeeman interaction, where terms with M and N are the origin of the spin
canting by the external field, in other words, that by the perpendicular
susceptibility. Terms with m or n indicate the antisymmetric motion of
the spins in a tilted-g system. The last is the.interlayer exchange term.
Its nature is similar to that of the intralayer exchange term.

To simplify these equations, weneglect terms of two types. In eq.
(3-14a), terms arising from the anisotropy and the interlayer excﬁange

fields acting on the minor components, namely those indicated by under-

lines( ), are neglected. Hereafter, they are referred to the type-one

neglected terms. Anisotropies in the Zeeman interaction of the minor



components are also neglected. They are referred to type-two. Terms with
broken underlines(----- ) and deviation of HZgZZm and HYgYYﬁﬁ ----- .terms)
from their isotropic parts Hzgm*) and Han belong to it, where g is given

by
1 1
=gl 2 2 2y 12 . -

The order of magnitude of these terms are showﬁ in Appendix A. We have
done calculations including the type-two terms. The result indicates
that they introduce small corrections to the expression of the perpendic-
ular susceptibility and the effective canting fields. Therefore, they
are neglected for simplicity. For the terms of type-one, complex
quantitative examinations are desirable. We discuss this problem in
Appendix A. The result shows that thése terms are negligible up.ta 10%
Oe except for two special cases. The exceptions are the bending points
of the magnetization curve for ﬁ]/Y and Z. Next, in éq. (3-14b), terms
.other»than the isotropic exchange, canting fields acting on the major
component and the isotropic part of the Zeeman interaction are neglected.
Namely, the neglected terms are the anisotropicAsymmetric exchange,
canting fields acting on the minor components, anisotropic Zeeman terms
and hex—terms. Similar to the case of (3-14a), nature of the neglected
terms is indicated by three kinds of underlines.

The resulting simplified form of eq. (3-14a) and (3-14b) are as

*) HZgZZm can be rewritten as Hz{gf(gzz-g)}m = H gm + HZ(gZZ-g)m .



follows:*)

2 N2 .
-2(Hy+Hy OMN - 2H, (M°-N%) - 2h (IM-Lm) + 2H_, (nL-N1)
- - N - _NM') = -
(Hyg, M + Hgm ngXYNV Hogn) + 2h  (MN'-NM') =0 , (3-16a)
4Hex('mN+M“) + ZhDM}LM + ZHDMNL - (H_ZgM - H'Yg,N) =0 ., : (3-15p)

Similarly, the free energies f;, and fint given by eqs. (3-10b) and (3-10c)

are truncated as

- . 2im24n2) - 2 _ 2_M%y -
f12 = -H_, + 2Hex(1 me+n?) - HN Hy, (L*-M?) ZHAMN

+ 2hDM(nL—N1) + ZHDM(IM-Lm)
- (ngl + Hng + Hzgn +‘HYgXYL

L + HogooM + Hog, oN) (3-17a) -

+ Hyg v XBxy D CTA

£, .= 2h_ (LL' + MM' + MN') . (3-17b)

3.1.3 - Equations for determining the antiferromagnetic axes

The equations obtained from dRi/dt—de/dt = 0, for example eq.

*%) »

(3-16b), are solved by using the conditions lL+mM+nN = O and

x)  Remaining pairs obtained from (3-11) are shown in Appendix B.

*+x) This condition arises from |<§1>| = |<§2>| .



1'L'+m'M'+n'N' = 0. The solutions are

L. (1/4Hex)'[2hDMN fZHDMM+-HthM2 + NZ)

- HygIM - H,gNL }'.,
m = (1/4Hexj {ZHDML + HYg;NZ + 12)

- H,gMN - HygIM}
n = (1/4ﬁex) {-2n L + HZg(L2 + Mz)

= HYgMN - HXgLN} P

and similar equations for 1', m' and n'. Substituting them in
equations dRi/dt+de/dt = 0, six equations for (L,M,N) and
(L',M'",N') are deduced. An example'corresponding to eq. (3-16a)

is given by

- 2 _ 2 _ - V2_ 2
2(Hy#Hy +hpy 2/H Hp 2/H JMN = 2(H,-Hp by /2H ) (12-N2)

- (8zx * Ppyg/ 2o M + (gyy - Hpye/2H, JHN
+ (g2/4H_ ) { -H_2MN + H 2MN - H_HNL
: ex Z Y XY
+ HH LM + H HZ(MZ—NZ) }

X'Z Y

+2h  (MN' - NM') = 0

(3-182)

(3-18b)

(3-18c)

(3-19)



Similarly, fi2 given by eq. (3-17a) is rewritten as

=L _ 2 o1 2
f12 = Hex (HDM /ZHex) 2(hDM /ZHex)

2 1, 2 2
~(HK - HDM /ZHex * EhDM /ZHex)N

“(Hy, + %ﬁDMZ/zﬂex)(LZ-MZ) - 2(H, - Hyhp /2H MY
-0 UCexy * gpy/ZH JHy + (g7 - ghpy/2H, DH, DL

+ (exy - glipy/ 2, M + (g7x * ghpy/2He JH,N ]
-(g%/8H_ ) {H2(M2+N?) + HY2;N2+L2) + Hy2 (12+M2)

-2H HYLM - 2H

X HZLN - ZHYHZMN ) S

X

The first three terms with underlines are isotropic, so that can be

neglected. As X, Y and Z are the antiferromagnetic principal axes,

(3-20)

the cross term -2(HA-HDMhDM/2Hex)MN should always be zero. Therefqre, we have

Hy = Hpyhpy/2H4

For simplicity, the following notations are introduced:

q 2 1 2,0 _ L2,
He-Hpy™/28 + Fhpy” /2H = Hex o B+ Shp /20 = He* o,

- = * = %k
Bxy ~ Hpug/ZMey = gxy™ o gyy * Hpyg/ZMey = eyt

Bzx * hpye/2Mg, =

(3-21)

(3-22)



Then, the equations for (L,M,N) and (L';M';N') are given by

- * * - * *
2(HK + HK' JMN HXM * Byy HyN

82X X

+ (g%/4H_) (-H2MN + H,2MN - HH NL

P2 _ N2
+ HyH LM + HYHZ(M N%) }

X
T_NM!Y = . _922%4
+ 2h_ (MN'-NM') = 0, (3-23a)
* _ * - * )
2(Hg* - Ry, *INL + gy *HyL - (gyy™*Hy + gzy**HyIN
. (g2/4H_ ) {H2NL -H.2NL + H
| ex) ‘Hy z e S
2 _ 12y _
+ HH (N2 - 12) - H

YHZLM }

+ Zhex(NL' - IN') =0 , | (3-23b)
* - %% %%
4HK' ML . gXY*HXL +~(gXY HY + gZX HZ)M .

+ (g2/4ﬂex') {-HXZLM}HY

2 2 _ M2
LM + HXHY(;, M2)
- HHMN + HHNL }

T 1y = _
+2h (LM' - ML') =0 | | (3-23c)
and similar equations which are obtained by interchanging L, M, N and

L', M', N'. Hereafter, we call the latter as associated equations.

The anisotropy part f of the free energy ftot is given by



f=- HK*(N2+N'2) - He,* {(L2-M7) + (L'2-M'2)}
Tgyy Hy (M) + gy Hy (NeN') + (gyy**Hy + g,y **Hy) (LeL1)}
- (g2/8H__) [H2{(M2+N?%) + (M'2+N'2)}
: ex X
+,HY2{(L2+N2) + (L'2+N'2)}
+ HZZ{(L2+M2) + (L'2+M'2)} - 2H,H, (LM+L'M')
| = ZHH (MN+M'N') - 2H H (NL+N'L')]
+ 2h  (LL'+MM'+NN') . : (3-24)

Equations (3-23a) n (3-23c) and (3-24) are fundamental equations by which the
magnetization process of CuFTH is examined. In general, we first solve eqs.

(3-23a) v (3-23c) and the associated equations*) under the condition:

LZ + M + N2 =1 , L'2 + M2 4+ N'2 =1 - (3-25)

Next, by inserting LMN and L'M'N' of the solutions to (3-24) and comparing
the resulting f's, the lowest-energy equilibrium state is fbund.- Equation
(3-23a) and similar equations are not analytically solvable for ﬁ//x in the>
4-sublattice state. For this case, (3-24) is examined numerically by

using a computer and the lowest-energy state is found.

*)  Of these six equations four are independent. However, we write all
equations for a while because the adequate set should be selected in each

case later,



Equation (3-24) indicates that the-free energy of the 4-sublattice
system can be regarded as the free energy of a fictitious 2-spin system
when the directions of the antiferromagnetic axes of two layers, (L,M,N)
and (L',M',N'), are supposed as fictitious spins. The first and the
second terms of (3-24) represent the effective one-ion type anisotropy.
The third term is the effective Zeeman interaction, where the fictitious

g-tensor is given by

4 * ]
0 gxy" g7x
gXY** 0 0
% %
\ g7x 0 0 j .

The fourth term is due to the perpendicular susceptibility of the real
system and, by this term, (L,M,N) and (L',M',N') are inclined to be
perpendicular to the external field._ We may consider this effect as
the field dependence of the effective one-ion type anisotropy.  The
last term is the exchange interaction of the fiétitious system. As
these terms are of the séme order of magnitude in CuFTH, we must deal
with a 2-sublattice model in which the one-ion anisotropy and the

Zeeman interaction are comparable to the exchange interaction.



3.2 Two special cases: H=0 and hex=0

Before examining the 4-sublattice model or the fictitious 2-spin system
in general, two special cases, the H=0 and the he¥=0 cases, are considered.
Study of them is useful for the analysis of the general case and the
examination of the results by SC. The latter'hex=0 case corresponds to
the 2-sublattice modél or the fiétitious l-spin system when the primed

fictitious spin is disregarded.

3.2.1 H

i}

0
(a) H=hex=0
By neglecting the primed fictitious spin, the free energy is written as

f=- HK*N2 - HK,*(LZ—Mz). ~(3-26)

The equilibrium condition is given by

—2(HK* + HK,*)MN =0 , _ ' (3-27a)
* _ * = : -
2(H* - He *INL = 0 (3-27b)
4H  *ML = 0 . (3-27¢)



The solutions are obtained as

The corresponding free energies are

When

case

(b)

f

= - HK,* for L=%1 ,
= + HK'* for M==%1 ,
= - HK* for N= %1

HK* > HK,* > 0, N=%1 gives the lowest state. In the 4-sublattice

the solution N=t1, N'=#1 gives the lowest state.

H=0, h _>0
_ex

For this case the free energy f is given by

= - HK*(N2+N'2) - HK'* { (L2-M2) + (L'2-M'2) }

+ 2h__(LL' + MM' + NN')
eXx

(3-28a)
(3-28b)

(3-28c)

(3-29a)
(S-éQb)

(3-29¢)

(3-30)



The torque equations for H=0 are

-2(H* + Hy *)MN + 2h (MN' -NM') = 0, (3-31a)

2(Hg* - H'INL + 2h (NL' -IN') = 0 | (3-31b)
4H,*ML + 2h (LM -ML') = 0 | (3-31c)

aﬁd the associated equations obtained by interchanging L, M, N and

L', M', N'. These equations have 36 solutions which can be grouped
to (i) ~ () . Detailed list of the solutions is giVen in Appendix
C and Fig. 6 shows the characteristics of each groups schematically.

The free energies are obtained as

(1) £=-H,* -2, (i) £=-H*+2h ,

(i) £ = - He* - He,*, (W) £=-2H,*+2h "

(v) f= ZHk,* - Zhe, s (M) £=0,

(i) £= - 2H* - 2h (viii)f = 2Hg,* + 2h__

(i) £ = - He* + He,* . o | (3-32)

The lowest-energy state is the (vi)-state.



Fig. 6 Nine stable and unstable equilibfium configurations for the H=0
. and hex:>0 case. The arrow marks in the fﬁgure represent the directions

of the fictitious spins.
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3.2.2 hex=0’ H#£0
-> . *)
Three cases, H//Y, Z and X, are considered.
>
(a) H//Y

The free energy and the equilibrium conditions are given by
- . 2y 2 2 _ ' 2y 2 2
f (HK* + g HY /SHeX)N (HK,* + g HY {8Hex)L

*M2 _
+ HK' M A gXY**HYL

and
- 2(Hg* + He )M - (g2/4H JH *MN = 0 ,

2(Hy* - Hy,*INL - gyy™H N=o0,

Y

4H *ML'f‘gXY**H

gt M +_(g2/4Hex)HY2LM =0,

Y

respectively.

Equations (3-34a) ~ (3-34b) have four solutions:
(i) L= sign(gXY**)°1 , M=N=0

£= - (g, > + gHy?/8H) - lgy**IHy

(3-33)

(3-34a)

(3-34b)

(3-34c)

(3-35a)

*) Hy, HZ and HX can be assumed to be positive with no loss of generality.



it >=_ 3 *%Y) . —N=
i) L S,lgn_(gXY ) 1 M=N=0

£= - (He,*+ g2HY2/8HeX) + gy *Hy, - : (3-35a')

leyy

Hereafter, we disregard this solution because f for (i') is always larger

than that for (i).

(i) L

] gXY**HY/z (HK* - HKI *) )

M=0 for HY;Z(HK* -HK,*)./ngY*‘*I

_ 21 2 2 * _ * -
£= - (He* + gty /SHex) - ‘(gXY*f‘HY)V /A > -He, *) . (3-35b)
_ 2y 2
(i) L = -ge **H /2(2H,* + g°H, /8Hex) ,
= ' 2y 2
N=0 for HY;Z(ZHK,* + g°Hy ) / |gXYff[ .

- 1 42 2y 2 -
f = HK'* + Z(gxy**HY) /(ZHK'* + g HY /8Hex) . . (3-35¢)

This solution can be also neglected because two terms in the right hand side
of eq. (3-35c) is positive and, in eq. (3-35a), twb terms are negative.
Configurations (i) and (ii) are shown in Fig. 7(a) and their free energies

are compared graphically in Fig. 7(b), where H

BY }s defined as

Hpy = Z(HK* - HK'*)/ngY*fl . : (3-36)

If HyﬁgHBY, (ii) is lower, otherwise (i) is lower. We see later that Hpy

corresponds to the sharp bend of the magnetization curve for ﬁ]/Y(c").



M |y

@ YR

--....:_';

Fig. 7(a) Two equilibrium configurations for the hex=O and HY#O case.
The arrow marks —» and —o correspond to g‘“** >0 and gXY-**.< 0,

respectively,




Eig. 7(b) Free energy values for two low-energy equilibrium ;onfigurations
' ' _ ‘ . . o : 2y 2 '
of the hex—O and HY#Q case. For simplicity we draw f£+(g HY (SHex)

instead of f itself, because 7(g2HY2/8Hex) is common in two cases.
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-5
The magnetization per ion, M, is calculated by the equation

My = 7 <S> TR(IA1") + g ') + gy (0N | (3-37a)
M, = 3 1p<S> {glmm') + g (L) 1, (3-37b)
M, = %“B<S> lglnn') + g, (L+L1) } . (3-37¢)

1, m, n, 1', m' and n' are given in eqs. (3-18a) ~ (3-18c) and similar
equations. By substituting (3-35a) and (3-35b) in (3-37a) ~ (3-37c),

the magnetization are obtained as

1 .
My = % up<S>g . * {1 -_(gXY**HY)2/4(HK -Hg,*)21}2%  for Hy, ;HBY | (3-38a)
=0 for H, >Hg, (3-38b)
- ' 2 2 E _
My = up<s> {v(gXY**) /2(He* - He, *) + g /4Hex }HY for HY;HBY (3-39a)
= up<s> (| gXY**| + gZHY/4Hex) for Hy2Hp, E (3-39b)
and
- * % - . -
M, = up<S>gyy '. gyy**Hy/2(He* - Hiy*) - for Hy sHp, (3-40a)
= 1 *% * % ‘ -
uB<S>s_1gn_(gXY )gZx Vfor HY>HBY (3-40b)



The double sign * for Mx arising from the two possiblities of the sign

for N in case (il) indicates that for ﬁ//Y both are allowed. The

magnetization is not, in general, parallel to the external field

because MX’ MZ¢0. The magnetization parallellto the external field,
Y* X

x“HHp<S>8x"s My=M;=0 for Hy=0.

These conclusions are consistent with the results obtained by SC for

MY has a sharp bending at HB Finite M, should be observed at zero

external field unless gzx*=0, because M

the 2-sublattice model.



() H//z

The magnetization process is similar to the ﬁ//Y case but the calcu-
lations are complex, because the vector (L,M,N) is always perpendicular to
the external field for H//Y but is not for the present case. The free

energy and the equilibrium conditions are given as

- 2 2y 2 2
£= - H*N2 - (Hp,* + g2H,%/8H )L

+ (He,* - gZHZZ/SHex)M2‘5 gzxf*HZL, (3-41)

and
- 2(HK* + HK,*)MN =0 |, | (3-42a)
, 2(HK* - HK'*)NL - gzx**HZN '_(g2/4He¥)HZ?NL =0 , | | | (3-42b)
4Hy ,*ML + g, **HM = 0 . . (3-42¢)

Comparisbn between the f-values of solutions»of these equations is not simple,
because one of the f's is not a linear norva quadratic function of HZ;
Therefore, calculations are shown in Appendix D and.only the results
are given below.

The behding field for ﬁ]/Z, HBZ’ is given as the positive solution of

a self consistent equation:
= * * _ o2 2 * % : -
Hp, = 2(He* - Hp,* - g?Hp, /8Hex)/|gzx | . . (3-43)

The magnetization parallel to the external field is given by



Other

and

X *%)2 * _ * * _ * _ g2 2 2
np<S>1 (g, **) % (Hy HK,’)/Z(HK Hyp * - g°H,°/8H )M,

* 2
up<S>(lg,**| + g?H /80 )

components are calculated as

* - - 2¢; 2
MpS>8xy " 8zx " Hz/2 (Hy™ - Hy, ™ - g7Hy "/ 8l )

ko
Mp<S>gyy**sign(g; )

uB<S> [
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for
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H
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H
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H
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%% - *x2y 2 * _ * _ g2 2 2
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(3-44)

(3-45)

- 2 ' 2y 2 2y 2 212 .
+_(gZZ HZ/4Hex) {1 - gzx** HZ /4(HK* -HK,* -g HZ /8Hex) }

x.{gzx**Hz/Z(HK*-HK,*-gZHZZ/SHex) }]

for

for

H

Z

A

H

H

BZ

BZ

(3-46)



>
(c) H//X
SC have suggested the existence of the magnetization jhmp for this
case but we show here that their conclusion seems not to be good.
The free energy is given by
- * 2 2 2y #r2 o2y 2 2
f= (HK + g Hx /8Hex)N HK"L + (HK,* g Hx /8Hex)M

- gyy*HyM - g FHN | | (3-47)

The equilibrium condition is written as follows:

- * - = : -
20 + He N - g M+ gy N =0 (3-48a)

* * * 2y 2 = -
Z(HK HK' JNL + gZX HXL + g HX NL/4Hex o, | (3-48b)

* - - 2y 2 = -
AH ML - g *HUL - gZHPML/AH = 0 (3-480)

At first L=0 is assumed as was done by SC. This point is reconsidered
later. Equations (3-48b) and (3-48c) are satisfied automatically. By

using (3-48a) and M2+N2=l, the following fourth order equation is obtained

for M:



RN * 3
4(HK* + HK' )M 4(HK* + HK'—)gXY*HXM
' * 2 * 2 _ * *)2 2
+ {(gyy H)® + (g5 H)% - 4(H* + Hp *)< kM
+ 4(H* + He *)g HM - (gy *H)2 =0 . - (3-49)

The magnetization is given by

=
!

= * 2
x = V<S> (Bxy™ *+ gy N + g7Hy/M )

M,=0, M, =0, (3-50)

where the direction cosine N is given by
1 ,
N = sign(g,,*) - (1 -M»)Z . (3-51)
The sign for N is adjusfed so as to minimize the free energy.
As the fourth order equation (3-49) is hot physically transparent,
we consider graphically how the equilibrium position changes as a
function of H,. By writing M=siné and N=cos6, the freeAenérgy is

X

rewritten as

= - H,*cos? %*5in20 - o2H 2
f Hy*cos®8 + Hp,*sin®6 - g Hx /8Hex

*H_cos® . ' (3-52)

- * 1 -
- Bxy Hysin® - g, *Hy

The equilibrium condition is given by

| N | |
(He* + He, *)sin20 + (gy *? + gyx*?)2Hysin(6-4) = 0 | (3-53a)



where A is determined as

L
)

. 1
sinA = gXY*/(gXY*Z + gZX*z) s cosA = gzx*/_(gxy*2 + gzx*z)z.. (3-53b)

Of course, eq. (3-53a) is equivalent to eq. (3-48a).
Figure 8(a) shows the first ferm and the negative of the second
term of eq. (3-53a) for the gxy*'<0 and gzx*>'0 case. In the figure,

one of the abbreviated notations defined by

He o o= Hem + B ™o He * = Hex - He, ™ (3-54)

is used following SC. The figure indicates that eq. (3-53a) has 4 or 2
solutions depending on the field strength. Next, we consider the free

energy. Fig. (b) shows two 6-dependent terms of f;
. 1 ... «
(i) - E{HK + HK' )Jcos26 ,

and
1 A

(2) - eyy*® + gzx**)*Hycos(0-2) .
Unless Hx=0, we obtain a stable minimum in the fourth quadrant and, in
the low field region, a meta-stable minimum in the third quadrant.
‘Eigure (c) shows how the extrema change with the external field. The"
| situation is similar for every pairs of the signs of gXY* and gzx*.
‘Thus we can conclude that the 2-sublattice model nevef acéompanies an
instability of the antiferromagnetic axis, in other words, never gives
the magnetization jump. The essence of the SC's explanation is to

identify the disappearance of the meta-stable state to the magnetization
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Fig. 8(a) Graphical solution for eq. (3-53a). The solutions are 0's of
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jump. Of course, it is not correct.

The assumption L=0 is reconéidered. Equations (3-48a) ~ (3-48c) have
two L#0 type solutions. However, they are neglected by the following
reasons: These solutions reduce to L=t1 when HXEO and, by increasing
Hx, moves continuously to the third quadrant of the ZY-plane, namely they
connect saddle points and the confluence point. These properties of
L#£0 solutions suggest that the minimum is on the L=0 plane.

Examples of the magnetization curves are included in Eig. 11(b) of
the next subsection.*) Open circles and open triangles correspond to
the gZX*=0 and-gzx*#o cases, respectively. The contribution of Xy is
neglected for simplicity. It is noticed that for HX==O(ﬁ¥0) we have from

(3-50) and (3-51)

My = up<S>|g, *| . (3-55a)
~ For Hx + «_ one obtains 6-+>A (See (3-53a).) so that
My - uB<S>(gXY*sinA + gzx*cosA)

| .
= 2 242 -
= uB<S>-(gXY* + gzx* )< . | 7 (3-55b)

A term arising from xl_is neglected for simplicity.

%)  These magnetizatidn curves are obtained numerically as special(hex=0) cases
~ of the 4-sublattice model instead of solving eq. (3-49) directly. Two

methods are equivalent.



3.3 Magnetization process

The magnetization process of the 4-sublattice system or the fictitous
2-spin system is considered. The interlayer exchange field hex is assumed
to be positive and three cases, ﬁ]/Y,_Z and X are examined. The result is

applied to CuFTH in §5.
3.3.1  H//Y

The free energy is written as
- _ 2y 2 2 2y _ * 3 o214 2 2,412
£= - (Hr+ gH2/BH ) (N2 # N'2) = (g, > + g1y 2/8H ) (L2 +1'2)

+ H *(M2 e M2 - gXY*fHY(;+L') + 2h  (LL' +MM' +NN') . (3-56)

The equilibrium condition is given by .

- _ 2 2 I _ = -
2(Hy* +He ,*)MN - (g2H, /4Hex)MN +2h_ (MN'-NM') =0, (3-57a)

2(He* - Hy *)NL - gy **H N + 2h  (NL' -IN') = 0, | (3-57b)

4H  *ML + gxy* iy + (gZHY2/4Hex)LM *+2h_ (IM'-ML') =0, (3-57¢)

and the associated equations obtained by interchanging L, M, N and

L', M', N'. An equivalent problem has been considered by Gorter and

34)

coworkers under the assumption M=M'=0. In this paper the relation

M=M'=0 is not assumed but derived.



First we notice from eq. (3-56) that f is low when MM'< 0 and NN' < O.
As f does not depend on the signs of M and N themselves, the followings can

be assumed with no loss of generality:

N20, M20, N =-N"<0, M =-M<0. : (3-58)

Then the freeeneréfis‘mritten as follows:
= - 211 2 2 n2y _ * 2y 2 2 1n2
£ = - (Hgr s P 2/BH, ) (V2 +N2) - (i, + P 2/8H, ) (12 + 12)

+ HK'*(MZ +M"2) - gXY*fHY(L +L1) + 2hex(LL' - MM" -NN") . (3-59)

The following derivative of f is considered:

: - 2y 2
(3/8M)f(LfM,L",M") = 2(H* + g%H, /SHex)M/N + 2H,, *M

K

T - " -
+ 2h N"M/N - 2h M, (3-60)

where N is not independent of L and M. The condition (3f/9M)=0 yields

=
1

= M"-Zhex/{z(HK*~rg2HY2/8Hex)(l/N) + 2h  (N"/N) + 2H,*}

e -
M'h /He * . (3-61)

1A

A similar equation can be derived for M" because M and M" are equivalent
in eq. (3-59). As the factor hex/HK+* is estimated as about 1/6 in this
crystal(See §3.3.3.), the two equations conflict each other unless M=M"=0.
Thus, the relation is proved. The spin configuration which satisfies

M=M"=0 is shown in Fig. 9(a).



Fig. 9 Spin conﬁiguratiohs for ﬁ//Y(ﬁig. a) and ﬁ//X(Eig.Ab). Only the

negative ng*% cases are shown for simplicity.
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k3]

By using the condition M=M'=0, the expression of the free energy is

Trewritten as

P 2, 12y L %2y 2 2, 142y
£ = - (He*+g2H2/8H (N2 +N'2) - (Hy,* +g?H 2/8H_) (L2 +L'2)

- gyy**Hy(L+L') + 2h_ (LL' +NN') . | (3-62)

The equilibrium condition is given by

2(H* - He *INL - Byy**HyN + Zhg, (NL' -INY) =0, (3-63a)

Y

2(Hg* - He ,*)N'L' - gXYF*.*H N" +2h (N'L-L'N) =0 . | (3-63b)

Y

In the followings we show L=L', N=-N'. Instead of f itself, a modified

form f* is introduced as
f* = {£+2H,* + '(gZHYZ-/4HeX) Y (H* - He %) . . (3-64)

From eq. (3-62) we have

f* = - (N2+N'2) -x(L+L') + h(LL'" +NN') , (3-65)
where
X Z ng*‘*HY/A(HK* -H*) h = 2h /(He* -He,*) . (3-66)

v



From the definition h is positive and X can.be assumed as positive with
no loss of generality. Following the method given by Gorter and co-workers,34)
extrema of f* are found.*) Configurations correSponding to four important

-extrema are shown in Fig. 10. Their f*'s are given as

(1) f*I = -2x + h , (3-67a)
(i) £+ = -2-h-x2/2(1+h) for x g 2(1+h) , (3-67b)
(ii) £*; = -2+h-x%2  for xs2, (3-67c)
o 1 1 |
(W) £+, = Zx2- (1-h)2x-1 for x < 2(1-h)2 . (3-67d)
By comparing f*'s, the relation f*Iﬂ’ f*nll>'f*ﬂﬂ is deduced. The resulting

allowed configurations (i) and (ii) satisfy the required condition L'éL,
N=-N',

Under the condition L'=L, N=-N', f is written as
- o2y 2 2 _ 2y 2 2
£ 2(He* + gHy /suex)N 2(Hy,* + g?Hy /SHex)L

- 28y Hy

**H L+ 2hex(L2 -N2) . (3-68)

The equilibrium condition is given by

2(Hg* - Hy * + 2h ] INL - By HyN = 0 . ' - (3-69)

*)  For details of the calculations and for the comparison of f*'s of the

extrema, see appendix E.

v T



'.F_ig.' 10  Spin configurations correSponding to four non-trivial extrema

of ﬁ//Y'g:ase. Spin-2 which is nearly antiparallel to 1 and spin-4

nearly an.tiparalAlel' to 3 are not shown for sirﬁplicity. The arrowé» =

— - and — correspond to ** 50 aﬂd % <0, res eCtively.
_ P  Bxy - Bxy » TOSP



The free energy and the equilibrium condition can be transformed into egs.

(3-33) and (3-34b)_fespective1y,*) when H * +h _and H, *-h _ are converted -
. K ex K ex

to HK* and HK,*. Therefore, following the results of the former case, we

obtain

: 2
y*+2h ) + g°/4H |

My uB<sé{gXY*f2/2(HK* -Hy
for Hy s Hyy (3-70a)
= ﬁB<S>(|gXY*f| + ngY/éHex) for HY ? HBY | - »(3—70b)
where» |
Hpy - 2(He* -He,* +2hex)/,|ng*_*[. . | | o (3-71)

We use eqs. (3-70a) and (3-70b) in the analysis of the magnétization curve

for ﬁ]/Y(b). Components perpendicular to the external field are given by

MZ = uB<s>gZx#*gXY*f Y/gﬁHK*rHK,*+2hex) for HY < HBY
= uB<S>s_ign(gXY**_)gzx** for HY > HBY (3-72)
My =0 . (3-73)

M, is smaller than MY by a factor gzx*f/gXY**. The last conclusion MX=0

is an important result of the four-sublattice model.

*) In comparing'eqs. (3-68) and (3-33) we may maké M=0 in the latter

equation, because the low-energy states of (3-33) satisfies the condition.

-



3.3.2 H//z

For this case, rigorous treatments are not done because the calculations
seem to be very complex. As an alternative, we assume that the similarity
‘between the ﬁ//Y cases of hex=0Aand hex#O can be extended to the ﬁ//z cases,

Then the magnetization parallel to the external field is given by

= *)2 _ * *_ _o2y 2 V 2
MZ ]JB<S>_(gZX* ) (HK* HK' +2heX)HZ/2 (HK HK,* g HZ /8Hex+2hex)
for HZ < HBZ 7(3-74a)

(3-74b)

- 2
=up<S>(|g, **| + g%H /40 ) for H,>Hp, ,

where HBZ is determined by a self-consistent equation

Hp, = 2(Hg*-Hy, *-g?Hy 2/8H  +2h )/[g, **| . (3-75)

In §5.2.2 these results are applied to CuFTH.



3.3.3  H//X

It is noticed that the magnetization jump appears when H is applied.

parallel to X(b). The free energy for ﬁ//X is given by
= - *pg2l 2/ : 2,.N12y *(1.2,712
f (HK-+g Hx /8Hex)(N +N'4) HK' (L“+L'4)
o2y 2 2012y _
+ (g, "-g?Hy2/8H ) (WPM12) — {gyy "Hy (M) +g) #Hy (N+N') }
+ ZheX(LL'+MM'+NN') .o (3-76)

The method given in 3.3.1 is not applicable for the present case. However,
there‘are two-evidencéé for L=L'=0; (1) If gzx*=0, the rigofous method works

~giving L=L'=0. (2) Qaulitative considerations using an equation similar to
eq. (3-61) of 3.3.1 suggests L=L'=0 provided hex~<HK*—HK,?+g2Hx2/8Hex; To
insure L=L'=0 directly for the case of CuFTH, f is examined by using a
computer. Various sets of magﬁetic parameters including the case corre-
sponding to CuFTH are considered. Intervals of latitudes 6, 6' and
longitudes ¢, ¢' (See Fig. 11(a).) in the computation are both 6°. Nine
values of Hx are considered. Small terms arising from the perpendicular
susceptibility which favors L=L'=0 are neglected for siﬁplicity. The
results clearly indicate L=L'=0L An example is given in Table I. |

By inserting L=L'=0, the free energy is simplified to
‘f = - HK*(N%N-Z) +HK,’E(M2+M’2) -'_{gxy*gx(M+M')_+gZX*Hx(N+N')}

' 1y _ o2y 2 -, _
+ Zhex(MM +NN ) g Hx /4Hex (3-77)



Table I Field dependence of equilibrium latitudes 6, 6' and longitudes
¢, ¢' for ﬁ)/x. For the definition of angles, see Fig. 11(a). The results
~given below are obtained by using the magnetic pérameters corresponding
to the case of Cu(HCO00),.4H»,0. The parameters are listed in the lower
part of the table. The signs for gXY* and gzx* are taken as negative and

positive, respectively.

e * [y /He* 6 , ¢ o, ¢
0.0 0 - 180 Q

0.1 6 270 174 270

0.2 . 12 270 162 270

0.3 24 270 156 270

0.4 30 270 144 270

0.5 42 270 48 270

0.6 54 270 54 270

0.7 ' 60 270 60 270

0.8 ' 60 270 60 270

2h  [H* = 0.5, He,*/H* =04,  ngXf/ng*|==O.2 ‘




Fig. 11(a) = Definition of latitudes 6, 6' and longitudes ¢, o',
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The equilibrium condition is given by

- * * - * *
Z(HK +HK' *JMN : gZX HXM + gXY HXN

-2hex(MN'-NM') =0

~and an equation obtained by interchanging M, N, and M', N'. Analytical

solutionAof these equations still seems tobe difficult. Therefore, the

(3-78)

numerical examination of f is done again by using a computer. The minimum

of f** defined by

féx = f +_(g2Hx2/4Hex) - 2Hp,*

is considered. By using eq. (3-77) and the condition M2+N2=1, £** is

transformed into
* = _(H. % * 2 ,N12y U ' '
£* (Hy +Hy, Y(N% +N'4) _{gXY*HX(M-kM )-fgzx*Hx(N-rN )}

+ 2h _(MM' +NN')
ex

In the numerical analysis of eq. (3-80), intervals of 6 and 6' are both

2° and 50 or more points of H, are considered. Several combinations of

X
parameters are considered so as to visualize some typical cases and to
reproduce the magnetization curve of CuFTH. The magnetization is

calculated by using

M

: 1 1 o
X uB<S>v{gXY*_7 (M+M') + g, > 5 (N+N') + g Hx/4Hex} s

My =M; =0

(3-79)

(3-80)

(3-81)



=

Figure 11(b) shows the resulting magnetization curves*) for several typical

cases, where Xy term in eq. (3-73) is dropped for simplicity giving

» 1 | 1 |
My = up<S>{gyy "7 (MM') + g 27 (N (3-82)

Figure (c) represents 6 and 6' as a function of the field for a speical case
where the_parameters take the values close to those of CuFTH. Figure (d) is
the cbrresponding magnetization .curve. The theoretical curve**) is_cléarly
consistent with the experimental result. Details of the adjustment of the
parameters are given in,§5.2.3.

The high field state seems to correspond to the 6=8' type extremum of
the free energy (3-77) (M=M' aﬁd N=N' are consistent with (3-78) and the

associated equation.). If it is true; the magnetization curve in this region

strictly coincides with that of the he£=0 case. We assume this to be true.

=)  The magnetizétion curves can be assigned by two parameters,_lgzxf/gXY*I
and Zhe¥/HK+*’ when the magnetization and the field are normalized by
1, .
uB<S>[(gXY*)2+(gZX*)2]2(S¢e(3-55b),)and HK+*[[gXY*|, respectively. The latter
scaling property can be seen by dividing f** of (3-80) by HK+* and rewriting
- * * ' * * . % * t
the second term as HX/(HK¥ /gXY ?(M+M )-rﬁgzx_/gXY )HX/(HK+~/gXY )(N+N ).

+x) The jumping occurs Hx==2hex/|gzx*|whereasthe jumping field for the
N 10)

mechanism suggested by Ajiro and Terata is Zhex[ngY*l which results in
- 4 . = - EY * p
an over-estimation of hex by a factor'lgxy./gZX l . In CqFTH and CuFUH,

this factor amounts to about 5 and 10, respectively.

v
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3.4 Spin rotation in the high-field state

In order to analyze the angular dependence of the nmr spectra in the
‘high field 2-sublattice state(See §6.3.2:), the spin direction is studied
és a function of the field direction. As the rigorous treatment of this
problem is difficult, we simplify the calculation by neglecting terms
arising from anisotropy and perpendicular susceptibility. Then, the

equilibrium condition is written as

*HN =0 , | (3-83a)

-8zx"HxM + gyy*Hy
Bzl - (Byy™ Hy *+ g™ H N = 0, (3-830)
~Eyy*HyL + gy **Hy + gy **HIM = 0 - (3-83¢)

The corresponding f is given by
= - * - * - *k * % -
£/2 = —gyy "M - gy "HyN - (gyy™*Hy * 8¢ ™ H L (3-84)

where a constant term coming from hex is neglected.
If the field direction is not parallel to a special direction satisfying

_ gXY**HY+gZX**HZ=O,Athe solution is given by

L = (gXY**HY + gzx**Hz)/G [ ’ (3-85&)
;v = gXY*HX/G , : (3-85b)
N = g, y*0y/G | : (3-85c¢)



where G is defined by the following equation:

| | .
= 2 2 212 _
G = {(gyy ™ Hy + g5 Hy)" + (gyy*H)™ + ("M ™)™ (3-86)

When the -external field is in the_YZeplane(Hx;O), eqs. (3—85a)'v(3-85c)

are simplified to
L = 1-sign(g,y**Hy + g7y *H;), M=0, N=0, (3-87)

where the sign of L is determined by using energy-minimum condition.

For the case ﬁ]/X(HY=HZ=O) we have

M (3-88a)
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if gp*s 8xy™#0 -

For the sake of later use, we consider the spin rotation when the field
. direction is rotated in the plane shown in Fig. 12(a). For this case egs.

(3-85a) ~ (3-85c) can be rewritten as

L = sinm(gXY**sinG-rgzx**cosﬁ)/G' s (3-89a)
M= cosngY*/G' , : (3-89b)
N = coswgzx*/G' , ) (3-89¢)

where G' is given by

- . . 1
G' = {(gXY**sinG-fgzx**cosé)zsinzw +_(gXY*2-§-gzx*2)coszw}2 . (3-90)



To make clear the physical meaning of the result, a simple example is
considered. Let gzxf=gzx**=0, 8=w/2, then eqgs. (3-893)(§(3-89c) are

reduced to

1
= *% 2 *2 2 _
L 51nwgXY /(gXY 25in w-+gXY cos m) (3-91a)
_1_
- *253n2 %2 2 _
M = cosngY /(gXY sin m-rng cos m) (3 Q;b)
N=0. ' . . (3-91c)
When the weak ferromagnetism is pure g-tilting type: ng**éng*, eqgs.
(3-91a) and (3-91b) result in
cos(R+w) = 0, ' (3-92)
where @ is defined, as is shown in Fig. 12(b), by
L = cosQ, M = sin@ . (3-93)
When the weak ferromagnetism is pure Dzyaloshinsky-Moriya type: gXY**=—gXY*,
we have
cos(R-w) =0 . | (3-94)

(3-92) and (3-94) indicate that the sense of the forced spin-rotation
in the g-tilting type weak ferromagnet and that in the DM-type weak fexrro-
magnet are different. Namely, in the latter case, the spin rotates.with the
'extérnal field but, in the former case, the spin rotates in the opposite
direction. These conclusions are applied to the discussion of the eXperi—

mental results in §5 and 6.



Fig. 12(a) Definition of the angles F 'Aa'ndm.v

" (b) That of Q.
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§ 4. Experimental Procedure
4.1 Preparation of crystals

To obtain high purity specimens, commercially obtained copper
formate tetrahydrate was purified by recrystallizations. The light-water
single crystals were obtained byAslow cooling of the solution of
purified materials. A part of the purified materials was deuterated
and the DZO single crystals were grown from the heavy-water solution

of the deuterated polycrystals. Three D,0 single crystals with

2

dimensions of about lcme+lcmelcm and several HZO crystals were used
for experiments. The crystals were stored in liquid paraffine to

prevent efflorescence.

4.2 Measurement of magnetization

The measurement of magnetization was done by using a moving-sample
magnetometer specially designed and constructed for the present
experiment. The outline of the apparatus is shown in.Fig. 13. The
characteristic of the apparatus is its convenience in measuring
‘the angular dependence of the magnetization curve. To obtain
accuracy of the order of 1% throﬁghout the change of the field
direction performed by the rotation of the sample and the interchange
of éhé sample itself;*),a small fraction of the space between pair coils

is used for the sample. The volume between the coils is about 20cm3

*) This means the change in the sample shape.
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Fig. ‘13 The moving-sample magnetometer for studying the qngdlar'

dependence of the magnetization curve. =

- 69 -

| mdlccrtor' :




~and the sample volume is about 0.7cm3. As a result, (1) the signal

to noise ratio and (2) the accuracy in the blank subtraction are not so good
as an ordinary moving-sample magnetometer. The signal was amplified and
integrated by using operational-amplifier circuits.  The integrated voltage
was read by using a digital voltmeter and about ten readings were averaged
by hand calculations. |

Figure 14 shows thé average of voltmeter readings as a function
of the field direction for a test samﬁle made of the manganese Tutton
salt. The results guarantee the accuracy of the apparatus in the angular
dependence measurement.

Axes of the crYstal were determined by using the crystal habits given
in Fig. 15. Thé crystal was pélished to near cylindrical form to fit the
sample case. The estimated overall error of the sampie cutting and setting
is +3°. The X-ray test of a sample indicates that the accuracy is within the
estimated value. Comparison of the result of the magnetization measurement

with the published dataz’17)also supports the estimation.

4.3 Proton resonance

Schematic view of sample setting for nmr measurement is shown in Fig.
16. Sample crystals were polished to near cylindrical form convenieﬁt tb
fit closeiy in a glass tube on which the sample coil is wound. Error of
sample setting is larger than that of magnetization measurement. Error of
axis in polishing the crystal is not more than #5°. Error of‘setting‘the

crystals in each runs is estimated within #3°.
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Fig. 15 Crystal habit of Cu(HC00), 4H,0 and 4_1)20_crystals.
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The nmr signals were obtained by using a Pound-Knight spectrometer
operating from 1.2 to 60MH2 at liquid helium temperature range. First
derivatives of absorption signals were obtained by sweeping magnetic
field. Resonance signals coming from free protons of residual liquid
paraffine were used as a marker of magnetic field. The amplitude
of field modulation was 10 Oe peak to peak. Although this
value of modulation is large.compared with those used in ordinary
proton resonance é&periments, it was selected for good signal
to noise rafio. As a result, detailed knowledge of line shape
~and line width was nét obtained.

Two examples of the recorder trace are given in Fig. 17,



(a) 5.71 MHz

Qe | |
[ 1007 —f | proton

signals low = high 7

free proton | | “

Fig. 17 TWO'examples of the proton nmr 51gnals for the D20 crystal at
4.2k. (a) *Signals for H apart from the -c-axis by 20° to the a-axls 1n the :
éc-plane The upper ‘and the lower flgures correspond to the spectra

below and above the free proton line, respectlvely
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Fig. 17 (b) Signals for ﬁ'apart from the -c-axis by 10° to the a-aiis in I

the ac-plane.

/

(b) 59.6MHz

e 10—

 low ‘high

Proton
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§ 5.‘ Analysis of the Magnetization Curves

In this section, results of the magnetization measurements are presented
and analyzed by using the theory of the magnetization process developed in §3.
Subsection 5.1 consists of the description of the é*perimental results and
their qualitative considerations. The éuantitative examination is done in

§5.2.
5.1 Experimental results

The magnetization measureménts were done in three planes, LjL, LpL3 and
LiL3. Figures 18 and 19 represnt the results. Most features of the earlier
work(KH)z) are reproduced as was discussed in §2. However, a noteworthy
difference can be pointed out between the results of two experiments. It is
the fact that, in the earlier work, the magnetization curves for ﬁ//Ll and
L2 coincide with each other at high field region but they do not in the
present work. Namely, the magnetization curve for the»Lz—axis saturafes
slower than that for the Lj-axis and the "saturated" magnetization is about
20% larger than that for L. These facts indicate, as we shall see later,
that the magnetization process for two axes are considérably different from each
other and that two mechanisms of weak ferromagnetism,bthe-Dzyaloshinsky—Moriya
(DM)'and the tilted g—tensor mechanisms, should be taken into account at the
same time.

2,10,15)

The weak ferromagnetism(wf) was attributed in some papers ~to the

16,31)

Dzyaloshinsky-Moriya interaction but in others to the tilting of
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g-tensors of two copper ions in the unit cell. The present result suggests

the latter is the case except for a relatively small contribution from the
DM—mechaniém. The reason is as follows: If the wf is due to the bM—interaétion,
differential susceptibility after the saturation of the inducedef should be
“always xJ;for H in the LiLy-plane. On the other hand, if the wf is due fo the
g-tilting mechanism, the susceptibility should be xJ_for ﬁ//Ll and L, and be
considerably smallef for H along intermediate directions(See §3.4.). The
experimental result (solid squaresiJIEig.S(ﬁ?thedip in the 14.7k0Oe curve in

Fig. 19(b)) supports the latter mechanism.

The absolute vélﬁe |J| of the intraplane exchange constant estimated from
X_LbY using molecular field approximation is 50K. The result'is considerably
larger than the value, 36K, obtained from the temperature of the susceptibility
maximum.zs)’*) |

A jump of magnetization is observed in the LpL3-plane. Angular dependence
of the jumping point is given in Fig. 20(a). The result-indicates that the

~jump corresponds to the phase boundary observed in a proton resonance experi-
ment (decrease of the nﬁmber of lines).ss) As one rotates the field direction
from L, to Lj, the jump gradually changes to the bend at about the same field.
Angular dependence of the bending field in the LjL3-plane is also given in the

figure. In the angular dependence of proton resonance, abrupt decrease of

2) or 17SK5) implies |J| = 75 v 88K. These
p

*)  The Weiss temperature of 150K
values are larger than the value estimated from the susceptibility maximum.
The discrepancy may be due to the deficient accuracy of the determination of

the Weiss constant.



X//Lz(.t?)_ _H%kO?)
y/Ls PO
z//L'. | S//Lz

-~

Fig. 20 (a) Phase boundary of Cu(HC00)2-4H,0 determined from the mégnetiza-

tion curve at 4.2K,
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separétion is observed on the bend-type boundary(See §6 or top of Fig. 1 of
ref. 31). Angular dependence of the proton resonance anomalies obtained from
the nmr result of the present paper is given in Fig. 20(b).
The phase outside-thevboundary is a 2-sublattice state,16’31’32) but
that inside the boundariesrhas not yet identified.10’14’15’16) We consider
the nature of the latter. One sees that the éasy axis lies near the L3-éxis,
since the observed susceptibility along L3 is remaykably sméller than X,- The
result is consistent with the conclusion of ref. 15 and 16. The magnetic
structureswhiéﬂ‘are compatible both with the appearance of wf and the proton
resonance results are a 4-sublattice structure with hidden canting and a
2-sublattice one with domains of wf. The former is consistent with the
observation, since the magnetization curve along Ly is reproduced theoreti-
cally only for the 4-sublattice structure with a" easy axislG) having a weak
(10-2K) coupling between neighboring layers(See §3.). On the contrary, one
has to assume a very unnatural behavior of the domains for the 2-sublattice

structure as was discussed by Seehra and Castner.16)

In conclusion, the
phase boundary corresponds to a transition from a low field 4-sublattice

state to a high field 2-sublattice state.

v



/I—ly:kOe) -
‘Decrease of
U number

% Decrease of |
separation

I{ig; 20 (b) 'Anomali_es dbserved on the phase Boundary in thé proton nmr of

Cu (HC00) 5 +4D,0.
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5.2 Analysis of the results

Three cases, ﬁ]/Y(c"), Z(a") and X(b) are considered. The magnetization
curve for ﬁ//X(b) is given in Fié. 18(b) and (c). But the magnetization
curves strictly corresponding to H//Y(c") and Z(a") are not found in Fig. 18
because, in the present experiment, the measurements were done with 10° step
in the fourth quadrant of the LjLz-plane. However, the angle between the
Y-direction and the direction indicated by the notation 146° in Fig. 18(a) is
only 2.1° so that the 146° data can be practically regarded as the c" datg.
For the a" direction, the angular dependence of the magnetization given in
Fig. 19(a) ishelpful. One sees that the magnetization for ﬁ//a"‘is 10;§15%
‘smaller than that for the 96° direction of Fig. 18(a).

The diamagnetic susceptibility of CuFTH is estimated from the ionic

36)

susceptibilities. The estimated value, 82 x 10~® emu/mol, amounts to
about 4% of the perpendicular susceptibility of this crystal. The correction .
due to the diamagnetic susceptibility is therefore small but is taken into

account in the followings.
5.2.1  H//Y(c")

The experiments clearly show the linear increase of the magnetization
and the bending predicted by the theory (See eqs. (3-70a,b).). Comparing the
-eXxperimental value of the high field susceptibility and the last term of

eq. (3-70b), we have



“3

pB<S>g2/4Hex = 0.37 x 10725 emu/ion . - - (5-1)

As g, the average of 8yx>. &yy and 877 defined by (3-15), is 2.19, Hex is

estimated.as
H_/(<5>/S) = 1.50 x 10° e , | (5-2)*)

which yields |J| of 50K mentioned in the preceding subsection when <S>/S=1

is assumed. Next, we can estimate uB<S> **l from the high field line

lexy
extrapolated to H=0( See (3-70b).). The experimental result gives

UB<S?|gXY**| = 0.23 x 10721 emu/ion , (5-3)
which yields
lg,**1<s>/s = 5.0 x 1072 . | | (5-4)

The bending field is 5.6 kOe so that one obtains from (3-71)

z(HK*-HK.*-+2hex)/|gxy*f| = 5.6 x 10° Oe . (>-3)

*)  The accuracyfor the estimation of Hex’ *15%, is poorer than that'for
other parameters ( several %), because the perpendicular susceptibility of .
this crystal is obtained from the experimental results in a rather narrow
range of the field by subtracting the blank susceptibility of the sampie
holder and binding materials, which émounts to about 30% of the susceptibility

of the sample and fluctuates about 50% from experiment to experiment.



Using the value of'IgXY**|<S>/S.given above, we have

* * = 2 : -
(HK HK' +2hex)<S>/S 1.4 x 10< Oe . (5-6)

The theorefical magnetization curve obtained by using these parameters is
shown in Fig. 21. The calculation agrees well with the ekperimental results
except for the inconsistence around the bending point. The calculation

can be improved, in brinciple, by using the original rigorous equations

such as (3-14a) and (3-14b) instead of the simplified forms as (3-16a) and

(3-16b). However, it is not done in this paper.

-
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Fig. 21  Calculated magnetization curves for three principal axes -and the

experimental results.
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5.2.2 H//z(a")

In oxder to calculate the magnetization curve for ﬁ//a" by using (3-74a,b),

the value of gzx** is necessary. It is estimated from the relation
gzx**/gx;WE=-tan(ang1e between a' and L3 or that between c" and Ll)*)

= ~tan(-17.9°) = 0.3230 . . (5-7)

By using the value Of,lng**l<S>/$ given in eq. (5-4), **I is estimated as

I,y

lg,g**l<s>/s = 1.6 x 1072, | o (5-8)

The calculated magnetization curve is given in Fig. 21, where the bending

field HB is calculated by using (3-75) as

Z

_ 4 | -
Hp, = 1.06 x 10* Oe . (5-9)

x)  We use the simplification used in §3.4 in the high field 2—sublattice
state. When the field is in the ac-plane the magnetization parallel to the
external field is found from eq. (3-84) to be proportional to

‘|gXY**$in8 + gZX**cosel 5
where 6 is the angle of the external field from the a'"-axis measured toward
the c'"-axis. A constant term arising from the perpendicular susceptibility
is néglected. The minimum of this quantity is obtained when 6 satisfies the
relation: |

tand = -g, /gy ** .

The direction of minimum magnetization is the Lg-axis.



Two experimental points in the figure are taken from the angular dependence.
Detailed experiments on the similar compound CuFUH indicate that two experi-
mental points (%) in Fig. 21 can be interpolated by a monotonic smoothrcurye;
Therefore, the calculation Seems to be plausible except for the sﬁarp bending
at about 11 kOe(HBZ) which may arise from ;he simplification of the calcula-

tion.

-



5.2.3  H//X(b)

In this case, the parameters determining the magnetization curve are

A gXY*_{ gZX*’ HK+* and hex' At first, their roles are considered qualitatively.
We notice froh (3-55a,b) that the "saturation' magnetization and the extrapola-
tion of the magnetization curve after the jump to H=0(See the left broken line
in Fig. 11(d).) are proportional 1:0A(gXY*Z-fl»gzx"‘z).l/2 and_]gzx*l, respectively.
The experimental result indicates that_lgéX
fore, the height of the magnetization curve is mostly determined by.[gXY*l

*| is 1/5~1/3 of [gyy*|. There-

and the shape of the'magnetization curve is modified by the ratio_lgzxf/gxy¥[.
On the other hand, as has been pointed out in §3.3.3(foot note of page 60),
the external field, the abscissa of the magnetization curve, can be scaled
by HK+*/IgXY*|' Consequently, the ratio 2hex/HK;*(The factor 2 is added for
convenience.)Acan be considered the second quantity which determines the
shape of the magnetization curve. | |

Before determining the parameters precisely, we examine the order of
magnitude-of them. By using the height of the magnetization curve, |ng*l
is estimated to be about 0.06. The computed curves given in Fig. 11(b) "

indicate that the magnetization saturates at a field satisfying

/By *) [ggy*| > 4 | o (5-10)

The experimental results show that the correspondihg field in CuFTH is
about 15kOe. Therefore, HK+* is calculated as about 230 Oe. Equation
(5-6) indicates that 2hex is less than 140 Oe so that Zhex/HK+* is estimated

to be at most about 0.5. The theoretical curves also indicate that, when



IgZX*/gXY*l and Zhex/HK+* have the values mentioned above, the linear part
of the theoretical, in other words, computed magnetization curve before the
jump practically coincides with the line corresponding to gZX*=O, Forvgzx*=0,

analogously to eq. (3-71), the bending field is given by

Hpgy = 20, * + 2n )/ lgn*| - (5-11)

where the suffix I(imaginaryj'indicates that the bending does not occur in
*
real 8oy #0 systems.
The fine adjustment of_|gzx*/gXY*l and 2heX/HK+f is done in Appendix
F by comparing the details of the shape of the experimental and the computed

magnetization curves. The result shows

legx*/8yy*| = 0.20 . (5-12a)

and
* = . - ]
2h  /H* = 0.35 . _ (5-12b)

The accuracy of the estimation is about 10%.
Using the perpendicular susceptibility given in §5.3.1, we obtain for

the "saturation' magnetization

1
Hp<S>(gyy*2 +8,,*2)% = 0.28 x 10721 emu/ion , (5-13)
"which yiélds
L
_(gXY*Z-_«-gZX*Z_)Z(<S>/S) = 6.0 x 1072 . (5-14)



By using the ratio of two g's given in eq. (5-12a), gXY* and gzx* are

calculated as

legy*l(<s>/8) = 5.9 x 1072, | (5-15)

*|(<8>/8) = 1.2 x 1072 : A (5-16)

)

legg

The initial susceptibility minus the high field susceptibility is

estimated from the experimental results as

0.28 x 10725 emu/ion . . (5-17)
Dividing the "saturation" magnetization by it one obtains

HXIB = 10.0 kOe , (5-18)

because the height divided by the tangent gives the abscissa. Using the

ratio of zhex to HK+*,_|gXY*J(<S>/S) given in eq. (5-15) and eq. (5-11) we
have
Hy,*(<8>/S) = 0.22 x 103 Oe . (5-19)
ho, (<8>/S) = 40 Oe . | (5-20)

The calculated magnetization curve is given in Fig. 21. The agreement

between the calculation and the experiment is good.



5.2.4 Magnetic parameters

The left column of Table II represents the parameters obtained in the
preceding subsections, where HK_* is determined from eqs. (5-6) and (5-20).
The signs of g-components are determined in the proton resonance experiments
in the next section.

The right column of Table.H represents the parameters obtained by
using the definitions of these parameters given in §3. The spin canting

1O at zero external field is estimated from (3-18a) as

- » - -3 ) . o : _
1y = hp/2H = 6.4 x 1073 radian(0.4°) . (5-21)



Table II Magnetic parameters of Cu(HCOO);-4H,0determined from the analysis
of the magnetization curve. The left half of the table shows the para-
meters determined directly from the analysis and the right half shows the

parameters derived from them.

H, / (<8>/S) 1.50x 10° Oe H *<5>/S 1.4 x 102 Oe
Hy, *<S>/S 2.2 x 102 Oe H,*<S>/S s.é x 10 Oe
H_*<S>/S 6.0 x 10 Oe _ gXY<§>/s - 5.5 x 1072
hoy <5>/S 4.0 x 10 Oe 8,4<5>/S - 2.2 x1073
By *r<S>/S - 5.0 x 1072 Hoy 6.2 x 103 Oe
g, **<S>/S - 1.6 x 10'? hoy 1.9 x 10% Qe
gXY*§s>/s - 5.9 x 1072 H,<5>/S 3.9 x 10 Oe
 8,4*<8>/8 1.2 x 1072 1, | 6.4 x 10~3




§6. Analysis of The Results of Proton Resonance
6.1 Experimental results
6;1.1 Angular dependence
Experiments were carried out in the ac-, Lgb- and‘bc'—planes by rotating

' éingle crystals. Examples of the angular dependence of resonance point are

shown in Fig. 22. As the frequency dependence below 5MHz and the temperature

dependence at liquid helium temperature range are sma11,14’15’37) they are
not discussed in this paper.
6.1.2 Phase boundary
The shift of resonance field AH given by
aH = HE - uf _ (6-1)

is considered, where H' is the observed resonance field and Hf is the

resonance field of a free proton. Thé shift is of cource coming from the
>,

internal field H' due to the magnetic moment of copper ions. The internal

field(about 0.3kOe) is considerably smaller than Hf of the present experi-

ments(1.3k0Oe for 5.7MHz). For this case, the shift is given by

M = - Hi/) - %-(Hil)z/Hf e e, (6-2)
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where‘// and | are used for components parallel and perpendicular to the
‘external field respectively. |

Above about ISMHz AH is practically given by the first term of eq. (6-2).
Therefore, if the internal field(or the magnetic structure) is not influenced
by the external field, the angular dependence of AH is a sine curve for every
frequency and the shift plotted versus frequency is flat for every field
‘direction.

Frequency dependence of AH is shown_in Fig. 23 for three typical direc-
tions, Ly, L3z and B. The direction B is a bisector of b and Lz. It is
selected instead of b because the frequency dependehce for b is accidentaly
insensitive to the change of magnetic structure. The fréquency dependence
~given in Fig. 23(a) and (b) indicates that the.magnétic structure changes.with
the external field for ﬁ//Ll but it does not for ﬁ]/L3 up to 14kOe. In the
former case, the structure becomes independent of the field intensity above
about 6kOe. Field dependence of the magnetic structure for ﬁ//B is analogous
to that for ﬁ//Ll. Similar boundary(change of separation or change of number)
is seen in the angular dependence given in Fig. 22. The transition occurs at
a field much lower than the estimated16) épin flop field(22kOe).

Fig. 20(b) shows a profile of the boundary. Dotted lihes in the figure
represent the phase boundary determined from a jump or a bend of the magneti-
‘zation curve. Boundaries in two experiments are due to'the same origin. The

result in the Lzb-plane is consistent with a recent work by Dupas and Renard.ss)
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6.2 Dipole field
6.2.1 Magnetic unit cell

The angular dependence of the resonance point at 59MHz indicates that the
high field state has two internal fields ékcept for small splitting. For this
case, the magnetic unit cell is identical with the crystal cell. It is because
we have pr internal fields if th¢ magnetic cell is the same as the crystal
cell®) and have larger number of fields when the magnetic cell is larger than
the crystal cell. The magnetization curve shows that the magnetic structure
is a 2-sublattice weak ferromégnet in which adjacent spins in the 2d ab-plane
are nearly antiparallel and those in neighboring planes are parallel. The
7 result is shown in Fig. 4(b) by taking the spin direction parailel to the
b-axis.**) | |

In the low field phase, the magnetic unit cell consists of two crystal
cells adjoining along the c-~direction.. The reason is as follows. The differen-
tial susceptibility in the 2-sublattice statez) indicates that the spins in the
~ 2d ab-plane are coupled by a strong antiferromagnetic interaction of 108 Oe as
has been ekpected from the crystal structure. Therefore,VZ—sublattice type

arrangement of spins in the ab-plane is stable throughout the present experiment.

*)  'The internal field of protons with a primed number in Fig. 5 is equal

to that of the corresponding unprimed ones.

%) 1p §6.3, one sees that this is the case for H in the ac-plane.
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Four protons in the unit rectangle of the ab-plane(See Fig. 5.) reduce to
two independent protons. In the low field state, the observed number of
internal field is four_ekcept for small splitting. Therefore, magnetic
unit cell of the low field state consists of two crystal cells adjoining
anng the c-akis. The symmetry of the internal field shows that the magnetic
stiucture at zero external field is a 4-sublattice antiferromagnet in which
spins of neighboring planes ére antiparallel. The symmetry also shows that:
the antiferromagnetic axis lies in the ac-plane or parallel to the b-axis.
Hidden cantingiis allowed.,

In fhe following subsections, details of the spin direction are studied
for two limiting cases(5.7MHz and SQMHz) and for three typical intermediate
frequencies(16.2, 20.5, 22.6MHz) by assuming that the origin of ;i is pure

dipole field.
6.2.2 Calculation of dipole field

The dipole field is calculated for four types of spin arrangement, AR-1
‘to 4 given in Table III. Cases of ferromagnetic layers, AR-1 and 2, are
examined for estimating contributions of weak ferromagnetism.

‘At first, g-tensor of two ions is considered. Matrix form of the tensor

is
- - \
g]. »2 ’ gxx igxy gzx
+ +
Exy By Byz
{ E2x *8y 822 ) (6-3) -
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Table II

ions is taken from Fig. S.

Four types of spin arrangement, AR-1 to 4. The number of copper

Elements of d are also shown in unit of kOe.

The figures in parentheses are for the weak ferromagnetic moment of

2.7 x 1072y per ion.

type AR-1 AR-2 AR-3 AR-4
: 1:+ 1:+ 1:+ 1:+
spin 2:+ 2:+ 2:- 2:-
3:+ 3:- 3:+ 3:-
arrangement 4:+ 4:- 4:- 4:+

dxx 0.35( 0.01) 0.54( 0.01) -0.50 -0.51

elemnts - dyy 0.32( 0.01) 0.51( 0.01) 0.51 0.48

of d dzz -0.75(-0.02) -1.18(-0.03) 0.0 0.05

dxy -0.89(-0.02) -0.88(-0.02) 0.02 0.02

dyx -0.88(-0.02) -0.87(-0.02) 0.02 0.02

dyz -0.07( 0.0 ) -0.05( 0.0 ) -0.21 -0.25

dzy -0.04( 0.0 ) -0.03( 0.0 ) -0.19 -0.22

dzx -0.03( 0.0 ) | -0.08( 0.0) 0.20 0.23

dxz -0.05( 0.0 ) -0.05( 0.0 ) 0.19 0.25
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Notations + and - correspond to g; of corner ions and g, of base-center ions

respectively, The xyz-coordinate system given in Fig. 5 is used. The g-tenser

~

g appearing in the paramagnetic resonance is given by the average of g; and

sym
82. The matrix form of gsym is obtained by taking ey = 8yy = 0 in the m?trix
form of §; and g,. The elements, g  =2.078, gyy=2.116, gzz=2.354 and gzk=0.047,
are obtained from the experimental resu1t27) by changing the axes. Calculation
of dipole field is done first by using ésym instead of g; and g,. A correction
due to thé antisymmetric part(difference between g1,2 and gsym) is consideréd
later.
, >
The dipole field for proton-1, H in unit of kOe, is given by

v—*d ~ > » »
H =dm, ' (6-4)

where d and E stand for

d = D ésym S | ' (6-5)
and

m=<$p/s | (6-6)
respectively. The tenSor D is 10'3ﬁB times-of the usual dipole sum tensor..
The symbol <>‘,represents thermal average, The calculated elementsA

of d are given in Table III. The dipole field(=internal field) of other protons

is obtained by changing the elements of d after Table IV. |
Correction due to the antisymmetric part of §1’2 is estimated by using the

dipole field of AR-1 and 2. As a result, a small correction is made in the

high field 2-sublattice state. Effect of spin canting due to the DM-interaction

is negligible because the canting is only about 0.6% of the copper moment.
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Table IV Sign of d-elements of four protons. The uv element of proton-n,
duv(n), is obtained by changing the sign of duV given in Table II when

duv(n) in this table is assigned by -.

art;ggeggnf coggogent proton-1 proton?Z proton-3 | proton-4
XX,YY22,2X,XZ | + + + +
AR-1 :
Xy, ,YX,YZ,Zy + - - + -
XX,YY 22 ,2X,XZ | + + - -
AR-2 -
XY ,YX,YzZ,2y + - T - +
XX,YY,2Z2,ZX,XZ | + - + : -
AR-3
XY, YX,¥2,2y + + + +
XX,YY ,2%,2ZX,XZ | + - - +
AR-4 ’
) XY ,YX,Y2,2y + + - -
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6.3 Interpretation of the results
6.3.1 Low field 4-sublattice state

In the followings, the vector m is kept in the ac-plane,'because the
direction of calculated internal fields for E//b is completely different
from the ekperimental result. The conclusion of the magnetization measurement
supports the former case.

The direction of m is, for the sake of argument, moved.in the zx(acj-plane.
The internal fields for proton-1 to 4.are‘given by ﬁ', ﬁ"; -ﬁ', —ﬁ",‘respectively.

Components of e and H" are written, by using Table III and IV, as

H' , H' = % 0.5Im_ #* 0.25m_ ,
X X X Z

H' , H' = 0.02m_ - 0.25m_ ,
Yy Yy X z

H' , H' = % 0.23m’ + 0.05m_ , , (6-7)
Z Z X Z

The vector m lies close to tﬁe x(a)-axis, because the second of the above
equations indicates that the observed small y(b) component of the internal
field is obtained when m lies close to x. Calculated angular dependence of
the resonance field for H in the zx-plane is shown in Fig. 22(a). Solid lines

correspond to E//L3 and dotted ones to E//é"(mx>0,*) m=0.50**)). Accurate

*) The componentm  can be selected positive with no loss of generality.
**})  When m is changed, the amplitude of the calculated curve changes almost

proportionally.
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determination of the direction of m is impossible. Calculated results for
H in the Lib(close to xy)-plane are_giveh in Fig, 22(a'). Calculated results
for the yz(bc')-plane are shown in Fig. 22(a"). Experiment and calculation
both agree with those of Dupas and Renard.ls) In Fig. 22(a'"), correspondence
between‘eiperiment and calculation is not good(Also see §6.3.5.).

A problem of the foregoing argument is that a 2—sub1atfice magnetic
structure with domains gives a similar set of internal field. Dupas and
Renard examined the problem by considering protons of water molecules becauée
two magnetic structures may result different sets of internal field for these
protons.ls) Agreement between calculation and eXperiment was poor.*)
Consequently; the poséibility of 2-sublattice structure has not yet been
eicluded.ss) However, about 20% of saturation weak ferromagnetic moment.
should be observed along the b-axis even in very weak external field if the
magnetic structure is 2-sublattice type.16) It is inconsistent with the

observation. In conclusion, the 2-sublattice structure is excluded.

*) The origin is probably a deficient accuracy of the assumed H,0 proton

positions.
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6.3.2 High field 2-sublattice state

For H in the ac-plane, AH is given from Table III and IV by

AH =»-(iO.ZOmx-O.19my-0.02)c056H

-(+Of_50mx+0.02myiQ.19mZ)51neH , (6-8)
where GH is an angle between H and c'(See Fig. 24(a).). The upper and the
lower of the double sign correspond to proton-1 and 2 respectively. A term

independent of m comes from the ferromagnetic moment of 2.7XIO—2uB_para11e1

to the L;-axis.

The shift AH for H in the bc'-plané is given by

AH = ~(O.01—0.035in26H)

—(0.OZthO.Slmy-O.Zlmz)coseH

—(iO.ZOm*-O.lme)sineH s (6-9)

where 6, is an angle between H and b. For H in the Lib-plane, the shift is

given by

AH = - (+0.025in0,+0.01cos0,,)

-(0.OZmXiO.Slmy—O.Zlmz)coseH

-(+0.52m_+0.05m_%0.19m_)sin® (6-10)
X Yy z

H ’

where eH is an angle between H and b. The direction of weak ferromagnetic

moment is taken parallel to the b-axis for H in the Lzb-plane and parallel
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to the external field for H in the bc'-plane,
The experiment in the ac-plane is considered first. Equation (6-8)
indicates that the shift corresponding to the center of two lines is

H

my=-0.95(independent of GH). The observed separation corresponds to mi=0.15,/

approximately given by the term 0.19mycose The -experimental result shows
mz=0.16 or mké-o.ls, mz=—0.16. However, non-zero value of m and m, is
spurious. It is because the nature of weak ferromagnetism indicates that

mi and m are zero for fl in the ac-plane and because the measurement in the
bc'-plane shows that the separation is sensitive to mis-orientation of crystal.

In conclusion, one obtains

m =0, m, = +(0.95%0.05) ,

m

, =0, m= |my| o : - : (6-11)

where * in ( ) represents the accuracy of estimation and - and +vof my
correspond to Hz>0 and Hz<0 respectively. The experimental condition and
the observed ™ are shown in Fig. 24(a) and (a') respectively. The calculated
result of the resonance field is given in Fig. 22(d)(solid 1line).

The case of bc'-plane is considered next. Equétion (6-9) indicates that
AH corresponding to the center of two lines is approkimately given by
H+0.19mysin6H. The experimental result is -0.18(indep¢ndent of GH);

Using a condition my=-0.95, m,=0 for 6H=90°, one obtains mz=40.86cose

0.21m_cosb
"z

H,

my=-0.9551n6H. The condition for my and mz is introduced so as to ensure

the consistency with the result in the ac-plane. The component m& is
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Fig. 24 The relation between the direction of the e&ternal.fiéld and that of
the moment of copper-l(ﬁ) for high field 2-sublattice state of Cu(HC00),+4D,0
at 4.2K. Figures'(a)—(c)‘show three planes in which the angular dependenée

of proton nmr is studied. Figurés (a*)-(c') show the observed motion of the

moment m. Details of the spin direction are given as eqs.(ﬁ-ll)&(ﬁ—ls) of the

text. :
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estimated from the separation of lines. Calculations including smaller

terms result in

i}

(0.35+0,15)cosH

X H?
m, = -(o.85&0'.05)-.&,1:19H ,
m, = -(0.8110’.05);059H ,
m = 0.89%0.06 . | (6-12)

The calculated aﬂgular dependence of resonance field is'shownrin Fig. 22(b").
The observed motion of m with the field difection(See Fig. 24(b) and (b').)
is consistent with a model of tilted g-tensor type weak ferromagnetism.
Finite separation between L; and the antiferromagnetic axis L' for

ﬁ//b(See Fig. 24(c').) indicates that the weak ferromagnetism is not
entirely tilted g-tensor origin. The magnetization measurement supports

the conclusion,

For H in the Lyb-plane, components of  are estimated as follows. The
shift corresponding to the center of lines is approximately given by 0.21mzc056H.
Experimental result is —0.20cosGHf Therefore, we obtain mZ¢=—1. Substituting it
into eq.(6-10), one has -l.Omyc059H+(1.Omx+0.4)sin6H for the separation
of lines. The components m and my are estimated from the ekperimental

result of separation and the condition that their values for 6H=0° must

agree with the corresponding values obtained in the bc'-plane. By taking
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smallexr terms into account, the followings are obtained:

m_ = (0.35%0.15)cos6

X H?
m, = —(0.3310}16)sin6Hv€
m, = -(0.8120.05) ,
m = 0.88+0.07 . : : (6-13)

The calculated result is given in Fig. 22(d')(solid line). Figures 24(c) and (c')

: > >
represent the relation between H and m.
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6.3.3 Intermediate region

(a) ac-plane

The shift of resonance field for proton-1 and 2 is calculated for

simplicity by the first term of eq. (6-2). Namely,

8H = -(F0.51myx + 0.02mpy

I+

0.25mlz)sineH

6-14)*)

I+

-(£0.23m;x - 0.19myy * 0.05m;)cose

H >

where GH is the angle of H from z(See Fig. 25(a).). 'Vectors E1==<§1>/S
and $3==<§3>/S are distinguished because, in the intermediate region, they
are neither parallel nor antiparallel. The shifts for proton-3 and 4 are
calculated by replacing components of 31 in eq. (6-14) by the corresponding
components of 33. |

At first, conclusion of §6.3.1(the low field state) is recollected.
They are m1x=-m3x¥0.5, my =m3y =0, myz = -m3z =0. For this case, AH of
proton-4 and 3 aré equal to those of 1 and 2 respectively. Neither of

separation between 1 and 4 nor between 2 and 3 are observed even in the

intermediate region. Therefore, one obtains

mijx = -M3x , myy = mgy , mjz =-m3z . (6-15)

*)  Elements of d for AR-3 are used for myy because mjy and m3y are equal

as is shown later.
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Fig. 25 Relation between the direction of the external field and the spin
‘directions in the inte;mediate region of Cﬁ(HC00)2o4b20 aﬁ 4.2K.
Figures (a) and (a') correspond to the caée vhere H is in the ac-plane.

Figures (b) and (b*) to the case H in the Lgb—plane._
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Next, the cross point or zero-separation point of two lines is considered.

The condition AH

= 4 i i V :
L roton-1 <Hproton—2 reduces to the following equation for 8,:

(+0.51m;x - 0.25m;)sin6,

+ (-0.23myx - 0.05myz)cosBy = 0 . (6-16)
The experimental result shows that the angle of zero separatioh BHO(solution
of eq. (6-16)) is independent of the resonance field. Accordingly, m;,(and
“m3z) at eHO is much smaller than mj;y(and m3x) even in the intermediate region.

Hereafter, contributions of mjz(and m3z) are neglected for all 6

H Then, eq.
(6-14) reduces to
BH = (£0.51myx - 0.02my)sind,
+ (¥0.23m;x + 0.19m1y)coseH . (6-17)

The shift corresponding to the center of lines and the separation between
them are proportional to my and m;,, respectively. For H close to c',

the center moves to the low field side and the separation decreases. These
facts indicate that; by applying the eﬁternal magnetic field, a negative
value of mly(and m3y) is introduced and mj decreases»from the initial value
as is shown schematically in Eig. 25(a"). Thé spin motion is consistent with
the prediction of the theory. The components mlx'and my are estimated
quantitatiﬁely' in fhree typical cases. The result is given in Fig. 26. The
increase of the y-component and the decrease of the X—component are both
attributable to the weak ferromagnetism whose preferred axis of ferromagnetic

moment is the Lj-axis.
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Fig. 26  Dependence of mjx, myy and m on the field direction and the field

intensity for three typical intermediate frequencies in the ac-plane.
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(b) Lib-plane

The shift of proton-1, 2 is given by

AH = -($0.54m1x-+0.05m1y:t0.19mlz)sineH

(6-18)

-(O.OZmlx:t0.48m1y--0.21mlz)coseH s

where eH is the angle of H from b.‘ First, sepafation of two.lines is
considered near the b-axis. The separation is given by 2x0.48m;y. The
experimental result(For example, see the result at 15.8MHz.) indicates
that myy is nearly zero. As it is also zero at zero external field,
mjy =m3y =0 is assumed in the followings.

Next, the center of two lines is considered in a region close to b.
For this case, the center is given by 0.21m;,. The experimental result
indicates that both m;, and m3; are negative. On the other hand, considering

H’

to proton-3, 4. Large separation pair(mx:>0) corresponds to proton-1, 2.

the factor of sinf,, one sees that a small separation pair(mx<=0) corresponds

Symmetry of nmr pattern indicatés that the spin motion is caused by the
weak ferromagnetism whose preferred axis of ferromagnetic moment is the
b-axis. The spin motion is shown schematically in Fig. 25(b'").

The components mjy, m3x, Mj, and m3, are estimated quantitatively from
the shift of the. center and the separation. The absolute value m is also
calculated. The results are similar to those obtained in the ac-plane.

An interesting phenomenon is obsefved when the results at 31.5MHz and

59.6MHz are compared. Namely, increasing the magnetic_field, we can observe
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- + L + . e 3 - 3
jump of m3 to the position of mjy. The observation is a little inconsistent
. . e R
with our previous simple theory,zg) because the jumping spin is mj in the
> . . . ) . . .
theory and m3 in the experiment. The disagreement disappears if one intro-

duces small DM-interaction as is shown in §3.*)

*) In the previous theory,zg) only the g-tilting is considered as the

mechanism of the weak ferromagnetism so that we obtain gXY**==gXY* and

gzx**==gzx*. In this paper, the DM-interaction is also taken into account
. 1 hk e * o *

and we obtain Bxy gXY* and gZX* 87x for CuFTH.
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6.3.5 On the assumption of the pure dipole field

Now at the end of this subsection, the assumption of proton position
and pure dipole field should be re-examined because the conclusions on the
magnitude of M seem to be unfamiliar. If one modifies certain elements of
d by 30%,*) the calculated magnitude m changes to 0.75S(result of spin wave
calculation) independent of the external field. The modification is done
so as to keep the conclusions of magnetic cell and spin direction because
they are determined mostly from the symmetry of nmr spectra and are consistent
with the result of other experiments. Therefore, the value of m depends
compietely on the assumptions and may be less reliable than the magnetic

cell, the spin direction and the phase boundary.

*x) Also see Appendix G. Tensor elements of the paraelectric and the

antiferroelectric states of CuFTH are compared there.
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6.4 Comparison with the result of magnetization measurement

In this subsection, the proton nmr results of CuFTD are examined by
using the magnetic parameters estimated from the analysis of the magnetization

process of CuFTH.
6.4.1 Frequency dependence of the shift

The frequency dependence of the shift given in Fig. 23(a)-(c) is
compared with the calculated shift. A small contribution from the weak

ferromagnetic component is neglected for simplicity.
-
(a) H//Lj

The L3 direction is characterized by the fact that the weak ferro-
magnetism does nof act along this direction. The angle between L3 and the
easy axis a" is 17.9°. Therefore, the magnetization curve should be a
"rounded spin-flop" type curve which is seen in an ordinary antiferromagnet
when the external field is applied close but not sfrictly pérallel to the
easy axis.sg) The magnetization curve for»L3'indicates that the spin flop.
starts gradually above about 14kOe so that the nmr shift is calculated by
neglecting the spin motion. The result for m =<S>/S = 0.5 isvshown in

Fig. 23(b). The correspondence between calculations and experiments is good.
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m) B/

As the field direction is not strictly perpendicular to the easy axis,
the spin motion may be influenced, in principle, by the difference between
the parallel and perpendicular susceptibilities. However; this contribution
is dropped out in calculating the spin motion, because it is practically
negligible as is seen from the good linearlity of the magnetization curve.

Then, the spin direction is given by the equation
siné = H/HpL1 » | (6-19)

where 6 is an angle between El and the easy direction a'". The effective
bending field for Lj;, Hppi1, is 5.3 kOe. EI rotates to the -b-axis, because
gXY** is negative(See foot noté.f)); The calculated curves in Fig. 23(a)
correspond to m=0.5(dotted lines) and m=1.0(solid lines): The experimental

results are between them.
(c) H//B

‘We consider the spin motion by assuming that the component of 4 along
the b-axis determines the spin direction. Negative Exy” and positive 87x*
are used because of the following reasons: (1) If gXY* is positive, the

angular dependence in the high field region can not be reproduced(The shift

*) If it is positive one obtains AH >0 for the high field region, which

conflicts with the experimental results.
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along b becoﬁes positive.).  (2) If gzx* is negative the resonance points
arising from proton-1 and 2 disappear and those from 3 and 4 remain, which
.contradicts the experiments. The resulting shift is shown in Fig. 23(c).
The chanée of m mentioned in the preceding section dlso appears here.
Characteristics of the calculated curve agree with those of the experimental

results except for the unnatural change of m.
6.4.2 Angular dependence in the high field region

(a) ac-plane

As the interpretations in the preceding section agree with the theoret-

x=0 in (3-85a) ~ (3-85c) and compare them with (6-11).),

we would not repeat here.

ical predictions(Put H

(b) bc'-plane

The spin motion is given in eqs. (3-89a) ~(3-89c). By using the param-
eters obtained in the analysis of the magnetization curve, the vector

components L, M and N are obtained as

L = -O.SZSinw/G' ' (6-20a)
M = -0.59cosw/G' } (6-20b)
N = 0.12cosw/G' , (6-20c)
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where G' is given by the relation:
L
G' = (0.27sin?w + 0.36cos%w)2 . (6-21)

When m is assumed to be 1.0,*) m.s my and m, are written as

m, = 0.21cosw/G' , (6-22a)
my = -0.52sinw/G' , L (6-22b)
m, = -0.57cosw/G" . : (6-22¢)

These results agree well with the spin motion suggested previously(See eq.
(6-12).). The calculated resonance points for m=1.0 is given in Fig. 22(b')
(dotted lines). If one assumes that the weak ferromagnetism is mainly due
to the DM-mechanism, the calculated shift is, as ‘is shown in Fig. 22(b")

with broken lines, completely different from the experimental result.
(c) Lgzb-plane

For this case the vector (L,M,N) is given by

L = 0.0018tanw , (6-23a)
M= -0.98 , . (6-23b)

N =0.20, (6-23c)

*)  The nmr shift is proportional to m practically.
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where the contribution of L to G' is neglected so that w should be limited

within 80°. The vector m is given, for m=1.0, by

m._ = 0.34
X
m_ = 0.0018tanw
Yy
m, = -0.94 . ' (6-24)

These results are close to the spin motion obtained for CuFTD when the
field direction is ﬁot far from‘the b-axis. The calculated resonance points
are shown in Fig. 22(d') (dotted lines). ‘The discrepancy near the L3 axis
seems to indicate that the.neglection of the anisotrdpy for obtaining eqgs.
(3-89a) v~ (3-89c) are unreasonable when H is close to L3 where the torque

due to the weak ferromagnetism becomes ineffective.
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§ 7. The case of Cu(HCOO)2~2(NH2)2C0-2H2038) o —

Copper formate bisurea dihydrate(CuFUH or UH) crystal contains Cu?*
layers quite similar to thevlaYers appearing in copper formate tetrahydrate
(CﬁFTH 6r TH) crystal.ls) While fhe»intralayer exchanges of two crystals
seem to be equal within the experimental error,17) the ihterlayer magnetic
coupling 6f UH is expected to be smallér'than that of TH, because the inter-
layer spacing of UH is larger by about 30% than that of TH(See Fig. 27.)

As the interlayer coupling is one of the important parameters of the nearly

1)

two-dimensional magnetic system,”’ the relation between the magnetic prop-
erties of UH and those of TH is interesting.
Results of the susceptibility and the specific heat measurements for

7,17)

two crystals are quite similar. In this case one has two possibilities;

(1) The interlayer couplings of these crystals are nearly equal or (2) Néel
temperature TN is not sensitive to the interlayer coupling. In connection
with this problem, the jump of the maghetization is studied in UH and the
result is compared with that of TH because the jumping field is a good
measure of the interlayer coupling.*)

Experiments were made at 4.2K in three crystal planes L1L3, LyLj
and Ly;'L,. The direction L;z'(See Fig. 29.) is close to the Ljz-axis
which gives the largest g-value for the paramagnetic resonance at room

temperature(g(L;;)=2.37, g(Ly)=2.11, g(L3z)=2.08, angle(a,L;y)=4.9°,

-angle(L;z,c)=91.5°, -angle(a,L;7')=14°, angle(c,L;7')=82°). Figure 28

*)  Throughout the present paper, we assume that the magnetic properties

of two kinds of crystals are similar.
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~ The results for other field directions are given in Appendlx H. '
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represents the magnetization curves for three typical directions. Hysteresis
is ndt observed within the experimental error. The anisotropy of g-tensor
and the anisotropic intralayer exchanges are not substantially different from
those of TH(See foot note.*)). On the céntréry, the jumping field for ﬁ]/Lz
(480 Oe) is much lower than the corresponding field(5.3kOe) of TH. This
problem is discussed in the next parapraph.‘ Figure 29 shows the outlin¢ of
the 4-sublattice 2-sublattice phase boundary determined in L;L,, LZLé, LyzLy~

planes by using the bend and the jump of the magnetization curve.
A preliminary analysis of the jump is done by starting from eq. (3-80). .
When hex'K He, *s the jumping field HJ is given by
Hy = 2h /g, * . (7-1)
The jump of the magnetization AM is given by
AM(per ion) = uBgZx*/Z , (7-2)

where the spin contraction effect is neglected for simplicity. Combining.

eqs. (7-1) and (7-2), we have

h = HJAM/uB . : : : (7-3)

+) In TH, ngY*l =0.06, Igzx*/gXY*l =0.02, Hg_*=60 Oe, Hy

In UH, they are estimated to be about 0.06, 0.01, 50 Oe and 300 OQe,

= 220 Oe.

respectively. Detailed analysis is in progress.
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Fig. 29  Phase boundéry of Cu(HCOO)z-Z(NHZ)ZCO-_ZHp_O at _4V.2K. .
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hex of UH and TH are calculated to be 1.7 Oe and 33 Oe, respectively. These
results indicate that the assumption of weak interlayer coupling(hex<« HK+*)
is true for the case of UH but is not for the case of TH(HK+*==220 Oe). The
result of the numerical calculation,zg) howeﬁer, shows that eq. (7-3) works
even in the case of TH within 26% error. Therefore, the interlayer coupling
of UH is about 1/20 of that in TH. In conclusion, one sees that TN is not

sensitive to the interlayer coupling while the entropy change around TN seens
to be influenced by the coupling.17) It should be noticed that the ratio of
the interlayer coupling to the intralayer exchange is of the order of 10-°

in UH.

- 143 -



§ 8. Discussions
8.1 AFMR in the 2-sublattice region

Seehra and Castner(SC)l6) tried to fit their AFMR data(open circles in
Fig. 30) on the basis of the 2-sublattice model and estimate&Asome parameters
mostly at low field region. However, we conclude in §5 and §6 that the
- magnetic structure at low field region is not tﬁe 2-sublattice type but the
structure above about 5kOe for ﬁ//X and Y is the 2-sublattice type. In this
subsection we treat the interpretation of the AFMR résults in the 2-sublattice
region. The AFMR frequencies are assumed to have the same expressions as
" those of the pure 2-sublattice case, because AFMR theory applicable to the
present 4-sublattice system is not known yet. This assumption may be an
over simplification for the present case.

The expressions of the AFMR frequencies for the 2-sublattice case have
been obtained by SC. For ﬁ//Y(c") the frequencies are given by

(0, /M% = H, 2+ By g%+ (y oy - H %), (8-1)

@/M? = Hy oqfipy’ - H % s (8-2)

2 and reducedvfield.HY

. - 2
where zero-field AFMRAfrequenc1es H//b s H//c ,red are
written as
2 o 2 _ 2 _
H, (20, +B JH + hp® - H 2, | (8-3)
2 . -y 2 _ _
Hy o ® = (2H, +H JHe - Hp o, (8-4)
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1
HY, red = 7 8778 - (8-5)

. . . ' . . .
'New notation HY,red is used instead of SC's Hy gnd, in this paper, HY }s used
‘for the Y-component of the external field H. The effective canting field

H_ ' is written as follows:

DM
Hpy' = Hpy + 2H, (8yy'/ gfv) > (8-6)
where
8xy' = ByyCosd - gy, sina ' | (SQf)

and the initial canting angle a is given by

tan2a = 2hj/(2H_ +H.) . (8-8)*)
For ﬁ//x(b) the AFMR frequencies are written as
2 _ 2 _ 2.4 "% 2 -
(w+/y) - H//c H//b sinb  + HX,redHDM * HX,red ? _ (8-9)
2 _ 2(1_92<3n2 * -
(v /¥)° = H//b (1-2sin<g) + Hx,redHDM . (8 10)
The redu;ed field Hx,red and the effective cgntlpg field HDM* are given by
H = o ' (8-11)
X,red = Z BXX (8-
HDM* = HDM"sine + hDM'cose , (8-12)

where 6, the angle between the antiferromagnetic axis and the a'-axis(See

Fig. 31(a).), is a solution of the equation,

* - . ) - - . - .

) This equation can be simplified as a-hDM/ZHex because hDM and HK+ are
much smaller than Hex' An equivalent relation can be readily obtained from
eq. (3-18a) by making N=1 and L=M=HX=HY=HZ=0.
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(b)

(a)

Fig. 31 Definition of the angles appearing in the analysis of the AFMR.
(a) Definition for ﬁ//Y. (b) Definition for ix’//x. For details see

text.
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sin® + H hpy ! tan®/H 2=y

" 2 _
X,red™D 776 = By rediod /My - (8-13)

The quantities HDM" and hDM' are given by the relations:

HDM" = -HDM + ZHex—(gXY/gXX) , | (8-14)

=2
]

oM’ = Bpy * 2Ho (8 /8xy) - (8-15)

Equations (8-1) and (8-2) are transformed into

n

(“’+/Y)2 H//b2 * HY,red2'+'%gYY(HY"Ho)HDM' ’ (8-16)

2 1 - - -
(m_/Y) = ZgYY(HY HO)HDM' H (8 17)
by using Ho defined as
H = H, 2/ (g, M) o | (8-18)
(o] //c 2°YY DM )

In addition to the above results obtained by SC, we introduce eo, the

high field limit of 6, given by
= " ' : -
taneo HDM /hDM (8 19)_

. *
and HDM,O as

* * . . _
Hoy o* = (Hpy )e=eo . (8-20)

The experimental results for ﬁ//Y are considered first. Equations
(8-16) and (8-17) indicate that w, corresponds to the observed high frequency

branch. By using the experimental data for w_., Ho,' and H//c2 are determined

DM
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as follows:

H,, 2 = (3.0 £ 0.3) x 108 0e2 , (8-21)

//c

Hpye = (9.4 £0.3) x 10% Oe . , (8-22)

H//c is given by

= 4 -
H//c (1.73 £ 0.06) x 10* Qe . } | .(8 23)
usi -2 ' 2 s :
By using the above values of H//c and HDM s H//b is estimated from the
data owa+ as
2 _ 8 2 ) '
H//b = (11.0 £ 0.4) x 10° Qe< . : (8-24)
H . .
//b is given by
- 4 | ]
H//b (3.32 £ 0.07) x 10* Oe . ; (8-25)

The calculated frequencies and the experimental results are compared in
Fig. 30.

The case ﬁ//x is considered next. The angle ] ten&s to eo of eq. (8-19)
as the weak ferromagnetic moment approaches the saturation value. Then,

(m+/y)2-Hx2_red and (w_/v)? plotted as a function of Hx should be a pair of

,red
parallel lines. By using the experimehtal data by SC, we obtain the parallel
lines above about 14 kOe when the high frequency branch is assigned to the

w -mode. Using H//cz’ H//b2 of eqs. (8-21), (8-24) and the experimental

result of the present case, we have
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sin290 = 0.89 + 0.02 . (8-26a)

Namely; 60 is given by

sinGo = 0.94 £ 0.01 or 60 = (711£3)° . (8-26b)
HDM 0" is estimated, from the slope of two lines mentioned above, as
b4
* = . L ’ -
HDM,O (12.9.i 0.5) x 10" Oe . (8-26¢)

The calculated and the experimental results are compared in Fig. 30. eo is
used instead of 6 throughout the calculation. The experimental results at
about 8.5 kOe can be fitted by taking 6 as about 60°.

The angle eo satisfies the relation

" o * o ' _
HDM HDM,O smeO . _ (8-27)
By using this relation, HDM" is estimated as
¢ = _ = L -
HDM' = HDM + ZHex(gXY/gXX) (12.1 £ 0.5) x 10" Oe . (8-28)
We recall that HDM' is obtained as eq. (8-22),
r = : - + 4 _'
Hpy' 2 ~+HDM + ZHex(gXY/gXX) (9.4 £ 0.3) x 107 Oe . (8-29)

From eq. .(8-19), hDM' is determined as
- _ 4 -
hpy' = hpy + 2H, (g,y/8x,) = (4.2 £ 0.2) x 10* Ce . (8-30)

Summary of these results is given in Table V. The quantities H//cz,

HDMY’ HDM" are all larger by 50% than the corresponding values

2
B
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Table V Magnetic parameters of Cu(HCOO),+4H,0 determined from the
analeis of the antiferromagnetic resonance in the high-field 2-sublattice

state.

Parameters estimated
Parameters estimated
from the magnetization
from the AFMR results
curve and the proton nmr(§)
H,, 2 3.0 x 108 Oe2 1.81 x 108 Qe2
//c .
: 4 4
(H//c 1.73x 10" Oe) (1.35 x 10" Oe)
H,,2 11.0 x 108 0e? 6.6 x 108 0e2
//b _
4 ' L
(H//b 3.§2><lp Oe) - (2.57 x 10* Oe)
' 4 ' : 4
HDM 9.4 x 10" Qe 6.5 x 10" Qe
Hp, " 12.1 x 10* Oe 8.5 x 10% Oe
Ry 4,2 x 10" Oe 1.7 x 10% Oe
eo 71° 79°, 76°(8)
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calculated from the magnetization data. h_. ' is larger by 140%.

DM
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8.2 Intra- and interlayer dipole-dipole couplings

In the fdllowings, the effect of the intra- and interlayer diploe-dipole
couplings which are not included in the hamiltonian is considered qualitatively.
The dipole tensor in unit of Oe, Mp times of the usual dipole tensor, is given
for Cu-l1 in Table V. For estimating the dipole field precisely, the product
of the tensor and %ﬁ should be calculated, but, for simplicity, the latter
factor is replaced here by unity. The dipole-dipole coupling energy is
estimated from the negative of the prdduct of the dipole>field and 1uB whose
direction is parallel to the spin of Cu-1.

First, it is noticed that the dipole-dipole coupling between Cu-1 and 2
is alréady implicitly included in K-, K'- and A-terms of the hamiltonian.
Next, the coupling between a Cu-1 and "other Cu-1" is considered. This causes
the one-ion type anisotropy which is not included in the hamiltonian. However,
calculations based on an approximate method similar to that in 83 show that
the contribution of the one-ion anisotropy fields to the magnetization
process can be taken into account merely by modifying the magnitudes of the
exchange-type anisotropy fields. The framework of the present paper seems
to be kept unchanged by the eﬁistence‘of tﬁese two intraléyer terms.

In considering the dipole fields arising from '"Cu-3" and ''Cu-4", we
assume that the 3 aﬁd 4 moments are antiparallel. This is consistent with
- the approximations in §3. Then, the interlayer dipole tensor which represents

the sum of the dipole fields from antiparallel 3 and 4 spins is given by

Dij(lnterlayer) = Dij(all Cu-3) - Dij(all Cu-4) , (8-30)
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Table M Elements of the dipole tensor D related to the dipole field

acting on a Cu-1 ion from other ions. For example, ny of "all Cu-2'" row
represents the x-component of the dipole field arising from the moments of

luB parallel to the y-direction placed on all Cu-2 ions. The dipole sum

is calculated for a sphere of 1008 in diameter.

Cu(HCO0) , -4H,0
Dxx }Dyy Dzz ny’Dyx Dyz’Dzy sz’sz
other Oe Oe Oe Oe Oe Oe
Cu-1 29,2 - 30.5 - 59.7 0 0 -0.3
all
Cu-2 94.8 93.0 -187.8 0 0 0.2
all
Cu-3 -62.1 -72.1 134.2 0 0 -23.8
all
Cu-4 -35.8 -27.4 63.2 0 0 13.1
Cu(HC00) 2 +2(NH;) 2C0-2H,0
D D b_,D D ,D b ,D
XX Yy zz xy’ yx yz’ zy zx’ " xz
other Oe Oe Oe Qe Oe Oe
Cu-1 47.2 35.6 - 82.8 0 0 - 0.2
all
Cu-2 95.2 114.3 -209.4 0 0 0.0
all - .
Cu-3 -39.5 -40.9 80.4 0 0 - 3.3
all
Cu-4 -32.5 -30.6 63.1 0 0 2.5
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where i and j stand for x, y and z.

In the case of CuFTH, the dipole tensor referred to the ZXY(a'"bc")-
coordinate system is convenient compared with that referred to the xyz(abc')
system. By using the angle between two systems, 8.5°, the tensor is trans-

formed into

z X Y
D(interlayer, CuFTH) = ( -35.0 0o -21.1)
0 -44.7 0
[ -21.1 0 +79.7 ) . » (8-31)

For ﬁ]/Y and Z, two fictitious spins move in the ZX-plane. Considering the

tensor elements(D ==Dxx), we conclude that, for this case, the role of the

ZZ
dipole-dipole coupling is nearly equal to that of the isotropic antiferro-
magnetic interaction.

For ﬁ]/x, the motion of the spins is considered in the YZ-plane, The
aﬁisotropy of the dipole-dipole coupling in this plane cannot be reduced to
any of the terms treated in §3. However, this term seems to work like the
intralayer anisotropy throughout the magnetization process except -the
magnetizatidn jump which is subtly correlated to the interlayer coupling.

Therefore, hereafter, we consider the magnetization jump. The interlayer

dipole-dipole coupling can be taken into account by replacing
! 1 = . -
hex(MM +NN') = E. (8-32a)

inter

of eq. (3-80) by
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1 1y v '
hex(MM + NN ). DYYMM DZZNN
- ' t = gt -
DYZ(MN + M'N) Einter . (8-32b)

The changes of these interlayer energies at the transition from the

4-sublattice state:
N = -N! = N0 =1 |, M=M =M -, » (8-33a)
to the 2-sublattice state:

N=N =N, , M=M =M ‘ ' (8-33b)

are given by

AE

inter Zhex . (8-34a)

and

' - -
'AEinter 2(hex DZZ DYZMO) ?

(8-34b)

respectively. Therefore, hex obtained in 85 should be interpreted to

-D, M The first two terms, the exchange and the diagonal dipole-

hex'Dzz YZ Q'

dipole terms, constitute the interlayer coupling at zero external field.
The last term is estimated to be about -10 Oe, because DYZ and M0 are
-21.1 Oe and about -0.5, respectively. Its absolute value is considerably
smaller than the sum of the first two terms estimated to be about 50 Oe.

In conclusion, essentials of the mechanism of the magnetization jump are

not changed by the existence of the dipole-dipole coupling except for the
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interpretation of hex to hex-DZZ'
In the case of CuFUH, the last term is estimated as follows: first,

DYZ is calculated by

D

N . ' _
YZ_n > (“Dxx*'Dzz)51n2¢ + szc052¢ , (8-35)

where ¢(unknown) is an angle between the easy axis in the ac-plane and

the a-axis. D__, D and D__ are estimated from Table I to be -7.0 Oe,
xx’ “zz zX

+17.3 Oe and -5.8 Oe, respectively. Equation (8-35) indicates that lDYZl

never exceeds
[{1- D._+D_)}2 + D 2 % - 13 0 ' (8-36)
7 (-Dyx ¥D, 01 ZX 12 = ¢ - o -

Next,,lMol is estimated from the magnetization curve to be about 1/16.

Then we have

lDYZMOI < 0.8 0e . (8-37)

In conclusion, the interlayer coupling hex—DZZ is estimated to be 1.7 %0.8 Oe.
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Appendices
A Neglected terms in eqs. (3-14a) and (3-14b)
(a) Order of magnitude of various terms

The order of magnitude of the neglected and unneglected terms in eqs.
(3-14a) and (3-14b) is estimated as follows: In 82, we see that J is about
36K. This implies H  is about 1.1x10% Qe when <S> is assumed to be S(Z%).

h__ is 102~3 Qe as is presented in 52. The upper limit of H

ex and hDM is

DM
given40) by Hex(Ag/g)==105 Oe. However, in this crystal they are estimated
to be 10" Oe. It is because that the 3% canting of the induced magnetic moment

in the paramagnetic region is almost due to the g-tilting mechanism,2’7’9’11’12)

so that the ratio of H_, and h,,, to H _ should be considerably smaller than
DM DM Sex

3%. We take 1% as the upper limit of this ratio and estimated H. and hDM'

DM
HK’ HK' and HA are not more than41) Hex(Ag/g)2 = 10" Qe. However, they are
estimated to be 102;’33 Oe, because in the antiferromagnetic state the
direction of spins changes widely under the external field of 10% Oe coupled
with the ferromagnetic moment of 3%. The external magnetic field up to

10% Oe is considered. Elements of g-tensors are estimated as gxx-z, gY?-Z,
10-1

gZZ-2==10‘1 = 1072 from the characters of copper ion

» By Byz =10 s 8x _
and the octahedrons of anions. From these values of magnetic parameters,
L, M, N, L', M', N' are considered as about 1 and 1, m, n, 1', m', n' are

estimated to be 102, These estimated values of constants are listed in

the upper half of Table VII. From these values, magnitude of various terms
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Table VI - Order of magnitude of constants appearing in the equation of

motion and that of terms in eqs. (3-14a) and (3-14b).

constants
105 ©Oe ' h 102~3 Qe
ex ex
A 2~3
Hpys Ppy 10* Oe He, H,, Hy 10 Oe
Hy, Hy, H, s 10* Oe
. -1
- Bxx> Byys. 8zz 1 - Exy’ Byz 10
1072

- Bzx

components of normalized spin vectors

L, M, N, L', M', N' 1 1, m, n, 1', m, n* 1072
terms in eq. (3-14a) terms in eq. (3-14b)
H MN 102~3 Qe H__mN 0% 0e
h, MN' 102~3 hpytM 10"
Hyg o N < 103 Hog, M < 10%
02 | megtected
Hyg, M < 102 | Hyg,,M(8) s 103
H g, m 5 107 HXgXYﬁ s 10

) neproceed Hn 10%
H g, ,m(5) < 10 h_ mN' . 100~1
HKmh ” 10-2~-1 hpylm _ 1
By’ 1072~1 Hyg,m s 1
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in eqs. (3-14a) and (3-14b) are estimated. The lower half of the table
shows them. They are listed following the order of magnitude. For the

)

terms of type-one,* those equal to or smaller than 107! Oe in eq. (3-14a)
and those equal to or smaller than 10 Oe in (3-14b) are neglected. They
afe smaller than the leading terms of the corresponding equations by a
factor 103. This seems to imply that (L,M,N), (L',M',N'), (1,m,n) and

(1',m',n') are calculated within the accuracy of 0.1%. In the following

subsection (b) of this Appendix, we examine this problem.

*) The notation (§) in the Table is used for the terms of type-two. Terms
due to the difference between gYY(gZZ) and g are not shown there, but they

are of the same order of magnitude to gYZ-terms.
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(b) Effect of the type-one terms

Effect of the neglécted terms of type-one is considered quantitatively.v
The order of maghitude of the external magnetic field is limited within 10" oe
because (1) the experiment was done below 2 x 10% Oe and (2) the caiculation
becomes complex above about 10% Oe. The outline of the examination is as
follows: We consider the difference between the solution of the original
equations and that of the simplified ones. Functions appearing in the left
hand sides of the original equations as (3-14a,b) are expanded around the
solution of the.simplified ones as (3-16a,b) up to the first order of the
difference. The zeroth order terms satisfy the simplified equations and
the difference satisfies a set of linear equations. Then the order of
magnitude of the difference can be estimated by using the order of magnitude
of the determinant which consists of the coefficients in the linear equations.
In principle, the determinant can be always evaluated if we fullyvuse the
computer, but, in this paper, the calculation is done only for certain special
cases mainly corresponding to H//Y. The result shows that the difference is not
negligible in two cases. The:first case arises when an accidental relation such as
HK*==HK'* exists between. the magnetic parameters. We disregard such a possi-
bility. The second case arises when a special relation corresponding to
the bending point of the magnetization exists between the external field and
the magnetic parameters. For this case, the original rigorous equations must
be used, but this problem is not treated iﬁ the present papef. For 1//2 an&
X, it is certain By the analogy of the ﬁ//Y case that the bending point for

ﬁ//z is the only situation where the simplified equations can not be used.
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First, we consider the difference between (1,m,n) calculated from the
rigorous equations and that calculated from the simplified ones. The rigorous

(3-14b) and similar equations are transformed into

1= (BN - CM)/G , ' (A-1a)
m = (CL - AN)/G , (A-1b)
n = (AM- BL)/G . - ' | (A-1c)

and similar equations for (1',m',n'). Quantities A, B, C and G are given by

A=A +4A , B=2B; +B , C=C +C , (A-2)
G=L2+M2 +N2=1- (12+m2+n2) , (A-3)
Ay = (1/4H, ) {-2h M - 2H  IN

+(Hygyy +Hyg7)M - (ygyy +Hpgy )N (A-4a)
Ay = (1/4Hex){—2(HK-HK')(-mN+Mn) + ZhDMlm + 2Hmln

*Hygym - Hygyyn

-Zhex(mN'-+Mn'-nM'-Nm')} (A-4b)
and similar equations for B;, By, C; and Cz.. On the other hand, 1, m and n

are calculated as (3-18a) ~ (3-18c) from the simplified (3-16b) and similar

equations. It is readily seen that (3—18a¢c) can be also derived from
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(A-1a) v (A-4b) by neglecting A,, Bz:_Cz énd by assuming G==1.*) Tﬁe order
of magnitude of the error due to these simplifications is estimated to be
1075, namely 1/1000 of the order of 1, m and n.

Next, we compare another rigorous equation (3-14a) and the corresponding
simplified equation (3-16a). The type-one neglected terms and the error
arising from the substitution of (1,m,n) derived from (3-16b) to (3-16a)
are estimated to be both of the order of 1071, iTherefore, difference between
solutions of two cases caﬁ be estimated by comparing solutions of the follow-
ings: (1) (3-23a) v (3-23c) and similar three equations derived from the

simplified equations.**) The simplified normalization conditions_given by
L2+M2+N%2 =1 L'2+M24N12 = 1 (A-5a)

are used. (2) Equations obtained by substituting o, B, vy, a', B', y' of the
order of 10! to the right hand sides of (3-23a) and similar five equations.

The normalization conditions are given by
L2+M2+N2-.1 = 107328 , L'2+M'24N12_1 = 1073.26" , (A-5b)

where 6 and 8' are constants of the order of 10-!. The solution of the

first and the second groups are written as (L,M,N), (L',M',N') and (Lg,Mg,Ng),

*)  Strictly Speaking; (3-18a) v (3-18c) ére obtained by applying the
simplification of typg—two(neglection of type-two térms), too.

#%) Strictly speaking, (3-23a) v (3-23c) are obtained by the additional
neglection of theftype-two terms and the use of the condition (3-21).

In this Appendix we use equations before the neglection.
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(L'g,M"'g,N'g), respectively. Deviations, AL, AM, AN are introduced by
Lo = L + AL , Mg =M+ aM , Ng = N+ AN .~ (A-6)

Similar equations stand for AL', AM' and AN'., Substituting them to the
second group equations and neglecting pfoducts of the deviations, we obtain
equations for detefmining the deviations. The zeroth order terms become
zero because (L,M,N) and (L',M',N') satisfy the simplified equations, so
that six linear equatiéns are obtained for the deviations. Three of them

are given as follows:
{(A-b2+c2)N + 2bcM - X; + hN'}AM

+ {(A-b%+cZ)M - 2bcN + X, - hM'}AN - hN-AM' + hM-AN' = o , . (A-7a)

{(B+a2-c2)N - beM + X; - hN'}AL - bcL-aM

+ {(B+a2-c?)L - (Y+Z) + hL'}AN + hN-AL' - hLeAN' = B (A-7b)

{(C-a%+b2)M + beN - X, + hM'}IAL + {(C-a2+b2)L + (Y+Z) - hL'}AM

+ bcL+AN - hM<AL' + hLeAM' = y , (A-7c)

where the direction of the external field is limited to one of the three
principal axes, XYZ, and the pafameter HA is eliminated by using (3-21).*)

*)  Much complex equations are obtained without these simplifications and

the above equations are sufficient for the present case. .
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The remaining three equations are obtained by interchanging primed and
“corresponding unprimed quantities and by changing @, 8, y to the primed ones.

Newly defined quantities appearing in the above equations are given by

A

S2(He* +H %) B = 2(H*-He, %) , C = 4H.,* , (A-8a)

. 1
“Z
“H )72,

[
1

= Hygyx

1 -
= T2
b= (Hysyy +Hzgy) ) 2

1

c = (Hygy, +Hyg;) (4H )2, - (A-8b)
X1 = gix*Hx , X2 = &xy"ty > | (A-8c)
Y = ng*fHY . Z =g, *H, , (A-8d)
h=2h . c | ' (A-8¢)

The normalization conditions are transformed into

103L-AL + 103M-AM + 103N<AN = & , . "~ (A-9a)

103L'«AL' + 103M'-AM' + 103N'-AN' = §' ' (A-9b)

It should be noticed that only four of (A-7a)’Q(A—7c) and three similar
equations are independent and that which of these ére independent is deter-
mined by the solution (L,M,N), (L',M',N'). We will pass this p?oblem here
for simplicity but take it into account in the following discussions. The
selected four equations and the two normalization equations can be used

-for determining the deviations because, as is seen below, they are independent
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in general. The independence is readily concluded if a seventh equation which
is obtained by requiring the determinant of the coefficients of the equations
to be zero is not satisfied automatically by the solutions. We have found a
solution which does not satisfy the seventh equation and we reject the auto-
maticity. For this case thedeviations are estimated to be of the order of
10-3 or less so thatarehcgligible for practicallpurpose.

The remaining problem is that certain solutions may accidentally satisfy
the seventh equation. Inprinciple,this canbe fully examined when we use the
computer fér the direct numerical evaluation of the determinant. In this
paper, however, we treat analytiéally solubie cases only.rvThe result
suggests that the numerical computation is not essential. The followings
are the results of the analytical treatment.

(i) H=h = 0: fictitious one-spin system at zero external field
For this case, the primed system need not be included.  When we

consider the solution N=1, L=M=0, the determinant is given by

0 A 0 = -103AB. (A-10)
B 0 0
0 0 103

A is always negative and B is not zero in orthorhombic cases so that the
determinant is not zero except for the accidental HK*==HK,* case. We
neglect such a possibility.

(ii) H=0, h#0: fictitious two-spin system at zero external field

The determinant corresponding to the solution L=L'=M=M'=0, N=-N'=1

is written as
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0 A-h 0 0 -h 0
B+h 0 0 h 0 0
0 0 103 0 0 0
0 h 0 0 -(A-h) 0
-h 0 0 - (B+h) 0 0
0 0 0 0 0 -103

= -105{(A-h)2 - h2}{-(C+h)2 +h2} . (A-11)

The right hand side is alwayslpositive because A<0, C>0, h>0.

(iii) h=0, ﬁ]/Y, gYZ=0: 'fictitious one-spin system under the external
field parallel to the hard axis (Anisotropy of the g-tensor
in the ac-plane is neglected.)

The mathematics for the generé1 ﬁ//Y case is complex but the calculation
becomes simple when we treat a special case satiéfying gYi=0. As this term plays
no essential roles in the magnetization process, examination of this.case
~gives useful informations for the ﬁ//Y case. The following solution is

considered,

L ' A
L=Y/B, M N = #(1-L2)2 (A-12a)

n
o
-

The L=Y=0 case should not be included
in the followings because we select the independent equations so as to

include N=0 case but as to exclude L=0 case. The determinant is written as
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BN 0 0 = 103BN2{(C+b?)/B+1}Y . (A-12b)

0 (C+b2)Ley 0

103L 0 103N

The right hand side is zero when and only when N=0, ﬁamely the Bending point
of the magnetization.
(iv) h=0, ﬁ//x: fictitious one-spin system under the external field parallel
to the intermediate axis
The solutions satisfying L=0, N#0 are considered. The equation deter-

mining M(and N) is given by
AMN - XjM + XoN = 0, (A-13a)
This is just the equation (3-48a) and we can rewrite it as
2 2.3,
* * s * * s - = -
(HK -+HK, )sin26 + (gXY * 8y )2sin(6-4) =0 , (A-13b)

where 6 and A defined in (3-53b) are used. The 3x 3 determinant splits
~into.a .l x:1 and a 2 x 2 determinants for AL and for'AM and AN, respectively.
AL is readily estimated to be negligible and the determinant for AM and

AN are given as
AN-X; AM+Xo

103M 103N ) (A-14a)
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Requiring it to be zero we obtain

1
* * *2 *2Y2¢3 - = -
Z(HK -+HK' )cos26 +~(gXY -fgzx )2sin(6 - A) 6 . (A-14b)

Equations (A-13b) and (A-14b) are satisfied simultaneously at the confluence

point(See §3.2.2 (c).) only. Therefore, the simplified equations are reliable.
>

(v) e, B//Y, gy

lel to the hard axis(g-anisotropy in the ac-plane is neglected.) _pmw;,~

0: fictitious two-spin system under the-external field paral-

Following the treatment in case (iil) we consider the special case. .
satisfying c=0. The solution fulfiiling L=L'#0, M=M'=0, N=-N' is considered.
The 6 x6 determinant splits into a 2x2 and a 4 x4 determinants for AM, AM'

and for AL, AL', AN, AN', respectively. The former determinant
(C+b2-h) L+Y hL

hL (C+b2-h) L+Y

{(C+b2-h)L+Y }2 -h2L2

Y 2(B+2h)~2{(B+C+b2+h)2 - h2} ' ‘ (A-15)

is always positive, so that AL and AL' are small. The latter determinant

is written as

(B+h)N  (B+h)L-Y hN - -hL , (A-162)
103L 103N 0 0
-hN -hL - (B+h)N (B+h)L-Y
0 0 | 103L -103N
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where the relations L=L' and N=-N' are used. Requiring this to be zero we

obtain
105N2(B+2h)h = 0 . ' ' : (A-16b)

As in the case (iii), the simplification is allowable unless N=0.

These examples suggest that the deviations are divergent when and only
when the lowest-engrgy soiutidns of the simplified equations degenerate in
the LMNL'M'N'-space. It is clear that such is a consequence of the mathe-
matics that a small perturb;tidn to an equation causes only a slight change
in the solution when it is not degenerate. Therefore, the simplification,
a small modification of the equation, is allowable in general and the

exceptions for?U]X, Y, Z are only the bending points for ﬁ]/Y and Z.
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B. Twelve fundamental equations

Twelve equations determining vectors (L,M,N), (L',M',N'), (1,m,n)

and (1',m',n') are presented here,

(dR; /dt+dR,/dt type)
- TIM2_N2Y - - -
2(HK+HKﬁ)MN - ZHA(M N<) 2hDM(1M Lm) + ZHDM(nL N1)
- (HXgZXM + Hzgm - HXgXYN - Han) + Zhex(MN'-NM') =0,

2(H JNL + 2H,IM + ZHDM(-mN+Mn)

g~ Hyo A

-{—HXgZXL - Hogl + Hygn + (HYgXY+HZgZX)N}
t_ 1Y =

+ Zhex(NL IN') =0,

4HK,LM - ZHANL - ZhDM(-mN+Mn)

- {HygyyL + Hygl - Hegm - (Hygy +H g M}

+ 2h _(IM'-ML') = 0 .
ex

(dR3/dt+dR,/dt type)

-2 (H+H JMINY - 2HA(M'2-N'2) - 2hp, (1'M'-L'm') + 2H 'L'-N'1")

pu (™

- '+ Hygm' - Hygo N' - Hygn') + 2h ' (M'N-N'M) = 0 ,

x8zxM
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2(HK—HK,)N'L"+ 2HAL'M' + 2H 'N'+M'n')

pM (™
- {-Hyg yL' - Hygl! + Hygn! + (Hyéxy+ﬁzgzx)Ni}
+ Zhex(N'L—L'N) =0,

4H LMY - ZHN'LY - ZhDM(-m'N'+M'n').V
-~ {Hygyy L'+ HyEL! - Hygn' - (B g, M)

- ITM_M? -
+ 2h (L'M-M'L) = 0 .

(dR, /dt-dR,/dt type)
4He'x(-mN+Mn) + 2hDMIM + ZHDMNL
- (HygM - HygN) = 0,
4H__ (-nL+N1) - 2hDM(L2+ N2) + 2H ), MN
- (-H,gL + HygN) = 0,
4H__ (-1M+Im) + 2h MN -‘2HDM(L2+M2)

- (HygL - Hyg) = 0 .

(dR3/dt-dRy/dt type)
4He£(—m'N'+M'n') +2hDML'M' +2HDMN'L'

- (HygM' - HygN') = 0,
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g ry . 12,12 N Y
4Hex( n'L'+N'1") ZhDM(L +N'<) + 2HDMM N

= (—HZgL' + HXgN' ) =0 s

o it INY L 12 2
4Hex( 1'M'+L m ) + ZhDMM N ZHDM(L +M'4)

- (HygL' - Hygh') = 0 .

- 176 -



C. 36 solutions of the H=0 and hex> 0 case

36 solutions of eqs. (3-31la) ~ (3-31c) and the associated equations are

~grouped into (i) n (ix) .

(i) L=#1, M=0, N=0,
L' =71, M'=0, N'=0.
(i) L=0, M=0, N=z#l,
L' =0, M'=0, N' =+1
(iii) (a) L=7L;, M=0, N = #N;y,
L' =iN1’ M' =0’ N'. = iL‘l:
where Ly =Fy(H* -H ,*), Ny = Fp (H* - Hy %)

and functions F;, F, are given by
Fi(x) 2{:-1@-m 2,-2)0Y2
1 2 2 ex ’
Fa(x) 2{1+1(1-4n 2x'2)%}%
2 272 ex :
(b) ‘L=4%N;, M=0, N ==Ly,

L' = ¥L,, M'=0, N' = #N;.
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(i)

)

()

(@) L=w;,  M=0,

L' = 3L, M'=0,
(') L=fL;,  M=0,

L'=3N,, M'=0,
L=21, M=0, N=0,
L'=%1,  M'=0, N'=
L=0, M=%l, N=0,
L! =0’ M? ";1, N' =
(2) L=tL,, M=%M,,

LU =2y, MU=,

where L, = F, (ZHK,*) and M, = F (ZHK, *).

(b) L=3M,, M= tLy,
L' = #L,, M! =1M2,

(a') L=1Ma, M=%Lo,
| L' = 2L, M' = My,

N =%*L,,
N' = iNl.
N=—"—7N‘1,

N' = L.

N=0,
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(b)

(a')

(b')

where M3 =F; (HK* +Hy, *) and N3 =F, (HK* +Hp, *).

L=0,

M=+Nj3,
M' = ¥Mg,
M=3Ng,
M' =+M;,
M=+M3,

M' = 3Nj3,

(b") L=4L,, M= #M,, N=0,
L' = 1M, M' = ¥L,, N' =0.
(vi) L=0, M=0, N=4xl,
L'=0, M' =0, N' = ¥1.
- (vii) L=0, M= 21, N=0,
L'=0, M' = %1, N'=0
() (a) L=0,  M=Mg, N = #Nj,
L'=0, M' = *N3, N' = *Ms,
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D. Free energies in the 2-sublattice ﬁ//Z case

For the 2-sublattice ﬁ//z case, the free energy is written as

£ o= _H *N2 _ * 2v12 s _ 1 2\M2 _ o %% _
£ = PN - (i, * 2 KDI2 (et - KM - gL (D-1)

where a simplified notation k is used instead of.g2/8Hex. The equilibrium

condition is given as follows:

~2(H* +He $)MN = 0, ‘ ' ‘ (D-2a)
* o * 2 - * - ’ -

2(H* - He,* - KH,2NL - g **HN = 0, (D-2b)
* * % - ) -

4HK' ML + g7x HZM =0. (D-Z2¢)

Solutions of (D-2a) are considered first. They are
M =0 | | (D-32)
and

N=0. ' ‘ (D-3b)r

We call the former and the latter as Case A and Case B, respectively.

Case A: M=0

Equation (D-2c) is satisfied automatically. Solutions of eq. (D-2b) axe

-N =0 (D-4a)
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= * % * _
L = g, **H,/2(H* - H

Chiket PO NP | 1O R (D-4b)

The former and the latter are called as Case Aa and Case Ab, respectively,

(Case Aa) M=N=0

For this case L and f are obtained as follows:

L=21, : ' - (D-52)

f=- (HK,*+kHZZ) F gy H, . (D-5b)

Of these two solutions, we pick up one which is given by

=
|

= sign(gzx**)-l , . ' (D-5a')

f=- (HK,*+kHZZ) - 'Igzx**IHZ = £, (H), (D-5b")

because the free energy of the other case is always larger than an.

= = ** * _ * _ 2
(Case Ab) M=0, L 87x HZ/Z(HK HK' kHZ )

= + - 2y 2 * _ _ 2y2 _
N==2{1- g,y H, /A(H* - H > kHZ )<}, (D-6a)
= _ 21 2 _ _ 2y = ' _
f=- HK* Byt HZ /4 (HK* HK,* kHZ ) = fAb(HZ) . (D-6b)
Case B: N=0

Equation (D-2b) is satisfied automatically. Solutions of eq. (D-2c) are

M=0 | , (D-7a)
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- and

L= *H/4H ¢, L] 1. _ (D-7b)

T Bzx
(Case Ba) M=N=0

This case has been treated as the Case Aa.
(Case Bb) N=0, L=-gzx**Hz/4HK,*

For this case M and f are calculated as

=
]

] _ *%x2y 2 *2 -
+{1 g, "2t /16Hy ,*} (D-8a)
- * _ 2 2 2 * = -
f HK' kHZ + gzx** HZ /SHK, = fBb(HZ) . (D-8b)
We readily see
an(HZ) < fBb(HZ) . (D-9)

Therefore, the problem is reduced to the examination of an and fAb'

First, F(HZ) is defined as

F(H,) = £, (H)) - £, (H) . (D-10)

A simple calculation gives

F(H,) = (H, *-kH 2)(1-2h+h2) , o © (D-11a)
A K- A _ ,
where
. = * - 2 _
h = |g, **|H,/2(H *-kH,2) . (D-11b)
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The first factor of eq. (D-11a) can not be zero because, if it is zero,

L given by eq. (D-4b) diverges. Therefore,

|
o

for 0 <H,6 <H

F(H)) 2 z < Haiy

and

0 for H < H . (D-12a)

F(HZ) div Z

A

where the equality stands for h=1, .in other words(See (D-11b).),

*k * _ 2y = » - *)
gy IH /200, *-xH,2) =1 (D-12b)
and Hdiv is given by
A ' 1 . )
= * 2 .
Hyjy = B 702 . - (D-12¢)
Summing up these results, Case Ab is the lowest state when HZ-<Hdiv and

|L]| 1, otherwise Case Aa is the lowest state. When the positive solution

HBZ of eq. (D-12b) satisfies H Z<I{ the transition occurs: smoothly.

B div’
The inequality IIJ <1, in other words(See (D-4b).),

-1 g gzx**HZ/z(HK_*-kHZZJ <1 -(D-13)

is considered next. This inequality has solutions:

1

H, < (1/45){<|gzx**| + (Igzx**|2 + 16kHK_*)5} < Hyo (D-14a)
and
. ) : 1 .
. 2 ) -
H, 2 (1/4k){|gzx**| + (|gzx**| + 16kH, *)2} > Hy. . . (D-14b)

+)  When h=1, L for Case Ab is #1 depending on the sign of **(20).

87x
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The former is consistent with the required condition and the latter is not.
In conclusion, by increasing HZ’ a smooth transition from the Ab-state to

the Aa-state occurs at HBZ defined by a selfconsistent equation:

Hp, = 2(H, * - kHy,2)/ fg, **| . | © (D-15)
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E. Solution of eq. (3-65)
Equation (3-65) is solved following the method by Gorter and coworkers.34)
The minimum of the free energy
f* = -(N2+N'2) - x(L+L') + h(LL' +NN') (E-1)

is considered under the following conditions for the variable x corresponding

to the external field and the constant h corresponding to the interlayer

exchange:
x(variable) 2 0 , - h(constant) > 0 . (E-2)
By writing
N = cos®9, L = sind (06 <2m, | (E-3a)
N' = cosB', L' = sin6! (0 <o <2m) , (E-3b)
f* is transformed into
f* = -(coszefcosze')-x(sine+sine')-rh(sinesine'+cosecose') . (E-4)
Next, by introducing new angles o and B defined.as
@ = %-(e,+e') ©<asg2m), (E-5a)
B =3(6-0") (msBsm, (E-5b)

f* is further converted into
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f* = -2(cos2acos?B + sinasin?B) - 2xsinacosB + hcos2B . (E—S)

The energy minimum conditions 3f*/3a = 0 and 3f*/98 = 0 yield

2cosa(2sinacos2f - 2sinasin2g - xcosB) = 0 , (E-7a3)

ZsinB(ZcoszacosB-ZSinzacosB-rxsina-2hcosS) =0 . (E-7b)

Equations (E-7a) and (E-7b) have four solutions. They are as follows:

~Case 1 cosa = 0, sinB = 0 .

By using sina =21 and cosB =%*1, the free energy are calculated as

£f* = 2x(#1)(#1) + h . (E-8)
O
sino cosB

To minimize the free energy, sina and cosB should have the same sign.

The ++ selection or a=1/2, B=0 results in 6=6'=n/2. The -- selection
similarly results in 6 =57/2, 6'=1/2 and 6 =7/2, 6'=57/2. However, the --
solutions violate the limit for 6 and 6' so that we neglect them hereafter.
The result 6=08'=n/2 satisfies the required condition L=L', N=-N'., Of

course, eq. (E-8) can be simplified to

f* = -2x + h

£5(x) . . (E-9)

Case II cosa = 0, 2cosZacosp - 2sinZacosp + xsina - 2hcosf =0 .

By using sina==i1; cosp is calculated as
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cosB = #x/2(1 + h) , x £ 2(1+h) .

Just as for Case I. the ++ selection is the only case to be considered

further. For this case, 6 and ' are given by

T + Bo >

@
]
N =
3
I+
™
o

-
<
1]
N =

where Bo is a positive acute angle defined by

cosBg = x/2(1+h) .

These 6 and 8' satisfy the condition L=L', N=-N'. The free energy is

written as

f*=-2-h- x%2/2(1 +h) = £2p (X) .

Case III 2sinacos?B - 2sinasin?g - xcosB = 0 , sinB = 0 .

By using cosB = *1, sina is obtained as

sina = * x/2 , x g2.

The ++ case is selected as before. The angles 8 and 6' are given by

6 =6"=0ay, m-oay,

where ag is a positive acute angle defined as follows:

sinao = X/Z .
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The expression of the free energy is simplified to

f* = .2 + h - x2/2 = £ (0 . (E-17)
Case IV

ZsinacoszB-;ZSinasinZB-xcosB =0, ‘ (E-18)

2cos2acosB - 2sinZacosB + xsina - 2hcosB = 0 . (E-19)

By adding (E-18)xsino and (E-19)xcosB, the following equation is derived:

2cos?B - 2sina - 2hcos2B = 0 . (E-20)
Then a useful relation between sinc and cosB is obtained as

) L

cosB = *sina(l-h) 2 . (E-21)

By inserting this relation, eq. (E-18) is transformed into
. ' - L
2sin3a/(1-h) - 2sina{l - sin%0/(1-h)} # xsina/(1-h)2 = 0 . (E-22)

Equation (E-22) has two solutions:

sina = 0O ‘ (E-23)
and

' 1 . .
sin2a = 2(1-h) (1 -n2z . | (E-24)

The former solution yields cosB =0 so that f* is calculated as
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f* = -h . - (E-25)

As this value -h is always larger than f*IgSee (E-13).), we disregard it

hereafter. The latter solution results in

1
cos2a = h ¥ Zx(1-h)2 , |  (E-26)
1 L
cos2f = *x(1-h) 2 ' ' - (E-27)
9 _ 1 '
f*=12+ (1-h)2x - 1 . (E-28)

Of course, the upper of the double sign leads to lower energy, so that the
lower of the double sign can bevneglected. The free energy f*n,(x) is
defined as
o0 sk - omZxo 1 (E-29)
Y 4 ‘ :
By employing the expressions for cos2a and cos2B, namely eqs. (E-26) and

(E-27), the domain of the variable x is taken as

1
x<2(1-h)7 . - (E-30)

Next, f*]]l and f*n, ére compared with f*II .
Case A f*q versus f*p

The following definitions of the free energies are reminded:

f*

g =-2-h-x%/2(1+h) xg20+h),

f*m =-2+h - x2/2 x

A
N
L]
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At x=0 f*II is smaller than f*__ so that, if the positive solution of the

it

3 * - 3 *
equation f I —_f*m is larger than 2, we can conclude f I[< f*m. The

equality can be simplified to
2¢l 1 A
p {-2-—-2—/(1 +h)} = 2h . (E-31)

The positive solution

L

x = 2(1+h)? (E-32)

is larger than 2.
* *
Case B f y versus f I
We consider the cross point of two curves. The equation »f*]I - f*N =0.1is
simplified to
1 y

-Ix2(3+h)/(l+h) + (1-h)2x - (1+h) =0 . (E-33)
The discriminant of this equation is obtained as

(L-h) - (3+h) = -2-2h ., | (E-34)

As this quantity is negative, two curves do not cross. At x=0 f*]I is

smaller than f*IV’ so that always f*H < f*lv .
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F. Magnétization jump and the jumping field

Two parameters, f/gxy*l and Zhex/HK+*, are determined by comparing

I,
details of the calculated and experimental magnetization‘curves. The
calculation was done for 30 combinations of the parameters shown in Table
VI . Examples of the calculated curves aré given in Fig. 32(a) and (b).
It is noticed that the jump of the magnetization remains constant when the
second parameter, Zhex/HK+*, is changed. Two quantities A and B which
charaterize.the shape of the curves are considered. A, the reduced jump

"~ in %, is 100(jump per ion)/uB<S$ {(gxy*)2-+(gzx*)2}%-and B, the reduced

jumping field in %, is 100(Hx of the jump)/HIBx, where H is the imaginary

IBX
bending field for ﬁ//x given by eq. (5-11). Téble VI shows the calculated
values of A and B corresponding to the 30 cases. The experimental result
for CuFTH indicates that A and B are 21 and 53% respectively. Rounding
them to 20 and 55% respectively, we obtain_[gzxf/gxyf[==0.20 and

Zhex/HK+* = 0.3?.
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Table VIO

Dependence of the magnetization jump and the jumping field

on two parameters.lgzxf/gXY*l and ZheX/HK+*. In the expression A/B,

A represents the reduced jump in %, namely 100(jump per ion)/uB<S>x

[(gxy*)z-r(gzx*)z]%, and B represents the reduced jumping field in %,

100(Hx of the Jump)/HIBX, respectively.

lg, v /g | o

ZX 7 °XY 0.10 0.15 0.20 0.25 0.30

Zhex/HK+*

0.20 10/64 15/49 21/39 26/33 29/26
0.25 11/71 16/55 20/45 25/37 29/31
0. 30 11/76 15/61 20/51 2642 29/38
0.35 9/81 15/66 20/55 . 26/46 29740
0.40 7/83 15/69 19/58 | 25749 29/44
0.45 5/86 13/73 20/61 23/53 29/41
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G. Antiferroelectric state of Cu(HCOO)2+4H,0

Lattice and positional parameters have recently been reported by Kay
and Kleinbe;gzs) for the antiferroelectric state of CuFTH. Table IX shows
(1) the lattice parameter, the positional parameter of HCOOf—proton and the
dipole tensor ﬁ‘corresponding to the paraelectric state studied by Okada

et al.lg)

and (2) those corresponding to the antiferroelectric state
mentioned above. As is presented in §2, the former is used for CuFTD
throughout the present paper. Here we examine qualitatively how the
conclusions of 56 are modified when the dipole tensor of the latter case

Vis used, because the crystal structure of the antiferroelectric state of
CuFTD may be closer to the latter than to the former. The essence of the
difference between two cases is the change of z/c positional parameter; which
results in different Dyz and Dik' In the low field 4-sublattice state, the
spins are nearly parallel to the x-axis so that the internal field is mostly
determined by Dxx‘ Therefore, the internal fields for two cases are similar
and the- conclusions of §6 remain unchanged. In the high field 2-sublattice
state, the spins rotate in the Ll'b-blane when the external field is in the
bc'-plane. About one half of.the shift is determined by Dyz so that the
shift for the latter case is calculated larger than that for the former by
15 v 30%. Therefore, we see that m =<S>/S in the 2-sublattice state may not

be 0.9 but 0.70.8.
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Table KX

electric®>) states of Cu(HCO00), -4H,0.

Dipole sum tensors for the paraelectriclg) and antiferro-

D,
zx’ " xz

paraelectric antiferroelectric
state state
- o -]
a 8.18 A a 8.00 A
lattice b 8.15 b 8.18
parameters c 6.35 c 6.205
B8 101.1° B 101.1°
positional x/a 0.207 - x/a 0.2052
parameters of y/b 0.692 . y/b 0.6959
HCOO™ proton z/c 0.071 z/c 0.0904
kOe kOe
D -0.48 -0.47
XX
D 0.49 0.50
Yy
AR-3 D --0.01 -0.03
zZ
(2-sublattice) b ,D 0.02 0.0
xy’ yx
D__,D -0.18 -0.23
yz© zy
D _,D 0.18 0.22
zx’ Xz
D -0.49 -0.48
XX
D 0.46 0.46
Yy
AR-4 D 0.03 0.02
2z
(4-sublattice) bD_,D 0.02 0.0
xy’ yx
b _,D -0.21 -0.27
yz©zy
D 0.22 0.27
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H. Magnetization curves for Cu(HC00),+2(NH;),CO+2H,0.

The magnetization curves for CuFUH are fully presented here. Figures
33(a), (b) and (c) represent the angular dependence of the magnetization
curve in the L;Lj3-, LléLZ‘ and LpLsz-planes, respectively. In Fig. (b) and
(c) the inserts are details of the curves around the jump. Figure 34
indicates the lack of hysteresis for‘ﬁ//Ll and Ly. Figures 35(a), (b) and
(c) show the angular dependence of the magnetization in constant external
fields. Figures (a), (b)vand {(c) correspond to the measurements in the

LiLs-, LliLz— and L2L3-planes, respectively.
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I. Abstract in German

Auszug

Die-magnetischen Eigenschaften eines zweidimensionalen Antiferromagnetes,
Cu (HC00) 7 +4H50, wurden beidé ekperimental und theoretisch mit besonderen
Interessen an den Magnetisierungsprozef gestudiert. Die Messung der
Magnetisierung bis zu 20 kOe wurde bei 4.2K auf Einkristalle von Cu(HCOO0),-4H,0
~gemacht und auch die Protonenrésonanz des deuterierten Salzes, Cu(HC00),-4D,0,
wurde bei 4.2K gestudiert. Es wurde gefunden, daB einige experimenfelle
Ergebnisse z. B. ein Magnetisierungssprung gebeobachtet bei 5.3 kOe, wenn ein
duBeres Feld zur b-Achse parallel ist, nach dem zweiuntergitteren Modell
gebraucht von Seehra und Castner nicht geerkldrt werden kdnnen. Die
vieruntergittere Theorie, in der die inter- und intra-schichten Austausch-
wechselwirkungen, die symmetrischen und antisymmetrischen Anisotropien und
die Zeeman-Energien in Be;racht gezogen wurden, wurde zu dieser Verbindung
angewandt und die experimenteilen Ergebnisse wurden genug geerklart.

Die inter- und intra-schichten Austauschfelder, Héx und hex’ wurden wie
1.5 x 105 Oe und 4.0 x 10 Oe beziehungsweise geerlangt. Das kleine Verﬁﬁltnis
von hex/Hex’ 2.7 x 1073, besfﬁpigt der Zweidimensionalit#t dieses Kristalls.

Die Magnetisierungskurve einer dhnlichen Verbinduﬁg,'Cu(HCOQ)z-Z(NHZ)2CO-2H20,
‘wurde bei 4.2K gestudiert. Die Ergebnisse zeigen ah, dag die inter;schichte
Kuppelung dieses Kristalls ist um 1/20 von der inACu(HCOO)2-4H20, wihrend der

" intra-schichte Austausch beider Kristalle ist in der gleichen Grofenordnung.
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