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Abstract: 

The meson-theoretical derivation of exchange current and the'effects 

of exchange current on the magnetic moment of deuteron are studied in 

part I and part 11, respectively. In part I, we investigate the methods 

to derive exchange current from meson theory in order to solve the 

recent confusions in the derivation of exchange current~ From the studies 

of non-static exchange current and nuclear potential, we clarify the 

reason why different methods give different static two-boson-exchange 

currents, while they give the same static two-boson-exchnage potentia~s. 

Next, non-uniqueness of the exchange current and nuclear potential is 

studied. We show that it is reduced to the arbitrariness' of unitary 

transformation within meson-vacuum space. 

In part 11, the effects of static two-boson-exchange current, non-­

static one-boson-exchange current and the relativistic correction on the 

magnetic moment of deuteron are studied, where the static one-boson­

exchange current does not contribute to it. The exchange currents are 

derived from the unitary transformation method by taking into account 

pion, rho and omega exchanges, and isobar intermediate state. We find 

the important contributions of two-boson-exchange current as well as 

those of one-boson-exchange current and relativistic correction, and 

the discrepancy between the experimental and impulse value of magnetic 

moment is well explained by these effects. 
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Section 1. Introduction 

A nucleus is an essemb1age of nucleons, isobars and mesons interacting 

with each other. It is, however, assumed that the nucleus consists of 

only nucleons interacting through nuclear force. This is justified as 

far as we are concerned with the nuclear properties below the threshold 

energy of pion production.· .In-other words, we can eliminate degrees of 

freedom of nuclear constituents except for nucleons from nuclear state 

vector. This elimination induces the nuclear force (or nuclear potential) 

in the Hamiltonian. At the same time the interaction of nucleons with 

the external electromagnetic field is modified, i. e., we have the so­

called exchange current{many-body current). 

The history of the exchange current is as long as the one of the 

nuclear force. (See. the papers by Futami et a1. 1) and by Chemtob2) for 

historical review of exchange current problem). The concept of exchange 

current was at first introduced by Siegert3) in 1937. He pointed out 

that if the nuclear force involves the exchange force of Majorana type, 

the exchange current should exist so that the current conservation law 

can be preserved. Generally, the exchange current can be divided into 

two parts. The first part is described in terms of nuclear force. 4) 

This is known as the Siegert theorem, which was first applied to the 

sum rule of the electric dipole transition by Levinger and BetheS) and 

also to the orbital part the magnetic moment (the Sachs moment6». 
The second part, however, depends on the detail of the strong interaction, 

which cannot be expressed by the nuclear force alone, and it gives rise 

to effects on the intrinsic magnetic moment. of nucleons. 

Similar obsevation can be done for the weak interaction process in 

nuclei. For example, the Gamow-Te11er coupling constant in the beta' 
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decay of the free netron is modified in the nucleus. 

In the early time, the exchange current was studied only in the 

few-body systems, butnot.!.in;:the' many':"body systems, because the nuclear 

theory at that time was too naive to discuss the effects of exchange> -: 

current by comparing the calculated results and the experimental data. 

Recently owing to the progress on the nuclear theory, it becomes 

possible to study the effects of exchange current quantitatively. Also 

the exchange current operators can be obtained rather reliably owing to 

the development of the high-energy physics. For example, the magnetic 

moment and Gamow-Te11er matrix element have been studied by taking into 

account the effects of core"'po1arization and exchange current. 7 ,8) 

One of the clear evidences of the exchange current is seen in the 

radiative capture of thermal neutron in hydrogen. The experimental 

value of the total cross section for the magnetic dipole transition 

is about 10% larger than the calculated value by the use of the so-called 

realistic two-nucleon wave function in the impulse approximation. This 

anomaly is nicely explained by the one-pion-exchange current. 9) Another 

1 . h . . f d 10 15) examp e 1S t e stat1c magnet1c moment 0 euteron. In the impulse 

approxiaation, the magnetic moment is ~xpressed .. in _ terms';of the iso-· 

scalar~part of the-nuc1~on.Iilagne.t:i:c -moment and also the probability of 

the d-wave component in the deuteron. The realistic deuteron wave 

functions predict the magnetic moment about 1.4% smaller than the 

experimental data. Although this anomaly seems very small when compared 

with the formar example, it is very difficult to explain the anomaly 

theoretically. The main reason is that the static one-boson-exchange 

(OBE) current does not contribute to the magnetic moment of deuteron. 

Therefore, as the effects of exchange current on the isosca1ar part of 
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magnetic moment, we must study higher order processes such as non-static 

correction and:' two-boson-exchanges (TBE). Similar example is the· 

14 16 18) nuclear charge density operators. ' From the above example it 

is clear that study of two-boson-exchange processes is unavoidable if 

we want to understand the magnetic moment of isoscalar type or nuclear 

charge distribution in detail. There appeared some works in this 

di' ti 14,16 - 18) U f 1 h f i i rec on. n ortunate y, t ere are some con us ons n 

defining the exchange current. In particular different approaches give 

different results for the two-boson-exchange currents, while they give 

the same results for the nuclear forces. To solve this discrepancy in 

the derivation of TBE current we must reinvestigate how to derive the 

exchange current in the meson theory. This is very important in the 

exchange current problem in itself, and also in the meson-nucleus physics 

as the first step beyond the phenomenology. 

In part I, we shall study how to define and how to derive exchange 

current and nuclear potential in the ~eson theory. At first we shall 

briefly review methods to obtain exchange current. There are generally 

two approaches to define nuclear potential and exchange current. In the 

first approach, we divide the Hibert space for the state vector into . 

the boson-vacuum space and boson-existing space and eliminate boson-

existing space using the projection operators onto these sub-spaces. 

Then exchange current and nuclear potential are defined as the effective 

operators in the boson-vacuum space. Fukuda, Sawada and Taketani (FST);9) 

and independently Okubo 20) proposed a method to eliminate boson-existing 

space by the unitary transformation which retain the orthogonality 

ans normalization conditions for the state-vector. Nishijima2l) took 

the canonical transformation for this purpose. In what follows, we 

. ,' .. 
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we shall call this method as unitary transformation method, which will-_ 

be reviewed in detail in sect. 2. We shal give the perturbative solution 

of effective operator following Hyuga and Ohtsubo;7) and derive nuclear 

potential and exchange current up to the TBE processes. 

The next approach is to derive exchange current and nuclear potential 

from the S-matrix element calculated from the meson theory. In the 

potential theory, the interaction:must be instantaneous 'arid hermitian, 

while two nucleons interact with exchanged boson; at different. t·imes in 

the field theory. Nevertheless, the instantaneous potential must be 

derivea sO::.as to reproduce the same' S:-matrix· element -as "in the -field 

theory. From this point of view, Nambu22 ) proposed a method to derive 

nuclear potential by the study of time development of system. Following 

Nambu's method Taketani et al. 23) derived static two-:-pion':'exchange 

potential. Miyazawa24) proposed an alternative method to derive static 

nuclear potential from the static S-matrix element. The static TBE 

potential is derived from the static fourth order S-matrix element by 

subtracting iterated term of static OBE potential. This method has an 

advantage that we can derive potential from the experimental boson-

nucleon scattering amplitude and is very simple, because we need not to 

calculate lots of time ordered diagrams in .the unitary transformation 

method. We shall call this method as the S-matrix method. In sect. 3, 

we shall review the S-matrix method of Miyazawa and apply it to the '. 

derivations of nuclear potential and exchange current. 

One of the problems in these methods is that the unitary 

transformation methodl7) and S-matrix method15) give the different TBE 

currents from each other, while they ~re"known to give the same static 

TBE potentials. Hare, it is noticed that in the unitary transformation 
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method Nishijima obtained the same TBE potenti~l as Taketani et al~. 

The relation between the unitary transformation and S-matrix method 

have not been clearly discussed yet. The reason, why these two methods 

give the same static TBE potential but the different TBE current, is 

not clear. The key point to solve this problem is to understand the 

meaning of the static limit. It is not so obvious that the static 

nuclear potential and exchange current are related directly to the 

static S-matrix element. In sect. 4, we shall solve the discrepancy 

of the static TBE current by calculating the non-static exchange current 

and pot ntial in the unitary transformation method. As a result we 

shall find that the recoil effects of nucleons will play the essential 

role. 

The another problem is non-uniqueness of the nuclear potential and 

exchange current. In sect~ 5, we shall see that due to the different 

choice of the time-base in Nambu's method, in other words, due to the 

different forms of canonical transformation we obtain the different non­

static OBE potentials. We shall show that the non-uniquenesses of the 

effective operators are due to the arbitrarinesses of unitary transfor­

mation which do not couple the boson-existing and boson-vacuum spaces. 

We shall show the consistency of our treatment of exchange current and 

nuclear potential by stvdying the conservation law of the electromagnetic 

current in sect. 6. The results in part I are summarized in sect. 7. 

In part II, we shall study the magnetic moment of deuteron. In the 

isoscalar magnetic moment, the correction to the impulse value is 

expected to be small, since the static OBE current, which is the main 

contribution in the isovector magnetic moment, does not contribute to 

it. Therefore, we expect that the important correction to magnetic 
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moment come from the non-static OBE current and static TBE current~ 

From this point of view it is very interesting to study the magnetic 

moment of deuteron. 

The magnetic moment of deuteron has been studied by taking into 

account exchange current contributionslO- l5) and negative' energy co~­

ponent25) of the deuteron wave function, or nucleon resonance config­

uration2?) However, we shall notice that there still remain problems 

in the previous works especially in the treatment of exchange current. 

W· hi h 1 1 h· 27) 1t n t e conventiona nuc ear p yS1CS, two-body magnetic 

moment operators have been studied by retaining velocity-dependent part 

of phenomenological nuclear potential. It is, however, dangerous 

unless a minimal substitution of electromagnetic field is performed at 

the fundamental level. Horikawa et al~3) studied the pair current in 

one-boson-exchange model, which reproduce the experimental data on the 

two-nucleon system. They also studied the dissociation currentC(rr(), 

which was at first studied by Adler and Drelll2). Gari and Hyugal4) 

studied electromagnetic form factor for the deuteron by taking into 

account the pion, rho and omega-exchange pair current, and dissociation 

current derived by the unitary transformation method. They obtained 

desired value as correction to the magnetic moment of deuteron in the 

impulse approximation. 

In these" studies of exchange current in OBE model, relativistic 

correction to one-body-operator" has not been taken into account. This 

relativistic correction is the same order of magnitude as the OBE 

current contribution, and is subtractive. Then it becomes necessary 

to study the other effects such as TBE current. The two-pian-exchange 

magnetic moment operators were studied by Sato and ItabashilO) in the 
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unitary transformation method, and Hatano and Kaneno11) in the canonical 

transformation method. Although the model which they adopted for the 

strong interaction is by no means realistic, the definition of exchange 

current is valid. 

Recently Jaus15) have studied OBE and TBE current and relativistic 

correction, where the TBE current is derived by the S-matrix method. 

This is the only work that took into account the exchange current 

contribution up to TBE processes and also relativistic correction. It 

is noticed that he obtained the incorrect TBE current by adopting the 

S-matrix method. 

Now it is necessary to calculate the magnetic moment of deuteron 

by the consistent derivation of exchange current. We shall derive 

relativistic correction to the one-body-current, and OBE and TBE current 

by the unitary transformation method. In the pion pair current, there 

are additional momentum-dependent currents which are neglected in the 

work of Gari and Hyuga. Although these current depend on the arbitrari­

ness in the unitary transformation, there is no reason to neglect them. 

We shall calculate contributions of these currents. Further, we also 

calculate the non-static part of OBE current due to nucleon recoil, which 

have not been studied yet. We take into account pion, rho- and omega­

exchanges. In the TBE current static limit is adopted, and nucleon and 

isobar ~1236) intermediate states are included. 

In sect. 8, we obtain the magnetic moment of deuteron in the' impulse 

approximation with the Reid wave function. In order to calculate the 

exchange current operator, we shall specify the interaction Hamiltonian 

in sect. 9. The explicit forms of relativistic correction and exchange 

current operators are given in sect. 11 and 12, respectively. Our 
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results and discussions will be given in sect. 14. 
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Part I. Consistent Definition of Nuclear Potential and Exchange Current 

Section 2. Method of Unitary Transformation 

We shall review in detail how to eliminate the mesonic degrees of 

freedom from the nuclear state-vector and to define the nuclear potential 

19) " 20) ,-, 
and effective operator, following the works by FST .• aridOkubo. ) 

2.1. Elimination of Mesonic Degrees of Freedom 

We shall start with the eigenva1ue problem for the system with bosons 

and nucleons: 

,~~- .:(2.1) 

with 

H == (2.2) 

where HO is the free Hamiltonian of bosons and nucleons, and HI is the 

interaction Hamiltonian among these particles. E is an eigenva1ue of 

the total Hamiltonian H, and ± is the corresponding eigen-state vector 

of the system. 

To rewrite Eq. (2.1) by eliminating the mesonic degrees of freedom, 

we introduce projection operators 'l arid 1\. The operator ~ projects any 

state 1: onto the subspace with only nucleons, L, and the operator /\ , 

onto the boson-existing subspace, ~ i. e. , 

(2.3) 
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,.,-I-t=1. (2.4) 

From Eq. (2.1), we obtain the coupled equations for the state-vectors 

..£~ and,l,. as 

( lE - 1 Ht) ~D = (2.5a) 

and 

(2.5b) 

From Eq. (2.5b), we can formally express the boson-existing state-vector 

~Jf , by the boson-vacuum state-vector £, 

1 

I - --L-.I\ HI 
E-II~ 

(2.6) 

and we obtain the Schrodinger-like equation for the state-vector~, as 

where 

Z Hr 
I 

1- ~Hr 
£'-/"1. 

7 ;eD 

1 HJ: J (E) '2 ilo / 

1 

7· JIE) = 
1_ A Hr. 

;;-Ho 

The true state-vector~ is expressed in terms of ~ as 

- 10 -
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(2.9) 

The right-hand side of Eq. (2.7) is called the Tamm-Dancoff potential, 

which is energy dependent. Thus we cannot identify it as the nuclear 

potential, since the energy-dependent potential does not gurantee the 

orthogona1ity of the state vectors. 

(2.10) 

However, we can eliminate the energy dependence of the operator J(E) as 

follows, 

::: (2.11) 

which shows that the .operator J should satisfy the equation as, 

(2.12) 

This equation does not involve the total energy E explicitly so that we 

can obtain the energy-independent operator J, if there exists a solution 

of the above equation. In fact, as a limit of vanishing interaction, we 

have a solution with J = 1. Owing to the no'n1inearity of this equation, 

we can obtain the operator J in a perturbative way, which will be shown 

in section 2.2. 
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From the above argument, we can define the Tamm-Dancoff potential 

in the energy-independent way. Nevertheless, the state-vector ]f. cannot 

he regarded as the state-vector in the potential theory; because the norm 

of the state-vector ~ is not unity. If we introduce the normalized 

state-vector ;r.. in the boson-vacuum space 

(2.13) 

which is related with the true state-vector t as 

(2.14) 

with 

L1 ':: c.7 ('l.:r'f" J "Z ) - Vi (2.15) 
/ 

then we can see that ~. satisfies conditions of the normalization and 

orthogonalityof the state-vectors: 

(2.16) 

It is noticed here that U is the unitary transformation which transform 

~: into ~,:. The state-vector ;:ti is just what we can regard as the 

nuclear state-vector in the potential theory. The probability P that 
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we find the system in the boson-vacuum space is given by 

:e = 

(2.17) 

The operator (1JtJZ)- 1 is sometimes called the probability operator. 

From Eq. (2.14), we obtain the equation 

u.., 11 L1 J' (2.18) 

from which the nuclear potential is defined as 

(2.19) 

From the above argument, the Tamm-Dancoff potential is different from 

our potential obtained here. The nuclear interaction with external field, 

such as electromagnetic current or weak current, is also modified due to 

the existence of mesons in nuclei. The current operator ty is modified 

in the nucleus as t'~, and they satisfiy the following equality 

(2.20) 

from which we can express ~I as, 

(2.21) 

If we regard the operator t? as the Hamiltonian, Eq. (2.21) define the 
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nuclear potential. Equations (2.20) and (2.21) are the basic equations 

for the nuclear potential and exchange current to be obtained in the 

meson theory. These equations were originaly"derived by FST19) and 

20) 
independently Okubo. 

2.2. Perturbative Solution of Unitary Operator and Effective Operator 

We shall find a solution of Eq. (2.12) in the perturbation following 

Hyuga and Ohtsubo:7) We assume the Hamiltonian to be 

H :: (2.22) 

where HO is the free Hamiltonian, HI is the interaction ~amiltonian and 

~ is a parameter, whose value should be set unity after the calculation. 

For simplicity we assume the interaction Hamiltonian of boson and nucleon 

to be of the Yukawa type (See Fig. 1). 

-~ _ .... 

Fig. 1 Strong interaction vertex of the boson and nucleon. Solid and 

dashed lines show the nucleon and boson, respectively. 

It is noticed that we have conditions as, 

(2.23) 
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To obtain the solution of J with the boundary condition, 

J- I (2.24) 

we introduce the operator F which is defined as 

(2.25) 

and expand it in the power series of the parameter~. 

(2.26) 

Inserting Eq. (2.26) together with Eqs. (2.22) and (2.23) into Eq. (2.12), 

and comparing term by term, we obtain the recursion relations. 

(2.27) 

with "'" = 0; -I; -!2 • '.. • 

Here eO is the free energy associated with 'It> (HO 7t> = eO 70)' For the 

later use, we show the resulting operator F up to the fourth order: 

(2" 28a) 

(2.28b) 

(2.2Sc) 

(2.28d) 
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with 

4. :: 
e.-H. 4:: • (2.29) 

The effective current operator, ~, defined in Eq. (2.21), is written 

in terms of F as 

(2.30) 

We assume the operator ~ is expressed as 

tJ ,,~ 
• (2.31) 

For the electromagnetic current, the term D(O) is the sum of nuc1eon­

and boson-currents, and ~(1) is the seagu11 current, as illustrated in 

Fig. 2. 

\. .... _-v-

Fig. 2. Electromagnetic currents of boson and nucleon. Solid and dashed 

line show nucleon and boson, respectively. Wavy line shows the 

electromagnetic field. 
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The operator £,(1) satisfies the condition 

(2.32) 

From Eqs. (2.26) - (2.32), the perturbative expansion of the effective 

operator can be easily obtained as, 

where 

with 

Oeff = 

0(11/ 

efl 

am 
ell 

otDJ 

eff 
lZ 0 (2,) 

+ /l eH 

{It ,8J = ALJ t"l$A • 
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After these calculations, 1. is put to unity. It is noticed that the :-

terms with the anti-commutator and ..!. p,,1-Fir' (;«)~ p" ,. po , 
4. 

in Eq. (2.33b) 

and (2.33c) originate in the probability operator of Eq. (2.17). These 

are called terms due to wave function renormalization. The nuclear 

potential is obtained from-Eq. (2.33), if we replace the operators t'(O) 

and D(l) by HO and HI' respectively. 

2.3. Nuclear Potential 

We shall obtain the nuclear potential up to the fourth order, i.e., 

the one- and two-boson-exchange potentials as illustrated in Fig. 3, 

JI =, -. VOBE + V nE (2.34) 
• 

2 

(b) 

2 

Fig. 3. The diagrams in the "time ordered perturbation". (a) and (b) 

show the diagrams contributing to OBE and TEE potential,respec-

tively. The single and double horizontal lines represent G 

and G2, respectively. 

In what follows, to clarify the essential points of our argument we shall 

adopt the interaction Hamiltonian of a nucleon and a scalar boson with 

unit isospin. 

- 18 -



(2.35) 

Here, ~ is the field operator of nucleon with its mass M, and ~; is 

the field operator of boson with its mass f'. The coupling constant 

and isospin operator of nucleon are denoted as g and~. (Our results 

in the following discussions hold irrespective of the specific form of 

interaction Hamiltonian.) 

i) One-Boson-Exchange (OBE) Potential 

In the static limit of nucleons, the OBE potential is given as 

V oBE. 
Std' :: < Hr. &r~ H.r. ;> ~ (2.36) 

where we used abbreviations as G = 1\ I ( - HO) and < IV = Z A -Z. The 

word "static" means that we neglect the keinetic energy operator of 

nucleons in the Green function G. Then we obtain a familiar OBE potential 

as 

with 

V oBS 

SrAT = 

ii) Two-Boson-Exchange (TBE) Potential 

The static TBE potential is obtained by the formula 

(2.37) 

The first term in the right-hand side express the Tamm-Dancoff potential 
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and, the second term, the wave function renormalization. The latter 

contribute to the uncrossed-boson-exchange processes, but not to the 

crossed-boson-exchange processes. 

We obtain the potentials for the crossed and uncrossed boson-exchange 

processes as 

and 

~ [- (2.40) 

The second term in Eq. (2.40) comes from the wave function renormalization 

just mensioned above. Then, the static TBE potential is expressed as 

VTBE: 
5f~ = 

2.4. Exchange Charge Density Operator 

We shall derive the exchange-charge-de~sity operators associated 

with the nucleon-charge density (Fig. 4a), as an example, since the main 

source of the complication in the definition of exchange current has 

been concerned with the nucleon-type current. Discussions of rather 
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{ol {bl {cl 

Fig. 4. Diagrams contributing to the OBE charge charge density operators. 

(a), (b) and (c) show the nucleon-type, boson-type and seagu11 

currents, respectively. 

well-defined boson-type current (Fig. 4b) and seagu11 current (Fig. 4c) 

will be done in the latter section. 

Before going into the derivation of the charge density operator, 

we shall define the e1ctromagnetic interaction Hamiltonian and fix our 

notation. The interaction Hamiltonian of the system with the external 

electromagnetic field is given by 

He ... = J (2.42) 

The charge density operator is expressed as 

J(Zl (2.43) 

with 

1\ 

JpJ ex ) = e <++{Z) (/1-<s) if-ri) 
.2. 

(2.44a) 

and 
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(2.44b) 

r ,.. /\ 

where fl and Is are charge density operators of nucleon and boson, 

respectively. The spatial current density operator is expressed as 

(2.45) 

with 

(2.46a) 

and 

J;,12'1 == ,2e. {.VI: [( i7 it;)) t/;.t;) - f,'/~/(Ptt,hJ] .. (2.46b) . 
...J ..I 

Here, p and p'are the momentum operators of nucleon, which operate on 

the initial and final states, respectively. 

i) One-Boson-Exchange (OBE) current 

At first, we shall study the terms due to the wave function : 

renormalization in the static OBE operator. From Eq. (l •. 33b) we have 

z; oY'"AI = ODAW .,. 004E (2.47) 
:s'tat Yt2~"1 ft IfD'" • 

, 

with 

OOfJE 
I"'i!eo; I 

~ L fir q O}l 4' Hr > 
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and 

The first term of Eq. (2.47) is called the recoil current, and the second 

term, the wave function renormalization. They are illustrated in Fig. 5a. 

(a) 

(b) 

2 

-~ 
2 

Fig. 5. Diagrams in the "time ordered perturbation". (a) and (b) show 

the diagrams contributing to OBE and TBE currents, respectively. 

Tbe explicit form of the static OBE charge density operator is 

, -.z 

= (2.48) 

with 
f'" (~) 
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In generall the static OBE nucleon-type exchange current vanishes in the 

operator form irrespective of any detail of the operator ~. It is noticed 

that meson-type current and seagull term do not contribute to the charge 

density operator in this case. 

In contrast to the unitary transformation method, most of people 

do not notice the probability operator, Eq. (2.17), or someone defines 

the exchange current by treating the probability operator as c-number. 

In the work of the former people, the elimination of mesonic degrees of 

freedom does not gurantee the charge conservation of nuclear system. 

Furthermore, the treatment of the latter people, which we shall refer to 

15 33) the c-number renormalization method' ,is not justified, as was 

29-32) pointed out by some authors • In this method the normalized nuclear 

state vector ~ is related to the projected state vector ~; by the 

c-number normalization constant Zi as 

(2.49) 

The factor Z. is given by the normalization condition for ~; in Eq. (2.16) 
J. 

:: 1 . (2.50) 

Thus we obtain 

(2.51) 
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The corresponding effective operator is given as 

(2.52) 

We notice here that these normalized state vectors ~ are not orthogonal 

to each other, since the probability operator has generally off-diagonal 

matrix ele~ents. 

= (z,· ~-I 

(2.53) 

For example, the static OBE current of nucleon-type does not vanish. 

Thus the c-number normalization method is not valid. 

ii) Two-Boson-Exchange (TBE) Current 

The static TBE current of nucleon-type is 
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(2.54) 

Here, all terms except for those in the first two lines come from·the 

wave function renormalization. As is seen in Fig. 5b, the static TBE 

charge density operator obtained from Eq. (2.54) can be divided into the 

uncrossed and crossed bos'on-exchange current, 

(2.55) 

with 

(2.56) 

and 

(2.57) 
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In addition to the above operator, we have the boson-type static TBE 

current. 
17) 

Hyuga and Ohtsubo have shown the existence of TBE charge 

density operator even in the static limits in -this way. 
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Section 3. The S-Hatrix Method 

The basic idea of the S-matrix method is that the S-matrix is 

uniquely determined irrespective of any kind of representation of the 

original Hamiltonian. Therefore, the S-matrix given by the conventional 

field theory should be identical to the S-matrix obtained as iterated 

terms of the instantaneous and hermitiannuc1ear potential and possibly, 

exchange current. Inversely, we can define the nuclear potential and 

exchange current so as to reproduce the S-matrix element by the conven-

tiona1 field theory. The static theory along this idea was developed by 

Miyazawa23) to derive TBE potential. Here, we shall apply this S-matrix 

method to derive static exchange current up to TBE process. 

3.1. Nuclear Potential 

At first, we shall try to obtain the nuclear potential by investi-

gating the S-matrix of nucleon-nucleon scattering. The S~~trix element 

in the potential picture is given as illustrated in Fig. 6. 

with 

and 

t;= 

T 08£ 
r := t/ oBE , 
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H GN~ V
OBE 

F+TBE (a) VOBE (b) -r 
V?BE 

TO~E T~BE 
P P 

Fig. 6. S-matrix elements in the potential picture. Diagrams (a) and 

(b) show the OBE and TBE proce~~es, respectively. 

Here, the suffix p represents the potential picture. The Green function 

G
N 

of two free nucleons is expressed as 

I = ;z;;:jj 
1 (3.4) 

On the other hand, we obtain the same S-matrix element by the conventional 

technique of the field theory as, 

-r = T0l12 TT13E ...,.. ... 
./ 

(3.5) 

where T
OBE 

is the second order matrix element of the OBE process(Fig. 7a), 

and TTBE is the fourth order matrix element of the TBE process (Fig. 7b). 

Since the S-matrix element (3.1) should be identical to Eq. (3.5), we 

obtain the OBE potential VOBE from the field theoretical S-matrix element 

TOBE • If we subtract the iterated term of OBE potentials from the TBE 

TBE TBE 
S-matrix element T , we can obtain the TBE potential V. This is 

seen in the static nucleon limit, where the two-nucleon Green function 
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(a) 

pt Pi 

f-~--

Fig. 7. Diagrams of two-nucleon scattering. Diagrams (a) and (b) 

represent OBE and TBE processes, respectively. 

GN diverges, 

• (3.6) 

Therefore, the iterated term of OBE potential gives a divergent contribution 

to the fourth order S-matrix element. In other words, if we evaluate the 

fourth order S-matrix element with static nucleons and subtract the 

divergent term from this S-matrix, we can identify the finite term of 

the S-matrix element as the static TBE potential. This procedure will 

be shown explicitly in the following. 

The nucleon propagator for the non-relativistic nucleon is expressed 

as 

,r IX) :: 
. -, 

1271')(/. 
(3.7) 

For the static nucleon, we neglect the kinetic energy so that the propagator 

(3.7) reduces to the form as 
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e ,./'b"C 

= (3.8) 

The OBE diagram is easily calculated in the scalar boson-exchange model. 

(3.9) 

From Eqs. (3.9) and (2.37), the second order S-matrix element coincides 

. h h . OBE . 1 VOBE 
w~t t e stat~c potent~a t' sta 

The fourth order matrix element is expressed as 

(3.10) 

The first and the secondi:terms in the brackets correspond to the uncrossed 

and crossed boson-exchanges, respectively. Integrating over the energy 

parameter x, we rewrite the S-matrix element as, 

(3.11) 

Here, the divergent part is found to be the iterated term of static OBE 
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potential. 

= (3.12) 

The finite part of the fourth order S-matrix element coincides with the 

static TBE potential, as we have expected. Miyazawa24) derived the two-

pion-exchange potential in this way. 

3.2. Exchange Charge Density Operator 

We shall derive the exchange current by investigating the S-matrix 

element of the radiative two-nucleon scattering. In the potential picture 

the S-matrix element is given by the iterated term of the exchange current 

and nuclear potential as illustrated in Fig. 8. 

(a) 

:TEE cTBE o . + ... .,. (l..-2) = T c 
y,P (c) 

Fig. 8. S-matrix elements of radiative two-nucleon scattering in the 

with 

potential picture. (a), (b) and (c) show the one-body current 

with uncorrelated nucleons, OBE and TBE processes, respectively. 
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and 

oBE 
T/if = 

+- OrUE ... }.! 
• 

(3.13) 

(3.14) 

(3.15) 

If we apply the same technique as in the static nuclear potential problem, 

we can obtain the static exchange currents from the field theoretical 

S-matrix element: It is expected that the finite parts of the S-matrix 

element of the OBE and TBE processes in the static nucleon limit are 

identified with the OBE and TBE currents, respectively. First of all, 

the matrix element of the one-body current with uncorrelated nucleons 

corresponds to the S-matrix element of the first order in the field 

theory (Fig. 9a). Then we obtain the first order term, 

(3.16) 

The third order in the perturbation theory gives the S-matrix element 

as (Fig. 9b-c), 

• (3.17) 
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(b) 

(d) (e) (f) ~) 

(c) 

(h) 

+ ... + Cl ~2) 

(i) 

.. ..... (1 of-,) 2) = ~TBE 
y,p 

Fig. 9. Diagrams of radiative two-nucleon scattering. 

Here, we introduced the infinitesimal energy transfer,~, supplied by 

the external field in order to see divergence of the S-matrix element 

clearly. For example, we investigate the Coulomb interaction of nucleon, 

as in sect. 2.5. In the limit of vanishingly small energy-transfer, 

Eq. (3.17) is written as 

ic 

I -U: (3.18) :: f,J 
I -

where we have no finite term. This means that the static OBE current 

vanishes in the static limit, 

= o. (3.19) 

This result agrees with the one obtained by the unitary transformation 

method. (See Eq. (2.48» 

Next we shall study the TBE matrix element. We have six types of 

diagrams relevant to the radiative two-nucleon scattering processes in 
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the fifth order perturbation theory, as shown in Fig. 9. First of:a11, 

we shall study the diagram Fig. 9d in detail. The corresponding S-matrix 

element is written as 

(3.20) 

After integrating over the energy variable x, we obtain 

A .,.,'t: 

(3.21) 

We can rewrite Eq. (3.21) by using the potential and the exchange current 

in the unitary trams formation method in Eqs. (2.37), (2.40), (2.48) and 

(2.55), as, 

(3.22) 

:rBE,N 
where Jis~ means a part of TBE current, i.e., contribution of the 

uncrossed diagram corresponding to Fig. 9d. It is noticed here that 

the finite part of the S-matrix element in the fifth order calculation 
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is twice as large as the static TBE current obtained in sect. 2.5. In 

other words, if we regard the finite part of the S-matrix element as the 

TBE current, the S-matrix method and the unitary transformation method 

give different results for the TBE current to each other. The same 

discrepancy appears in the diagrams of Fig. 9f, 9g and 9i. As a result, 

"the finite part of the fifth order processes is given as 

(3.23) 

which is compared with the static TBE current in EqR. (2.55) and (2.56). 

At this stage, we confront a big problem why the S-matrix method and the 

unitary transformation method give the different static TBEcurrents, 

while they give the same OBE- and TBE-potentials and OBE currents. We 

shall answer this question clearly in the next section. 
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Section 4. Relation between S-Matrix Method and Unitary Transformation 

Method 

We obtained different results for the TBE charge density operator 

by different methods, although we obtained the same results for nuclear 

potential and OBE charge density operator. What is wrong in our treatment? 

A key point in this problem is that we completely disregarded the non-

static effects in the S-matrix method. In this section we shall show 

that the static treatment of the S-matrix involves ambiguities due to 

the non-static operators. For this purposey we shall, at first, 

investigate the non-static potential and charge density operator in the 

unitary transformation method. 

4.1. Non-Static Nuclear Potential and Exchange Charge Density Operator 

i) Non-Static Potential 

We shall retain the recoil of nucleon in the potential, 

(4.1) 

with 

t A > I = 11" .A '7.. • 

The second term of Eq. (4.1) is due to the wave function renormalization, 

which vanishes in the static limit. Instead of Eq. (2.37), we have 

(4.2) 
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with 
( S == I" 2) . 

/\ A, 
Operators E and E are the initial and final kinetic energy operators 

s s 

of the s-th nucleon, respectively. The retardation of nucleon recoil 

A 
is expressed by ~Es ,and thus the nuclear force becomes momentum-

dependent operator. It should be emphasized that the "momentum-dependent" 

potential does not mean a potential "dependent on the energy of the 

system". By expanding the denominators in Eq. (4.2) we rewrite the 

potential as 

VDfJ~ 
(4.3) 

The first term of Eq.(4.3) is the static OBE potential V~:!t' and 

the second term is the first order recoil correction, VOBE 
Non-stat' 

(4.4) 

It is noticed that this non-static OBE potential is propotional to the 

square of the kinetic energy operator. In what follows, we retain the 

retardation effect up to the first order as 

(4.5) 

ii) Non-Static TBE Potential 

Retarded TBE potential is also expressed as 
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(4.6) 

from which we obtain the first order recoil correction as 

(4.7) 

where 

a' [ + (4.8) 

with 

It is noticed that the non-static correction to the uncrossed boson 

exchange vanishes, and that the non-static TBE potential is propotional 

to the kinetic energy of nucleon. In the fourth order perturbation, 

we obtain only the non-static three-body potential, but not the static 

three-body potential. Since it is not essential in the following dis-

cussion , we shall not describe its derivation. 
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iii) Non-Static OBE Charge Density Operator 

The non-static OBE current is given as 

(4.9) 

where Oo~~ is the static part given in Eq. (2.47). The recoil correction 
S~ 

to the static OBE charge density is given as 

(4.10) 

with A 
Ps :: 

The non-static OBE current of nucleon type is propotiona1 to the kinetic 

energy operator. 
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4.2. Nuclear Potential and the S-Matrix Element 

i) One-Boson-Exchange Potential 

The second order nucleon-nucleon scattering matrix element in the 

momentum space is 

(4.11) 

with 

and -fo ... 

Here, p and p/ denote the momentum of the initial and final state of 

the s-th nucleon, respectively. The S-matrix element is defined on the 

energy shell, 

(4.12) 

Thus the off shell extrapolation of Eq. (4.11) has some ambiguities. 

We shall discuss those ambiguities of off shell extrapolation in the S-

matrix method in sect. 5. 

From the potential picture the S-matrix element is given as 

-roSE :: 
~ ~ T'.r .2' [ W~-:ElJ p /z7I'y 1()2-ilE, ~ 

+ 

a~ 
~'. 'Z'~ 

I - /2.'KjJ (4.13) 
.:la~ -t..l~ 
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From Eq. (4.13), we can see the S-matrix element is equivalent irrespective 

to the method of calculation. In the static limit (qo~O), we can 

see the static potential is unambiguously defined from the field 

theoretical S-matriX element, while its non-static correction has some 

arbitrariness. 

ii) Two-Boson-Exchange Potential 

The fourth order S-matriX element with the kinematics of Fig. 7 is 

given as 

;( [(~- e, +,'60 )(-X -e~.,.,.{;-)(X:t..l<):z.+"6 )t'~~'.I-1"6)]-1 ... (4.14) 

and 

(4.15) 

with I .......... e, :"..r;:::;- (p, -~)~ 

Eqs. (4.14) and (4.15) correspond to the uncrossed- and crossed-boson 

exchanges, respectively. Performing the integral of the energy variable 

x, we obtain 
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(' 

I / f .. / 

+;;; E-e .,.;1 (:- ~ 

and 

(4.16) 

with 

Here, we have used the :e~erg}r' c~msevation relation of Eq. (4.12), and 

neglected the higher order terms with respect to the kinetic energy. 

We can rewrite the TBE matrix element in terms of nuclear potential in 

Eqs. (2.37), (2.41), (4.4) and (4.8) as 

T rBP 
( LJn C~D~$) 

(4.17) 

The fourth order S-matrix in the potential theory coincides with that 

of the field theory. In the static limit the contribution of non-

static OBE and TBE potential vanishes, since their contributions are 

linear to the kinetic energy of the nucleons, 

and 

I 
~ (LlEJ z -

(AE' J 
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r 

v. T8E 
~.-Sfruf (4.19) 

where L1E shows the kinetic energy operator for nucleons. Besides, the 

iterated term of static OBE potential diverges. Thus the static TBE 

potential is unambiguously defined from the field theoretical S-matrix 

element irrespective of any form in the non-static OBE potential. It 

is, however, noticed here that the vanishing contribution of the non-

static operator plays an essential role in the derivation of the static 

TBE potential. 

4.3. Exchange Current and Radiative S-Uatrix Element 

i) One-Boson-Exchange Charge Density Operators 

The S-matrix element of radiative two-nucleon scattering as shown 

in Fig. 9b is given as 

(4.20) 

with 

Neglecting the higher-order recoil corrections in .Eq. (4.20), we have, 

[ 
I 

" - E-e,."" (4.21) 

with 
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If we add the matrix element corresponding to Fig. 9c to Eq. (4.21), the 

field theoretical S-matrix element which is identical to the one in the 

potential picture is given as 

(4.22) 

where nuclear potentia1s and charge density operators are given in Eq. 

(2.37), (2.48) and (4.10). In the static limit the contribution if th~ 

non-static effective operator vanishes, 

~ I (&Z:=-)~ 
(LIE ) 

~o (4.23) 

and 

--~ 0 (4.24) 

while the iterated term of the static OBE potential diverges as 

I - (4.25) 
,'60 • 

Thus the finite part of TOBE does not exist, and this fact shows the 

vanishing of the static OBE current, as we have seen in the unitary 

transformation method in sect. 2.4. 
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ii) Two-Boson-Exchange Charge Density Operator 

For the TBE processes in the radiative two-nucleon scattering, we 

shall study the diagram F~g. 9d in detail. The other processes as in 

Fig. ge-i can be discussed in the similar way. By using the standard 

method of the field theory we have 

(4.26) 

with e ' I -'" .... )~ • =:2:iT {fo -J, , 

We perform the integration over x in Eq: (4.26) and expand it by the 

nucleon kinetic energy, 

)( [ I 
E-e'+"~ 

( 
') I / I ) I ') I ( (Ez. -e.;z.,. (la -E,~ ) 

-~ E-e+lG -;;;; "E-e''''~(-4J~}i;"-e-tl6- - 2.eJ'4. / 

(4.27) 

Comparing Eq. (4.27) with Eqs. (2.37), (2.41), (2.48), (2.55), (2.56), 

. (4.4), (4.8) and (4.10), we can easily show 
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(4.28) 

This shows that the S-matrix is unique irrespective to the method of 

calculation. In the static limit, the iterated terms of the static 

effective operators diverges as is expected, 

(4.29) 

and 

(4.30) 

while the non-static operaotrs have the non-vanishing finite contribution 

as, 

(4.31) 

and 

(4.32) 

Thus the finite part of the S-matrix element with static nucleon contains 

not only the contribution of static TBE current but also the contributions 

of the non-static operators as Eqs. (4.31) and (4.32). Now it is clear 

why the S-matrix method gives the static TBE current different from the 

one by the unitary transformation method. In the S-matrix method it is 

essentially important to subtract the iterates part of the non-static 
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operators in order to obtain the static TBE current. It is noticed that 

the limiting procedure in Eqs. (4.31) and (4.32) is not unique, so that 

the static treatment of the S-matrix element cannot give us even the 

static charge density operators of multi-boson exchanges. 

From the above investigation we can see that success of S-matrix 

method for the static OBE and TBE potential and OBE charge density 

operator is exceptional. In generall, unambiguous extraction of the 

non-static operator from the S-matrix element is basically impossible, 

so that the mUltiple boson exchange operator cannot be defined in the 

S-matrix method. This has not been recoginzed in the S-matrix treatment 

. h i bl·· 15,24) 1n t e prev ous pu 1cat10ns. 
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Section 5. Arbitrariness of Unitary Transformation 

5.1. Nambu's Method 

r We can derive the nuclear potential from studies of the time develop-

ment of the system, which is closely related to th- S-matrix approach. 

In the one-boson-exchange process as illustrated in Fig. 10-a, the time 

tl at which boson interact with nucleon 1 is different from time t2 w~en 

boson interacts with another nucleon 2 due to the propagation of the 

exchanged boson and nucleon recoil. On the other hand, in the potential 

picture, the interaction between two-nucleons must be instantaneous 

and of coirse hemitian. (Fig. IO-b). Thus, in order to define the nuclear 

(0) 

Fig. 10 Interaction of two nucleons due to OBE •. 

potential from the field theoretical boson-exchange picture, we must 

describe the process in Fig. 10-a by the single time, that is, average 

average time of two-nucleons. The OBE potential is defined at the time-

base to which describe the motion of the system, and average over the 

relative time between tl and t2: 

= (5.1) 

The bracket means the average over the relative time, which is shown in 

detail in the following. The two-boson-exchange processes include the 
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iterated term of OBE potential. The TBE potential is derived from:the 

fourth order S-matrix element by the subtraction of iterated term of OBE 

potentials and description by the time-base to' 

Here G
N 

is the Green function of free tlV'o-nucleons. In this 

derived the formula for the nuclear potential. And Taketani 

. (5.2) 

22) 
way Nambu 

23) 
et al. 

calculated two-pion-exchange potential by this method. This static TBE 

potential agrees with that of the unitary transformation method and the 

S-matrix method, which we have discussed in the previous section. But 

there is arbitrariness in the non-static part of nuclear potential. We 

shall see this arbitrariness in detail by the folded diagram method of 

Johnson34), whose basic idea was given by Nambu. 

The S-matrix element of the the OBE process (Fig. lO-a) given in 

the momentum space is 

(5.3) 

On the other hand, the same S-matrix element is given in the potential 

picture as, 

(5.4) 

where 
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Here we shall define the time-base to as 

(5.5) 

where ~ is the arbitrary parameter and relative time is defined as 

(5.6) 

We shall give the S-matrix element at the time-base to and integrate 

over the relative time T: 

(5.7) 

where 

From Eqs. (5.4) and (5.7) we define the OBE potential with non-static 

correction as 

..... -1 e-l2 .y 

w~- t.):#(A) (5.8) 

with 

tv In = (5.9) 

Here the OBE potential has arbitrary parameter A , which correspond to 
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the choice of the time-base. We define the OBE potential as the 

superposition of the potential (5.8) with the weight function f (tU as 

(5.10) 

Here f(A) is normalized as 

J fo.) d il == I (5.11) 

and it is symmetric with respective to the past and future, 

.J ().) == f r-A). (5.12) 

The OBE potential which we have derived by the unitary transformation 

method corresponds to the choice 

.f (;./ = (5.13) 

Here we see that the non-static part of potential has the arbitrariness 

due to the choice of the time-base, while the static part of the potential 

is unique. We shall show in the next section, what this arbitrariness 

is in the unitary transformation method. 
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5.2. Arbitrariness of Unitary Transformation in Nuclear Potential 'and 

Exchange Current 

We have shown that the nuclear potential and exchange current can 

be derived consistently by eliminating the bosons degrees of freedom from 

the original Hamiltonian. As an exapmle, we have derived explicit forms 

of the nuclear potential and exchange charge density operator in the 

system of nucleons and charged scalar bosons. 

These operators are, however, not unique, since there still remains 

an ambiguity in the unitary transformation in the boson-vacuum sub-space. 

We shall study this arbitrariness of unitary transformation in the 

canonical transformation method of Nishijima2l), which is essentially 

the same as the unitary transformation method. Before going into the 

problem of arbitrariness of unitary transformation, we shall briefly 

summarize the method of the canonical transformation. Nuclear Hamiltonian 

is obtained from the total Hamiltonian of the system by eliminating order 

by order the off diagonal part, that is the interaction Hamiltonian 

which couples the boson-vacuum and boson-existing space. By the unitary 

transformation 

LJ = ~f r " s J (5.14) 

the Hamiltonian H is transformaed into H' as 

• L1 -I H L1 J-I • = 

= 
(5.15) 

with # == Ho or H.z, 
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" 

where S is hermitian. At first, in order to diagonalize the Hamiltonian 

up ~o the second order we must choose the operator SI which satisfies 

the following condition;: 

l 1: Ho" s, 1 + Hz ::: 0 '. (5.16) 

Then the tranformed Hamiltonian is written as 

The second order potential is given as the diagonal part of the second 

term in Eq. (5.17) 

(5.18) 

The explicit formula is, 

(5.19) 

which coincide with Eq. (4.4). In the next step we eliminate the off-

diagonal part of the second term in Eq. (5.18) by the transformation 

(5.20) 

with 

L rHo".5j J (5.21) 
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and 2 S,2 '1: () . (5~22) 

The off diagonal element of the operator -is denoted as o.d •• We obtain 

the transformed Hamiltonian H(2) 

(5.23) 
• 

Here we have dropped the third term in Eq. (5.17), for that term has odd 

number of boson-nucleon interaction and'thus it does not contribute to 

nuclear force. The TBE potential is defined as 

(5.24) 

From which we obtian the same potential as in sect. 2. This was first 

° d b N° h O
• ° 21) carr1e out y 1S 1J1ma. By thse succesive transformation to eliminate 

the off diagonal part, we can diagonalize the Hamiltonian up to the 

desired order and obtain the nuclear potential in principle. 

It is noticed here that the transformation is not unique. We 

shall derive the second order OBE potential by the canonical transformation 

different from the one in Eq. (5.16). We divide the free Hamiltonian of 

the system into two parts, 

T-r K 
I (5.25) 

where 

(5.26) 
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and 

(5.27) 

.Here, T and K are the free Hamiltonian of nucleon and boson fields, 

respectively. In the first unitary transformation Ui, we shall define 

the static OBE potential 

(5.28) 

here Ui is determied by 

(' [K ,/ S(] -+ Hz:: 0 • (5.29) 

Here we take only the boson free energy ·in Eq. (5.29). The transformed 

Hamiltonian H(l) is 

(5.30) 

The third term gives the static OBE potential as 

:: (5.31) 

The Eq. (5.30) still have the off diagonal part with the first order in 

the boson-nuc1eon coupling constant and the nucleon kinetic energy. We 
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shall eliminate this term by the second transformation Ui: 

11:/ = f2.J(f [,' S~' J (5.32) 

where 

i [ J< , S~] .,. " [ I" 'Sf J := o. (5.33) 

The resulting Hamiltonian is 

(5.34) 

The fourth term in Eq. (5.34) is the non-static correction to the static 

OBE potential. 

(5.35) 

There still remains the off diagonal Hamiltonian in the first order 

of coupling constant, which depends upon the nucleon recoil operator. 

They contribute to the further higher order_non-staticcorrection to the 

OBE potential. At this stage we have different OBE potential due to 

different elimination procedure of off diagonal Hamiltonian. As we 

shall see from Eq. (5.19) 
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.(5.36) 

which is obtained from the original Hamiltonian by the transformation 

LJ, = e " S; 
• (5.37) 

And from Eqs. (5.31) and (5.35) we obtain 

(5.38) 

which is given by the transformation 

(5.39) 

The static potential is uniquely derived but its non-static correction 

is not. Eq. (5.36) is transformed into Eq. (5.38) by the unitary trans-

formation 

(5.40) 

Clearly the above unitary operator transforms the boson-vacuum state 

into the boson-vacuum state. From this example, we can conclude there 

exist arbitrary unitary transformations. It is noticed here, so far as 

we define the potential and exchange current consistently in any fixed 

unitary transformation, the calculated observable remains unchanged. 

These OBE potentiakof Eqs. (5.36) and (5.38) are also obtained from 
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point of view in the Nambu's method of sect. 4.1. That is the potential 

in Eq. (5.36) is obtained by the choice 

(5.41) 

and the potential in Eq. (5.38) is obtained from 

(5.42) 

The physical meaning of arbitrariness of unitary transformation 

in the elimination of mesonic degrees of freedom corresponds to the 

arbitrariness of choosing the time-base in the field theoretical 

picture. These kinds of arbitrariness also occur in the other physical 

problems, where we trancate the Hi1bert space and obtain the effective 

operators. One example is the FoldY-Wouthuysen-Tani transformation35) 

(F-U-T) in the elimination of the negative energy component from the 

1 . . if· 36,37) re at1v1st c wave unct10n. This will be discussed in Appendix A. 
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Section 6. Conservation of Electromagnetic Current 

To see the consistency of our treatment of effective operators, we 

shall investigate the conservation of nuclear "electromagnetic current 

within the two-boson-exchange model. The conservation of the electro~ 

magnetic current is 

-, [ H.I J'c~)] (6.1) 

~ 

where, j,J and H are the nuclear current density, charge density and 

Hamiltonian, respectively. We shall intergrated form of current con-

servation relation as, 

(6.2a) 

== Co' [H" J ~ lex) ] d; (6.2b) 

- I.: [H" pJ (6.2c) 

with 

-l 

p" ... jx (6.2d) 

Here, we shall show the consistency of the nuclear potential and the 

current operators in the unitary trans~Qrmation method in the two-

nucleons system, and show the importance of the non-static operaotrs. 

We have obtained the nuclear potential in the charged scalar boson-exchange 

model in sect. 2 and 4. We summarize the results here, 
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H::- T-+ V 
",. 

(6.3) 

with 

T ... (6.3a) 

and 

(6.3b) 

where 

(6.3c) 

(6.3d) 

(6.3e) 

and 

(6.3f) 

~ ~ .:. 
Here p = p + pi 

~ .... 
p and pi are the momentum operators operating the initial and final state 

vector. 

i) One-Body-Current 

In the impulse approximation, the one-body-current and dipole 
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operator are 

1+ Z-S __ if (6.4) 
.2 

and 

(6.5) 

From Eqs. (6.3a), (6.4) and (6.5) we can show the charge conservation 

for non-interacting nucleons: 

~ 

lET/V"). (6.6) 

ii) One-Ba son-Exchange Current 

We have the static boson-type current in OBE model as 

(6.7) 

This current is related to the static OBE potential as 

-= I.' E JI. o'8E pN 7 s-t.,,, ..1. 
(6.8) 

In addition to the static current, we have the non-static nucleon- and 

boson-type currents 

(6.9) 
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and 

(6.10) 

They are related to the non-static OBE potential and non-static OBE 

charge density operator: 

(6.11) 

where 

(6.12) 

and 

(6.13) 

Here it is noticed that the static charge density operator does not 

exist in the OBE model. 

ii) Two-Boson-Exchange Current 

As in the case of OBE current, we have the static boson-type current, 

(6.14) 

which is related to the static TBE potential as 
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(6.15) 

The non-static boson-type and nucleon-type currents are 

= 

(6.16) 

and 

(6.17) 

They are related to the static TBE dipole operator, non-static OBE 

dipole operator and non-static TBE potential in the following: 

(6.18) 

where 

~' 
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(6.19) 

and 

(6.20) 

Eqs. (6.19) and (6.20) show the non-vanishing static charge density 

operator in the TBE model. This was pointed out by Hyuga and Ohtsubo17) 

as the,'break down of Siegert theorem even in the static nucleon limit. 

The currents in Eqs. (6.6), (6.8) and (6.15) are given from the Siegert 

theorem3~ i.e., 

(6.21) 

Summarizing the above discussions, we have the current conservation 

as follows: 

(6.22) 

where 

(6.23) 

and 
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(6.24) 

To construct a consistent model for the nuclear Hamiltonian and current 

operators, it is necessary to include the non-static operators. For 

example, to satisfy the· conservation relation corresponding to the 

static charge density operator we need the non-static spatial current 

and non-static potential. Here, the non-static operators we have derived 

in part I are due to the kinematical nucleon recoil, but not the effect 

of the negative enrgy states. Since the kinetic energy operator of 

nucleon is one of the non-static operators in this sense, which is 

already included in the Schrodinger equation, it is naturally understood 

that the non-static effective operators are required in a consistent 

description of the nuclear system. 
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Section 7. Summary of Part I 

We have shown the relation between the various methods which define 

the effective operators in boson-vacuum space by eliminating the mesonic 

degrees of freedom from the field theoretical Hamiltonian of the system. 

We shall summarize the results obtained in Part I. 

The discrepancy in the static two-boson-exchange currents derived 

from the unitary transformation methodl9 ,20) and the S-matrix method23) 

is due to the insufficient subtruction of the iterated terms of one-boson-

exchange non-static potential and exchange current in the S-matrix method. 

The contributions to the finite part of the static S-matrix element are 

not only the contribution of the static current, but also include the 

contribution of the iterated terms of the non-static potential and 

exchange currents. Of course, the S-matrix element is uniquely given 

irrespective of any method of calculation, if the method is selfconsist-

ent. It is exceptional that the same static TBE potential is obtained 

by the S-matrix method, since the contribution of the non-static OBE 

potential vanishes in the static limit. In general, the finite part 

of S-matrix elementwith static nucleon does not give a correct multiple-

boson exchange potential. Inversely, if we define these non-static 

effective operators by any principle and subtract them from the S-matrix 

element with full nucleon recoil correctly, we can obtain the static 

TBE current. This can be achieved by the folded diagram method34): 

Both the Nambu's methoJ~nd the unitary transformation method have 

the arbitrariness. For example, the different non-static OBE potential 

is obtained by the different elimination of the me sonic degrees of 

freedom in the unitary transformation method and also by the different 

choice of the time-base in the Nambu's method. As we have shown, these 
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arbitrarinesses are related with each other. The arbitrariness of unitary 

transformation in the boson-vacuum space, which does not couple the boson­

vacuum space to boson-existing space, corresponding to the arbitrary choice 

of the time-base, when we reduce the field theoretical S-matrix element 

into the single time of the system, in other words, when we are dealing 

with an instantaneous interaction. These kinds of arbitrariness of 

unitary transformation also appear when we eliminate the negative energy 

component of Dirac field. This is the arbitrariness of the F-W-T trans­

formation~6,37) It is noticed that this arbitrariness does not affect 

the matrix element of the observab1es. If we fix the unitary trans­

formation , we should use the effective operators and the state vectors 

obtained by the same unitary transformation. 

The consistency of the exchange current and the nuclear potential 

in the unitary transformation method is shown by proving charge conser­

vation within the TBE model. We include here both boson- and nuc1eon­

type currents in the charged scalar boson-exchange model. To verify 

this charge conservation law, the non-static exchange current and potential 

cannot be neglected. For example, even the static TBE charge density 

operator is related to the non-static exchange current and potential. 

The role of the non-static effective operator is also essential in the 

derivation of the static TBE current in the S-amtrix method. A consistent 

derivation of the nuclear potential and exchange current is thus important. 

A1thouth there are many methods to define the effective operators which 

are equivalent to each other, we believe the unitary transformation 

method discussed in sect. 1, is practically the most useful method, while 

the canonical transformation method21) is convenient to see the transfor-

mation property of the theorem, and the Nambu's method is convenient to 

see the physical or the graphical meaning of the effective operators. 
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Part II. Magnetic Moment of Deuteron 

Section B. Magnetic Homent of Deuteron 

We shall investigate the magnetic moment of deuteron. The operator 

of magnetic moment is expressed in terms of spatial part of nuclear 

-l..,a 

current density operator J(x) as 

f (B.l) 

and the nuclear magnetic moment is defined as 

(B.2) 

Since the deuteron has spin J = 1 and isospin T = 0, only the isoscalar 

part of magnetic moment operator contributes to the magnetic moment of 

deuteron. The deuteron wave function is written as 

I [ utrJ 
:: "<9-fj V-+ (B.3) 

where ~,~ = 'a; . ~ ) ( er.;,.· ~) -./ er:. cr~ • 

;fer) is the spin wave function with S = 1, and 1(~ is the isospin one 

with T = O. The radial wave functions of S- and D-state are denoted as 

u(r) and w(r), respectively, and they are normalized as 

(B.4) 
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In the impulse approximation, the magnetic moment ~~is given with:Eq. 

(8.3) by the magnetic moments of nucleons and the D-state probability 

(8.5) 

with 

and 

in units of nuclear magneton. 

We shall adopt the wave function of the deuteron in the Reid~poten­

tia128), which reproduces experimental data on the two-nucleon system 

satisfactorily and is widely used in nuclear physics. Although the 

Reid-potential is not derived meson-theoretically, but is the phenome-

nological one, we assume that our model of the interaction Hamiltonian 

will reproduce the Reid-potential. If we use the following values 

Pn = 6.497% for the hard core potential (H. C.) (8.6) 

Pn = 6.470% for the soft core potential (S. C.) (8.7) 

given by Reid, we obtain 

~rA = 0.8428 (H. C.), (8.8) 

~~A = 0.8429 (S. C.), (8.9) 
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h 'l d d . 38) w 1 e the measure euteron magnet1c moment is 

(8.10) 

Thus we find a discrepancy-between the calculation of impulse approximation 

and the experiment by about 0.014 n.m. It is very interesting to resolve 

this discrepancy: 

A Jltl.1tf :: uti - LlZA ,/ ) r r r. =0. D / /,I. ~ (H. C. (8.11) 

":2 O. o/4$" (S. C. ) (8.1Z) 

We shall take into account relativistic correction to the one-

body-operator, LJfrel. cor. ' OBE current fOBE' and TBE current I1:BE' 

(8.13) 

We study the dissociation current, pair current and also the first-

order recoil correction to the nucleon-type current in the OBE model. 

We adopt the static limit in the TBE current: We retain the nucleon-

type current due to the intrinsic magnetic moment and orbital motion of 

nucleon, and dissociation current of boson-type. For the realistic 

description of boson-nucleon system, we take into account pi-, rho-

and omega-meson exchange currents. Further we include the isobar (L\Z36) 

in the TBE current, with which we treat approximately an important part 

of virtual p-wave pion-nucleon scattering. These exchange magnetic 

moment operators are derived from the unitary transformation method in 
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sect. 2, where we take into account the isobar by modifying the projection 

operator Aand ~ as the projection on the boson- and isobar-existing 

space, and boson- and isobar-vacuum space, respectively. 
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Section 9. Interaction Hamiltonian 

9.1. Strong Interaction Hamiltonian 

Now, we take the following Hamiltonian of boson-nuc1eon interactions: 

(9.1) 

(9.2) 

and 

with 3.;. = 8,' - r;. ~ 

where the index j shows the isospin component of boson, and we adopted 

the hermite Pau1i matrix for ~. 

The interaction Hamiltonian of nucleon (N) and isobar G1) are 

written as 

(9.4) 

for pion and 

(9.5) 

for rho-l:leson. 
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Here, Pr is the vector-spinor for a particle with spin 3/2. Omega­

meson does not couple to the N-A vertex. 

9.2. Electromagnetic Interaction Hamiltonian 

We shall show only the isoscalar current relevant to the deuteron 

magnetic moment. The electromagnetic interaction Hamiltonian is given as 

(9.6) 

Here, the nucleon current is expressed as 

(9.7) 

and the isobar current as 

(9.8) 

The dissociation current of rho-meson into pion is given by 

., e.-·S'I p.Q > < 7T d( P ) I :r r JJ,. (P) • (9.10) 

Here the boson-type currents of pion and rho-meson do not contribute , 

since they are purely of the isovector type. 
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Section 10. Elimination of Component with Negative Energy 

We shall eliminate at first the negative energy component of ~he 

,- nucleon, and then the mesonic degrees of freedom from the nuclear wave 

function. We shall reduce the covariant expression of the interaction 

Hamiltonian into the two-component effective Hamiltonian of the non-

relativistic nucleon. The lowest order static Hamiltonians are directly 

obtained by the non-relativistic reduction of the Dirac spinors. The 

strong interaction Hamiltonian (of N-~and the electromagnetic current 

of 4 are reduced in this way. On the other hand, for the strong 

interaction Hamiltonian of the nucleon and the electromagnetic current 

of the nucleon, we need the relativistic correction to the one-body-

current and OBE current. They are obtained by eliminating the negative 

energy component of the nucleon by using F-W-T transformation. 

The one-body Direc Hamiltonian for nucleon is 

(10.1) 

where (10.2) 

and 

(10.3) 

with 

(10.4) 
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(10.5) 

(10.6) 

(10.7) 

(10.8) 

(10.9) 

(10.10) 

where 

(A,r) . A.1I JP A, ... 
is the electromagnetic field,· T, ,I', Tu are the field operators of ..... .....- ,. 

pion, rho- and omega-meson, respectively. We have replaced the momentum 

transfer qfbY the derivative operators on· the boson field in the equations 

of sect. 9 •. 

The F-W-T transformation has the arbitrariness of unitary trans-

formation as shown in Appendix A. To see this explicitly, we divide 

the odd operator into two parts A and B. 

(10.11) 

with 

(10.12) 
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-' ... B :: , I -A ,) c:J.' p (10.13) 

c· , 
Here, ;\" ;~ and ).3 are the arbitrary constants. We also define constants 

a, band c as Ref. 3 7) • 

_d (10.14) 

where a+b.,. C = o. (10.15) 

In what follows we shall keep the terms linear to the boson-field operators. 

We have fixed the transformation relevant to the rho- and omega-me son-

fields as in Eq. (10.12), since their contributions are uniquely given 

within our approximation. 

10.1. Electromagnetic Interaction of Nucleon and Isobar 

The electromagnetic interaction of the nucleon is written as 

(10.16) 

where 

. . 
.L. e [..a~ ... ..A -'-l] H'NN (staTic) =- -4Ff P'A + A . r -+ (1+ ~s J (J"- B (10.17) 

[ ... ~ ... -'J ) f J B'(f" • • (10.18) 
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Here, we only show a part of Hamiltonian relevant to the magnetic moment 

operator. HKNN(rel. cor.) gives the relativistic correction to the one­

body-current due to Zitterbewegung. 

The static operator of isobar current is 

H'.dA = (10.19) 

...l 
Here, P4S is the momentum operator of isobar. C!1 is the Pauli-spin 

matrix. 

10.2. Electromagnetic Interaction of Seagull Type 

Here, we show the contact interaction of boson-photon (BrN), which 

gives rise to a relativistic correction to the magnetic moment operator. 

The ~~ interaction in the ps-ps coupling scheme is given as 

with 

--I -- ~7f 
C 1+ K $);;r V1/"· 8 L 

..... -..) d,7f 
( I - b ) er·A T T 

-,... .I (10.20) 

The first line in Eq. (10.19) gives the local operator adopted in Ref. 

14). There ,however , remain the other momentum dependent terms, which 
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cannot be neglected in the general case. The non-local terms depend on 

the parameters in the unitary transformation. 

ThehNN and i/NN interactions are given as, 

(10.21) 

(10.22) 

These interactions in Eqs. (10.21) and (10.22) are uniquely given irre-

spective to the arbitrariness of F-W-T transformation. 

10.3. Strong Interaction Hamiltonian 

We need only the lowest order static boson-nucleon Hamiltonian in 

Eqs. (9.1-3). The relativistic correction of these boson-nucleon vertex 

gives the higher order relativistic correction to the non-static OBE 

current and we shall neglect these terms. Thus the boson-nucleon 

interaction Hamiltonians read 

:.,. -' -1 ,p" =: - 0-- V_ T 
211 ..... - " 

(10.23) 

3 ....I....Ip ~ -' -' .... ;iPl f. r u P T [D. ~ of' ~. p +- (lof'Up) rr x * .... " + q~ _, ,. 
r' '''''' : - Zii - l;r .L . dJ _./ (10.24) 

(10.25) 

Eqs. (10.23), (10.24) and (10.25) correspond to the pi-, rho- and omega-

meson nucleon interactions, respectively. We also have the rho-pion 

interaction of seagull-type· 

- 79 -



(10.26) 

The isobar-boson interactions are given in the static approximation as, 

HlI"'~ :: 1,,.,4 --' --' T 1'~ h. J'. Vn- + c. 
HI" - ...- ." 

(10.27) 

H{'NA = - f/WA -'...1 P - ,r x V,. r; T + h. c. It4f ....... -- ~ 

(10.28) 

where Sand T are the transition spin and isospin operators which 

couple the four component isobar to the two component nucleon. Their 

reduced matrix elements are defined as 

L~II S/l'x>=:2 
/ 

~ ~ 11 T 11 ',/2 >:: .2 • 
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Section 11. One-Body Magnetic Moment Operator 

From Eqs. (10.16) and (10.17), we obtian the one-body-magnetic 

r moment operator as 

(11.1) 

with (11.2) 

and 

(11.3) 

where ~ .... -1 ~ .... 
LS' =- )1.xfj- 01- Ys )t~'" .s , 

... ... -l 
0" .. :::' <1i 04- CT:l. 

Eq. (11.2) is a familiar static magnetic moment operator in the impulse 

apprximation, and Eq. (11.3) is the relativistic correction to the above 

operator. 
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Section 12. Two-Body Magnetic Moment Operator 

12.1. One-Boson-Exchange Magnetic Moment Operators 

The nucleon-type and pair-currents are expressed as 

(12.1) 

from which we obtian the magnetic moment operator as 

I J 

(12.2) 

The boson-type dissociation current is expressed as 

(12.3) 

and the exchange magnetic moment operator is 

..i 

C' j d.!J 
1217).1 (12.4) 

i) Recoil Current 

We have shown in sect. 2.4 that OBE nucleon-type current vanishes 

in the static limit. Therefore we have non-static correction due to 

nucleon recoil. These non-static operators have not been studied yet in 
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the pervious paper. The OBE current of nucleon-type is given as 

(12.5) 

(12.6) 

where 

Eqs. (12.5) and (12.6) correspond to pion and rho-meson exchange currents, 

respectively. The exchange current of omega-meson can be obtained by 

the following replacement in Eq. (12.6) 

(12.7) 

The magnetic moment operators associated with the intrinsic magnetic . 

moment are 

The omega-meson exchange current is obtained by the replacement of Eq. 

(12.7) in Eq. (12.9). The magnetic moment operator associated with 
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orbital motion of nucleon is 

j ...i_ ...... J 

where !!J 08 e:- I 3-'; J ;:TB (~.) dx 
12t/)J 

(12.10) 

(12.11) 

Ll I .u Lt) a ="i (p. - r:, • 

The omega-meson exchange current is obtained by the replacement of Eq. 

(12.7) in Eq. (12.11). The first terms of Eqs. (12.10) and (12.11) are 

the isosca1ar magnetic moment operators associated with non-static OBE 

potential as 

• [ l/oDE tJN 7 
I. Y NOII-S'#t:I ~ ..J • (12.12) 

These terms and the operators in EqR. (12.8) and (12.9) do not contribute 

to the deuteron magnetic moment, since they depend on the center of mass 

motion. 

ii) Dissociation Current 

The current associated with the dissociation of rho-me son into 

pion is given by 

(12.13) 

with 

and the corresponding magnetic moment operator is given as 
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(1,2.14) 

with 

iii) Pair Current 

Elimination of negative-energy component introduce the contact 

interaction of boson, nucleon and electromagnetic field, and gives rise 

to the pair current. The pion pair current with the strong interaction 

of ps-ps coupling is given as 

--'11 ..:r, I!I,.) C 

+ et: 1(Ji.~)] • (12.15) 

The rho- and omega-meson exchange currents are written as 

(12.16) 

(12.17) 

The OBE magnetic moment operators corresponding to Eqs. (12.15), (12.16) 

and (12.17) are 
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l' bp, '(J"I r, x.!1 ~'j - ( C ;: '!ll- (/I-I) t '1, ) r,)t di trJo.!Jj .,.. ( I~;V" (12.18) 

(12.19) 

(12.20) 

The first term in Eq. (12.18), which is local operator and free from the 

arbitrariness of unitary transformation, is taken into account in Ref. 14). 

However, ther is no reason to neglect the other momentum-dependent terms, 

although they depend on the unitary transformation. We shall take into 

account these non-local terms in the numerical calculation. The pair 

currents due to rho- and omega-meson are given irrespective of arbitrariness 

in the F-W-T transformation. 
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12.2. Two-Boson-Exchange Magnetic Moment Operators 

We shall show the isoscalar part of TBE static magnetic moment 

operators. We obtain the nucleon-type current and also the boson-type 

currents, as shown in Fig. 11. We shall express the spatical current 

density of the nucleon and the corresponding magnetic moment operator, 

respectively, as 

(12.21) 

and 

(12.22) 

where p abd q are the momenta of the exchanged two bosons (~~), 

such'.as (rr,n) , (f,ff) and Cf~). The dissociation current in momentum 

space is given as 

(12.23) 

which leads to the magnetic moment operator as 

(12.24) 

where q is the momentum of the exchanged boson f. 
We shall explain the nontation by which we shall express the TBE 

magnetic moment operators hereafter. The upper (lower) sign of the 

operators correspond to the uncrossed (crossed) boson-exchange diagrams. 
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l;J .k1 hi.1dW ld 
~Ff FQ, 19 F1 19 A 
1 . 2 (a) (b) (c) . 

-M .. ~. Pf 
(d) (e) 

~ ~ ~ ~ ~.~ ~ ~ 
(g) (h) (1) (j) 

Fig. 11 Typical diagrams in the time ordered perturbation which con-

tribute to TBE magnetic moment operators. 

The boson-nuc1eon coupling constants are denoted as f and g, and they 

are summarized in table 1. The contributions of the energy denominator, 

i. e., G in Eq. (2.54), are included in the function I(p,q) and their 

explicit forms are given in Appendix B. It is noticed that the contri-

butions from lots of time ordered diagrams in the unitary transformation 

method are expressed by a simple integral form, as will be seen in the 

following. This is easily understood in the S-matrix method. The 

-r rP'~ rf"11" 
vertices are denoted as &x' I J(, IJx and l)t ,and they are summarized 

in table 2. We also used the following symbols: 

(12.25) 

where A = 1'14 -11. 

Here H and MA are the masses of nucleon and isobar, respectively. In 

the following, we shall show only the expression for the spatica1 current 
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density, magnetic moment operator and function I(p,q). 

i) TBE Currents due to Intrinsic HagneticNoments 'of "Nuc.1eon:'.arid 

Isobar 

a) N-U Intermediate State 

. The currents associated with the diagrams in Fig. 11-a are l-1ritten as, 

(12.26) 

(12.27) 

with 

(12.28) 

b) N-~ Intermediate State 

The currents associated with the diagrams in Fig. lIb are written as, 

(12.29) 

(12.30) 

with 
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The currents associated with the diagrams" in Fig. 11-c are written as, 

(12.32) 

(12.33) 

with 

c) ~ ~ Intermediate State 

The currents associated with the diagrams in Fig. 11-d are written as, 

(12.35) 

(12.36) 

with 

(12.37) 
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d) f-~ Exchange Currents due to Seagu11 Interaction 

The currents associated with the diagrams in Fig. 11-e are written as, 

I', 

(12.38) 

(12.39) 

with 

(12.40) 

The currents associated with the diagrams in Fig. 11-f are written as, 

(12.41) 

(12.42) 

with 

(12.43) 

ii) TBE Magnetic Moment Operator due to Convection Currents of Nucleon 

and Isobar 

a) N-N Intermediate State 

The currents associated with the diagrams in Fig. 11-a are written as, 

(12.44) 
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(12.45) 

b) N-4 Intermediate State 

The currents associated with the diagrams in Fig. 11-b are written as, 

(12.46) 

(12.47) 

The currents associated with the diagrams in Fig. 11-c are written as, 

(12.48) 

f clP{f/1):- -12~ P'4(JI7!rJ 4J{f/J} [(;) 'Yx r;.+ • (: ) R ~;;) . 
(12.49) 

c) Ll-J Intermediate State 

The currents associated with diagrams in Fi8. 11-d are written as, 
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(12.50) 

(12.51) 

d) t -li Exchange Currents due to Seagu11 Interaction 

The currents associated with the diagrams in Fig. 11-e are written as, ' 

The currents associated with the diagrams in Fig. 11-f are written as, 

(12.55) 

iii) TBE Magnetic Moment Operator due to Dissociation Current of Rho-

Meson into Pion 
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a) N-N Intermediate State 

The currents associated with the diagrams in Fig. 11-g are written as, 

(12.56) 

(12.57) 

with 

(12.58) 

(12.59) 

b) N-Ll Intermediate State 

The currents associated with the diagrams in Fig. 11-h and Fig. 11-i 

are written as 

(12.60) 
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(12.61) 

with 

X (X-,d r.'~ J(1!.l' ~/GJJ-t 
" (12.62) 

(12.63) 

c)A -~ Intermediate State 

The currents associated with the diagrams in Fig. 11-j are written as, 

(12.64) 

(12.65) 

with 

(12.66) 
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Section 13. Numerical Results and Discussions 

Here, the exchange current operators are expressed in the configu-

ration space, as shown in Appendix C. We have-evaluated the magnetic 

moment of deuteron using the wave function in the Reid-potentia1, and 

the explicit fQrms of magnetic moment are shoWn in Appendix D. 

13.1. Parameters in Operators of Exchange }~gnetic Moment 

I We adopt following values of the coupling constants for boson-

baryon interactions_in our numerical calculations. 

i) Electromagnetic Interaction 

a) Magnetic Moment of Nucleon and Isobar 

The isosca1ar magnetic moments of nucleon and isobar are given as 

follows: 

(13 .1) 

(13.2) 

with 

Here the quark model prediction is used for the magnetic moement of the 

isobar. 

b) f1f 0 Coupling Constant 

The i~r coupling is determined from the decay width40) as 

(13.3) 
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h d h 1 ° h f h k d 1 dO i 39) were we a opt t e re at1ve p ase 0 t e quar mo e pre 1ct on ~ 

ii) Strong Interaction Hamiltonian 

a)7fNN Coupling Constant 

(13.4) 

b) ~ Coupling Constant 

The fNN coupling constant is given from the vector dominance model 

as 

(13.5) 

while from Ref. 41) as 

~l/41f:: o. SS (13.6) 

In our numerical calculations, we give the results for a fixed value 

of ~/4~= 0.52 with an adjustable parameter ~. 

c) tUNN Coupling Constant 

(13.7) 

Here, the quark model prediction is used for gw' 

d) TN~Coup1ing Constant 

The coupling constant of"'iru'4 vertex is predicted as 

:: 0.2..3 (13.8) 
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in the quark model, while it is determined from the decay width 42) of 

isobar as 

(13.9) 

We show our numerical results with an adjustable paeameter f~. 

e) fN4 Coupling Constant 

The quark model predicts 

(13.10) 

iii) Vertex Functions 

a) 7f NN Vertex Func tions 

We adopt thenNN vertex function below 

(13.11) 

with 

b) fNN Vertex Function 

The ftiN vertex function is not well known yet. Two types of vertex 

function is usually adopted 

(13.12) 
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," 

(13.13) 

with 'l'PdI - 2 GeV45). Here we have fixed f..p= 1450 MeV and studied the 

above two different forms of vetex function in Eqs. (13.12) and (13.13). 

We have assumed the same vertex functions for N-~ vertex as those 

for N-N. The introduction of vertex functions is phenomenological one. 

Therefore the current conservation law which we have shown in sect. 6 

do not hold exactly, if we introduce the vertex functions. Additional 

electromagnetic interactions in the structure of vertices are required. 

However, we shall neglect these currents, where we need the model of 

vetex functions to take into account these currents. 

13.2. Numerical Results and Discussions 

Our numerical results are given in table 3'" 7. 

i) Relativistic Correction of One-Body-Current 

The relativistic correction of one-body-current is shown in table 3. 

Here, we fixed the arbitriness of F-~'l-T transformation as a = O,which 

is called gauge invariant reduction. The gauge invariance is always 

satisfied at the each step of F-W-T transformation, that is the combi-

...I ..J 
nation, p - eA, holds at each step. The relativistic correction is 

about - 0.01 n.m., which has an opposite sign to that of Afl. in exp 

Eqs. (8.11) and (R.12). This correction is rather dependent on the 

choice of nuclear wave function. Since the relativistic correction is 

essentially the expectation value of kinetic energy operator (see Eqs. 

(D.8) - (D.IO», the dependence of relativistic corrections in the soft-

core and hard-core wave functions is due to the different kinetic 

energies between them, in other words, due to different potential energies. 
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ii) Contribution of Exchange Current 

At first we shall study the model dependence of the exchange magnetic 

moment contributions due to I<J> and the choice of .fNN vertex function, 

where we shall fix the parameter f'~4 and the F-W-T transformation as 

~NA = 0.23 • a = 0 and c = -1. Two choices of theJ'NN vertex functions, 

(13.12) and (13.13), change the effective coupling constant of rho-meson. 

From table 4, we can see that the total contribution of exchange magnetic 

moment is rather stable, however, the relative importance of OBE and 

TBE currents varies with the magnitude of ~. In either case, the 

contribution of TBE current is non-negligible in the magnetic moment of 

deuteron. In what follows, we shall fix ~ = 3.7 and take the vertex 

function of Eq. (13.13). 

a) OBE Current 

The contribution of OBE current is shown in table 5. Non-static 

correction of OBE recoil current is small as we see in table 5.1. The 

pion pair current depends on the parameter c of unitary transformation. 

This parameter also affects the correponding relativistic correction of 

one-pion-exchange potential. The choice of c = 0 means that dof and 

o"~# are eliminated at the same time, and the choice of c = -1 means 

that et'; is eliminated a~ first and then o,NIi is eliminated, which 

correspond to the Foldy interaction picture. In table 5.3, contribution 

of pion-pair current is shown, where the local term given by Gari and 

14) 
Hyuga ,and the non-local term with the different choices of unitary 

transformation are shown. There is non-negligible contribution of 

non-local terms. We shall fix c = -1 in the follwing discussion. It 

is noticed that if we construct the nuclear potential to obtain the 
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deuteron wave function and the exchange current by the same model, 'the 

arbitrariness of unitary transformation does not appear in the matrix 

element. 

The sum of OBE current contributions, i. e. , recoil, dissociation 

and pair current is about 0.016 n.m. (0.015) using H. C. (S. C.) wave 

function. Here, the S-D matrix element gives the most important contri­

bution reflecting the tensor character of OBE current. It is noticed 

, that the exchange current contribution is rather independent on the choice 

of deuteron wave function compared with the case of relativistic correc­

tion. This is also seen in the TBE current. 

b) TBE Current 

The contributions of TBE currents are shown in table 6. The most 

important effects of TBE current are those of the N-N intermediate state. 

The contribution of N-J intermediate state is as important as that of 

theJ,6 intermediate state, and these two contributions are destructive 

to each other. Here, only the diagrams of crossed-bosonexchanges with 

the N.Q intermeidate state contribute to the isoscalar magnetic moment 

of deuteron. The (f,~) exchange processes reduce the contribution of 

(~,~) exchanges. This cancellation makes the TBE contribution smaller 

when thefNN coupling becomes stronger. Here, we have neglected the 

(w,~) exchange current, since their contribution is negligible. We show 

the contribution of (~,rt) exchange current in table 6.4, which is 

evaluated with m..., = ~ (= 770 MeV). We cannot neglect the destructive 

contributions of S-D and D-D matrix elements, which are neglected in 

Ref. 15). It is noticed that many TBE processes have equally important 

contributions and they tend to cancel to each other. Therefore, it 

is quite dangerous to evaluate TBE current by taking only a special type 
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of diagrams among many boson-exchange processes. We obtained the total 

contribution of TBE currents to be 0.006 n.m. (0.007) using H.C. (S.C.) 

wave function. 

iii) Magnetic Moment of Deuteron 

Our results are summarized in table 7. ~ can be explained so far 

by the OBE current which coincides with the result of Ref. 14). However, 

the relativistic correction tends to cancel the OBE contribution, and 

the sum of the OBE current and relativistic correction cannot explain 

the discrepancy 4fl. If we take into account the contribution of TBE 

current together with the relativistic correction and OBE current, the 

discrepancy between the experimental magnetic moment and the calculation 

in the impulse approximation is solved. 

We shall discuss some problems in the other approaches to study 

mesonic and isobar degrees of freedom. At first we shall point out the 

problem in the S-matrix method of TBE current bt Jaus15). The main 

difference between the unitary transformation method and S-matrix method 

of Jaus occurs in the diagram in Fig. 9-d, which is the uncrossed TBE 

current with the N-N intermediate state. In Ref. 15), the TBE current 

is derived by subtructing the iterated term of static OBE potential from 

the S-matrix element as 

(13.14) 

Then the limit is adopted as 

(13.15) 
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This TBE current is a half of the one from the unitary transformation 

method, 

(13.16) 

Since the non-static potential and exchange current are not defined in 

Ref. 15), and they are not subtracted from the S-matrix element, we cannot 

regard 
",,;SE,,» 
O$~ as the true TBE current. In Ref. 15, c-number normali-

zation method is also adopted. It is noticed, however, that the S-matrix 

method is incompatible with the c-number normalization method, because 

if we define OBE potential, OBE current and TBE potential, and subtract 

their contributions from the S-matrix element, the true TBE current is 

automatically obtained without taking into account the normalization 

correction. 

Some authors26) treat the isobar as the explicit constituent of 

nucleus by the coupled channel method. This method cannot take into 

account the crossed-boson-exchange diagrams, while we have seen that the 

crossed diagrams of N-~ intermediate state is as important as the LI-A 

intermediate state. Then the coupled channel approach to study the 

effects of isobar will miss to take into account the important effects 

from the crossed-boson-exchange diagrams. 
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Section 14. Conclusion and Remarks 

We have obtained a consistent explanation of the difference between 

the experimental vale of the magnetic moment of the deuteron and that 

of the impulse approximation by taking into account the TBE current 

together with OBE current and relativistic co·rrection. We found that 

the contribution of the TBE current is important to solve this discrepancy, 

in which the TBE current with two-nucleon intermediate state has the 

most important contribution. It is noticed that the correct derivation 

of exchange current is especially important in the TBE current with the 

two-nucleon intermediate state. For example, naive S-matrix method 

give the incorrect TBE currentlS). We found many types of TBE processes 

are equally important. Therefore it is very dangerous to evaluate multi­

boson-exchange currents by taking into account the special types of 

diagrams. In the coupled channel approach to include the isobar degrees 

of freedom, the crossed diagrams are not taken into account consistently 

as the uncrossed diagrams. 

In the OBE current, the pion-pair current has the most important 

contribution. The non-local part of pion-pair current depend on the 

choice of F-lV-T transformation. To resolve this arbitrariness, we should 

use the deuteron wave function which is obtained. from the nuclear 

potential derived by the same F-lV-T transformation as in the exchange 

current. 

The individual contributions of OBE and TBE currents depend on the 

ambiguity of coupling constants, however, the similar model-dependence 

also appears in the nuclear potential derived from the boson-exchange 

model. The model-dependence of potential turns back to the magnetic 

moment in mainly the relativistic correction ans D-state probability. 
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Then the consistent treatment of nuclear potential and exchange current 

will solve a part of these ambiguities. In the next step of our study~ 

we shall investigate the nuclear potential in the same model of boson­

nucleon system as the exchange current~ and study the properties of 

two-nucleon system as the testing ground of realistic model of exchange 

current •. 

) 
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Appendix A. Elimination of Negative Energy Component 

We shall show the elimination of the negative energy component of 

nucleon by the Foldy-Wouthuysen-Tani transformation~5) In this case 

there appear ambiguities due to unitary transformation as the terms 

-2 with order H or higher order in the reduced Hamiltonian. We shall 

show them along the work of Hyuga and Gari37) for the purpose of the 

clear discussion in part 11. The one-body-nucleon Hamiltonian is 

(A.l) 

where Z and o are the operators associated with even and odd Dirac 

matrices, respectively. By the usual method of the F-W-T transformation 

the transformed Hamiltonian hFWT is 

(A.2) 

This Hamiltonian is obtained when we eliminated all the odd operators 

at the same time. If we eliminate a part of the odd operator (A) at 

the first time and then eliminate the rest (B), we obtain a different 

reduced Hamiltonian hmv-r(A,B) as 

(A.3) 
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where 

They are related by the unitary transformaiton within the positive 

energy space. 

h P/vr fA If! / = (A.4) 

with 

= or -' - .. 

It is noticed here that this reduced Hamiltonian by the F-W-T transfor-

mation is also obtained from the unitary transformation method in sect. 1. 

In this case the Z and A spaces are regarded as the positive and 

negative energy components, respectively. And the free Hamiltonian HO 

corresponds to f M. z: and 0 are the interaction Hami1tonians. 
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Appendix B. Energy Denominator Functions for TBE Magnetic Moment Dperators 

N . 
At first we shall define the following functions I~f (n) and 

(B.1) 

and 

(B.2) 

with 

The following relations between I~ and IN are easily proved. 

(B.3) 

(B.4) 

(B.5) 

The energy denominator functions of TBE magnetic moment operators 

are given by using functions r!p{n) and r1p{n,m). 

(B.6) 

(B.7) 

- 109 -



rod ~ '" 0/ ) 
- ""'I' 0,,) - A' Z'P '/_ 

- .:z::; l~ I) ..... (B.8) 

:r:": (f,' J. ( 
--L rod I od ) - .2~' ""'f(:1} -:zAZ~f (/,» 

- T "'I' (/,.j) ./ (B.9) 

(B.10) 

(B.11) 

(B.12) 

(B.13) 

(B.1S) 

(B.16) 
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Appendix C. Configuration Space Representation of Exchange Current" 

C.1. Fourier Transformation of Energy Denominator Functions 

i) OBE Current 

We shall define the following integrals, 

~/" (:0 = 

with a-d 

The explicit forms of these functions are written as 

e-X -X '" 

Y- co --L- e-)( 1/ I ,;r} od. _ 

D" / 
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(C.1) 

(C.2) 

(C.3) 

(C.4) 

(C.S) 

(C.6) 

(C.7) 

(C.8) 

(C.9) 



(C.ID) 

(C.II) 

(C.12) 

The monopole type vertex function is taken into account by the modifica-

tion of Eqs. (C.I) and (C.2) as 

(C.13) 

(C.14) 

for the nucleon-type current. And for:the dissociation current,the 

function 

I 

,/ 

where 

is replaced to include vertex function as 

(C. IS) 

Eqs. (C.13) and (C.IS) are written by using Eqs. (C.I) and (C.2) as, 

(C.16) 
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(C.I7) 

\ 

(C.18) 

ii) TBE Current 

The configuration space representation of TBE current is obtained 

by the following type of integral. 

(C.l9) 

Here I(p,q) represents the function I given in Eqs. (B.6) - (B.l6). To 

perform the integrals over p and q, we shall rewrite Eqs. (B.1) and 

(B.2) as the following forms. 

(C.20) 

(C.2l) 

I.J(' (4.J = (C.22) 

(C.23) 

7~{//~ J = i [dZ (/-~~~:) [rr14 ~J!rfl4f) t;rl-lAl/J]-1 (C.24) 
/' 
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(C;25) 

I~ 12, /} (C.26) 

(C.27) 

(C.28) 

(C.29) 

where 

Using Eqs. (C.3) - (C.12) and.(C.20) and (C.29), the TBE currents are 

transformaed into configuration space representation. For example, we 

have 

and 

where 

." .; [~ .. /"'rJ.I') r..,~If'(J4tt' r/ ~ lj,,,I"'-lrJ ~N'Cl>lp'l"'l 
...-
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Here the integral over z is performed numerically. The vertex functions 

are easily taken into account by the similar way as in the OBE currents. 

C.2. Configuration Space Representation of Exchange Current 

We show only the operaotrs which contribute to the magnetic moment 

of deuteron. 

i) Notation 

At first we shall summarize the symbols used hereafter. 

I 

S/~ .: COi·~) ((J'~' r ) .-!. (cr'.(J"~) / 
J 

~G '" 
..., I ((TI0(T~) 

(C.32) 
0z .: t. (Jj(J) ~). r r - -.3 .... 

with G> ;: z X , . 

ii) OBE Current 

a) Recoil Current 

Non-static correction of recoil current due to convection current 

is given in pion exchange as 
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-to (er, (a"z' p) + cr~ (0"'. ~) ) )( Q IJIl. ( ... )] 
~ (C.33) 

where 

(C.34) 

(C.35) 

(C.36) 

and the rho-exchange current is 

(C.37) 

where 

(C.38) 

(C.39) 

(C.40) 

+:a. C yJ = ' '(", I »4f' vj .. 
V (C.41) 
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The omega-exchange current is obtained by the following replacement 

in Eq. (C.37) , 

(C.42) 

b) Dissociation Current 

The OBE current due to dissociation of rho-meson into pion is given as, 

(C.43) 

where 

(C.44) 

.fx {y J :: - [Y.z~~ (Ill" YI - Y.;e~ '~f J-' l. (C.4S) 

c) Pair Current 

Pion-pair current is written as 

+ [( b-c . I+C [ L.J -:v- - ~ I<s) er' ((J'~.p ) + r:r~~oJ· ~) ] x ex 

(C.46) 
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The rho-pair current is written as 

(C.47) 

The omega-pair current is obtained from Eq. (C.47) by the replacement 

of Eq. (C.42). 

iii) TBE Current 

We shall define J and J from Eq. (C.19) as 

(C.48) 

(C.49) 

The TBE currents are given by using the configuration representation 

of radial functions J and 1: In what follows, we shall drop the suffix 

in energy denominator functions due to different intermediate states 

in Eqs. (B.6) - (B.16). The upper (lower) part of the following 

equations show the contributions of uncrossed (crossed) diagrams. In 

the expressions in sub-section iii.l. a)- c) and iii.2. a) - c), only 

the expressions for the two-pion-exchange currents are shown. For the 

(f,~) and Gf,f) exchange currents, function J should be replaced as 

follows. J OO should be replaced as 

4-';;'0 for (f,7() exchanges 

and 

for (f,f) exchanges. 
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J
02 

+ J
20 

should be replaced as 

r for (f;Tl.) exchanges, 

and 

J
22 

should be replaced as 

for C/',l[) exchanges. 

and 

for (/,j) exchanges. 

iii.1. TBE Current due to Intrinsic Magnetic Noment of Nucleon and 

Isobar 

a) N-N Intermediate State 

(C.50) 

with 

(C.5l) 

(C.52) 
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b) N-Lllntermediate State 

Operators corresponding to the diagrams in Fig. 11-b are written as, 

(C.53) 

with 

(C. 54) 

(C. 55) 

(C.56) 

(C.57) 

Operators corresponding to diagrams in Fig. 11-c are written as 

(C.58) 

with 

f~ I ~/ [(:~) :r.o ~ ( ~::)~j 
/ 

(C.59) 

(C.60) 
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c) L1- D" Intermediate State 

(C.61) 

with 

(C.62) 

(C.63) 

(C.64) 

(C.65) 

d) f -~ Exchange Current due to Seagu11 Interaction 

Operators corresponding to diagrams in Fig. 11-e are written as 

iT " N [ < --"ct-I-r :: It f !' S' rl. 7:~ :; In- - Tu J:7"" / (C.66) 

and the operators corresponding to diagrams in Fig. 11-£ are written as, 

(C.67) 

iii.2. TBE Current due to Convection Current 

a) N- N Intermediate State 
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(C.68) 

Here, only uncrossed diagrams contribute to magnetic moment of deuteron. 

b) N-~ Intermediate State 

(C.69) 

with (C.7D) 

(C.7l) 

(C.72) 

(C.73) 

(C.74) 

c) 11-4 Intermediate State 

(C.75) 

with 

(C.76) 
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j]} = :; (C.77) 

(C.78) 

d) f -if Exchange . Current due to Seagull Interaction 

Operator corresponding to diagrams in Fig. ll-e is written as 

/ 
(C.79) 

and the operator corresponding to diagrams in Fig. ll-d is written as 

(C.80) 

iii.3. Dissociation Current 

Here, the radial functions of exchange currents are defined as 

I (C. 81) 

For example, the radial function of N-N intermediate state ~:';!~1 is 

given as 

(C.82) 

with 
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r 

In what follows we shall show the r -71 exchange currents. The 

ft' -f exchange currents are obtained by the replacement in th~-71 exchange 

currents as follows. J oo should be replaced as 

for fr- fexchange currents ..... 

J
02 

+ J
20 

should be replaced as 

for f1r-J exchange currents 

J
22 

should be replaced as 

for fT-f exchange currents. 

a) N-N Intermediate State 

(C.84) 

where 
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with x = NN 1 a-td r.: NN2. 

b) N-ll Intermediate State 

(C.BS) 

where 

c) A-l1 Intermediate State 

(C.89) 

with x .. A~. 
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Appendix D.Matrix Elements or Uagnetic Moment Operators 

We summarize the matrix elements of magnetic moment operators 

r by using the deuteron wave function in Eq. (8 •. 3). At first we shall 

explain the notation to express the matrix elements in the following. 

The contributions of the magnetic moment of deuteron are divided into 

s-s. S-D and D-D matrix elements as <: MSS>' <. MS~ , <Mnn>, respectively:. 

(D.l) 

We denote the derivative operator on the radial wave functions of S- and 

D-;;aves as 

(D.2) 

and we also define 

/...s 
f) (D.3) 

Here, following equations are useful to calculate the magnetic moment 

due to two-body operators. From the magnetic moment operator as the 

following form, 

(D.4) 
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r 

we obtained the contributions to the magnetic moment of deuteron as, 

(D.S) 

(D.6) 

(D.7) 

In what follows, we shall show the contributions of relativistic 

correction of one-body-current (AP 1 ), one-boson-exchange current 
Ire .cor. 

(~OBE) and two-boson-exchange current(JWTBE) to the magnetic moment 

of deuteron. 

D.l. Relativistic Correction of One-Body-Current 

(D.8) 

(D.9) 

(D.lO) 

where 

(D.ll) 

(D.12) 
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Do2o One-Boson-Exchange Current 

i) Recoil Current 

r a) Pion-Exchange Current 

(Do13) 

(Do14) 

. (Do15) 

b) Rho-Exchange Current 

11$:$ = 0 
/ (Do16) 

(Dol7) 

(Dola) 

c) Omega-Exchange Current 

(Do19) 

(D o 20) 

(Do 21) 
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ii) Dissociation Current 

iii) Pair Current 

a) Pion-Exchange Current 
,.., 

Here, we define H as 
x 

The matrix element of local current is 

-t1sS' = 

The matrix element of non-local current is 
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(D.22) 

(D.23) 

(D.24) 

(D.25) 

(D.26) 

(D. 27) 

(D.28) 

(D.29) 



(D.30) 

b) Rho-Exchange Current 

(D.31) 

(D.32) 

(D.33) 

c) Omega-Exchange Current 

(D.34) 

(D.35) 

(D.36) 

D.3. Two-Boson-Exchange Current 

Here, we shall show the contribution of two-pion-exchange current 

due to the nucleon-type currents and dissociation current, except the 

currents due to the fn seagu11-type interaction. The rho-exchange is 

taken into account by performing the replacement which is shown in 

Appendix C.2. iii). 

i) TBE Current due to Intrinsic Magnetic Moment of Nucleon and Isobar 

a) N-N Intermediate State 
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(D. 37) 

(D.38) 

(D.39) 

b) N-~Intermediate State 

Here, only the crossed diagrams contribute to the magnetic moment 

of deuteron. Contributions due to diagrams-in Fig. 11-b are 

(D.40) 

(D.41) 

(D.42) 

Contributions due to diagrams in Fig. 11-c are 

(D.43) 

(D.44) 

(D.45) 

- 131 -



r 

c) A-A Intermediate State 

d) t -71 Exchange Current due to Seagu11 Interaction 

Contributions due to diagrams in Fig. 11-e are 

tfss = - /4:f P I's3N~ 

contributions due to diagrams in Fig. 11-f are 
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(D.46) 

(D.47) 

(D.48) 

(D.49) 

(D. 50) 

(D. 51) 

(D. 52) 



(D.54) 

ii) TBE Current due to Convection Current 

Here, only the uncrossed diagrams in N-N intermediate state and 

crossed diagrams in N.d intermediate state have the contribution in 

deuteron magnetic moment. 

a) N-N Intermediate State 

(D.5S) 

(D.56) 

(D.57) 

b) N-Ll Intermediate State 

The contributions due to diagrams in Fig. 11-b are 

(D.5S) 

(D.59) 

(D.60) 

The contributions due to diagrams in Fig. 11-c are 
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H e J././l ( 4 ) 
SS' = 3iH f J j:u / (D.61) 

(D.62) 

(D.63) 

c) .1-11 Intermediate State 

(D.64) 

(D.65) 

(D.66) 

d) f -1i Exchange Current due to Seagull Interaction 

The contributions due to diagrams in Fig. 11-e are 

If sp := ~ j'" (- 4- ~) ::r", (D.68) 

11 pp = ~ ffJ (- tPJ::r1l • (D.69) 
:l.H 

The contributions due to diagrams in Fig. 11-£ are 
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H ss = --L f.!J (-!!.) 3" 
..2 H..r ., " 

(D.70) 

(D.7l) 

(D.72) 

iii) Dissociation Current 
~ -1 -J 

VIe shall define the matrix element of operators aAit', 0sJ( and YcJt 

as the following. 

(D.73) 

(D.74) 

(D.75) 

(D.76) 

(D.77) 

(D.78) 

(D.79) 

1'$1:1 
U c." ;( :r 

(D.BO) 

(D.Bl) 
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In what follows we shall drop the suffix SS, SD and DD. 

r 
a) N-N Intermeidate State 

(D.82) 

b) N-A Intermediate State 

(D.83) 

c) Li- 11 Intermediate State 

(D.84) 
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Table 3. Contribution of Relativistic Correction to Magnetic Moment 

of Deuteron 

r S - S S - D D - D SUM 

H.C. -0.0110 -0.0002 -0.0014 -0.0127 

S.C. -0.0064 -0.0000 -0.0012 -0.0077 

Table 4. Contribution of OBE and TBE Magnetic Moment Operators 

Here we have used 'tvave function from H.C. potential and the 

following parameters: f2 6/4~ = 0.23, a = 0 and c = -1. 
~N 

4.1. Contribution of Exchange Current for Different K 
p-

K 3.7 5.15 6.6 
P 

OBE 0.0164 0.0172 0.0180 

TBE ·0.0062 0.0044 0.0025 

SUM 0.0226 0.0216 0.0205 

4.2. Contribution of Exchange Current for Different Choice of Vertex 

Function. 

A and B correspond to the choice of vertex functions of Eqs.(13.13) 

and (13.12), respectively. 

A B 

OBE 0.0164 0.0195 

TBE 0.0062 0.0033 

SUM 0.0226 0.0228 



Table 5. Contribution of OBE Current to Magnetic Moment of Deuteron 

The upper (lower) values show the contribution of OBE current . 
r using H. C. (S •. ·C. ) wave function. We have used K = 3.7 and vertex 

. p 

functions of Eqs. (13.11) and (13.13). 

5.1. Contributions of Recoil, Pair and Dissociation Currents to 1l0BE. 

In the recoil and pair currents, individual contributions of ~, P 

and w exchanges and their summed contributions are shown. 

~ p w SUM 

Recoil -0.0008 -0.0001 -0.0001 -0.0009 

-0.0011 -0.0000 -0.0001 -0.0012 

Pair 0.0108 0.0030 -0.0018 0.0120 

0.0095 0.0033 -0.0020 0.0109 

Dissociation 0.0053 

0.0049 

1l0BE 
0.0164 

0.0146 

5.2. 
1l0BE 

due to S-S, S-D and D-D Matr~ Elements 

S -'S S - D D-D 

Recoil 0 0.0001 -0.0010 

0 -0.0001 -0.0010 

Pair 0.0031 0.0108 -0.0018 

0.0029 0.0099 -0.0018 

Dissociation -0.0005 0.0045 0.0013 

-0.0008 0.0045 0.0013 

SUM 0.0026 0.0154 -0.0016 

0.0021 0.0142 -0.0016 



5.3. Contribution of Pion-Pair Current to ~OBE. 

A and B show the choice c = 0 and - 1, respectively. 

Local Non-Local Slm 
. 

r 0.0033 0.0120 
0.0087 (A) 

0.0084 0.0035 0.0119 

0.0021 0.0108 
(B) 

0.0012 0.0095 

Table 6. Contribution of TBE C~rrgnt_·to Mcignetic Moment of Deuteron 

We denote the contributions of TBE currents in sect. 12.1. i), 

ii) and iii) as Intrinsic, Orbital and Dissociation, respectively. 

The vpper (lower) values show the contributions of TBE currents using 

H.C. (S.C.) wave function. 2 We have adopted Kp = 3.7, f~N~/4~= 0.23 

and the vertex functions of Eqs. (13.11) and (13.13). 

6.1. ~TBE due to N-N, N-~ , ~-~, N and ~ Intermediate States 

N and ~ represent the contributions of diagrams in Fig. 11-e and 

11-f, respectively. 

N - N N-~ N SUM 

Intrinsic ~.0163 -0.0037 0.0033 -0.0015 0.0003 0.0148 

0.0180 -0.0043 0.0040 -0.0021 0.0005 0.0161 

Orbital -0.0068 0.0014 -0.0013 0.0004 -0.0001 -0.0064 

-0.0072 0.0015 .':"0.0015 0.0006 -0.0001 -0.0068 

DIssociation -0.0038 0.0017 -0.0001 -0.0022 

-0.0041 0.0019 -0.0001 -0.0023 

SUM 0.0057 -0.0006 0.0019 -0.0011 0.0003 0.0062 

0.0067 -0.0010 0.0023 -0.0015 0.0004 0.0070 



r 

6.2. J-lTBE due to 1T-1T, 1T-P and p-p Exchange Currents 

1T - 1T 1T - P P - P 

. Intrinsic 0.0207 -0.0062 0.0003 

0.0240 -0.0086 0.0007 

Orbital -0.0085 0.0022 -0.0001 

-0.0097 0.0032 -0.0003 

Dissociation -0.0029 0.0007 

-0.0032 0.0008 

SUM 0.0094 -0.0033 0.0002 

0.0112 -0.0046 0.0004 

6.3. llTBE due to S-S, S-D and D-D Matrix Elements. 

S - S S - D D -D 

Intrinsic 0.0226 -0.0047 -0.0031 

0.0236 -0.0046 -0.0030 

Orbital -0.0110 0.0033 0.0014 

-0.0113 0.0033 0.0013 

Dissociation -0.0023 -0.0001 0.0002 

-0.0026 0.0000 0.0002 

SUM 0.0093 -0.0015 -0.0016 

0.0097 -0.0012 -0.0015 

6.4. Contribution of (1T-W) Exchange Current to J-lTBE 

Intrinsic Orbital 

-0.0004 -0.0002 

-0.0004 -0.0002 

Dissociation 

0.0003 

0.0004 

SUM 

-0.0003 

-0.0002 
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