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Abstract

A method to treat cohesive properties of transition
metal alloys such as the lattice parameter and the bulk modulus
and so on is dévoloped. It is baéed on the virial theorem
which has been used in the studieé of the cohesive properties
of pure metals by Liberman and Pettifor.A The merit of this
method lies in the fact that the ambiguity in thevdouble
counting>term can be'avoided in the pressure expression,rand
that the volume dependence of Qarameters can be easily deter-
mined from the results of the first principle calculation for
the pure metal, which enable us to discuss the cohesive
properties of the real transition metal alloys semi-quantitati-
vely. This method is applied to the calculation of the lattice
parameters of the Nb-Zr ailoy and the Pd base 4d transition
metal alloyé in Pért I, and its usefulness is verified. It is
also found that the origins of thé deviation from Vegard's law
- lie in the gain of the bond energy of the d electron and in the
s—-d charge transfer effect. In Part II, the cohesive proper-
ties of 3d transition metal alloys are elucidated qualitative-
ly on the basis of the electronic structure. The formation
energy, the deviation from Vegard's law and the change of the
bulk modulus of the Cu-Mn alloy, the xFe base 3d transition
metal alloys and the Ni base 3d transition metal alioys are
calculated on the basis of the virial theorem with the two-band
tight binding model. The results agree well with the experi-

mental trends. It is shown that the magnetic pressure can be



expressed approximately by a iinear combination of the squares
of the local magnetic moment and that the changes of the
lattice parametérs with the concentration in the 3d transition
metal alloys are determined mainiy by the change of the magni-
tudes Cf_the local magnetic momenf. This conclusion gives a
justification of the empirical expression for the maghetiC'
alloys which is found by Shiga and Schlosser. The importance
of the magnetic effect is also pointed out in the formation
energy and the bulk modulus. In Part III, ﬁhe theory is
extended to finite temperatures. Liberman-Pettifor's expression
is given from the most general point of view. Then, the expres-
sions for the spontaneous volume magnetostriction, the électr-
onic contribution to the thermal expansion coefficient, the
forced volume magnetostriétion énd the bulk modulus at finite
temperature are obtained with use of the static approximation
in the functional integral formulétion. On the basis of these
expressions, it is deduced that the origins of the so-called

invar_effect do not lie in the wvanishing of the spontaneous
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, magxﬁizaﬁim;nor:hl the directional change of the local moments
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but in the change of the amplitude of the local magnetic moments
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and the chargé transfer effect between s and d orbitals.
Furthermore, it is shown that the empirical formula for the
magnetic pressure and the Welss model can be derived from
our point of view. A preliminary result of the calculation
for the spontaneous magnetostriction and for the magnetic
contribution to the thermal expansion coefficient in «Fe is

also outlined and discussed.



Introduction



Cohesive properties of pure transition metals in the
ground state have been investigated in last few years in
detail, and many calculations for their cohesive properties
have been perfbrmed. At present, it is known well that the
energy band theory can explain théir,properties quantitative-
1ly except for the 3d transition metal. It has been shown by
' Moruzzi, Janak and Williams(l) in the most detail. They have
calculated the cohesive energy, the lattice parameter and the
bulk modulus for all metals from Li to In on the basis of the
selfconsistent local spin density functional theory and have
obtained a remarkably godd agreement with the observed value.

On the other hand, the respective roles of sp electron
and d electron in transition metals have been also elucidated
by Pettifor(2)’(3>and Gelétt et al.(u). They have shown that
s electrons‘cause the repulsive force and d electrons .cause
the attractive force at the equilibrium volume. ?hey have
also verified that there is the cancellation between the shift
of the d level and the change in the double counting energy
and so Friedel's bonding energy picture is correct.

The purpose of this paper 1s to propose a method of treat-
ing the coheéive propefties of alloys on the basis of these
recent results for the pure transition metals and to elucidate
cohesive properties of all transition metal alloys and the
mechanisms underlying these properties.

Cohesive propérties of transition metal alloys are not
sufficiently studied either experimentally or theoretically.

Only the theoretical comparison of the ordefing enérgies for



simple structures is made qualitatively. For example,
Haydock et a1.<5), assuming a common d band, have verified a
correlation between the structual stability of Laves phases
and the d electron number per atom. Gautier et al.(6), Cyrot

(7)

and Cyrot-Lackman have calculafed the formation energy of
disordered transition metal alloys and explained the trends
across the periodic table due fo d electrons.

However, the lattice parameters, bulk moduli of transi-—
tion metal alloys and the,roles of s and d electrons in these
quantities have not been explained at all in the microscopic
theory. The lattice parsmeters of many alloys deviate from the
concentration-iinear Vegard law. Thirty yéars ago, Friedel(s)
discussed this phenomenon on the basis of the claésical
elastic theory. He has shown that the sign of the deviation
is determined by both the difference in the atomic volumes and
that in the bulk moduli of the two components. His expression explains
the sign of the observed deviation well, but not its magnitude
s pParticularly for the transition metal alloys. Furthermore, th
the microscopic mechanisms underlying the deviation are not
clarlfled because of belng the phenomenologlcal theory

The reason why the lattice constant of alloys has not been dlscussed
yet on the basis of the electronic theory seemsto be as follows. Firstly,
the volume dependence of s and d bands (especially, the centers of gravity
of these bands) had not been known in detail. So, the origin of the repul-—
sive force was not clear and it was difficult to make up a simplified.mode1;
Secondly, the effect of charge transfer from site to site or from s orbital

to d orbital and the Madelung energy effect could not be estimated



accurately because the estimation of these quantities needs

to perform the first prindiple calculation. Finally, since

we consider energies of the order of 0.001 Ry (or 0.001 E)
resulting from the subtraction of a large energy value of the
alloy from that of the puré metal? we must calculate the ener-
gy and lattice prameter very carefully.

At the present stage that Pettifor has elucidated the
first problem for pure metals, it is not so difficult to
overcome thersecond and third groblems making ﬁp a correct
model. Especially, the Madelung energy is not important in the
completely disordered alloy. In Part I, we propose a simple
model for the pressure 3PN of alloys which relates closely
to the first principle calculation. The formulation is based
on a method of expressing the-Liberman—Pettifor formula for
the virial theorem in terms of the atomic orbital. The L.C.A.O.
method is a useful method'not.oniy for the calculation of the
electronic structure in alloys but also for understanding
the role of the constituent atoms in alloys.

We need some approximations to calculate the pressure in alloys
with use of Liperman-Pettifor's formula although the formula
can be applied in principle, for any crystal structures and

any configurations of atoms. We consider the ideal Substitutio—
nal alloy that can be divided into the geometrically equivale-
nt unit cells with one atom at the center. Such a restriction
becomes important in the estimation of parameters.

Pettifor's expression in the pure metal becomes a help

-8~



to derive the pressure expression in alloys in terms of the
L.C.A.0.. He has shown that the pressure in the pure metal

can be approximately expressed as a sum of the core part which is
proportional to the electron number n and the bond part

. _EF
proportional to the bond energy f'(ér””)F(w)dw:

EF
3P0 = A(ﬂ)’rz+8f(w~€°)f>(“’)dw, (1) -

where €, 1is tﬁe center of the band, A(@) is a volume dependént
coefficient and B is a volume independent factor. A single
band is assumed here for brevity. An expression similar to
eq.(1l) should be also deriﬁed in the L.C.A.0. method.

The pressure in the L.C.A.0. method is given as follows:

EF
- D X . do
3P0 = % 57,/471 Dsv* Grp s (2)

where D;; is a matrix element in the pressure expression (gee
eq.(I.l.3).). G7F is the one electron Green function in
the atomic-orbital representation. The diagonal terms of the
Green fuﬁction, %ﬂB’ in eq.(2) correspond to the first term
in eq.(1). The second term in eq.(l) results from the over-
-laps of atomic orbitals. Therefore, it should correspond to
the off-diagohal part in eq.(2). .As a matter of fact, we can
show that the off-diagonal part is proportional to the.bond
energy if we make the two center approximation for the matrix
D;/ and make another approximation that the ratio Qf D:k to
the transfer matrix tﬂa 1s independent of the sites. Thus

we have a one-to-one correspondence between eqs,(l) and (2).



These considerations can be extended directly in the case
of alloy if we approximate D;%/tdp with a constant which is
‘independent of the type of atoms on the sites & and f&

We Will show in Part I that the pressure in alloys which is
obtained in terms of the L.C.A.O.-also consists of a core
part and a bondihg energy part, each of the same form as for
pure metals.

We should emphasize that our expression for the pressure
. agrees with Pettifor's express%on in the pure limit. There-~
fore,'we can determine the parameters in alloys from Pettifor's
parameters fof the pressure in the pure metals after some
reasonable approximations, and so there afe scarcely
ambiguities in parameters for the pressure in alloys and
their volume dependences. This enables us ﬁo calculate the
lattice parameter and the bulk modulus definitely.

If we started from an expression for the energy with the
0 A U

i 'l =2 + A 0
usual Hubbard type Hamiltonian H coeiningotijaiway5+§Ikpifni¢

( where Eg

transfer integral, a

is the atomic level at the site i, tij is the

1—

im'and aj0 are respectively the creation

1. . _ _t (0 .
and annihilation operators, N0~ 240240 and Ui is the intra-

atomic coulomb integral at the site i.), we would get the
pressure: _

d<H>

d .0

3P0 = -30

~10-
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However, it would be difficult to determiné the value
and the volume dependence of —3.(236?/3_0. without a phenomeno-
logical assumption. Therefore the élloying effect in the
latticé constant and the bulk modulus would not be easily
taken into account theoretically. It would also be difficult
to estimate the volume dependence of the coulomb integral,
—303Ugéjl. An approximation which can be édopted is aUgéﬂ
0., However, such an approximation correspbnds tQ the neglect
of Coulomb energy in the virial theorem which comes from the
volumé dependence of the coulomb energy in the total energy.
The coulomb energy is important when we determine the
equilibrium volume as stressed by Pettifor. The above
mentioned difficulties also appear when we start from an
expression for the energy with the two-band tight binding
model. On the other hand, such difficulties.due to the coul-
omb energy can be avoided in our approach.

Further merit in our approach is that it clarifies the
role of s and d electron as shown by Pettifor. Therefofe,
we can easily get a physical picture. |

We will show first of all that our modél explains.the

pressure-volume relation and the change of the lattice

~11-



parameter of Ud transition metal alloys in Part I. The
calculation of the electronic structure in the disordered
alloy is performed with use of the off-diagonal CPA and the
charge neutrality condition at each site through fart I

and Part IT. |

It may be verified from the calculation in Part I that
our model for transition metal alloys describes the change of
the lattice constant and the bulk modulus semi-~quantitatively.
Part II will be devoted to elucidate 'cohesive properties of
3d transition metal alloys froﬁ our point of view.

Cohesive properties of 3d transition metal alloys are
different from those of 4d alloys in many points. These
anomalous pfoperties of 3d alloys are related to the complex
magnetic properties in most cases. These ground-state properti-
es in pure metals have been elucidated just a few years
ago{9)~(lu) The cohesive proverties of magnetic alloys, which show ’
more interesting behaviors than the pure metals; have been
discussed merely on the basis of g semiphenomenological
theory'considering the band energy only, in connection with
the invar anomaly.

We will calculate and elucidate the most fundamental
cohesive quantities, that is the formation energy, the devia-
tion of the lattice parameter from Vegard's law and the bulk
modulus of 3d metal alloy in Part II. The elucidation of
these pfoperties gives a base understanding mofe complex

and interesting phenomena such as the invar anomalies(lS)and

o12-



the pressure-induced ferromagnetic -antiferromagnetic transition

in Au.Mn and FeRh(l6).

2
It has been known for a long time that the-lattice parameters
of 3d transition metal alloys make lafge changes with their
magnetic states. According to thé theory of the magnetovolunme
effect based on the ferromagnetic Stoner mode1(15), it 1is
roughly expected that the volume expansion is in proportion

to the square of the spontaneous magnetization. However, this
theoretical expression is obv%ously not enough to explain the
magnetovolume effect in all 3d ferromagnetic transition metal
_alloys. For example, the lattice parameter of Ni-Mn alloy

does not show any change at the'criticél éoncentration (30at?
Mn) where the spontaneous magnetization vanishes.(l7)

On the other hand, Shigélggd SchlosseélggveVempirically
found recently that the anomalous lattice parameters of 3d
alloys are related to thé magnitude of the local magnetic moment
rather than the spontaneous magnetization. Their empirical
formula ié 0 =J2V+k‘<lm&l2> wherellv is the volume which is
determined from Vegard's law in the nonmagnetic state, k is a
concentration-independent constant and {{mal?} is the
average of the squares'of the local moment. However, the
theoretical base for the expression has not been elucidated
yet although it is confirmed from this empirical formula
that the amplitude 6f the local magnetié moment has an importaﬁt

role.

We will give a theoretical base to their empirical

-13-



formula and will discuss its propriety. That is, we will
show that the magnetic pressure is proportional to a linear
combination of the squares of the local magnetic moments ih
the lowest order expansion for the magnetic moment and does
not'depend on the detail of the électronic structure such

as the density of states (DOS) at the Fermi level. This
property can be understood roughly as follows. The magnetic
pressure is proportional to the change of the bonding energy
due to the magnetic state as seen in eq.(1) if we neglect

the sd charge transfer. On the other hand, the change of the
bonding energy is eqgual to the minus change of the coulomb
energy, which is expressed as a lihear_combinafion of the
squares of the local moﬁents, in the lowest order since the
energy is stationary against a change of the magnetic state.
Therefore the magnetic pressure {(or the magnetic contribution
to the volume) is proportional tovthe linear combination of |
the squares of the local moménts. We will verify that this
approximate expression describes qualitatively the magnetic
pressures in 3d metal alloys.

The alloying effect in the bulk modulus for the 3d
magneﬁic alloys has not been studied systematically in detail.
However, it is known well that the elastic constants of the
Fe-Ni alloy and the Fe-Pt alloy cause the softening in the
invar region and their bulk moduli become about half of the
value which is expected from the additive law. Usﬁally, these ‘

phenomena are considered to be caused by the rapid decrease of

14—



20
the spontaneous magnetization with the decrease of the volumef )

But, such a consideration is based on the rigid band Stoner
model and has not been established sufficiently. It has not
been elucidated yet how the change of the electronic structure
due to alloying contributesto the'bulk modulus.

We will proposevah expression about bulk modulus for any -
magnetic and atomic confilgurations from the point of view of
the virial theorem. We can understand from the expression that
an important factor which causes the softening is not the
derivative of the spontaneous magnetization but the derivative
of the magnitudes of the local magnetic moments with respect
to the volume. On»the basis of the expression, we will
elycidate the softenings of some bulk moduli due to alloying.

The formation energy of 3d transition metal alloy has
been calculated by Van der Rest et_alfgﬁging the off-diagonal
CPA and the observed trénds across the periodic table have
been elucidated qualitatively. There are many points which gre
not considered in their calculation although their conclusion
that the formation energy 4H is determinedAby the band energy
is very valuable. Firstly, the effect of the magnétic energy
is not taken into account though 4H is of the same order as the
magnetic energy. Experiments are performed at the high
temperature (500X~1000%x). However many 3d transition metal
alloys have the local magnetic moment above the Curie tempéra-.
ture §22)’(23)’Iherefore we can not neglect the magnetic .contribution

to 4dH. The second point is the effect of the repulsive energy.

-15-



In the alloy having a large volume difference between two
components, the size effect due to the repulsive energy will
be important. Another effect which is not considered in their
calcﬁlation is the effect of the s-d hybridization. It may
be important in the noble metal bése 3d ailoys to some extent.

We will take account of the first effecﬁ and will exblain
the observed trend of the formation ehergy in 3d metal alloys
quélitatively, assuming the chargerneutrality condition at
each site. We will also show that there are indeed changes in
the sign of 4H due to the gain of the magnetic energy in some
alloys.

We impose, in the real calculation through Part I and
Part II, the charge neutrality condition, which is considered
to be reasonable in the transitibn metal alloys. The charge
neutrality condition suppresses the electron transfer from
site to site. Such an effect plays an important role to
obtain a good agreement of the lattice parameter with the
observed value, for example, in Cu-~Mn alloy.

Our model contains . three factors which mainly
determine the cohesive properties of transition metal alloys.
They are the éd-d btonding effect, the s-d charge transfer effect
and the change of the magnitude of the local magnetic moment.

The gain of the bonding energy between the d electrons
on alloying. leads to a negaﬁive 4H and causes 2
contraction of the volume. We will find these behaviors in
the results of the calculation for the cohesive properties of

the Pd base 4d transition metal alloys in Part I, Fe-Ti

16—



alloy and Ni-Ti alloy in Part II. The gain of the bonding
energy also causes the softening of the bulk modulus. However
, the hardenihg of the modulus for the repulsive core part

( the first term of r.h.s. of eq.(1l)) with lattice contraction
always cancels the softening. Thérefore, the effect of the
gain of the bonding energy does not appear in the bulk modulus
explicitly in many cases. |

The s-d charge transfer effect with alloying is an
important factor for the latti?e parameters and the bulk
moduli. The volume contraction is caused by the electron
transfer from the s orbital to the d orbital since the pressure
due to the s electron is positive and the pressure due to the
d electron is negative at the equilibrium volume. Further-
more 1t causes the éoftening in the bulk modulus. These
behaviors will be found in the Fe-Ti and Ni-Ti alloys as
shown in Part II. The importance of the s-d charge ﬁrénsfer
effect on the lattice parameter was pointed out by Teraoka
and Kanamoriligi'the first time. Eowever, they discussed only
the contribution from the band energy after all, and could not
calculate the lattice parameter and bulk modulus of alloys
because the repulsive force was treated as an external
parameter.

The magnitude of the local magnetic moment 1s the most
important factor to. understand the céhesive properties of 3d
transition metal alloys. The growth of the magnitudes of the
local magnetic moment due to alloying contributes negatively

to AH since it causes the gain of the exchange energy. The

~17-



negative 4H in Ni-Mn and Ni-Fe is essentially due to the effect
as will be shown in Part II. As has been mentioned already,
the magnetic pressure can be approximated with the linear
combination of the squares bf the local moments. The change

of the volume which is characteriéed by the magnitudes of the
local moments is fhe most conspicuous in Cu-Mn alloy and the

Fe base 3d alloys since their alloys change largely the ampli-
tudes of the local moments with alloying. We can also show.
that thébchange of the volume derivative of the amplitude of
the local moment with the conc;ntration causes the softening in
the bulk modulus. The softenirig in Fe-Co, Fe-Ni and Fe-Cu is
due to the mechanism as shown in §3 of Part II. We believe
that the softenings in many invar alloys, perhaps, are caused by
the instability of the magnitudes of the local moments with
respect to the volume,

In Part I and II, the ground state properties of
transition metal alloys are discussed. In Part ITI, we will
try to extend our approach to the finite temperature.

The magnetovolume effect in the invar problem has been
discussed on the basis of the Stoner model considering the
d electron band energy only. 2qgowever, the Stoner model gives
a completely nonmagnetic state above the Curie point Te
although the existence of the local magnetic moment above Tc
is verified by recent theoretical(gz)and experimental studies
(23) for 3d metals. Because of the uniform vanishing of the
local moments, the spontaneous volume magnetostriction of

Fé and Mn in the Stoner model amounts to about 10%(10)Whi1e

18-



the observed spontaneous Voiume magnetostrictions are usually
about‘0.1~1.0%?&)Therefore, the Stoner model largrly over-
estimates the spontaneous volume magnetostricﬁion and will
not describe the magnetovolume effect in the 3d transition
metal alloys at the finite temperéture.

On the other hand, it is well known from the point of
view of the local moment model that the Weiss.model(25)(or the
two state model) explains the many phenomena for Fe-Ni invar
alloys, particularly in the high temperature. The most
fatal fault in this model is the lacking of the theorefical
support.

However, recently it has been shown that the local moment
model in 3d metals can be derivéd with use of the functional
integral method?Z)In Part IIT, we will derive an expression
of the pressure at finite temperatures by using the functional
integral method in order to remové some faults in the Stoner
model and to elucidate the role of the amplitude of the local
moment in the cohesive properties of the 3d transition metal
alloys at the finite temperature, which is essential in the
magnetovolume effect in the ground state as has been mentiond.

We will use the static approximation. The effect of the .
spin wave in the magnetovolume effect is not taken into
account, which will be important in the low temperature.
Furthermore, we neglect the fluctuation terms in many cases.

Nevertheless, we can obtain some important properties for the

magnetovolume effect in the finite temperature.

-19-



We propose an expression for the spontaneous volume
magnetostriction ag, the anomalous thermal expansion “M’ the
forced magnhetostriction 3w/ah and the bulk modulus B. From
our point of view, we can show that an émpirical formula that
the spontaneous rnagpe‘costriction is ﬁroportional to the change of the linear
combination of the squares of the local magnetic moment is
also justified in the finite temperature if the thermal
fluctuation around the saddle points 1s neglected, and show

that the Weiss model which is believed to be a correct model

a

by many exberimenters can be naturally derived.

We should emphasize that there are two origins for the
magnetovolume effect ofbinvar alloys. One is the change df
the amplitude of the local moment. The other_is the s-d charge"
transfer effect. Especially, the former gives us a new
recognition for the influence of the magnetism on the cohesive
proberties.l Indeed, we will show'that the changes for the
magnetic state influence all physical quantities which

can be derived from the pressure, that is,<vs, X, , 29/oh and

M2
B through only the amplitudes of the local magnetic moments
when ﬁhe s-d charge transfer effect is neglected.

Although the calculation in the limit of the CPA method
is directly possible, the results of the actual calculation
will be scarcely mentioned. Only the result of the prelimi-
nary calculation for «Fe will be shown and will be discussed

in comparison with the Stoner model. The detailed results

of the calculation will be published elséwhere in future.

-20-~



Part I
Cohesive Properties of

bd Transition Metal Alloys
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Outline of Part I

| A method to calculate therpfessure—volume relation in
alloys is giveh and it.is shown that the method is useful to
sﬁudy the cohesive properties for tranéitidn metal alloys (TMA).
First of all, Liberman—Pettifor's.virial théorem is represented
. with the L.C.A.0. assuming the ideal substitutional alloy as
has been mentioned in the introduction. The theory is based
on the two-band model where the s-d hybridization is neglected
and the five-fold degenerate onrbitals are replaced by five
times the'single orbital. The two-center approximation 1s
made for the matrix element in the pressure expression and the
ratio of the matrix element combining the differentAsites in
the pressure expression to the transfer matrix is approximated
to Ee independent of the sites, the types of the atoms and the
volume. As the result, a simple expression(for the pressure
in alloy is obtained. The parameﬁers are determined from the
correspbndence of our expression to Pettifor's expression
which is based on the first principle energy band,calculation,
The expression obtained for the pressure is applied to the
calculation of the lattice constant and the bulk modulus of
Nb-Zr alloy as a test and the propriety is discussed. The
electronic structure of the alloy is calculated with use of
the off-diagonal CPA. In §3, the deviations from Vegard's law
of the Pd base Ud transition metal alloys are calculated with
use of our approach. A semi-quantitative agreement with experi-
ments is obtained. The results are analyzed and interpreted

in terms of the 'relative' pressure. It is also verified with

_2o.



use of the same parameters that the observed trends for the
formation energies of their alloys across the periodic table

can be explained only by the band energy. The conclusion in

Part I is given in §4.

s



§&l. Formulation

‘e start from the virial theorem derived by Liberman(26).
For simplicity, let us consider the ideal substitutional alloy
that can be divided into the geometrically equivalent unit.
cells with one atom. It is assumed that the nucleus lies at

the center of each cell. The virial theorem is expressed in

Ry atomic unit as follows:

3Py = g[S E [ (vt cr-mo-v) o - v (Orr) T)E
| . . 9Cxe
—f-c.c.}d»‘l?-f—/d’l‘tctr]-a—n—— ({{‘—-IY'O()-OIISJ
/ 7)) - Cr/ ,
TZX ("’oa*lr,s)fd'r(fnw)-fcr))(—v)[ f_ﬁm_i,f},'i—-)dzr
s p p -1

(1.1.1)

L]

where the.’b:.L is the occupied one electron wave function, éxc
is the exchange and correlation energy density and n(r) (P(r))
is the electron density (the nuclear density). Integrations
are performed over the unit cell at the sitelx or its surface.

The last term of r.h.s. of eq.(I.1.1) expresses the
contribution from the interatomic coulomb energy. Liberman
has misunderstood this term and neglected. Howevef, this term
becomes important in alloys. The detailed discussion about
this point is given in Appendix I.

In order to calculate 3PV easily, we rewrite éq..

(I.1.1) in terms of the L.C.A.O., that is, we expand one
electron wave function +i by orthogonal atomic—orbitals.{ih}
where/u denotes the orbital and the site. The first term of

r.h.s. of eq.(I.1.1), 3PeV, is expressed as

~2h.



-) EF o
3PV = 2 5 gm B (DG ) de

3

(1.1.2)

Dry = J AN vgF ((r-1)-7) 50 = 3V (Cr-1)-7) %,

te e ]+ 2 gl arme) € %, [ 48

(I.1.3)

where we assumed the Slater exchange potential éic’ G is the
one~electron Green function in the atomic-orbital representation.
Hereafter, we adopt the single orbital model, and assume that

?; only depends on the type of atom on the/u—th site and that

v Ekc is independent of the type of atom on thé cell boundary..
Then P;$ does not depend on the type of atom at the site «,

In the néxt step, we adopt the two-center approximation
to the Q;L, that is, we neglect the Qﬁy whose indices &,

and ¥ are all different from one énother. With this

approximation,

(I.1.4)
where n, 1s the electron number on the site . g/means the
lattice sum except for the sitex. If we approximate that

the ratio of D:% to the transfer matrix t«F depends on neither
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the sites « andle, nor the type of the atom at each site, the

second term of r.h.s. of eq.(I.1.l4) becomes

EF ‘
D (=t ’ €
2(F) 5 [ 5 g Gpe 4 (1.1.6)
where
. o
_:b_. = —; —_— ZO(IB"'.' ‘. (I.lo7)

- /7
And then, -using the locator expansion Ggy = Ly +7L“T§ taF'Qpa
where Ly is the locator on the site « , we can rewrite eq.
(I.1.6) in the form:

EF
_25 (Ex— € ) Pu(€)dE

t s ’ ‘ (.1.8)

where €y 1s the atomic level and [ (€) is the local density
of states (DO3) at the site «.

For the pure metal, eq.(I.1.8) agrees with Pettifor's
expression (see eq.(13) and (14) ef ref.3). This fact suggests
that the above mentioned approximation is correct for A-A
pair. Furthermore, in his expression, (D/t) is nearly
independent of the volume. Hereafter, we assume that (D/t)
does not depend on the volume in alloys. For the alloy, the
approximation D;%/tap=constant is reasonable when we can assume
for the A-B pair that DAB(tAB) is equal to the geometrical
mean of DAA(tAA) and DBB(tBB)' |

Applying the point charge approximation to the inter
atomic coulomb term (the last term of r.h.s. of eq.(I.1.1)),

and with eqs. (I.1.4) and (I.1.8), we can finally write the
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virial theorem as follows:

3PV = Z(% 5 Ph) M«

EF
—.%gj (€x—6€) Pu(€)dE

ZZ/ %o( g‘é
t 2 gl 5 (I.1.9)

where ('v)I expresses the matrix element for pure metal
specified by ﬁhe type I atom at the site «. The q, is the
total charge in the X-th cell. The first term of the r.h.s.
is the core-repulsion term which is mainly caused by the
increase of the kinetic energy. The second term is an
attractive term due to the gain of the bond energy. We call
this term the bond energy term. The third term is, as is
known well, the Madelung term.

tthen we consider the completely disordered alloys and

the single site approximation, the Madelung term vanishes and

S0,
3P0 = B Cx («%-z—Df;Iﬂ: -7 Eb,  (1.1.10)
EF ~ . |
Eb = Z ¢z | (€x-€) Prce)de. (I.1.11)

"~

where Ny and FI are respectively the averaged electron number
of an I-type atom and the average local density of states of
the I-type atom.

We define the core-part partial pressure of the I-type
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atom at the sited« by

2 r 3

pL
(3R 1)y = (%’ ) ma (1.1.12)

the bond part of the partial pressure of the I type of atom

at the site « by
‘ D EF X
(3P 0), = -7 [ Cew —€)PuCE)dE (1113

and the total partial pressure of the I-type atom at the site

« by

L
(3F2)yr = (3Pe)yr T (3P )z T 3 P el
Then eq.(I.1.10) is

3

3}912 - é; cr (3 P—Qg)I (1.1.15)

~ ~n ~s
where (?,P_(Z)I is the averaged partial pressure, (3PCII)I+(3Pbﬂ)I

The partial pressure should not be regarded as the real
pressure of atom at the site. Their interrelation is elucida-
ted in Appendix IT,

Equation (I.1.9) has been derived with the orthogonal A.Q. .
But we can also derive the expression corresponding to eq.(I.1.9)
from non-orthogonal Anderson's A.O. {5},}(27). In this case,
D/ny is feplaced with the matrix expressed ’py 95/4 and 75,,, not
by ?}4 and %,. The ny should be regarded as the electron

number for <f’/,:
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) EF
™ Jr*j%" €?dd de
-where g is the Grimley's Greenian(28) defined by (eS-—H)9= 1.

Furthermore, the partial density of state in the bond energy

term must be regarded as the gross density:
] -
Py C€) = = //m(caz's)o(o(

&

where SdF:is the overlap matrix elément between « and f?.

We can also find the cohesive energy by iﬁtegrating
eq.(I.1.9). The repulsive energy is obtained from the first
term of the r.h.s.. The bond energy is obtained from the
second term, and the Madelung energy from the third term. In
the lattice gas model and the phenomenological elastic theory
in alloys, it 1s assumed that the'repulsiVe energy consists of
pairs. But our repulsive force is a volume force and so such
an assumption is not realistic.

Up to now, we have not specified the class of alloys,
particularly . Hereafter, we consider the transition metal
alloys (TMA), where the pSeudo potential approach can not be
applied.

We neglect the s-d hybridization. Therefore, the total
pressure is just the sum of the d and s part pressures. It
is knowh that this approximation is qualitatively good for

(3)

the cohesive properties
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Parameters (XDfZ/E)I and D/t can be easily determined

(3)

from Pettifor's expression . For the s part,
D _ 3z J 2
D -2 (e 2 L (p cee)ReL )
‘ Dlg D 3(B$“é;cc)
] = — (€s—- B + ‘
(% = ) z s~ Bs) i i (I.1.16)
and for the d paft
D _ 4 - =
D 5'(1-!— = = (€d-€x)R a4 )
(z = Pley o Z(€d-Exe) |
p z ) - Hd , (1.1.17)

where/us and/ﬂd are the s band and d band effective masses,

{Ws=lf/%’ and a4 and ag are the logarlthm;c parameters which

(3)

are given in Pettifor's paper . R is the Wigner-Seitz

radius. BS is the bottom of the conduction band. ES-BS is

(29)

derived from the Laurent form about the logarithmic

derivatives and taking up to the linear term of eS—BS, we
obtain
3 /

es - B
s s I+ as /15R2 . (1.1.18)

Other parameters for pure metal are assumed according to
Pettifor(29), as follows:

n
)

Zw.s
R ’

/“dKz < R

p—
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€d = 637 r @R % ,

_ 32
s = /szg LR - } ,
Wd '

(I.1.19)

/dKz >

where 53 is the atomic d level. r, is the core atomic radius.

A

ZA i1s the effecﬁive charge which the s electron on the W.S.

sphere feels and Z is also the effective. charge similar to

W.S

ZA' wd is the d band width. See ref.(29) for the values of

the parameters ZW.S’ ZA’ Q, q and Tye

As mentioned previously, the bond energy part in the
pressure mainly originates from thé derivative of the bond
energy with respect to the volume. Therefore, (D/t)S and
(D/t)d should be close to 2 and n respectively. From this
point of view, we assumed in the real calculation that (D/t)S
=2 and (D/t)d=n where n is the exponent for the R dependence
of the d band width. For the ld transition metals, if'we
calculate (D/t) using Pettifor's parameter, (D/t)§=2.5~3.0,
(D/t)é3n—l, but these giscrepancies will not be important
qualitatively.

In the following section, we will show thé results of

numerical calculations on the pressure-volume relations of
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completely disordered transition metal alloys. The s part DOS
is approximated by the free-electron like rigid band model
because it has not a complex form. That 1s, we assumed that
f;(€)=£fcIlng(€) where fZIf(e) is the free electron DOS qf_
the I-type pure metal with the effective mass K .
The volume dependence Of,ﬂs is neglected for simplicity.
The d-part DOS's are calculated by using the off-giagonal
CPA formﬁlated by Shiba(30){ The volume dependence of the
‘model d band can be assumed as P(€)=?(6/W)/w because of the
single band model. The quantitj (D/t)d is not exactly the
same values over the all transition metals. When (D/t)

aat
(D/t)dB we replace (D/t)d by cA(D/t)dA+cB(D/t)dB. Although

3

~the level Gd.and BS do not necessarily agree with the wvalues
for the pure state in eq.(I.1.19) in alloys, they are
initially assumed to be equal to those in eq.(1.1.19), and
then if the calculated electron number violates the charge
neﬁtrality condition at each site, we shift Gd and BS of B
atom (or A atom) by a same amount until the condition is
satisfied. Lang and Ehrenreich(3l) also have found that the
volume dependence of the Curie temperature in Cu-Ni alloy is
explained by the minimum polar model such that the charge
ngutrality is satisfied within each atom, rather than by the
ionic regid band model.

In the concentration ¢=0.0 and 1.0, if we directly use

Pettifor's parameters, the equilibrium lattice constants

calculated by the above mentioned scheme often show the
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deviations of about 10% from the observed values. Therefore,

we have adjusted Qﬂs’/“d)ﬁ and gﬂs’/ud)B so that the
calculated lattice parameters and bulk modulili agree with the

(32)

observed values for both constituents. Other parameters
except for/#s and./h are quoted from Pettifor's paper, and
the detailed difference in parameters between the crystal

structures is neglected.
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§2. Nb-Zr Alloy

The pg-phase Nb-Zr allqy forms a continuous series of
solid solutions at high temperature with the b.c.c. struct-
ure. Lattice pafameter shows the negative deviation from
Vegard's law. Recently the bulk modulus has been measured by
Walker et al.(33), Tt shows the negative deviation from the
linearly interpolated wvalue.

As the first example, we calculated the pressure-volume
.rélation of this system. The input parameters are as follows.
/%Nb=0.5M84, 4*%Nb=2’ou6’ /%Zr=0.6396, /éZr=2‘u65' These
values are determined by previously mentioned procedure. v
Band width is wa=er=o.7~(R/3.0713)”u. Other parameters are
taken from Pettifor's paper. '

In Fig.I.1l, the assumed model d band and the volume
dependence of the d DOS af ¢=0.5 are shown. Since Nb and Zr
are adjacent to each other on the pefiodic table and we apply
the charge neutrality condition, the calculated d bands are
similar to‘the common bands. However, the band width 1s
extended due to alloying and the position of Fermi level is
shifted upward and passes through a peak of the d band with
the decrease of the volume. This is caused by the fact that
the bottom of the conduction s band relative to the d level
is pushed up due to large core radii, as the result, the electr-
on transfer from the s band to the d band occurs.

We show the pressure-volume relation in Fig.I.2. The

variation of the pressure with the concentration is approxima-
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tely linear. 1In Fig.I.3, the calculated'lattice parameters are
shbwn. The negative deviations from Vegard's law qualitatively
agree with the observad treﬁds(3u). In order to understand the
roles of the s and d electrons, it may be suitable that we plot
the difference between the partiai pressures when the alloy is
completely separated to the pure metals and those when the alloy
is completely disordered. (When completely separated, of course,

the Vegard 1aw.ﬂv=c +cBaB is satisfied.) In connection with

AQA
this, the relative d-core part pressure of A atom is defined

by

sRa)y = e[ 3Ba), |,  -(3R0),|nn,)
: : v c4=1

The relative d bond part pressure of A atom (BPbﬂ)dA is
also defined in the same way, but the suffix c¢ is replaced

by b. The relative d-part pressure of A atom is defined by

The relative s-part pressure 1is also defined in the same way.
We show the results of those relative pressures in Fig.I.l.

We find that the both s and d electrons contribute attractively
to the deviation from Vegard's law.

Figure I.4(b) shows the contributions from the partial
pressures of A and B atom. The s part pressure always
increases the repulsive character with the decrease of the
volume. Therefore the relative s pressure at Zr sité is

positive because the equilibrium volume of pure Zr,ler is
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larger than'DV=CanZr+chQNb and oppositely the relative s-

part pressure at Nb site is negative because 0} b(ﬂv. As the

N
total, the negative partial s-pressure at the Nb site overcomes
-that at the Zr site. Therefore the s part pressure causes the
volume contraction relative to the volumefﬂv.

The total relative pressure of the d core part is also
attractive because of the behavior similér to thé above
mentionéd s-part pressure. Since the d bond part always has
the opposite sign and the different volume dependence from
the core-repulsion part at the Nb site, its relative pressure
is positive. On the other hand, the d bond part of the relative
pressure at theAZr site is negative. The total relative pres;
sure of the d-bond part is positive because of the large
positive pressure gt Nb site.

In the adjacent type of alloy on the periodic table such
as Nb-Zr, the aﬁove mentioned analysis is not intuitive
although such an analysis is useful in the case of the Pd base
4d. transition metal alloys as shown in the following sectidn.
It is easy to consider as follows in the adjacent type of alloys.
Let us assume that the deviations ReQ_RA and Req-RB are small
where Req is the equilibrium atomic radius of the alloy and
RI is the equilibrium atomic radius of the pure metal of the
type I and assume that the partial pressure (3P.Q)I is equal
to the pressure of the pure metal of the type I. Expanding

§CI(3RQ)I(Req)=0 for Req-R to the first order, we can

I
easily obtain the equilibrium radius Req:
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Re;" Ks €A
RA - Rg

Rg B
CA + CB ——?z”‘j s
Ry bBa

where By is the bulk modulus of the pure metal I. Therefore,

the deviation from R ZZcI I is
Z
ke s (1o )
Kﬁ - F?B Rz B (I.2.1)
. Cq t Cg _gL_g_ .
Ra BA

With the approximation Ré/Rie:l, we can obtain
) Bg
(Reg = Ry)/(Ra~Ro) = cqCs( 1~52 )/ ea + Comp
A7 (1.2.2)

In the case of c, K1, we get (R._-R )/(R -Ry )= Ch (B /B -1)

eq Vv
which is equal to Friedel's formula( )

except for the
factor (1+(1+>’)BA/2(1-2)’)BB)_l where Y is the Poisson's ratio.
We remark that the Req in eq.(I.2.1) has not the extreme

value in the region 0<c (1. Therefore, eq.(1.2.1) does not
explain the minimum volume in Pd-Mo alloy and the maximum
volume in Cu-Mn alloy(gu). Equation (I.2.1) qualitatively |
describes the deviation from Vegard's law of the iso-electronic
or adjacent type of alloy such as Nb-Zr. The deviation from
Vegard's law calculated from eq.{I.2.1) is shown in Fig.I.3(a)
by the dashed line. As known from eq.(I.2.1), the fact that
the Nb-part contribution is main in Fig.I.4(b) is roughly due

to BN5>B Hereafter, we call this kind of classical behav-

Zr’
ior in the partial pressures as the normal behavior. In many

transition metal alloys of the adjacent type , B ?Bg 1f RA< Ry.
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Therefore,such an alloy always tends to exhibit a hegative
deviation from Vegard's law.

The charge neutrality condition is important to some
extent. For example, when the electron number in the site
deviates by more than 0.6 per atom from the charge neutrality,
the positive deviation from Vegard's law occurs gt ¢=0.5.

l1-c
change linearly with ¢< 0.2, while for c¢>0.2, they deviate

It is observed that the bulk moduli of the Nb Zrc

downward from the linear extrapolation for concentration.
(See Fig.I.3(b).). Our results for the completely disordered
Nb~Zr system show an approximately linear change over all
concentration. So, for ¢>0.2, the result does not agree
with the observed negative deviation from the linear variation.
Many causeé are considered for this disagreement. The most
important one seems to be the short range order effect. 1In
fact, Nb-Zr system separates into two phases at low tempera-
ture and at high concentration (20at%~90at%Zr). B.c.c. ﬂ—

phase is formed above about at 900 °C(35)

. Since the crystal
is annealed at about 1000°C during the whole growth procesées
, we can always expect the short range order. 1In Fig.I.3(b),
the bulk modulus of the solution of the completely separated

Nb-Zr is shown by dotted line, and it seems to agree with the

observed trends.
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§3. Pd-Base 4d Transition Metal Alloys

In this section, we discuss the change of the lattice
parameters of the Pd base Ud TMA and its microscopic inter-
pretation, then the calculated bulk moduli will be also shown.
At the end of this section, the formation energy will be
discussedf

It is observed that the lattice parameter of the Pd
base Md'TMA shows a negative deviations from Vegard's law
and the negative deviations change parabolically across the
periodic table. Particularly, the deviations in Pd-Zr and
Pd-Y are large, and it has been believed that the deviation
relates to the charge transfer effect(36)(or the ionization
effect). Later in this section, it will be shown that their
large deviations are partly due to the deformation effect
of the d density of states at the Pd site and partly due
to the charge transfer effect from s band to d band within
the impurity site, but not due to that from
the impurity atom to the host atom.
- Figure I.5 shows the model band and the impurity site
partial density of states for ¢=0.1 at the equilibrium
position of pure Pd. As we remarked previously, it is not necessary
that ed and BS are given by eq.(I.l.lQ)Ain alloys. If A
atom has, for example, a larger core than B atom, it may
be more reasonable to consider that the real level of A atom
is close to the level obtained from eq.(I.1.19) into which a

larger radius R, is substituted in stead of the cell radius

A
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R per aﬁom because the average wave function on the A atom
will tend to extend outward so as not to increase the kinetic
energy. But,:even 1f such a procedure were followed, the
level of A atom relative to the level of B atom would not be
so different from the relative 1e§e1s determined by the
procedure in the previous section whén we assume the charge
neutrality condition. ‘

In Fig.I.6(a), the resulté of the calculation for the
deviation from Vegard's law are shown. The agreement
between the observed and the calculated values is good.

Friedel's phenomenological theory is not good in
agreement with the observed value except for Pd-Ag and Pd-Rh
alloys. These disagreements are caused by the characteristic
d band effects as will be shown soon later.

In order to show the roles of the s and d electrons and
those of the Pd and impurity atoms, we consider the partial
pressures relative to the separated phase in Fig.I.6(b).

Since the relative pressure which has been defined in the
previous section is approximately proportional to the relatiwve
deviation, we can understand from the figure that the negative
deviations from the Vegard law are mainly due to 4 part press-
ures and that the calculated deviation dip at Ru occurs
because of the contribution from the s part pressure.

Let us examine each partial relative-pressure in detail.
The s pért partial pressures behave normally in the sense

mentioned in the previous
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section and are determined by the deviations from each equili-
brium position (See Fig.I.6(c).). The relative pressure of
the d core part are also normal as shown in Fig.I.6(d).

The d coré part pressure at the impurity site dominates the
sign of the total relative pressure of ﬂxed—mne part because of
large core radius of the impurity. The relative partial pressures of
the d bond part at the impurity site (dbA) are also normal.
But the partial pressures of the d—bond part at the Pd site
are abnormal, VWhen the Pd-Zr and Pd-Nb alloys expand, we expect
that the relative d-bond contribﬁtion at fd.site is positive
since the magnitude of the negative d bond contribution of
the pure Pd decreases with the volume expansioﬁ. But the
results in Fig.I.6(d) do not behave so. These anomalies are

due to the alloying effect of the d band at the Pd site.

As an example, let us see the alloying effect of the
PdSONbZO at the equilibrium atomic radius of the pure Pd
in Fig.I.7. The sharp peak near the top of the local
density of statesat the Pd site is shaven off due to the
mixing with the Nb impurity states above that. The shaved
‘states partially extend upward, and partially contribute to
the bonding state. This change causes the gain of the bond
energy at the Pd site, therefore causes the negative bond contribu-
tion of the relative partial pressure at Pd site. Recently,
Pettifor characterizes this bonding effect as an effective
~increment of the d band width in the alloy.

Next, we show the calculated bulk moduli in Fig.I.8.
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These changes 4B/c tend to deviate in the positive direction
from the 1linear varlation. But fbr ¢=0.2, 4B/c 1lies
in the concentration-linear line. These variations will relate
to the change of the DOS at Fermi level. 1In the case of.the
bulk moduli, the s-part contribution and the hybridization
effect are comparatively important according to the pure
metal calculations. Therefore, it may not be quantitatively
good that the rigid—band like approximation is applied to
the calculation of the electronic structure of the s electrons.
The experimental studies of the transition metal alloys
for the bulk moduli have not been done systematlcally,
Detalled experimental studies at ﬁhis field are expected in
future. We postpone more detalied discussién to future,
waiting for the systematic experiments.

Finally », we discuss the formation energy of the Pd base
4d TMA. It may also be important to show that the alloy
formations should be qualitatively explained by using the same
parameters as those in this section. If we apply the point
charge approximation to the interatomic coulomb energy, the

configurationally averaged total energy is

Etg > = § C,T.["ﬂ\d; €4r Tt ’7?5‘_[ €st
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(I.3.1)

where the spatial integration 1S performed over the Wigner-
Seitz cell. The H& and G;I are respectively the averaged

density and the intra-atomic ébulomb potential when the site
o 1s occupied by the afom I. As verified by Gelatt et al.(5)
and Pettifor(3), the large cancellation between the level-
shift energy and the double counting energy occurs near the
equilibrium position, so that they do not qualitatively
contribute to the cohesive energies. Therefore, we
assume‘that the formation energy which is defined by the
-energy difference between the completely disordered state and
the completely separated state is approximately described

by the bond energy only.

So that, our estimation for the formation energy is essentia-
1lly the same as that discussed by Friedel,Cyrot and Cyrot-
(7) (6)

Lackman and Gautier et al* .. The different polints are as
follows. (1) AWe take account of the volume effect of ﬁhe
bonding energy in alloys. (2) We use the relative levels
shifted by the charge neutrality condition, and do not use
the atomic level. (3) The s part contribution of the band

energy 1s also added.

The calculated formation energles are shown in Fig.I.9.
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The obtained signs are similar to those obtained by Cyrot and

(7

Cyrot-Lackman although our values are fairly larger than

their wvalues.
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g4, Conclusion

We have proposed a method to calculate the pressure-
volume relation in alloys and have shown that the pressure-
volume dependence and the related cohesive properties of the
ha TMA are qualitatively explained by the virial theorem and
the simple two-band model.r The s-d hybridization has been
neglected. The sp band and the 4 band were approximated
by the single bands, and the former was regarded as the
concentrafion average of the free electron like DOS of each
component and the latter was treated in Shiba's off-
diagonal CPA.

The negative deviation from Vegafd’s law and the linear
change of the bulk modulil of Nb-Zr can be explained qualita-
tively, but the negative deviation from the linear change of
the bulk modulus in ¢>20 at%Zr can not be explained by our
completely disordered model whichbasmmﬁs the charge neutrality
condition. It was suggested from the estimation in the
separated-phase 1limit that the disagreement in the bulk
modulus is due to the short fange order effect.

We have calculated the lattice parameteré, bulk modulil
and the formation energies for Pd-base Nd‘TMA, and have
obtained the following conclusions.

(1) The negative deviations.from Vegard's law are mainly
due to the 4 part pressﬁres. Particularly, the gain of the
d-bond energy which is due to the destruction of the sharp

peak at the top of the Pd-site partial density of states
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when alloying, contributes mainly to the negative relative-pressure
of the d parﬁ. In the Pd-Zr and Pd-Nb alloys, the reduc-
tion of the s part pressures caused by the charge transfer
effect from the s band to the d band also contributes to the
negative deviations. The s part bressures cause the dip at

Ru for the deviation on the periodic table.

(2) The calculated bulk moduli tend to be larger than
the concentration-linear values for ¢=0.1, but for c=0.2,are
approximately equal to the concentration-linear values.

We have discussed the large d band effect at Pd site to
the coheslive properties. However, in the case of Ag-base
44 TMA, such a large d band effect can not be expected.
Indeed, we have verified to be so. For example, the deviation
froﬁ Vegard's law of Ag8OZr20 is only one-third of that of
Pd8OZr2O.

In spite of the simplicity of the model, we believe that
our approach is useful for eluciaating the cohesive
properties of the transition metal alloys. However, there
are many points which seem to be excessively simplified.

Firstly, wé neglected the s-4 ﬁybridization effects.

For this reason, the chargé transfer from the s band to the

d band indicated in the Pd-Zr alloy may not be so large as to
be expected from the présent model, because the s-d hybri-
diZation expels the sp states from the energy region of the

d states so tﬁat the sp density of states at the Fermi level
is small. Also, the bonding effect due to s-d hybridization

might explain the formation of the Pd-Ag alloy.
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Secondly, we do not take account of the concentration
dependence of the bottom of the sp band. It is not so
difficult to take this effect into account. However, for
integrated qugmtitiés such as the Sp electron numbers and sp band
energy,‘we believe that our approximation correctly describes.
the trends of them because the sp density of states is ndt
complicated and because our approximation is correct up to
the second order moment/uz. Of course, the more detailed
calculations are necessary for the cohesive properties of
alloys, especially the noble metal- noble metal alloys (Cu-Ag
, Cu-Au etc) and the transition metal- nontransition metal
alloys (Fe-Al, Ag-Al etc ) which are not considered ih this

paper. We leave these for the future problems.
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Part II
Cohesive Eroperties of

3d Transition Metal Alloys
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Outline of Part II

The purpose of Part II is to elucidate the formation
energy, the lattice parameter and the bulk modulus of 3d
transition metal alioys in the ground state on the basis of
the electronic structures.

The calculation is performed with use of the method
developed in Part I.  The method is reviewed briefly in §1
and a useful and approximate expression for the magnetic
pressure is derived. Furthermore, an expression which is
used in the calculation of the‘formation energy is derived.

Cu-Mn alloy is cdiscussed in §2, and then the cohesive
properties of the XFe-base and the Ni-base 3d transition
metal alloys are studied in &3 with the assumption of the
charge neutrality condition. The concentration dependence
and the systematic variation on the periodic table for the
formation energy, lattice constant and bulk modulus reproduce
the observed trends qualitatively well except for a few alloy
systems,

" In the formation energy of 3d transition metal alloys,
the effect Qf the gain in the exchange energy is emphasized
in comparison with the formation energy in the nonmagnetic
state. It is shown that the origin of the deviation from
Vegafd's law lies in the change of the magnitude of the local
magnetic moment and the s-d charge transfer effect in alloys,
and it is verified theoretically that the empirical formula

for the deviation from Vegard's law proposed by Shiga and
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Schlossef is qualitatively correct for many 3d transition
metal alloys. For the bulk moduli, the softenings due to
alloying are discussed.

In the last section, the conclusion and a brief discuss-

ion for the Fe-Pt invar alloy are given.
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1. TFormulation

The formulation is essentially the same as in Part I.
The different point from the previous method is that the
electfonic structure of the s electron part is also calculated
with use of the CPA and so, the alloying effect of s electron
is taken into account.

By neglecting the s~d hybridization, the virial theorem is
written in the tight binding representation as follows (See

eq.(I.1.9) in Part I)

| . 7
r T0p
3PV + 3PV *Z«}Z (retal > (IT.1.1)

3RV = L (5, ‘”‘"'(’t‘)ﬁ-[““h‘e)'o«m"/é,

(I1.1.2)

where 0- means the electron spin state. 3P1V is the partial

3PV

I

pressure of the orbital 1. The first term of r.h.s. of eq.
(IT.1.2) is the core part pressure due to the l-orbital elec-
tron. 9§D5L/2)1 is a volume dependent factor of the atom

at the site . The second term of r.h.s. of eq.(I.1.2) is the
~bonding energy term. (D/t)1 is the volume independent factor
of the orbital 1. f21v(e) is the partial density of states
(DOS) of the orbital 1 and the spin state o at the site «.
Although the spin dependence of ﬁhe factor (%D£L/2) is not
important, we assumed its spin dependence due to the change

of the local magnetic moment since we formulated the pressure
on the basis of the local spin density functional theory (LSD).

These parameters are determined in the same way as

in the case of eq.(I.2.1)
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(3)

and (I.2.2) in Part I by use of Pettifor's expression

of the pure metal:

(Z_?gf.‘ = 2 (€4z0~ €xc) .

£z fdxe Hdx s (IT.1.3)
) - 5[] om0+ 2O
(F)y = F e (:?)H ’  (II.1.5)
('-—t-q)d; = f5_+7zz; - 2&1(54- ezc)R"’]I ,  (1r.1.8)

I

(—g—}SI .271[1'?%%’—(55-ezr)d$Kz]1: (II.l.Y)

i - .o
where édIo_ls‘assumed to be equal to edI (UI/Z)mI . Eg and

_ edI are respectively the centers of the gravity of s and d

electrons of the nonmagnetic pure metal of the type I, my is

the local moment at the site and UI is the exchange parameter
of atom of the type I. The fitting factors §; and 7, are
respectively introduced to the r.h.s. of eq.(II.l.l) and eq.
(IT.1.7) so that both the lattice parameter and bulk modulus of pure metal
are reproduced correctly. In Part I, the effective mass K and
'ﬂd were the adjusting parameters for the same purpose.

In the case of the disordered alloy which we discuss,

the Madelung energy vanishes. Therefore,

3Fn = 3P + 3P40
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EF
~ Df; N —D _ ~
shn = Boes () Fao ()5 exfCeuzeme) Bt

L To

_ (I1.1.8)
In this paper, 3§iﬂ is calculated in the off—diagonél CPA
assuning the geometrical mean.
As shown easily by the analysis of the first three moments,
the volume dependence of the DOS, the center of gravity and

the transfer integrals are all determined only by that of the

band width W.

I A -l
peer = L p(=2)
éo’é& o< W’

I t,;|? < WZ
d b

°d

(I1.1.9)

A
where P(w) is a volume independent function, éb is the
bottom of the energy band and 60 is the center of gravity.
The level of the I type atom in the magnetic alloys are

assumed to be as follows.

€Ejroe = €dr (F“re)"é‘vi4n1'0~ +,Av,{JiA ,
€ox = €sp (pure) + AV - Fzg

€dr (Pure) = €4: + Qz R-ﬂl”

Eep Cpure) = By (fdTe) + wi (II.1.10)

s
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where EdI(pure)Aand EEI(pure) are the centers of gravity of
d and s electrons in the nonmagnetic state. UI is the
exchange pérameter and assumed to be equai to UOI(1+/UOI/WdI)
where Ugq andv’UOI are adjustable parameters and Wy is the
d band width of the pure metal I.' The volume dépendence of
the d band widﬁh is described by-wd

corresponding to the atomic volume. is the atomic d

a
€41
level of the atom I. BSI(pure) is the bottom of
the pure s energy band of the type I and is assumed to be
equal to 3ZA((rA/R)2—1)4uSR which was suggested by Pettifor
is

and used 1n Part I. rA is the éore atomic radius and ZA

the effective charge which the s electron on the W.S. sphere
feels. We assume that the s»band DOS of the pure metal is
a semi-ellipsoidal DOS and define W by one half of the s
band width. The volume dependence of Wy is proportional to
_R_2 because of the neglect of thevvolume dependence of’,as
(See eq.(I.1.18) in Part I.). The magnetic polariéation of
the s band is neglected. AV is determined from the charge
neutrality condition in a site. EIA is the Kronecker §.
The volume dependence oflﬁﬂxpure)—egI is assumed to agree
with that of Wj. In the g metals, this assumption is
justified numerically. This point is different from the
method in Part I.

Expanding eq.(II.1.2) with the atomic magnetic moments,

we can get an approximate magnetic pressure. Integrating

by parts, let us transform the bonding energy of the orbital

-5

«R®, R is the cell radius



EF
—Eb1=[§'a-(€—€<lv‘) fz(l(r(e)de , to the following form.
EF
_Epy = Z (EF- eotem)no!.eo-"/ﬁ_ﬂd,eo-(e)de , (I1.1.11)

< O

€
where n“l¢(6)=jvzlo@o)dq), nd1¢=n¢1¢(EF). Local magnetic
moments contribute to the bonding energy through each atomic

level €, The change of the bonding energy (—Ebl) due to

10°

the first order change of the atomic levels is

F(-Epg) = Z (EF-Cauc) Smuyo (II.1.12)

where we used the relation J{jﬂﬂa{eh—gﬁl@(e)-576&10_,
According to the selfconsistent condition (II.1.10), the above

expression 1is

{ 2
F(-Epg) = ZCEF-Cup) Tmuy + ;(Z§Vdmd);£d.,

Therefore, the magnetic pressure‘defined by the magnetic 3PV
minus the nonmagnetic 3PV becomes approximately the following

form.

~ Ly L y
(3PV2magM %[Z(t)d /udo(].u—o(’mo(

of
+%e[(%?°7£+(—§)x(5f:—€om)] T Mg

(I1.1.13)
Of course, in the ferromagnetic pure metal, the first
term of r.h.s. of eq.(II.1.13) agrees with the formula derived
(37)

by andersen et al. in the first order expansion. The
second term is the charge transfer term due to the change

of the local magnetic moment. Since (D/t)d%(D/t)S (See Table 1)
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and the charge neutrality within the site 1s satisfied, ‘this
term hardly depends on the Fermi level and is smaller than
the first term as numerically verified in the later section.
It is remarkable that the first term does not depend on the
detail of the electronic structure since (D/t)d and‘ﬂd are
determined by the atomic d wave function. The first term of
r.h.s. ofbeq.(II.l.lB) gives a theoretical base to the empirical

forrmula found by Shiga<l7) (18).

~and Schlosser
The expreésion for the bulk modulus can be derived in the

same manner. In the present case, the following expréssion is

obtained in stead.of eq.(II.1.12) as there is the volume change

of the transfer integrals.

dn
dy oo dV
EF
—o%r,/*""f(é”exzo-) Pugor(€)dE

(IT1.1.14)

where we assumed the geometrical mean for the AB type transfer

integral and assumed t%&xil"zb’, 7’ /3 7’1—2/3 Finally,

we obtain the formula for B:

3B = fea'[—4V I Z“°y ]

ool d
o(ﬂo-[(,%?)j (’E‘)ﬂ(EF-éx,eo)](~ dqlz/dﬁo-

~Z',.(’“£M_ f[eu(,~e)f>oua_(e)de
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d , Fx & ]
+[-; {52; —*ﬁ[lry(g’) . (II1.1.15)
In‘the case of the CPA,
i
~ d Doo
3B = £ e[ (53] e
d’n_eI

+};c1[(z ) T[E) CeF - €42)| (-

+ I ¢z { ] T fJ-ng "—L}] I{—dﬂnr}
3 40 /441 4 d M
-z () Z ¢ z/'iIfCe“ —€)FPoro(€)dE
2z 't/ezx 4
(IT.1.16)

The first term of r.h.s. of eq.(II.1.16) is the core part. The
second term is related to the change of the electron number
due to the volume variétion . The third term is related to the
local magnetic moment. The last ferm is the bonding energy term.

Next, we explain the expression used in the calculation
of the formation energy. We consider only the d electron

(6),(7),(19)

in accordance with other calculations The energy

expression to calculate the formation energy is

- ! S ocr Uy Ma
;I:.O_clfcé_elo_)/azwce)de~7;)\1 2 Uy Pz, (I1.1.17)

Of course, the above expression in the nonmagnetic state
agrees with the d electron part of the expression used in
Part I.

We consider two values of A= 3/2,1. A= 1 is correspondF
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ing to the Hartree-Fock (H.F) magnetic energy. If we
interpret the DOS P(€) in the sense of the quasi-particle,
A= 1 is appropriate. If we interpret the DOS P(€) as the
DOS in the sense of the LSD theory, the double counting term
is not exactly double counting and A=3/2 israppropriate in
the case of the Slater type LSD potential. Indeed, according

to the LSD theory, the electronic total energy is given by

EF | 7 cr) nfr’)
_ L diwr” 277 T
j ef(é)dé S fdlr‘ r T

+ fdlr [ner) excCnam) = £ e (i) vilcwr] | (I1.1.18)

) . o _
where exc is.  the exchange-correlation energy and Vee a(nékc)
/one. . If we assume the Slater type potential, i.e. that with

x=2/3 in Slater's X« method, the third term is

l o~
-—Z—gf%_ T (W) Uy (V) AIC (IT.1.19)

where §= 1/2, Here, we define the exchange splitting

parameter Uj at the site j by

e e . — .
U-J i = S 6J1‘

2 LG5y | vl m) | Fjy> T <?‘j1‘[vz¢c (| Fje

where qhq_is a localized orbital of o spin state at the site
Js mj is a local magnetic moment at the site j. Then,
leaving only the intraatomic d electron term, the magnetic

term in eq.(II.1.19) becomes
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A I I

Therefore, eq.(IL.1.17) is obtained and A=2-§=3/2.
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&2, Cu-Mn Alloy
The lattice parameter of Cu-Mn alloy exhibits a maximum

at 60 at%Mn(gu) where the volume of this alloy exceeds

‘that expected from Vegard's law by about 10%. The

(8)

predicts
(18)and

classical and phenomenological theory by Friedel
- the opposite sign to the observed deviation. Shiga

(19)

Schlosser suggested from the empirical formula that the
deviation from Vegafd's law is closeiy related to the |
growth of the local moment. However, the information about
the magnetic properties of thié'alloy is not enough to
elucidate the deviation, thus the origin of the deviation from
Vegard's law has not been elucidated yet.

The calculation of the formation energy of Cu-Mn by
means of the off-diagonal CPA is performed by Van der Rest

et al.(2l). Their calculated value 1s about ten times larger

(38)

than the observed value , and so, 1s not satisfactory.

In this section, we 8&ive the result for the lattice
parareter mainly and elucidate the relation of it to the
electronic structure and the magnetism.

The s-d hybridization effect changes the electron

numbers by about *0.5 in the pure metal. However, the net

change due to the alloying effect may not be so large and not
important for the concentration dependence of the pressure.
The concentration dependence of the 1gttice parameter of
the Cu-Mn alloy shows the behavior similar to that of the

Ni-Mn alloy experimentally. This fact suggests that the
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hybridization effect in Cu-Mn is not particularly impoftant
in cormparison with other transition metal alloys.

We calculate the electronic structure regarding this
alloy as the mégnetically and configurationally disordered
Valloy. In fact, the antiferromaghetic order has not been
found-in the low Mn concentration. 1In Fig.IT.1l, we show the
DOS of 7Mn calculated by means of this method._ The result
reproduces fhe DOS in the antiferromagnetic state calculated
by Asano and Yamashitsgéualitatively well although we
regarded the antiferromagnetic 7Mn as a disordered alloy;

Values of parameters are wS(Cu)=O.626 Ry, WS(/Mh)=
0.78232 Ry, Z,(Cu)=0.91135 and,zA(/Mn)=o.88199. The
guantities ws‘s are selected so that the curvature at the
bottom of the s band DOS agrees with that of the free
(4o)

1
ZA S

are estimated so that the position of the bottom of the s

electron DOS determined by the effective maSS/(s

band agrees with the result of the band calculation.

Exchange parameters are UO(Cu)=O.O Ry and Uo(/Mn Y=0.29004
Ry, fUO(Cu)=O.0 Ry and %Uo(an)=2.0. In the pure metal,
these values reproduce the observed Mn magnetic moment 2.4 4B

(41) at which the local

and the reasonable critical pressure
magnetic moment vanishes. Fitting parameters & and 7 are as
follows: 3(Cu)=1.01579, 7(Cu)=1.68358, £(71n)=0.96533, 7(7Mn)
=1.25716. Other parameters are given in Table 1.-

The calculation for the P-V relation of 7Mn which is

based on the energy band theory and the calculation for the
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volume dependence of the magnetic moment ha&e not been
performed yet. Our model calculation in which the antiferro
magnetic /Mn is treated as a disordered antiferro magnetic
#Mn is the first one. The critical pressure such that the
anomaly of the P-V relation appeafs together with the
vanishing of the spontaneous magnetostriction, is 160 kbar,
where the pressure-induced antiferro-nonmagnetic transition
occurs as shown in Fig.II1.2. A large increment of the
pressure with the decreasing vqlume is seen in the nonmagnetic
region from Fig.II.Z and the small increment of the pressure
with the decrease-of the volume, in the antiferromagnetic
region. This bending Of the P-V relationAhas not been
observed yet because of the lack of the high pressure
experiments on Cu-Mn alloy larger than 100 kbar. In the
case of the Fe-Ni alloy, this continuous bending is observed
(42). Such a bending shows the vanishing of the localized
moment. In Fig.II.2, the pressure in the magnetic state
minus the pressure in the'nonmagnetic state 1s called the
magnetic pressure. Figure II.3 shows the volume dependence
of this magnetic pressure. The‘mdgnetic pressure of 7Mn is
well reproduced by the first term of eq.(II1.1.13).

The electronic structure of Cu-Mn alloy is given in
Fig.IT.4, 1In Fig.II.5, the result indicated by II is calcula-
ted with the following selfconsistent condition in stead of

eq.(II.1.10).
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l A ~
Edre = €dz (PAva) + - Uz ( Mgz - Mar (PEYR))

N
_,L'UEIsz.o\
z >

€sx = €sr (para) (II.2.1)

where GdI(para) and é%I(para) show the levels in the nonmagne-
tic state, E&I(para) is the d electron number in the nonmag-
netic state. In the high Mn concentration, the result II shows
the good agreement with the result I, but in the low Mn
concentration, these results do not agree. In the case of

the selfconsistent condition (II.2.1), the magnetic moment

is larger than that determined by eq.(II.1.10) because the

d electron number at Mn site decreases, being accompanied

by localization of Mn with the deérease of the Mn concentration.
The concentration dependence of the DOS of Cu-Mn can be

easily understood since the Cu-part DOS and the.Mn—part DOS

are separated clearly. The low energy peak of DOS grows

up with the decrease of Mn concentration, the d band width

of Mn site in the high energy region becomes narrow and

narrow as the interaétion among, Mn atoms becomes weak.

In the magnetic case, the up band at Mn site mixes well

with Cu. At lower concentration than 60 at%Mn, the d band

of the antiferromagnetic Mn has a gap because of the exchange

splitting and localization. This gap, of course, becomes
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small with the decrease of the volume.

Calculated lattice parameters are shownrin Fig.II.6(a).
The index I is the result calculated from eq.(II.1.10) and
II is bgsed on eq.(II.2.1). The result II deviates largely
from the experimental value at the low Mn concentration and
is overestimated. Therefore, the selfconsistent condition
(11.2.1) may be inappropiate. This overestimation of the
lattice parameter is due to the faét that the a4 eiectron
number at Mn site.decreases by 0.4, so that, the excess
electrons which fiow out from ﬁhe d orbital are accumulated
mainly in the s orbital at Cu site.

In order to elucidate the origin of the large positive
deviation of the atomic volume from Vegard's law, we define
the pressure at the volume determined by Vegard's law (ﬂv)
relative to the pressure in the separated phase as well as

82 in Part I as follows:

S(3BQ)(y) = 3P0 (2y) - L ¢z (3Pe)(2z) (11.2.2)

S(3P0)(ar) = F(3P-0)() + T(3Fn)ny),
| ' (II.2.3)
where (3Pf2)I(QI) is the 1 component of the .pressure of the
pure metal I at the eqilibrium volume and 3§&Q(Qv) is the
l-component pressure of alloy at the volume determined by
Vegard's law. Each component of the orbital can be decomposed
into the core part and the bonding part which consist of the

contributions of both types of atoms. Of course, if §(3PQ) (Q,)>
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0, the lattice expandsrelatively to the volume determined
by Vegard's law. In order to claify the magnetic effect. the

following magnetic pressure (3pIZ)mag is useful.

3P (2y) = 3Fﬂ,:(ﬂv) +(3 ?ﬁlma(?(ﬁv) , (II.2.4)

where 3Pﬂ£(ﬂv) is the pressure in the nonmagnetic state at
rthe Vegard léw 'Qv which is obtained by intepolating the
volume between the nonmagnetic Cu and the magnetic /Mn. An
approximate expession of the magnetic pressﬁre is given by
eq.(II.1.13). Substituting eq.(II.2.L) into (II.2.3), we
obtain the relative pressure which conéist of two parts i.e.
the term S(3Pﬂ)magCQv) due to the change of the magnetic

state with alloying and the term J(3Pj%)(ﬂ%) due to the change

of the nonmagnetic part:
s(3fa)we,) = §3P0 mag(v) + &3 PL2p (y),
(IT.2.5)

In Fig.II.7, each relative pressure §(3Pf) is shown.
Figure II.7(a) expresses the s and d contributions. Both s and
d electrons make positive'contributions to the relative press-—
re. Thé arrows written by the solid and dottéd lines show
the direction of the change of the relative s and d pressures
when the volume changes from,av to the equilibrium volume.
Since the s electron part of the pressure generally increases
-rapidly with the decrease of the volume and d electron parﬁ

pressure decreases with the expansion, 5‘(3Péa) becomes negative and
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then balances with the relative d pressure which is positive
at the equilibrium volume. As shown in Fig.II.7(b), the
origin of the large expansion at 60 aﬁ%Mn is due to the change
of the magﬁetic pressure. Since the magnetic pressure 1is
approximatelj proportional to the»linear combination of the
squares of the local magnetic moment, we can interpret that
this large expansion is due to the increment of the Mn magne-
tic moment. The increment of the Mn magnetic moment is
caused by the reason that the ?onding of the Mn atoms is
broken with the decrease.of the Mn concentration and the
magnetic moment is localized. The main part of the magnetic
pressure originates in the bonding pressure of the d part.
So, we can give also the interpretation that the loss of the bonding energy
at Mﬁ site becomes large with the increase of the Mn magnetic
moment and it causes the relatively repulsive pressure. (See
Fig.II.7(e).)

There are two origins of the positive deviation from
Vegard's law iIn the low Mn concentration. One origin lies
in the relative pressure of the s part. The d electrons at
Cu site mix with the d electrons at Mn site which is in the
higher energy region, and so the d hole is produced at Cu
site. Therefore the charge transfer from d orbital to s
orbital at Cu site occurs. It causes the excess repulsive s
pressure. Another.origin lies in the loss of the bonding
eﬁergy due to the narrowihg of the DOS at Mn sité. This

effect is, though large, not pr*edcm'inaht compared with the former.
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These two effects are conspicuous in the case of the
nonmagnetic state as can be seen from Fig.II.7(d). In this case,
the effect due to the loss of the bonding energy is larger
than the s-d charge transfer effect. The positive deviation
ffom Vegard's law in the nonmagneﬁic state results from these
two mechnisms, so that, the phenomenological theory by Shiga
and Scloséer is not correct because of the assumption of
Vegard's law in the nonmagnetic state. However, their
suggestion that the lattice parameter is related to the
increment of the local magnetic moment, 1s qualitatively
~correct,

By the way, we note that the behavior of the lattice
parameter of Ag-Tc is different from the nonmagnetic Cu-Mn
alloy. The 4d TMA Ag~Tc causes the negative deviation from
Vegard's law by (Q—ﬂv)[QAgc=—0.Ol2 at 10 at%Tc according
our calculation in terms of the same method in Part I. This
seems to be based on the reason that the magnitude of the
negative relative-pressure at Tec site is larger than the
case of Cu-Mn alioy since the volume derivative of the core
part pressure of Tc is larger than that of Mn. This different
behavior may be caused by the more violent increase of the
kinetic energy of U4d metal than the 3d metal because of the
difference of the number of the node between the 44 metal |
wave function and the 3d metal wave function.

- In spite of the large volume expansion, the bulk modulus

changes linearly as shown in Fig.II.6(b). Although the increase of the
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bond energy term in the bulk modulus is obtained as in the case of the
pressure according to eq.(II.1.16), the increase of this term
is compensated by the decrease of the core part (the first
term of r.h.s. of eq.(II.1.16)) due to the volume expansion
as seen from Fig.II.8. It is alsb caused by the volume
expansion due to the appeérance of the local moment that the
bulk modulus in the nonmagnetic state is larger than that in
the magnetic state. The experimental study of Cu-~Mn about
Young's modulus has been reported, but the bulk modulus has
not been done yet. «

At the end of this section, we discuss the formation
energy AH of Cu~Mn. The calculated value in the nonmagnetic
state is more than twice the value of Van der Rest et al(21).
as shown in Fig.II.S(c). This is mainly due to the fact that
the bonding energy of pure 7Mn is enhanced by the contraction
larger than 10% due to the magnetovolume effect. If we esfimate
the formation energy of the nonmagnetic Cu-Mn along Vegard's law
in the magnetic state, the same order of the value as their
result is obtained. In the magnetic state, the formation energy
is reduced as compared'with the nonmagnetic case because of the
gain of the exchange energy due to the increase of the loca-
liZed Mn magnetic moment. But the agreement with the expérf
imental value is poor.

Equation (II.1.17) is not sufficient to explain the

formation energy of Cu-Mn alloy.

There are many effects whiéh must be considered. For
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example, (1) The estimation of the repulsive energy term due
to the shift of the atomic level. Especially, the large volume
dependence of the formation energy in the nonmagnetic state
should be reduced by this repulsive term. 1In the case of

the magnetic state, this effect will contribute negatively to
AH in the Mn rich region and will suppress 4H evaluated by
eq.(II.1.17). One method which takes accéunt of the fepulsive
“term is to integrate the pressure expression of eq.(II.1.8).
Trom this point of view,'we tried to evaluate the AH assuming
the volume dependence of the parameters in eq.(II.1.8), but
did not succeed because of the inaccuracy caused by the assumed
volume dependence. Other effects which must be considered

are as follows. (2) The effect of the s electron. (3) The
correlation effect of d electron. (U4) Temperature effect.
The experiment is performed at high temperature (~1000K).

It is difficult at the present stage to get the correct value
of the order of 0.001 Ry confirming the importance of these

effects theoretiéally.
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§3. «Fe and Ni Base 3d Transition Metal Alloys

In this section, the results.of the calculation for the
cohesive properties of the aFe and Ni base 3d TMA, that is,
‘the formation‘énergy, the.change-of the lattice parameter and
the bulk modulus are mentioned.

The parameters which is used to calcﬁlate "these
quantities are listed in Table 1. The d band width is

estimated from the formula 254udR2. However, in the case of

V, the width is selected to be smaller than 254ﬂdR2 by 0.05

Ry and in Ni and Cu, to be larger than 254ydR2 by 0.02 and

0.06 Ry respectively. These values agree with the results of
(43),(48)

the energy band calculation The exponent n which

expresses the volume dependence of the d band width is assumed

(29)

to be equal to the exponent of the 4d metal corresponding

to the same column on the periodic table. The atomic core

(45)

radius ry is calculated from the Herman-Skillmann's table
by means of the method suggested by Pettifor. The effective

masses M and/l are taken from Table 1 in Andersen's
(40) ¢

paper . (D/t)S and (D/t)d are also estimated from

Andersen's parameters. The parameter ZA which characterizes

the bottom of the s band of the pure metal is assumed to be

equal to 1.0 except for V. Quantities Z, of Ud metals are

A
nearly equal to 1.0. In the case of V metal, the

bulk modulus of V 1s not reproduced well with Z,=1.0,

A

Therefore, we assumed that Z,=1.2. The half of semi-ellipsoi-

A
dal s band width, We s is selected so that it does not

(43),(48)

contradict the result of the band calculation
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the s electron number is about 1.0. Q and Z are evaluated

W.S
by using ed and 6xc deduced from the band calculation. These
parameters reproduce the volume dependent quantities of Ti(u),
Fe‘and Ni(ll) which have been calculated selfconsistently.
The model DOS is shown in Fig.II.9. In the case of the
b.c.c. structure, the model DOS which is used by Akai et al.
(46) is assumed, and the f.c.c. model DOS is quoted from
Connolly's T) DOS. The tail of the length of a half of the
d band width is added in order to take account of the s-d
hybridization effectively. This tail is Important for the
volume dependence of thermagnetic moment of Co and Ni.

The parameters U, and fUO are selected so that the

0
magnetic moment and its volume dependence at the equilibrium
position are reproduced for the assumed DOS. In the case of
V, they are selected so that the magnetic moment of V in
aFegono élloy is reproduced and so that V causes the magnetic
instability at the W.S. radius R=& 3.35 a.u.(g). The values in
Ti and Cr are assumed to be equal to the values in V for
simplicity.

The fitting factors £ and 7 are determined to reproducé
the observed lattice parameter and bulk modulus. In the case
of Cr, they are determined assuming that the magnetic pressure
is given by the first term in eq.(II.1.13) and the expression
of the bulk modulus is equal to the expression of the bulk

modulus in the nonmagnetic state.

In general, the fact that the values 7 are fairly larger
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than 1.0 may be due to the overestimation of the s-d charge
transfer effect. Indeed, if we assume the s DOS whose value
at the Fermi level is about a half of the present DOS , we

get, for example, ¥ e=1.26, 7Fe=1.14.

F
Atomic radii in the nonmagnefic state, the partial
pressures of the s parts and the components of the bulk modﬁlus
célculated with use of the parameters listed in Table 1 are
shown in Fig.II1.10. The results of the.calculation for the
Spontaneous magnetostrictions défined by (a-i%)lao (where
no is the volumé in the nonmagnetic state), are 0.003 for
Cr, 0.140 for #/Mn, 0.067 for xFe, 0.041 for f.c.c. Co and
0.013 for Ni. The values calculated by Janak and Williams ‘0
are 0.071 for &Fe and 0.005 for Ni, and thesé values agree
with our resﬁlts well. The s part pressures in the nonmagnet-
ic state at equilibrium position  agrees .roughly with the
pressures of 4d metals. However in the magnetic state, they
decrease because of Ehe volume expansion.

In Fig.II.10(c), the components of the bulk modulus are
shown. The dominant part in the magnetic-moment term is
related to the volume-derivative of the magnetic ﬁoment. For
example, in the case of XFe, the third term of eq.(II.1.16)
is —0.0031 Rya.u. and the volume-derivative term of the
magnetic moment in it is -0.0024 Rya.u.. The main térm in
the bulk modulus is the s part as indicated by Pettifor(3).

However, when we consider the alloying effect, the s-d charge

transfer term (the second term of eq.(II.1.16)) and the
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magnetic moment term (the third term of éq.(II.1.16)) are
also important.

Acéording’to the exnression of the approximate magnetic  pressure,
(II.1.13), the change of the magnitude of the local magnetic moment 1is
important in alloys. The calculated magnetic moments at the
impurity site do not change very much from the magnetié moments
in the impurity limit as shown in Fig.II.11l. The Fe, oMngq
alloy just lies in the boundary between the ferromagnetic phase
and the antiferromagnetic phase, and so, it should be treated
as a quaternary alloy. But, tﬁe electronic structure is calcu- -
lated with respect to thrée phases of binary alloy, that is,
the antiparallél Mn moment in ferromagnetic phase, the parallel
Mn moment in the ferromagnetic phase and the disordered
antiferromagnetic phase for simplicity. The calculation in the
parallel Mn moment configuration is performed with the parameter
ws(Mn) = 0.78232 which is used in the previous section

"because wS(Mn) = 0.650 does not cause the solution of the
parallel Mn moment in the ferromagnetic medium. In the'dFé
base'alloys, the changes of the magnetic moment of Fe are
mainly effective to 4H and.n—fb, and in the Ni base alloys,

the changes of the impurity magnetic moment are important.
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§3.1. Formation energy

The calculated result ofAAH‘in the 3d métal | alloys is
shown in Fig.ITI.13 . The values of 4H are evaluated at the
equilibrium volume calculated from eq.(II.1.8) in the magnetic
state or nonmagnetic state. |

In.uFb—bése alloys, the double counting term is important
and the A =3/2 scheme explains 4H qualitatively well. The
result in the nonmagnetic state and the result_by Van der Rest
et a1.<21) also explain the trend. The differences from
their scheme of calculation are following three points: (1) Ve
assume the charge neutrality within a site. (2) In our

energy comparison, the magnetic energy is included. (3) The

volume change of the bonding energy between the magnetic

(38)

are performed at high temperature, about 1000K , according to
(22),(23) of

and nonmagnetic state is considered. Although experiments

the recent experimental and theoretical studies
the 3d ferromagnetic metal, the lbcal magnetic moment remains
even at the high temperature more than 1000K. Therefore, it
may be reasonable to estimate A4Il as the magnetic alloys.

An interesting result in connection with this circumstance
i1s that the 4H of Ni-Mn can not be explained as the nonmagnet-
.ic alloy. The origin of the negative 4H in this alloy lies
in the gain of the exchange energy with the increase of the
Mn magnetic moment according to our calculation. Van der Rest
et al. also present the negative 4H of Ni-Mn in their non-

magnetic calculation.

According to their calculation , the origin is due
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to the gain of the bonding energy. However, this mechanism
is.dubious if we consider a large magneto-volume effect of

Mn. Indeed, the reason for the nearly zero 4H in the
nonmagnetic Ni-Mi alloy as shown in Fig.ITX.13 is that the

gain of the bonding energy of pure 7Mn increases Since the
volume in the nonmagnetic state contracts more than.lo at?%

due to a large magneto-volume effect, and so the alloy tends
to separate two metals. If we»evaluate AH in the nonmagnetic
state at the volume determined from Vegard's law in the magne-
tic stete, we obtain 4H=~0.00Ll6 Ry/atom which is a compara-
ble order with their fesult; Of course, it is not sufficient
to discuss with eq.(II.1.17) for the alloy having a large
spontaneous magnetostriction as mentioned in the previous
section., Nevertheless, this alloy is interesting as an
example that the magnetovolume effect influences the formation
energy. The disagreements with the results of Van der Rest

(21)

et al. are also found in «Fe~Cr and Ni-Fe. Our results

give a correct trend in agreement with the observed value.

~75-



§3.2. Deviation from Vegard's Law

The deviation of the volume from Vegard's law is shown
in Fig.II?13(a),(b). The agreement with the experimental
values is not so good as in the case of Ud metal allpys.
However, the trend:through the pefiodic table is reproduced
well., In KFe-Mn alloy, the antiparallel Mn moment cohfigu-
ration in the ferromagnetic phase is suitable since it
explains the sign of 4H and (Jl-uﬂv)/nBc. In the following
analysis, this configuration is assumed. The deviation from
Vegard's law in «Fe-V is not eéplained by the common b.c.c.
model DOS. This alloy will be discussed later; The experi-
mental tendency can not be explained by the result of the
nonmagnetic calculation, especially, in Ni-Cr, Ni-Mn, Ni-Co
s XFe-Co, XFe-Ni and XFe-Cu alloys.

The relative pressures at the volume determined from
Vegard's law are shown in Fig.II.15 in the same way as the
previous section in order to elucidate the mechanisms of the
deviation and the magnetic contributlion . The relative pressure
is defined by eq.(II.2.3). From these figures, we can conclude as follovws.

Firstly for the «Fe base 3d alloys, (1) The main origin
of the deviation from Vegard's law is the magnetovolume effect
except for aoFe-Ti and XFe-V. The positive deviation in «Fe-Co
s XFe-Ni and XFe-Cu is mainly due to the increase of the
magnetic moment at the host Fe site since the magnetic pressure
is approximately proportional to the linear combination of

the squareées of each local magnetic moment. In «Fe-Mn alloy,

~76-



the increase of the magnetic moment at IMn site is also
important. (2) In the case of the above mentioned alloys,

the nonmagnetic part of the relative pressﬁre nearly vanishes,
and the magnetic pressure is qualitatively reproduced by the
first term of eq.(II.1.13). Thesé facts show that the

empirical formula proposed by Shiga and Schlosser,

0 ~ 0, + 5(§ crkz”n_rz) (I1.2.6)

is qualitatively correct where ki = [(D/t)y /u-14pd1:]UI/3B,
£, is the volume determined from Vegard's law. & indicates
the difference relative to the separated phase. (3)_ The
negative deviation in «Fe-Ti is due to the nonmagnetic
effect of the negative relative pressure which is caused by
the d—d bonding effect and s-d charge tranéfer effect as in tThe
case of Pd-Zr alloy in Part I.
The disagreement in «Fe-V with the observed value is

not improved even if the parameter ZA is changed by *0.1,
and the result is also not sensitive to the parameter U0 and
70, of V as shown in Fig.II.1l3

On the other hand, the atomic volume of Ni-V alloy is
reproduced comparatively good for the same parameter,
Therefore it is inferred that this disagreement is due to the
. detail of the b.c.c. model DOS. So, we calculated the lattice
parameter‘with the new model DOS of V which is taken from the
DOS calculated by Boyer et alf?g)The new DOS is characterized
by a more deep valley due to the bonding-antibonding effect, a

sharp peak in the center of the hand due to the 4d&€ state and an

additional peak just below the large peak due to the d? state.
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The decrease of the magnetic moment at the host Fe site and
the increase of the bonding energy gain relative to the

result of the previous DOS, are‘caused. For example, the
magnetic moments at Fe and V sites are respectively 2.069,ﬂB
and —1.099,HB, while these are 2.223/#B and -0.957/4B in

the old DOS. The new DOS also leads to the large negative
deviation from Vegard's law at the nonmagnetic V-rich region
contrary to the case of the previous DOS. The origin of

this negative deviation can be considered to be due to the
bonding effect caused by the breaking 6f the large peak of
the d state at the cehter where the Fermi level lies and by
the accumulation of the states on the wvaley of the b.c;g, DOS.
It is due to these nonmagnetic dontributions that Schlosser(18)
could not elucidate the cﬁange of the lattice parameter of
XFe-V.

Next , for the Ni base 3d alloys, the following three
conclusions are obtained from Fig.16(b). (1) The nonmagnetic
parts of the relative pressure are small except for Ni—Ti;
Ni-Mn and Ni-Cu and so, eq.(II.2.6) is qualitatively correct.
(2) The positive deviations from Vegard's law of Ni-Mn and
Ni-Fe are mainly due to a mégnetovolume effect. These aré
caused by the increase of the Mn and Fe magnetic moment.

The negative deviations of Ni-Cr, Ni-V and Ni-Ti are also
due to the magnetic effect caused by the decrease of the
host Ni magnetic moment. This phenomenon is well known with

respect to the deviation from the Slater-~Pauling curve.
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(3) The negative deviation in Ni-Ti is mainly due to the d-d

bonding effect and the s-d charge transfer effect as in the case of «Fe-Ti,.
Until now, we have elucidated the origin of the devia-

tion remarkinguthe change of the magnetic pressure. However,

we can also interpret it as the éhange of s and d parts of

e v
-

the relative pressure. Figure II.16(c) and (d) are analygé; ,
from this point of view. For example, the positive devi;éibn
of Hi-Fe alloys can be explained as follows. The repulsive
relative pressure of the s part is caused by the repulsive
relative Pressure at Fe site due to the relative contraction,
On the other hand, in the case of the nonmagnetic state, the
relative d part pressure is negative as wéll as Pd-Te iﬁ
Part I. However, in the case of the magnetic state, this
vrelative pressufe of the d part nearly vanishes because of
the loss of the bonding energy with the increase of the moment
at the Fe site. Then, only the contribution of the relative
pressure of the s part remains. This is another interpretation
why the lattice parameter of Ni-Fe deviates positively from
Vegard's law. .

Finally, we point out thaﬁ the change of the lattice
parameter of the nonmagnetic Ni-base 3d alloys across the
periodic table is different from the Pd base 4d alloys. As
~shown in Fig.II.1l6, the behavior of the relative pressure of
the s part is always positive and is different from the case
of the.Pd base allbys although the relative d part pressures

behave in the same wéy. This difference 1is caused by the
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difference of the relative weight between the relative s
pressure at the impurity site and the host one since the
relative magnitude of lattice parameters of Cr, Mn, Fe and
Co with réspect to that of Ni has the opposite tendency to

those of Mo, Tc¢, Ru and Rh compared with Pd.
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€3.3. Bulk Modulus

The résu1t of the calculation for the bulk modulus is
shown in Fig.IT.1L. In the case of Ni-Co, Ni-Fe and Ni-th, it changes
linearly with concentration. The others deviate negatively from the linear
dependence. The origin of the softening in Ni-Ti, Ni-V, Ni-Cr,
XFe-Ti and «Fe-Cr 1is mainly due to the s-d charge transfer
induced by the volume change. (See Fig.II1.17.) The change of
the bulk modulus of XFe-V calculated by the modified model
band is 4B/c=2.06 which is of opposite s.i'gn to fhe modulus
- calculated by the o0ld model band. In order to get the
reliable result, it is necessary to calculate more accurately.
The origin of the softening in KFe-Co, AFe-Ni and &Fe-Cu is
, In addition to the s-d charge transfer effect, partially
due to the increase of the derivative of fhe local magnetic
moment with respect to the volume and partially due to the
decrease of the rigid part with the volume expansion. The
rigid part in the bulk modulus is de