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Abstract:

The meson-theoretical derivation of exchange current and the effects
of exéhange current on the magnetic moment of_deuteron are studied in
part I and part II, respectively. Ih part I, we investigate the methods
to derive exchange current froﬁ meson theory in order to solve the
recegt confusions in the derivation of éxchange current. From the studies
of non-static exchénge current and nuclear potential, we clarify the
reason why different methods givevdifferent static two-boson-exchange
currents, while they give tﬁe same static two—bbson—ekchnage potentials.
Next, non-uniqueness of the exchange current and nuclear potential is
studied. We show that it is reduced to the arbitrariness’ of unitary
transformation within meson-vacuum space.

In part II, the effects of static two-boson-exchange current, non--
static one-boson-exchange current and the relativistic correction on the
magnetic moment of deuteron are studied,_where the static one-boson-
exchange current does not contribute to it. The exchange currents are
derived from the unitary transformation method by taking into account
pion, rho and omega exchanges, and isobar intermediate state. We find
- the important contributiohs of two-boson-exchange current as well as
those of one~boson-exchange current and relativistic correction, and
the discrepancy between the experimental and impulse value of magnetic

moment is well explained by these effects.
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Section 1. Intro&uction

A nucleus is an essemblage'of nucleons, isobars and mesons inéeracting
with each other. It is, however, assumed that the nucleus consists of
only nucleons interacting through nucleér forﬁe. This is justified as
far és we ére_concerned with the nuclear properties below the threshold
energy of pion production. In-other words, we can eliminate degrees of
freedom of nuclear constituents except for nucleons from nuclear state
vector. This elimination induces the nuclear force (or nuclear potential)
in the Hamiltonian. At the same time the interaction of nucleons with
the exterﬁal electromagnetic field is modified, i. e., we have the so-
called exchange éurrent(many—body.current).

The history of the exchange current is as long as the one of the
nuclear force. (See. the papers by Futami et al.l) and by Chemtobz) for
historical review of exchange current problem). The concept of exchange
current was at first introduced by Siegert3) in 1937. He pointed out
that if the nuclear force involves the exchange force of Majorana typé,
the exchange current should .exist so that the current conservation law
can be preserved. Generally, the exchange current can be divided into
two parts. The first part is described in terms of nuclear force.4)
This is known as the Siegert theorem, which was first applied to the

5) and

sum rule of the electric dipole transition by Levinger and Bethe
also to the ofbital part the magnetic moment ( the Sachs moment6)).

The second ﬁart, however, depends on the detail of the strong interaction,
which cannot be expressed by the nuclear force alone, and it gives rise
to effects on the intrinsic magnetic moment of nucleoné.

Similar obsevation can be done for the weak interaction process in

nuclei. For example, the Gamow~Teller coupling constant in the beta’



decay of the free netron is modified in the nucleus.

In the early time, the exchange current was studied only in the -
few—body‘systems, but*nofiintthe'many;body systems, because the nuclear
theory at that time was too naive to discuss the effects of exchange -
current by comparing the calculated results and the experimental data.

Recently owing to the progress on the nuclear theory, itrbecomes
possible to study the effects of exchange current quantitatively. Also
the exchange current operators can be obtained rather reliably owing to
the development of the high-energy physics. For example, the magnetic
moment and Gamow-Teller matrix element have been studied by taking into
account the effects of gore“polarization and exchange current.7’8)

One of the clear evidences of the ekchange current is seen in the
radiative capture of thermal neutron in hydrogen. The experimental -
value of the total cross section for the magnetic dipole transition
is about 10% larger than the calculated value by the use of the so-called
realistic two-nucleon wave function in ﬁhe impulse approximation. This

9

anomaly is nicely explained by the one-pion-exchange current. Another

10 15) In the impulse

example is the static magnetic moment of deuteron.
approximation, the magnetic moment is expresséd.in.terms<of the iso- -
scala;)part of the nucleon.magnetic moment and also the probability of
the d-wave component in the deuteron. The realistic deuteron wave
functions predict the magnetic moment about 1.4% smaller than the
experimental data. Although this anomaly seems very small when compared
with the formar example, it is very difficult to explain the anﬁmaly
theoretically. The main reason is that the static one—boson—exchangek

(OBE) current does not contribute to the magnetié moment of deuteron.

Therefore, as the effects of exchange current on the isoscalar part of



magnetic moment, we must study higher order processes such as non-static
correction and:’two-boson-exchanges (TBE). Similar example is the-

14, 16 18) .
nuclear charge density operators. From the above example it
is clear that study of two-boson-exchange processes is unavoidable if
we want to understand the magnetic moment of isoscalar type or nuclear
charge distribution in detail. There appeared some works in this

direction.14’16"18)

Unfortunately, there are some confusions in
defining the exchange current. In particular different approaches give
diffgrent results for the two-boson-exchange currents, while thej give
the same results for the nuclear forces. To solve this discrepancy in
the derivation of TBE current we must reinvestigate how to derive the
exchange current in the meson theory. This is very important in the
exchange current problem in itself, and also in the meson-nucleus physics
as the first step beyond the phenomenology.>

In part I, we shall study how to define and how to derive exchange
current and nuclear potential in the meson theory. At first we shall
briefly review methods to obtain exchange current. There are generally
two approaches to define nuclear potential and exchange current. In the
first approach, we divide the.HiBert space for the state vector into -
the boson-vacuum space and boson~existing space>énd eliminate boson-
existing space using the projection operators onto these sub-spaces.
Then exchange current and nuclear potential are defined as the effective

operators in the boson-vacuum space. Fukuda, Sawada and Taketani (FST)}g)

and independently Okubozo)

proposed a method to eliminate boson-existing
space by the unitary transformation which retain the orthogonality
ans normalization conditions for the state-vector. Nishijima21) took

. the canonical transformation for this purpose. In what follows, we



we shall call this method as unitary transformation method, which ﬁilil
be reviewed in detail in sect. 2. We shal give the perturbative solution

17)

of effective operator following Hyuga and Ohtsubo, and derive nuclear
potential and exchange current up to the TBE processés.

The next approach is to derive exchange ¢urrent and nuclear potential
from the S-matrix element calculated from the meson theory. In tﬁe
potential theory, the interaction'must be instantaneous ‘and hermitian,
while two nucleons interact with exchanged boson: at different times in
the field theory. Nevertheless, the instantaneous potential must be
derived soras -to reproduce the same  S-matrix élement-as in the "fieéld |- .

22)

theory. From this point of view, Nambu proposed a method to derive
nuclear potential by the study of time development of system. Following
Nambu's method Taketani et al.23) derived static twofpionéexchange'

24)

potential. Miyazawa proposed an alternative method to derive static
nuclear potential from the static S-matrix element. The static TBE
potential is derived from the stétic fourth order S-matrix element by
subtracting iterated termbof static OBE potentiél. This method has an
advantage that we can derive potential from the experimental boson-
nucleon scattering amplitude and is very simple, because we need not to
calculate lots of time ordered diagrams in .the unitary transformation
method. We shall call this method as the S-matrix method. 1In sect. 3,
we shall review the S—matrix method of Miyazawa and apply it to the - :
derivations of nuclear potential and exchange current.

One of the problems in these methods is that the unitary

traﬁsformation method17) and S-matrix methodls) give the different TBE
currents from each other,vwhile they are~known to give the same static

TBE potentials. Hare, it is noticed that in the unitary transformation



method Nishijima obtained the same TBE potentiél ashTaketani et al..
The relation between the unitary transformation and S-matrix methéd
have not been clearly discussed yet. The reason, why fhese two methods
- give the same static TBE potential but the different TBE current, is
not clear. The key point to éolve this problem>ié to understaﬁd the
meaning of the statié limit. It is not so obvioqs that the static
nuclear potential and exchange current are related directly to the
static S-matrix element. In sect. 4, we shall solve the discrepancy
of the static TBE current by calculating the non—sfatic exchange current
and pot ntial in the unitary transformation method. As a result we
shall find that the recoil effects of nucleons will play the essential
role.

The another problem is non-uniqueness of the nuclear potential and
exchange current. In sect: 5, we shall see that due to the different
choice of the time-base in Nambu's method, in other words, due to the
different forms of canonical transformation we oﬁtain the different non-
static OBE potentials. We shall show that the non-uniquenesses of the
effective operators are due to the arbitrarinesses of unitary transfor-
mation which do not couple the boson-existing and boson-vacuum spaces.
We shall show the consistency of our treatment of exchange cﬁrrent and
nuclear potential by stydying the conservation law of the electromagnetic
current in secé. 6. The results in part I are summarized in sect. 7.

In part II, we shall study the magnetic moment of deuteron. In the
isoscalar magnetic moment, the correction to the impulse value is
expected to be small, since the static OBE current, which.is the main
contribution in the isovector magnetic moment, does not contribute to

it. Therefore, we expect that the important correction to magnetic



moment come from the non-static OBE current and static TBE current.
From this point of view it is very interesting to study the magnetic
moment of deuteron.

The magnetic moment of deuteron has been studied by taking into

10-15)

account exchange current contributions

25)
26)

uration .

and negative: energy com-
ponent of the deuteron wave function, or nucleon resonance config-

However, we shall notice that there still remain problems
in the previous works especially in the treatment of exchange current.

27)

Within the conventional nuclear physics, two-body magnetic
moment operators have been studied by retaining velocity-dependent part
of phenomenological nuclear potential. It is, however, dangerous
unless a minimal substitution of electromagnetic.field is performed at

3) studied the pair current in

the fundamental level. ﬁorikawa et al%
one-boson—-exchange model, which reproduce the experimental data on the
two-nucleon system. They also studied the dissociation current(fm{"),
which was at first studied by Adler and.DrelllZ). Gari and Hyuga14)
studied electromagnetic form factor for the deuteron by taking into .
account the pion,.rho and omega-exchange pair current, and dissociation
current derived by the unitary transformation method. They obtained
desired value as correction to the magnetic moment of deuteron in the
impulse apprdximation.

In these studies of exchange current in OBE model, relativistic
correction to one—body—operatog‘has not been taken into account. This
relativistic correction is the same order of magnitude as the OBE
- current cdntribution, and is subtractive. Then it becomes necessary

to study the other effects such as TBE current. The two-pion—exchange

magnetic moment operators were studied by Sato and Itabashilo) in éhe



11)

unitary transformation method, and Hatano and Kaneno in the canonical
transformation method. Although the model which they adopted for'the
strong interaction is by no means realistic, the definition of exchange
current is valid.

15)

Recently Jaus have studied OBE and TBE current and relativistic
corfection, where the TBE current is derived by the S-matrix method.
This is the only work that took into account the exchange current
contribution up to TBE processes and also relativistic correction. It
is noticed that he obtained the incorrect TBE current by adopting the
S-matrix method.

Now it is necessary to calcﬁlate the magnetic moment of déuteron
by the consistent derivation of exchange current. We shall deriver,
relativistic correction to the one-body-eurrent, and OBE and TBE current
by the unitary transformation method. In the pion pair current, there
are additional momentum-dependent currents which are neglected in the
work of Gari and Hyuga. Although these current.depend on the arbitrari-
ness in the unitary transformation, there is no reason td neglect them.
We shall calculate contributions of these currents. Further, we &8lso
calculate the non-static part of OBE current due to nucleon recoil, which
have not been studied yet. We take into account pion, rho-~ and omega-
exchanges. In the TBE current static limit is adopted, and nucleon and
isobar 641236) intermediate states are included.

‘In sect. 8, we obtain the magnetic moment of deuteron in the’ impulse
approximation with the Reid wave function. In order to calculate the
exchange current operator, we shall specify the interaction Hamiltonian
in sect. 9. The explicit forms of relativistic correction and exchange

current operators are given in sect. 11 and 12, respectively. Our



results and discussions will be given in sect. 1l4.



Part I. Consistent Definition of Nuclear Potential and Ekchange Current

Section 2., Method of Unitary Transformation
We shall review in detail how to eliminate the mesonic degrees of
freedom from the nuclear state-vector and to define the nuclear potential

and effective operator, following the works by FSTlg?,addVOkubozoz ' ";”J

2.1, Elimination of Mesonic.Degrees of Freedom
We shall start with the eigenvalue problem for the system with bosons

and nucleons:

H & = FZ, _ J0.(2.1)

with

H = H, + Hz, - (2.2)

where HO is the free Hamiltonian of bosons and nucleons, and HI is the
interaction Hamiltonian among these particles. E is an eigenvalue of
the total Hamiltonian H, and F is the corresponding eigen-state vector
of the system,

To rewriﬁe Eq. (2.1) by eliminating-the mesonic degrees of freedom,
we introduce projection operators i and A. The operator z_projects any

state f onto the subspace with only nucleons,_%i, and the operator A,

onto the boson-existing subspace, #,i.e.,

F = P, + ZF, (2.3)



Fo=RZF . PFa = AE  and A+7=1. (2.4)

From Eq. (2.1), we obtain the coupled equations for the state-vectors

2, andf,-, . as

CE -pH2)Z, = 2HAE . (2.52)

and

: : (2.5b
( £E - AHA)P, = AHQE. ¢ )

From Eq. (2.5b), we can formally express the boson-existing state-vector

_%',, , by the boson~vacuum state-vector .é;,

, 7
Pn= A He 7 2o, (2.6)
/ - ! A H. )
E—Hy

and we obtain the Schrodinger-like equation for the state-vector .f:, as

(£ —H) 2, = 7H L 7=
A /- A He
E"ﬁg
= 9 H J(E) 7 &, , A (2.7)
where
7
JE) = 7- (2.8)
;- =2 Hr :
E~Ho

The true state-vector # is expressed in terms of 2, as

- 10 -



Z = JE )E . (2.9)

The right-hand side of Eq. (2.7) is called the Tamm-Dancoff potential,
which is energy dependent. Thus we cannot identify it as the nuclear
potential, since the energy-dependent potential does not gurantee the

orthogonality of the state vectors.

< Zopl Z.:> = Sip (2.10)

However, we can eliminate the energy dependence of the operator J(E) as

follows,

[ T, H] 728 2 JTHo 18, - thJ7 2.

= HeJT9F, ~J7HT7Z,  (2.11)
- which shows that the operator J should satisfy the equation as,

[T, Ho ] 7 = H:J7 - T 7 HIJT. (2.12)

This equation does not involve the total energy E explicitly so that we
can obtain the energy-independent operator J, if there exists a solution
of the above equation. In fact, as a limit of vanishing‘interaction, we
have a solution with J = 1. Owing to the nonlinearity of this equation,
we can obtain the operator J in a perturbative way, which will be shown

in section 2.2.

- 11 -



From the above argument, we can define the Tamm-bancoff potenﬁial
in the energy-independent way. Nevertheless, the state-vector 2. Eannot
be regarded as the state-vector in the potential theory, because the norm
of the state-vector £ is not unity. If we introdﬁce the normalized

state-vector 2 in the boson-vacuum space

Xe = 17 TtT 7072 £, (2.13)

rd

which is related with the true‘state—vectorj? as

Z - u k‘. (2.14)
with

U = T (97T 'z)'/”-' (2.15)

then we can see that 2 satisfies conditions of the normalization and

orthogonality of the state—vectofs:
<Epl Ze> =Xl (P TTR)TYTIT L (g TTTE)E 17>

It is noticed here that U is the unitary transformation which transform
X: into £:. The state-vector X is just what we can regard as the

nuclear state-vector in the potential theory. The probability P that

- 12 -



we find the system in the boson-vacuum space is given by

= ¢ X QT'T )" x>,
- ‘ (2.17)

The operator (ZJ’JZ)~ 1 is sometimes called the probability operator.

From Eq. (2.14), we obtain the equation

ut #H a4y

"

(g Hon TV Z=EX, (2.18)

from which the nuclear potential is defined as

V= cer"’J‘Z)%JfH J(7JU7)—I/2—‘7_H°7~ (2.19)

From the above argument, the Tamm-Dancoff potential is different from

our potential obtained here. The nuclear interaction with external field,
such as electromagnetic current or weak current, is also modified due to
the existence of mesons in nuclei. The current operator £} is modified

in the nucleus as L%ﬂ., and they satisfiy the following equality

Sl OylXed> = < Zpl O1VED, (2.20)

from which we can express 524 as,

Dets = ¢4TU1)"27tpT tgatT ) V= (2.21)

If we regard the operator 59 as the Hamiltonian, Eq. (2.21) define the

- 13 -



nuclear potential. Equations (2.20) and (2.21) are the basic equations

for the nuclear potential and exchange current to be obtained in the

19)

meson theory. These equations were originaly derived by FST and

independently Okubo?o)

2.2. Perturbative Solution of Unitary Operator and Effective Operator

We shall find a solution of Eq. (2.12) in the perturbation following

17)

Hyuga and Ohtsubo. We assume the Hamiltonian to be

H =  Ho + A Hz, (2.22)

where H0 is the free Hamiltonian, H

A is a parameter, whose value should be set unity after the calculatiom.

I is the interaction Hamiltonian and

For simplicity we assume the interaction Hamiltonian of boson and nucleon

to be of the Yukawa type (See Fig. 1).

Fig. 1 -Strong interaction vertex of the boson ard nucleon. Solid and

dashed lines show the nucleon and boson, respectively.

It is noticed that we have conditions as,

A He7 =0 amd 2Hr 7 = o, (2.23)

- 14 -



To obtain the solution of J with the boundary condition,

T= ! ae A o (2.24)

e

we introduce the operator F which is defined as

T= 1+ Z - (2.25)

/

and expand it in the power series of the parameter 1.

F=Z AF™ | | (2.26)

n=et

Inserting Eq. (2.26) together with Eqs. (2.22) and (2.23) into Eq. (2.12),

and comparing term by term, we obtain the recursion relations.

A »-2
ol _ n~) nd M ~sov =1)
Fe g [Ins W tHe 220 ™ F 7 oy
ey
with F”"’ = 0 foy- m=0_, =, -9 ---

- Here e, is the free energy associated with 7, (H0 7,, = e, 79). | For the -

later use, we show the resulting operator F up to the fourth order:

F = 4 He 9, ,

(2.28a)
F@ = 4o Hy 4.Hz %, , ' - (2.28b)
FP72 Gote 6oy btz Yo = bobos He i He Sottc 1o, (2.26c)

FUl = o Hr boo H1 Ge Hr Goltlz 7 — 4o Hr G061 H: 71 Hz %o Hz A

~ &Go & Hr 7, Hz Go H: 70, (2 28&)

- 15 -



with

A A

é‘ = e._H. a'\d Q = el - H’ . (2.29)

The effective current operator; 4%?, defined in Eq. (2.21), is written

in terms of F as

-

Oegy = ] (14 FF) Rtirr?) O tirmrm FE0 ™y, (2.30)

We assume the operator £ is expressed as
O = 0% +» A O, (2.31)

(0)

For the electromagnetic current, the term A is the sum of nucleon-
and boson-currents, and¢9(l) is the seagull current, as illustrated in

Fig. 2.

L———-—V'—'—'/

0(® )

0
Fig. 2. Electromagnetic currents of boson and nucleon. Solid and dashed

line show nucleon and boson, respectively. Wavy line shows the

electromagnetic'field.

- 16 -



The operator 0(1) satisfies the condition

rd

70“7y:=o0, : (2.32)

From Eqs. (2.26) - (2.32), the perturbative expansion of the effective

operator can be easily obtained as,

- co) 2 ) 4 at4) X
0eﬁ = 0eﬁ + A Oef{ *+ A 0‘# +oeee (2.33)
where
oe‘f:'/ - 0(0)7 ) (2.33a)

06;2; | = 4 [F¥* 0™ o poo ptor oo ,ozo;)za/_A :’l_[fmr o 0@:/]!
+ 7 [FO”D”’ + O"F?] 7, o (2'33b)
Oy = 1 [ Fo0 + proriper, pripeiptss o putpeipnr o e e
_ -{F"'"F""" me ) F" wJ {Pmr 0/’ Frlpfo + Pl g v, owﬁj
~+ o FUITEw o‘f’ Forpe o 2;-?-» { FE Pl pe, 02 77

- ,Z [ F01f0014F!z:r001F01 * F”"O”’F“’, ,_a"’;m

- 3!_ iF’"’F”', F"r ur, OulPuj J 2 . (2.33(‘.)

with {ﬁ/BJ:: AB tBA .

- 17 -



After these calculations, l is put to unity. It is noticed that the -
terms with the anfi—commutator and .4.’-}1"*;:‘" oo ptEe’ in Eq. (27.3>3b)
and (2.33c) originate in the probability operator of Eq. (2.17). ‘These
are called terms due to wave function renormaiization. The nuclear
potential is obtained from Eq. (2.33), if we replace the operators C#O)

(

~and b) 1 by H, and H, respectively.

0
2,3. Nuclear Potential
We shall obtain the nuclear potential up to the fourth order, i.e.,

the one-~ and two-boson—exchange potentials as illustrated in Fig. 3,

V =y + yme (2.34)

g

q
J
) N - ) de g E
®) o i e G “‘%>J e T I N
Q' : N P l - 2 "‘
i 2

Fig. 3. The diagrams in the "time ordered perturbation". (a) and (b)
show the diagrams contributing to OBE and TBE potential,respec-
tively. The single and double horizontal lines represent G

and GZ, respectively.
In what follows, to clarify the essential points of our argument we shall

adopt the interaction Hamiltonian of a nucleon and a scalar boson with

unit isospin.

- 18 -



H = ;/ F 817 wcds ¢idraz. (2.35)

Here, ’7[is the field operator of nucleon with its mass M, and 92; is
the field operator of boéon with its mass IIJ . The coupling constaﬁt
and isospin operator of nucleon are denoted as g and Z:. (Our results
in the following discussions hold irrespective of the specific form of
interaction Hamiltonian.)
i) One-Boson-Exchange (OBE) Potential

In the static limit of nucleons, the OBE potential is given as

. | |
st':f = { Hr 4*H:i”2, (2.36)

where we used abbreviations as G = A/( - HO) and <A>= pA7. The
word "static'" means that we neglect the keinetic energy operator of

nucleons in the Green function G. Then we obtain a familiar OBE potential

as
Y -
V O BE 2 , 2 d2 e"3 r
star = = FRCTTY Jops Tr (2.37)

ii) Two-Boson-Exchange (TBE) Potential

The static TBE potential is obtained by the formula

TBE

74 = {H & H? 4 Hr & Hr > - :,_l‘ {(Hz &*He >, (%4"‘&7]. (2.38)

The first term in the right-hand side express the Tamm-Dancoff potential

- 19 -



and, the second term, the wave function renormalization. The latter
contribute to the uncrossed-boson-exchange processes, but not to fhe
crossed-boson-exchange processes.

We obtain the potentials for the crossed and uncrossed boson-exchange
processes as

V-rBE

yﬂ.(cm”)z-(3+2thzvg4

=3 -‘" -3 = = 3
2d2 ot BT )F zo’ewu:'no"] (2.39)
[ 2)6 20ty "

and

TBE . di‘di’ T SR
= - 3t 7).
Vs, r CUncross) = (3-9Thz?) 34 prynyY e 2¢3%).T

1
] Y S )
* [— 2w’/ odw’) +2‘02”12 /L\) +“”/J‘ (2.40)

The second term in Eq. (2.40) comes from the wave function renormalization

just mensioned above., Then, the static TBE potential is expressed as

BE z ' .
V;.-}d = Vs;l«f_g- (cross) + VS;:‘;E { Uncvross)

. = sy S8 J 2 ww({.th
- - { 2) g%[d2d2 " i g:27- @w+
4Tz g i et Swarat wews (2.41)

2.4, Exchange Charge Density Operator

We shall derive the exchange-charge-density operators associated
with the nucieon—charge density (Fig. 4a), as an example, since the main
source of the complication in the definition of exchange current has

been concerned with the nucleon-type current. Discussions of rather

- 20 -



(@ . (t) (c)

Fig. 4. Diagrams contributing to the OBE chafge charge density operators.
(a), (b) and (c) show the nucleon-type, boson-type and seagull

currents, respectively,

well-defined boson-type current (Fig. 4b) and seagull current (Fig. é4c)
will be done in the latter sectign.

Before going iﬁto the derivation of the charge density oferator,
we shall define the elctromagnetic interaction Hamiltonian and fix our
notation. The interaction Hamiltonian of the system with the external

electromagnetic field is given by

Hewm = j Lpez A,,(%’ ) - \7‘(;).,4;’::7)] d:—.’l.. (2.42)
The charge density operator is expressed as

f(?l = ﬁ, ¢z, + _ﬁ; ,;}"/ (2.43)‘
with

s S e 4, -3
Sncz )= = 4Tz ) 1+ T ) %tx) (2.44a)

and
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) .
z)= 1 .. . L, { 1. 2 -3 5 (2.44b)
5 ¢z) s eéys [ & 100 F (%) — & /z/%!l./z{]. o _

~ A
where ﬁ and ﬁ;are charge density operators of nucleon and boson,

respectively. The spatial current density operator is expressed as

— s }
T2 = 0 (Z) J;; ,2-:‘,/ (2.45)
with
- . € s P‘fp—‘l‘ o
Ttz ) =5 4%z =7 (rrG) 4ox) (2.46a)
and
j;/;; =;—-e 633 :[{ V#/;/) ﬁ'/;/‘fg,'/l//Vz./;})‘]_' (2.46b)

Here, 'ﬁ' and f:” are the momentum operators of nucleon, which operate on
the initial and final states, respectively.
i) One-Boson-Exchange (OBE) current

At first, we shall study the terms due to the wave function

" renormalization in the static OBE operator. From Eq. (1..33b) we have

0 DJE/” - 00“ + olE (2.47)
Stat Vecor ! 0& Aom. /’

with

%% = L Hebow4H:D>

Yeco; !
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and

oBE _ 1 z
02% = -3 {<ou>. <t W >]

The first term of Eq. (2.47) is called the recoil current, and the second

term, the wave function renormalization. They are illustrated in Fig. 5a.

" r \ 1 RS
A a1 4+ ~ \\ -4 ~A ::/& 3+ 3 + (1e2)
(@ . < 2 4 * '
 q N d +
’
1 2
q A N A
k /l . \\ 0 l /,’ \A\ 4
771 + 7|+ -5 3 + 3 E e (1)
(SIS 2 2 | ™ /77 N
7 * 1, 71 ‘r
v q’ ‘ ) v 2

Fig. 5. Diagrams in the "time ordered perturbation". (a) and (b) show

the diagrams contributing to OBE and TBE currents, respectively.

The explicit form of the static OBE charge density operator is

..\

fS'fM' = /2‘;:3 _2433 [ﬁv(“/ . o5”2:’ zlj

= { g v ki 3
7 /27r/’ Tt 7 S ijr

= o, (2.48)

with

2 S
e 2, [428 ] sc3-A)
st 2 .

D
3
-
i

33 -



In generali the static OBE nucleon-type exchange current vanishés in the
operator form irrespective of any detail of the oper;tor Q. 1t is noticed
that meson-type current and seagull term do not contribute to the charge
density operator in this case,

In contrast to the unitary transformation method, most of people
. do not notice the probability operator, Eq. (2.17), or someone defines
the exchange cur;ent by treating the probability operator as c-number.
In the work pf the former people, the elimination of mesonic degrees df |
freedom does not gurantee the charge conservation of nuclear system.
Furthermore, the treatment of the latter people, which we shall refer to

the c—number renormalization methodls’ 33)

Q-
pointed out by some authors2 32). In this method the normalized nuclear

, is not justified, as was

state vector ;{ is related to the projected state vector £; by the

c-number normalization constant Zi as

~

Zeo= 2T Ba. (2.49)
The factor Z, is given by the normalization condition for £¢ in Eq. (2.16)

<E: )10 = £ Bos lwvzl Zi>=LK g n>z"
= 1. | (2.50)

Thus we obtain

Zi= < Z19TtTl XD, : (2.51)
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The corresponding effective operator is given as
Doy = 24'% 7 IT0T 9y 27'% (2.52)

We notice here that these normalized state vectors 2% are not orthogonal
to each other, since the probability operator has generally off-diagonal

matrix elements.,

<Zp 1% >= V22, <&l B>
=Nz 2, <%l ('zJ'?J»z)“" 2>
F Sig. sy
For example, the static OBE current of nucleon-type doesbnot vanish.
Thus the c-number normalization method is not valid.

ii) Two-Boson-Exchange (TBE) Current

The static TBE current of nucleon-type is

pTgfl"l

stat = SHe&OubHr Gt hHe >+ M bHe bOVEH G2 + Lta s Hr & Hz & On & 1D

= LH 6HI DL Hr 470n GHe> = <He 40N EF Hr >< e GHED

~ [ MG Hr G bt > + LG4 Gtz > +LHra Mz H >, @>ff

+ 2 [ &> chbhe > v itebne >t PHI> , <O>],
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+ 4 < FHOL DD He P + _ 5;3- [ <Hr&*Hr > < the 212 > ,<o,q>jf

-3 [<h‘z GHr> , <Hz ¢ On 4#:)_]*. (2.54)

Here, all terms except for those in the first two lines come from:the
wave function renormalization. As is seen in Fig. 5b, the static TBE
charge density operator obtained from Eq. (2.54) can be divided into the

uncrossed and crossed boson-exchange current,

&
PTEL _ p1BEN + pPTEEN
Stat fs-rmé ¢ Uncposs) + f Ccrass), (2.55)
with
TBE N P a2 47 e-ué'rs':/-r“ I [t ;
.fff'd CUneross) = J (2m)é 2 024? 02 f‘?]

¥ [-‘-?L {ﬁ,(?/, ’z"'?"/zjfflz‘fz‘/ﬁ;/i’l (Z"-z')_]

= zeg%(2hz2), [805-7)-30r1] j{:ﬁ;f, z,f:zfﬁ; = r;f,-.] (2.56)
and
fg:, Ccrosss= §* }:T_gg_'e-uﬁ?)? et }3'3*',3'7']
X [t:.?;ﬂ,ti") T4 -_,_—' [f,,(,‘z‘/ ,3,#2—('.22]‘_]
= -2¢3Y7'+7%), [5&' v )+ §I% - V‘”]//zzr/‘ z“;zf“[”z A,a . (2.57)
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In addition to the above operator, we have the boson-type static TBE

17)

current. Hyuga and Ohtsubo have shown the existence of TBE charge

density operator even in the static limits in -this way.
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Section 3. The S-Matrix Method

The basic idea of the S-matrix method is that the S-matrix is
uniquely deterﬁined irrespective of any kind of representation of the
original Hamiltonian. Therefore, the S-matrix given by the conventional
field theory should be identical to the S-matrix obtained as iterated
terms of the instantaneous and hermitian nuclear potential and possibly,
exchange current. Infersely, we can define the nucleaf potential and
exchahge current so as to reproduce the S-matrix element by the conven-
tional field theéry. The static theory along this idea was developed by
Miyazawa23) to derive TBE poteﬁtial. Here, we shall apply this S-matrix

method to derive static exéhange current up to TBE process.

3.1. Nuclear Potential
At first, we shall try to obtain the nuclear potential by investi-
gating the S-matrix of nucleon-nucleon scattering. The S-matrix element

in the potential picture is given as illustrated in Fig. 6.

.7; - 7}085 - TPTBE + e (3.1
with

,Troaz.-‘ - V’BEI (3.2)
and

7 - yTEE + YOPE 4, yotE (3.3)
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OBE

v
(a) yOBE (b) Gy + JTBE
OBE «
V.
LOBE | LTBE

P . R

Fig. 6. S-matrix elements in the potential picture. Diagrams (a) -and

(b) show the OBE and TBE processes, respectively.

Here, the suffix p represents the potential picture. The Green function

GN of two free nucleons is expressed as

_ 7 (3.4)
4'” rz7m - - F'_._r:'— +/& :
<M 2M

On the other hand, we obtain the same S-matrix element by the conventional

technique of the field theory as,

+ TTBE_'_.../ (3.5)

T = 7—082
where TOBE is the second order matrix element of the OBE process(Fig. 7a),
and TTBE is the fourth order matrix element of the TBE process (Fig. 7b).
Since the S-matrix element (3.1) should be identicalvto Eq. (3.5), we
obtain thé OBE potential VOBE from the field theoretical S-matrix element

TOBE. If we subtract the iterated term of OBE potentials from the TBE

v

S-matrix element TIBE, we can obtain the TBE potential VTBE- This is

seen in the static nucleon limit, where the two-nucleon Green function
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(a) a -(b) _ ) // Ny |
ql
P P2
7OBE T oE

Fig. 7. Diagrams of two-nucleon scattering. Diagrams (a) and (b)

represent OBE and TBE processes, respectively.
GN diverges,

Gy = = e (3.6)
Therefore, the iterated term of OBE potential gives a divergent contribution
to the fourth order S-matrix element. In other ﬁords, if we evaluate the
fourth order S-matrix element with static nucleoﬁs and subtract the
divergent term from this S-matrix, we can identify the finite term of

the S-matrix element as the static TBE potential, This procedure will

be shown explicitly in the following.

The nucleon propagator for the non-~relativistic nucleon is expressed

- as

amiPX

S = = fap T . (3.7)

=77 = Peo +7/ &

For the static nucleon, we neglect the kinetic enexgy so that the propagator

(3.7) reduces to the form as
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e HT
P r»:'é

L]

Iz —;.f,.-_[dﬁ Se2)

Ecr) Sez), (3.8)

The OBE diagram is easily calculated in the scalar boson-exchange model.

I~

Y73 J3 e<4a'r ’
Ts‘#af = -d z"'zljlzw, “w? . . 3.9

From Eqs. (3.9) and (2.37), the second order S-matrix element coincides

OBE

with the static OBE potential V .
stat

The fourth order matrix element is expressed as

- ‘74. gdfr e c(ifg
2my*

.27f

X [ (3=27222) (CxX3-w?tie )¢ x?—wisile ) Cxrred-zria))”!
+ (3 +27T/- 220 (Cx2-w+i& N 2x3-0%ie ) c f:‘éf)"’_] . (3.10)
The first and the second :terms in the brackets correspond to the uncrossed

and crossed boson—exchanges, respeétively. Integrating over the energy

parameter X, we rewrite the S-matrix element as,

s < ,
- T5E 4f d3d3’ e-a(;rsv.}'-' e ’i""’ L [(3 -27t2%) (3+2z'4227
sfut = g (27)8 L wrwdwrw)/
I -.2-»?
-43)’ JS' ]
74
+[- g z'z=j,2m, w7 [ Sk ey w” . (3.11)

Here, the divergent part is found to be the iterated term of static OBE
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potential.

T8 TBF oB=E I B
Do = Vorr  + Vomw Vo . (3.12)

The finite part of the fourth order S-matrix element coincides with the

24)

static TBE potential, as we have expected. Miyazawa derived the two-

pion~-exchange potential in this way.

3.2. Exchange Charge Density Operator

We shall derive the exchange current by investigating the S-matrix
element of the radiative two-nucleon scattering. In the potential picture
the S-matrix element is éiven by the iterated‘term of the exchange current

and nuclear potential as illustrated in Fig. 8.

N N G OPE OBE
(a) 0" |+ (e2) =T @) @™ 0" + -+ (o) =
Y,P v“EE Ty,p

1 2

. J - |
@ X V= GN yIBE+ 6y e # (le2) STOE
o vor

Fig. 8. S-matrix elements of radiative two-nucleon scattering in the

potential picture. (a), (b) an& (c) show the one-body current

with uncorrelated nucleons, OBE and TBE processes, respectively.

OBE B
7, 7 75E

Thf s Td‘})’ 87/’ Gp - (3.12)

with
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N

'T,,P = Ow . | | (3.13)
Top = GV« v on rp=" @)

and
Tap = O bV 40V + Yo%y Oy 6V + V"%, V=40 O

4 a/ éu de- eré‘éﬁoﬂ__, 005-‘,/\’;" VaBE + [/anéMﬂOBE’”

78N
* 0 . (3.15)

If we apply the same technique as in the static nuclear potential problem,
we. can obtain the static exchange currents from the field theoretical
S-matrix element: It is expected that the finite parts of the S-matrix
element of the OBE and TBE processes in the static nucleon limit are
identified with the OBE and TBE currents, respectively. First of all,

the matrix element of the one-body current with uncorrelated nucleons
corresponds to the S-matrix element of the first.order in the field

theory (Fig. 9a). Then we obtain the first order term,

7‘;;” = Ja,\,.' : (3.16)

The third order in the perturbation theory gives the S—-matrix element

as (Fig. 9b-c),

OBE -12)’ 7/
7y, stat 32 mf/’ /Aﬂé = ][’6’ . (3.17)
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Fig. 9. Diagrams of radiative two-nucleon scattering.

Here, we introduced the infinitesimal energy transfer,4 , supplied by
the external field in order to see divergence of the S-matrix element
clearly. For example, we investigate the Coulomb interaction of nucleon,
as in sect. 2.5. In the limit of vanishingly small energy-transfer,

Eq. (3.17) is written as

! 73 o&E __L
T2 = S 7 Ve * Ve 72 - 618

where we have no finite term. This means that the static OBE current

vanishes in the static limit,

oBE, N
Setar = ©- (3.19)

This result agrees with the one obtained by the unitary transformation
method. (See Eq. (2.48))
Next we shall study the TBE matrix element. We have six types of

diagrams relevant to the radiative two-nucleon scattering processes in
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the fifth order perturbation theory, as shown in Fig. 9. First of ‘all,

we shall study the diagram Fig. 94 in detail. The corresponding S-matrix

element is written as

- S
75 d2dFr  -itqed-# L
7;;9'# (9d) = 3% Jame &€ S (3-22422)

* [(Z'-w*ﬁ'é Ix%wri+i&) (2+i€ )¢ ~2-dere de=dviel] (3.20) .

After integrating over the energy variable x, we obtain

P e Y

af e FF]__ a3 e &7
TJ;S*M“M) ) Brwyre 4-:- € [322’22_1277)’ w? A4lg [“3:("22/, re

27 w’e

1 " ARAF _iedvior WS rRwr w
-+ 2 — /, »2 ‘
Pn Sie 3¥¢c8~27hzv) m ¢ 2 202 o ter)

- - 3
& 7 4.245" -2+ L ’,
+ §% Su(3-27'2° 2zt € 2027 /w’* "u'*)

(3.21)
We can rewrite Eq. (3.21) by using the potential and the exchange current

in the unitary tramsformation method in Egqs. (2.37), (2.40), (2.48) and

(2.55), as,

TBE I Y. 3

TBE,N
* 2 Stos C(3.22)

TBE,N '
where \fs+°;f means a part of TBE current, i.e., contribution of the

uncrossed diagram corresponding to Fig. 9d. It is noticed here that

the finite part of the S-matrix element in the fifth order calculation
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is twice as large as the static TBE current obtained in sect. 2.5: In
other words, if we regard the finite part 6f the S—-matrix element‘as the
TBE current, the S-matrix method and the unitary transformation method
give different results for the TBE current to each other. The same
discrepancy appears in the diagrams of Fig. 9f, 9g and 9i. As a result,

"the finite part of the fifth order processes is given as

e - em D , )
755 , d3d3’ _~ita+¥)r : ! L
7;39" (-(hhfe) = g‘/?z_;—)‘— e Zw‘wfé [w? +wl¢

x[ [ [f’u, (z’-?‘)zj_’ - (7' 72) fu (é’-z’))
v (~{po2e2eie?], « wrp Rl ) ], (3.23)

which is compared with the static TBE current in Eqs. (2.55) and (2.56).
At this stage, we confront a big‘problemvwhy the S-matrix method and the
unitary transformation method give the different static TBE currents,
while they give the same OBE- and TBE-potentials and OBE currents. .We

shall answer this question clearly in the next section.
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Section 4. Relation between S-Matrix Method and Unitary Transformation
Method

We obtained different results for the TBE charge density operator
by different methods, although we obtained the same results for nuclear
potential and OBE charge density operator. What is wrong in our treatment?
A key point in this problem is that we completely disregarded the non-
stétic effects in the S-matrix method. In this séction we shall show
that the static treatment of the S-matrix involves ambiguities due to
the non-static operators. For this purposey we shall, at first,
investigate the non-static potential and charge density operator in the

unitary transformation method.

4,1, Non-Static Nuclear Potential and Exchange Charge Density Operator
i) MNon-Static Potential
We shall retain the recoil of nucleon in the potential,
VoxE = £ He By Cecvty -He) &i Hr 20 ‘ (4.1)
- ‘—z" Cé:*ég)f Hz &y & rix 2:,

with

f A >f = 7+ A 7: P

The second term of Eq. (4.1) is due to the wave function renormalization,

which vanishes in the static limit. Instead of Eq. (2.37), we have

o !
o5E 2 z/—ii < e""ﬁ[ g ¢t ; '] (4.2)
V%= -8 2.2 anp 2 w-ag!  wr 48'd . .
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. A A, £ 1 =2 P
vith B =& -F = s B - za b

P ¢s=1,2),

Operators E; and ﬁ; are the initial and final kinetic energy operators

of the s—th nucleon, respectively. The retardation of nucleon recoil

is expressed by Aé; » and thus the nuclear force becomes momentum-—
dependent operator. It should be emphasized that ther"momentumrdependent"
poténtial does not mean a fotential "dependent on the energy of the

system'". By expanding the denominators in Eq. (4.2) we rewrite the

potential as
OB gt pip [T ooEF [ 28 uE?
P 4 — —— ——eaa. P o ®
V = 672 < _/127)’ e w2 T Tz ae ]. (4.3)

The first term of Eq. (4.3) is the static OBE potential nggt, and

. . . . BE

the second term is the first order recoil correction, Vo s
. Non-stat

- A2 A2

o0& P 74 F,
21 a3 =’k 4E, hd
. z - 7T [ — —_—_—
Viton-5vet give 21 e syl (4.4)

It is noticed that this non-static OBE potential is propotional to the

square of the kinetic energy operator. In what follows, we retain the

retardation effect up to the first order as

o8F BE o8
v = Vg * Viomses . (4.5)

ii) Non-Static TBE Potential

Retarded TBE potential is also expressed as

TBE
V7T 3 Hedu Hety tedy e + Hidi He by Hedi Hr >,
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! ' ' '
-3 (f He &y He>. < Hr G by He D + f”zé:é..l—lx?,.f&ér%k‘)

] _ &ty - .
+Z ( & == )*<H1'444 Hr 2o £ Hr &m 4; Hz e (4.6)
from which we obtain the first order recoil correction»éé

TBE TBE TBF
4 B Var * Miesiw (4.7)

where
VTBF 3+27(22) & di‘d’-: -n‘(.;“.;'y‘;‘ ..__._.__,.
Nan-Sht = (3+r27 3 (27)€ 2 o gyre
A
487+ Aé., aé, +Aé‘<:]
w? + wee . (4.8)
with
A A A A
Ales = &Ces ~Ee Aes = Ecs - E’i/,
é\c, - 2—;; ( -:-1-:): th é‘cg - 2"1 (P)fg ’2.

It is noticed that the non-static correction to the uncrossed boson

exchange vanishes, and that the non-static TBE potential is propotional

to the kinetic energy of nucleon. 1In the fourth order perturbation,

we obtain only the non-static three-body potential, but not the static
three-body potential, Since it is not essential in the following dis-

cussion , we shall not describe its derivation.

-39 -



iii) Non-Static OBE Charge Density Operator

The non-static OBE current is given as

0 BN, :f< Heby Ov bcHr 2; - j /:‘( Hz by bomtiz 2m & Ou +9‘( Owon £ Hr bm & I-lz),] :

A moBELN 0BE N : (4.9)
051‘“" ﬂl\f ou Stewt

~ where 5&::? is the static part given in Eq. (2.47). The recoil correction

to the static OBE charge density is given as

pose. 23 5[ 118 st cier (abe s £ - BE7)

”o,-w < [27), 404

. . : -‘,..s
~ziz® (128 )5ex-R ) (AE f_{,’i,'gﬁ—é)’]] + Cre>2)

d; —-0'3'#‘ ’
e PO —-e o L] L‘
=~ 2 Jezm P wé §ew-wn) [-‘z” (ﬁ";;)’&

~k'2 (2lz2+23 ) ] + C1e2) ' (4.10)
with V a -
Cr = LT x73 and fs = 72-'be/ .

The non-static OBE current of nucleon type is propotional to the kinetic

energy operator.

- 40 -



4,2, Nuclear Potential and the S-Matrix Element
i) One-Boson-Exchange Potential
The second order nucleon-nucleon scatteriﬁg matrix element in the

momentum space is

0857 _ a° TR A
7o - gE EE (4.11)

with
» - 3° = ES ~FE, = Fa -Ez,
and B2 22
' Es ’:_5;;!‘—{ , F=x Y] for S=7,2,

. ,
Here, 5 and p”~ denote the momentum of the initial and final state of
the s~th nucleon, respectively. The S-matrix element is defined on the

energy shell,

E, v Ea = B rE (4.12)

Thus the off shell extrapolation of Eq. (4.11) has some ambiguities.
We shall discuss those ambiguities of off shell extrapolation in the S-
matrix method in sect. 5.

From the potential picture the S-matrix element is given as

oBE . _. _8°% L7z A ! ¢
T/’ (2m) 7 2 [ W3-4E,? hJ'—AE}]
_ 8 _. !
(2Fp Tz j,‘,"tde . (4.13)
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From Eq. (4.13), we cén see the S-matrix element is equivalent irréspective
to the method of calculation. In the static limit (qo-ﬁ>0), we ‘can
see the static potential is unambiguously defined from the field
theoretical S-matrix element, while its non-static correction has some
arbitrariness. |
ii) Two—Boson—Exchange Potential

The fourth order S~matrix element with the kinematics of Fig. 7 is

given as

TEE v 23 . .
7" (Uncrox)-'; (3~22~7%/ 72';,?_/‘;7;-.4( -

X [ (x-e, +'& )t~ ~@1 e IXXTWAre J i rie)] !
. e

(4.14)
and
ref i
T Cerossy = 3¥(3+272hz2/ ;'z—,v—“/-_z—;;—d-?
> [ ¢ x- Eict (€D C X~ Cactie )X -0y i Dex?~w*2 40 2] —I/ (4.15)
. 1 = _ =
with € g (P22 amd €2 =tp +3)%

Egqs. (4.14) and (4.15) correspond to the uncrossed- and crossed-boson
exchanges, respectively. Performing the integral of the energy variable

X, we obtain

TTEE ) ¥(¢3-27422) [a% w21 Bwrrerd T
ne - - \
vovs) X2 g C 4 ’12”)( w“o,’/»rao}
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4 I : " «

+ =5 — L4 1 (€-E ) (a-E)* (8-a)* 57, / '
W E-esie w? T BIFTeqis T 2uM TEes fm};ﬁ
. el -4

and

a2ty +78
T R ()]

-t
TT,E(CV‘ = 4 zhzt ‘ -d—L
. 085) 7 (3+2'f’.,z- ) izax

LS

—_—— { E,+ £, -ec E +E; ~€c -
20 gyt o + s ] (4.16)
P4

with - - : .

: Z=£vF, €T 8,18r and €c =@ *C2zc,
Here, we have used the :erier'g;v" consevation relation of Eq. (4.12), and
neglected the higher order terms with respect to the kinetic energy.
We can rewrite the TBE matrix element in terms of nuclear potential in

Eqs. (2.37), (2.41), (4.4) and (4.8) as

TTBE o 778 ¢ yneross) t+ T 7= ceross)

. ‘ wE ’\
Vvt * Varrowa + Vot G0V +Votd @ hicosa + Vioesa 60 Voturys  (4.17)

The fourth order S-matrix in the potential theory coincides with that
of the field theory. In the static limit the contribution of non-
static OBE and TBE potential vanishes, since their contributions are

linear to the kinetic energy of the nucleons,
BE& BE /
K/:.-sw bw Vorad € (BE):P—— —p o (4.18)

(4F 7

and
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where 4E shows the kinetic energy operator for nucleons. ﬁesides, the
iterated term of static OBE potential diverges. Thus the static TBE
potential is unambiguously defined from the field theoretical S-matrix
element irrespective of any form in the non-static OBE potential. If
is; however, noticed here that the vanishing contribution of the non-
static operator plays an essential role in tﬁe derivation of the static

TBE potential.

4,3. Exchange Current and Radiative S-Matrix Element
i) One-Boson-Exchange Charge Density Operators
The S-matrix element of radiative two-nucleon scattering as shown

in Fig. 9b is given as

2BE, ,- 8% [etrzl) gonm / / '
TJ’ /95/-,}-;}‘[.__'/g" 14?’-/ - . P (4.20)
2 &~ (E-2u /e H2— Gp°-1€

with g, cES-E,cEE-2  awnd & = (A3,

Neglecting the higher-order recoil corrections in Eq. (4.20), we have,

o3E - g7 er+S) 1.
T 194/ ’:\'/277)’ [2 = e..‘n?/.?ﬂ

» [—- d / )} {5"5)21’ /5‘6/"/* & a"E:‘é‘]
_E-é‘r:’g. w? T 2. 2w . (4.21)
with e - g rthE +4A and E-=FirFtd
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If we add the matrix element corresponding to Fig. 9c to Eq. (4.21), the
field theoretical S-matrix element which is identical to the ome in the

potential picture is given as

oBE _ o o
7—r = S 4n:[_/;;f. + k;::;ﬁ _] r Zr4£:f-r[g:f§h,_7<&uJ%

- poEN | (4.22)
Aou=Stor 7 :

where nuclear potentials and charge density operators are given in Eq.

(2.37), (2.48) and (4.10). 1In the static limit the contribution if ther

non-static effective operator vanishes,

' o3F /
S 4w I‘\Iu-S"fd o< (2’—&-_.- )(JF)‘ —> 5 (4.23)
. and
MoBE;:: o LAE) —> o ' (4.24)
ox ~

while the iterated term of the static ~OBE potential diverges as

o=
lrw V2 ! ! 4.25
S v Vopr o< Y, > ==, ( )

Thus the finite part of TOBE does not exist, and this fact shows the

vanishing of the static OBE current, as we have seen in the unitary

transformation method in sect. 2.4.
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ii) Two;Boson-Exchange Charge Density Operator

For the TBE processes in the radiative two-nucleon séattering, we
shall study the diagram Fig. 9d in detail. Thé_other processes as in
Fig. 9e-i can be discussed in the similar way. By using the standard

method of the field theory we have

TBE =
Ty 19d) = 22 _/43/——4:( e//-fze/ ekn [3-2z¢z2]

L [(5’_4-@,',,'6 ME vy-e,01¢) (-0 +5-& 1€ 17 22 #1&) (3%~207% :'1.‘)]’:/ ' (4.26)
with | e’ __._z_,_'/_ (P:"-Z)z.

We perform the integration over x in Eq:_ (4.26) and expand it by the

nucleon kinetic energy,

T?EHJ) = E_%;fdf [f(:-*zéle"”'n (3-2?’-2’/]

x| — L (-] = L), /- (Ez-eu*+ (& -5)7
E-e’+/é wi/ E-g+ie E - ene / E -e-fle-
! (B~ & Y (e™¢ )R ! ' ’ w? T oLTrwt
-+ 3 ("' / /— -—;() t ’
E ~e’té 2 we E-~e+ic o E-es+'é sttt ol
Ere -e-¢” ! ! o1
z w? Eoene (-T5 i) * 44:*4;'?/»2 -'b”.) - (42D

Comparing Eq. (4.27) with Eqs. (2.37), (2.41), (2.48), (2.55), (2.56),

> (4.4), (4.8) and (4.10), we can easily show

787
Trtdd1s fu u [ V% 40 055 + yee PNY R AR NNy ol Y ol
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BEY oBF TOEN (4.28
* -f;loon&!d G V”“"" Y fS‘faﬂ‘ : : . ‘

This shows that the S-matrix is unique irrespective to the method of
calculation., In the static limit, the iterated terms of the static

effective operators diverges as is expected, -

oBE BE o L= 4,29
f”_&” Vet G V;ad “/“'—é')/ﬁ/ - (I'é s ( )

and
S & Vﬂ-’ o é_F'- ) _,,,(7?/’, (4.30)

while the non-static operaotrs have the non-vanishing finite contribution

as,

oEf, N

’E » o
 owetad bn //:M -, /AE)/J—-Z.-L"/—, frnite (4.31)

and

. I/
Pr bow Vit &u s o< () (55 Jragr=donite © (4,32

Thus the finite part of the S-matrix element with static nucleon contains
not only the contribution of stafic TBE current but also the contributions
-0of the non-static operators as Eqs. (4.31) and (4.32). Now it is clear
why the S-matrix method gives the static TBE current different from the
one by the unitary transformation method. In the S—matrix method it is

essentially important to subtract the iterates part of the non-static
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operators in order to obtain the static TBE current, It is notice& that
the limiting procedure in Eqs; (4.31) and (4.32) is not unique, so that
the static treatment of the S-matrix element cannot give us even the
static charge density operators of multi-boson exchanges. |

From‘the above investigation we can see that success of S-matrix
method for the static OBE and TBE potential and OBE charge density
operator is exceptional. 1In generall, unambiguous extraction of the
non-static operator from the S-matrix element is basically impossible,
.s0 that the multiple boson-exchange operator cannot be défined in the
S-matrix method. This has not been recoginzed in the S—matrix treatment

in the previous publications%5’24)
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Section 5. -Arbitrariness of Unitary Transformation
5.1. Nambu's Method
We can derive the nuclear potential from studies of the time develop-
ment of‘the system, which is closely related to th- S-matrix appfoach.
In the one-boson-exchange process as illustrated in Fig. 10-a, the time

t, at which boson interact with nucleon 1 is different from time t

1 2

boson interacts with another nucleon 2 due to the propagation of the

when

exchanged boson and nucleon recoil. On the other hand, in the potential
picture, the interaction between two-nucleons must be instantaneous

and of coirse hemitian. (Fig. 10-b). Thus, in order to define the nuclear

@ 7 ™ [~

Fig, 10 Interaction of two nucleons due to OBE..

potential from'the field theoretical boson-exchange picture, we must
describe the process in Fig. 10-a by thevsingle time, that is, average
average time of two-nucleons. The OBE potential is défined at the time-
base t0 which describe the motion of the system, and average over the
relative time between t, and t,: .

1 2

VoBE (&) = <« T ¢ Cist) >, v (5.1)

The bracket means the average over the relative time, which is shown in

detail in the following. The two-boson-exchange processes include the
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iterated term of OBE potential. The TBE potential is derived from ‘the
fourth order S-matrix element by the subtraction of iterated term of OBE

potentials and description by the time-base tO'

VTt re (Tt ) = V0 07 V0) - (5.D)

22)

Here GN is the Green function ofvfree two-nucleons. In this way Nambu
derived the formula for thé nuclear potential. And Taketani et al.23)
calculated two-pion-exchange potential by this method. This static fBE
potential agrees with that of the unitary transformation method and the
S-matrix method, which we have discussed in the previous section. But

there is arbitrariness in the non-static part of nuclear potential. We
shall see this arbitrariness in detail by the folded diagram method of

34)

Johnson ,» whose basic idea was giVen by Nambu.
The S-matrix element of the the OBE process (Fig. 10-a) given in

the momentum space is

=050 (& T2 )

- 2 V<4 __{:_ e < (E'."fl)tl l'ﬁ,{:/b‘
A =g "/"“"”‘/""‘Izmw'-_z*-fe e e Y 5.3

On the other hand, the same S-matrix element is given in the potential

picture as,

N = —2midte-5) <pr,p2 1 POBE 1P, pe>
- V_‘lv/d.é s e-"l‘o (E /—E)(P.IIﬁIIVOBS IF‘IF‘)/ (5.4)
where E's ESTFEZ awd F=F, rFz,
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Here we shall define the time~base t0 as

o m (124 )t + fed )é, (5.5)
where ] is the arbitrary parameter and relative time is defined as
Tg é, "‘fz . (5-6)

and integrate

We shall give the S-matrix element at the time-base to
over the relative time T:
'.P-: / ;; T/ Z’J dt, o ¢ (E"-ED¢s
‘ ag, ___1! S | 1+4
' ( —_— 45 AL
=rP w2-92 S0 3 ‘T ‘45‘2 (5.7)

where AF, = B &g

From Eqs. (5.4) and (5.7) we define the OBE potential with non-static

correction as

- o3
3 -23r’
oBE « — g2z 2¢ 49 __ & "~
v €Al c? ¢ r2rp  w- wirp) (5.8)
with
= -4 ) - 4 ‘
W)= AE, (14 ) —4F, sy (5.9)

Here the OBE potential has arbitrary parameter A , which correspond to
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the choice of the time-base. We define the OBE potential as the - =

superposition of the potential (5.8) with the weight function fo{j as

y % - j fear) vo9T¥epr A, (5.10)

Here £(/\) is normalized as

f fer> da=1 (5.11)

and it is symmetric with respective to the past and future,
Len) = f =) , (5.12)

The OBE potential which we have derived by the unitary transformation
method corresponds to the choice

- /
f CA) = 5 L Sta-1) J'f/'*')]. (5.13)

Here we see that the non-static part of potential has the arbitrariness
due to the choice of the time-base, while the static part of the potential
is unique. We shall show in the next section, what this arbitrariness

is in the unitary transformation method.
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5.2. Arbitrariness of Unitary Transformation in Nuclear.Potentiél"and
Exchange Current

We have shown that the nuclear potential and exchange current can
be derived consistently by eliﬁinating the bosons degrees of freedom from
the original Hamiltonian. As an exapmle, we have derived explicit forms
of the nuclear potential and exchange charge density operator in the
system of nucleons and charged scalar b&sons;

These operators are, however, not unique, since there still remains
an ambiguity in the wunitary transformation in the boson-vacuum sub-space.
We shall study this arbitrariness of unitary transformation in the
canonical transformation method of Nishijima21), which is.essentially
the same as the unitary transformation method. Before going into the
problem of arbitrariness of uni;ary transformation, we shall briefly
summarize the method of the canonical transformation. Nuclear Hamiltonian
is obtéined from the total Hamiltonian of the system by eliminating order
- by order the off diagonal part, that is the interaction Hamiltonian
which couples the boson-vacuum and boson-existing space. By the unitary

transformation
U= expre s : (5.14)
the Hamiltonian H is transformaed into H' as

= * A "“.'3 o
Her LH.s5T + % [lHu.57.5s7+ (5.15)

H= He THzx,
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B

where S is hermitian. At first, in otder to diagonalize the Hamiltonian
up to the second order we must choose the operator S1 which satisfies
the following conditiony

& [ Ho, s, ] +Hz =2 | - (5.16)
Then the tranformed Hamiltonian is written as

‘ ‘2 1
HY <ty £ Lt1,5 70 L [ Thr, 535723 51.51.5] =, (5-11)

The second order potential is given as the diagonal part of the second

term invK. (5.17)

VPR Ly T He s T g (5.18)

The explicit formula is,

oBF _ _ 2?,.22/‘,"’ e-!.‘?—-.r"/'__ ’ , !
v e d zp 3 Lo™aE o AET (.19

which coincide with Eq. (4.4). In the next step we eliminate the off-

diagonal part of the second term in Eq. (5.18) by the transformation

U: = 252 (5.20)

with

¢ [Ho, 53] ""21: [HZI > ]o'd. > (5.21)
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and ? S» 7: 0 (5.22)

The off diagonal element 6f the operator is denoted as o.d.. We obtain

(2)

the transformed Hamiltonian H
. , ’
H < Ho » £ 0 [t 537 ¢ E1S]SLS] ¢ H[ms].5]7 | 5.29)

Here we have dropped the third term in Eq. (5.17), for that term has odd
number of boson~nucleon interaction and thus it does not contribute to

nuclear force. The TBE potential is defined as

2

V 78"..-: -}:‘—.’7 [[[ Hr,s.]. 5',],5;]71- = ?[[H”S)J’S]?- (5.24)

From which we obtian the same potential as in sect, 2., This was first

21)

carried out by Nishijima. By thse succesive transformation ﬁo eliminate
the off diagonal part, we can diagonalize the Hamiltonian up to the
desired order and obtain the nuclear potential in principle.

It is noticed here that the transformation is not unique. We
shall derive the second order OBE potential by the canonical transformation
different from the one in Eq. (5.16). We divide the free Hamiltonian of
the system into two parts,

Ho = TT &, (5.25)

where

T = _ftﬁ*c:?)[,_;"—_:]¢(:?)d?
h : (5.26)
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and
K-‘J%/iﬁ (- +p3) PeZ) aZ | (5.27)

‘Here, T and K are the free Hamiltonian of nucleon and boson fields,
respectively. In the first unitary transformation Ui, we shall define

the static OBE potential

s = 2xp [¢seld , (5.28)

here U!

1 is determied by

(LK, sr] + H= 0 . (5.29)

Here we take only the boson free energy in Eq. (5.29). The transformed

W

Hamiltonian H s

H s T =5 [t sedec [T 571+ 0053 (5.30)

The third term gives the static OBE potential as

Vo L1 [H, 71y

- oy
= 922 [(22 &€ "
g -z Tt (5.31)

The Eq. (5.30) still have the off diagonal part with the first order in

the boson—nucleon coupling constant and the nucleon kinetic energy. We
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‘shall eliminate this term by the second transformation Ué:

Uy = exp L/ {J ' (5.32)
where
(LK.sc1 +¢ LT, 577= 0. - (5.33)
The resulting Hamiltonian is
H# < Tr ) + £ L0 s/ 70 £°0T, 577, 557
+ LT 577 +0 egi. , (5.34)

The fourth term in Eq. (5.34) is the non-static correction to the static

OBE potential.

BE . 3 ’, -,
VAIer'M "2—'7 [[7-/5‘1]/5.3]7

a3 &I 4
2 >t
= Z'Z‘/ —— E‘Aé:\
J 1277 w# [42 | ] (5.35)
There still remains the off diagonal Hamiltonian in the first order

of coupling constant, which depends upon the nucleon recoil operator.
They contribute to the further higher order non-static correction to the
OBE potential. At this stage we have different OBE potential due to

different elimination procedure of off diagonal Hamiltonian., As we

shall see from Eq. (5.19)
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Py - d%?*df? ..
BE rop? 2_ » Lo (5.36)
Vo _A.' - az ?‘? /277').? w02 2 Ve

which is obtained from the original Haﬁiltonian by the transformation

- n'$ )
r= '™ (5.37)

And from Egqs. (5.31) and (5.35) we obtain

-3 - A )
42 3y f ’ af 4E 7
VD”E A ?? z’. ZZ E.”_.__ e ’ -3 - = ? . (5.38)

which is given by the transformation
Urys = e’ e (5.39)

The static potential is uniquely derived but its non-static correction
is not. Eq. (5.36) is transformed into Eq. (5.38) by the unitary trans-

formation
P v
) = e"‘ . & 2 SI,e I'S'z’ (5 040)

Clearly the above unitary operator transforms the boson-vacuum state
into the boson-vacuum state. From this example, we can conclude there
exist arbitrary unitary transformations. It is noticed here, so far as
we define the potential and exchange current consistently in any fixed
unitary transformation, the calculated observable remains unchanged.

These OBE potentials of Eqs. (5.36) and (5.38) are also obtained from
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- point of view in the Nambu's method of sect. 4.1. That is the potential

in Eq. (5.36) is obtained by the choice

{(A): —éi [ ScAr1) +8¢cA-1)], (5.41)
and thevpotential in Eq.‘(5.38) is obtained from
fc A = 28¢A) -é-'- [ Stavi)+ A‘//\-l)_]. (5.42)

The physical meaning of arbitrariness of unitary transformation
in the elimination of mesonic degrees of freedom corfesponds to the
arbitrariness of choosing the time-base in the field theoretical
picture. These kinds of arbitrariness also occur in the other physical
problems, where we trancate the Hilbert space and obtain the effective
operators. One example is the Foldy—Wouthuysen—Tani transformation3s)
(F-W-T) in the elimination of the negative energy component from the

‘relativistic wave function?6’37) This will be discussed in Appendix A.
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Section 6. Conservation of Electromagnetic Current

To see the consistency of our treatment of efféctive operators, we
shall investigate the conservation of nuclear electromagnetic current
witﬁin the two-boson-exchange model. The conservation of the elecfro—
magnetic current is

— Tt

T (2) = —¢ [ H, pc] (6.1)

-
where, j,f and H are the nuclear current density, charge density and
Hamiltonian, respectively. We shall intergrated form of current con-

servation relation as,

F = -2 (720 dF  (6.2a)
=¢ [H [Z per]d7 ~ (6.2b)
- rn, 1'5_7; (6.2¢)
with
D - [ 2 pezodZ. | (6.2d)

Here, we shall show the consistency of the nuclear potential and the
current operators in the unitary transformation method in the two-

nucleons system, and show the importance of the non-static operaotrs.

We have obtained the nuclear potential in the charged scalar boson-exchange

model in sect. 2 and 4. We summarize the results here,
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H= T+ ) . (6.3)

with
__7? B2 -
T sa TEa (6.3a)
rd
and
V= V“mi }/oBE - TEE 4 TPE
srel Non-Stot Stat Neow-s6a? (6.3b)
where
._\ .0
ws o 2 / f /3
V}fd" L g we j (6.3c)
Yo gzl Pakkd
. s - 2g ' [d2 < 2
Wor EH? /27/ w*é [lff/ "fiﬂ'f] (6.3d)
7-3 - S R Y ‘
A —40‘7"2"-27___“’3"5’ e 'BTHr [ 2% ranrea (6.3e)
/27/‘ 24’34’,}/457‘0’/ °
and
T8E g* 1) [4345 -it2ed 7 _c3-3)
l/},m_ = - —-(3+2? z% o el f,:;:.] (6.3f)
PN - -
Here ©p =p + p'

. ‘
'ﬁ and p' are the momentum operators operating the initial and final state
vector.

i) One-Body-Current

In the impulse approximation, the one-body-current and dipole
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operator are

2 PN
FY e 5 12T B : (6.4)
5=/ -4 =M
and
- e ‘2; . (6.5)

From Eqs. (6.3a), (6.4) and (6.5) we can show the charge conservation

for nonQinteracting nucleons:
..\N , —‘N
Jgr'= ¢ rLT1,D%] (6.6)

ii) One-Boson-Exchange Current

We have the static boson-type current in OBE model as

I—Ay-.
S'tad = 65 x Y /"2’.}3 0% . (6.7)

This current is related to the static OBE potential as

In addition to the static current, we have the non-static nucleon- and

boson-type currents

if:: 2}%@2—2 m,,, "ﬁ—-—‘[fﬁ STV z)] (6.9)
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and

— z 5 -1'5: r e
oBEN e a2 e ZFCW‘{?).ﬁ
Now-Stat = ~gmy? J t2mp  w* >

. [ o - g
$[itv CR+R) +etven, T + 22223 ] (6.10)

’

They are related to the non-static OBE potential and non-~static OBE
charge density operator:

—0BE,B FosEN Sern 2

T o T [ D] o [T B B

Nov~Stud Nowv-Sted ~ Mow-Spot * darse [ (6.11)

where

2 oBEB eg? d; e""?; a e - a
Rorseat = ;—Ha'?')t/,z,,: = [ GE 1R ?-(ﬁ*ﬁ')]/ (6.12)

and
—AOBE’M = fa" d-ﬂ-‘ e";;‘ = a3 g2l oL
Dan—Sfd I Jimme e [/7'—?2/:.? * 2 (1i*h )9'{,0, 4/3)]. (6.13)

Here it is noticed that the static charge density operator does not
exist in the OBE model.
ii) Two-Boson-Exchange Current
As in the case of OBE current, we have the static boson-~type current,

=S TBE D

-‘d-) 4'.‘.3 PR AV 2
N cle 0747"-;\ d20Y ol2¢7) FRWTT N
Stad ~

2r)* LA LI

(6.14)

which is related to the static TBE potential as
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.—-nm/’ ) . .
st =t L VTE B#] (6.15)

The non-static boson-type and nucleon-type currents are

\TN..qu = ,[rzn)‘ FYN PP ta* +4."

X [(?’-tz% (ﬁ*ﬁ ) +2 (-3 C-P +¢ F{g,gr).(p‘,"-ﬁ/)
+ (T (§+F -0 P ¢33 ")_)j (6.16)

and

FPEN eg'jd?éj') C“'fS*:':)-}'( , _4)
<&

Say H 2r),  2w2pn2 o 7w
£ — pply >2 s o s A . - =
{ (T+23), (ﬁfﬁ/ 1 (27% (ﬂ—ﬂj—z ?,,/24-?‘{/. (6.17)

They are related to the static TBE dipole operator, non-static OBE

dipole operator and non-static TBE potential in the following:
35/’ '_‘Tﬁ” N
Mor-stas T Jsm’ =7 [ VNa.-sw DV« e[V, DE' 50&:'8
(6.18)

v Lo B B
”

where

49 41 s

BEN
Dotwe =283 [e22), ¥ ~ctezte 747 1] [52s?
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_13e2 )T
€ g ~L :
s (@ rish) (6.19)

and

— -4 434.?’
’ D% = 22;“ /7"*?2/2 (et ) 27 )¢

_aﬁ+27y'
e (w5, (6.20)

~ Eqs. (6.19) and (6.20) show the non-vanishing static charge density
operator in the TBE model. This was pointed out by Hyuga and 0htsubol7)
as the.break down of Siegert theorem even in the static nucleon limit.

The currents in Eqs. (6.6), (6.8) and (6.15) are given from the Siegert

theorem32 i.e.,

Y m—,? Jms s LTr 02 e p7eE BN - (6.21)

/

Summarizing the above discussions, we have the current conservation

as follows:

:T-—\ = ¢ [H, 5‘] (6.22)
where
P TE JELATE ENIE TE e
and
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B =B* B + BT » DIEF BT (6.26)
To construct a consistent model for the nuclear Hamiltonian and current
operators, it is necessary to include the non-static operatoré. For
example, to satisfy the conservation relation corresponding to the
statié charge density operétor we need the non-static spatial current
and non-static potential. Here, the non-static operators we have derived
in part I are due to the kinematical nucleon recoil, but not the effect
of the negative enrgy states. Since the kinetic energy operator of
nucleon is one of the non-static operators in this sense, which is
already included in the Schrodinger equation, it is naturally understoo&
that the non-static effective operators are required in a consistent

description of the nuclear system.
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Section 7. Summary of Part I

We have shown the relation between the various methods which define
the effective operators in boson-vacuum space by eliminating tﬁe mesonic
degrees of freédom‘frbm the field theoretical Hamiltonian of the system.'
We shall summarize the results obtained iﬁ Part I.

The discrepanéy in the static two-boson-exchange cﬁrrents derived

19,20) and the S-matrix method23)

from the unitary‘transformation method
is-due to the insufficient subtruction of the iterated terms of one-boson-
exchange non-static potential and exchange current in the S-matrix method.
The contributions to the finite'part of the static S~matrix eleﬁent are
not only the contribution of the static current, but also include the
contribution of the iterated terms of the non-static potential and
exchange currents. Of course, the S-matrix element is uniquely given
irrespective of any method of calculatiqn, if the method is selfconsist-
ent, It is exceptional that the same static TBE potential is obtained

by the S-matrix method, since the contribution of the non-static OBE
potential vanishes in the static limit. In general, the finite part

of S-matrix elementwith static nucleon does not givé a correct multiplé-
boson exchange potential, Inversely, if we define these nqn—static
effective operators by any principle and subtract them from the S-matrix
element with full nucleon recoil correctly, we can obtain the static

TBE current. This can be achieved by the folded diagram method34):

| Both the Nambu's metho&m%nd the unitary transformatioﬁ method have
the arbitrariness. For example, the differént non—static_OBE potential
is obtained by the different elimination of the mesonic degrees of

freedom in the unitary transformation method and also by the different:

choice of the time-base in the Nambu's method. As we have shown, these
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arbitrarinesses are related with each other. The.arbitrariness of unitary
transformation in the boson-vacuum space, which does not couple the boson—
vacuum space to boson-existing space, correspopding‘to the arbitrary choice
of the time-base, when we reduce the field theoretical S-matrix element
into the single time of the system, in other words, when we are déaling
with an instantaneous interaction. These-kinds of arbitrariness of
unitary transformation also appear when we eliminate the negative energy
component of Dirac field. This is thé arbitrariness of the F-W-T trans-
formation?6’37) It is noticed that this arbitrariness does not affect
the matrix element of the observables. If we fix the unitary trans-
formation , we éhould use the effective operators and the state vectors
obtained by the same unitary transformation.

The consistency of the exchange current and the nuclear potential
in the unitary transformation method is shown by proving charge conser-
vation within tﬁe TBE model. We include here both boson- and nucleon-
type currents in the charged scalar boson-exchange model. To verify
this charge conservation law, the non-static exchange current and potential
cannot be neglected. For example, even the static TBE charge density
operator is related to the non-static exchange current and potential,
The role of the nqn—static effective operatof is also essential in the
derivation of the static TBE currént in the S—-amtrix method. A consistent
derivation of the nuclear potential and.exchange current is thus important.
Althouth there are many methods to define the effective operators which
are equivalent to each other, we believe the unitary transformation
method discussed in sect. 1, is practically éhe most useful method, while

21)

the canonical transformation method is convenient to see the transfor-
mation property of the theorem, and the Nambu's method is convenient to

see the physical or the graphical meaning of the effective operators.
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Part II. Magnetic Moment of Deuteron

Section 8. Magnetic Moment of Deuteron
We shall investigate the magnetic moment of deuteron. The operator
of magnetic moment is expressed in terms of spatial part of nuclear

- a
current density operator J(X) as
- ] — - o~
= - x T(x) o x
F=5 [ A (8.1)
and the nuclear magnetic moment is defined as

2
/4 e L T, Te=T 1 Pa | T, Jz2=T >, (8.2)

Since the deuteron has spin J = 1 and isospin T = 0, only the isoscalar
part of magnetic moment operator contributes to the magnetic moment of

deuteron. The deuteron wave function is written as

U wer) ) @(ir)
g = 27 [ P2 + \/7 lJ’l\z P Yer) 2’(2')) (8.3)
where Sz =2 Cq-R)CTaVF) — L 7o

A(+) is the spin wave function with § = 1, and 277) is the isospin one
with T = 0, The radial wave functions of S- and D-state are denoted as

u(r) and w(r), respectively, and they are normalized as

N .
{o [ Lv) + v [ odv = 1, (8.4)
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In the impulse approximation, the magnetic moment /ﬁnis given-with;Eq.

(8.3) by the magnetic moments of nucleons and the D-state probability

PD as
8.5
Hra= Cpp vPe D (2 _.j? 7 )}.4-:51 %, ( » )
with ' oo
= dr
Po [ w3cr)
and FptHn= o0.8029¢

in units of nuclear magneton.
We shall adopt the wave function of the deuteron in the Reid-poten—- -

tia128)

, which reproduces experimental data on the two-nucleon system
satisfactorily and is widely used in nuclear physics. Although the
Reid-potential is not derived meson-theoretically, but is the phenome-

nological one, we assume that our model of the interaction Hamiltonian

will reproduce the Reid-potential. If we use the following values

PD = 6.497% for the hard core potential (H. C.) (8.6)
PD = 6.470% for the soft core potential (S. C.) (8.7)

given by Reid, we obtain

0.8428 (H. C.), - _ (8.8)

FA

Hea = 0.8429 (s. C.), . : (8.9)
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38)

while the measured deuteron magnetic moment is

Ay = 0. 9r7406 T 0.00000/ (7. m.) (8.10)

Thus we find a discrepancy between the calculation of impulse approximation
and the experiment by about 0.014 n.m. It is very interesting to resolve

this discrepancy:

A HPaxp = Md-Pra = o0.0/46 (H.cC.) (8.11)
= o.0/4% (S.C.) (8.12)

We shall take into account relativistic correction to the one-~

body-operator, A/‘g:el

cor. ° OBE current f(OBE’ and TBE. current ﬂIBE’

A Prieor. = dFres. cor. f/JOBE +Mme - - (8.13)

We study the dissociation current, pair'current and also the first-
order recoil correction to fhe nucleon~-type currént in the OBE model.

We adopt the static limit in the TBE current: We retain the nucleon-
type current due to the intrinsic magnetic moment and orbital motion of
nucleon, and dissociation current of boson-type. For the realistic
description of boson-nucleon system, we take into-acéount pi-, rho-

and omega-meson exchange currents. Further we include the isobar @41236)
in the TBE curreﬁt, with which we treat apprqximately an important part
of virtual p-wave pion-nucleon scattering. These exchange magnetic

moment operators are derived from the unitary transformation method in
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sect. 2, where we take into account the isobar by modifying the projection
operator /A and 7 as the projection on the boson- and isobar-exisfing

space, and boson- and isobar-vacuum space, respectively.
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Section 9. Interaction Hamiltonian

9.1. Strong Interaction Hamiltonian

Now, we take the following Hamiltonian of boson-nucleon interactions:

(9.1)

<Nepol Hrewel Nep) Tic2)> = ~¢ fu apr T ¥s dcpr, for piet
] ' 9 dep’ ity A (9.2)
SN U Hpun | NP £F2)D = ¢ §p Bep7Ty [ - 55° Ouv Lo J uep2, forrho,
and
(9.3)

ENep) | Flouw INP wat2)) =i g Aepy [§~ S22 Gy ol uipr, for omigs
with 3, = B\'-r/\)

where the index j shows the isospin component of'boson, and we adopted
the hermite Pauli matrix for ﬁ;.
The interaction Hamiltonian of nucleon (N) and isobar ) are

written as
LApcp?? | Haug INepI 02> = ¢ -fff—é- S Uy PO U Cp) (9.4)
. .4

for pion and

<Ay p [Hpua IN e fita)> = ¢ ff,,”; Sv uj (P isdi 2 cpo (9.5)

for rho—meson.
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Here, 4# is the vector-spinor for a particle with spin 3/2. Omega-

meson does not couple to the N-4 vertex.

9.2. Electromagnetic Interaction Hamiltonian
We shall show only the isoscalar current relevant to the deuteron

magnetic moment. The electromagnetic interaction Hamiltonian is given as

Hom= ST ¢2) Auets d %, (9.6)

Here, the nucleon current is expressed as

<N(r’)ljlfm'g’N(P)> = _é:__e‘?(r) [d;‘—z—‘;?- @yfk]”ff)’ (9.7)

and the isobar current as

P

v Godu] o), (9.8)

{Ay,d'(?fl J;.enlt[ A”‘J‘ (P)) = ".Eg EL'J (F) E );. —-—
The dissociation current of rho-meson into pion is given by
< TICFI J';'f"s’ / f;.'QCP)> - = -e—i% Epvra A Po ‘5‘0 (9.10)

Here the boson-type currents of pion and rho-meson do not contribute ,

since they are purely of the isovector type.
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Section 10. Elimination of Component with Negative Energy

We shall eliminate at fifst the negative energy component of the
nucleon, and then the mesonic degrees of freedom from the nuclear wave
function. We sﬁall reduce the cbvariant expreésion of the interaction
Hamiltonian into the two-component effective Hamiltonian of thé non-
relativistic nucleon. The lowest order statié Hamiltonians are directly
obtained by the non-relativistic reduction of the Dirac spinors. The
strong interaction Hamiltonian of N-A and the electromagnetic current
of A are reduced in this way. On the other hand, for the strong
interaction Hamiltonian of the nucleon and the electromagnetic'current
of the nucleon, we need the relativistic correction to the one-body-
current and OBE current. They are obtained by eliminating the negative
energy component of the nucleon by using F-W-T transformation.

The one-body Direc Hamiltonian for nucleon is

ﬁ:FH + £+ 0, | : | (10.1)
where | £ = Epun * '5},,,,, + SwomN (10.2)
and
O = &p + Ommw * Opwnt Opyny + Owww  (10.3)
with
e (10.4)

WL

A
e = .
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Gouw = G T LH ~ 22 s Ea 57, (10.5)

Sumv = Ju LA~ — 552 f Zr Vs 721, (10.6)
O = -5 A + ZEpTE, (10.7)
Oran = (Je tu s 5'24’2/ (10.8)
Gpm = 3y £ [2.57 -2 p 2B fr0] @0
Opwu = -J» [j-f?u-f-;?k“',e &l TP+ ;fis)_]’ | (10.10)
where B= _;.x,'i‘, E:-—;f‘—j‘ ond 2: ('6" 3).

(K,f) is the eiectromagnetic field,.--ﬂf,: Aé’: if;.ware the field operators of
pion, rho- and omega-meson, respectively. We have replaced the momentum
transfer qrby the derivative operators on the boson field in the equations
of sect. 9..

The F-W-T transformation has the arbitrariness of unitary trans-—
formation as shown in Appendix A. To see this explicitly, we divide

the odd operator into two parts A and B.

O=A+B (10.11)
with
A= /ll &"F " )2 ; (;?'Z +I*3“jﬂ &&Z’f”*‘ofﬂy’* JJNAI/ (10.12)
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Becia) @F = C-d) EZA 4 C1oM) 18 il T #7 (10.13)

Here, A:, A2 and ,Lzare the arbitrary constants. We also define constants

a, b and ¢ as Ref. 37).

az=A-2Az, jb=Az-A3 and C‘/‘J"Al/ (10.14)
where. a+b+t € = o, (10.15)
In what follows we shall keep the terms linear to the boson-field operators.
We have fixed the transformation relevant to the rho- and omega-meson-
fields as in Eq. (10.12), since their contributions are uniquely given

within our approximation.

10.1. Electromagnetic Interaction of Nucleon and Isobar

The electromagnetic interaction of the nucleon is written as

H,nm = Hewn ( Static) + Heww Crel. cor.) (10.16)
where
’ - -t ’ -
Hewy (stafic) == 2 [P+ 2P + c1+#515-B ] | (10.17)

Hmn“’é’- cor.) = /‘:’ {{Ft F‘;*Z‘-? + 5“-§‘]f+-§ [le FYF‘A?.-‘Z-&XF,Z)

)

P PP ST, oy B
r/:ms (P 5 20 'zi [P B'?j*)~ (10.18)
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Here, we only show a part of Hamiltonian relevant to the magnetic moment

operator. (rel. cor.) gives the relativistic correction to the one-

H
dNN
body-current due to Zitterbewegung.

The static operator of isobar current is

-t
Hoao = =gz (BA + BB + cnnds> G B), (10.19)

Here, p, is the momentum operator of isobar. 0 is the Pauli-spin

matrix.

10.2. Electromagnetic Interaction of Seagull Type
Here, we show the contact interaction of boson-photon (BfN), which
gives rise to a relativistic correction to the magnetic moment operator.

The T¢NN interaction in the ps-ps coupling scheme is given as

e = =
H-pruuz 19/;31: (l+Ks‘):‘l' Vﬂ'Bﬁ”

[ trmre) e e AR BET ik [P 342, + {7 7))

- 2 oy, @3 T T

PH? (10.20)

with

o . : 7
X=[22 (%) + b & (A Vg) vap (T A)-cA (5’*773’]5‘2(.

The first line in Eq. (10.19) gives the local operator adopted in Ref,

14). There,however, remain the other momentum dependent terms, which
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cannot be neglected in the general case. The non-local terms depend on
the parameters in the unitary transformation.

The NN and 4NN interactions are given as,

) e -y a3 77 - p — ’
Horw = =35 8¢ T [ P04 + X2 2 x7-T¢7]  Q0.21
H = .8 Fag L ) 3 TR A (10.22)
wine = jjﬁ-?u [- A S A R T ,‘J. .

These interactions in Eqs. (10.21) and (10.22) are uniquely given irre—

spective to the arbitrariness of F-W-T transformation.

10.3. Strong Interaction Hamiltonian

We need only the lowest order static boson-nucleon Hamiltonian in
Eqs. (9.1-3). The relativistic correction of these boson-nucleon vertex
~ gives the higher order relativistic correction to the non-static OBE
current and we shall neglect these terms. Thus the boson-nucleon
interaction Hamiltonians read

= Jr =2 5 | n
Hrww = = ~é , (10.23)

PP

- o)
> ffp + C1+4p) F’X W:?P]'*jf}- fbf, (10.24)

P

- -t

HfNM‘-—‘zJ-%'fZ [F'A‘¢
H"p”: —;lﬁ? [/—;-ﬁlw+ ¢?p+(/fku}&°x"[5‘,'-f"] *jw /o“ . (10.25)
Eqs. (10.23), (10.24) and (10.25) correspond to the pi-, rho— and omega-

meson nucleon interactions, respectively. We also have the rho~pion

interaction of seagull-type:
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Arpun = — ";,;’zf ;.gfx - A7 ' (10.26)

The isobar-boson interactions are given in the static approximation as,

Hpwa = Frwa .F-—‘ Is‘v +h. C. (10.27)

"y

" 10.28
Hﬁ“""-—-——{fu’"‘: Sx-¢°T + h.c. (10.28)

where S and T are the transition spin and isospin operators which
couple the four component isobar to the two component nucleon. Their

reduced matrix elements are defined as

L350 s N Ve >= 2, (10.29)

<34 uT > 0, (10.30)
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Section 11. One-Body Magnetic Moment Operator
From Eqs. (10.16) and (10.17), we obtian the one-body—magnetié

moment operator as

/7” Ny¢stat) «+ /u ¥ ¢ ral. cor.D o (11.1)
: ' =3 1 A ~ -
with fVestat )= {_‘5_[: L +20 »ermne) @] (11.2)

and

f ()’G/CDh) Z

/én-?[ [: />J. -(2+4a) V's f.,- *+ (a- 2ks)(0.'s-ﬁ)P$] (11.3)
/

where Lo - ~l - -
Ly = Vo X > + X~

Eq. (11.2) is a familiar static magnetic moment operator in the impulse
apprximation, and Eq. (11.3) is the relativistic correction to the above

operator.
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Section 12, Two-Body Magnetic Moment Operator

12,1. One-Boson-Exchange DMagnetic Moment Operators

The nucleon-~type and pair-currents are expressed as

- AT 1T R T e '
Fezo= [z e e JAGE ) 192 (12.1)

from which we obtian the magnetic moment operator as

P }
a9 -3 F P37 : (12.2)
fr € /u{'”' X

The boson~type dissociation current is expressed as

F2 ./dgdb e-.'s"-?e:k-(ﬁ'-;)j"""(i‘, L)+ ci1e2) (12.3)
r2m)f ’

and the exchange magnetic moment operator is
/,P 3y x T (XL dx
-

49 -c'.;‘;‘. "‘P""/"g"
f znp € s /. (12.4)

i) Recoil Current
We have shown in sect. 2.4 that OBE nucleon—-type current vanishes
in the static limit. Therefore we have non-static correction due to

nucleon recoil, These non-static operators have not been studied yet in
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the pervious paper. The OBE current of nucleon-type is given as
= - 2 7_,, 25 [ :
Freitos -5 () EE [ (7 B2 b gn ) (og)
+ (2B )gxor + ih2)T )% [ Cara) (12.5)
| B2 7
- e 2 I+4p .
FPiak= -5 (Z) ’J?a /[( Caxg) raxg) — 1 [
(’*“'} [(3B)2xtara)x e +'(b.?)(2x(34\'01).71‘5) (12.6)
A £
where 2 =p*t.
Eqs. (12.5) and (12.6) correspond to pion and rho-meson exchange currents,
respectively. The exchange current of omega-meson can be obtained by

the following replacement in Eq. (12.6)

7, >
G = g . HpPHw , MpTMw amo T z"’7, (12.7)

The magnetic moment operators associated with the intrinsic magnetic

moment are
/7,’,/9) « o Cring) (-2‘1;1’1-)'—:;;“2* [coix@atx2] x2 ¢ 2-B) (12.8)
T .
- < b/ 2"'?e[((a'.;\ro'c)ovcj)/\'.f + X0 3"//_9._?)
) & = = C1thks)| Z=(1tu,)] —o . / (12.9)
frid 7 {zn ’)2 Wy | )

The omega-meson exchange current is obtained by the replacement of Eq.

(12.7) in Eq. (12.9). The magnetic moment opefator associated with
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orbital motion of nucleon is

Futir= L 2. S () 2T g 1)0039) ua (12.10)
ipd)e Badp v ie g X [/_2’;*/'(”.2){0}::5) Jaxd, azan

Z
[1V]
a1
1]
\».
[2+Y
S
l\

.«l-l‘ =3 Y 23
Q]J}(x)dx and a=§(ﬁ"f’a).

The omega-meson exchange current is obtained by the replacement of Eq.
' (12.7) in Eq. (12.11). The first terms of Eqs. (12.10) and (12.11) are
the isoscalar magnetic moment operators associated with non-static OBE
potential as
43 ~ 287 _ I3 ; [ VoPE —‘NJ
=y M =z % L Vs PO (12.12)
These terms and the operators in Eqs. (12.8) and (12.9) do not contribute

to the deuteron magnetic moment, since they depend on the center of mass

" motion.

ii) Dissociation Current
The current associated with the dissociation of rho-meson into

pion is given by

-3
T7g,8). L2 mrdrde oy pe 004 27k

Fypmp T (12.13)

ﬁ?L

with

s .E‘.t i;/'e P Nf,’;/mfzfj,? omd Wy== fug+32 _

[

‘and the corresponding magnetic moment operator is given as
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ST, . & 1 Imrrd ), ., F2E j
F S (_L"m,, )72 — - (12.14)

with wf: ‘/ HPZ + 92 Mc’ Wr= mo

iii) Pair Current

Elimination of negative-energy component introduce the contact
interaction of boson, nucleon and electromagnetic field, and gives rise
to the pair current. The pion pair current with the strong interaction

of ps-ps coupling is given as

= egr’ A . Y
J: 3, k) = 3"2-}{7 (.22 ¢alg) [24 Ctries ) p X8

Py P<Y -8 £
~ (hs +CCrrn)) (Gxf)rh +al[F2)5 420160 (f2) 5
23 - - £
+ ) B.o)d —2p (009 T Cp, /a‘:‘bJJ. ' (12.15)

- The rho- and omega-meson exchange currents are written as

= ey G0 £

Tifr13,r< —4-——-5“,9 —wfz_—- L p o= cernp)d x(T,'.J/ . (12.16)
- £3
Ti%ta:4) = —20 5 [ f —etrtin) 2xov] (12.17)

The OBE magnetic moment operators corresponding to Eqs. (12.15), (12.16)

and (12.17) are

-

L 2 [ 42?2 2 .3
il S»Tﬂ’)z—-l-d—n:‘ ["""’" 2 09
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! &
+ 72 (24 G303 ¢ (20ircoKs-b+C D Tir py 02 G

£
*bp T rxg e —(c‘/;‘._f,«-(b—:) ﬁ'ﬂ)nxo". ‘D‘.?j_]*fl“’a) (12.18)
- e 2 4 >@ 23 2 - ’
/"P/.?)-'—‘#,?g' Z;;z—? [ L: +12=¢ (/-rk,);’“x(jxo';.)] (12.19) |
- eq? £3 - .
/‘ma):-ﬁfﬁ —J’“;[Z,‘ar 2 ls) Fxrgxa) ], (12.20)

The first term in Eq. (12.18), which is local operator and free from the
arbitrariness of unitary transformation; is takeﬁ into account in Ref. 14).
However, ther is no reasén to neglect the other momentum-dependent terms,
although they depend on the unitary transformation. We shall take into
account these non-local terms in the numerical calculation. The pair
currents due to rho- and omega-meson are given irrespective of arbitrariness

in the F-W-T transformation.
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12.2. Two-Boson-Exchange Magnetic Moment Operators

We shall show the isoscalér part. of TBE static magnetic mo'me'rit
operators. We obtain the nucleon-~type current and also the boson—-type
currents, as shown in Fig. ll; We shall express the spatical.cﬁrrent
denéity of the nucleon and the corresponding magnetic moment operator,

respectively, as

Fez)=J / 2‘::‘/5 i PIVF PR T g hr e cm2)  (12.01)
I 4
and
P oo 3 [dHE G FTIF BP0,
Fo= 2 e s, (12.22)

where p abd q are the momenta of the exchanged two bosons (o(,f?),
such ~as  (M,M), (f,7) and (/,f). The dissociation current in momentum

space is given as

FrG)- ] /’f"‘ PPT R ED T ) cm2)  (19.93)
g/ 2m)?

which leads to the magnetic moment operator as

2z)¢

/'}"P""; Z dez o [fa-?) F'/ P79 gl (12.24)
3

where q is the momentum of the exchanged boson (3.
We shall explain the nontation by which we shall express the TBE
magnetic moment operators hereafter., The upper (lower) sign of the

operators correspond to the uncrossed (crossed) boson-exchange diagrams.
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Fig. 11 Typical diagrams in the time ordered perturbation which con-

tribute to TBE magnetic moment operators.

The boson-nucleon couplipg constants are denoted as f and g, and they

are summarized in table 1. The contributions of the energy denominator,
i. e., G in Eq. (2.54), are included in the function I(p,q) and their
explicit formé are given in Appendix B, It is noticed that the contri-
butions from lots of time ordered diagrams in the unitary transformation
method are expressed by a simple intégral fbrm, as will be seen in the
following. This is easily understood in the S-matrix method. The . :
vertices are denoted as ];y, 7;, Z;v,and /3”’, and they are summarized

in table 2, We also used the following symbols:
“p= Imiep?, Wy 'Vﬂla‘*izl we=s ;}m,iq»f,* s WS p2 (12.25)
2
d -3 - _
where Pr=p = and A= Hs —H,

Here M and My are the masses of nucleon and isobar, respectively. In

the following, we shall show only the expression for the spatical current

- 88 -




density, magnetic moment operator and function I(p,q).

i) TBE Currents due to Intrinsic Hagnétic.Momenté‘df*Nuélenn?aﬁd
Isobar

a) N-N Intermediate State

- The currents associated with the diagrams in Fig. 1ll-a are written as,

_ J—"l“““fpz.k)er/lgjl"”(_;:zz!zy J”"(Plz)[Z/'_‘,;,. "7:.;3 __'_._?7_‘;‘2 ]’ (12.26)

=2 7 _ 7 12.27

/ﬁf’mzl = s ™ 37207y D [20y N v 20 ] ( )
with

I""(FIZ) s 2—7;~ dx[/x?.u;ffc}/x?-w;wé Jexvre)?] ! (12.28)

b) N—A Intermediate State

The currents associated with the diagrams in Fig. 11b are written as,

-t -3 —_3

st < ?Ef“ (22 70%) I (f'zj[';Sd(“é:"Ga 2o )
wps ¢ =20y F Iz ], (12.29)
VAGIZRE ff”‘(&t?’-?‘/-&fi (ﬂil[}’—"‘Mff-/?t:?c/

-~ Ps (-2 /f: F 7'-:. )]‘ (12.30)

with
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/4] D ) _ 4 ! F2-A 1 N :
_7;\[/: (f,j)': Eﬁ—/d*’[{z'-w;ne)(x‘ 2rie ) (X T {){,Jd?d—)’] . (12.31)

The currents associated with the diagrams in Fig. 1ll-c are written as,

Tiingns = 7—2;/”‘/3z?’-?‘/ Th2p2) Fs 47+ 72/3;,1 (12.32)

FHpg) = 5322 Bhp o ps 4T 2 =272 (12.33)

with

A
Thy

. -/
., 7}=§-;)—/JJ’[/M+»'6}/324-¥71’&1(2' e ffé)(;z*/éﬁ] . (12.34)

c) 4 -} Intermediate State

The currents associated with the diagrams in Fig, 11-d are written as,
Thtpgnrs 242 167207 2450 1 LE 12 7 o8 _ o7
' 7 03 [ 457 (7T ~2lop 75T/

- /IS (475'4 r 7_;:/]

rd

(12.35)
;’o«f,p, D= 52 s 0] L 9 7h ~270 75T )
—~ psc 27 F Tel], O (12.36)
with
Tepp -‘z’;?/’éf [tvaprie ) x5 *'é)(*"#* ie)* (7% ~gr1e)] ] (12.37)
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d) P-;l Exchange Currents due to Seagull Interaction

The currents associated with the diagrams in Fig. ll-e are written as,

TEpghr - K psf e 22 [2tpar-tpyicsdek T'p3), (12.38)

/T‘f”‘f" 302 1EPsfPere [2 (p-on 2= Cp3Ior T TP 30, (12.39)
with

Tp 37 = —2:,;— _/ A [1xR-0f#1 3~ +1e) rnrre ]! (12.40)

The currents associated with the diagrams in Fig. 11-f are written as,

— P :
T (p. 7,"} = 7—f4 [/IS 'ff‘;]?"??[z f/"d}/‘(f‘zla}]xk r(ﬂZ), (12.41)

VIS5 VE -7?07"’ Lps-2pi] 22t [7 prov) 1] T24p2) (12.42)
with
. . )
T*p3) = }—;ﬁ_ o [ext-ud +ie) (x2-w3 rrédex-aree 2], (12.43)

ii) TBE Magnetic Moment Operator due to Convection Currents of Nucleon
and Isobar

a) N-N Intermediate State
The currents associated with the diagrams in Fig. 1ll-a are written as,

=
THep 34 = Fa " (37 2270) ™R3 7 (12.44)
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-~
~¢3-27022) PFalp?

Fless = G5 1y

2(3 4222 ) R Al . (12.45)

b) N-X Intermediate State

The currents associated with the diagrams in Fig. 11-b are written as,

T pz40= _;;;f,; £ 22 2 z*/I”"[/ )t~ ()"

*2(2)F (25 t1z0] (12.46)
Fip) = G a2z D] () Pele (79855
4
28 B0 )2 TE Ik )] ' (12.47)

The currents associated with the diagrams in Fig. 1ll-c are written as,

Tt -'——‘/“/.?zz I ”7)[/ )5 /f) F;-—/

-~

(12.48)
e - ﬁf”‘(ﬁﬂf/@ﬁfmx}[@) Py /j/ﬁ‘xfﬁ:/
(12.49)

c) A-4 Intermediate State

The currents associated with diagréms in Fig. 11-d are written as,
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= . S . e = ot ' — e
Tlepg. 0= 5 f“0é70r) 2 [~ 15 - =24

» (275 775) ]

(12.50)
FD‘F(P/?): /{;ﬂa fdé(l:?"zzj [../ F‘l\',;*]
253}";‘
4 4 £
“ (4l ) ez 57.-'-)]. (12.51)

d) /p_” Exchange Currents due to Seagull Interaction

The currents associated with the diagrams in Fig. 1l-e are written as,

—3or s
Tt ‘f/_%ﬁkh etV TR 2 (30 prpaa (12.52)

/ﬁ’f”f/’q’/:z'_é-/-f-f”?(z*.l”/ﬁ2/[;71/,&‘—?'//’*?'“'25”7’7)/-’;’?'”:]. (12.53)

The currents associated with the diagrams in Fig. 11-f are written as,

7% .o 25 iz TV RUeF I g 0a v [ P lo )
Trr ks - sy f 2t G Lowrfiopraey b ‘Z (12.54)

/a“/’”/f,;) = 2——,—2— f"z"-zz?g-z‘(p, 2/~ 7 x /;”-_Qf) pri0r 2B (-7 prp-o

- 7‘,’- [ﬁ'xﬁ‘ ap) e 37 * !/“21)] (12.55)

iii) TBE Magnetic Moment Operator due to Dissociation Current of Rho-

Meson into Pion
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a) N-N Intermediate State

The currents associated with the diagrams in Fig. 11-g are written as,
/ - ol 4 = o
TV tpakrz 2248 (32200000 20 tpo3.00 BE®

+2 200 130 27 79 I mp o [0 72 T (12.56)

- '/ ey
P pigre 22 e (3522020 Tt tp 3,00 73770

-3 pné 12,57
P2I zem 2 g [P - 727" (12.57)

with

INW( 290k)= [ Jo [ i) (xrw2eie ) (k2 0 +1e) tx +16 )% ]
prr (P sy rlov-uie g (12.58)

-/
Ihas (h3rH= '/zrdz’f [tAvdsiertrzwirier ti-tfeié 2t s1a)’ ] (12.59)

b) N-AlIntermediate State
The currents associated with the diagrams in Fig. 11-h and Fig. 11-i

are written as
T¥tp, 20807 5 fomg (22 z{z"/If',’,f,:z, (7,47 T 74

+—7ﬁ/3:zﬂ. z-vI”""(p, WY, [j“” (Zfﬁérf/w/

+ j;':, [ 5 TL o tT }] ‘ (12.60)
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-

P (Na , 1 =pxp
FPipssz5 iy (327000 tpgb) T

: . o
* ;{32 w7 IP:A: Cps, k) [j;;:, (2 7}”’;/;”"/
v ;nj— (37 +2 7?"'/] | | (12.61)

with

I::é_ﬂﬂ?"’* /_&.T'_ ar [txzadeie Iext-w3 tie ) (X-10F +1'€)

X (x-4 +'¢ JCF 2 rlé)]—l (12.62)

Lo (prask) < [apdx 2L ocorei K rie) frug i€

4 [X"d e ) {.—x-l"l'é)]-:l (12.63)

c)d -/ Intermediate State

The currents associated with the diagrams in Fig. 11-j are written as,

? —
TVp1k0= 55 s (04700 Tt pl[FA7” 1317 ]

(12.64)
PP 570 (“Z{M%’f’?"’fﬁf)— /"!"']', (12.65)
with
Z;’f", (pr3 k)= /—;,’:}‘JJ’ 7 [ Xto 18 I X0 F HEN X 10F +i8)
(12. 66)

X x—atte)r]!
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Section 13. Numerical.Results and Discussions

Here, the exchange current operators are expressed in the configu—
ration space, as shown in Appendix C. We have evaluated the magnetic
moment of deuteron using the wave function in the Reid-potential, and

the explicit forms of magnetic moment are shown in Appendix D.

13.1. Parameters in Oberators of Exchange Magnetic Moment
We adopt following values of the coupling constants for boson-
baryon interactions.in our numerical calculations.
i) Electromagnetic Interaction
a) Magnetic Moment of Nucleon and Isobar

The isoscalar magnetic moments of nucleon and isobar are given as

follows:
/s = g Crrks ) = L Qo vts) | - (13.1
/,{f;&’—e/;[/—f-kf)=2if’p. (13.2)
with

Pp= 2.2928 cnom) and  flas— L 9300nm.).

Here the quark model prediction is used for the magnetic moement of the
isobar.
b) f?rd' Coupling Constant

The ,f“r'coupling is determined from the decay width40) as

Jf’"" = 0. 408 _ - (13.3)
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where we adopt the relative phase of the quark model prediction39);

ii) Strong Interaction Hamiltonian

a) 77NN Coupling Constant

(%’)%2‘""2 = o 0f - (13.4)

b) fNN Coupling Constant
The PNN coupling constant is given from the vector dominance model

as

jfzﬁf = 0.£2 oand Kp= 2.7, (13.5)
while from Ref. 41) as

tir = 0,55  ama wpe L 6. | (13.6)
In our numerical calculations, we give the results for a fixed value

of %3/47{= 0.52 with an adjustable parameter 4.

c) WNN Coupling Constant

J‘fﬂf‘: 7?;/4’_ and K = Ks. (13.7)

Here, the quark model prediction is used for g,.
d) TN/ Coupling Constant

The coupling constant of ANA vertex is predicted as

frka fom = 023 (13.8)
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42)

in the quark model, while it is determined from the decay width "~/ of

isobar as

{Tkz)d /411 = 0.3¢ ‘ (13.9)

We show our numerical results with an adjustable paeameter fﬂNA'
e)'PNLLCoupling Constant

The quark model predicts :.
P 2214
= P Z
A = I [ pe )] s | (13.10)

iii) Vertex Functions
a) 7T NN Vertex Functions
We adopt the 771NN vertex function below
Ai —me?

Aappt 3?) 3 ~f—m——— (13.11)
Ar +30

with  Ap & 2/ mi b

b) PNN Vertex Function
The me'vertex function is not well known yet. Two types of vertex
function is usually adopted
2
Ap

Kpuw (32) = .;;;:3;—- (13.12)

44)

with Af,e 1450 MeV and
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—_— (13.13)

Kf}lﬂ[g /= /‘fz +3

with /}»xl ~ 2 GeV45). Here we have fixed ,(P_= 1450 MeV and studied the

above two different forms of vetex function in Eqs. (13.12) and (13.13).
We have assumed the.same vertex functions for N-4 vertex as those
for N-N. The introduction of vertex functions is phenomenological one,
Tﬁerefore the current conservation law which we have shown in sect. 6
do not hold exactly, if we introduce the vertex functions. Additional
electromagnetic interactions in the structure of vertices are required.
However, we shall neglect these currents, where we need the model of

vetex functions to take into account these currents.

13.2. Numerical Results and Discussions

Our numerical fesults are given in table 3~7.
i) Relativistic Correction of One-Body-Current

The relativistic correction of one-body—cufrent is shown in table 3.
Here, we fixed the arbitriness of F—_'.'J-T transformation as a = 0, which
is called gauge invariant reduction. The gauge invariance is always
satisfied at the each step of F-W~T transformation, that is the combi~
nation, '15" - ei, holds at each step. The.relativistic correction is
about - 0.01 n.m., which has an opposite sign to that of 4 exp in
Eqs. (8.11) and (8.12). This correction is rather dependent on the
choice of nuclear wave function. Since the relativistic correction is
essentially the expectation value of kinetic energy operator (see Egs.
(N.8) - (D.10)), the dependence of relativistic corrections in the soft-

core and hard-core wave functions is due to the different kinetic

energies between them, in other words, due to different potential energies.
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ii) Contribution of Exchange Current

At first we shall study the model dependence of the exchange magnetic
moment contributions due to A} and the choice of PNN vertex function,
where we shall fix the parameter fh@r and the F-W-T transformation as

J;¢4 =0,23 . a=0and c = -1, Two choices.of théJDNN vertex functions,

(13.12) and (13.13), change the effective coupling constant of rho-meson.
From table 4, we can see that the tétal contribution of exchaﬁge magnetic
moment is rather stable, however,‘the relative importance of OBE and
TBE currents varies with the magnitude of #4p . In either case, the
contribution of TBE current is non-negligible in the mégnetic moment of
deuteron. In what follows,>we shall fix {? = 3.7 and take the vertex
function of Eq. (13.13).
a) OBE Current

The contribution of OBE current is shown in table 5. Nén—static
correction of OBE recoil current is small as we see in table 5.1. The
pion pair current depends on the parameter c of unitary transformation.
This parameter also affects the correponding relativistic correction of
one-pion-exchange potential. The choice of ¢ = O-means that 3F and
C%ﬂp are eliminated at the same time, and the choice of ¢ = -1 means
that éz; is eliminated at first and then Gy is eliminated, which
correspond to the Foldy interaction picture. In table 5.3, contribution
of pion-pair current is shown, where the local term given by Gari and
Hyugal42 and the non-local term with the different choices of unitary
transformation are shown. There is non-negligible éontribution of
non~local terms. We shall fix ¢ = -1 in the follwing discussion. It

is noticed that if we construct the nuclear potential to obtain the
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deuteron wave function and the exchange current by the same model,jthe
arbitrariness of unitary transformation does not appear in the mat;ix
element.

VThe sum of OBE current contributions, i. e. , recoil, disséciation
and pair current is about 0.016 n.m. (0.015) using H. C. (S. C.) wave
function. Here, the S-D matrix element gives the most important_cbntri—
bution reflecting the tensor character of OBE current. It is noticed
- that the exchange current contribution is rather independent on the choice
of deuteron wave function compared with the case of relativistic correc-
tion. This is also seen in the TBE current. A
b) TBE Current

The contributions of TBE currents are shown in table 6. The most
important effects of TBE current are those of the N-N intermediate state.
The contribution of N-/ intermediate state is as important as that of
the A-A intermediate state, and these two contributions are destructive
to each other. Here, only the diagrams of crossed-boson exchanges with
the Nqﬁ intermeidate state contribute to the isoscalar magnetic moment
of deuteron. The (f,M) exchange processes redhce the contribution of
(7,7T) exchanges. This cancellation makes the TBE contribution smaller
when theJPNN coupling becomes stronger. Here, we have neglected the
(W, T0) éxchange current, since their contribution is negligible. We show
the contributioﬁ of (&,M) exchange current in table 6.4, which is
evaluated with myp = mp (= 770 MeV). We cannot neglect the destructive
contributions of S-D and D-D matrix elements, which are neglected in
Ref. 15). 1It ig noticed that many TBE processes have equally important
contributions and they tend to cancel to each other. Therefore, it

is quite dangerous to evaluate TBE current by taking only a special type
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of diagrams among many bqson—exchange processes. wé obtained the total
contribution of TBE currents to be 0.006 n.m. (0.007) using H.Cf (s.C.)
wave function.
iii) Magnetic Moment of Deuteron

Our results are summarized in table 7. 4¥1 can be explained so far
by the OBE current which coincides with the result of Ref. 14). However,
the relativiétic correction tends to cancel the OBE contribution, and
the sum of the OBE current and relativistic correction cannot explain
the discrepancy 4{ . If we take into account the contribution of TBE
current together with the relativistic correction and OBE current, the
discrepancy between the expérimentallmagnetic moment énd the calculation

in the impulse approximation is solved.

-

We shall discuss some probiems in the other approaches to study
mesonic and isobar degrees of freedom. At first we shall point out the
problem in the S-matrix method of TBE éurrent bt Jausls). The main
difference between the unitary transformation mefhod and S-matrix method
of Jaus occurs in the diagram in Fig. 9-d, which is the uncrossed TBE
current with the N-N intermediate state. In Ref. 15), the TBE current
is derived by subtructing the iterated term of sfatic OBE potential from
the S-matrix element as |

TBE = |)9BF PE HE N
Ty (94l = ol Geow ks YOSk + D 44), (13.14)

Then the limit is adopted as

ATBE N ~7M,)J
P 19d) —> O 7 r9d). (13.15)
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This TBE current is a half of the one from the unitary transformation
method,

>TBE, N '
O ‘oot (9] = gl*osrffi«”/%). A  (13.16)

Since thé non-static potential and exchange currenf are not defined in
Ref. 15), and they are not subtracted from the S-matrix element,,we‘cannot
regard ZZZ:WU as the true TBE current. In Ref. 15, c-number normali-
zation method is also adopted. It is noticed, héwever, that the S—matrix
method is incompatible with the c-number normalization method, because

if we define OBE potential, OBE current and TBE potential, and subtract
their contributions from the S-matrix element, the true TBE current is
automatically obtained without taking into account the normalization
correction.

26)

Some authors treat the isobar as the explicit constituent of
nucleus by the coupled channel method. This method cannot take into
account the crossed-boson-exchange diagrams, while we have seen that the
crossed diagrams of N-A intermediate state is as important as the A-4
intermediate state, Then the coupled channel approach to study the

effects of isobar will miss to take into account the important effects

from the crossed-boson-exchange diagrams.
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Section 1l4.. Conclusion and Remarks

We have obtained a consistent explanatioﬁ of the difference between
the experimental vale of the magnetic moment of the deuteron and that
of the impulse approximation by taking into account the TBE current
together with OBE current and relativistic correction. We found that
the contribution of the TBE current is important to solve this discrepancy,
in which the TBE current with two-nucleon intermediate state has the
most important contribution. It is noticed that the correct derivation
of exchange current is especially important in tﬁe TBE current with the
two-nucleon intermediate state, For example, naive S-matrix method
give the>incorrect TBE currentls). We found many types of TBE processes
are equally important. Therefore it is very dangerous to evaluate multi-
boson—-exchange currents by taking into account the special types of
diagrams. In the coupled channel approach to include the isobar degrees
of freedom, the crossed diagrams are not taken into account consistently
as the uncrossed diagrams.

In the OBE current, the pion-pair current has the most important
contribution. The non-local part of pion-pair current depend on the
choice of F-W-T transformation. To resolve this arbitrariness, we should
use the deuteron wave function which is obtained from the nuclear
potential derived by the same F-W-T transformation as in the exchange
current,

The individual contributions of OBE and TBE currents depend on the
ambiguity of coupling constants, however, the similar model-dependence
also appears in the nuclear potential derived from the boson-exchange
model, The model-dependence of potential turns back to the magnetic

moment in mainly the relativistic correction ans D-state probability.
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Then the consistent treatment of nuclear potential and exchange current
will solve a part of these ambiguities. In the next step of our étudy,
we shall investigate the nuclear potential in the same model of boson-
nucleon system as the exchange current, and study the properties of
two-nucleon system as the testing ground of realistic model of exchange

current.. .
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Appendix A. Elimination of Negative Energy Component

We shall show the eiimination of the negative energy componeﬁt of
nucleon by the Foldy-Wouthuysen-Tani transformation?s) In this case
therevappear ambiguities due to unifary transformation as the terms
with order M-'2 or higher order in the reduced Hamiltonian. We shall
show them along the work of Hyuga and Gari37) for the purpose of the

clear discussion in part II. The one-body-nucleon Hamiltonian is

h=pn+£to0, (a.1)

where $ and 0 are the operators associated with even and odd Dirac
matrices, respectively. By the usual method of the F-W-T transformation
the transformed Hamiltonian h is

FWT

hzwr = pH * z+‘§%‘02__ 5;;[& re,c7rr6_f

}7%0« J’H’ /[9’57*"’) +odee (A.2)

This Hamiltonian is obtained when we eliminated all the odd operators
at the same time. If we eliminate a part of the odd operator (A) at
the first time and then eliminate the rest (B), we obtain a different

reduced Hamiltonian hFWT(A’B) as

L

A;nur (A ,8)2 hewr * 3547

%\&

[AB] + =5 [TA8].5]

/‘ HJ —[[A, 27, ’:7 +oeme (A.3)
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where O = A"'B

They are related by the unitary transformaiton within the positive

enefgy_space.

’os‘ -
Arwr (A181= €% fpr & (A.4)

with

rP P S [A,BD +---

It is noticed here that this reduced Hamiltonian by the F-W-T transfor-
mation is also obtained from the unitary transformation method in sect. 1.
In this case the 7 and A spacgs are regarded as the positive and
negative energy components, respectively. And the free Hamiltonian H

0

corresponds to M. and 0 are the interaction Hamiltonians.
P £
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Appendix B. Energy Denominator Functions for TBE Magnetic Moment Operators
At first we shall define the following functions Igfz (n) and

(n,m):
f’

vV ! ! i
nl= -
T iy [3op -5zl @1
and
I (nyml= L - !
¢p ‘ A);—w_gz [2»,,”/0,»4)”’ LUF (g +a)™ . (B.2)

with Agl,zdwgfpz and wWg= Jmf=+§*.

The following relations between 14 and IN are easily proved.

I‘;(; tn,o) = I::ln) 4 (B.3)
I:f [”/M} =Z/"[‘¢/”,"")—_E;¢[ﬁ"lj)“)_7, i (B.zl)
I’J +3/) = [‘/ .THQ”-H)* (2an

ap (24 = 2,,,/ 203 //,.g) (B.5)

The energy denominator functions of TBE magnetic moment operators

are given by using functions I (n) and Ij,(n,m).
“p F
TVep.pp = = I (), (B.6)
o T2 (29 - <5 Tjey
IA’—" pr3/ = /
- T2 (2,2 ’ h .
I,(f, t (B.7)
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NO . _ z- <

- .I:;, (30 -
(B.8)

IA: tp2l)= T 2ad Lf(l'l} -—I‘osz)
- I.(;z/,d)
s (B.9)
N
IVep ) = - T840,
o (8.10)
. -
I (f/ 7) = - Td‘df {I/ 2),
. (B.11)
IN”1 (PZ [
pe l:’l— : ( J iy
30+ I, (3)] (B.12)
INN 2{ 7 ) = ! v
)l T —— - N
pre (Fr "‘,o*-mf [I/,F 127 Iff /z)l, (8.13)
Iﬂ.af 1'4
(7 = ‘ ‘ j - -
‘)‘f’nz oy Mf‘-l:if/ s (2 ~Lip 2V
—l}f /2/') + Ifl?ll) "'4 IN 12) - 22_1_7/;:/
(B.14)

P2 (P30l I~
> 7 & eamee— -]
f? ”f-’z"'"”f [ If{’ /1,1 "I;P [lzl).7/
(8.15)

Al
¢ P2, s
f"’ P? o) ————/ﬂf g [Ife /0/2)"1-77' {6;2)]
(B.16)
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Appendix C. Configuration Space Representation of Exchange Current’
C.1l. Fourier Transformation of Energy Denominator Functions
i) OBE Current

We shall define the following integrals,

1 I E'ﬂﬂr) n+2
¢ X))z —— d
Yﬁ n . 27 /° .f w2 1 7/

) (c.1)
Vo €27 = =& 44 L L (c.2)
with z:/z r and w= ;z{/‘a .
‘The explicit forms of these functions are written as
Yo,z ¢2) = l{‘-’;—J —f:t (C.3)
Yoo c31 o 27 (.
YI,IIX/-‘z}—:;‘ ("";")}'e‘ﬂi ‘ (C.5)
Vor2 12 :—4—%{'[”‘?{ f;g;);e_"’ (C.6)
. 4 )
Yoro exrs e 2 | .7
:fo,z tx) fz'i”-( '3{"' 5",.) e’j (C.8)
77,,. tz) =—gfr‘e'; (c.9)
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7 . _#3 R R B W ‘ ' :
‘fnz"‘)' «r /’2 *z *J*)e . (C.lO)

V2,2 t20 < ’ﬁgn' [r+5)e”] ' (c.11)
oo 1212 G2 trr Frh) e (©.12)

The monopole type vertex function is taken into account by the modifica-

tion of Egs. (C.1l) and (C.2) as

N : 2. p2 11/3»-) Ht

Yo ucr) = M_z J?.[A+3,] h (C.13)
| AZ=H TR Fe3r) (C.14)

Thh (r) = 21, df [/12,.3.’ e 2" .

for the nucleon-type current. And for the dissociation current,the

function

/
A
i wi

where W = l’ 22s m7 ond tdp = v 22“,,; 5

is replaced to include vertex function as

,4;—#0; /17.2--1'11z 0/2(9 r) n+
Yo, "’-/"'-‘1 ¥ +z=/ 47437 | wivz LD (C.15)

Egs. (C.13) and (C.15) are written by using Eqs. (C.1l) and (C.2) as,

v -
Yontr!s Yo,ntprl = You tAv) ~ tA2-p2) Yo, u t4 rl), (C.16)
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-—

- Lv4 2
Tﬂzn'( Y) - Yallf (’Jf') + Ye,n(/‘r) -Az_f‘z [TII"(FY/“ﬁl,'//‘ rl]’ (C-I7)

\

v gmr [ ! { Y2, 0t titen ¥} Yo, tpr
R N Ly T AP HAF )
. 1 Yo, tAn ¥} Yo,n (AP 1)
Ag -Ad (As-»4d ) //1;"‘*} /7~ A ; F IUAF —m,f/ )

X CAF -mE g 1A -mi). (€.18)
ii) TBE Current
The configuration space representation of TBE current is obtained

by the following type of integral.

~

- [ drd3 » r2
.J;,ﬂ,,,, "’{r/-ﬁ_——zﬁ‘ Ltp.3) fglfﬂ ;,(pfzrif’f"z 3 . (C.19)

HereVI(p,q) represents the function I given in Eqs. (B.6) - (B.16). To
perform the integrals'over p and q, we shall rewrite Eqs. (B.1l) and

(B.2) as the following forms.

- - < 2 2 7
I'? rz) [ Dy A'I,’ J S

(C.20)
-I . } 3/.‘*’[ 1 ! -
J(;l’)— - Udz 23.,,“4: +82*QP2 ][fz"’a-&)f)/?ﬂu,aa)] (C.21)
7
- — [
LF (4) = -~ ZNJ?NPZ' g -+ wf‘t (C.22)
a a/?
e 2 =4
Idp“'“ 7;-/‘)/2 [/z*m*)/e‘wf) lz‘mﬁJJJ (c.23)
A _ o 242
'Idpu,z ) = 7,-[ ds / /= F2ia } [¢ava iz () J7 (C.24)
~
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L? C1,32 =2 / (3~ 2= 4.») [/2'4-4')"/2"*@‘)/3’4-0 ) ]—' (C.25)

IJ«; 12, 1) = 2!' I%2 o —'AL ILsc i | (C.26)
LFIZ’ZI ‘—"' Iecnz) + -— ISt 1) - 2-4/2/°) (C.27)
! : (C.28)

Io‘f (3,10 5= 2T s,0) + LT%2,0) -2‘; Z9¢ni),
(C.29)

b
Z‘ 248 a2
j;a 10,27 = - 7 /,, (/ - {ngé./"')[/3""'42)/3*"4{("//2‘»*41 /]

where
o = VPRt aund

wp= 12emG

Using Eqs. (C.3) - (C.12) and.(C.20) and (C.29), the TBE currents are

transformaed into configuration space representation. For example, we

have
Tetme L1 = —j—,zi,,’%:—;g— Topcer fatpr) fa-gr) pre2 g @
- .él[i’; (W3] YpypstMa ¥/ + Yg,u (s ¥) p,,ru',ri]/ (C.30)
and
3';,',,“,4()): //;:_,,’;;—} z_?’(/,/) J:;lfr)j}f/))} fnfzzmt’
- .-,—,‘3/0;73 [:.,7;:;; Ton g 11 Yo Moz ”], (C.31)
| Where Muz = 22+ muF omd  Mge < E;:;? .
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Here the integral over z is performed numerically. The vertex functions

are easily taken into account by the similar way as in the OBE currents.

c.2. Configuration Space Representation of Exchange Current

We show only the operaotrs which contribute to the magnetic moment
of deuteron.
i) Notation

At first we shall summarize the symbols used hereafter.

. 7
g, o2 OCx=0 %z 7 r=nri-rz ., P.—:z(nf‘}ﬁ}/

[

Tx

‘_‘z —:f’_;/.'f':*a/ ’ 5:,’.{7*??,'&-2,)/
fr b r: 2

2?; = ;; (PP y = x é?

Jiz = CoPrionF) - 3 (0T

;—jzo = @@ o) F F - F (dred), (0.32)
with v e = r . x.

ii) OBE Current
a) Recoil Current

Non-static correction of recoil current due to convection current

is given in pion exchange as

- € 2 .
/uﬂ T Far :g_} 2(2’-2’9[ L € 572 f; tr) + ono* fa er)
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+ € o Cap )+ attonF)) xﬁfm tv)_]

(C.33)
where
Frerr= oGt v, | JCED
fz tr) = ';f‘ T,z tommp)— _}_:: f;,_; twn 1), (Cc.35)
S r) = 5 Vo2 twwv), o : (C.36)

and the rho-exchange current is
— J
2

2 2.3
/u? - _.#f-;[—-};’{lf“f)] (?{?Z/[L ( -S;z j‘rl\’) "'0'{02%2 l)’))

+ (G 5P +o? 06" 7)) x 5‘;5,@]-;%}%4??&@

(€.37)
where
jc: ‘f” f)f ¥,z tmey) | (C.38)
fz tvi= ;[) ?;,2- 1»:9)0-3—’{- ?3—,3 /val";l‘ Y5 twpr), (C.39)
Fm tv)= —y—f— Lz, Umpy), (C.40)
fr cvr-= ;‘- i,y Impv) (Cc.41)
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The omega-exchange current is obtained by the following replacement

in Eq. (C.37)

jf‘”’ju LUp= K>, Mp = M amd TAZ T (C.42)

b) Dissociation Current

The OBE current due to dissociation of rho-meson into pion is given as,

Fpr,;_ _pﬁpjy_ -clz-:[—’.g; fotrs ¢+ 77:’”,5; Irf]/ (C.43)

2M Mp /Wf Fepiz )
where

%I lv) = Yo,g lwny) —_ Yo,z (“'f”} , (0.44)

Sz v ) = = [ Yoz twnvs = Yo Op 1], (c.45)

¢) Pair Current

Pion-pair current is written as
L
,Uvr- 4,,: [ =2+ .] 7iz¢ [(I'ﬂ"s) [ —Lcrw Yoe ¢2n) ~ 7.7 1i) ,7,,;]

23 . /
o+ £ [2—" o’.o? ):,,)/xn) -3 ,Da Yz,a/Xr/J

+ [(.2_‘;?' - ;—I-C us) [ o7 cory /+a“fa-’~ﬁ‘)_7x3‘

14
TF (cm26+0) [0V ¢or@)+0 o’ F)I x P ] Yo txa)

Ly e 2 4
+ 5 (b—=c=V[ a1ts2.7) +a’(a'~?')-7)"" a’pr’z/’("{/ . (C.46)
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The rho-pair current is written as

- e 2 s . .
/“P=—J,,f§ v [~/ );p/X,q’i“(lﬁ?}/fo-—Z}mj){,/yyj. (C.47)

The omega-pair current is obtained from Eq. (C.47) by the replacement
of Eq. (C.42).
iii) TBE Current

We shall define J and J from Eq. (C.19) as

To,00 = To.o, 32 177 (C.48)
\7;//’ S Teol, e/ ‘ (C-49)

The TBE currents are given by using the configuration representation
of radial functions J and J. In what follows, we shall drop the suffix
in energy denominator functions due to different intermediate states
in Eqs. (B.6) - (B.16). The uppef (Lower) part of the following
equations show the contributions of uncrossed (crossed) diagrams. In
the expressions in sub-section iii.l. a)- ¢) and iii.2. a) - c), only
the expressions for the two-pion—-exchange currents are shown. For the
(fsm) and (#,f) exchange currents » function J should be replaced as .

follows. JOO should be replaced as
4 Too for (P,7 ) exchanges
and

4Toy for (fﬂp) exchanges.
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JO2 + JZO should be replaced as

4-702 - 2&0 for

and

=202 - 2Tz, for

J22 should be replaced as

- 2 722 for

and

Tz 2

for

(Psm)

(Pf)

(Ps11)

AP

exchanges,

exchanges.

exchanges .

exchanges.

iii.1. TBE Current due to Intrinsic Magnetic Moment of Nucleon and

Isobar

a) N-N Intermediate State

/f=r (3 s2vize) usf*fonfs + ?If’fz Vi

with

b F L0 )m o (7))

fa = 2 [(5)owens + (¥ )5]
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b) N-AIntermediate State

Operators corresponding to the diagrams in Fig. 11-b are written as,

-

A= (;r T‘?*):f’“"’[ Fs [o+ &~ +#§h,ﬁ ¥
+ P [ov £2 + Tt g2 J]’ (c.53)
with
dom [ () e e (22 )2 ] (c.54)
s }_?'—['(j//:;, +Te) + [ ;“/Jz:_z | (c.55)
P Y Y, @50
jz = ;4 | /_i)/z,+Ja;/+/_2’f/yzzl (C.57)

Operators corresponding to diagrams in Fig. 1ll-c are written as
i) s [ fe T ] ©c.58)

with

frog (7)o /——::‘/j‘j] (C.59)
. ‘ . 7/

fo e g [ (25) 7 . [,% /71,]' - (C-60)
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c) / - A Intermediate State

/7“‘:‘ (éF 7472)7’“//13 L ofr + fi”fzz]

T gt T ) | .60
with
5 mr [ () e * /_’;‘;"/Ju_z (€.62)
fa gt [ (2 )(Frgn) v (£ )72] (C.63)
| (C.64)

e g [ (32) 70+ (50) 3]

4

- _ €.65
:‘z—‘;;;"[ (2 )tzerdeet v (7 Jze] (.69

d) /0—71' Exchange Current due to Seagull Interaction

Operators corresponding to diagrams in Fig. ll-e are written as
N 2 ers -
Fle t6fpseiet [Ro - "] 5 (C.66)

and the operators corresponding to diagrams in Fig. 11-f are written as,

4

P d ol peEppl v e [FaTi 15 (c.67

iii.2. TBE Current due to Convection Current

a) N- N Intermediate State
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I

r

= 25'7 5»#(3—21122&26*. -2 7T J.[—ZLJ"JJ' (C'§8)

Here, only uncrossed diagrams contribute to magnetic moment of deuteron.

b) N-4 Intermediate State

P S ) sy [28-370] [w- [ ] T3]
"177774; Y3t iz L [ fz t 02 fg * Sz fm.] (C.69) -
with fr = _2_;, (52 +253), | | (C.70)
fo = x5 (TX-TD | (C.71)
far = 2 (T T 2558, (C.72)
T = [AL prrtdumjuert L[ 28 ¢ T2 ] (C.73)
58, - fﬁfﬁl lp"j“;fq lpr)&’liﬂ-l',f: . (C.74)

c¢) A-AIntermediate State

- s 171
745 _2_2% (_Hf{_)_fAA({_z'!njEZG;-}Z'z J[—243{°_)J“]
""%‘e 7tz f[‘f: * g o0 tfm 52 ] o
M 2 (C.75)
with
2
Fresi (JFoo +2F2), (C.76)
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L :
fo = 7 757 (Joo —e2), (c.77)

Jlm = = ——t (Toz *Tw f‘2.73¢/

= 57 (C.78)

d) ID -T Exchange'_v Current due to Seagull Interaction

Operator corresponding to diagrams in Fig., ll-e is written as

Py [ - p—
VRN L 4 [—;“au 27, 1T, (€.79)

and the operator corresponding to diagrams in Fig. 11-d is written as
< _;J_’_ - —
Fd'?ji-f Ties /2.; r"‘f?;:&l)jll
_ e S

£ —
g e Te L [}5‘?’%*-25‘,2]7” . (c.80)

iii.3. Dissociation Current

Here, the radial functions of exchange currents are defined as

A V4 4 c.81
‘7;.0' = i [ 77 ‘JJ,Z’?J (c.8D)

For example, the radial function of N-N intermediate state le}tw’ is

given as

¥, NNVT - I fF,”"’ _ O L NN
f.ﬂ.ﬂ’ Mo~ 2 L J,;_,, ~7,,'f ], (c.82)

with
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B, v ((apdl 4.4 AZr) -I"(.?)J. C.83
Tow ‘f/;.?*i_"f 3¢ Jacerr dottr [~ Zpp (C.83)

In what follows we shall show the f7 =1 eichange currents. The

)Dﬂ— f exchange currents are obtained by the replacement in thef7-71 exchange

currents as follows. JOO should be replaced as

2 Joo for fr- fexchange currents ..

JOZ + J20 shouvld be replaced as

2Tpy = Jze for fr-p exchange currents

Joo should be replaced as

- Jzz for /¥ —p exchange currents.

a) N-N Intermediate State

SNV _ ~ e) [MWN D —:‘ ~3
et t37 2200 fpny bpm2(5020t 20 00 (B =Py ) (C.84)

where

Fax = F BISIE) LTAT ST, (€.85)
- 7] '—‘ f, rl f‘FrIT

Fax -3 W[l - /IR A A 4 ] (c.86)

?CIY =,' _é. v, [2JF'”Y+4 M’ 347;:( [ Pﬂl’T fna-,_ jzf:mY], (C.8%)
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with X=nNN1 amd Y =NN2.

b) N-AIntermediate State

-3 4

£ Na - =
-t s :F"’ (3:2’.2‘) (T d’,}lr —‘23?’),)

!

where 4= Na1 awd Y= NA2 |
¢) A-UIntermediate State
._lA‘

& a - -
F i g T (6477 (- P k)

with X = &KX,
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} ﬂ = -— -
g ler T 72/ fon e daon "'}?f;:', (322729 (2 0y 7 52 ,v)

(c.88)
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Appendix D. ‘Matrix Elements of Magnetic Moment Operators

We summarize the matrix elements of magnetic moment operators
by using the deuteron wave function in Eq. (8.3). At first we shall
explain the notation to ekpress the matrix elements in the following.
The~contribuﬁions of the magnetic moment of deuteron are divided into

S-—S». S-D and D-D mgtrlx elements as ( nss), <MSI} s <MDD>’ respectively: .

<Hss > - 'éu () Hss r2dr
(=4

<H5‘p>=j“{—5%/ Hsp yd v,

<Hpp >= [T (87 )4 r2ay, (0.1)

We denote the derivative operator on the radial wave functions of S— and

D-waves as

4 |
Prs S A (D.2)

and we also define

o =
4rp Are T ¥ (D.3)

Here, following equations are useful to calculate the magnetic moment
due to two-body operators. From the magnetic moment operator as the

following form,

P =0 g e T fer (3 + 002, ~ a2 g ), (D.4)
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we obtained the contributions to the magnetic moment of deuteron as,

Mss= 24, A | (D.5)
Hep= 2/3 /;;!fz’ * 720, '(D.é)
HDP = - f'] f.}gg[z *+ 32 (yl *‘72/_2;_? . (D.7)

In what follows, we shall show the contributions of relativistic
ection - - A4 one- ~exchange current
correction of one-~body-current (/l{'el.cor.)’ boson~exchange ¢ n
and two-boson~-exchange current to the netic moment
(/UOBE) so change curr (/»{TBE) o t‘ magnetic mo
of deuteron.

D.1. Relativistic Correction of One-Body-Current

: - = 1 ' =2
ﬂS’S = 2M [—Kﬂ‘] [(3+4)+“:] P) (D.8)
HMep= 2 24-12 &2 £ 4 —2 |
5 mme LAy S ®.9
pr: _}:—:— 24’;‘, [—2K; + (—.3 fza)] Flz (D.lO)
where
Py ~ O a4 12
Pidss = f (2£)ar (D.11)
32 o ALO 2 £ )
CPDoos [ (FErrrerJar, (D.12)
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D.2. One-Boson-Exchange Current
i) Recoil Current

a) Pion-Exchange Current

Hss= °

Hep = - v [522 j[er 5fg +fx ]
Hop = - ¢Pﬂd 2M ] [ 3fs -2 fz;]

b) Rho-Exchange Current

3 2 £
Hep = - ;?g'[gf?/rﬂﬁi] YED> Fm *fi;z

HDD' - iﬁ: [2” I#K,o)f[-i’fr "2f.r]+ ff’:ﬁz

¢) Omega-Exchange Current

Hs~5 = o/

o « 550 [ crnel 2 B 52,

Hoo = ox [ L5 tre)]* [ 2 £ —ope ]I A
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(b.14)

(D.15)

(D.16)

(D.17)

(D.13)

(D.19)

(D.20)

(D.21)



ii) Dissociation Current

Hss = .2f1 [ mf{ﬁ':;:?’:i:j J[z f-!']

Hg‘p =—[_M}[z{"fz]

mp /l"/ '~y ]
ﬁpp:;,s' [ i——-———fra' 3”3' ]["’:F.t +2;'f.z].

= mp 7 —wtz )

iii) Pair Current
a) Pion-Exchange Current

Here, we define ﬁ;{ as
< 2 v 12 &
He = [2;1]["27,‘(2»1)]/1* .
The matrix element of local current is

2
Hs'.s‘ = }—(/1‘-1\’3) Yo, 2

~ 26
Hsp = =5 C1tKs) Y22

~

4
ﬂDP =3 Cr+Ks ) [ Yo,z "2rz/z~]

The matrix element of non-local current is

~
Msp = = [—us trres + —ig-l- 15 Y

b-¢c -~/

[P""]Tz,z - V2 Ta..
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© (D.23)

(D.24)

(D.25)

(D.26)

(D.27)

(D.28)

(D.29)



oy - ! \, :
ﬁDP = 3 Yo,i’ + /2'? (D.30)

b) Rho-Exchange Current
Hss —1;75‘ [;‘—9,?2][44 crtrp) v Y ] (p.31)
Hsp = 55 [ ][ = ik )Y i ] (D.32)
Hsp = 2—5-[22,’}2][ 9 Yoo = RLrrip) ¥ Vit ], 3 (D.33)
c) Omega-Exchange Current
Hss= 35 [72m 2] [- « o> ¥Yur ] (D.34)
H""’,z /2ﬂ ][2 V3 Crthe) er] (D.35)
Hop =3f7 72 ][ =7 Yoo T2L1+He) rY.,:] (D.36)

D.3. _Two—Boson—Exchange Current

Here, we'shali show the contribution of two-pion—exchange current
due to the nucleon-type currents and dissociation current, except the
currents due to the fﬂ seagull-type interaction. The rho-exchange is
taken into account by performing the replacement which is shown in
Appendix C.2. iii).
i) TBE Current due to Intrinsic Magnetic Moment of Nucleon and Isobar

a) N-N Intermediate State

- 130 ~



Hss =,7,- j(" [ [/‘ / Tee + [ ]3;2]
ER ‘ 7’ - (D.37)

' 0 -2
Mgep = s:f”"ﬁ[[ ](33:"‘«3';-) + [ ]Tzz]
./‘ 3 3 ) (D.38)
MHop = ,‘S’j‘N” [ ]Jop [—/(joz?Ju) *[W‘/Jz:]
(D.39)

b) N-A Intermediate State

Here, only the crossed diagrams contribute to the magnetic moment

of deuteron. Contributions due to diagrams-in Fig. 11-b are

Hs': f [ — Hs [« .72,,+/0.J'u] + /J‘- J‘zz] (D.40)
I\7$p f ;r-[ fl‘. []oz *Jm T2z [- ?/"6‘ [J;:*Jéﬂ'“]:; J] (D°41)
Fop = ¢ [ 52-Hs [2Teot Jor# Tt 0] 516 [1,,41‘,,*?:,,}]. (D.42)
Contribﬁtions due to diagrams in Fig. Vll-;: are
Hees e f'(-52 ) [ Tor+ £Tn ], (D.43)
H s fN9 (LB (D.44)
sppsAf ( )[J'ufJ:. 4,7,,]/
Moo = pe % [ L5] [ -7 +50 41 -9T=] (D.45)
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c) A—A Intermediate State

Hs:-z;;' Sf“[[_m]:ﬂu + [ ]J}z]
= e[ [ ]J;, - [5 ]122] (D.46)
Hsp =32—‘§- ’f“ [ [-';/(:E,r.fz,) + [:/Jéa]

22y poe[ [V ] Barsd + [ 7] 7] ®.47)

355 5“[ T ]-7”; (_‘, ](Jaz'hTz.) + [,5:_/33:]
v 2 pifeel [Zr] 7. [:e](:rmJ;_.)f['_"’f]Jzz] (0.48)

Hpp =

/—7[ Exchange Current due to Seagull Interaction

Contributions due to diagrams in Fig. 1l-e are

Mss = = 84 F¥ psTa, (D.49)
Hsp = 22 )’Tf”‘/ls Ju) (D.50)
Myp = 62 e, , (D.51)

contributions due to diagrams in Fig. 11-f are

Moo= =5 17 Cps - £ 1213, (p.52)
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Msp= —/7-4 [E 2 pemEpE )T, (D.53)

, (D.54)
22 ra a
Moo = 7 (/ﬂ;—fg:fkn):n"
ii) TBE Current due to Convection Current
Here, only the uncrossed diagrams in N-N intermediate state and
crossed diagrams in N-/ intermediate state have the contribution in
deuteron magnetic moment.

' a) N-N Intermediate State

MSS - E% {f’" (—~¢ J:z)/ ' (D.SS)
(D.56)
Hsp = S f¥Y (3VF Taa),

e (D.57)

pr = Y] f KJZZ.

'b) N-A Intermediate State
The contributions due to diagrams in Fig., 11-b are

= va «

HS‘J‘ = 2Ma f ["‘:?—-jn.]/ (D.58)

}15.0 = 5_67: nyd [:;2"3 2.3 + 4 Zr(j;J’:]'Zo"ZJZZJ] (D.59)

Hpp = -y fﬂd [3 Jzz -",% '7'2‘(2‘];,9 t+T oz T2 7‘&7:;17_ (D.60)

The contributions due to diagrams in Fig. ll-c are
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Mss= 55 £7% (£ ),

Hsp = 3,% £ /"2_;’2—.72:)/

e
ﬂn-_-_.__zﬂ iz /""g—.fzz)‘
¢) A-A Intermediate State

»
Mo = 2 £2° [75 [
$3=2)14 > '22)

(23 o .
Hsp = —= ga4 si_:f Tos + =4 Toz #+T2et+2 T3,
= Tt VAT N A
-3 (J;) *J30f2$2)
’ yd

?‘T” —J;z -72s t 7Jz¢

2 A 18The +3(Jo37 )]0 ) 45T
_ e 4 27 L
ﬁyb_zﬁafq [ [o Jes Sl H ]]

d) f’—ﬁ Exchange Current due to Seagull Interaction

The contributions due to diagrams in Fig. ll-e are
HSS = 3—2‘ f” o°3-n,
pr =_-2—:-‘ Y -4 VF) Tu,

HDP"’_Z/%'.'F“ (— &2 Tu,

The contributions due to diagrams in Fig. 11-f are
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(D.66)

(D.67)
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Hss = —“' fd /"’ /J" , (D.70)

— V= o ;‘2 <4 (0.71)
Hso = 552 f [f *571‘]'7",
o g T pa (D.72)
M"”"zHa{ [7 —"371]:7”' .
iii) Dissociation Current
Py -

We shall define the matrix element of operators &, dax and K:x

as the' following.-

X:j = ;4 CIL"T .2 35777 ), (D.73)
¥ <= I I - T, | (0.74)
i (35" % .,’” T T ), (0.75)
d’sﬁ -7 SV A 2/:"'fx)) (D.76)
5 —f,rﬁ (Tl T 2370 | (D.77)
AR S SRV . L0) ®.78)
Go = F 2T, ®-79)
& :,px ® ?" / JaP:r’X z,:hx"' Jézhﬁx) (D-80)
ch,Px - % /- J—P’hx . f"d'/x+ !:rhx _ J—r-ur,x ) (.81)
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In what follows we shall drop the suffix SS, SD and DD,

a) N-N Intermeidate State

H= J[fgv”a' & ama [—Z] ";;I:"' (XB’"";JE'W:)[‘&].

b) N-A Intermediate State

e L& yua e
” 3 ff'" IA,M1 v 3—;;:0' (2 d’Bzma + &’N4a),

g .f Na .
S Ipns V(XB/MJ ~2dc,pa3) .

c) A - Alntermediate State

R .
” - -—Z—; 3;;,40 (rs,dd -J‘CIAA).
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Table 3. Contribution of Relativistic Correction to Magnetic Moment -

of Deuteron

S-S5 S -D D -D StM
H.C. -0.0110 -0.0002 -0.0014 . -0.0127
5.C. -0.0064 -0.0000 -0.0012 -0.0077

Table 4. Contribution of OBE and TBE Magnetic Moment Operators
Here we have used wave function from H.C. potential and the
following parameters: fiNA/4n = 0.23, a =0 and ¢ = -1.

" 4.1. Contribution of Exchange Current for Different k

K 3.7 5.15 6.6

R
OBE 0.0164 0.0172 0.0180
TBE 10.0062 0.0044  0.0025
SUM 0.0226 0.0216  0.0205

4.2, Contribution of Exchange Current for Different Choice of Vertex
Function.
A and B correspond to the choice of vertex functions of Eqs.(13.13)

and (13.12), respectively.

-

A B
OBE 0.0164 0.0195
TBE 0.0062 0.0033

SUM 0.0226 0.0228




Table 5. Contribution of OBE Current to Magnetic Moment of Deuteron
The upper -(lower) values.show the contribution of OBE current

\ using H. C. (S.. C. ) wave function. We have used Kp = 3,7 and vertex

functions of Eqs. (13.11) and (13.13).

5.1, Contributions of Recoil, Pair and Dissociation Currents to HoRE®
In the recoil and pair currents, individual con;ributions of my, p

and w exchanges and their summed contributions are shown.

T p w SUM
Recoil -0.0008 -0.0001 -0.0001 ~-0.0009
-0.0011 -0.0000  -0.0001 -0.0012
Pair - - 0.0108 0.0030 -0.0018 0.0120
0.0095 0.0033 -0.0020 0.0109
Digsociation 0.0053
0.0049.
u ’ 0.0164
OBE
0.0146
5.2. uOBE due to S-S, S-D and D-D Matrix Elements
S -8 S-D ~ D-D
Recoil 0 0.0001 -0.0010
0 -0.0001 -0.0010
Pair 0.0031 0.0108 -0.0018
0.0029 0.0099 -0.0018
Dissociation -0.0005 0.0045 0.0013
-0.0008 0.0045 0.0013
SUM 0.0026 0.0154 -0.0016

0.0021 0.0142 -0.0016




5.3. Contribution of Pion-Pair Current to M

A and B show the choice ¢

OBE*®

Local ¥Non-Local stM
: 0.0033 0.0120

0.0087 (A)
0.0084 0.0035 0.0119
0.0021 0.0108

(B)
0.0012 " 0.0095

0 and - 1, respectively.

Table 6. Contribution of TBE Current to Magnetic Moment of Deuteron

. We denote the contributions of TBE currents in sect. 12.1. i),

ii) and iii) as Intrinsic, Orbital and Dissociation, respectively.

The upper (lower) values show the contributions of TBE currents using

H.C. (5.C.) wave function.

and the vertex functions of Eqs. (13.11) and (13.13).

We have adopted K

p

= 3.7, £

2
TNA

6.1, uTBE due to N-N, N-A , A-A, N and A Intermediate States

/4m= 0.23

N and A represent the contributions of diagrams in Fig. ll-e and

11-f, respectively.

N-N N-A . A-A N A suM
Intrinsic 0.0163  -0.0037  0.0033 -0.0015  0.0003 | 0.0148
0.0180 -0.0043  0.0040 =-0.0021  0.0005 0.0161
Orbital -~ -0.0068  0.0014 -0.0013  0.0004 -0.0001 | -0.0064
-0.0072  0.0015 .-0.0015  0.0006 -0.0001 | -0.0068
Dissociation -0.0038  0.0017 -0.0001 -0.0022
-0.0041  0.0019 -0.0001 -0.0023
SUM 0.0057 -0.0006  0.0019 -0.0011  0.0003 | 0.0062
0.0067 -0.0010  0.0023 -0.0015  0.0004 | 0.0070




6-2-

6.3.

6.4.

uTBE due to w-m, T-p and p-p Exchange Currents
T TP p~-p
"Intrinsic 0.0207 -0.0062 0.0003
0.0240 -0.0086 0.0007
Orbital -0.0085 0.0022 -0.0001
-0.0097 0.0032 -0.0003
Dissociation -0.0029 0.0007
-0.0032 0.0008
SUM 0.0094 -0.0033 0.0002
0.0112 -0.0046 0.0004
ﬁTBE due to S-S, S-D and D-D Matrix Elements.
S-S S-D D~-D
Intrinsic 0.0226 -0.0047 -0.0031
0.0236 -0.0046 -0.0030
Orbital -0.0110 0.0033 0.0014
-0.0113 0.0033 0.0013
Dissociation ~-0.0023 -0.0001 - 0.0002
-0.0026 0.0000 0.0002
SUM 0.0093 -0.0015 -0.0016
0.0097 -0.0012 -0.0015
Contribution of (w-w) Exchange Current to uTBE
Intrinsic Orbital Dissociation SUM
-0.0004 -0.0002 0.0003 -0.0003
-0.0004 -0.0002 0.0004 -0.0002
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