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Abstract 

Magnetic properties of a two-dimensional antiferromagnet, 

Cu(HCOO)2·4H20, were studied both experimentally and theoretically with 

special interests in its magnetization process. The magnetization 

measurement up to 20 kOe was done at 4.2K for single crystals of 

Cu(HCOO)2·4H20 and the proton nmr of the deuterated salt, Cu(HCOO)2·4D20, 

was also studied at 4.2K. It was found that some experimental results 

such .as a magnetization jump observed at 5.3 kOe when an external field 

is parallel to the b-axis can not be explained by the two-sub lattice 

model used by Seehra and Castner. The four-sublattice theory in which 

the inter- and intralayer exchange interactions, the symmetric and 

antisymmetric anisotropies and the Zeeman energies are taken into account 

was applied to this compound and the experimental results were satisfac-

torily explained. .~ 

The intra- and interlayer exchange fields, H and h , were obtained ex ex 

as 1.5 x 106 and 4.0 x 10 Oe, respectively. Thus the small ratio of 

hex/Hex' 2.7 x 10-5 , guarantees the two-dimensionality of the crystal. 

The magnetization curve of a similar compound, copper formate 

bis-urea dihydrat~ Cu(HCOO)2·2(NH2)2CO·2H20, was studied at 4.2K. The 

results indicate that the interlayer coupling of this crystal is about 

1/20 of that in Cu(HCOO)2·4H20 while the intralayer exchange is of the 

same order in both crystals. 
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§ 1. Introduction 

Many theoretical and experimental investigations have been dedicated 

to simple magnetic model systems. l ) Two-dimensional(hereafter referred 

to 2d) Heisenberg antiferromagnets are particularly interesting because 

their properties are sensitive to the anisotropy and the inter1ayer 

coupling. In this paper, magnetic properties of a nearly 2d Heisenberg 

S=~ antiferromagnet Cu(HCOO)2-4H20 and those of a similar compound copper 

formate bis-urea dihydrate, Cu(HCOO)2-2(NH2)2CO-2H20, are studied with 

special interests in the magnetic structure, the anisotropy and the 

interlayer coupling. 

The two-dimensionality in Cu(HCOOh-4H20(CuFfH) was first suggested 

by Kobayashi and Haseda,2) who investigated various exchange paths in 

this crystal considering the layer structure3) parallel to the c-p1ane. The 

Nee1 temperature T
N

(17K4)) is much lower than the Weiss temperature 
-. 

(175KS)) and the magnetic susceptibility has a broad maximum at about 

65K. 2) The peak of the specific heat at TN is anomalously sma11. 6,7) 

Therefore, the compound seems to be a quasi 2d Heisenberg antiferromagnet. 

Short range order effects are observed in electron spin resonance,S,9) 

" 10,11,12) d" d"ff"'· 13) 1n proton resonance an 1n neutron 1 ract10n exper1ment. 

Magnetic properties below TN also have been studied by many 

researchers. Kobayashi and Haseda(KH)2) found the induced weak ferro

magnetism in the LIL2-p1ane. Van der Leeden et a1. l4) did the proton 

nmr experiment anq concluded the P2C21/a symmetry for the magnetic 

structure. Dupas and Renard15) suggested the necessity of the 
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4-sublattice model with spin easy axis nearly along the a-axis. These 

investigations are followed by the AFMR experiment and the analysis by 

Seehra and castner(sc).16) Their analysis is the first systematic study 

of the microscopic magnetic properties below TN, although their treatment 

is limited within the 2-sublattice model because of the complexity in 

calculating the AFMR frequencies for the 4-sublattice model. Accordingly, 

a weak interlayer exchange interaction could not be taken into account. 

By using the hamiltonian which consists of the isotropic exchange, the 

symmetric and anti symmetric anisotropies and the anisotropic Zeeman 

interaction, they found that the spin easy axis is the a"-direction 

close to the a-axis and explained the 90° rotation of the antiferromagnetic 

axis cavsed by the external field parallel to the c-axis. However, they 

could not explain the jump of the magnetization observed when the external 

field is parallel to the b-axis. Ajiro and TeratalO) pointed out that 

the jump may be explained by a structure change from the 4-s!lblattice 

state to the 2-sublattice state induced by the external field. Their 

hamiltonian contains the interlayer exchange but the symmetric anisotropy 

and the anisotropic part of the Zeeman energies are dropped out. 

Ideally speaking, it is clear that one should consider the anisotropic 

Zeeman energy, the symmetric and antisymmetric exchange interactions 

both for the intra- and inter layer couplings based on the 4-sublattice 

model to understand whole magnetic properties such as the magnetization 

process and AFMR. However, it is very tedious for this compound so that 

many researchers have partly explained various magnetic properties by 

truncating the whole hamiltonian. Recently, we succeeded to analyze 
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the magnetization process without truncating the important hamiltonian 

terms. The results show that the treatment can explain all important 

magnetization process satisfactorily compared .. with the previous work. 

The extended magnetization and nmr measurements were also performed to 

ensure the treatment. 

Following the introduction, a summary of the crystal structure 

and the magnetic properties is given in §2. The general hamiltonian 

and the derivation of the magnetization curves are presented in §3. 

In §4, experimentals including the performance of the moviug-sample 

magnetometer are shown. Results of the magnetization measurements 

up to 20 kOe at 4.2K are compared with the consequences of the theory 

in §5, where the intra- and interlayer exchanges, the symmetric and 

antisymmetric anisotropies and the anisotropic components of the 

g-tensor are estimated consistently. Results of the nmr experiments 

up to 60MHz at 4. 2K are discussed in §6, \.,.here the angular dependence .. 
of the resonance field was studied mostly for the deuterated crystal 

Cu(HCOO)204D20(CuFTD). In §7, we deal with the magnetic properties of 

the similar crystal, Cu(HCOO)2-2(NH2)2CO-2H20(CuFUH), whose intralayer 

coupling is nearly equal to that in CuFTHI7) while the interlayer 

spacing of the former is larger by about 30% than that of the latter. IS) 
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§ 2. Crystal Structure and Magnetic Properties 

Unit cell of CuFTH crysta1 3) is shmffi in Fig. 1. The unit cell 

contains two chemical units. At room temperature protons of water molecules 

migrate around oxygen atoms due to the hindered rotation. 19) Ordering of 

the protons takes place at _38.9°C. 19) Symmetry of the crystal is lower 

20 21) below this temperature.' However, no apparent changes of atomic 

position were deteced by X-ray diffraction. 22) Results of recent neutron 

diffraction studies23 ,24) support the conclusions of the earlier works. 

No further structure changes were detected down to l2K by specific heat 

measurement. 25) 

Copper ions are coordinated octahedrally by two water-oxygens and 

four HCOO--oxygens. The octahedrons are elongated by about 20% along 

the H20-CU2+ directions which are denoted by Z1 for the corner ion and 

Z2 for the base-center ion in Fig. 2. Consequently, g-value,of copper 

ions is expected to be approximately 2.1 in the plane perpendicular to 

Z.(i=l,2) and 2.4 along Z .• The axes Z1 and Z2 make an angle of 41° in 
~ . ~ 

the LlL2-plane, where L1 is a bisector of two Z. 's and L2 is the b-axis. 
~ 

A · . 26) h 1· d h h .. 1 paramagnet~c resonance exper~ment as revea e t at t e pr~nc~pa 

axes of the effective g-tensor of exchange narrowed line are Ll, L2 

and L3 perpendicular to Ll and L2. The effective. g-values are g(L l )= 

2.362, g(L2)=2.ll6,. g(L3)=2.07l. 27) 

The absolute value IJI(J<O) of the magnetic interaction between 

ions in the ab-plane was estimated from the round peak of the suscep-

t ;bl.·l;ty as about 36K. 28) Th . t 1 h J'. f' t ~ ~ e ~n er ayer ex ange was l.rs 
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~ig. I Crystal structure of Cu(HCOO)2-4H20. Cu2+ ions linked by HCOO~ groups 

from 2-dimensional networks parallel to the c-plane and H
2

0 molecules are 

sandwitched between them. The double or tripl~ circles for H
2
0 indicate 

whether they are linked to Cu2+ or not. 
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(a) 

(b) 

(easy) Z 1 0' 
·0 

L3 

L, 

,.. 
a e = f3 = 1 01 • 1 ° 
.eX = 20~50 . 
er = 20.5° 

c' /C",Y(hard) 
c . 

rIt--~ b I X (second) 
,.. " a c' = 90° (c c t =11.1°) 
,.. " 

a L3 = et Ll =. 9. 4° 
" " a aft = et e" =. 8.5° 

Fig. 2 (a) Relation between H20-C~2+ directions(Zl and Z2) and the 

principal ~xes of amalgamated g-t~nsor(Ll' L2 and L3).26,27) 

Cb) Relation between the antiferromagnetic principal axes 

(a", b(L2) and c,,)16) and other axes. The notations X, Y and Z 

are used for calculations in §3. 
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inferred by KH considering possible exchange paths to be about O.IK. This 

implies IJ'/JI ~ 10- 3. Ajiro and TeratalO) have suggested from the analysis 

of the magnetization jump that the interlayer exchange field is about 

200 Oe (J' /J~lO-~) and antiferromagn~tic. This value is larger than 

the newly estimated value, 40 Oe, as will be given in §3 and §5. 

Magnetization process was first studied by KH under an external 

~ 

magnetic field H up to 9 kOe parallel to Ll, L2 and L3. Their data are 

extended up to 20 kOe by the present author29) and are shown in Fig. 3. 

It is noticed that the spontaneous ferromagnetic moment was not observed 

at zero external field. The low field susceptibility for Ll and L2 is 

much larger than that of L3. 
~ 

For H//L2, abrupt increase of the magnetiza-

tion was observed at about 5 kOe above which the magnetization gradually 

becomes flat as for Ll. The "·saturated" value is about 3% of total 

copper moments. 

Crystal structure and magnetic properties of the deuterated crystal 

CuFTD seem to be quite similar to those of light water crystal CuFTH. For 

30) example, two crystals have the same value of TN and exhibit the same 

- 11 14 15 20) angular dependence of proton resonance for the HCOD proton. ' , , 

In this paper, the HCOO- proton position of the paraelectric state of 

CuFTH crystal19) is used for calculating the dipole field for the anti-

ferroelectric state of CuFTD crystal, because the proton position of 

the latter case is not known. 

Magnetic structure was first studied by van der Leeden et al14) by 

using proton resonance of the deuterated crystal, CuFTD. They determined 

the magnetic space group P2C21/a and proposed a magnetic structure of 

7 
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2-sublattice antiferromagnet. Although their magnetic group was correct, 

the proposed 2-sublattice magnetic structure was incorrect. Dupas and. 

Renard15) studied the proton resonance again and proposed a 4-sublattice 

magnetic structure whose magnetic unit cell consists of two crystal cells. 

Their proposal of the magnetic structure is correct except for the fact 

that the spin easy direction a" in Fig. 4(a) was not found precisely. It 

is noted that the reported thermal average of spin at zero external field 

is only 53% of S=!z even in the temperature range 0.1 tU O.2TN• Ajiro and 

TeratalO) also studied the proton nmr and suggested a field-induced 

structure change from the 4-sublattice state to the 2-sublattice state. 

This conclusion is correct as will be seen later in ·§5. However, other 

two results that the spin easy axis in the 4-sublattice structure is 

parallel to the c-direction and that the weak ferromagnetism is due to 

h 0 1 h " kM" (OM)" " "d t 11,16,29,31,32) t e zya os l.ns y- orl.ya l.nteractl.on are l.na equa e. 

Antiferromagnetic resonance experiments and the analysi~ by se 

may be the remaining subject of this section. However, as this problem 

has been already considered in §l, a short summary of the results will 

be given below. The antiferromagnetic principal axes are a", band c" 

given in Fig. 2(b). The easy axis is the a"-direction and the second 

or the intermediate axis is the b-dfrection. The antiferromagnetic 

axis moves widely by applying the external magnetic field. This movement 

was mainly attributed to the tilting in the g-tensors of two copper 

ions in the unit cell. These conclusions agree well with those of the 

present paper as is seen in the analysis of the magnetization curve in §5. 
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. ••.. I. 
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.~ ....... 'J 

Fig. 4(a) Spin structure of Cu(HCOO)2·4D20 at zero external field. The 

~agnetic unit cell consists of two crystal cells adjoini?g alo?g the 

c-direction. The antiferro~agnetic easy axis a" is close to the a-axis 

in the ac-plane. The canti.ng(0.4 0) ·to b allowed by crystal symmetry 

occurs between spins in the 2-dimensional ab-plane keep~ng the adjace~t-

plane spins antiparallel. 
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(b) 

• ; 
I 
I 

I 
I 

I 
b 

JP 

~ig. 4(b) Spin structure in the high-field 2-sublattice state_ Spins in 

the ne.ighboring planes are parallel. The antiferromagnetic axis depends 

on the field direction. For example, it is parallel to the b-axis as 

shown in the figure for R in the ~c-plane.*) For details see Fig. 24. 

~ 0 0 *) For simplicity, small canting (gH/4H ..along H plus 0.4 ~to an and -0.1 .. ex· 

to e") is not shown in this :t:igure. 
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§ 3. Magnetization Process Based on the 4-sublattice Model 

In this section, we deal with the molecular field theory of the 

magnetization process at T=O. The 2-sublattice hamiltonian introduced 

by Seehra and Castner is extended to the 4-sublattice case. A weak 

isotropic interlayer coupling is newly taken into account. Equations 

of torque balance are derived from the hamiltonian and are solved. The 

4-sublattice treatment developed by Joenk33) for CuC12 -2H20 is not 

directly applicable to the present case, because roles of various 

anisotropy terms in these two cases are different. 

3.1 Hamiltonian and equilibrium conditions 

3.1.1 Torque equations and free energy 

>. 

We consider four sublattices, 1, 2, 3 and 4. The sublattices 1 

and 2 represent, as is sho\VTI in Fig. 5, the corner and the base-center 

ions of one layer and 3 and 4 represent the corresponding ions of 

> another layer. The coordinate system XYZ shown in Fig. 2(b) is used 

after SC. The axes X, Y and Z are parallel to the second easy axis b, 

the hard axis c" and the easy axis a", respectively. The hamiltonian 

H consists of three parts, namely b'o intralayer parts H12 and H34 

and the interlayer hamiltonian Hint' 

H = H12 + H34 + H. l.nt 

- 12 -
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• 
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Fig. 5 Four independent copper ions and e,ight HCOO;--protons in the 

magnetic unit cell. The positional parameters of proton-l are 

0.207, 0.692, 0.071 in the oblique abc coordinate system. The 

coordinates xyz are 'used for calculat~ng,the dipole field in §6. 
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As the present treatment is based on the molecular field approximation, 

the following reduced form is used: for example, the isotropic exchange 

and Zeeman energies in H12 are given by 

\ "*"* \-+- -+ \-+--+ -2J L ~.-~ - ~ ( L H-g1-S).. + L H-g2-S. ) 
<i,j>). j B i j J 

, (3-2) 

where the summation is taken fer all nearp.st neighbor pairs. Nand z 
<i, j> 

represent the total number of spins in 1 and 2 sites and the nearest 

neighbor spin number, respectively. Therefore, the total intralayer 

hamiltonian per ~N which is written as H12 hereafter is given as 

follows: 

-. 

(3-3a) 

with 

I = 2z IJ 1- J < 0 , z = 4 (3-3b) 

The first and the last terms of eq. (3-3a) are, of course, the isotropic 

intra1ayer exchange and the Zeeman interaction treated in eq. (3-2). 

The K-, ~- and A-terms are due to the symmetric anisotropic exchange and 
-

Dy- and Dz-terms stand for the antisymmetric anisotropic exchange or the 

Dzyaloshinsky-Moriya interaction. This hami1tonian H12 which contains 

- 14 -



the most general bilinear intralayer exchange interaction allowed by 

monoclinic symmetry for S=~ case is first introduced by SC. H34 is 

obtained from eq. (3-3a) by changing 1 and 2 to 3 and 4, respectively. 

The g-tensors gl(=g3) and g2(=g4) are given by 

where + and - correspond to gl and g2' respectively. The interlayer 

interaction H. is given by 
~nt 

I' = 2z' IJ' I , J' < 0 z' = 2 

The equations of motion are given by 

~ dSi = [ +] i dt H, Si (i=1,2,3,4) 

For example, dS1X/dt is given as 
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(3-3c) 

(3-4a) 

(3-4b) 

(3-5) 



We take thermal average of these equations with the notation < > . 

Quantities <So S'0>(i,j=1,2,3,4) are replaced by <So ><S'o> , where 
1U J~ 1U J~ 

U and a stand for one of X, Y and Z. For simplicity, normalized vector 

components X., Y. and Z. are introduced as 
111 

= <S.>X. 
1 1 

<S.>Y. 
1 1 

<S.>Z. 
1 1 

(i=1,2,3,4) 

Usually, one can assume <SI> = <S2> = <S3> = <S4> - <S>. Following 

se the simplified notations given by 

I<S>/211 = H 
B ex 

A<S>/211 
B 

I'<S>/211B = h , ex 

are used. Then eq. (3-5) is written as 

where' 
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". 

(3-6) 

(3-7) 



The equilibrium condition is given by 

dX./dt = dY./dt = dZ./dt = 0 
1 1 ,1 

(i=1,2,3,4) (3-8) 

Of these 12 equations, dXl/dt = 0 and dX2/dt = 0 are given as follows: 

(3-9a) 

'. 

(3-9b) 

The free energy in unit of magnetic field, f t ' is defined as follows: ot 

(3-l0a) 
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where 

and f3~ is obtained by changing 1 and 2 to 3 and 4. 

given by 

The term f. t is 
~n 

3.1.2 Simplification of the torque equations and the free ~nergy 

(3-10b) 

(3-10c) 

We derive the following 6 pairs of equations by adding and subtracting 

eqs. (3-8): 

, (3-11) 

where R stands for X, Y and Z. An example of these pairs obtained from 

eq. (3-9a) for Xl and eq. (3-9b) for X2 is as follows: 
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(3-12a) 

(3-12b) 
-. 

By using new vectors (l.rn.n), (1'.rn'.n'), (L,M,N) and (L',M'.N') given by 

1 1 1 
1 = 2(X1 +X2) • rn = 2(Y1+Y2) • n = 2(Zl +Z2) 

I' 
1 1 1 = 2(X3+X4) rn' = 2(Y 3+Y4) , n' = 2(Z3+Z4) 

1 1 1 
L = 2(X1-X2) • M = 2(Y1-Y2) , N = 2(Zl-Z2) ; 

1 
M' 

1 . 1 
(3-13) L' = 2(X3-X4) • = 2(Y3-Y4) , N' = 2(Z3-Z4) , 

eqs. (3-12a) and (3-12b) are rewritten as 
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+ 2hDM (-lM+Lm) + 2HDM(-lN+Ln) 

+ 2h (mn'+MN'-nm'-NM') = 0 ex 

+ 2h (mN'+Mn'-nM'-Nm') = 0 ex 

(3-14a) 

(3-14b) 

Equations (3-l4a) and (3-l4b) are the equilibrium condition of the vector 

components 1 and L, respectively. Later on, after a simplification, (3-14a) 

and similar equations derived from eq. (3-11) are used to determine the 

direction of the antiferromagnetic axes, (L,M,N) and CL' ,M' ,N'). *) Equa-

tion (3-l4b) and similar equations are used to determine the direction 

and the magnitude of the canting, Cl,m,n) and (l',m',n'). 

Before discussing the simplification, nature of the terms in eqs. 

(3-l4a) and (3-l4b) is considered. The first and the second terms of 

(3-l4a) represent the time derivative of 1 due to the ,anisotropy fields 

arising from the symmetric anisotropic exchanges. The third and the 

*) Hereafter, (L,M,N) and (L',M',N') are referred to the major 

components of the -spins and (l,m,n) and (1' ,m',n~) are referred to 

the minor components. 
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fourth terms are due to the DM-interaction. These terms indicate that 

the DM-interaction works as an effective anisotropy for the major components. 

The origin is that the energy of the system is low when the antiferromagnetic 

axis is close to the plane perpendicular to the DM-vector. The fifth term 

with {} gives the effects of the Zeeman interaction. In the brackets, 

terms with M or N are due to the tilting of g-tensors. Terms with m or n 

are due to the interaction between the external field and the minor compo

nents. The last term comes from the interlayer exchange. It is noted 

that the interaction is divided into two parts, namely interactions between 

minor components and those between major components. Next, eq. (3-l4b) is 

considered. The first term implies that torques arising from the isotropic 

and the symmetric anisotropic exchanges and acting on m originate the 

change of L. The second and the third are due to the moll-interaction. The 

spin canting in a DM-type weak ferromagnet is derived by combining these 

terms and the first term. The fourth term with { } repres~nts the 

Zeeman interaction, where terms with M and N are the origin of the spin 

canting by the external field, in other words, that by the perpendicular 

susceptibility. Terms with m or n indicate the antisyrnmetric motion of 

the spins in a tilted-g system. The last is the interlayer exchange term. 

Its nature is similar to that of the intralayer exchange term. 

To simplify these equations, we neglect terms of two types. In eq. 

(3-l4a) , terms arising from the anisotropy and the interlayer exchange 

fields acting on the minor components, namely those indicated by under-

lines ( ), are neglected. Hereafter, they are referred to the type-one 

neglected terms. Anisotropies in the Zeeman interaction of the minor 
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components are also neglected. They are referred to type-two. Terms with 

broken under1ines(-----) and deviation of Hzgzzm and ~gyyn(····· . terms) 

from their isotropic parts Hzgm*) and Hygn belong to it, where g is given 

by 

1 

g :: { ~ (gX/ + gy/ + gzz 2) }2 (3-15) 

The order of magnitude of these terms are shown in Appendix A. We have 

done calculations including the type-two terms. The result indicates 

that they introduce small corrections to the expression of the perpendic-

u1ar susceptibility and the effective canting fields. Therefore, they 

are neglected for simplicity. For the terms of type-one, complex 

quantitative examinations are desirable. We discuss this problem in 

Appendix A. The result shows that these terms are negligible up .. to lOlf. 

Oe except for two special cases. The exceptions are the bending points 
~ 

of the magnetization curve for H//y and z. Next, in eq. (3-~4b), terms 

other than the isotropic exchange, canting fields acting on the major 

component and the isotropic part of the Zeeman interaction are neglected. 

Namely, the neglected terms are the anisotropic symmetric exchange, 

canting fields acting on the minor components, anisotropic Zeeman terms 

and h -terms. Similar to the case of (3-14a), nature of the neglected ex 

terms is indicated by three kinds of underlines. 

The resulting simplified form of eq. (3-14a) and (3-14b) are as 
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follows: *) 

(3-16a) 

(3-16b) 

Similarly, the free energies f12 and f. t given by eqs. (3-10b) and (3-10c) . 1n 

are truncated as 

= 2h (LL' + MM' + MN') ex 

3.1.3 Equations for determining the antiferromagnetic axes 

.. 

The equations obtained from dR/dt-dR/dt = 0, for example eq. 

(3-l6b), are solved by using the conditions lL+mM+nN = 0**) and 

*) Remaining pairs obtained from (3-11) are shown in Appendix B. 

**) This condition arises from 1<$1> I = 1<$2> I . 
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(3-17a) 

(3-17b) 



l'L'+m'M'+n'N' = O. The solutions are 

(3-18a) 

(3-18b) 

(3-18c) 

and similar equations for 1', m' and n'. Substi tuting them in 

equations dR./dt+dR./dt = 0, six equations for (L,M,N) and 
1. J 

(L' ,M',N') are deduced. An example corresponding to eq. (3-16a) 

is given by ". 

+ (g2/4H ) { -H
Z

2MN + H 2MN - HXHyNL "ex Y 

+ 2hex (MN' - NM') = 0 (3-19) 
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Similarly, f12 given by eq. (3-l7~) is rewritten as 

-H ex 

The first three terms with underlines are isotropic, so that can be 

neglected. As X, Y and Z are the antiferromagnetic principaJ axes, 

(3-20) 

the cross term -2(HA-HDMPOM/2Hex)MN should always be zero. Therefore, we have 

For simplicity, the following notations are introduced: 

gzx - hDMg/2Hex = gzx ** (3-22) 
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Then, the equations for (L,M,N) and (L',M' ;N') are given by 

+ 2h (MN'-NM') = 0 
ex 

+ 2h (NL' - LN') = 0 
ex 

+ 2h (LM' - ML') = 0 
ex 

'. 

and similar equations which are obtained by interchanging L, M, Nand 

L', M', N'. Hereafter, we call the latter as associated equations. 

The anisotropy part f of the free energy f tot is given by 
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(3-23a) 

(3-23b) 

(3~23c) 



- {g *H (M+M') + g *H (N+N') + (g **H + g **H )(L+L')} . XY x . ZX x 0 XY Y 0 ZX Z 

+ 2h (LL'+MM'+NN') ex (3-24) 

Equations (3-23a) ~ (3-23c) and (3-24) are fundamental equations by which the 

magnetization process of CuFTH is examined. In general, we first solve eqs. 

(3-23a) ~ (3-23c) and the associated equations*) under the condition: 

, o. 
(3-25) 

Next, by inserting LMN and L'M'N' of the solutions to (3-24) and comparing 

the resulting frs, the lowest-energy equilibrium state is found. Equation 
-)-

(3-23a) and similar equations are not analytically solvable for HI IX in the 

4-sublattice state. For this case, (3-24) is examined numerically by 

using a computer and the lowest-energy state is found. 

*) Of these six equations four are independent. However, we write all 

equations for a while because the adequate set should be selected in each 

case later. 
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Equation (3-24) indicates that the free energy of the 4-sublattice 

system can be regarded as the free energy of a fictitious 2-spin system 

when the directions of the antiferromagnetic axes of two layers, (L,M,N) 

and (LI ,MI ,NI), are supposed as fictitious spins. The first and the 

second terms of (3-24) represent the effective one-ion type anisotropy. 

The third term is the effective Zeeman interaction, where the fictitious 

g-tensor is given by 

o 

o o 

o o 

The fourth term is due to the perpendicular susceptibility of the real 

system and, by this term, (L,M,N) and (LI ,MI ,NI) are inclined to be 

perpendicular to the external field. We may consider this effect as 

the field dependence of the effective one-ion type anisotropy. The 

last term is the exchange interaction of the fictitious system. As 

these terms are of the same order of magnitude in CuFTH, we must deal 

with a 2-sublattice model in which the one-ion anisotropy and the 

Zeeman interaction are comparable to the exchange interaction. 
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3.2 Two special cases: H=O and h =0 ex 

Before examining the 4-sublattice model or the fictitious 2-spin system 

in general, two special cases, the H=O and the h =0 cases, are considered. ex 

Study of them is useful for the analysis of the general case and the 

examination of the results by se. The latter h =0 case corresponds to ex 

the 2-sublattice model or the fictitious I-spin system when the primed 

fictitious spin is dis~egarded. 

3.2.1 

(a) 

H=O 

H=h =0 ex 

By neglecting the primed fictitious spin, the free energy is written as 

f = (3-26) 

The equilibrium condition is given by 

(3-27a) 

(3-27b) 

4HK, *ML = 0 (3-27c) 
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The solutions are obtained as 

L = ± 1, M = 0, N = 0 ; 

L = 0, M = ± 1, N = 0 

L = 0, M = 0, N = ± 1 

The corresponding free energies are 

f = - H * K' for L = ± 1 , 

= + HK,* for M = ± 1 

= - H * for N K = ± 1 

When HK* > HK,* > 0, N=±l gives the lowest state. In the 4-sublattice 

case the solution N=±l, N'=±l gives the lowest state. 

(b) H=O, h > 0 
ex 

For this case the free energy f is given by 

+ 2h (LL' + MM' + NN') ex -
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(3-28a) 

(3-28b) 

(3-28c) 

(3-29a) 

(3-29b) 

(3-29c) 

(3-30) 



The torque equations for H=O are 

4HK, *ML + 2h (LM' - ML') = 0 ex 

and the associated equations obtained by interchanging L, M, Nand. 

L', M', N'. These equations have 36 solutions which can be grouped 

to (i) tU (Dc). Detailed list of the solutions is given in Appendix 

C and Fig. 6 shows the characteristics of each groups schematically. 

The free energies are obtained as 

(i) f = - HK,* 

(m) f = - HK* 

(v) f = 2HK,* -

(m) f = - 2H * K 

(Dc) f = - H * + K 

2h ex 

HK, * 

2h ex 

- 2h ex 

HK, * 

, 

. 

(n) f = - HK* + 2h , ex 

(w) f = - 2HK,* + 2h ,. ex 

(\i) f = 0 , 

(vili)£ = 2HK,* + 2h ex 

The lowest-energy state is the (m)-state. 
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(3-3Ia) 

(3-Slb) 

(3-Slc) 

(3-32) 



. 

( i ) y (ii) . y ( j ii ) y 

x· x x 
z z z y 

(v i) 
.' 

(i v) y (v) Y 

~ X X X 

Z Z . 

(V jj) Y (viii) (i x ) 

X X X 

z z 

~ig. 6 Nine stable and unstable ~quilibrium configurations for the H=O 

and h > 0 case.- The arrow marks in the figure represent the directions ex . . 

of the fictitious spins. 
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3.2.2 h =0, H#O 
ex 

Three cases, HIIY, Z and X, are considered.*) 

(a) fillY 

The free energy and the equilibrium conditions are given by 

+ H *M2 - g **H L K' . XY Y 

and 

respectively. 

Equations (3-34a) ~ (3-34b) have four solutions: 

(i) L = sign(g **)01, . . Xy M=N=O 

f = - (H * + g2H 2/8H ) - Ig **IR-K' Y ex XY --Y 

'. 

(3-33) 

(3-34a) 

(3-34b) 

(3-34c) 

(3-35a) 

*) Hy ' HZ and HX can be assumed to be positive with no loss of generality. 
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(i') L=-sign(gXy**)-I, M=N=O 

f = - (H * + g2H 2/8H ) + Ig ** IH K' Y ex . Xy Y (3-35a' ) 

Hereafter, we disregard this solution because f for (if) is always larger 

than that for (i). 

(3-35b) 

(in) L = -g **H /2(2H * + g2H .. 2/8H ) . Xy Y K' --y ex 

f = H * + !(g **H )2/(2H * + g2H 2/8H ) 
K' 4 XY Y K' Y ex -. (3-35e) 

This solution can be also neglected because two terms in the right hand side 

of eq. (3-35c) is positive and, in eq. (3-35a), two terms are negative. 

Configurations (i) and (ii) are shown in Fig. 7(a) and their free energies 

are compared graphically in Fig. 7(b), where HBy is defined as 

(3-36) 

If Hy ~ HBP (ii) is lower, otherwise (i) is lower. We see later that HBy 

corresponds to the sharp bend of the magnetization curve for H//Y(e"). 
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~ig. 7(a) Two equilibrium configurations for the h =0 and HyfO case. . ex 

The 'arrow marks -~ and --t> correspond to . gxy** > 0 an~ gXY**< 0, 
. . 

respectively. 
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~ig. 7(b) 

'" (jj) 

Free energy values for two lOl'l-ene.rgy equilibrium con:\igurations 

of the hex=O and HyrO case. For simplicity we draw f+.(g2Hy
2/8Hex) 

instead of f itself, because -.(g2H//8Hex) is common in tl'lO cases. 
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~ 

The magnetization per ion, M, is calculated by the equation 

(3-37a) 

(3-37b) 

(3-37c) 

1, rn, n, 1', rn' and n' are given in eqs. (3-18a) ~ (3-18c) and similar 

equations. By substituting (3-35a) and (3-35b) in (3-37a) ~ (3-37c)~ 

the magnetizat'ion are obtained as 

1 

MX = ± llB<S>gzX* {I-(gXy**Hy)2/4 (HK -HK,*)2} '2 for Hy~HBY (3-38a) 

= 0 (3-38b) 

(3-39a) 

, (3-39b) 

and 

MZ = II <S>g **g **H /2(H * - H *) B . Xy· ZX Y K K' 
(3-40a) 

(3-40b) 
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The double sign ± for MX arising from the two possiblities of the s.ign 

+ 
for N in case eft) indicates that for H//Y both are allowed. The 

magnetization is not, in general, parallel to the external field 

because Mx' MiO. The magnetization parallel to the external field, 

MY has a sharp bending at HBy• Finite MX should be observed at zero 

external field unless gZX*=O, because MX=±J.lB<S>gzx*' MY=MZ=O for Hy=O. 

These conclusions are consistent with· the results obtained by se for 

the 2-sublattice model. 
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(b) Hllz 

The ~agnetization process is similar to the RIIY case but the calcu

lations are complex, because the vector (L,M,N) is always perpendicular to 

the external field for HIIY but is not for the present case. The free 

energy and the equilibriiun conditions are given as 

f - -

+ (H * - g2H 2/8H )M2 - g **H L KI Z ex . ZX Z (3-41) 

and 

(3-42a) 

, (3-42b) 

(3-42c) 

Comparison between the f-values of solutions of these equations is not simple, 

because one of the fls is not a linear nor a quadratic function of Hz' 

Therefore, calculations are shown in Appendix D and only the results 

are given below. 

The bending field for RIIZ, HBZ ' is given as the positive solution of 

~ self consistent equation: 

(3-43) 

The magnetization parallel to the external field is given by 
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M = II <5>{(g **)2(H * - H *)/2(H * - H * - g2H 2/8H )2}H 
Z B . ZX K K' K K'· Z ex Z 

Other components are calculated as 

M __ = II <5>g **g **H /2 (H * - H * _g2H2 /8H ) 
--y B· XY· ZX Z K K' Z ex 

= II <5>g **sign(g **) 
B XY· ZX 

and 

1 
M = II <5> [±g ** {1- g **2H 2/4(H * - H * - g2H 2/8H )2f2 

X B ZX . ZX Z K K' Z ex 

= 0 

1 
+(g 2H /4H ) { 1 - g **2H 2/4(H * _ H., * _ g2H 2/8H )2f2 
. ZZ Z ex . ZX Z K~' Z ex 

x {g **H /2 (H * - H * - g2H 2/8H )}] 
. ZX Z K K' Z ex 
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(3-44) 

(3-45) 

(3-46) 



Cc) 
-+ 
H//X 

SC have suggested the existence of the magnetization jump for this 

case but we show here that their conclusion seems not to be good. 

The free energy is given by 

(3-47) 

The equilibrium condition is written as follows: 

(3-4Sa) 

2CHK* - HK,*)NL + g *H L + g2H 2NL/4H = 0 ~ ZX X . X ex (3-4Sb) 
.. 

At first L=O is assumed as was done by SC. This point is reconsidered 

later. Equations (3-4Sb) and (3-4Sc) are satisfied automatically. By 

using (3-4Sa) and M2+N2=1, the following fourth order equation is obtained 

for M: 
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The magnetization is given by 

where the direction cosine N is given by 

1 

N = sign(gzX*)· (1 - M2)"Z" 

The sign for N is adjusted so as to minimize the free energy. 

As the fourth order equation (3-49) is not physically transparent, 

we consider graphically how the equilibrium position changes as a 

function of HX. By writing M=sinS and N=cosS, the free energy is 

rewritten as 

The equilibrium condition is given by 

1 
(HK* + HK,*)sin2S + (gXy*2 + gzx*2)2HXsin(8-11) = 0 
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(3-49) 

(3-50) 

(3-51) 

(3-52) 

(3-53a) 



where 6 is determined as 

sin6 
1 

cos6 = gzx*l(gXy*2 + gZx*2)2 •. 

Of course, eq. (3-53a) is equivalent to eq. (3-48a). 

Figure 8(a) shows the first term and the negative of the second 

term of eq. (3-53a) for the gXY* < 0 and gZX* > 0 case. In the figure, 

one of the abbreviated notations defined by 

H * = H * + H * 
K+ K K' 

H * = H * - H * 
K- K K' 

(3-S3b) 

(3-54) 

is used following SC. The figure indicates that eq. (3-53a) has 4 or 2 

solutions depending on the field strength. Next, we consider the free 

energy. Fig. (b) shows two a-dependent terms of f; 

(i) 

and 

Unless HX=O, we obtain a stable minimum in the fourth quadrant and, in 

the low field region, a meta-stable minimum in the third quadrant. 

Figure (c) shows how the extrema change with the external field. The 

situation is similar for every pairs of the signs of gXY* and gZX*. 

Thus we can conclude that the 2-sublattice model never accompanies an 

instability of the antiferromagnetic axis, in other words, never gives 

the magnetization-jump. The essence of the SC's explanation is to 

identify the disappearance of the meta-stable state to the magnetization 
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~ig. 8(b) 
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Two ~gular-dependent terms of the free en~.rgy. Minimum point 

of the sum of solid and dotted curves corresponds to the free en~rgy 

minimum. 
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F.ig. SCe) Field dependence of the free ene.rgy extrema. % and % i are 

the maximum points for HX=O. and qo and. qo I the ~inimum points for 

Hx=O. Q,., and Cl.., are the :maximum an~ the minimum points for HX=CO 

respectively. 
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jump. Of course, it is not correct. 

The assumption L=O is reconsidered. Equations (3-48a) ~ (3-48c) have 

two L#O type solutions. However, they are neglected by the follm'ling 

reasons: These solutions reduce to L=±l when HX=O and, by increasing 

HX' moves continuously to the third quadrant of the ZY-plane, namely they 

connect saddle points and the confluence point. These properties of 

L#O solutions suggest that the minimum is on the L=O plane. 

Examples of the magnetization curves are included in Fig. ll(b) of 

the next subsection.*) Open circles and open triangles correspond to 

the gZx*=O andgZx*#O cases , respectively. The contribution of X.L is 
-+ 

neglected for simplicity. It is noticed that for HX = 0 (H=O) we have from 

(3-S0) and (3-Sl) 

For HX -+ ex>, one obtains e -+ tJ. (See (3-S3a).) so that 

MX -+ llB <S> (gxy *sintJ. +. gzx *costJ.) 

1 
= II <S>(g *2 +. g *2)2 B . XY ZX 

A term arising from X.J.. is neglected for simplicity. 

(3-SSa) 

(3-SSb) 

*) These magnetization curves are obtained numerically as special(hex=O) cases 

of the 4-sublattice model instead of solving eq. (3-49) directly. Two 

methods are equivalent. 
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3.3 Magnetization process 

The magnetization process of the 4-sublattice system or the fictitous 

2-spin system is considered. The interlayer exchange field h is assumed . ex 

to be positive and three cases, H//Y, Z and X are examined. The result is 

applied to CuFTH in §S. 

3.3.1 H//Y 

The free energy is written as 

+ H *(M2 +M,2) - g **H (L+L') + 2h (LL' +MM' +NN') 
K' . XY Y ex 

The equilibrium condition is given by 

- 2 (HK* +HK,*)MN - (g2Hy2/4H )MN + 2h (MN' -NW) = D , . ex ex 

and the associated equations obtained by interchanging L, M, N and 

L', M', N'. An equivalent problem has been considered by Garter and 

coworkers34) under the assumption M=M'=D. In this paper the relation 

M=M'=Q is not assumed but derived. 
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First we notice from eq. (3-56) that f is low when MM'~ 0 and NN' ~ O. 

As f does not depend on the signs of M and N themselves, the followings can 

be assumed with no loss of generality: 

N ~ 0 , M ~ 0 , N' - -Nil ~ 0 , M' - -M" ~ 0 • (3-58) 

Then the free ene.rgy'is written as follows: 

+ H *(M2 + M"2) - g **H (L + L') + 2h (LL' - MM" - NN") • K' . XY Y ex (3-59) 

The following derivative of f is considered: 

+ 2h N"M/N - 2h M", ex ex (3-60) 

where N is not independent of Land M. The condition (af/aM)=O yields 

~ M"·h /H * - ex K+ 
(3-61) 

A similar equation can be derived for M" because M and M" are equivalent 

in eq. (3-59). As the factor h /HK * is estimated as about 1/6 in this ex + 

crystal(See §3.3.3.), the two equations conflict each other unless M=M"=O. 

Thus, the relation is proved. The spin configuration which satisfies 

M=M"=O is shown in Fig. 9(a). 
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~ig. 9 Spin con~igurations for H//Y(~ig. a) and H//x(~ig. b). Only the 

n:egative gXY~~ cases are shown for simplicity. 
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By using the condition M=M'=O, the expression of the free energy is 

rewritten as 

-g **H(L+L')+2h (LL'+NN'). . XY Y ex (3-62) 

The equilibrium condition is given by 

(3-63a) 

2(H * - H *)N'L' - g **H N' + 2h (N'L - L'N) = 0 K K' . XY Y ex . (3-63b) 

In the followings we show L=L', N=-N'. Instead of f itself, a modified 

form f* is introduced as 

(3-64) 

From eq. (3-62) we have 

f* = - (N2 +N'2) -x(L+L') + h(LL' +NN') , (3-65) 

where 

(3-66) 
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From the definition h is positive and x can be assumed as positive with 

no loss of generality. Following the method given by Gorter and co-workers,34) 

extrema of f* are found.*) Configurations corresponding to four important 

extrema are shown in Fig. 10. Their f*'s are given as 

(i) f* 
I = -2x + h , (3-67a) 

(ft) f* n = -2 - h - x2/2 (1 + h) for x ~ 2(1 + h) , (3-67b) 

(ill) f* = -2+h-x2/2 for x~2 , (3-67c) III 

1 1 

(ill) f* 1 2 (1 - h) 2x - 1 for x ~ 2(1-h)2 (3-67d) = 4 x - . N 

By comparing f*'s, the relation f*III' f*N:>f*n is deduced. The resulting 

allowed configurations (i) and (ft) satisfy the required condition L'=L, 

N=-N' . 

Under the condition L'=L, N=-N', f is written as 

- 2g **H L + 2h (L2 - N2) 
° XY Y ex • 

The equilibrium condition is given by 

2(H*-H *+2hO)NL 
K K' ex g **H-~ = 0 • XY y--

(3-68) 

(3-69) 

*) For details of the calculations and for the comparison of f*'s of the 

extrema, see appendix E. 
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~ig. 10 Spin con~igurations correspondi?g to four non-trivial extrema 

• ~f fif /Y· case. Spin-2 which is nearly antiparallel to I and spin-4 

nearly antiparallel to 3 are not shown for simplicity . The arrows 

-+ . and--t> correspond to. gXY ** > 0' and:. gXY ** < 0 , respectively. 
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The free energy and the equilibrium condition can be transformed into eqs. 

(3-33) and (3-34b) ~especti vely, *) when HK* + hand HKt * - h are converted ex ex 

to HK* and HKt *. Therefore, follm'ling the results of the former case, we 

obtain 

(3-70a) 

(3-70b) 

where 

(3-71) 

We use eqs. (3-70a) and (3-70b) in the analysis of the magnetization curve 

-+ 
for HIIY(b). Comp·onents perpendicular to the external field are given by 

= ~ <S>sign(g **)g ** B . . xy . zx (3-72) 

MX = 0 • (3-73) 

MZ is smaller than My by a factor gZx**/gXY**' The last conclusion MX=O 

is an important result of the four-sublattice model. 

*) In comparing eqs. (3-68) and (3-33) we may make M=O in the latter 

equation, because the low-energy states of (3-.33) satisfies the condition. 
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3.3.2 HIIZ 

For this case, rigorous treatments are not done because the calculations 

seem to be very complex. As an alternative, we assume that the similarity 

between the HIIY cases of h =0 and h fO can be extended to the HIIZ cases. ex ex 

Then the magnetization parallel to the external field is given by 

M = II <S>(g **)2(H *-H *+2h )H 12(H *-H *_g2H 2/8H +2h )2 
Z B . ZX K K' ex Z K K' Z ex ex 

(3-74a) 

= II <S> ( I g ** I + g2H 14H ) B . ZX . Z ex (3-74b) 

where HBZ is determined by a self-consistent equation 

(3-75) 

In §5.2.2 these results are applied to CuFTH. 
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3.3.3 
+ 
H//X 

h +. 1 d It is noticed that the magnetization jump appears w en H l.S app ie . 

parallel to X(b).· The free energy for HI IX is given by 

+ 2h (LL'+MM'+NN') • (3-76) 
ex 

The method given in 3.3.1 is not applicable for the present case. However, 

there are two evidences for L=L'=O; (1) If gzX*=O, the rigorous method works 

giving L=L'=O. (2) Qaulitative considerations using an equation similar to 

eq. (3-61) of 3.3.1 suggests L=L'=O provided h <HK*-HK,*+g2Hx2/8H. To ex ex 

insure L=L'=O directly for the case of CuFTH, f is examined by using a 

computer. Various sets of magnetic parameters including the case corre-

sponding to CuFTH are considered. Intervals of latitudes e, e' and 

longitudes ~, ~' (See Fig. ll(a).) in the computation are both 6°. Nine 

values of HX are considered. Small terms arising from the perpendicular 

susceptibility which favors L=L'=O are neglected for simplicity. The 

results clearly indicate L=L'=O. An example is. given in Table I. 

By inserting L=L' =0, the free energy is simplified to 
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-, 

Table I Field dependence of equilibrium latitudes 8, 8' and longitudes 
+. 

~, ~' for H//X. For the definition of a?gles, see Fig. ll(a). The results 

given below are obtained by using the magnetic parameters corresponding 

to the case of Cu(HCOO)2·4H20. The parameters are listed in the lower 

part of the table. The signs for. gXY* and gZX* are taken as negative and 

positive, respectively. 

Igzx*IHxlHK* 8 , ~ 8' , ~' 

0.0 0 - 180 -

0.1 6 270 174 270 

0.2 12 270 162 270 

0.3 24 270 156 270 

0.4 30 270 144 270 

0.5 42 2.70 48 270 

0.6 54 270 54 270 

0.7 60 270 60 270 

0.8 60 270 60 270 

2h /H * = 0.5 , H */H * = 0.4 , .. lgz/lgXY* 1= 0.2 ex K K' K 
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~ig. Ilea) Def~nition of latitudes e; e' and l~ngitudes ~~ ~'. 
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The equilibrium condition is given by 

-2h (MN' - NM') = 0 (3-78) ex 

_ and an equation obtained by interchanging M, N, and M', N'. Analytical 

solution of these equations still seems to be difficult. Therefore, the 

numerical examination of f is done again by using a computer. The minimum 

of f** defined by 

f** ~ f + (g2H 2/4H ) - 2H * 
- X ex K' 

is considered. By using eq. (3-77) and the condition M2+N2=1, f** is 

transformed into 

f** = -(H
K

*+H
K

,*)(N2 +N,2) -- {g *H (M+M') +g *H (N+N')} - XY X ZX X 

+ 2h (MM' + NN') . ex -

In the numerical analysis of eq. (3-80), intervals of eand e'are both 

20 and 50 or more points of HX are considered. Several combinations of 

parameters are considered so as to visualize some typical cases and to 

reproduce the magnetization curve of CuFTH. The magnetization is 

ca~culated by using , . -
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Figure II (b) shows the resulti.ng ~agnetization curves *) for several typical 

cases, where X.l term in eq. (3-73) is dropped for simplicity: giving 

(3-82) 

Figure (c) represents a and at as a function of the field for a speical case 

where the parameters take the values close to those of CuFfH. Figure (d) is 

the corresponding magneti~ation ·curve. The theoretical curve**) is clearly 

consistent with the experimental result. Details of the adjustment of the 

parameters are given in §S.2.3. 

The high field state seems to correspond to the a=a' type extremum of 

the free energy (3-77) (M=M' and N=N' are consistent with (3-78) and the 

associated equation.). If it is true, the magnetization curve in this region 

strictly coincides with that of the h =0 case. We assume this to be true. ex 

*) The magnetization curves can be assigned by two parameters, .lgzx*lgXy*1 

and 2h /HK *, when the magnetization and the field are normalized by ex + . 

llB<S>[(gXy*)2+-(gzx*)2]~(see(3-SSb).) and HK+*llgXy*l, respectiv~ly. The latter 

scaling property can be seen by dividing f** of (3-80) by HK+* and rewriting 

the second term as HxI(HK+·*/gXY*) (M+M') +.(gzX*lgXy*)HX/(HK+*lgXy*)(N+N'). 

**) The jumping occurs Hx:::< 2h / Igzx*1 whereas the jumping field for 'the . ex . 

mechanism s.uggested by Aj iro and Terata 10) is 2h / I gXY* I which results in ex· 

an over-estimation- of hex by a factor .lgx/lgZx*I. In CuFfH and CuFUH, 

this factor amounts to about 5 and 10, respectively. 
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3.4 Spin rotation in the high-field state 

In order to analyze the angular dependence of the nmr spectra in the 

high field 2-sublattice state(See §6.3.2.), the spin direction is studied 

as a function of the field direction. As the rigorous treatment of this 

problem is difficult, we simplify the calculation by neglecting terms 

arising from anisotropy and perpendicular susceptibility. Then, the 

equilibrium condition is written as 

The corresponding f is given by 

where a constant term coming from h is neglected. ex 

(3-83a) 

(3-83b) 

(3-83c) 

(3-84) 

If the field direction is not parallel to a special direction satisfying 

**H **H 0 hi· . . b gXY y+gzx Z=, t e so utlon 15 glven y 

(3-85a) 

(3-85b) 

(3-85c) 
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where G is defined by the following equation: 

1 

G :: {(gXy**Hy + gZ/*HZ) 2 + (gXy*HX)2 + (gz/HX)2}2 • 

When the external field is in the YZ-plane (HX=O), eqs. (3-8Sa) IV (3-8Sc) 

are simplified to 

M=O, N=O, 

where the sign of L is determined by using energy-minimum condition. 

+ 
For the case H//X(~=HZ=O) we have 

1 

M = gXy*sign(Hx)/(gz/2 + gXy*2)2 , 

1 
N = *. (H )/( *2 *2)2 gzx s~gn X . gzx + gXY 

(3-86) 

(3-87) 

(3-88a) 

(3-88b) 

For the sake of later use, we consider the spin rotation when the field 

direction is rotated in the plane shown in Fig. l2(a). For this case eqs. 

(3-8Sa) IV (3-8Sc) can be rewritten as 

L = sinw(gXy**sino + gZX**coso)/Gt 

M = coswgXy*/G' , 

N = coswg */G' . ZX ' 

.. 
where G' is given by 

1 

G' = {(g **sino + g **coso) 2sin2w + (g *2 + g *2) cos 2w}2 . Xy . ZX . Xy . ZX 

- 6S 

(3-89a) 

(3-89b) 

(3-89c) 

(3-90) 



To make clear the physical meaning of the result, a simple example is 

considered. Let gZX*.=gZX**=O, o=TT/2, then eqs. (3-89~) IV (3-89c) are 

reduced to 

1 

L = sinwg **/(g **2sin2w + g *2cos2w)2 Xy . Xy Xy , 

1 
M = coswg **/(g **2sin2w + g *2cos2w)2, Xy ·XYXy 

N = 0 • 

When the weak ferromagnetism is pure g-tilting type: . gXy**=gXY*' eqs. 

(3-9la) and (3-9lb) result in 

cos(n+w) = 0 , 

where n is defined, as is shown in Fig. l2(b), by 

L = cosn, M = sinn 

(3-9la) 

(3-91b) 

(3-9lc) 

(3-92) 

(3-93) 

When the weak ferromagnetism is pure Dzyaloshinsky-Moriya type: gXy**=-gXY*' 

we have 

cos (n - 00) = 0 (3-94) 

Eqs. (3-92) and (3-94) indicate that the senSe of the forced spin-rotation 

in the g-tilting type weak ferromagnet and that in the DM-type weak ferro-

magnet are different. Namely, in the latter case, the spin rotates with the 

external field but, in the former case, the spin rotates in the opposite 

direction. These conclusioris are applied to the discussion of the experi-

mental results in §5 and 6. 
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§ 4. Experimental Procedure 

4.1 Preparation of crystals 

To obtain high purity specimens, commercially obtained copper 

formate tetrahydrate was purified by recrystallizations. The light-water 

single crystals were obtained by slow cooling of the solution of 

purified materials. A part of the purified materials was deuterated 

and the D20 single crystals were grown from the heavy-water solution 

of the deuterated polycrystals. Three D20 single crystals with 

dimensions of about lcm·lcm·lcm and several H20 crystals were used 

for experiments. The crystals were stored in liquid paraffine to 

prevent efflorescence. 

4.2 Measurement of magnetization 

The measurement of magnetization was done by using a moving-sample 

magnetometer specially designed and constructed for the present 

experiment. The outline of the apparatus is shown in Fig. 13. The 

characteristic of the apparatus i~ its convenience in measuring 

the angular dependence of the magnetization curve. To obtain 

accuracy of the order of 1% throughout the change of the field 

direction performed by the rotation of the sample and the interchange 

of ~h'e sample itself:*) a small fraction of the space between pair coils 

is used for the sample. The volume bet\'leen the coils is about 20cm3 

~) This means the change in the sample shape. 
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Fig .13 The movi,ng-samp1e ~agnetometer for studyi,ng the a,ngular . 

dependence of the .magnetization curve. ~ 

- 69 -

I . 



· and the sample volume is about O.7cm3 . As a result, (1) the signal 

to noise ratio and (2) the accuracy in the blank subtraction are not so good 

as an ordinary moving-sample magnetometer. The signal was amplified and 

integrated by using operational-amplifier circuits. The integrated voltage 

was read by using a digital voltmeter and about ten readings were averaged 

by hand calculations. 

Figure 14 shows the average of voltmeter readings as a function 

of the field direction for a test sample made of the manganese Tutton 

salt. The results guarantee the accuracy'of the apparatus in the angular 

dependence measurement. 

Axes of the crystal were determined by using the crystal habits given 

in Fig. 15. The crystal was polished to near cylindrical form to fit the 

sample case. The estimated overall error of the sample cutting and setting 

is ±3°. The X-ray test of a sample indicates that the accuracy is within the 

estimated value. Comparison of the result of the magnetization measurement 

with the published data2,17)also supports the estimation. 

4.3 Proton resonance 

Schematic view of sample setting for nmr measurement is shown in Fig. 

16. Sample crystals were polished to near cylindrical form convenient to 

fit closely in a glass tube on which the sample coil is wound. Error of 

sample setting is larger than that of magnetization measurement. Error of 

aXls in polishing the crystal is not more than ±SO. Error of setting the 

crystals in each runs is estimated ,~ithin ±3°. 
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Fig. IS Crystal habit of Cu(HCOO)204H20 and 4D20crystalso 

o· 
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The nmr signals were obtained by using a Pound-Knight spectrometer 

operating from 1.2 to 60MHz at liquid helium temperature range. First 

derivatives of absorption signals were obtained by sweeping magnetic 

field. Resonance signals coming from free protons of residual liquid 

paraffine were used as a marker of magnetic field. The amplitude 

of field modulation was 10 Oe peak to peak. Although this 

value of modulation is large compared with those used in ordinary 

proton resonance experiments, it was selected for good signal 

to noise ratio. As a result, detailed knowledge of line shape 

and line width was not obtained. 

Two examples of the recorder trace are given in Fig. 17. 
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Fig. 17 Two examples of the proton nmr signals for the D20 crystal at 
-+ . . " 

4.2k. (a) "Signals for H apart from the -c-axis by 20° to the a-axis in the 

ac-plane. The upper and the lower f~gures correspond to the spectra 

below and above the free proton line~ respectively. 
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§ 5. Analysis of the Magnetization Curves 

In this section, results of the magnetization measurements are presented 

and analyzed by using the theory of the magnetization process developed in §3. 

Subsection 5.1 consists of the description of the experimental results and 

their qualitative considerations. The quantitative examination is done in 

§5.2. 

5.1 Experimental results 

The magnetization measurements were done in three planes, LIL2, L2L3 and 

LIL3. Figures 18 and 19 represnt the results. Most features of the earlier 

work(KH)2) are reproduced as was discussed in §2. However~ a noteworthy 

difference can be pointed out between the results of two experiments. It is 

+ 
the fact that, in the earlier work, the magnetization curves for HIILI and 

L2 coincide with each other at high field region but they do not in the 

present work. Namely, the magnetization curve for the L2-axis saturates 

slower than that for the Ll-axis and the "saturated" magnetization is about 

20% larger than that for Ll. These facts indicate, as we shall see later, 

that the magnetization process for two axes are considerably different fr.Qm each 

other and that two mechanisms of weak ferromagnetism, theOzyaloshinsky-Moriya 

(OM) and the tilted g-tensor mechanisms, should be taken into account at the 

same time. 

The weak ferrom.agnetism(wf) was attributed in some papers2 , 10,15) to the 

Dzyaloshinsky-Moriya interaction but in others16 ,3l) to the tilting of 
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g-tensors of two copper ions in the unit cell. The present result suggests 

the latter is the case except for a relatively small contribution from the 

DM-mechanism. The reason is as follows: If the wf is due to the DM-interaction, 

differential susceptibility after the saturation of the induced wf should be 

-+. always X~ for H ln the LIL2-plane. On the other hand, if the wf is due to the 

g-tilting mechanism, the susceptibility should be X J.. for HI ILl and L2 and be 

considerably smaller for H along intermediate directions(See §3~4.). The 

experimental result (solid squares in Fig. 3 or the dip in the 14.7kOe curve in 

Fig. 19(b)) supports the latter mechanism. 

The absolute value IJI of the intraplane exchange constant estimated from 

x J. by using molecular field approximation is SOK. The result is considerably 

larger than the value, 36K, obtained from the temperature of the susceptibility 

. 28) .*) maXl.mum. 

A jump of magnetization is observed in the L2L3-plane. Angular dependence 

of the jumping point is given in Fig. 20(a). The result indicates that the 

jump corresponds to the phase boundary observed in a proton resonance experi

ment(decrease of the number of 1ines).35) As one rotates the field direction 

from L2 to Lb the jump gradually changes to the bend at about the same field. 

Angular dependence of the bending field in the LIL3-p1ane is also given in the 

figure. In the angular dependence of proton resonance, abrupt decrease of 

*) The Weiss temperature of l50K2) or l75K5) implies IJ I = 75 tU 88K. These 

values are larger than the value estimated from ~he susceptibility maximum. 

The discrepancy may be due to the deficient accuracy of the determination of 

the .Weiss constant. 
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separation is observed on the bend-type boundary(See §6 or top of Fig. 1 of 

ref. 31.). Angular dependence of the proton resonance anomalies obtained from· 

the nmr result of the present paper is given in Fig. 20(b). 

The phase outside the boundary is a 2-sublattice state,16,31,32) but 

h ' 'd h bd' h 'd 'f' d 10,14,15,16) t at lnSl e t e oun arles as not yet 1 entl le . We consider 

the nature of the latter. One sees that the easy axis lies near the L3-axis, 

since the observed susceptibility along L3 is remarkably smaller than x'. The 
, .L 

result is consistent with the conclusion of ref. 15 and 16. The magnetic 

structures~hichare compatible both with the appearance of wf and the proton 

resonance results are a 4-sublattice structure with hidden canting and a 

2-sublattice one with domains of wf. The former is consistent with the 

observation, since the magnetization curve along L2 is reproduced theoreti

cally only for the 4-sublattice structure with a" easy axis16) having a weak 

(1O-2K) coupling between neighboring layers (See §3.). On the contrary, one 

has to assume a very unnatural behavior of the domains for the 2-sublattice 

structure as was discussed by Seehra and Castner. 16) In conclusion, the 

phase boundary corresponds to a transition from a low field 4-sublattice 

state to a high field 2-sublattice state. 
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., 

5.2 Analysis of the results 

~ . 
Three cases, H//Y(c"), Z(a") and X(b) are consl.dered. The magnetization 

~ 

curve for H//X(b) is given in Fig. l8(b) and (c). But the magnetization 

curves strictly corresponding to H//Y(c") and Z(a") are not found in Fig. 18 

because, in the present experiment, the measurements were done with 100 step 

in the fourth quadrant of the LIL3-plane. However, the angle between the 

V-direction and the direction indicated by the notation 1460 in Fig. 18(a) is 

only 2.10 so that the 1460 data can be practically regarded as the c" data. 

For the a" direction, the angular dependence of the magnetization given in 

Fig. 19 (a) is helpful. One sees that the magnetization for H/ /a" is 10 ~ 15% 

smaller than that for the 96 0 direction of Fig. 18(a). 

The diamagnetic susceptibility of CuFTH is estimated from the ionic 

susceptibili ties. 36) The estimated value, 82 x 10-6 emu/mol, amounts to 

about 4% of the perpendicular susceptibility of this crystal. The correction 

due to the diamagnetic susceptibility is therefore small but is taken into 

account in the followings. 

5.2.1 H/ /Y(c") 

The experiments clearly show the linear increase of the magnetization 

and the bending predicted by the theory (See eqs. (3-70a, b).). Comparing the 

experimental value of the high field susceptibility and the last term of 

eq. (3-70b), we have 
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~ <S>g2/4H = 0.37 x 10-26 emu/ion. 
B ex 

As g, the average of gxx' gyy and gzz defined by (3-15), is 2.19, Hex is 

estimated as 

H /«S>/S) = 1.50 x 106 Oe , 
ex 

(5-1) 

(5-2) *) 

which yields IJ 1 of 50K mentioned in the precedi.ng subsection when <5>/5 = 1 

is assumed. Next, we can estimate ~B <s>lgxy** 1 from the h.igh field line 

extrapolated to H=O (See (3- 70b).). The experimental result gives 

(5-3) 

which yields 

(5-4) 

The bending field is 5.6 kOe so that one obtains from (3-71) 

(5-5) 

The accuracy for the estimation of H ,±15%, is poorer than that· for 
ex . 

" other parameters ( several %), because the perpendicular susceptibility of. 

this crystal is obtained from the experimental results in a rather narrow 

range of the field by subtracting the blank susceptibility of the sample 

holder and binding materials, which amounts to about 30% of the susceptibility 

of the sample and fluctuates about 50% from experiment to experiment. 
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Using the value oflgxy**I<s>/Sgiven above,. we have 

(5-6) 

The theoretical magnetization curve obtained by using these parameters is 

shown in Fig. 21. The calculation agrees well with the experimental results 

except for the inconsistence around the bending point. The calculation 

can be improved, in principle, by using the original rigorous equations 

such as (3-14a) and (3-14b) instead of the simplified forms as (3-16a) and 

(3-16b). HOl"ever, it is not done in this paper. 
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5.2.2 
-+ 
H//Z(a") 

In order to calculate the magnetization curve for H//a" by using (3-74a,b), 

the value of g ** is necessary. It is estimated from the relation zx 

gzx** /gXY**= -tan(ang1e between a" and L3 or that between c" and Ll) *) 

= -tan(-17.9°) = 0.3230 • (5-7) 

By using the value ofl gXY** I <S>/S given in eq. (5-4),. .Igz/* I is estimated as 

Igzx**I<s>/s = 1.6 x 10-2 • (5-8) 

The calculated magnetization curve is given in Fig. 21, where the bending 

field HBZ is calculated by using (3-75) as 

HBZ = 1.06 x 104 Qe • (5-9) 

*) We use the simplification used in §3.4 in the h.igh field 2-sub1attice 

state. When the field is in the ac-p1ane the magnetization parallel to the 

external field is found from eq. (3-84) to be proportional to 

.lgXy**sin8 + gzX**cos8 I , 

where 8 is the angle of the external field from the a"-axis measured toward 

the c"-axis. A constant term arising from the perpendicular susceptibility 

is neglected. The minimum of this quantity is obtained when 8 satisfies the 

relation: 

tan8 = -g **/g ** . . zx . Xy 

The direction of minimum magnetization is the L3-axis. 
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Two experimental points in the figure are taken from the angular dependence. . . 

Detailed experiments on the similar compound CuFUH indicate that two experi-

mental points (x) in Fig. 21 can be interpolated by a monotonic smooth curve. 

Therefore, the calculation seems to be plausible except for the sharp bending 

at about 11 kOe(H
BZ

) which may arise from the simplification of the calcula

tion. 
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5.2. 3 HI I x (b) 

In this case, the parameters determining the magnetization curve are 

gXY* '. gZX*' HK+ * and hex· At first, their roles are considered qualitatively. 

We notice from (3-55a,b) that the "saturation" magnetization and the extrapola.;.. 

tion of the magnetization curve after the jump to H=O(See the left broken line 

in Fig. 11 (d) .) are proportional to .(gXy*2 + gZx*2)~ and .lgzx*l, respectively. 

The experimental result indicates that I gzx * I is 115'" 1/3 of I gXY* I. There

fore, the height of the ~agnetization curve is mostly determined by .lgXy*1 

and the shape of the magnetization curve is modified by the ratio I gZX*/gXY * I. 
On the other hand, as has been pointed out in §3.3.3(foot note of page 60), 

the external field, the abscissa of the magnetization curve, can be scaled 

by HK+ *llgxy* /. Consequently, the ratio 2he/HK+ * (The factor 2 is added for 

convenience.) can be considered the second quantity which determines the 

shape of the magnetization curve. 

Before determining the parameters precisely, we examine the order of 

magnitude of them. By using the height of the magnetization curve,lg){y*1 

is estimated to be about 0.06. The computed curves given in Fig. ll(b) 

indicate that the magnetization saturates at a field satisfying 

(5-10) 

The experimental results show that the corresponding field in CuFfH is 

about l5kOe. Therefore, HK+* is calculated as about 230 Oe. Equation 

(5-6) indicates that 2h is less than 140 Oe so that 2h IHK * is estimated ex ex + 

to be at most about 0.5. The theoretical curves also indicate that, when 
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Igzx*/gxy*1 and 2hex/HK+* have the values mentioned above, the linear part 

of the theoretical, in other words, computed ~agnetization curve before the 

jump practically coincides with the line correspond~ng to gZX*=O. For gZX*=O, 

analogously to eq. (3-71), the bending field is given by 

(5-11) 

where the suffix I(imaginary) indicates that the bending does not occur in 

real gZX*10 systems. 

The fine adjustment of .lgzx*/gxy*1 and 2hex/HK+* is done in Appendix 

F by comparing the detai Is of the shape of the experimental and the computed 

magnetization curves. The result shows 

and 

2h /HK * = 0.35 ex + 

The accuracy of the estimation is about 10%. 

(S-12a) 

(S-12b) 

Using the perpendicular susceptibility given in §S.3.1, we obtain for 

the "saturation" magnetization 

1 
l1B<S>(gXy*2 + gzX*2)2 = 0.28 x 10-21 emu/ion, (5-13) 

which yields 

(5-14) 
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By using the ratio of two g's given in eq. (5-l2a)~. gXY* and: gzx* are 

calculated as 

The initial susceptibility minus the h.igh field susceptibility is 

estimated from the experimental results as 

0.28 x 10-25 emu/ion • 

Dividing the "saturation" magnetization by it one obtains 

HXIB = 10.0 kOe , 

(5-15) 

(5-16) 

(5-17) 

(5-18) 

because the height divided by the tangent gives the abscissa. Using the 

ratio of 2h to HK *, Igxy*I«s>/s) given in eq. (5-15) and eq. (5-11) we . ex +. . 

have 

HK+*«S>/S) = 0.22 x 10 3 Oe • (5-19) 

h «S>/S) = 40 Oe • (5-20) ex 

The calculated magnetization curve is given in Fig. 21. Theagreement 

between the calculation and the experiment is good. 
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5.2.4 ~agnetic parameters 

The left column of Table n represents the parameters obtained in the 

preceding subsections, where HK_* is determined from eqs. (5-6) and (5-20). 

The s.igns of g-components are determined in the proton resonance experiments 

in the next section. 

The right column of Table n represents the parameters obtained by 

using the definitions of these parameters given in §3. The spin canting 

10 at zero external field is estimated from (3-1Sa) as 

- 97 -



Table IT ~agnetic parameters of Cu(HCOO) 2 ·4H20 determined from the analysis 

of the magnetization curve. The left half of the table shows the para

meters determined directly from the analysis and the ~ight half shows the 

parameters derived from them. 

H /«S>/S) 1.S0x 10 6 Oe HK*<S>/S 1.4 x 102 Oe 
ex 

H *<S>/S K+ 2.2 x 102 Oe HK,*<S>/S 8.9 x 10 Oe 

H *<S>/S K- 6.0 x 10 Oe g <S>/S .xy - 5.5 x 10-2 

h <S>/S 4.0 x 10 Oe g <S>/S - 2.2 x 10-3 
ex . ZX 

g **<S>/S . Xy - 5.0 x 10- 2 HDM 6.2 x 10 3 Oe 

g **<S>/S ZX 
_ 1.6 x 10- 2 hDM 1.9 x 104 Oe 

gXY*<S>/S - 5.9 x 10- 2 HA<S>/S 3.9 x 10 Oe 

g *<S>/S . ZX 
1.2 x 10- 2 10 6.4 x 10- 3 
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§6. Analysis of The ResuLts of Proton Resonance 

6.1 Experimental results 

6.1.1 Angular dependence 

Experiments were carried out in the ac-, L3b- and bc'-p1anes by rotating 

single crystals. Examples of the angular dependence of resonance point are 

shown in Fig. 22. As the frequency dependence below s~mz and the temperature 

dependence at liquid helium temperature range are sma11,14,15,37) they are 

not discussed in this paper. 

6.1.2 Phase boundary 

The shift of resonance field 6H given by 

is considered, where Hr is the observed resonance field and Hf is the 

resonance field of a free proton. The shift is of cource coming from the 
+. 

(6-1) 

internal field Hl due to the magnetic moment of copper ions. The internal 

fie1d(about O.3kOe) is considerably smaller than Hf of the present experi-

ments(1.3kOe for S.7MHz). For this case, the shift is given by 

AIJ Hi ~(H\) 2/Hf + • 
01=- II ~ ..1. (6-2) 
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.., 

where II and 1 are used for components parallel and perpendicular to the 

external field respectively. 

Above about lSMHz ~H is practically given by the first term of eq. (6-2). 

Therefore, if the internal field(or the magnetic structure) is not influenced 

by the external field, the angular dependence of ~H is a sine curve for every 

frequency and the shift plotted versus frequency is flat for every field 

·direction. 

Frequency dependence of ~H is shown in Fig. 23 for three typical direc-

tions, LI, L3 and.B. The direction B is a bisector ofb and L3• It is 

selected instead of b because the frequency dependence for b is accidentaly 

insensitive to the change of magnetic structure. The frequency dependence 

given in Fig. 23(a) and (b) indicates that the magnetic structure changes with 

the external field for HIILI but it does not for HIIL3 up to l4kOe. In the 

former case, the structure becomes independent of the field intensity above 

about 6kOe. Field dependence of the magrietic structure for HIIB is analogous 
~ 

to that for HIILI' Similar boundary(change of separation or cha?ge of number) 

is seen in the angular dependence given in Fig. 22. The transition occurs at 

a field much lower than the estimated16) spin flop field(22kOe). 

Fig. 20(b) shows a profile of the boundary. Dotted lines in the figure 

represent the phase boundary determined from a jump or a bend of the magneti-

'zation curve. Boundaries in two experiments are due to the same origin. The 

result in the L3b-plane is consistent with a recent work by Dupas and Renard. 3S) 
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6.2 Dipole field 

6.2.1 Magnetic unit cell 

The angular dependence of the resonance point at 59MHz indicates that the 

high field state has two internal fields except for small splitting. For this 

case, the magnetic unit cell is identical with the crystal cell. It is because 

we have two internal fields if the magnetic cell is the same as the crystal 

cell *) and have larger number of fields ,.,.hen the magnetic cell is larger than 

the c"rystal cell. The magnetization curve shows that the magnetic structure 

is a 2-sublattice weak ferromagnet in which adjacent spins in the 2d ab-plane 

are nearly antiparallel and those in neighboring planes are parallel. The 

result is shown in Fig. 4(b) by taking the spin direction parallel to the 

b-a~is.**) 

In the low field phase, the magnetic unit cell consists of two crystal 

cells adjoining along the c-direction. The reason is as follows. The differen

tial susceptibility in the 2-sublattice state2) indicates that the spins in the 

2d ab-plane are coupled by a strong antiferromagneticinteraction of 106 Oe as 

has been expected from the crystal structure. Therefore, 2-sublattice type 

arrangement of spins in the ab-plane is stable throughout the present experiment. 

*) "The internal field of protons with a primed number in Fig. 5 is equal 

to that of the corresponding unprimed ones. 

" **) -+ 
In §6.3, one sees that this is the case for H in the ac-plane. 
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Four protons in the unit rectangle of the ab-plane(See Fig. 5.) reduce to 

two independent protons. In the low field state, the observed number of 

internal field is four except for small splitting. Therefore, magnetic 

unit cell of the low field state consists of two crystal cells adjoining 

along the c-axis. The symmetry of the internal field shows that the magnetic 

structure at zero external field is a 4-sublattice antiferromagnet in which 

spins of neighboring planes are antiparallel. The symmetry also shows that-

the antiferromagnetic axis lies in the ac-plane or parallel to the b-axis. 

Hidden canting is allowed. 

In the following subsections, details of the spin direction are studied 

for two limiting cases(S.7MHz and S9MHz) and for three typical intermediate 
~. 

frequencies(16.2, 20.5, 22.6MHz)by assuming that the origin of H1 is pure 

dipole field. 

6.2.2 Calculation of dipole field 

, 
The dipole field is calculated for four types of spin arrangement, AR-l 

to 4 given in Table Ill. Cases of ferromagnetic layers, AR-l and 2, are 

examined for estimating contributions of weak ferromagnetism. 

At first, g-tensor of two ions is considered. Matrix form of the tensor 

is 

gl,2 = g~ +g gzx -~ 

~g~ gyy ±gyz 

gzx ±gyz gzz (6-3) -
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Table ill Four types of spin arr~ngement, AR-l to 4. The number of copper 

ions is taken from ~ig. 5. Elements of a are also shown in unit of kOe. 

The figures in parentheses are for the weak ferromagnetic moment of 

2.7 x 10-2~B per ion. 

type AR-l AR-2 AR-3 AR-4 

1:+ 1:+ 1:+ 1 :+ 
spin 2:+ 2:+ 2:- 2:-

3:+ 3:- 3:+ 3:-
arrangement 4:+ 4:- 4:- 4:+ 

d 0.35( 0.01) xx 0.54( 0.01) -0.50 -0.51 

e1emnts d 0.32( 0.01) yy 0.51( 0.01) 0.51 0.48 

of d d -0.75(-0.02) -1.18(-0.03) 0.0 0.05 zz 

d -0.89(-0.02) -0.88(-0.02) 0.02 0.02 
xy 

dyX -0.88(-0.02) -0.87(-0.02) 0.02 0.02 

dyz -0.07( 0.0 ) -0.05 ( 0.0 ) -0.21 -0.25 

dzy -0.04( 0.0 ) -0.03( 0.0 ) -0.19 -0.22 

dzx -0.03( 0.0 ) -0.08( 0.0 ) 0.20 0.23 

dxz -0.05( 0.0 ) -0.05( 0.0 ) 0.19 0.25 
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Notations + and - correspond to ih of corner ions and g2 of base-center ions 

respectively. The xyz-coordinate system given in Fig. 5 is used. The g-tenser 

gsym appearing in the paramagnetic resonance is given by the average of gl and 

g2. The matrix form of g is obtained by taking g- = gyz = 0 in the matrix sym xy 

form of gl and &2. The elements, g- =2.078, g =2.116, g =2.354 and g ·=0.047, . xx . yy zz zx 

are obtained from the experimental result27) by changing the axes. Calculation 

of dipole field is done first by using gsym instead of gl and g2. A correction 

due to the antisymmetric part(difference between gl,2 and gsym) is considered 

later. 
+d 

The dipole field for proton-I, H in unit of kOe, is given by 

+d - + H = d m , (6-4) 

where d 
+ 

and m stand for 

- -d = D g S sym (6-5) 

and 

m = < 51>/S (6-6) 

respectively. The tensor D is 10-3PB times of the usual dipole sum tensor • 

The symbol <> represents thermal average. The calculated elements 

-of d are given in Table Ill. The dipole field(=internal field) of other protons 

is obtained by changing the elements of d after Table IV. 

Correction due to the antisymmetric part of gl 2 is estimated by using the . , 
dipole field of AR-I and 2. As a result, a small correction is made in the 

high field 2-sublattice state. Effect of spin canting due to the DM-interaction 

is negligible because the canting is only about 0.6% of the copper moment. 

- 117 -

'. 



., 

'. 

Table IV ~ign of d-eleme~ts of four protons. The uv element of proton-n, 

duv(n), is obtained by changi.ng the s.ign of duv given in Table ill when 

d (n) in this table is assigned by -uv . 

kind of compo!!ent proton-l proton-2 proton-3 proton-4 arrangement of d 

xx,yy,zz,zx,xz + + + + 
AR-l 

XY,yx,yz,zy + - + -
xx,yy,zz,zx,xz + + - -

AR-2 
xY,yx,yz,zy + - - + 

xx,yy,zz,zx,xz + - + -
AR-3 

xY,yx,yz,zy + + + + 

xx,yY,zz,zx,xz + - - + 
AR-4 

xy,yx,yz,zy + + - -
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6.3 Interpretation of the results 

6.3.1 Low field 4-sublattice state 

In the followings, the vector ~ is kept in the ac-plane,· because the 

-+ direction of calculated internal fields for m//b is completely different 

from the experimental result. The conclusion of the magnetization measurement 

supports the former case. 

The direction of ~ is, for the sake of argument, moved in the zx(ac)-plane. 

Th " 1 f" Id f 4" b -+ -+ -+ -+ " e l.nterna l.e s or proton-l to are.gl.ven yH', H", -H', -H", respectlvely. 

-+ -+ " " Components of H' and H" are wrl.tten, by USl.ng Table III and IV, as 

-H' H" 0.5lm 0.25m = + ± 
x x x z 

H' H" = 0.02m 0.25m y y x z 

H' H" = ± 0.23mO ± 0.05m (6-7) z z x z 

-+ 
The vector m lies close to the x(a)-axis, because the second of the above 

equations indicates that the observed small y(b) component of the internal 

field is obtained when ~ lies close to x. Calculated angular dependence of 

the resonance field for H in the zx-plane is shown in Fig. 22(a). Solid lines 

-+ -+ I *) **) correspond to m/ / L3 and dotted ones to m/ / a" (mx> 0 , m=O. 50 ) • Accurate 

*) The component.mx can be selected positive with no loss of generality. 

**) When m is changed, the amplitude of the calculated curve changes almost 

proportionally. 
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determination of the direction of m is impossible. Calculated results for 

H in the L3b(close to xy)-plane are given in Fig. 22(a'). Calculated results 

for the yz(bc')-plane are shown in Fig. 22(a"). Experiment and calculation 

both agree with those of Dupas and Renard. lS) In Fig. 22(a fl
), correspondence 

between experiment and calculation is not good(Also see §6.3.S.). 

A problem of the foregoing argument is that a 2-sublattice magnetic 

structure with domains gives a similar set of internal field. Dupas and 

Renard e~amined the problem by considering protons of water molecules because 

two magnetic structures may result- different sets of internal field for these 

15) protons. Agreement between calculation and experiment was poor.*) 

Consequently, the possibility of 2-sublattice structure has not yet been 
_. 35) 

excluded. HO\vever, about 20% of saturation weak ferromagnetic moment 

should be observed along the b-axis even in very weak external field if the 

. . 2 bl· 16) I .. . - . h h magnet1c structure 1S -su att1ce type. t 1S 1ncons1stent WIt t e 

observation. In conclusion, the 2-sublattice structure is excluded. 

*) The origin is probably a deficient accuracy of the assumed H20 proton 

positions. 
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6.3.2 High field 2-sublattice state 

For H in the ac-plane, ~H is given from Table III and IV by 

~H = -(±O.20m -O.19m -O.02)coseH x y 

-(+O.SOm +O.02m ±O.19m )sin6H ' .. x y z 
(6-8) 

h · b + were eH 1S an angle etween Hand c' (See Fig. 24(a).). The upper and the 

lower of the double sign correspond to proton-l and 2 respectively. A term 

independent of ~ comes from the ferromagnetic moment of 2.7Xlo-2~BParallel 

to the Ll -axis. 

The shift ~H for H in the be'-plane is given by 

-(O.02m ±O.Slm -O.2lm )coS6H x y z 

-(±O.20m -O.19m )sin6H x y 
(6-9) 

where 6
H 

is an angle between Hand b. For H in the L3b-plane, the shift is 

given by 

-(O.02m ±O.Slm -O.2lm )cos6H x y z 

-(+O.S2m +O.OSm ±O.19m )sineH . x y z 
(6-10) 

where eH is an angle between Hand b. The direction of weak ferro~agnetic 

moment is taken parallel to the b-axis for H in the L3b-plane and parallel 
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to the external field for H in the bc ' -p1ane. 

The experiment in the ac-p1ane is considered first. Equation (6-8) 

indicates that the shift corresponding to the center of two lines is 

approximately given by the term o.19mycoseH. The experimental result shows 

my=-0.95(independent of eH)' The observed separation corresponds to m~=O.15, 

m =0.16 or m"=-0.15, m =-0.16. However, non-zero value of m and m is z x z x z 

spurious. It is because the nature of weak ferromagnetism indicates that 

m" and m are zero for H in the ac-p1ane and because the measurement in the x z 

bc ' -p1ane shows that the separation is sensitive to mi5-orientation of crystal. 

In conclusion, one obtains 

mx = 0, my = +(0.95±0.05) 

(6-11) 

where ± in ( ) represents the accuracy of estimation and - and + of m 
y 

correspond to H >0 and H <0 respectively. The experimental condition and z z 
-)-

the observed m are shown in Fig. 24(a) and (a l ) respectively. The calculated 

result of the resonance field is given in Fig. 22 (d) (solid line). 

The case of bc'-plane is considered next. Equation (6-9) indicates that 

6H corresponding to the cent er of two lines is approximately given by 

0.2lmzcoseH+0.19mysineH• The experimental result is -0.18(independent of OH)' 

Using a condition m =-0.95, m =0 for y z 

my=-0.95sineH. The condition for my 

eH=90 0
, one obtains mz=-0.86cosOH, 

and m is introduced so as to ensure 
z 

the consistency with the result in the ac-p1ane. The component m is x 
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(a) (a') , 

(c) , C' 
(c') 

b 

C'{z) 

I Lt 
t 1 
f 

" 

bey) 

Fig. 24 The relation between the direction of the external field and that of 
, :+ 

the moment of copper-1 (m) for high field 2-subJ attice state of Cu (HCOO) 2 "4D20 

at 4. 2K. Figures (a) - (c) 'show three planes in \~hich the angular dependence 

of proton nmr is studied. Figures (a ') - (c ') sho!~, the observed motion of the 

:+ 
moment m. Details of the spin direction are given as cqs.(6-11)'U(6-13) of the 

text. 
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estimated from the separation of lines. Calculations including smaller 

terms result in 

mx = (0.3S±0.lS)cos8H ' 

my = -(0.89±0.OS)sin8H 

mz = -(0.81±O.OS)cos8H ' 

m = 0.89±0.06 • (6-12) 

"' The calculated angular dependence of resonance field is shown in Fig. 22 (b") • 

The observed motion of ~ with the field direction(See Fig. 24(b) and (b').) 

is consistent with a model of tilted g-tensor type weak ferromagnetism. 

Finite separation between Ll and the antiferromagnetic axis Ll' for 

H//b(See Fig. 24(c').) indicates that the weak ferromagnetism is not 

entirely tilted g-tensor origin. The magnetization measurement supports 

the conclusion. 

For H in the L3b-p1ane, components of ~ are estimated as follows. The 

shift corresponding to the center of lines is approximately given by 0.21mzcos6H• 

Experimental result is -0.20cos8H~ Therefore, we obtain m ~ -1. Substituting it z 

into eq.(6-10), one has -1.0mycos8H+(1.0mx+0.4)sin8H for the separation 

of lines. The components m and m are estimated from the experimental x y 

result of separation and the condition that their values for 8H=Oo must 

agree with the corresponding values obtained in the bc'-p1ane. By taking 
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smaller terms into account I the follmo[ings are obtained: 

m = (0.35±0".15)cosS
H x 

m = -CO•33±6.l6)sinSH ~ y 

m = - (0. 81±0 .05) z I 

m = 0.88±0.07 . (6-13) 

The calculated result is given in Fig. 22(d') (solid line). Figures 24(c) and (c') 

represent the relation between H and ~. 
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6.3.3 Intermediate region 

(a) ac-plane 

The shift of resonance field for proton-l and 2 is calculated for 

simplicity by the first term of eq. (6-2). Namely~ 

6H = ~(;O.5lmlx + O.02mlY ± O.25mIZ)sinaH 

-(±O. 23mIX - O. 19mly ± O.05mIZ)cosaH ~ (6-14) *) 

where aH is the angle of H from z (See Fig. 25 (a) .) • Vectors iril = <SI >/5 

and ~3 = <S3>/S are distinguished because, in the intermediate region~ they 

are neither parallel nor antiparallel. The shifts for proton-3 and 4 are 
. -+ 

calculated by replacing components of ml in eq. (6-14) by the corresponding 

-+ 
components of m3. 

At first, conclusion of §6.3.l(the low field state) is recollected. 

They are mIX=-m3X~O.5, mly=m3y=O~ mlZ=-m3Z~O. For this case, 6H of 

proton-4 and 3 are equal to those of 1 and 2 respectively. Neither of 

separation between 1 and 4 nor between 2 and 3 are observed even in the 

intermediate region. Therefore~ one obtains 

(6-15) 

*) Elements of a for AR-3 are used for IDlY because mly and ID3Y are equal 

as is shown later. 
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~ig. 25 Relation between the direction of the external field and the spin 

directions in the intermed~ate r~gion of Cu(HCOO)2-4D20 at 4.2K. 
. . . . . . 

~igures (a) and (a') correspond to the case \'lhere H is in the ac-plane. 
. -,)00 . 

~igures (b) and (b') to the case H in the L3b-plane. 
J • 
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Next , the cross point or zero-separation point of two lines is considered. 

The condition 6H = 6H reduces to the following equation for 9H: proton-l . proton-2 

+ (-O.23mlx - O.OSmIZ)cos9H = 0 . (6-16) 

The experimental result shows that the ~ngle of zero separation 9HO (solution 

of eq. (6-16)) is independent of the resonance field. Accordi.ng1y, ml z (and 

m3Z) at 9HO is much smaller than mlx(andm3x) even in the intermediate region. 

Hereafter. contributions of mlz (and m3Z) are negle'cted for all ell' Then, eq. 

(6-14) reduces to 

(6-17) 

The shift corresponding to the center of lines and the separation between 

them are proportional to ml y and mIx' respectively. 
-l-

For H close to c t
• 

the center moves to the low field side and the separation decreases. These 

facts indicate that, by applying the external magnetic field, a Il:egative 

value of mly(and m3y) is introduced and mIx decreases from the initial value 

as is sho~ schematica1ly in ~ig. 2S(a t
). The spin motion is consistent with 

the prediction of the theory. The components mIx and mly are estimated 

quantitatively in three typical cases. The result is. given in Fig. 26. The 

increase of the y-component and the decrease of the x-component are both 

attributable to the weak ferromagnetism whose preferred axis of ferrom~gnetic 

moment is the Ll-axis. 
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(b) L3b-plane 

The shift of proton-I, 2 is given by 

~ 

where eH is the angle of H from b. First, separation of two lines is 

considered near the b-axis. The separation is given by 2 x 0.48mly. The 

experimental result (For example, see the result at lS.8MHz.) indicates 

that mlY is nearly zero. As it is also zero at zero external field, 

mly = m3y = 0 is assumed in the followings. 

Next, the cent er of two lines is considered in a region close to b. 

For this case, the center is given by 0.2lmI Z• The experimental result 

(6-18) 

indicates that both mlz and m3z are negative. On the other hand, considering 

the factor of sineW one sees that a small separation pair(mx < 0) corresponds 

to proton-3, 4. Large separation pair(mx > 0) corresponds to proton-I, 2. 

Symmetry of nmr pattern indicates that the spin motion is caused by the 

weak ferromagnetism whose preferred axis of ferromagnetic moment is the 

b-axis. The spin motion is shown schematically in Fig. 25(b'). 

The components mIx' m3x' ml z and m3z are estimated quantitatively from 

the shift of the. center and the separation. The absolute value m is also 

calculated. The results are similar to those obtained in the ac-plane. 

An interesting phenomenon is observed when the results at 31.SMHz and 

59.6MHz are compared. Namely, increasing the magnetic field, we can observe 
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-+ -+ 
jump of m3 to the position of ml- The observation is a little inconsistent 

- h ., 1 h 29) b h" .. -+. h Wl.t our prevl.ous sl.mp e t eory, ecause t e JUIDpl.ng spl.n l.S ml l.n t e 

-+ 
theory and m3 in the experiment. The disagreement disappears if one intro-

duces small m·l-interaction as is shown in §3. *) 

*) In the previous theory,29) only the g-tilting is considered as the 

mechanism of the weak ferromagnetism so that we obtain gXY** = gXY* and 

gzX** = gZX*· In this paper, the DM-interaction is also taken into account 

and we obtain gXY** = gXY* and gZX** = -gZX* for CuFfH. 
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6.3.5 On the assumption of the pure dipole field 

Now at the end of this subsection, the assumption of proton position 

and pure dipole field should be re-examined because the conclusions on the 

magnitude of ; seem to be unfamiliar. If one modifies certain elements of 

a by 30%,*) the calculated magnitude m changes to 0.75S(result of spin wave 

calculation) independent of the external field. The modification is done 

so as to keep the conclusions of magnetic cell and spin direction because 

they are determined mostly from the symmetry of nmr spectra and are consistent 

with the result of other experiments. Therefore, the value of m depends 

completely on the assumptions and may be less reliable than the magnetic 

cell, the spin direction and the phase boundary. 

*) Also see Appendix G. Tensor elements of the parae1ectricand the 

antiferroelectric states of CuFTH are compared there. 
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6.4 Comparison with the result of magnetization measurement 

In this subsection, the proton nmr results of CuFTD are examined by 

using the magnetic parameters estimated from the analysis of the magnetization 

process of CuFTH. 

6.4.1 Frequency dependence of the shift 

The frequency dependence of the shift given in Fig. 23(a)-(c) is 

compared with the calculated shift. A small contribution from the weak 

ferromagnetic component is neglected for simplicity. 

The L3 direction is characterized by the fact that the weak ferro

magnetism does not act along this direction. The angle between L3 and the 

easy axis a" is 17.9°. Therefore, the magnetization curve should be a 

"rounded spin-flop" type curve which is seen in an ordinary antiferromagnet 

when the external field is applied close but not strictly parallel to the 

easyaxis. 39) The magnetization curve for L3 indicates that the spin flop. 

starts gradually above about l4kOe so that the nmr shift is calculated by 

neglecting the spin motion. The result for m:: <S>/S = 0.5 is shown in 

Fig. 23(b). The correspondence between calculations and experiments is good. 

- 133 -



(b) HI ILl 

As the field direction is not strictly perpendicular to the easy axis, 

the spin motion may be influenced, in principle, by the difference between 

the parallel and perpendicular susceptibilities. However, this contribution 

is dropped out in calculating the spin motion, because it is practically 

negligible as is seen from the good linearlity of the magnetization curve. 

Then, the spin direction is given by the equation 

sine = H/HBLI , (6-19) 

where e is an angle between ifrl and the easy direction a". The effective 

bending field for LI, HBLI, is 5.3 kOe. ~I rotates to the -b-axis, because 

gxy** is negative(See foot note.*)). The calculated curves in Fig. 23(a) 

correspond to m = 0.5(dotted lines) and m = 1.0 (solid lines). The experimental 

results are between them. 

(c) HIIB 

+ 
We consider the spin motion by assuming that the component of H along 

the b-axis determines the spin direction. Negative gxy* and positive gZX* 

are used because of the following reasons: (1) If gXY* is positive, the 

angular dependence in the high field region can not be reproduced(The shift 

*) If it is positive one obtains l.I.H > 0 for the high field region, which 

conflicts with the experimental results. 
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along b becomes positive.). (2) If gzx* is negative the resonance points 

arising from proton-1 and 2 disappear and those from 3 and 4 remain, which 

contradicts the experiments. The resulting shift is shown in Fig. 23(c). 

The change of m mentioned in the preceding section also appears here. 

Characteristics of the calculated curve agree with those of the experimental 

results except for the unnatural change of m. 

6.4.2 Angular dependence in the high field region 

(a) ac-p1ane 

As the interpretations in the preceding section agree with the theoret

ical predictions (Put HX=O in (3-85a) '" (3-85c) and compare them with (6-11).), 

we would not repe,at here. 

Cb) bc' -plane 

The spin motion is given in eqs. (3-89a) '" (3-89c). By using the param

eters obtained in the analysis of the magnetization curve, the vector 

components L, M and N are obtained as 

L = -O.52sinw/G' (6-20a) 

M = -O.59cosw/G' (6-20b) 

N = O.12cosw/G' (6-20c) 
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where G' is given by the relation: 

1 
G' = (O.27sin2w + O.36cos2w)Z 

When m is assumed to be 1.0, *) mx ' my and mz are written as 

mx = 0.2lcosw/G' , 

m = -0.52sinw/G' , y 

m = -0.57cosw/G' • z 

(6-21) 

(6-22a) 

(6-22b) 

(6-22c) 

These results agree well with the spin motion suggested previously(See eq. 

(6-12).). The calculated "resonance points for m = 1.0 is given in Fig. 22(blt
) 

(dotted lines). If one assumes that the weak ferromagnetism is mainly due 

to the [M-mechanism, the calculated shift is, as is shown in Fig. 22(b") 

with broken lines, completely different from the experimental result. 

(c) L3b-plane 

For this case the vector (L,M,N) is given by 

L = 0.0018tanw , (6-23a) 

M = -0.98 , " (6-23b) 

N = 0.20 , (6-23c) 

*) The nmr shift is proportional to m practically. 
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where the contribution of L to G' is neglected so that w should be limited 

within 80°. The vector ih is given, for m= 1.0, by 

m x = 0.34 

m = 0.0018tanw y 

m = -0.94 z (6-24) 

These results are close to the spin motion obtained for CuFTD when the 

field direction is not far from the b-axis. The calculated resonance points 

are shown in Fig. 22(d') (dotted lines). The discrepancy near the L3 axis 

seems to indicate that the neglection of the anisotropy for obtaining eqs. 

(3-89a) tU (3-89c) are unreasonable when if is close to L3 where the torque 

due to the weak ferromagnetism becomes ineffective. 
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§ 7. 

Copper formate bisurea dihydrate(CuFUH or UH) crystal contains Cu2 + 

layers quite similar to the layers appearing in copper formate tetrahydrate 

(CuFTH or TH) crysta1. 18) While the intralayer exchanges of two crystals 

seem to be equal within the experimental error~ 17) the interlayer magnetic 

coupling of UH is expected to be smaller than that of TH, because the inter-

layer spacing of UH is larger by about 30% than that of TH(See Fig. 27.) 

As the inter layer coupling is one of the important parameters of the nearly 

two-dimensional magnetic system,l) the relation between the magnetic prop-

erties of UH and those of TH is interesting. 

Results of the susceptibility and the specific heat measurements for 

t t 1 - - -1 7,17) wo crys a s are qU1te S1m1 are In this case one has two possibilities; 

(1) The interlayer couplings of these crystals are nearly equal or (2) Nee1 

temperature TN is not sensitive to the interlayer coupling. In connection 

with this problem, the jump of the magnetization is studied in UH and the 

result is compared with that of TH because the jumping field is a good 

measure of the interlayer coup1ing.*) 

Experiments were made at 4.2K in three crystal planes LIL3, L2L3 

and L1Z 'L2'. The direction LIZ'(See ~ig. 29.) is close to the LIZ-axis 

which gives the largest g-value for the paramagnetic resonance at room 

temperature(g(L1Z)=2.37, g(L2)=2.11, g(Ln)=2.08, angle(a,LlZ)=4.9°, 

angle(LlZ,c)=91.5°,angle(a,LlZ')=14°, angle(c,LlZ')=8Z0). Figure 28 

*) Throughout the present paper, we assume that the magnetic properties 

of two kinds of crystals are similar. 
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represents the magnetization curves for three typical directions. Hysteresis 

is not observed within the experimental error. The anisotropy of g-tensor 

and the anisotropic intralayer exchanges are not substantially different from 

those of TH(See foot note.*)). On the contrary. the jumping field for H//L2 

(480 Oe) is much lower than the corresponding field(5.3kOe) of TH. This 

problem is discussed in the next parapraph. Figure 29 shows the outline of 

the 4-sublattice 2-sublattice phase boundary determined in L1L2 , L2 L3, L1ZL2-

planes by using the bend and. the jump of the magnetization curve. 

A preliminary analysis of the jump is done by starting from eq. (3-80). 

When h «HK *, the jumping field H
J 

is given by ex + . 

The jump of the magnetization ~M is given by 

~M(per ion) = PBgZX*/2 , 

where the spin contraction effect is neglected for simplicity. Combining 

eqs. (7-1) and (7-2), we have 

*) In TH, Igxy*1 =0.06, Igzx*/gxy*1 =0.02, HK_*=60 Oe, HK+*=220 Oe. 

In UH, they are estimated to be about 0.06, 0.01, 50 Oe and 300 Oe, 

respectively. Detailed analysis is in progress. 
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h of UH and TH are calculated to be 1.7 De and 33 De, respectively. These 
ex 

results indicate that the assumption of \veak interlayer couplingChex « HK+*) 

is true for the case of UH but is not for the case of TH(HK+*=220 De). The 

result of the numerical calculation,29) however, shows that eq. (7-3) works 

even in the case of TH within 20% error. Therefore, the interlayer coupling 

of UH is about 1/20 of that in TH. In conclusion, one sees that TN is not 

sensitive to the interlayer coupling while the entropy change around TN seems 

to be influenced by the coupling. 17) It should be noticed that the ratio of 

the inter layer coupling to the intra1ayer exchange is of the order of 10-6 

in UH. 
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§ 8. Discussions 

8.1 AFMR in the 2-sublattice region 

Seehra and Castner(SC)16) tried to fit their AFMR data(open circles in 

Fig. 30) on the basis of the 2-sublattice model and estimated some parameters 

mostly at low field region. However, we conclude in §S and §6 that the 

. magnetic structure at low field region is not the 2-sublattice type but the 

structure above about SkOe for A//X and Y is the 2-sublattice type. In this 

subsection we treat the interpretation of the ABIR results in the 2-sublattice 

region. The AFMR frequencies are assumed to have the same expressions as 

those of the pure 2-sublattice case, because A~IR theory applicable to the 

present 4-sublattice system is not known yet. This assumption may be an 

over simplification for the present case. 

The expressions of the AFMR frequencies for the 2-sublattice case have 

been obtained by se. + 
For H//Y(c") the frequencies are given by 

(8-1) 

(wjy)2 !'! H H' H 2 Y,red OM - //c ' (8-2) 

where zero-field AFMR frequencies H//b 2, H//c2 and reduced field ~,red are 

written as 

(2H + HK )HK + hDM2 ex- + + 
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1 
By, red = zgzzBy • (8-5) 

New notation By,red is used instead of se's By and, in this paper, By is used 

for the Y-component of the external field H. The effective canting field 

HOM' is written as follows: 

(8-6) 

where 

(8-7) 

and the initial canting angle a is given by 

(8-8) *) 

For H//X(b) the AFMR frequencies are written as 

(W+/y) 2 = H//c2 - H//b
2sl."n6 + H H * + H 2 X,red DM X,red' (8-9) 

(8-10) 

The reduced field HX,red and the effective canting field BOM* are given by 

H 1 
X,red = Z gXXH (8-11) 

(8-12) 

where 6, the angle between the antiferromagnetic axis and the a"-axis(See 

Fig. 3l(a).), is ~ solution of the equation, 

*) This equation can be simplified as a=h DM/2Hex because hOM and BK+ are 

much smaller than H . An equivalent relation can be readily obtained from ex 

eq. (3-l8a) by making N=l and L=M=HX=Hy=Hz=O. 
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The quantities HOM" and hOM' are given by the relations: 

H "= DM 

Equations (8-1) and (8-2) are transformed into 

= HI Ib 2 
+ By ,red

2 
+ ~ gyy(By - Ho)HOM' , 

1 = Zgyy(Hy - Ho)HDM' 

by using H defined as o 

(8-13) 

(8-14) 

(8-1S) 

(8-16) 

(8-17) 

(8-18) 

In addition to the above results obtained by se, we introduce a , the 
o 

high field limit of a, given by 

(8-19) 

and HOM 0* as , 

• -+ The exper1mental results for H//y are considered first. Equations 

(8-16) and (8-17) indicate that w+ corresponds to the observed high frequency 

branch. By using the experimental data for w_' HDM' and HI/c2 are determined 
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as follows: 

HDM , = (9.4 ± 0.3) x 104 Oe • 

H//c is given by 

H//c = (1.73 ± 0.06) x 104 Oe • 

By using the above values of H//c2 and HDM', H//b2 is estimated from the 

data of w as 
+ 

H//b is given by 

H//b = (3.32 ± 0.07) x 104 Oe • 

The calculated frequencies and the experimental results are compared in 

Fig. 30. 

(8-21) 

(8-22) 

(8-23) 

(8-24) 

(8-25) 

-+ 
The case H//X is considered next. The angle e tends to e of eq. (8-19) 

. 0 

as the weak ferromagnetic moment approaches the saturation value. Then, 

(w /y)2-HX2 .d and (w /y)2 plotted as a function of Hx d should be a pair of +;re - ,re 

parallel lines. By using the experimental data by se,' we obtain the parallel 

lines above about 14 kOe when the high frequency branch is assigned to the 

w+-mode. Using H//c2, H//b2 of eqs. (8-21), (8-24) and the experimental 

result of the present case, we have 
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sinze = 0.89 ± 0.02 • 
o 

Namely, e is given by 
o 

sine = 0.94 ± 0.01 or e = (71±3)0 • o 0 

HOM,O* is estimated, from the slope of two lines mentioned above, as 

HOM 0* = (12.9 ± 0.5) ,x 104 Oe • , , 

The calculated and the experimental results are compared in Fig. 30. 

(8-26a) 

(8-26b) 

(8-26c) 

o is 
o 

used instead of 0 throughout the calculation. The experimental results at 

about 8.5 kOe can be fitted by taking 0 as about 60°. 

The angle 0
0 

satisfies the relation 

By using this relation, HOM" is estimated as 

We recall that HOM' is ,obtained as eq. (8-22), 

From eq.(8-l9), hDM' is determined as 

Summary of these results is given in Table V. The quantities H//cZ, 

H//bZ' HOM', HOM" are all larger by 50% than the corresponding values 
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Table V Magnetic parameters of Cu(HCOO)204H20 determined from the 

analysis of the antiferromagnetic resonance in the high-field 2-sub1attice 

state. 

Parameters estimated 
Parameters estimated 

from the magnetization 
from the AFMR results 

curve and the proton nmr(§) 

H// c 
2 3.0 x 108 Oe2 1.81 x 108 Oe2 

(H//c 1. 73 x 104 Oe) (1. 35 x 104 Oe) 

H//b 
2 11.0 x 108 Oe2 6.6 x 108 Oe2 

(H/ /b 3.32 x 104 Oe) (2.57 x 104 Oe) \ 

HDM 
, 9.4 x 104 Oe 6.5 x 104 Oe 

H " DM 12.1 x 104 Oe 8.5 x 104 Oe 

hDM 
, 4.2 x 104 Oe 1.7 x 104 Oe 

e 71° 79°, 76° (§) 
0 
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calculated from the magnetization data. hDM' is larger by 140%. 
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8.2 Intra- and interlayer dipole.,.dipolecouplings 

In the followings, the effect of the intra- and interlayer diploe-dipole 

couplings which are not included in the hamiltonian is considered qualitatively. 

The dipole tensor in unit of De, ~B times of the usual dipole tensor, is. given 

for Cu-l in Table \I. For estimating the dipole field precisely, the product 

of the tensor and ~~ should be calculated, but, for simplicity, the latter 

factor is replaced here by unity. The dipole-dipole coupling energy is 

estimated from the negative of the product of the dipole field and I~B whose 

direction is parallel to the spin of Cu-l. 

First, it is noticed that the dipole-dipole coupling between Cu-l and 2 

is already implicitly included in K-, K'- and A-terms of the hamiltonian. 

Next, the coupling between a Cu-l and "other Cu-l" is considered. This causes 

the one-ion type anisotropy which is not included in the hamiltonian. However, 

calculations based on an approximate method similar to that in §3 show that 

the contribution of the one-ion anisotropy fields to the magnetization 

process can be taken into account merely by modifying the magnitudes of the 

exchange-type anisotropy fields. The framework of the present paper seems 

to be kept unchanged by the existence of these two intralayer terms. 

In considering the dipole fields arising from "Cu-3" and "Cu-4", we 

assume that the 3 and 4 moments are antiparallel. This is consistent with 

the approximations in §3. Then, the interlayer dipole tensor which represents 

the sum of the dipOle fields from antiparallel 3 and 4 spins is given by 

D .. (interlayer) = D .. (all Cu-3) - D .. (all Cu-4) , 
1.J 1.J 1.J 

(8-30) 
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Table ~ Elements of the dipole tensor D related to the dipole field 

acting on a Cu-l ion from other ions. For example, D of "all Cu-2" row xy 

represents the x-component of the dipole field arisi.ng from the moments of 

lllB parallel to the y-direction placed on all Cu-2 ions. The dipole sum 
o 

is calculated for a sphere of 100A in diameter. 

Cu(HCOOh-4H20 

D D D D D D D D D xx yy zz xy' yx yz' zy zx' xz 

other Oe Oe Oe Oe Oe Oe 
Cu-l 29.2 . 30.5 - 59.7 0 0 - 0.3 

all 
Cu-2 94.8 93.0 -187.8 0 0 0.2 

all 
Cu-3 -62.1 -72.1 134.2 0 0 -23.8 

all 
Cu-4 -35.8 -27.4 63.2 0 0 13.1 

CU(HCOO)2-2(NH2)2CO-2H20 

D D D D D D D D D xx yy zz xy' yx yz' zy zx' xz 

other Oe Oe Oe Oe Oe Oe 
Cu-l 47.2 35.6 - 82.8 0 0 - 0.2 

all 
Cu-2 95.2 114.3 -209.4 0 0 0.0 

all -
Cu-3 -39.5 -40.9 80.4 0 0 - 3.3 

all 
Cu-4 -32.5 -30.6 63.1 O· 0 2.5 
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where i and j stand for x, y and z. 

In the case of CuFfH, the dipole tensor referred to the ZXY(a"bc")-

coordinate system is convenient compared with that referred to the xyz(abc l ) 

system. By using the angle between two systems, 8.5°, the tensor is trans-

formed into 

Z x Y 

D(interlayer, CuFTH) = -35.0 o -21.1 

o -44.7 o 

-21.1 o +79.7 (8-31) 

For H//Y and Z, two fictitious spins move in the ZX-plane. Considering the 

tensor elements (DZZ :::: D
XX

)' we conclude that, for this case, the role of the 

dipole-dipole coupling is nearly equal to that of the isotropic antiferro-

magnetic interaction. 

+ . 
For H//X, the motlon of the spins is considered in the YZ-plane. The 

anisotropy of the dipole-dipole coupling in this plane cannot be reduced to 

any of the terms treated in §3. However, this term seems to work like the 

intralayer anisotropy throughout the magnetization process except·the 

magnetization jump which is subtly correlated to the interlayer coupling. 

Therefore, hereafter, we consider the magnetization jump. The interlayer 

dipole-dipole coupling can be taken into account by replacing 

h (MM I + NN ') _ E. 
ex lnter (8-32a) 

of eq. (3-80) by 
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- DyZ (MN' + MIN) - E! 1nter 

The changes of these interlayer ene.rgies at the transition from the 

4-sublattice state: 

to the 2-sublattice state: 

N = NI :::: N o 

are given by 

~E. = 2h 1nter ex 

and 

respectively. Therefore, h obtained in §5 should be interpreted to ex 

(8-32b) 

(8-33a) 

(8-33b) 

(8-34a) 

(8-34b) 

The first two t·erms. the exchange and the di.agonal dipole-

dipole terms, constitute the interlayer coupling at zero external field. 

The last term is estimated to be about -10 Oe, because DyZ and MO are 

-21.1 Oe and about -0.5, respectively. Its absolute value is considerably 

smaller than the sum of the first two terms estimated to be about 50 Oe. 

In conclusion, essentials of the mechanism of the magnetization jump are 

not changed by the existence of the dipole-dipole coupling except for the 
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interpretation of h to h -DZZ . ex ex 

In the case of CuFUH~ the last term is estimated as follows: first~ 

DyZ is calculated by 

DyZ = 21 (-:-D +D )sin2cj> + D cos2cj> xx zz zx (B-35) 

where cj>(unknown) is an angle between the easy axis in the ac-plane and 

the a-axis. D D and D are estimated from Table ~ to be -7.0 Oe~ xx' zz zx 

+17.3 Oe and -5.B Oe~ respectively. Equation (B-35) indicates that IDyzl 

never exceeds 

[{2l (-D +D )}2+D 2]t!"130e xx zz . zx 

Next, IMol is estimated from the magnetization curve to be about 1/16. 

Then we have 

(B-36) 

(B-37) 

In conclusion, the interlayer coupling h -DZZ is estimated to be 1.7±O.B Oe. ex . 
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Appendices 

A. Neglected terms in eqs. (3-l4a) and (3-l4b) 

(a) Order of magnitude of various terms 

The order of magnitude of the neglected and unneglected terms in eqs. 

(3-l4a) and (3-l4b) is estimated as fo11O\'/s: In §2, we see that J is about 

36K. This implies H is about 1.1 x 106 Oe when <S> is assumed to be S C =1
112 ) • 

ex. 

hex is 102- 3 Oe as is presented in §2.. The upper limit of H£1.1 and hDM is 

given40) by H (fig/g) = 105 Oe. However, in this crystal they are estimated ex 

to be 10~ Oe. It is because that the 3% canting of the induced magnetic moment 

. th t . .. 1 d h . 1 . h' 2, 7 ,9, 11, 12) ln e paramagne l.C regl.on l.S a most ue to t e g-tl. tl.ng mec anl.sm, . 

so that the ratio of HDM and hDM to Hex should be considerably smaller than 

39< o. We take· 1% as the upper limit of this ratio and estimated HDM and h DM• 

HK, HK, and HA are not more than4l ) Hex Cflg/g)2::: 10~ Oe. However, they are 
2~3 

estimated to be 10 - Oe, because in the antiferromagnetic state the 

direction of spins changes widely under the external field of 10~ Oe coupled 

with the ferromagnetic moment of 3%. The external magnetic field up to 
I 

10q Oe is considered. Elements of g-tensors are estimated as gxx-2, gyy-2, 

gzz-2 = 10- 1 , gXY' gyZ::: 10- 1 ,. gzx = 10-2 from the characters of copper ion 

and the octahedrons of anions. From these values of magnetic parameters, 

L, M, N, L', M', N' are considered as about 1 and 1, m, n, 1', m', n' are 

estimated to be 10-2. These estimated values of constants are listed in 

the upper half of Table Vil. From these values, magnitude of various terms 
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Table \IT Order of magnitude of constants appearing in the equation of 

motion and that of terms in eqs. (3-14a) and (3-14b). 

constants 

H 106 Oe ex 

HDW hDM 104 Oe 

HX' ~, HZ S 104 Oe 

gxx' gyy' gzz 1 10-1 

gzx 10-2 

components of normalized spin vectors 

L, M, N, L', M', N' 1 1, m, n, 1', m, n' 

terms in ego (3-14a) terms in eq. (3-14b) 

HKMN 102 - 3 Oe H mN 104 Oe 
ex 

h MN' 102 - 3 hDMLM 104 \ 

ex 

HXgxyN S 10 3 
HZgZZM S 104 

hDM1M 102 t unneg1ected 

"" 
neglected 

Hxgzl1 $ 102 
~gYZM(§) S 10 3 

Hzgzzm S 102 
HxgXyn S 10 

t unneg1ected 
H~ 100 - 1 

{- neglected 

~gYZm(§) S 10 h mN' 100- 1 
ex 

HKmn 10-2 -- 1 
hD}'11m 1 

h mn' 10-2 -.- 1 
Hxgzxm S 1 

ex 
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in eqs. (3-l4a) and (3-l4b) are estimated. The lower half of the table 

shows them. They are listed following the order of magnitude. For the 

terms of type-one,*) those equal to or smaller than 10-1 Oe in eq. (3-l4a) 

and those equal to or smaller than 10 Oe in (3-l4b) are neglected. They 

are smaller than the leading terms of the corresponding equations by a 

factor 10 3 • This seems to imply that (L,M,N), (L',M' ,N'), (l,m,n) and 

(l',m',n') are calculated within the accuracy of 0.1%. In the following 

subsection (b) of this Appendix, we examine this problem. 

*) The notation (§) in the Table is used for the terms of type-two. Terms 

due to the difference between gyy.(gZZ) and g are not shown there, but they 

are of the same order of magnitude to gYZ-terms. 
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(b) Effect of the type-one terms 

Effect of the neglected terms of type-one is considered quantitatively. 

The order of magnitude of the external 1Il:agnetic field is limited within 104 De 

because (1) the experiment was done below 2 x 104 Oe and (2) the calculation 

becomes complex above about 104 Oe. The outline of the examination is as 

follows: We consider the difference between the solution of the original 

equations and that of the simplified ones. Functions appearing in the left 

hand sides of the original equations as (3-14a,b) are expanded around the 

solution of the simplified ones as (3-16a,b) up to the first order of the 

difference. The zeroth order terms satisfy the simplified equations and 

the difference satisfies a set of linear equations. Then the order of 

magnitude of the difference can be estimated by using the order of magnitude 

of the determinant which consists of the coefficients in the linear equations. 

In principle, the determinant can be always evaluated if we fully use the 

computer, but, in this paper, the calculation is done only for certain special 

cases mainly corresponding to AllY. The result shows that the difference is not 

negligible in two cases. The:first case arises when an accidental relation such as 

HK * = HK, * exists between the magnetic parameters. We disregard such a possi

bility. The second case arises when a special relation corresponding to 

the bending point of the magnetization exists between the external field and 

the magnetic parameters. For this case, the original rigorous equations must 

be used, but this problem is not treated in the present paper. 
~ 

For HIIZ and 
- ~ 

X, it is certain by the analogy of the HIIY case that the bending point for 
~ . 

HIIZ is the only situation where the simplified equations can not be used. 
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First, we consider the difference between (l,m,n) calculated from the 

rigorous equations and that calculated from the simplified ones. The rigorous 

(3-l4b) and similar equations are transformed into 

1 = (BN CM)/G, (A-la) 

m = (CL - AN)/G , (A-lb) 

n = (AM - BL)/G (A-le) 

and similar equations for (l',m' ,n'). Quantities A, B, C and G are given by 

, , (A-2) 

(A-3) 

(A-4a) 

-2h (mN' + Mn' - nM' - Nm')} (A-4b) ex 

and similar equations for B l' B2 , Cl and C2 • On the other hand, 1;, m and n 

are calculated as (3-1Ba) tU (3-1Bc) from the simplified (3-16b) and similar 

equations. It is· readily seen that (3-l8atUc) can be also derived from 
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(A-la) 'V (A-4b) by neglecting A2 , B2 , C2 and by assuming G = 1. *) The order 

of magnitude of the error due to these simplifications is estimated to be 

10-5 , namely 1/1000 of the order of 1, m and n. 

Next, we compare another rigorous equation (3-l4a) and the corresponding 

simplified equation (3-l6a). The type-one neglected terms and the error 

arising from the substitution of (l,m,n) derived from (3-l6b) to (3-l6a) 

are estimated to be both of the order of 10- 1 • Therefore, difference between 

solutions of two cases can be estimated by comparing solutions of the follow-

ings: (1) (3-23a) 'V (3-23c) and similar three equations derived from the 

**) simplified equations. The simplified normalization conditions given by 

, (A-Sa) 

are used. (2) Equations obtained by substituting a, ~, y, a', ~', y' of the 

order of- 10- 1 to the right hand sides of (3-23a) and similar five equations. 

The normalization conditions are given by 

L,2 + M' 2 + N' 2 - 1 = (A-Sb) 

where 0 and 0' are constants of the order of 10- 1 • The solution of the 

first and the second groups are written as (L,M,N), (L' ,M' ,N') and (LO,Mo,NO)' 

*) Strictly speaking, (3-lSa) 'V (3-lSc) are obtained by applying the 

simplification of type-two (neglection of type-two terms), too. 

**) Strictly speaking, (3-23a) tU (3-23c) are obtained by the additional 

neglection of the type-two terms and the use of the condition (3-21). 

In this Appendix we use equations before the neglection. 
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(L'O,M'O,N'O), respectively. Deviations, 6L, 6M, 6N are introduced by 

LO = L + 6L MO = M + 6M NO = N + 6N (A-6) 

Similar equations stand for 6L', 6M' and 6N'. Substituting them to the 

second group equations and n.eglecting products of the deviations, we obtain 

equations for determining the deviations. The zeroth order terms become 

zero because (L,M,N) and (L',M',N') satisfy the simplified equations, so 

that six linear equations are obtained for the deviations. Three of them 

are given as follows: 

(A-7a) 

, (A-7b) 

+ bcL·6N - hM·6L' + hL·6M' = y , (A-7c) 

where the direction of the external field is limited to one of the three 

principal axes, XYZ, and the parameter HA is eliminated by using (3-21).*) 

*) Much complex equations are obtained without these simplifications and 

the above equations are sufficient for the present case. 
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The remaining three equations are obtained by interch~nging primed and 

corresponding unprimed quantities and by ch~nging Cl, a, y to the primed ones. 

Newly defined quantities appearing in the above equations are. given by 

A = -2 (HK* +HK,*) 

1 
-2" 

a = HXgXX(4Hex) , 

1 
b = (Hygyy + HZgyZ) (4Hex) -2" 

1 

c = (HygyZ + Hzgzz) (4Hex) -2" , 

h = 2h ex 

The normalization conditions are transformed into 

It should be noticed that only four of (A-7a) '" (A-7c) and three similar 

(A-Ba) 

(A-Bb) 

(A-Bc) 

(A-Bd) 

(A-Be) 

(A-9a) 

(A-9b) 

equations are independent and that which of these are independent is deter-

mined by the solution (L,M,N), (L' ,M',N'). We will pass this problem here 

for simplicity but· take it into account in the following dl.scussions. The 

selected four equations and the two normalization equations can be used 

·for determining the deviations because, as is seen beloN, they are independent 
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in general. The independence is readily concluded if a seventh equation which 

is obtained by requiring the determinant of the coefficients of the equations 

to be zero is not sati~fied automatically by. the solutions. We have found a 

solution \lIhich does not satisfy the seventh equation and we reject the auto

maticity. For this case the deviations are estimated to be of the order of 

10- 3 or less so that are negligible for practical purpose. 

The remaining problem is that certain solutions may accidentally satisfy 

the seventh equation. In principle, this can be fully examined when we use the 

computer for the direct numerical evaluation of the determinant. In this· 

paper, however, we treat analytically soluble cases only. The result 

suggests that the numerical computation is not essential. The followings 

are the results of the analytical treatment. 

(i) H = h = 0: fictitious one-spin system at zero external field 

For this case, the primed system need not be included.· When we 

consider the solution N=l, L=M=O, the determinant is given by 

o 

B 

o 

A 

o 

o 

o 

o 

10 3 

A is always negative and B is not zero in orthorhombic cases so that the 

determinant is not zero except for the accidental HK* = HK, * case. We 

neglect such a possibility. 

(ft) H = 0, h t- 0: fictitious two-spin system at zero external field 

The determinant corresponding to the solution L=L'=M=M'=O, N=-N'=l 

is written as 
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0 A-h 0 0 -h 0 

B+h 0 0 h 0 0 

0 0 10 3 0 0 0 

0 h 0 0 -(A-h) 0 

-h 0 0 -(B+h) 0 0 

0 0 0 0 0 -10 3 

= -106{(A-h)2 _h2}{_(C+h)2 +h2} (A-ll) 

The right hand side is always .positive because A < 0, C> 0, h > O. 

(ill) 
-+ 

h=O, HI/Y, gyZ=O: fictitious one-spin system under the external 

field parallel to the hard axis (Anisotropy of the g-tensor 

in the ac~-plane is neglected.) 
. -+ 

The mathematics for the general H//Y case 1S complex but the calculation 

becomes simple when we treat a special case satisfying gyZ=O. As this term plays 

no essential roles in the magnetization process, examination of this .. case 

gives useful informations for the H//Y case. The following solution is 

considered, 

L = Y /B , M = 0 , (A-12a) 

The L=Y=O case should not be included 

in the followings because we select the independent equations so as to 

include N=O case but as to exclude L=O case. The determinant is written as 
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BN o o (A-12b) 

o o 

o 

The right hand side is zero when and only when N=O, namely the bending point 

of the magnetization. 

(:iv) 
~ 

h=O, H//X: fictitious one-spin system under the external field parallel 

to the intermediate axis 

The solutions satisfying L=O, N#O are considered. The equation deter-

mining M(and N) is given by 

(A-l3a) 

This is just the equation (3-48a) and we can rewrite it as 

(A-l3b) 

where a and !J. defined in (3-53b) are used. The 3 x 3 determinant splits 

into a.l x ·.1 and a 2 x 2 determinants for !J.L and for.!J.M and !J.N , respectively. 

!J.L is readily estimated to be negligible and the determinant for !J.M and 

!J.N are·given as 

AM+X2 

(A-l4a) 
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Requiring it to be zero we obtain 

1 
2(H * + H *)cos28 + (g *2 + g *2)2sin(8 - 6) = 0 

K K' . XY . ZX (A-l4b) 

Equations (A-13b) and (A-14b) are satisfied simultaneously at the confluence 

point(See §3.2.2 (c).) only. Therefore, the simplified equations are reliable. 

(v) 
0+-hiO, HI IY '. gyZ=O: fictitious two-spin system under the external field paral-

lel to the hard axis(g-anisotropy in the.ac-plane is neglected.) 

Following the treatment in case (iii) we consider the special cas~ 

satisfying c=O. The solution fulfilling L=L' iO, M=M' =0, N=-N' is considered. 

The 6 x 6 determinant splits into a 2 x 2 and a 4 x 4 determinants for 6M, t.M' 

and for 6L, 6L', 6N, 6N', respectively. The former determinant 

hL 

hL 

\ 
(A-IS) 

is always positive, so that 6L and 6L' are small. The latter determinant 

is written as 

(B+h)N (B+h) L-Y hN -hL , (A-16a) 

o o 

-hN -hL -(B+h)N {B+h)L-Y 

o o 
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where the relations L=L' and N=-N' are used. Requiring this to be zero we 

obtain 

(A-16b) 

As in the case (ia), the simplification is allowable unless N=O. 

These examples suggest that the deviations are dive.rgent when and only 

when the lowest-energy solutions of the simplified equations degenerate in 

the LMNL'M'N'-space. It is clear that such is a consequence of the mathe

matics that a small perturbation to an equation causes only a sl.ight change 

in the solution when it is not degenerate. Therefore, the simplification, 

a small modification of the equation. is allowable in general and the 

exceptions for HI IX, Y. Z are only the bending points for HI/Y and Z. 
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B. Twelve fundamental equations 

Twelve equations determining vectors (L,M,N), (L',M',N'), (l,m,n) 

and (l',m',n') are presented here. 

+ 2h CNL'-LN') = 0 ex ' 

+ 2h (LM' -ML') = 0 . ex 
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2(H -H )N'L" + 2H L'M' + 2H (-m'N'+M'n') K K' A DM 

+ 2h (N'L-L'N) = 0 ex ' 

4H L'M' - 2H N'L' - 2h (-m'N'+M'n') K' A DM 

+ 2h . (L'M-M'L) = 0 • ex 

(dR3/dt-dRq/dt type) 
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4H . (-11M'+L'm') + 2h _MINI - 2H (L'2+M'2) ex mr- DM 
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c. 36 solutions of the H=O and h > 0 case ex 

36 solutions of eqs. (3-3la) IV (3-3lc) and the associated equations are 

grouped into (i) IV (:ix) • 

(i) L = ±l, M = 0, N = 0, 

L' = +1, M' = 0, N' = O. 

(ll) L=O, M = 0, N = ±l, 

L' = 0, M' = 0, N' = ±l. 

(ill) (a) L = +Ll, M= 0, 

M' = 0, N' = ±Ll, 

and functions Fl, F2 are given by 

M= 0, N = ±Ll, 

M' = 0, 
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(a' ) L = +Nb M = 0, N = ±Lb 

L' - +L - - l' M' = 0, N' - +N - - l' 

(b' ) L ~ ±LI, M = 0, N=±NI , 

L' =+N I , M' = 0, N' = ±LI • 

(N) L=±l, M= 0, N = 0, 

L' = ±1, M' = 0, N' = O. 

(v) L = 0, M= ±1, N = 0, 

L' = 0, M' = +1, N' = O. 

(vi) (a) L = ±L2, M =+M2, N = 0, 

L' = ±M2, M' = ±L2, N' = 0 . , 
\, 

where L2 = F2 (2HK, *) and M2 = FI (2HK, *). 

(b) L = ±M2, M = ±L2, N = 0, 

L' = ±L2, M' =+M2, N' = O. 

(a') L = ±M2, M =+ L2, N = 0, 

L' =±L2, M' = ±M2, N = O. 
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N = 0, 

N' = O. 

(vii) L=O, M = 0, N = ±l, 

L' = 0, M' = 0, N' = :i=l. 

(v.i:ii) L = 0, M = ±l, N = 0, 

L' = 0, M' = ±1, N' = O. 

(:ix) Ca) L = 0, M = =tM3, N = ±N3, 

L' = 0, M' = ±N3, N' = ±M3, 

where M3 = Fl (HK* + HK, *) and N3 = F2 (HK* + HK, *) • 

(b) L = 0, M = ±N3 , N = ±M3 , 
\ 

L' = 0, M' = =tM3, N' =±N3. 

(a' ) L = 0, M = =tN3 , N = ±M3 , 

L' = 0, M' =+M - 3' N' = ±N3 • 

(b') L = 0, M = ±M3, N = ±N3 , 

L' = 0, - M' = =tN3, N' = ±M3. 
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-7 
D. Free energies in the 2-sublattice HIIZ case 

-7 
For the 2-sublattice HIIZ case, the free energy is written as 

f = -H *N2 
K 

(D-l) 

where a simplified not.ation k is used instead ofg2/8H • The equilibrium . ex 

condition is given as follows: 

(D-2a) 

(D-2b) 

Solutions of (D-2a) are considered first. They are 

M = 0 (D-3a) 

and 

N = 0 • (D-3b) 

We call the former and the latter as Case A and Case B, respectively. 

Case A: M=O 

Equation (D-2c) is satisfied automatically. Solutions of eq. (D-2b) are 

N = 0 (D-4a) 

and 
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(D-4b) 

The former and the latter are called as Case Aa and Case Ab, respectively. 

(Case Aa) M=N=O 

For this case Land f are obtained as follows: 

L = ± 1 , 

Of these two solutions, we pick up one which is given by 

because the free epergy of the other case is always larger than f Aa • 

(Case Ab) M=O, L=gZX**Hz/2(HK* - HKI * - kHZ
2

) 

Case B: N=O 

(D-Sa) 

(D-Sb) 

(D-Sa l
) 

(D-Sb l ) 

(D-6a) 

(D-6b) 

Equation (D-2b) is satisfied automatically. Solutions of eq. (D-2c) are 

M = 0 (D-7a) 
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and 

(D-7b) 

(Case Ba) M=N=O 

This case has been treated as the Case Aa. 

(Case Bb) N=O, L=-gzX**HZ/4HKt * 

For this case M and f are calculated as 

(D-Ba) 

f = H * - kH 2 + g **2H 2/8H * Kt Z ZX Z Kt- CD-Bb) 

We readily see 

(D-9) 

Therefore, the problem is reduced to the examination of f
Aa 

and fAb • 

First, F(H
Z
) is defined as 

CD-IQ) 

A simple calculation gives 

(D-lIa) 

where 

(D-lIb) 
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The first factor of eq. (D-Ila) can not be zero because, if it is zero, 

L given by eq. (D-4b) diverges. Therefore, 

and 

where the equality stands for h=l, ,in other words (See (D-ll b) .) , 

and Hd" is given by 
lV 

.1.. 
Hdiv = (HK_*/k)2 • 

Summing up these results, Case Ab is the lowest state when HZ < Hdi v and 

(D-12a) 

(D-12b) *) 

(D-12c) 

ILl ~l, otherwise Case Aa is the lowest state. When the positive solution 

H
BZ 

of eq. (D-12b) satisfies H
BZ 

< Hdiv ' the transition occurs smoothly. 

The inequality ILl ~ 1, in other words(See (D-4b).), 

-1 :::; g **H /2 (H * - kH 2)· ~ 1 
~ ZX Z K- z- ·(D-B) 

is considered next. This inequality has solutions: 

1 
Hz ~ (1/4k){-.lgzx**1 + (lgzx**1 2 + 16kHK_*)2) < Hdiv (D-l4a) 

and 

1 
HZ ~ (1/4kj{lgzx**1 + Clgzx**1 2 + 16kHK_*)2} > Hdiv • (D-14b) 

*) When h=l, L for Case Ab is ±1 depending on the sign of gzX**(~O). 
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The former is consistent with the required condition and the latter is not. 

In conclusion, by increasing H
Z

' a smooth transition from the Ab-state to 

the Aa-state occurs at HBZ defined by a selfconsistent equation: 

CD-IS) 
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E. Solution of eq. (3-65) 

Equation (3-65) is solved following the method by Gorter and coworkers. 34) 

The minimum of the free ene.rgy 

f* = _(N2 +N,2) - x(L + L') + h(LL' +NN') (E-l) 

is considered under the fpllowing conditions for the variable x corresponding 

to the external field and the constant h corresponding to the interlayer 

exchange: 

x(variable) > 0 ~ h(constant) > 0 . (E-2) 

By writing 

N = cosS, L = sinS (0 ~ S ~ 2n) ~ (E-3a) 

N' = cosS', L' = sinS' (0 < S' < 2n) , (E-3b) 

f* is transformed into 

f* = -(cos 2S+cos2S') - x(sinS+sinS') +h(sinSsinS'+cosScosS') • (E-4) 

Next, by introducing new angles a. and ~ defined as 

a. :: ~(S+S') (0 ~ a. ~ 2n) , (E-Sa) 

~ 
_ 1 

( -n ~ n) (E-Sb) = 2(S - S') < < , 

f* is further converted into 
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(E-6) 

The energy minimum conditions 'df*/'da = 0 and 'df*/'dS = 0 yield 

2cosa(2sinacos2 S - 2sinasin2 S - xcosS) = 0 , (E-7a) 

2sinS(2cos2acosS - 2sin2acosB + xsina - 2hcosB) = 0 • (E-7b) 

Equations (E-7a) and (E-7b) have four solutions. They are as follows: 

Case I cosa = 0, sinB = 0 • 

By using sina = ±l and cosS = ±l, the free energy are calculated as 

f* = -2x(±l) (±l) + h • 
. t t 

Sl.na cosS 
To minimize the free energy, sina and cosS should have the same sign. 

The ++ selection or a = Tr/2, S = 0 results in 8=9' =Tr/2. The -- selection 

similarly results in 9 = STr/2, 9' = Tr/2 and 8 = Tr/2, 8' = STr/2. Hmvever, the 

(E-B) 

solutions violate the limit for 9 and S' so that we neglect them hereafter. 

The result 8=9'=Tr/2 satisfies the required condition L=L', N=-N'. Of 

course, eq. (E-8) can be simplified to 

f* = -2x + h - f*I(x) • (E-9) 

Case IT cosa = 0, 2cos 2acosS - 2sin2acosS + xsina - 2hcosS = 0 
-

By using sina = ±l, cosS is calculated as 
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cosS = ±x/2(1 + h) , x ~ 2 (1 + h) . (E-IO) 

Just as for Case I. the ++ selection is the only case to be considered 

further. For this case, a and a' are given by 

1 a = '2 1T ± So , a' 1 -+ Q = '2 1T 1-'0, (E-ll) 

where So is a positive acute angle defined by 

cosSo = x/2 (1 + h) • (E-12) 

These a and a' satisfy the condition L=L', N=-N'. The free energy is 

written as 

f*=-2-h-x2/2(1+h) -f*n(x). (E-13) 

Case ill 2sinacos 2 S - 2sinasin2 S - xcosS = 0 , sinS = 0 • 

By using cosS = ±l, sina is obtained as 

sina = ± x/2 , x ~ 2 • (E-14) 

The ++ case is selected as before. The angles a and a' are given by 

a = a' = ao , 1T - ao , (E-IS) 

where aO is a positive acute angle defined as follm.,rs: 

sinao = x/2 • (E-I6) 
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The expression of the free energy is simplified to 

(E-17) 

Case IV 

2sinacos 2S - 2sinasin2 S - xcosS = 0 , (E-18) 

2cos 2acosS - 2sin2acosS + xsina - 2hcosS = 0 • (E-l9) 

By add~ng (E-IS)xsina and (E-19)xcosS, the following equation is derived: 

Then a useful relation between sina and cosS is obtained as 

_.1.. 
cosS = ±sina(l - h) 2 

By inserting this relation, eq. (E-lS) is transformed into 

.1.. 
2sin 3a/(1 - h) - 2sinaU- sin2a/(1 - h)} + xsina/(l - h)2 = 0 • 

Equation (E-22) has two solutions; 

sina = 0 

and 
1 I·.!. 

sin2a = 2(1 - h) ± 4x(1 - h)2 

The former solution yields cosS = 0 so that f* is calculated as 

- lSS -

(E-20) 

(E-21) 

(E-22) 

(E-2:» 

(E-24) 



f* = -h • 

As this value -h is abvays larger than f* n(See (E-13).), we disregard it 

hereafter. The latter solution results in 

cos2a 1 1-
= h =.: 2x(1-h)2, 

1 _1 
cos2f3 = ±zx(l - h) 2 , 

1 
f* = 1;x2 =.: (1 - h) 2x - 1 . 

4 

(E-2S) 

(E-26) 

(E-27) 

(E-2S) 

Of course, the upper of the double sign leads to lower energy, so that the 

lower of the double sign can be neglected. The free energy f* W (x) is 

defined as 

(E-29) 

By employing the expressions for cos2a and cos2f3, namely eqs. (E-26) and 

(E-27), the domain of the variable x is taken as 

1 
x ~ 2(1-h)2. (E-30) 

Next, f*rn and f*W are compared with f*n . 

Case A f*rn versus f*n 

The following definitions of the free energies are reminded: 

f*n = -2 - h - x2/2(1 + h) x ~ 2 (1 + h) , 

x ~ 2 • 
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At x=O f*n is smaller than .f*][ so that, if the positive solution of the 

equation f* n =f*][ is larger than 2, we can conclude f* n < f* ill. The 

equality can be simplified to 

2 1 1 x {of- z/(l +h)} = 2h • 

The positive solution 

1 
X = 2(1 + h)2 

is larger than 2. 

Case B f* IV versus f* n 

We consider the cross point of two curves. The equationf* n - f* IV =0 is 

simplified to 

1 -!X2(3+h)/(1+h) + (1-h)2x - (l+h) = O. 

The discriminant of this equation is obtained as 

(1 - h) - (3 + h) = -2 - 2h • 

As this quantity is negative, two curves do not cross. 

smaller than f* IV' so that always f* n < f* IV • 
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(E-31) 

(E-32) 

(E-33) 

(E-34) 
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F. Magnetization jump and the jumping field 

T,'v'o parameters, .1 gzx *1 gXY * 1 and 2h ex/HK+ *, are determined by comparing 

details of the calculated and experimental magnetization curves. The 

calculation was done for 30 combinations of the parameters shown in Table 

WI. Examples of the calculated curves are given in Fig. 32(a) and (b). 

It is noticed that the jump of the magnetization remains constant when the 

second parameter, 2h /HK *, is cha.nged. Two quantities A and B which ex + 

charaterize the shape of the curves are considered. A, the reduced jump 
1 

in %, is 100(jump per ion)/llB<s> {(gxy*)2 +(gzX*)2}2 and B, the reduced 

jumping field in %, is 100(H
X 

of the jump)/HIBX' where HIBX is the imaginary 

bending field for H//X given by eq. (5-11). Table WI shows the calculated 

values of A and B corresponding to the 30 cases. The experimental result 

for CuFTH indicates that A and Bare 21 and 53%respecti vely. Rounding 

them to 20 and 55% respectively, we obtain Igzx*lgxy * I = 0.20 and 

2h /HK * = 0.35. ex + 
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Table \ill Dependence of the magnetization jump and the jumpi?g field 

on two parameterslgzx*lgXy*1 and 2he/HK+*. In the expression A/B, 

A represents the reduced jump in %, namely 100(jump per ion)/~B<S>x 

[(gXy*)2 +(gZx*)2]~, and B represents the reduced jumpi.ng field in %, 

100(HX of the jump)/HIBX' respectively. 

~ 0.10 0.15 0.20 0.25 .0.30 

2h /HK * ex + 

0.20 10/64 15/49 21/39 26/33 29/26 

0.25 11/71 16/55 20/45 25/37 29/31 

0.30 11/76 15/61 20/51 26/42 29/38 

0.35 9/81 15/66 20/55. 26/46 29/40 

0.40 7/83 15/69 19/58 25/49 29/44 

0.45 . 5/86 13/73 20/61 23/53 29/41 
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G. Antiferroelectric state of Cu(HCOO)2' 4H20 

Lattice and positional parameters have recently been reported by Kay 

and Kleinbe.rl 3) for the antiferroelectric state of CuFTH. Table IX shO\~s 

(1) the lattice parameter, the positional parameter of HCOO--proton and the 

dipole tensor D corresponding to the paraelectric state studied by Okada 

et al. 19) and (2) those corresponding to the antiferroelectric state 

mentioned above. As is presented in §2, the former ~s used for CuFTD 

throughout the present paper. Here we examine qualitatively how the 

conclusions of §6 are modified when the dipole tensor of the latter case 

is used, because the crystal structure of the antiferroelectric state of 

CuFTD may be closer to the latter than to the former. The essence of the 

difference between two cases is the change of z/c positional parameter, which 

results in different D and D·. In the low field 4-sublattice state, the yz zx 

spins are nearly parallel to the x-axis so that the internal field is mostly 

determined by D . Therefore, the internal fields for two cases are similar xx 

and the· conclusions of §6 remain unchanged. I~ the high field 2-sublattice 

state, the spins rotate in the L1'b-plane when the external field is in the 

bcl-plane. About one half of the shift is determined by D so that the yz 

shift for the latter case is calculated l<l:rger than that for the former by 

15 tU 30%. Therefore, we see· that m:: <S>/S in the 2-sublattice state may not 

be 0.9 but O. 7 tU O. 8. 
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Table IX Dipole sum tensors for the parae1ectric19) and antiferro-

e1ectric23) states of Cu(HCOO)2· 4H20 . 

parae1ectric antiferroe1ectric 
state state 

0 0 

a 8.18 A a 8.00 A 

lattice b 8.15 b 8.18 

parameters c 6.35 c 6.205 

e 101.1 0 e 101.1 0 

positiona1 x/a 0.207 x/a 0.2052 

parameters of y/b 0.692 y/b 0.6959 
-HCOO proton z/c 0.071 z/c 0.0904 

kOe kOe 
D -0.48 -0.47 
xx 

D 0.49 0.50 
yy 

AR-3 D -0.01 -0.03 zz 

(2-sub1attice) D D xy' yx 0.02 0.0 

D D yz' zy -0.18 -0.23 

D D zx' xz 0.18 0.22 

D -OA9 -0.48 xx 
D 0.46 0.46 yy 

AR-4 D 0.03 0.02 zz 

(4-sub1attice) D D xy' yx 0.02 0.0 

D D yz' zy -0.21 -0.27 
-

D D zx' xz 0.22 0.27 
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H. Magnetization curves for CuCHC00)z-2CNH2hCO-2H20 

The magnetization curves for CuFUH are fully presented here. Figures 

33Ca), Cb) and Cc) represent the a.ngular dependence of the magnetization 

curve in the LlL 3-, LlZL2- and L2Lrplanes, respectively. In Fig. Cb) and 

Cc) the inserts are details of the curves around the jump. Figure 34 

indicates the lack of hysteresis for HIILl andL2' Figures 35Ca), Cb) and 

Cc) show the ~ngular dependence of the m~gnetization in constant external 

fields. ~igures Ca), Cb) and Cc) correspond to the measurements in the 

LlL 3-, LlZL2- and L2L3-planes, respectively. 
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I. Abstract in German 

Auszug 

Die magnetischen Eigenschaften eines zweidimensionalen Antiferromagnetes, 

CU(HCOO)204H20, wurden beide experimental und theoretisch mit besonderen 

lnteressen an den Magnetisierungsprozel3 gestudiert. Die Mess~ng der 

Magnetisierung bis zu 20 kOe wurde bei 4.2K auf Einkristalle von Cu(HCOO)2-4H20 

gemacht und auch die Protonenresonanz des deuterierten Salzes, Cu(HCOO)204D20, 

wurde bei 4.2K gestudiert. Es wurde gefunden, daS einige experimentelle 

Ergebnisse z. B. ein Magnetisierungssprun~ gebeobachtet bei 5 03 kOe, wenn ein 

auSeres Feld zur b-Achse parallel ist, nach dem zweiuntergitteren Modell 

gebraucht von Seehra und Castner nicht geerklart werden konnen.: Die 

vieruntergittere Theorie, in der die inter- und intra-schichten Austausch-

wechselwirkungen, die symmetrischen und antisymmetrischen Anisotropien und 

die Zeeman-Energien in Betracht gezogen wurden, wurde zu dieser Verbindung 

angewandt und die experimentellen Ergebnisse wurden genug geerkHirt. 

Die inter- und intra-schichten Austauschfelder, H und h , wurden wie 
. ex· ex 

1.5 x 106 Oe und 4.0 x 10 Oe beziehungsweise. geerlangt. Das kleine VerMil tnis 

von he/Hex' 2.7 x 10-5, bestat.igt der Zweidimensionalitat. dieses Kristalls. 

Die Magnetisierungskurve einer ahnlich~n Verbindung,·Cu(HCOO)202(NH2)2CO-2H20, 

wurde bei 4. 2K gestudiert. Die Ergebnisse ze.igen an, daS die inter-schichte 

Kuppelung dieses Kristalls ist urn 1/20 von der in Cu(HCOO)204H20, wahrend der 

intra-schichte Austausch beider Kristalle ist in der gleichen Groaenordnung. 
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