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ABSTRACT

This work was done in the Electrical Engineering Ph.D.

Course at Osaka University and some parts in this thesis have

already been published in other articles.

When solving field problems ( boundary-value problems )

we will face in most cases the difficulty that is complicq.tion

of wave functions in being dealt with analytically, and occasion­

ally it will disturb the ~inal developments in obtaining

solutions. In some cases this may be avoided by employing

numerical methods, however many unavoidable cases lie: around

us. We would be obliged to resolve this important subject rather

in viewpoints of Engineering than Mathematics.

To this purpose, a method of using complex variables

z, z available for two-dimensional problems, is proposed where

z = x + iy and z is the complex conjugate of z. Fields are

expressed with these complex variables and are related to

the corresponding "regular functions of a single variable z

through a new field-description.

The field~ma+,ching is performed at junctions 'of

the regions, in which the sets of wave functions are given, b,y

the analytic continu~tion of the corresponding regular functions

instead of the fields, using the theoEy of regular function.

\.
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It is illustrated to the E plane taper in a rectangular wave-

guide.

To outer fields such as radiation fields, the field

description with a contour integral representation in a complex

-plane is given. The complex variables z, z then are changed by

a transforming f'unct Lon, This is applied to the boundary-value

problems with arbitrar,y boundary. An approximate method is

developed under the assumption of small boundary. The two dimens-

ional scattering by the perfectly conducting obstacle with

arbitrary cross section is solved.

Furthermore it is applied to the scattered field' in the rect-

angular waveguide with an inductive post or a capacitive post.

The transmiSSion coefficient and the reflection coefficient are

obtained in the general forms for arbitrarily shaped posts.

\
i
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Chapter I

INTR01JUCTIon

Eleotromagnetic field problems today oover a vast area

in the Eleotrioal Engineering. In this area, the Boundary-Value

Problems are the main subject matter. Its noticeable advances

will be found-now, nevertheless, it is still subjeoted to a

troublesome problem. One of the difficulties is how to embo~

the solutions whioh have been speoified by boundary conditions~

either numerioally or analytically. Particularly,it is demanded

in the Engineering. Certainly, it is in the underground of field
, -

problems,but one need light up it all the more.

The modal expansion is one of the oommonest techniques

for solving the Helmholt7> eluation with boundary conditions.

How to determine its coeffioients will greatly depend on the sets

of oomplete wave funotions to be chosen , The labor of analytioal

manipulation will inorease unless the orthogonality is established

Integral equations may be exoellent only to represent

-the fields including the boundary conditions. However,they are

disadvantageous to be exposed in the oonorete form which is

I



calculable, because of the ~pmplicated kernel functions.

Hence,the integral ~~lations are solved by numerical means [4,5]
except for special cases.

It could be found that the numerical techniques except

the method of nets [ 6] involve the analytic/al manipulation in

leading to the final equations to be solved ,and the complication

of the wave functions disturbs the smoothness of the analytical

development" as described above. Thus,it is reasonable to expect

some fine techniques to reduce our analytical effort. The method

of using a complex variable i.e. conformal mapping has remarkably

succeeded in static field problems. The same idea for time­

varying fields is found' in the Wiener-Hopf techniques [7] .
However,these are limitod to the restricted boundary-shapes to

which the Fourier an:.;.lysis is appli,ed " ,

The attempt to express the field with complex variables

was initially made by Vekua [8]. In his work, a new field

description was presented with a complex integral of a regular

function, however, it is restricted in a closed region.

Through his description,it can be pointed out that the regular

function corresponds to the field,one to one, and in additio~j

the real part represents the corresponding static field.

In this respect/ he has extended the complex analysis for static

fieldS to that for time varying fields, though it must be noted

2',



that it can not. be appl:'.ed to radiation fields.

This thesis follows applicably on the customary

courses in the Electrical Engineering in that the treatment of

using the complex variables reduces our analytical labor,

therefore,is primarily concerned with an exposition of the mathe-

matical tools, together with a series of examples.

Chapter II is mainly devoted to investigating the field

description for the outer fields ( radiation fields ) which

has never been found and to improving it so as to be convenient

to actual shapes of boundary. The Vekua's description is con-

currently described to utilize in the next chapter.··

Chapter III is concerned with the field continuation

in the two different regions which are partially common.

If the field is given by a modal expansion, it is so-called

" Mode-Matching" • This is applied to the E plane taper at

the junction in a rectangular waveguide in viewpoints of a complex

variable, much more to appreciate a mathematical device.

Chapter IV is devoted to apply the given formula to

the scattering by an arbitrarily shaped obstacle ,which is' .

assumed to be a small size and a perfect conductor.

The examples of waveguide problems are given in Chapter'V to

make the formula more widely applicabl~. These were dealt with

by Miles [9], Schwinger [10,11] ,Marcuvitz [12,13] , Collin [14]r

etc., using the variational methods. Lewin also showed' another

3



technique [15] in the case of a cylindrical post. The approximate

procedure is similar to his one. It however is suggested that

the method proposed gives general formulations for arbitrarily

shaped posts. The speoifio posts are oylindrioal posts, strips,

square posts, and all of them are examined for two cases:

the inductive posts and the capacitive posts •

. ",
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Chapter II

FIELD DESCRIPTION

The fields satisfying the Maxwell's equations have

been studied very well within the expressing by real variables,

so the details are omitted 1 and we start from the following.

Let a relevant coordinate system be ( X,Y,Z ),and

suppose that the field propagates along the Z axis with e-j ~ Z,

w'here ~ is a constant. The field u then satisfies the Helmholtz

equation:

+ - 0

where k=Jk~ _~2
Equation (2.1) is a

, k = the wave number in free space.
o

monochromatic, two dimensional equation, and

is quite equivalent to purely two dimensional problems concerning

its analysis. In the follol,ing,the analysis is developed with this

assumption -which is also made to the boundary. For simplicity,

the normalized coordinate system is employed:

y=ikY

Throughout the thesi s, all the quantities in the normalized

system are written in principle by small letters,and the· corres-

-.



ponding ones in the original system by capital letters. The time
, .

. 'wt
factor is e J and :' j" is called here'" Temporal Imaginary

Uni t ". While

z= x+iy

( z is not a' normalized axis of Z ) is called" Spatial Complex

Number ",and "i" is a spati a1 imaginary unit ( i
2

- 1, / =
- 1 ). We should concentrate our attention rather on"i" than

" j". The bar denotes the complex conjugate of the complex number

including both.the imaginary units, with respect to i •

The boundary in the normalized system is Y,and the" boundary It

implies r unless 'explicitly specified ( see Fig. 2.1 ).

The relation

~ (
'0 x

-i )

and its complex conjugate lead to the hyperbolic equation,

instead of (2.1) :

~2
u + u . Q.

It is obvious that all the components EX,Ey,EZ'EX'Hy,HZ of

fields satis~.the above equation. The transverse fields can be.

6



*expressed by the well-known, differential formulae , and these

become with (2.4)

EX -iEy ~- --Voz e

(, (2.6)

!Ix iHy - --Va z m

where ve,Vm are an electric complex potential, a ~agnetic complex

potential respective ly,. and ar-e functions of z,Z :

v = j(.1.. E + i:~~ ) (2.7)e k Z

V - .(~ Hz- i k~E ) (2.8)
m J k k M Z

'h~re E = the permittivi ty, )A = the permeability, and ko=WJEP. •

The expression (2.6) is familiar to static fields [2 ] although

the potentials are different: the static potentials are functions

of z only, whereas (2.7)(2.8) involve 1!!2. complex variables.

~ With vector representation, the transverse fields Et, Ht are

where 1Z i~ a unit vector being'dir~6ted'to the'Z.axis.

7



It is readily seen from (2.5)(2.6) that

a
iEy )V - oz ( E -e X

a ( !Ix - iHy)
(2.9)

v - -m ()z

Static fields make the left hand side of (2.9) to zero, 60 the

above relations do not hold for the static fields.

The partial derivatives with respect to z,z unfortunately make

the physical interpretation obecue , instead permit us to. deduce

a great deal of useful mathematical tools. For instance~the nor­

mal component and the tangential component of the electric

field on r can be represented simultaneously by the real part

and the imaginary part of

~-In- Vz2> z e
(2.10)

respectively, where ~,n are the normal components vs. the nor­x y

malized coordinates, and In
l

== n + in • Furthermore,we couldxy

expect that in the limit of k = 0 , Ve or Vm tends to a trans-

forming function ( a mapping function ) which is regular so that

the expressions (2.6)(2.9) extend the complex analysis available

for static fields to that for time varying fields, especially,

on successive derivation from the statical treatment.

8



2.1 General Remarks

The theory of complex analysi s was well studied .

in the field ,of mathematics and broadly used as a tool in that

of the Engineering. Nevertheless, one can find that most partsof

the theory which seem to be of interest in a w~ still remain

to neglected ones; because the theory was built up under the ass-

umption of a single variable z , -- So the application to the

cases of two variables z,z such as the fields described before

becomes extremely difficult.

From this standpoint, we define a: certain operator U
with which the field u is related to the regular function ~ of

z only one to one.,

(2.11)

Evidently, the operator depends on what form of'the regular

function is to be chosen. If such an operator exists, all the

behaviors of the field can be understood by studying the corres~

.ponding regular function. It is a straightfoward matter to seek
. .

out this operator in the present chapter,~ it is described in

the latter sections. In this section, the general properties of

this pperator are studied briefly.

It is ' apparent that the 'oper at or J-l involves all

9



-the characteristics of the wave and includes the variable z •

Therefore,the operator defined at a certain point in the complex

plane is different from that at another point, thereby so is

the corresponding regular function,too.

Suppose,the field u

Fig.2.2

The different regions in

the z plane where (2.11)

is defined.

\
i

exists in the region R (see
o

Fig.2.2 ), and the regions Rl,

R2 including the points zl,z2

respectively are constrained

in R , and assume that any
o

source of u does not lie in R •. 0

We dare denote the fields in

Rl,R2 ~ ul,u2 respectively

and similarly the corresponding

r~gular functions by ~1,9?2'

Then,

ul - HI ~I

U 2 = H.2 'P2
(2.12)

(2.13)

where Ui: tt 2. are the operators defined at the points zl,z2

respectively. Of course, ~l (or ~2) is regular in Rl (or

R2 ) and J{ 1 ( or U2 ) is valid in Rl ( or R2 i.

10



Since ul is the same with u2 in the first place, the expression

(2.13) could be transformed into the expression (2.12) b,y the

II transforming operator " D12 :

can interpret as follows: the leteU 12 .

The right hand side mqr be

of J-t I into J-t 2· Thus 1 we

considered an analytic continuation

is the operator which transforms the regular function defined in

H2 into that corresponding to u1 in HI through an analytic cont­

inuation ( this is not a conventional one for regular functions
r-.J

of z only ). Let us· define ~ 2 as

-
SUbstituting (2.14) into (2.13) and comparing the result with

I"V

(2.12), we find that ~ 2 is a regular function and is equal to

in H ­
1.

(2.16)

It is noteworthy that ~ land ~ 2 differ-from each other,'

. .except for zl -= z2.

11
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2.2 Inner Field

The E field and the H field are fundamental solutions

to Maxwell's equations with charge free and the ·combination

constitutes the most actual field. One should remember the fact

that the field behavior can not be discussed from ~ component

of the field but from ~ components i.e. electric and magnetic

£ield components to the same direction. This fact allows us to

conclude that the regular function associated with the E field

and that with t~e H field are undistinguishable. Therefore we

examine henceforth the field descriptions separately for

both cases: The symbol ~ represents either EZ or HZ. In the for­

mer case, the field description is of the E field and in the lat­

ter case, is of the ~ field. In the following, the u is not spe­

cified.explicitly.

The source free field in the closed region to r (
see also Fig.2.l ) is named here" Inner Field". For this one,

the Vekua's fi~ld description [8] is quoteworthyj his derivation

is based just on the method of solving the hyperboiic equation '

e.g. (2.5)[2,8] • We now explain his one from another point of

view briefly, moreover, reasonably , to confirm the follow of

the latter chapters.

Equations (2.6)(2.9) are consist~nt both for the E

fi eld and for the .R field and therefore we can write down j

12



in general for u~as

"o uE_----o z

Note that u is a real function with respect to i, but forget it

before the derivation, instead consider at a final step. First,

we put

- - 2 -
u = ~ (z) + Z 9?l(z) + Z ¢2(z) + ... (2.18)

where ~(z), . ~l (z), ••• are regular in the inner region.

By SUbstitution,E can be obtained. Further, the differentiation

of E leads to u , Compare the resulting u \'lith (2.18). We then

have

-, ;:r. ,
~l(z)= -~(z), ~2(z)=-t

, l;f.,
~3(z) = - :3 ~2(z), ••••••••••

~l(Z) ,

,
where ~n(z) denote the first derivatives. In .the above, We'shall

P,ut ~l(O)= ~2(O) = = O."Instead,we must 'add , a series of

Z only to (2.18) ( beginning from the term z ), --- such a series

must fortunately vanish in view of (2.17). From (2.19), ~n(z)

i~ derived successively: with exchanging the order of integration

e.g. \~ dq Sci' dp = \~ (z-p)dp ,

13



~n(Z) =
nl(n-l)1

(z_t)n-l ~(t)dt
~ .

n • 1,2, •••.••

(2.20)

By (2.18) and (2.20),one can represent u, using the Bessel functi­

on J o [16J ' as

z(z-t) ) ~ (t)dt (2.21)

At this stage, bring to mind the real function condition of u.

Evident1y,the real and i~aginar,y pa~ts of·(2.21) satisfy (2.1)
-

or (2.5), so that :we can confine ourselves to the real part to

the purpose of expression of .u.

u = (2~2l) + C.C. (2.22)

where C.C. designates the complex conjugate of (2.21) with respect

to. I , The above equation is just the Vekua's one [8 ] •

The field description (2.22) bears the important

14 \



statements that in the vicinity of the origin ---- which is to

say, actually, in a situation of quasi-static approximation,

u is approximately 92(z) + C.C. where the second term means the

complex conjugate of the preceding term, and that if the vari­

ables z,z of u(z,z) can be regarded in mind as individual, then
;

u(z,O) becomes ~(zj + ~tO) • The former suggests utilization

of conformal mapping to time varying fields. The latter produces

\ 0 -1 : ()a substantial mean for inverse operator f1L The u 0,0 , which

is equal to ~(O) + ~(O) , is actually the value of u at the

origin, and so the imaginary part of ~(O) is meaningless. Thus,

one can assume to take '.

~(O) -- a real number with respect to i

Then'

I D-1 u __ I
QL 2{z)

'u(z,O) - t ti(O,O)

'(2.23)

(2.24)

Finally, it is added that Vekua has proved the existence' of f
assuming (2.23) and the HBlder condition of u on.r (S],and besides

that the uniqueness. also can be proved [17J thereby the field

c~rreBpondB to the' r-~gu~&r functionAone to ane.

15



2.3 Outer Field

also does not involv::l,il1 itself, the, radiation conditions. Thus,

the present circumstances are quite qifferent to the previous

ones. From the reasons" it might be thought a short cut to seek out

the field description by trial.

The field is absorbed at the infinity just like a trans­

mission line wave at a matched load. The terminal, that is to say

, the infinity is a singular point,. Therefore J one should not

anticipate a line integral, like (2.21), over the interval [z,oa].

16



Instead, a contour integration could be taken. Moreover, the Bes-

sel function of zero order J appearing in (2.21) should,be
o

exchanged by the Hankel function of the second kind of zero order

H~2) in view of radiation. The corresponding function 1I(*(z)

must be regular in the outer region even at the infinity. It is,

in other words, bounded in the modulus. According to the" Liou­

ville's theorem n [1 9] ' all the singularities of W* are located

in the inner region, together ,on ~. A~ditionally, referring to

the condition (2.23),the analogy

~*(OO) -- a TJal number with respect to i

might be permissible. Now return to the previous section to

i~vestigate the statical relation in question between ~* and

the outer field. The u in a quasi-static sense has become the

twice of the real part of g? as before, and the field behavior,

has agreed with that of ~ • In this case, however, there exists

'a difficulty on the way of analogy. Because,twQ dimensional

static fields involve a logarithmic function - whose correspond-

ing function is log z, which is a multi-valued function - not

regular in a strict sense, and thus not suitable. On'the other

hand, the constant behavior of.'Yr* at the infinity as mentioned

above (=W*(00) ) does not correspond to any one in actual

cases. So one should relate it to the logarithmic field.

17



For our present purpose, these considerations, in fact, provide

the following expression:

1
u (z,'Z) - A K(z,z;O) +

o o.

+ C.C.

where

(2.26)

A
o "

the suffix of u implies the outer one, the origin is chosen in
0

the interior, dc is oriented in a positive sense as excluding

the point z ( see Fig.2.3 ) , and the integration is carried out

over it. The function K of t is .regular within. the interior,

so that the constant term of 1[[* (= \.I(*(OO) ) does not contri­

bute to the integration ~t all. It is involved in. the first term'

instead.

According to the Runge-Walsh's theorem [19J, -W- f

can be expressed by a Laurent series:

18



(2.28)
b (N)

n
. n
z

N

N~~L
o

_--='::'---

n-

where b (n 2 1) are " spatial and temporal complex constants "n ,

but bo (- ~*(~) ) a temporal one, and all of them depend on N.

This is different slightly from t he conventional one • Namely,

the set of b is altered in each summation. At any rate, however,
n

~* could be approximated by a finite series within the range

of accuracy designated beforehand. In fact, the finite sum can

only be realized. Therefore, in a situation of the realization of

the summation, (2.28) can be understood as usual. Use of (2.28)

in this sense, as all the singularities are poles, leads (2.26)

to the " integration-less " evaluation. This is the well-known

Residue Calculus [2,19J indeed, the value of the integral

·z
Fig.2.3

The outer region and

~ in the z plane.
I

I X
I,

.""'"... ............ - ... --

.19



is equal to the residue of the integrand. The residue' can be

obtained without too much effort by the Laurent expansion.

This is really one of our aims and actually saves a considerab~e

amount of analytical and computational labors.

To make the r-eLat i.on between the field and the corres-

ponding regular func t i on ,clearer .'1 substitute (2.28) into
- .

(2.26) • Then , using "the formula [16J

d 21[ j i{ Hi2) (2J z(z-t)
1)-K =

Ot· . 2j z(z-t)

00 m-l

- 1[j L t H(21(2'p) -im8 (2.29)e
(m-l) 1 m .

m=l

( I z I > It I )

where
"8

z = Je~ , we obtain immediately

[

N b ,(N)
+ lim 1tj n
N~OO (n-l)!

n=l

+ C.C.

where H(2). J -jY (ba oareful for" J" ); y,. the Neumann funotion.
n n n n

20



It is readily seen from the above that u is, no doubt, an out­
o

g9ing wave. We now turn to (2.28) and cofine ourselves to only

-none term -say, the n-th term. We then reco~lize that z is

associated with the n-th cylindrical wave and in.spite of the

assumption Izl>ltl this fact is valia in the whole outer region.

Even though finitely summed up, it still remains unchanged.

Consequently, after all, the expression of (2.30) must be preser-

ved at every point of the outer region. This is the so-called

Layleigh HYpothesis, which has been doubted regarding its conver­

gence [20-23J • In this respect, the present statement replies to

the question clearly.

In the statical limit, (2.26) must be able to agree

with a conventional complex representation. in statics • For the

purpose of illustration, evaluate the derivative 0 K/O t by a

straightforward differo~tiation, taking into account of the sin-

gular term involved. W~ then find

1- K =
~t

1

t-z

. il ~'--

+ log(z-t) () t' J o(2j 'Z(z-t) i :

+ r~gular terms

The second and third terms are, if the points z,t are located in
I

the neighborhood of the origin,negligible compared to the first

21



term. Accordingly, the derivative '0 K/'o t can be approximated by

the function having a pole of order 1 at t:: z , The second term

of (2.26) then exhibits the Cauchy integral though it may be

somewhat d.i f'f'e r-en t :Lhe Cauchy integral is presented in the int-

erior and the present one is in the exterior, vice versa.

Therefore ,by defo rmat i on of t into the two closed contours

surrounding the points t = z, Do closely in such. a way that at no
..

time a singularity of the integrand is crossed, the value of

the integral can be computed directly. It is

On the one hand, the nankei function H(2)be~omes (/tj+ 2C +
o •

2 logJ)/'j(;j approximately, where C is the Euler constant (=

0.5112 ••• ) [16] • The function 2 log'p can be expressed by the

complex form log z + log z . Needless to s~, the latter is the

complex conjugate of the former. Accordingly, a glance of.the C.C.

"in (2.26) shows that the first term can be replaced by Ao(1L j +

2C + 2 log z ). Thus,

+ C.C.

22



Evidently, at this tim.), u does not satisfy the Helmholtz equa­
o

tion, but the Laplaca equation. In such a limiting expression,

insertion of (2~28) enables us to interpret about the coefficien-

ts b on physioal grounds. The b are, in short, the multipolen n

souroes in the multipole field expansion [24J - although their

signs or factors m~, strictly speaking, be somewhat different.

It should be noted that all the b mentioned above imply the limi­
n

ting values b (00), and the values for a finite N are, in fact,. n

the approximate ones. Of course, there exists an essential diffe-

rence in expression:i.e. the one is with spatial complex numbers

and the other is with veotor ones.

As is well~known (2) , the Z component of the field can

be regarded, in such a statical limit, as an electrio potential

or a magnetic potential. Suppose, for convenience, that u iso

an electric potential and its boundary value is zero.

Furthermore, remove the term (1[j + 20 ) in the parenthesis.

Then, (2.33) results in a purely statical expression. We will

find at this stage that the funotion

must, in effect, be a mapping function by which the outer region

is transformed into an upper-half plane. From this result,. it
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might be suggested that 1) the field ( wave) expression is cont-

inuously connected with the corresponding static field, so

(2.26) is, in this regard, the extended Cauc~ integral; 2) it

is possible to utilize conformal mapping techniques positively

in field manipulation, and in addition, the regular function

obtained in the neighborhood of ~ f~om the boundary conditions,

can be combined with the far field by means of the Laurent expa­

nsion ( refer to (2.30) ).

2.4 Alterative Description for Outer Fields

What kind of regular functions is to be associated

with the field, is influenced strongly by the choice of the ope­

rator J-l ' as mentioned before. It should be. chosen so as to

be suited to practical cases as much as possible. It is doubtful

whether the previous. field description is applicable even to

the cases of strange shapes of boundary or not. The purposes of

the present section are first to point out its failing and second­

ly to improve it from ?tandpoints of application.

We shall now reoonsider about (2.33). It is, of course,

valid in the neighboThood of the origin. Also, recall the assump­

tions that ~ is a' closed curve, the interior possesses non
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zero-area and the origin i u chosen in it. The zero-area inner

region is out of the preceding discussion. However, a thin plate

boundary, like a strip - which is very interesting in the Eng-

ineering, belongs to such a case. Obviously, if disregarded and

applied, the origin must be taken on the boundary curve, and in

consequence,the field diverges at this point, contrary to its

actual behavior ( refer to (2.33) ).This arises from the II bad-

ness" of the field description. In other words, the logarithmic -".

singular terms being contained in (2.26) are isolated and are

not manipulated through any integral disposal. Accordingly,

we shall first integrate (2.26) by parts to put the first term

in the integrand; we h~ve

where

u (z,z) -
o

1 CK(z,z;t)W(t)dt + G.G.
21[:i J

~

z

d

- -
dz

The function Yc (z) is also regular in the outer region. As far as

looking the above right hand side, 'W seems to behave as if it

diverged at· the origin, but surely there exists the bounded

function, at the origin, 'I\<:lich does nc b diverge ( this is touched
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later; its general form is (2.41) ).

The K involves the function log tz(z-t) J= log z +

log (z-t). Since the latter is to be integrated with respect to t,

the singularity may fade away. But the former works only as a mul-

tiplication factor and its singularity still remains. It turns

out, from this fact, that one must contrive to put out the sin-

gularity, for instance, by replacing z by (z-t) and integrating

with respect to t. In accordance with this idea, the improved

field description is examined in the following.

Let us, for couven'i ence , shift the z-plane only by. zo

(= X o + iy0 ), and define the ~ -plane, newly, as

s = z - z
o

Also, put ?- t - zo. Evidently" any geometrio figure in the S­
plane is unchanged. Therefore, Fig.2.3 can be quoted in this case)

too, of course, mentally by interchang~ng z \'1i th S and t with ( •

This is always implied, henceforth, unless explicitly specified.

We shall here repeat again that ~ and z, also 2 and t can be

regarded as identical in the following development.

'To avoid the inevitable difficulty, described before,

which one is to encounter n(~cessarily, as it is, when employing

t he field expression with z or S ' the variable S is transferred

to the variable w through a conformal transformation.
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Let the transforming fur.c t i on be ~ (w). .Suppo ae , ~ (w) maps the

exterior in the ~ -plane onto the exterior I w ]>1. Of course,

r corresponds to I w 1= 1 i.e. r, ( see Fig.2.4 ). Needless

to say, the infinity in the ~ -plane is mapped into the infinity

in the "l-plane. The ~ (w) at infinity must behave in proportion

to w linearly. Its coefficient can, since the geometric picture

in the w-plane is unchanged by any rotation, be made a positive

real number by an appropriate rotation. We have therefore [1"J

~ d. w +
f31 [32

+ h- + - + ....2 "w3w w

( d.. » 0 )

where ~n are spatial complex constants. Specifically, remember

the fact that no constant term is contained in (2.37), though

the shifting factor z is, in fact, chosen in such a way.
o

For the moment, we shall interpret about~n' on geo-

metrical bases. Proceed with the argument, constraining all points

on r or ~ ••The point S in the ~ -plane dra..rs the boundary

iCjJcurve with a motion of w on f
w

• Obviously, we can write w = e •.

Imagine the equation obtained by dtviding the both sides of (2.31)

.by ~ w. This resulting series may be regarded as a Fourier series

with the initial term unity,- the left hand side exhibits the

normalized amplitude of ~ versus 0{ w , although it may be a comp-

27



lex number, and the expansion coefficients ~n-l(cl for the

-in ll l
powers e r shows how much the normalized amplitude deviates

from the unity. In fact, if ~l a: ~2 = •••• =0, r is a circle

with radius d. , and {f ~2 = ~3'" •••• = 0, [is an ellipse,

and in general, if an lil··regular polygon is indicated, only

f5(m-l +'mn) ( n = 0,1,2, ••• ) dominate.

Now, we t.u cn to the main discourse. Let u be a corres-

ponding point of 7, in the w-plane. The ( is restriCted to ~

and u is to the corr~sponding contour o-cw (see also Fig.2.4 ).

Using the "variables w,u,and considering the previous suggestion,

we reach

1

~ a;:<~ •~; 7 )W< 7 )d7U o(~ 's ) 0=

27ti
~ "

+ c.c. (2.38)

where

du

u

1

- ~ Go(!;-.s"; i·f)
~w
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and H~2t J o -jYo ' as before ( be careful for "j", again ).

It is worth remarking that the integration of (2.39) is performed

for eliminating the singularity at ~=0 and is' to be carried out

in the following manners:

1) Among the variables ~ , 2 of G
0'

always devoting attention

to I( - which is a function of u, because 1 ( or u ) is trans-

ferred to 1 ( or u ) ty taking the complex conjugate of G (-
0

IT ),
o

Evaluating t~l.e resi due of G i.e. the value of the const­
o

ant term of G with respect to u,
o

3) Taking the complex conjugate of the resulting value.

Consequently, the function'G" can be regarded as the improved
o

one of the function K.

The function ~ which has been regular in the exterior

-1
and has vanished at infinity, can be expressed by a series of w •

On the other hand, it m~ be convenient in computing the integral

of (2.38), by the residue calculus, to multiply 1J[ by the

regular function d ~ jdw - which tends to a constant at infinity.

Therefore, considering the above fact, we write

dw
=

a
o-+

w
....

where a
l,

a
2,

••• are spatial and temporal complex constants,
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but ao' analogous to W*(OO), is , from the behavior of '"'Y[(S)
at infinity ( refer to (2.35) ),

a = a real number with respect to io

Evidently, these coefficients contain all the informations of

the· boundary conditions, c,'ld in a manner of speaking, determining

them is equivalent to knowing the field behavior. We shall avoid

further discussions to describe the details in Chapter IV.

\
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Chapter III

FIELD CONTINUATION

Discontinuous changes of geometric boundary structure

provide at once necessity of the so-called" Field Continuation".

Various mathematical means havebeen,or are yet, proposed and deve­

loped by many mathematicians and technicians [2,10,15,25-28, etc. ] ,

in particular, in the field'of applied mathematics.'

One may still be able to recognize their glorious contributions,

in the texts, to radiation from waveguides, diaphragms or bifur-

cations in waveguides, ~iffraction or scattering by apertures,

etc •• The most typical Oil~U among them are: the 'variational meth­

ods [1,2,10] ' the porrrt matching methods [3], the methods of,

integral equations [15J ' the Wiener-Hopf techniques [2,7,25J

It may, however, safely be said that actual demands exceed their

abilities. In fact, those, except the last one, ?re based on the

treatment with real variables, so that the:" complication" of

wave functions, probably, reduces their capabilities.

Fortunately, Section 2.1 suggests that the above diffi-

culty may be overcome by dealing with the corresponding regular

function- which is, in fact, with a simple form. The analytic

continuation of regular functions signifies that two functions,

~'real and imagin~ry parts, are, at the same time, continuous-

ly connected. As to the field, this corresponds just to the fact
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that both tangential electric and magnetic field components must

be smooth. Therefore, the use of regular functions facilitates

the mathematical manipulation.

3.1 General Treatments

The general theory has been discussed in Section 2.1,

and has been proceeded without any detailed explanation. We shall,

in the present sectiolL, give more concret~ expressions, restrict-

ing discussion to the field continuation.

We first consider

Fig.3.l

Field continuation in

partially overla~ped .

regions.

32

the two regions Rl and R2 sho~m

in Fig.3.l. The circumferences

cross each other at the points

P and Q: i.e. Rl and R2 possess

a common region. Let u l and u2

be the fields in Rl and R2,

respectively. Furthermore,

assume that those have already

satisfied any given conditions

on the circumferences, except

on the broken arcs P~Q



where the boundary . values are unknown.

Obviously, in the common region, u l and u 2 must be

identical. Conaequerrt Iy ; the operators J-t and
I

are, if

their reference points are situated at the same point zl in the

common region, also identical; besides,the corresponding regu.lar

functions ~I and 92
2

are equal to each other. According to

the theory of complex analysi s [19J ' fortunately , identity of

those functions in the neighborhood of zl establi~hes that in the

whole region R
l

+ R
2•

On the other hand, in a small disk including

zl' PI and ~.2. are given, from (2.24), by

00=c
n=O

n!

00

=L
n!

wher-e E= t, . E = 1 ( n21 ), ando n
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an· _
c - ----n- Ul(z,zl)n Oz . Z = zl

()n _
d = Czn u2(z,zl)n

Z =zl

( n = 0,1,2, •.. )

Hence, the above c and d can be evaluated directly by differen-n n

tiation, after achieving the complex variables representation for

the given fields by substitution of x .... (z + 'Z)/2 and y =(z

- 'Z)/2i • Using them, one can attain the field. continuation,

in other words, the field matching, by

c ...... dn n

( n = 0,1,2, ... )

It must be confessed here that in usual cases, c and d involve
n n

unknown factors to be solved; for example ,if ul and u2 are given

in each region by a modal expansion, those indicate the expansion

coefficients.

In actual calculation, the number of the equations of

(3.3) 'should be the same to that of the unknown factors.
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Occasionally, it providp.s an algebraic equation- a simultaneous

equation. It should, in adil i, tion, be remarked that one need not,
take account of usual two continuity.conditions for tangential

components.

Secondly, suppose that RI and R2 have no common region

but their circumferences are in contact with each other at the

points P and Q ( see Fig.}.2 ). Also, establish the same assump­

tions with the previous case for ul' u2' 4; ,and ~2 • The field u

exists in the whole region as assumed, and ~I or ~2 can, in addi­

tion, be determined in the whole region, in view of analytic

continuation. Therefore, H\ or tt
2

defined in RI or R2 must be

continued analytically in the whole region. It follows that the

suffices.of those operators

operation of

..· ..P R,.. ---":._-_.':.:--- -<' 12
, . ','-"•• I '. '

'Z' ", \ , Z. I ' ,-R -,-~-,--:,.- ~

J Q ',! R2,

Fig.}.2

Field continuation in the

region Rl 2 bridging the

gap between RI and R2 •

.. }5

represent only the reference

points, but not the regions.

This is the reason why the

\ b-,IIlL to "i is

possible- ;this question may

arise in the following.

We shall define the

function 1. ~ in RI 2 ( see·'

Fig.}.2 ) as an analytically

continued function to ~2

This could be achieved, as is



we1 l-knot'ffi , by the idea of a chain of desks- each of them being

the region of convergence of a Taylor series of the function ~9J.

If, in (2.13),
-C

~2 ~JaS replaced by ~ 2' such an expression VIas

valid in R12• Obviously, such a-field represents both "i and "a

in the only R12• We shall thus VIrite it as ui in a sense of analy­

tic continuation. Th~ ui can, really, be obtained from (2.22):

ui(z,z) _ cp~(z) - \Z ; t J O( 2 j (z-z2)(z-t) ) (j)~(t)dt
z2

+ C.C.

By transforming the above equation with rt~l, we have a function

of z associated with ui and at least regular at the point zl.

We shall repeat the fact ui = ~2 ~~.• Accordingly, from (2.14),

\ V-luC _ I D-1\ 0 A:; C _ l~ th C • Compare this result t'lith.
N-l 1 - ~l fi.2 ~ 2 - - U12::t: 2

(2.15). Then, we have to recall the matter that the large domain

R defined in Section 2.1 stands comparison with the smaller do­
o

main R
12in

this case. It should be remarked that in the previous

case, all the singularities were removed from R , so the express­o

ion of ~2 defined in R2 held in Rl, by virtue of analytic cont- .

- -C
inuation,- that is to say, 92 2 t'Tas substituted !or <P 2 • In con-

sidering the definition (2.15) strictly, it would be reasonable

. to replace Q)2 in (2.15) by ~~
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rv

sent case, D12 fl2.- ~ is ~ 2 • This can be obtained actually by

t- ki th" " t" I 0-1
a ~ng e ~nvers~on opera 10n t'll : i.e.

where

+
')Zl 0 __ ._
- ---- J (2~(Z-Z )(z -t)

- '1.- 0 2 1
.z2.o t

) .1 ~(t)dt

a real number with respect to i

Equations (3.5)(3.6) can be carried out, at least, by a direct
,.-......,

computation, with the use of Bessel's identity. In s1tort'~2

obtained by a possible mean must be expressed by

n=O
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'"Clearly, the equality between ~ 2 and 9?1 leads to

c =n en

n = 0,1,2, •••

It is needless to s~ +hat this is the field continuation cond-

tion.

3.2 Application to the E plane Taper at the Junction

The theory described in the previous section may be

somewhat vague to imagine its substance. It is now our task to

clarify the concept furthermore with application to a simple

structure of boundary. This application is limited to the geomet-

rical configuration of Fig.3.2. Its interpretat~onwill cover that

of the case of Fig.3.1.

Figure 3.3 shows the two dimensional E plane taper

connected with a parallel plate waveguide. All the quantities

written in the Figure are, as a matter of course, normalized

ones. The 0 is an origin, and the 0" is a point of intersection

to the x axis and the extension line of a taper plane. The 0' is

resiricted to the x axis and also lies in the sickle-shaped part
, ,
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with two arcs- the one being a part of the circle with the center

0" ( the radius ib cosec e ) , the other being a part of the cir-
0

cle with the center 0
,

the radius ib ).\

We now define the region x ~ 0 as " Waveguide Region "

Both the field and ~he corresponding. regular function in this

region are distinguished from the others with use of the subscript

"W". Whi Ie, the regi on 5>" L ib cosec e is named" Taper Region" ,
o

and the corresponding subscript is "T". The 0 and 0' are refer-

ence points pertaining to these regions.

Suppose, a fundamental mode· with the magnitude unity

is incident from the left side, and thereby radiation occurs in

the taper region. We write the fields approximately, .,using large

integers NW and NT' .as

-r.x
NW 2£'[ e Ytx

'li -= e 0 + LR~ cos bY
~=O

( x ~O )

NT .

~ = LT H(2)(2 ~")cos 'It e"
L ~ . t

1=0

( ~" 2 ~b cosec e )
0

(3.10 )

wh~re ~ = 2j, \ =

39
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We shall consider, in mind, that the waveguide region and the

taper region correspond to Rl and R2 in the previous theory,

respectively. Namely, zl = 0 and z2 = d • The corresponding

regular functions ~rl and ~T are, therefore, identical to ~ 1

and ~2' respectively. Thus, from (3.1), we have

-! ~ Z

NW -t}~W(z) = -t+ ~Rt { t1C .1- Yjze cosh b z e 2

",
£=0

00

= E Gmcm m (3.11) .Z

m.. O m!

where

NW

cm= (-! ~ )m + t L R l ~ (t'1 + i~ )m+(t)J.

P..= 0 1

It should be emphasi zed that the radius of convergence of the

series (J.ll) is unlmown, but exists surely, may be extremely

small, by virtue of the choice of the finite number NW' With inc­

reasing NW' the radius probably oecomes small gradually, but never

vanishes. The existenoe sustained supports a possibility of the

". regular function matching" at the origiJ'\.. If, instead, infinite

numbers were taken at the beginning, matters would be different
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at all.

Let us next evaluate ~ T as a series about 0'. Apply

the addition formulae of the Hankel functions [16]

( d'· ib cot e -a )o

,
to (3.10) and expann ~ around 0 in a sense of a series of the

Bessel functions. Further, represent the result as a function of

complex variables z' °6'(... ~'e~= z-d ) and z', using

y' a JZ'Z'

COB mS' - ~ {j(z'Ii' )m+)<z. Iz·)m ~

In the same manner to (3.11), on putting z' = 0 , after all, we

obtain

mt
,( z' = z-d )

where
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d =m

. Questions regarding the convergence of (3.13) which ought to

occur here will be solved immediately by thinking of the following

statements: 1) as mentioned before, there must exist the corres-

ponding regular function in the whole" guiding region It; 2) the

regular function possesses a Talflor expansion·whose circle of

convergence is determined by the position of the nearest singular

point of the function [19J ,- indeed, it lies in the exceptional

region. These facts al:JW us to extend the circle of convergence

of (3.13) at least up to the inscribed circle of the brok~n para-

llel plates. It \-liJ.J. be clearly understood on geometrical situa-

tions that such a circle contains the point O. This means that

(3.13) is also valid at O. Accordingly, we need not take any

artificial complication occurring in computing the function 92~

analytically continued from 0' to O. Therefore, by

(3.13) instead of ~~ into (3.5)(3.6), we obtain

substituting
rJ N
~T (::! ~2 ).

The integrations involved is, this time expressing the Bessel

function J as a series, carried out term by term, and afterwords
o

the result is rearranged,with the use of the Bessel's identity,

such that
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00
rv

L Emem
9?T(Z) = m (3.15)z

m=O m!

where

00

Je .. L E'" tJm-n(2d) + (-l)z:1J (za) d ( 3.16)m m+n n
11 DO

It should be kept in mind that the number of the unknown coeffi-

cients is NW+ NT+ 2 • All of them are involved in cm and em' and

are determined by the E'ame number of equations - say, the algebra-

ic equation being obtained by substituting c and e prepared
. m m

above into (3.8).

m .... 0,1,2, •••
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where I n and Hy denote I n(2d) and H(~)(2d')' respectively.

This simultaneous equation will be solved with actually using

an inversion process. We shall now assume that e is small Le.
o

the incident field almost passes through and thereby only T ,R ,
o 0

and R1 dominate. This assumption, then reducing (3.17) to a set

of 3 equations, will make it possible to evaluate the unknowns

by hand. The result is

1
T-----:------------:-:---".,,-----,-----~

o \7E H ( (J - jJ') - j(2~ )2( r,-2Yo )(J 2+ 2J + J 2)}·LJ' n n 1 n n IL.. n+ n n-

R ..
o T ~f H {(J + jJ')ou n n n n

.'

where J ~ is the derivative of J n and ~,denotes
00

Z
n-o

•

. (3.i8)

The assumption of a small e is equivalent to taking a lar~e d'.
o

The value of d is, in consequence, permitted to, be small.

T~erefore"with approximation of I, .

j .(4 y 2_1) j -j(2d'-tn::-tlty)l 1 - J 16d' e
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we have

R ~
o

If the term (b/7t)2 is ignored in view of more rough approximation.

(3.19) coincides with the Lewin's result [15J •

Finally, it should be emphasized again that in (3.17), no integral

term is contained. This fact is desired in order that simultaneous

equations for field matching mqr be handled ingeniously in much

more complicated cases, rather than being manipulated in simpler

cases in which conventional techniques are available.

45



Chapter IV

APPLICATION TO SCATTERING

AND WAVEGUIDE PROBLEMS

Field scatterings have ever been studied since the

discovery of " waves If. Physical insight also has been provided

into the behavior of scattering strongly depending on the shape

of the scatterer, together with a complete comprehension of t~e

physical meaning. They have been analyzed as boundary value pro~­

lems, but individually and differently according to the boundary

shapes.

Recently, we have the tendency to force the mathematical

situation to fit the If arl:i trariness " of the boundary shape,

with the progress of machine computing techniques [4,5,6,29,30J •

One should desire it to be so even if the development of computers

was disturbed. It would seem that this unification could be found

faintly in the variational methods 12-,2,10J • Certainly, it is

achieved in the expression and there is no question in itself.

However, on the stage of performance of the calculation, a fatal,

difficulty- that is to say, the disposal of complicated integral

terms involved , dependent on the choice of trial functions- may

arise.

The aim of this chapter is to show that use of the

field description in Section 2.4 makes us unify the manifold
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scattering analyses for boundary shapes. First, the field scatt­

.ering by a perfectly conducting scatterer with arbitrary cross

section is analyzed in free space. Secondly, the same thing is

done in a rectangular waveguide. For.the.sake of simplicity,

the boundary size of the scatterers is assumed to be small. In

fact, the E field scattering is approximated within the range of

accuracy of order 2 with respect to the boundary size, and the H

f{eld one is within the range of accuracy of order 4.

Throughout this chapter, the aUxiliary equations derived

in the w~ of mathematical deformation of equations are listed up

together in the rear of this thesis. To those equation numbers,

the "A" is affixed.

4.1 Scattering Problems

In this section, a monochromatic, two dimensional scat­

tering in free space is dealt with under the assumption of a per­

fectly conducting, small scatterer. The E field scattering is

described in the first part, and the H field one is in the later

part.

We·shall imagine the boundary curve '( of cross section

of a scatterer ( obstacle) shown in Fig.2.3, and devote our
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attention to the manipulation of (2.38). Then, we as~ume that

Uo is a Z component of the scattered field, and the wave number

k is

~2

( refer to Page 5 ). It goes without saying that all the quantities

associated with the coordinates are normalized with.this value.

We shall first d~scribe the scattered field in a far

I_I Inlzone; the modulus I~I is larger than l·.

To this purpose, replace Ln the mathematical formula (IV-I) ( Ap­

pendix IV) n,' by - 'ZIg , 2) ~(S.-'Z ), and in (IV-2) " ~by
4" £~ ~ -4 s? ' respectively. From both" the resulting ones,

we have

H(2)(2 J(~-~)(f-i) )0

00 (X) n-m

- E2 (_l)m
1

m rzn (-ir- H~=~(2js~ )
m.O ncO m! n!

(4.2)

The G is obtained by multi plying the above one by -ft j • It is
o

permissible to r-egar-d 7 as . ~ point near r and therefore as

a small value in the modulus. We shall here approximate Go wit·h

an accuracy of order 3 regarding the boundary size. This will
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(4.2), to take
,

enable us, in account of only four terms in each

sum. The powers of ~ can, from (2.37), be expressed by

"10 - 1

~ = d.u+ .... .
~2 0= cfu

2+
2o(~1 + •••••

~3 33 2{3 o:2~ (4.3)= rJ\u+3c{ lU+3 2 + ••.•

where the above omitted terms consist of the
. -1

andpowers of u

those do not contribute to the following calculations.

Equation (2.39) says, according to the residue theorem, that

if G is expanded into a series of u , the value of the constant
o

f'J
term ( the initial term) of this series just becomes G .•

o

Therefore, substituting the complex conjugate of (4.3) into the

-n
terms ~ of (4.2), rearranging to a series of u, and multi-

plying the constant term by -7tj, we have

DQ

-[jL
m=O

~ t:) rn;2 H~~(2J S§ )+ .
2!

3tf~2 t~)~3 H~~(~S~) + ••• }31 (4.4)
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It should be recalled that the quantities d. , ~ n' and, are

of order 1 • Further, calculate (2.38) in a similar manner and

wi thin the same, accuracy. Note 'that Y(1 )d~ is replaced by

( refer to (2.41) ). Of course, the contour ~ also must be

replaced by V • Computation of the residue of the resultingd cw .

integrand ( the coefficient of. the term u-l ) leads to the far

field u :o

~. (2)( 0) -i6( J ,J2R· - )
- IL J H1 2 1 . e 0\"i - U\ 11 al

+ c.c. (4.5)

~ __ °ei 6
where a is a real number, as assumed before, and S I

o

( this differs from the definition in Section 2.3).
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Evidently, this represents an outgoing wave. Needless to say,

, is involved in the term C.C•• It should be remarked,...
the positive angular dependence of u i.e. the behavior with ei 6 ,

, 0

2i8e

that a (n~4 ) have no contribution to the far field of ordern

3 -, indeed thi s number "3" mew be able to be altered to "4" or

"5" when the .order- o'f a iB taken into account ( this is touchedn

later in the case -of' the H field scattering).

To determine the coefficients a from the near field,
n

evaluate G in the neighborhood of r with the mathematical for­
o

mula (IV-3) ( x --7 2 J(~-~ Ht -Z) ). The~ is given by

-the value of the constant term of G with respect to u , as
o

mentioned before:( see Appendix III )

:-l1"j + ,2C + log(~ -z) ~ log(C< w) It 1 -~(S ~~ )}
-(~-~ Hc{w + ~- ~l!W - ~2/2w2 - ~3/3w3 - ••• )

The (4.6) is expressible in terms of u. Substitute it into (2.38).

The integration can be carried out in the same manner with the

previous one. We writ~ the result ( the near field) only
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ao \ (1 -~~)( 'ftj + 2C + 2 logd. + 2 log I wi)

+ 2 i (<iw - ~ /w \3 /2w
2

- ~/3w3 - ••• ) r
+ all (1 -~~)/w - c{ S(Jtj + 2C .:.. 1 + 2 loge{

+ 2 log Iwi) + ci ( d. w- {3 l/w ~ ~ 2/2\:;2 -

~3/3w3 - ••• ) + ~ ( ~1/2w2 + ~ 2/3w3 + ••• ) J
+ a2 { (1 _~g)/2w2 + 5 ( d. /w + ~1/3w3 +

f32/4w4 + ••• ) }

+ a3 { (~ -S~)/3w3 + ~ ( ~ /2w
2

+. ~l/4w4 +

~2/5w5 + ••• ) J
+ •••••• + C.C. (4.7)

It should ·be kept i~ mind that since (IV-3) is expanded in order

3, the approximation of (4.7) is also retained in this order, -

although it is valid under the assumption that the orders of a
n

are not taken into account i.e. they are of order zero.

We have not touched so far on the orders of ·a • The an n

will, in fact, be determined by the boundary conditions and

therefore contain the" information" of the boundary size. If

all a retain their magnitudes as the size decreases, in other
n

words, those are of order zero, then no question arises in the

above development. How~ver, if all a have the orders at least
n
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larger than zero , matters will be altered: i.e. the accuracy of

the preceding approximation will be improved.

To go on with this consideration, we shall write a
n

as follows:

a
n •••

n = 0,1,2, ••••

where the shoulder number of a(m) indicates the order number, ­
n

the term being of order m •

Henceforth, we shall restrict the analysis to the E.

scattered field. Let f( ~ , g ) be the boundary value of u •
o

Obviously, it wand - At thiswe can represent as a function of· w •

. time, as a matter of course, w is iff and Wis -i'P Accordingly,e e •

we shall, for simplicity, rewrite f( ~ ,g) as f( ljJ) •

The boundary value is always expressible in the following form:

f( ljJ) - f 0 + f 1w + f 2w
2

+

( w == ei~ )

• • • + c. c•

The imaginary part of f is meaningless, so that for,convenience,
o

f is assumed to be a real number ( with respect to i ).
o

We shall also write f (given coefficients )in t~e same fashion
·n
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with (4.8):

f _
n

n = 0,1,2, ••••

Here, it is assumed for n = 0 that all of f(m) are real number-s
o

Lrrd'i.vi dually •

Since the obstacle is a perfect conductor, the boundary

value f( if) is given by the negative value of the incident field

u~ • Further, f( lJI) can be expressed by a Taylor expansion:

- [ J 5
~=o

- ....

The first term is a constant of order zero, and the second and

third terms are of order 1 • We should recall that evidently,

from (2.37), S and ~ have no constant term. These facts lead'

at oncerto

(0)
f == 0 (nLl),
n
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One will take notice of the fact that these relations relieve

the complication of equa/zi cna , We shall explain this in detail.

To this purpose, we first cunsider the zero order approximation:

a and fare appr-oxi.nat ed only by a(O) and f(O), respectively.
n n n n

In addition, the higher order terms of (4.7) are removed. As the

result, (4.7) is expressed simply in the zero order form.

( Keep in mind that d , fSn' Sare of order 1, but w, logq

log Iw I are of order zero! ) Such an expression is reiated on

~ to the same order boundary-val~e:

....
( llj

+ -(0)a
l

w

+2C + 2 logcX

+ a~0)w2./2 +

) a(O)
o

+ c.c.

where, of course, w = ei lV, Iwl = 1, and the bar denotes the

complex conjugate the same as the C.C. does. The (4.12) can be

regarded as a Fourier expansion in the interval [0, 21L:],- one·

cycle of the polar coordinate in the w-plane. Thus, by virtue of

(0)
a

o
)

a(O) - 0 (n ~ 1 )
n
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It is seeri with substitution of (4.13) into (4.7) that the lowest

(zero) order. term is involved in the only first brace and the

remains are of the orders at least larger than zero. In a simi-
".

lar manner, we shall pi~k out the first order field from (4.7),

considering (4.l3)~ Notice that the same neglect of the higher

'order terms in each brace is still performed. Accordingly, we

have, from (4.11),

( 1).
a :=

o
(1)

a =n

o
-(1)

n f
n

( n 21 )

Equations (4.13)(4.14) permit us, in order 2, to ignore, in each

brace of (4.7) except for the first one, the second order terms.

In short, the second order field exhibits rather a simple feature.

For convenience of the calculation of the second order terms

involved in the first brace of (4.7), we shall introduce the se-

cond order quanti ties P and Q (see (A-I) (A-2) ).n . n

It is seen easily that the second order field contains the zero

order coefficient a(O). On the boundary, we have
o

- (, 'it j + 2C + 2 log~
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+ G.C.

By substituting (4.13) for a(O), we get
o

a~2)= - l f~2) + Pof~O) + 2 Qof~O)/( 1Irj +

2C + 2 loge! )} I ( 1L j + 2C + 2 logc!. )

a(2)_ n -r(2) + 2 nP f(O)+ 2 hQ f(O) / (fL:j
n n no no

+ 2C + 2 log 0( )

where P and Q are defined in (A-I) and (A-2) , respectively.n n

° With use of (4.13)(4.14)(4.16), the far field of order 2 can be

written as

-'ltj H(2)(29 )( a(O) + a(2) )
o 0 0

-'jtj H~2)(29) e-i 8 cl ail)

O_1tj H~2)(2.9) e7i8 2o(~la~O)

+ c.c.
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I f we give the constan:ts d. and ~ n instead of indication of the

boundary shape, and expreai. the boundary-value as the fashion of

(4.9) with lcnowledga of the incident field, we can obtain the above

coefficients with a straightfoward computation.

As seen, f(O)iS the half of the negative value of the
o

order approximation, f(¢J)

small, so that a(O)can,
o

incident field at the origin. In a zero

is 2 f(O) •.Then, the value ofd is very
o

furthermore, be approximated by _f(O)/ 2 10gQ
o

and the other

coefficients are negligible. The zero order far field, therefore,

results in the expression of quasi-static approximation [2,3l,32J •

We shall give physical interpretations a few more to (4.17).

The (4.17) is separated into three parts. The first part is a

quasi-static field and its correction term. The second part shows

a dipole field produced by a uniform gradient of the incident

field ( a constant transverse electric field ). The third one is

a quadrupole field,- indeed, which arises in order that the field

induced by the only monopole source may be corrected on the bound-

ary surface,- the determination of the 'magnitude is therefore

independent of that of the dipole field strength, and this source,

is induced only when the boundary curve is distorted from a cir-

cle, more strictly speaking, R does not vanish.,I
We shall next focus our attention 'to the H field scatt-

ering. Henceforth, regard u as a Z component of the H scattered
o
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field (= HZ). It m~ be convenient in the following to define

a complex normal in the ~-plane, such as the. n
Z

in (2.10):

where n c: and n~ are two fundamental components of the out-
~x ~Y .

ward normal to ~ in· the ~-plane. It is readily seen from (2.4)

that the complex representation of the normal derivative is

D
On

On the one hand, the small displacement L1S restricted to r
indicates the tangential direction. Thus; \n~ == - i A~ / ILl~ I.
On the other hand, the corresponding displacement Aw in the

w-plane is i w IL1 tV' I . By substitution, we find In~ = (wi~1A w)·

IIi wiA5 I. Therefore, in the limit,

d~ dur
- w-

dw cl~

Employment of the polar coordinate w = pw eitjJ yield~
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d~ ~ ~ d- - w-- + \-1-

dw On Ow '0 w

~
6

(4.20)-
\-. O~w ~ = 1w .

As a matter of course, (4.20) is def;i.ned on r
cw

•

A glance of (4.20) shows that the normal derivative

in the ~ -plan~ is transformed into that in the w-plane,- being

familiar as apolar coordinate. If we remove the restriction

~w = 1 , (4.20) will be extended to the whole outer region.

The differentiation '1vith respect to9 w is associated with that

along the curve in the S -plane corresponding to the radial line

in the \-.-plane. The '0 u /0 n at an arbitrary point is therefore
o

related to the tangential electric field on the closed curve

which passes through this point and is perpendicular to the corr-

esponding radial line. We should bring to mind ~he fact that

the I d~v/d~ I is a wei ght function for the transformation and

contains, if the boundary possesses edges, the properties of

singulari ties of static fields at the~ points [2]. The behaviors

of time varying fields at the edges are the same as those of

static fields [25J . Accordingly, the extended normal derivative'

(4.20),- being divided by this factor,- possesses no singularity,
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i.e., it is a smooth derivative. This fact may be advantageous

in analytical viewpoints. Furthermore, this extended normal

derivative makes it possible to let Yw approach unity after the

handling of equations at a far point. This is just an analytic

continuation. This manipulation will make us avoid mathematical,

troublesome questions e.g. convergence ?f the series.

Let us differentiate (4.7) >'li th respect to S' w. In prac­

tice, it is carried out with use of the first operator written at

the right hand side of (4.20). It is noteworthy that the term C.C.

contains not only w, but also w. For convenience, we shall int-

roduce the second order quantities I and K (see (A-5) ).
n n

Using them, we obtain

Jw

ilu
ao i0 2 - ('it j + 2C + 2 loge{ )( I.-a~w

0

+ Y ) - II - II J0

t -1 cl w ( d ~ /dw )( Irj"i w +

+ 2C - 1 + 2 log d. ) + ( I + I )/w
0 0

- K }
0

t -2 + ( I Y )/2w.
2

Kl }- a w +2 0 0 ..
a

3
{ w-3 + ( I + Y )/3w3 K2 }

0 0

a
4

{ w-4 + ( I + Y )/4w4 K3 }
0 0

+ c.c.

(4.21)
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The (4.21) exhibits, in the limit of ~\'l= 1, a Fourier series.

The I and K , at this time, can be expressed by a series ofn n .

ei~ (= w ) and ei/j! (= w) ( see (A-6) ). We shall turn to

(4.21), again. The first term in each brace is of order zero, and

the rests are of order 2. The determination of the coefficients

are achieved by the similar manner to the one for the E field

scattering. Specifically, we write the boundary-value of 0 u /00
o )w

as

g( If') -

c..
2

go + glw + g2w + •••• + C.C.

( w = e i l/J )

Also,

+ •••••

n == 0,1,2, ••••

where g(m)is a real number, for all m, with respect to i.
o

We shall imagine a Taylor expansion of the incident

field ui (refer to Page 54, the middle ), and remember the fact
o

that the order of (4.20) is zero. It will be found that with
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operation of (4.20), the constant term being of order zero vanishes

and the first order terms behave with d ~ law and d ~ Idw •

However, w ( d~ Idw ),- which is one part of the first order bourr-

dary-value,- does not contain a constant term in itself.

Accordingly, from both the facts,

(0)
g =n

o

o

for all n

The (4.24) suggests that the order of the boundary-value is at

least equal to, or larger than, unity. The a should have, there­
n

fore, the same order:

o for all n (4.26)

This will be used in the following without specification.

Substitute (4.8) into (4.21) and rearrange it with

respect to the orders. We shall omit the detai+s. To order 1,
".

the following equality is established on y- :

.... +·c.c •

= - 2
(1)

ao
-(1) -(1) 2a w':" a \"1

1 2
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(

Thus, with (4.25),

( 1)
a

o

w itp_ e

o

)

(4.28)

To order 2, we find the same fashion with (4.21), permitting

difference of the superscript~numbers.Thus,

(2)
a

o

(2)
a
n

g(2)/2
o

-(2)
-~

(4.30)

One will be able to construct the higher order equations includ-

ing (4.28)-(4.30), and to get the higher order coefficients with

a successive process. We shall proceed within the range of accu-

racy of order 4. It is readily seen from (4.5) that the far field

with this accuracy demands the additional co~~~tations of a~3),

ai3), and a~4). The computations mqr be somewhat complicated;

because, the third and fourth order equations of (4.21) contain

the first and second order coefficients which have already been

prepared above, respectively, and in fact, the arrangement of

I and K as a Fourier expansion exhibits rather complicated
n n



forms. The Fourier series of I ,K are, with use of the zero ordern n

quantities R~ ,Se. ,UQn" and Vin ( see (A-7) ), given in (A-6).

Omitting the details, we write the results only.

a(3) __ g(3)/4
o - 0

CO

d. 2Z ( Rn - ~ n_/cx' ) g~l) /2n

n=-l

+ C.C.

a~3) = - gP) + c< 2 { (7[j + 2C - 1 +

2 logd )( g~l) - ~lgP) /e< )
)

-(1)
+ ( 2 - 2Ro + UOl gl

- ( R2 + S2 - V21 ) gil) }

+ _,2 ~ Jv _ (R +. S )/n
~ ~l n-l n n-l n-l

+ ( I1n-/d 1 [3/n - l/(n-l) ] 1g~ll

+ c:/ >}iVn+l n - ( Rn+l +'Sn+l lin
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- {eX 2( 1 - Ro

.- PO} g~ 2) /4

: c:< 2 f: (Rn -

n=l

+ C.C.

)(1[ j + 2C + 2 log c< )

Q /_1) -g(2)/2n
r' n-l CA n

These seem to be somewhat complicated, compared to a(l) and a(2).
n n

However, the infinite Sums involved can, occasionally, be replaced

Ow the finite sums, provided the series (2.37) is approximated

by several terms.( this approximation is often permissible in

practise, for example, refer to Chapter V ).

Using (4.28)-(4.33), we have the H scattered, far field

of order 4 such that

-'jtj H~2)(29)( a~2) + a~3) + a~4f )

-'itj Hi2) (2 Y)e-ietc{( ai 1
) + ai2)

(3) ) _ _, 2 Po -(1) }
+ a1 v. Y 1 a1

-1l) ·H~2)(2~ )e-2i e { 2C<~la~2)

+ cJ.2( a(l) + .» )/2 }
.22
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-1tj H~i)(2?)e-3ie (d2~lap)/2

+ cl3a~l) /6 )

+ c.c.

where the Hankel functions are expressible in the asymptotic

form:

To the lowest degree of accuracy, only the monopole field with

the amplitude 1[" (2) and the dipole field with -'it) eX ap),- Jao

are retained. The a(l) has been obtained, in the expansion of
1

the incident field, from the first order terms,- which produce

a constant transverse electric field. This means, as is well-

known, that the source of the dipole field is an electric polar­

ization induced by the incident electric field, so a~l) is related

to this polarization in a!l spatial complex representation"

On the other hand, the magnetic charge which is the source of

the monopole field, is induced inside the obstacle so as to cancel

a circulating electric field around the obstacle ,- being caused

by the incident m~letic field passing through"the cross section.

If the cross section possessed no area such as a thin plate,

this charge did not arise. These results agree with those of

Bla~el [32J. The above mention allows us to conclude that the

electro- and magneto-static approximations ,- introducing electric

and magnetic potentials,- can be done in order to approximate
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the near field, and in order to determine the coefficients of

the far field with an accuracy of order 2. It should be noticed,

from (4.29)(4.30), that both the types of approximation are acco-

mplished independ~ntly.

4.2 Waveguide Problems

Suppose that the H mode 1S incident on a perfectlyno .

conducting post in a rectangular waveguide. The transverse elec-

tric and m~letic fields are orthogonal to each other. When the

post is parallel to the electric ( the magnetic ) fi~ld, it is

called" Inductive ( Capaci tive ) Post ". We shall now take the

post axis ~, the propagation axis x, and the position of the

walls Z= O,D and Y = O,A. The field varies with cos(nItZ/D)

or sin(n7iLZ/D), so that the wave number in the X-Y plane is

. 2
(n ~/D) ..

For unification of coordinate systems, the present coordinates

are also normalized likewise: i.e. A and b correspond to a and

d, respectively. The arrangement in the z-plane is depicted in
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It is possible to remove the walls if, instead, the

concept of " Image Posts" is conceived. VIe shall separate the

Green's function into the two parts:

Go green + GI green

where the first part is the Green's function in free space.

Go green = I
4j

H~2
) ( 2J( ~-()( ~ -7) )

(4.37)

The second part is the function for expressing the" Image Field '!

Evidently, we have the relation between G and the previouso green

function G such that
o

GI == 4 It: GI ' Ggreen

field can be written, on the analogy of (2.38), as

I

~';;(l;.~; '1) 1J:(? )d7

t .
+ C.C. (4.38)

where, needless to say, u denotes the scattered field in the

rectangular waveguide, and represents the Z component of the
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electric ( the magnetic ) field when the incident field is the

E ( the H ) field, regarding the Z axis,- that is to say, when

the post is parallel ( perpendicular) to the shorter side .of

the wavegui de , and finally,'G' is

1 du
u

As found in the fundamental texts ( for example, [14,15J),

the Green's functions for the E and H fields are given by

'00

) : (II fna)sin(n/tY/a)sin(n'jtY'/a)e- 'dnlx-x'i
n-::l

G =green ()O

L
n=O

( E IY a) cos(n 'ityl a) cos(n1[y' I a) e- In Ix-x'l
n ~n

(4.40)

respectively, wher e y~ = (n 'iLl a) 2 - 4, and '(0= 2j.

To the far field description, it is permissible to replace the

Green's function by the propagating terms involved in (4.40).

Now, consider that the HIO mode is incident and is

travelling to the left with the magnitude unity.
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J
sin(1[y/a)e ~(x-xo) (== E

i ) (4.41)z
iu :::

.l t(x-x )
(= ~ ) (4.42)e 0 0

Since (4.42) is constant in the Z direction, k is equal to k ,
o

and ); becomes a pure imaginary ( plus sign) with respect to

j~ Whereas, k for e4~4l) is Jk~ - e~/D)2 ,and 4n ( n>l )

are real numbers. Accordingly, Yn are different in both the

cases.

To evaluate the reflection coefficient R and the trans-

mission coefficient T, substitute the propagating terms of (4.40)

into (4.39). Note that IX-Xll=:t (x-x
o)

:+ (xl-X
O

) ' xl-X
O

=

e7 +12 )/2. Further, notice the. fact that sin('i[ y/a)exp[± ~ (x-xo)]

and exp[troex-xo)] express the behaviors of the propagating mode.

We shall neglect them on the calculations of R and T. We get in

this way

2'i[ i
+ c. c.~~K:!:(17 )\ff ('1 WI

~ .

( for inductive posts )

1

-R

T -
+ c. c.
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where

( for capaoitive posts)

1 ~ (41l:/f1a) Si n [ 'iI( 2Yoi

~«r -

+ 7 - 7)/2ai]

dU/u (4.45)

1

2 7L i
~ ( 2'j[ / I 0 a) e. fa (1 +7 )/ 2

'few

dU/u

The evanescent mode-amplitudes can be obtained in a similar manner.

The regular function ~(S) is given by (2.41). The bou­
.;

ndary conditions deoide the coefficients. Let "i be the image

field. It is seen that the interchanges of G and 'G'wi th Gl and~,

in (4.38) and (4.39), lead to the expression of u l • Of course,

the scatter~d field is the sum of Uo and u1• It is also a matter

of course that both regular funotionsinvolved in the expressions

72



'. ,

"

of Uo and u l are the same.

The near field of u has already been obtained in the
o

previous section. Provided that i-( u + u l ) is regarded as an

" effective incident field in free space", in determining the

coefficients, the previous results are, therefore, applicable.

Specifically, we shall write the boundary-values of u l with prime,

such that

f ' f' f' 2 C C= 0 +. IN + 2W + •.• + .. (4.47)

g'(l/') =
() 2- -- ul = g' + g'w + g'vl + ••• + C.C.

O?\'1 0 1 2

( '?w = 1, w - eitr)

and

f' - f' (0) + f,(l) + f,(2) + .....
n n n n

-g' ,(0) + g,(l) + g,(2) +- gn .....n n n

;

(4.48)

(4.50)

Evidently, f( Lf') and g( If) given in the previous 'section must be

replaced by f( qi) + f' (4J ) and g( rp) + g' (t.p), respectively.

Namely, we must exchange f~m) in (4.9)-(4. 16), for f~m) + f~ (m),

and similarly, g(m)in (4.23)-(4.33) for gem) + g,(m).
n n n
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It is noteworthy that the" provisional coefficients",

- being obtained by merely replacing the boundary-value,- contain

the prime boundary-value components f,(m)( or g,(m)) of the
n n

same or smaller orders. This fact will, later, make us to employ

a successive process.

It would be a straightfm·.rard matter to calculate the

prime boundary-value components. We shall, therefore, represent

the image field with spatial complex variables. The real varia­

bles-expression is well-known ~4,15J • Therefore, only by the

rewriting, we have

G
I green

+

I

4j

I

4j

0<1

~H~2)(21 S-~- 2inal)

n=-OO
n~O

oo

) ~ H(02) (2 I~ -~ + 2i(yo-na) I )
n=-oo

t4.51)

where the minus and plus signs are associated with the inductive
.;

and capacitive posts, respectively. Note that the arguments of

the Hankel functions in the first sum and the second sum are

equivalent to 2 J(x-x,)2 + (y-y'-2na)2.

2(y+y'-2na) ,respectively.

and

By the help of the well-known addition formulae of the
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' ..

Hankel functions (16], we attain the f'oLl.owi.ng deformation ( re-

fer to Appendix I ):

(XjL EnAn in t(~-nn+ (Z -~ In 3In(21 ~ -7 11/1 ~ - '1 r
neO

{(~-t)n+ (f -Sln} In(2[$-~I)/I$-fln

(4.52)

where, as defined in (A-9), A are constants, but B are functions
n n

of the position y of the post. The definitions of (A-9) may, in
o

general, be disadvantageous on actual calculations. Hence, A ,
o

Bo' BI, A2, and B2,- only which we need in the final results,­

are reformed, in Appendix II, into the available fashionsj the

display of the results is in (A-IO).

Application of the previous section will force us to
.;

approximate G
l

with an accuracy of order 3. Under the assumption

of the small moduli of ~ '5" ' z- and.z ' and with use of the math­

ematical formulae (IV-7), (4.52) reaches (A-II), approximately.

As has been mentioned repeatedly, its constant term with respect

- ./"-I
to u,- being involved in ~ ,- results in Gl• Th~s,
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~ 2 + 20{ ~l 1
~2 + 20: ~l J'
53_6~~1~ +3~2~2J

. ,

Ao t1 - ~ (~ -2 )) :;: Bo \ 1 - ~ (f -i )1
+iBl {~. ~lS - (~ -~ + 1 )( I + d ~ 1 -

~.g /2 + -~f /2) }

_ (A/2) { (~_~ ) 2 +

:t (B2/2) { (~_~ )2 +

+ {- 3~ i(Bi6) (g-z) -

Referring to the evaluation of u in the previous section, we have
. 0

the image field for the case of the inductive post, \'li thin the

range of order 2, such that

(A -B )( a ( 0 ) + a ( 2) _ ~?= a ( 0 ) )
o 0 0 0 :> 0

+ iB . (2 ~ a(O) + d a(l»
1 '> 0 1 .0.

- (A2-B2)(~ 2 + 2 ~ ~l) a~O)

+ C.c. (4.54)

The Fourier expansion of S5 and ~ 2 in the above are given in

(A-12)(A-13). By substitution, we obtain f'(~):
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" -

(A -B )
o 0

(a)a
o

fl(l) _ a
o

f~ (2) = - (A -B ) a(2) +\ tA -B )(1 - P )
000 0 ~ 000

- l (a)
+ 2 d. (A2-B2)( ~ 1 + P1) ~ ao

+ eX B
l
(ail) - ap) )/2i

fi(l) = - 2iB
l

(J. -~l) a~a)

For the moment, we shall confine ourselves to the com-

putation of the reflection coefficient and the transmission coef-

ficient for the case of the inductive post. Substitution of (4.55)

into the" provisional coefficients" mentioned above, leads to

the simultaneous equations,- being solvable in a successive manner.

The solutions are:

\ .. -

ata)=.-f(a}/(trj+2C+21og~ -A
000

-;

a(l) _ r(l) + 2iB (..J _ ~ ) a(a)
1 - 1 1 Vi \"'1 0

a(2) = _ a t a) _ \ f(a) + f(2)
o 010 0

- ~ Bl (fi l
) - ril

})/ 2i 1/
{ (1 - Po)( 1tj + 2C +" 2 log c<
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+ B
O

) - 2Qo + 2 ci (A2 - B2)( fl + (3)1)

+ 2 (6i [1- (~1+ ~1)/2o{J }

Note that a(l) vanishes because of f(l)= f,(l)= o.
o 0 0

,.

It is clear from a glance of (4.5) that the above three coeffici-

ents make it possible to express the far field with an accuracy

of order 2,- in this case, which is a scattered, travelling mode.

To the present purpose, therefore, we can ignore the terms higher

th~n a
3•

Employment of the residue calculus to (4.45) and expa­

nsion of the integrand yield, within the range of order 2,

(41tl o l
a ) { [1 - V<~1 + ('jt/a)2c< ~/2 ] sin(1[y/a)

+ rl(1L/a)(d~1/2i) cos('J[yo/a)

+ (1[/2ai) 2 (1 :!: rl~ /2) cosl1[y/a) .

+ [:,: Y17'/2 - t/2 + n:1/2a)2] sin(1/: y /a)}

(4.57)

Substituting (4.3) into (4.57), and using the residue calculus

in (4.43), we obtain
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: _I} - (8'it/ hal t [1 - (1 -1t2
/ 2a

2)c< (~1
.+ ~l) J sin(1[yo/a)

+ ¥/IC/2ai ) d. (~1- ~1) cos('ley/a) J
• a

o

+ t 4';[/ '(1a) i (4td/2ai )( a l - al )

• cos(lt'y/a) ± ( AleX /2)(al + 8.1)

• sin(TC y / a)o } (4.58)

where a = aCO) + a t 2), and a
l

= al(l). This is a general expression
000

for the inductive post \'1i th arbitrary cross section. At this stage,

however, calculation of the boundary-value still remains. This

is achieved by making use of (A-12)(A-13)(A-14):

f~O) _ - t sin('j[y/a)

fi
l)

= - (.'[[/2ai)(J. - ~l) cos(/rya!a)

- ( ./2)( ~ + (31) si~(1CY0/ a)

f;2) = ( 'leX /2)(J[/2aiH ~ 1 - ~ 1)

• cos(1ty0/a)

_.t (1[2/ 2a2
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~It should be noticed that (4.58) does not contain the parameters

, exp'l i c i tly ,- daringly t~ say, those are involved.

in Po and Qo' In other words, r:i and f3l playa main role' of' the

shape dependence. It is readily seen that the neglect of' (32' (3 3'

, in (2.31) is equivalent to the replacement of the bound­

ary curve by an ellipse, - having the major axis 2 (~+If311 )
and the minor axis 2 (fA -jg r ). Therefore, the concept of an

" Eff'ecti ve Elliptic Post " is quite reasonable in the second

order theory, .although Po and Qo must be corrected. i'Ihen {3 n= a

i.e. a cylindrical post is assumed, (4.58) just coincides with

the Lewin's results [15J. YIhen the given cross-sectional geom­

etry of ~has no component of an ellipse in a sense of' Fourier

expansi on, such as a square, a hexagon, et c. " f31 vani she s , so

(4.58) becomes the same one that is obtained in the case of a

cylindrical post, - except for P and Q • This fact means, there-
o 0 '.fore, that for such posts, the replacement by the corresponding

effective radii is available.

We shall next direct our attent~on towards the capaci-

tive post. The analysis is identical to that of the inductive

post. It should, however, be kept in mind that to order 4, the
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expression of the far field demands the nine coefficients a(2),
o

a ( 3) a( 4) a t l) a(2)~ a(3) a(l) a ( 2) and all) Accordingly we
0'0 '1 '1 '1 '2 '2' 3· . I

shall take account of only the first four terms in (2.41).
+

The function L-~ '1) is, to order 4,

+
L-( ~ )

(21[/ t oa ) -t I:!: Yo1/2 + r~ (~2 + 2~~1)/8

qr: <2 3
+ 6c{~1~ +.3d

2132)/48 J

Accordingly, from (4.44), we obtain

. - R J
T - 1 = (47[/Ooa) t 1 + o;d ((31 +P1)/4

+ r; eX 2( (3 2 +'~ 2) /16 J a 0

+ (27[/ roa){ ~« [1+ r~c< (f31
+ ~ 1 )/ 8] (a1 + 8:1 ) / 2 .;

+ 0; d2{~lal + (31al ) / 16 J
+ (2[L/ roa) r~d 2(a2 :- a2 )/ 8

+ (2'f[/ fo a) A;cl3ca
3 + 8:3)/ 48

81



where

a t2) + a(3) + a(4)- a
0 0 0 0

ai
(l) + a(2) + a(3)= al 1 1

a2 -- (1) + (2)a
2

a
2

a
3

= (1)a
3

The (4.61) is, needless to say, a general expression for the

capacitive post with arbitrary cross section.

The following task is, in sequence, to determine the

coefficients. For this purpose, we shall, beforehand, approximate

u
l

within the range of order 4. Recalling at O)= 0 and a t l )= 0,
n 0

we can obtain ul as follows:

tA +B Ha - ~Ca(2»
o 0 0 ~'> 0

+ d. t (A0+B2) ~ + (A2+B0) ~ } (ai
1

) + a~2
) )

- (A2+B2) { t ~ 2 + 2d~1) a;2) + cJ2a2/2 J
- 'iB (2 ~ (a(2) + aD» + d. a - d.~~ a(l)

1 l·5 0 0 1· ~~ 1

+ eX 2 5a~1
) / 2 + d.. ~ 2ap) / 2 + d 2,s 1ai

1
) }

+ itB
3/ 6) { 3 cJ. ~2ail) + 3 cl 2 ~lail)
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+ c.c.

where ao~a1' and a2 are the same ones as those in (4.61). It is

noteworthy that in (4.62), the terms all of whose orders are less

than, or equal to, 2, are constants,and in consequence, vanish

through the normal derivative~ This fact implies that the effect

of the presence of the walls is negligible in the second order

theory. The value 9,,, 0 ul/'O ~w can be expressed by (A-15) •.

Then, by letting the observation point ~ approach a point Oh I'
- that is, ?w~ 1, and by substituting (2.37) ,(A-6)(= 1

0
) ,

(A-16), and (A-17), we can obtain

g' (1) _
n

g'O) _
0,

g ,O)
1 -

( n).O )

o

2iBI (eX + ~ 1) a~2) - (Ao+B2)

cl (_I - ( 1) _ g (1 ) )
• \Aal rIal

- (A +B ) ...../ ( ..... / a(I)'~_ R a:(I»
2 0 .~. ~ 1 ~ 1 1

2 r-J 2(1- R )( A +B ) a ( 2)
~ 0 0 0 0

'- iB 1'\/3(1 :. R" )(a(l) _ a(I»)
1 V\ 011
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Replacement of gem) by g(m) + g,(m) in (4.29)-(4.33) leads to
- n n n

the simultaneous equations for a(m). Indeed, they are solved by
n

a successive manner. We shall show only the final results:

( nLl )

a(2) = (4.30) (n2:0)
n

- iBl (d + ~ 1) g~2
)

- (A
o

+B
2)

d. (c{ gil) -

- (A2+Bo ) ci (eX gil) -

+ (4.32)

,.J 2(1 _ R HA +B ) g(2) /2
U\ 0 0 0 0

_~3(1 _ R ) B (g(l) _ g(1))/2i
o 1 1 1

••

--\-

where the numbers ( ••• ) denote the right hand side terms of the

corresponding equations.

We shall now repeat the statement mentioned in the

previous section ( Page 67 ): In the second order theory of the

H field scattering, the two coefficients a(~) and a{i) can be
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determined by the magneto- and electro-static approximations.

This statement is also applicable to this case; because it is,

as mentioned, permissible to remove the walls, and to discuss

the relevant matters in free space. Let us consider this fact in

a standpoint of the T-network,( see Fig.5.2 ). Ignore the high-

er terms in (4.61). A little calculation leads to

l+R-T ~

l-R-T ~

- (8 TCI Va) a( 2)
00 0

(2 '[({I a) (ail) + ap))

Each of them determines the series arm impedance jXl and the

shunt arm impeiance jX2 ' individually ( refer to (5.11)(5.12) ).

As has been de~cribed, a~2) ( or ail») can be obtained by the

magneto- ( or the electro- ) static approximation. Therefore,:

jX
l

( or jX
2

) can be computed with the magneto- ( or the elect­

ro- ) static approximation.

Calculation of g(~) still remains. To order 4, g(ijI)

is given by

.;

+ C.C.- ,..~ e Yo(~+5)/2
'0 w

= - (Yo/ 2)( wd~I dw + ;fd ~ I dw)

·t 1 + ( 40 / 2 )( S+ ~) + ( r~I8)(~ + g)2

g(Cf') =
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· ,

...
Consequently, we have

-~2'iC
(m) . 1 E: n

gn =- - 2/L 0 (m-l) !

where w = e
i r, and the point ~ is restricted to r .

Part i cul,arly ,

(4.66)

(1)
gl =

(1)
g =n

(2)
g =o

(oc ci -~1)/2
n Yo~j2 ( n2 2 )

- Y~d 2(1 ~ Ro )/ 4
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Chapter V

EXAMPLES

The results we have obtained in the previous chapter

meet our actual needs by indication of the boundary shape i.e.

inspection of the boundary parameters cJ. and Q • The previous
. ~n

chapter, therefore, makes us to concentrate our whole mind upon

the study of obtaining the boundary parameters with knowledge of

costructional requirements. This may be achieved by constructing

the conformal mapping functions. It is ~herefore worthwhile to

look up them in the texts' or the dictionaries (e.g. [33J) bef-

orehand whether the desired functions has already been studied.

Even if those were not found, we could, fortunately, ask for

help to the numerical techniques: Kantrovitch and Krylov [1]
proposed various techniques far conformal mapping.

This chapter is not concerned with those techniques,

but quotes the results. We devote ourselves to the illustration

and the understanding of our method as a mathematical tool.

The simpler, comprehensible examples are exami~ed in order that

the concept of the Fourier expansion of the boundary shape may

be able to stand on physical situations. Particularly, the aff-

ection of the Fourier components to the far, field might be

understood in these examples.

87



5.1 Scattering by a Strip

We shall consider a perfectly conducting strip situated

~in free space, with the width b and the angle ep to the x axis,

in the normalized ~oordiriate system ( see Fig.5.1 ). For the case

¢ = 0, the -rigorous transforming ( mapping ) function is given

by z = ~ = (b/4)("1 + w-1 ) ( [2 J p.451 ). The trans-

forming function for the case of an arbitrary angle, can be

obtained by an appropriate rotation in such a \'1ay that cJ be-

comes a positive real number. A few considerations lead to· the

replacement of ~ by Ee-iep and'l'T by -i¢>w _e •

2· A-.
(b/4) ( w + e ~'P/w ) z - 0o

Evidently, the edge points in the ~ (= z )-plane are mapped

at the points ~ ei~ in the w-plane. In addition, assume that

the plane Have propagating along the x axis is incident on the

strip.

-;

i
u·o

=. -jkXe
-2jx

e

We shall deal with both the E field scattering and the H field

scattering, together. Insert (5.1) into (5.2), and expand it
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into a series around the orign. Derivation or (4.9) and (4.22)

rrom those equations would be made easily. As the results, we

have _

all the others

r ( l )
1 =

r ( 2) _
2 -

reO) r(l) r(2) =
n 'n 'n

j(b/2)cos ~ ei~ ,

(b2/8)cos2cp e-2i <p,

o

(1)
gl =

g ( 3t
1 -

gOL
3 -

_ (jb/2i)sin~e':"i<P , g~2)=

(jb3/l6i)sinepcos2ep e-io/

(jb3/16i)sinep~os2epe-3i <p ,

- (b2!4i)sinc?cos~

gO) = 0,
o

g(4)= 0,
o

- 2i <pe ,

all the others gel) g(2) = 0
n " n

Also,

eX - b!4, ~l ~ be2i<P/4 ,

p - b
2!8 , P2 = b2 e- 2i cP116 ,

0

."
R = S - 0 , Q = 0 ,

0 0 0

u - V = l/(n+l),on on

a,ll the others R P Q R S· U V - 0
I'n' n'n' n" n ' ..Q.n' Qn
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Use of these quantities enables us to evaluate the coefficients

in a straightfoward manner, with (4.14)-(4.16) and (4.28)-(4.33).

Further, by substituting the coefficients into (4.17) and (4.34),

~ie obtain,

for the scattered E field to order 2

u 0 == - '[ j H~2
) (2 ~ )( 1 - b

2
cos

2 ep /4) / t (1 - b
2
/ 8 )(1[j

+ 2C + 2 log b/4 ) }

-7[) Hi
2)(29)(jb2/4)

cost c~s(e -{»

-[j H~2)(2~)(b2/8) cos 2(e -ep)/(1tj + 2C

+ 2 log b/4 )

for the scattered H field to order 4

U o ='j[Hi
2)(2 9)(b

2/ 4) { 1 - (b
2/ 8H1Lj + 2C - 5/4

+ cos2t + 2 log b/4 ) } sin ep sin(e.~ -<r)
-1i)H~2)(2~)(b4/64) sinepcoseP sin 2(e -'f)

+ 'It H~2) (2 ~)(b4/128) sin <t sin. 3( e -ep)

90

'--·1
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· 5.2 Cylindrical Capacitive Post

Figure 5.3 shows a perfectly conducting,cylindrical

~capacitive post in the rectangular waveguide guiding a TEIO mode.

The post axis Z is yerpendicular to the shorter side. The post

radius measured in the normalized coordinates is ~o • The wave

number in the perpendicular plane to the post axis is, as a matter

of course,

k - J k~ 2('!rjD) .

Such a post is the most typical one to which an arbitrary cross-

seotional post is reduced with the conoept of the effeotive radi-

us, so we can see the analysis and the result in the commonest

texts. Even in our analysis, this is the most speoial, the easi-

est type. This section is, therefore, devoted to comparison with

the Lewin' s results [15] and those of the Waveguide Handbook [13].

In this case, things are simpler; the transforming

function is S= fo w • Thus,

z - iy
o 0

~n - 0 (n2.l)

By (5.8),we find
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p - - Q - ~; p - Q = o ( n2:.1 )
0 0 n n

R - S = 0 ( n20 )n n

Din =. VP.. n= 0 ( n,120 )

(5.10)

A direct insertion of (5.8) into (4.65) leads to g(~) or g~m).

Furthermore, substituting (4.64) into (4.61), we arrive at the

concl~sion. As a traditional expression, we shall represent their

properties by the T-network shown in Fig.5.2. The series arm im-

pedance jX1 and the shunt arm impedance jX2 are related to Rand

T with [2.3,14,15J

1 + R - T
=

2 - (1 + R .; T)

1

° 1 - R - T

Only by substitution, we obtain
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1
~ (~)

'it

+ 2G + 1 + 2 log ~o

+ t?E-) j
A

o B - A - B022

Note that both the values of the second parentheses in the braces

are real numbers with respect 'to j • As seen in (A-10), the A ,
o

Bo·,A2 , and B
2

involve the rapid convergent infinite-sums.

Lewin has obtained Xl and X2, neglecting those sums. Such an app­

roximation in this case leads to a coincidence. It must, however,

be confessed that the Lewin's Xl differs only by the term -1 inv­

olved in the parenthesis of (5.13). This difference is caused by

his rough approximation [15, p.40, (2.56) ] •

It is possible to say that with more precise approximation,

Lewin's one becomes coincident. It should be noted additionally

that our results and the Lewin's corrected ones differ from those

of the Waveguide Handbook, together.

5.3 Cylindrical Inductive Post
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We shall consider a perfectly conducting, inductive

post parallel to the shorter side of the wavegUide ( see Fig.5.4).

The post radius is also 90 . The wave number in the perpendicu-

lar plane to the post is

k - k
o

To this case, the T-network of Fig.5.2 is also applicable.

The quantities of (5.8)-(5.10) depend only on the cross-sectional

geometry of the post, but not on the position y and the arrange­
o

ment of the waveguide, so that those can be used in this case,

too. Omitting the details, we write the final results:

(5.16)

jX2 = ( '(la/4'[) cosec
2(1[Yo/a) t SR - 9;

- ('it: V a )2 [ S~ - SR cot('[yja) ] 2j
'.

,
where SR and SR are real quantities ( with respect to j ) such

that

SR = - log -' - C - 1L j/2 + (A -B )/2 - (2/[ 1,V\ 0 0
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(5.18)

The more available-forms of SR and Sa are given by (A-19).

It should be added that our results coincide with those' of the

Waveguide Handbook.

5.4 Capacitive Strip

A perfectly conducting capacitive strip is shown in Fig.

5.5. The angle ep to the x axis is chosen arbitrarily. The width

of the strip in the normarized coordinates is b. The wave number

is, of course, (5.7). The quantities (5.4) are also usable in this

case. We shall cut down all the explanations of derivation to

avoid the duplication. The impedances of the T-network are:

'.

(5.20)

2 L' 2 J..jX2 - (a/1[b)(4/ dob) cosec t I - (lob/ 4) cos 2lf' /2

- (Yob/ 4) 2/ 8 + (b
2/ 8) [IL j + 2C - 3/4
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· ,

+ 2 log b/4 - Ao - B2 + 21[/ 'foa

+(A2+Bo - 2'Tt:'IYo·) COB 2~J} (5.21)

Note that the term-of the bracket of (5.21) is a real number

with respect to j. As cp tends to zero, Xl and X2 go to zero and

infinity, respectively. 'This fact agrees with the physical situ-

ations. In addition, note that the replacement of ~ by ][- ep
does not change the fashions of (5.20) and (5.21). Indeed, this

is the reason why the symmetric T-network representation is

possible, although the constructional geometry is asymmetric.

If ~ =1[/2, then X1==0. To this case,' Lewi,n has obtained X2 by

the method of integral equations. However, by reason of an essen-

tial difference in both the manipulations between the present one

and the Lewin's one, those can not be borne comparison with each

other; for instance, we are counting the order of log b/4 as

zero. Fortunately, the numerical comparison bears a good coinci-

dence.
••

5.5 Inductive Strip
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Figure 5.6 shows a perfectly conducting inductive strip.

Figure 5.2 is also held in the cases ep = 0 and <p =TC/2.

Repeating to say'-. the quanti ties (5.4) are usable ( z = iy ).o 0

It is needless to say the TE
l O

incidence •.

For the case ep = 0:

jX2 = ('(la/4'i[)cosec
2('j[yo/a) t SR - (b

2/S)
S;

- [( 1tb/4a )
2

+ ('(1b/4)2] SR3 - jX/2

For the case ep = '[/2:

jX =. 0
1

jX 2 = (fl
a/ 4 )cosec

2('/tyo!a) LSR + (b.~!S) s;
+ [(1Lb! 4a ) 2 + (r1b/ 4) 2J SR

2 ('ii:'bI4a) 2 [ S~ - SR cot (1[:,/ a)] 2 J
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,
The SR and SR are defined in (5.18) and (5.19), respectively (

_I "in th~s case, ~ =b/4 ). The SR is a real quantity with respect

to j, such that

S; = A2 - B2 + (1[/ '(1a) [('it'/a)2 + ri] sin
2('j[yo/a)

(5.26)

, "
The available forms of SR,SR' and SR are in (A-19).

5.6 Inductive Square Post

A perfectly conducting, inductive square post is depict-

ed in Fig.5.7. Also, the TE10 mode is incident. The post is ins­

erted with the angle q, to the x axis.

We shall quote the transforming function which trans­

forms the square region enclosed by the straight lines $= ±1,

± i, into the outer region to a unit circle in the w-plane. This

has been obtained by successfve mean~ ~J: S = (1125/1024) If ­

(203/2048) w-3 + (1/2043) u-7 • Thus, by ~"':'(2/b)S e-i ep and w

~ w e-iep ( refer to Page 88 ),
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z = i y o

where

the others - 0

Accordingly,

Po = 1.008140 ~ 2 , Q
o

= - 0.997287 d. 2

P
4

= .~ 0.090262o(2e-4i<P, Q
4

= -.0.060129ct2.e-4iep

P
8

=0.000444 0\·2e-8iep, Q
8

= - 0.000381Cee-8i ep

Ro = So = 0.024421, W2 = c<2(1 -.0.180444 e-4i ep ),

R
4

= - 0.000120 e-4i 'P W
6

= 0.009029 c(2e-8iep

S4 = - 0.000281 e-4i <r W10= - 0.000080cl2.e-12i<p ','

99



u - V
on on 0.02442!(n+3)

u4n = R/(n+7)

V =. S4!(n+3)4n

all the others UQn'V). n - 0

(5.31)

As mentioned before, to calculation of jX l and jX 2 , the other

[3n except ~l ( in this case, ~ 1 = 0 ) do not contribute.

Therefore, the calculation is simplified very much:

jX 2 = (f1
a/ 41[) cosec

2('/[Yo!a) t SR + Qo

- (fCc{!a) 2 [S~ - SR cot (ICYi a) ] 2 J
- jX/2

are given in (A-9) as available fashions •..
The above expressions are very similar to those for the cylind-

rical inductive

The replacement

post ( see (5.16) and (5.17) ) except for Q •
. 0

. 2
of Q

o
by -cA permits theo·error only 0.3 per cent.

To the inductive square post, therefore, the concept of an effe-

ctive radius (= ~ ) is very profitable. The Waveguide Handbook
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[13] exhibits another form. It should, however, be confessed

that such a form,- being obtained as a general expression of re-

ctangular posts with the concept of an effective ellipse,- does

not tend to the form for a cylindrical post, in the limit.

5.7 Capacitive Square Post

Finally, we shall consider a perfectly conducting,

capacitive square post shown ln Fig.5.8. The matters concerning

the fields and the post are the same as the previous ones. The

quantities of (5.28)-(5.31) can be used in this case, too.

The evaluation of g(m),_ may be somewhat laborious,- are achieved
n

by a straightfoward computation of (4.65). We abbreviate every

explanation of the details and make haste to the results. The

impedances of the T-network are:

+ 0.12030 cos 4ep ) + d,.2 [ 0.?5l76 ('[j + 2C

+ 2 log 0( - Ao Bo + y~) -0.97537] ]
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a
jX = ~ ---­2

+ 0.06015 cos 49 ) + c\2(lj[j + 2C + 0.93694

+ 2 loge{ - Ao - Bo
- A - B + 4'iL )J

2 2 Yoa

If the terms involving cos 4qp were neglected, the above express-

ions became the approximate ones for the cylindrical capacitive

post ( refer to (5.13) and (5.14) ). It' is important to notice

that the rotation of the post affects the fourth order terms

within the error ten per cent~

From geometrical considerations, it is readily seen

that substitution of 4' for j[ - q, must be equivalent to replace­

ment of y by a - y • We can easily ascertain this fact in (5.34)
o 0

and (5.35). Further, we can recognize the fact that this system

is mirror symmetric,- although we represented this system as the

symmetric T-network after recognition of this fact.

'.
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Chapter IV

CONCLUSION

The aim of this thesis was to save our analytical effort,

as much as possible, in the handling of complicated wave functions

whi.ch were occasionally encountered in, field problems- in parti­

cular, in the boundary-value problems~ Machine computation seems

to be powerful in this regard since one may be able , to leave

every trouble occurring in- indeed, only in- computation to a mach­

ine. In the other sided view, additionally for the purpose of

prompting the numerical techniques, a pure analytical approach

to such a troublesome matter is desirable and may be, perhaps,

instructive ,

As an experiential fact, we know that as far as the

conventional wave functions and manipulations are used, .~he thing

mentioned above still remains unchanged. In short,if desired so,

those must be- may be impossible - radicalized in a suitable way.

The Vekua's excellent idea, as has been described, is

of interest in a mathematical standpoint. It seems, however, that

his field description is slightly a~art from our aim grounded in

the Engineering. Of course, its benifical points were aqcepted

here and successfully applied to the field continuation in a wave­

guide. At that time, we observed that the expression of the corres­

ponding regular function as a Taylor expansion played a special
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role i.e. the "flattenization" of exponential functions varying

steeply. We should emphasize this respect rather than the employ­

ment of complex variables.

The outer field description obtained by trial may be

considered an extension of the Cauchy Integral which is familiar

in a complex analysis and is a worthwhile, mathematical tool in

static field problems. In fact, i~ was ascertained. that both co­

incided with each other in the limit of low-frequency. Such an

expression may be suited to discussion of behaviors of the outer

fields in .viewpoints of mathematical rigor, but seems to be out

of interest in view of mathematical tools. The improved desc-

ription is fit for this purpose, vice versa. However, it was Some­

what comp12cated in the fashion, so that we ended in the approxi­

mate use. Nevertheless, the concept of the Fourier expansion of

boundary- unlike the conventional analyses - carried a general

expression for an arbitrarily shaped obstacle. Besides, all we

had proceeded was discussed in a mapped domain whose boundary

was a unit circle- being a smooth curve. As the result, we dealt

with an edged curve the same as a smooth curve, without too much

effort. So to speak, such a convenience bears on the seeking of

the transforming function. This can be regarded as the ~simpli­

fication" of a comp'l i cat ed model, or the "transposition" into a

simple model, and it is therefore just our aim at the beginning.

The latter question will be solved immediately by employment of
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the successive tec~~iques proposed by Kantrovitch and Krylov [1]

The field near the obstacle was not represented here.

If desired, it can be achieved by a few additional calculations •

... The near field is', as described, the corrected one of the quasi­

statically approxi~ated field; the most rough solution is obtained

by a conformal mapping. Therefore, this field obtained will

cover the near field behaviors almost.

.;
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AUXILIARY EQUATIONS

~o= 0

(A-3)

(A-4)

(A-5)

( n2.1 ), the first term = 0 for th~ case n e L •

~(c{w - ~/w - ~2/2w2 - \33/3w3 - ••• ) + C.C.

2 if!}
= - (Qo + Qlw + Q2w + ••• ) + C. C. (w= e i )

1
0

= ~ w d5/dw

II =- w (d~/dvl)(clw - ~l/W - ~2/2w2 - ~3/3w3 - ••• )

Ko = W (d ~ / dw)( f/2v12 + ~ 2/3w3 + ~/4w4 + ••• )

Km=W (d~/dw)l dJmHm
+ ~/(m+2)Wm+2 + ~2/(m+3)wm+3

+ ••• 5 (m21 )

(A-6) The values on Y : vI =ei'f ,

.;

-- i.--- ------
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(A-7)

·,

where

00 - 2

RJ.= ~ m~m~m+9- Icl
DO -. 2

SJ.= ~ (m + ~) pm~m+.Q I d..
00 - 2

Uj.n = ~ m~rri ~m+}L I(n + m ~9)0{

~ - 2'
V;.n = ~ (m + f..) f m·~m+.Q. J(m + nkX -.

( 9- ,n2·0 )

(A-8) ~("r,u) = (~/d. w+ ~/d w
2

+ ••• )/u + (~2/O: w +

~3/dw2 + ••• )/u
2

+ (\33/o(rr +\34/clH2 + ••• )/u3 + •••

107



(A-9)

Al = A3= A5 = • • •• = 0

Bn ~ -70 H~~) (4y0) - 'iLj f;,~~2) (4ma - 4Y0) +

H~~) (4ma + 4Ya)}
( n2:. 0 )

(A-IO) Ao= 2C + !jIj + ({[/ r0 a) - 2 log(1[1 a) +

c<l .

Z=l( (81I/a)/{ f n(n TC / a H n 1I:/ a + rn)}

Bo= - 2 log t2 Sin(1[Yo/a)} + (7[1 foa) +

t!.;" (8TL./a) cos(2nTCY /a)/{ y (niCJa)(n/[ja + y )l
n=l 0 n n~

00·

Bl = - (jC/2a) cot('iLyo/a) - ~(47lJa) sin(2n/[y/a)/
n=l

-.
<X\

A2= (j[/a)2/ 12 - I + a: roa) - L (81[/a)/lYn(n7[/a
n=l

108



22·B2 = (1[/2a) cosec (1[y/ a) + ('ILl r 0 a)

00 . . .

.- ~~~ (STL/a) cos(2nTL::y/a)/{ Yn(n7L/a + rn)2J

(A-II) GI = A0 t1- - (~- ~ )( ~ - 2)} + B0 { 1 - t~ - ~ )( ~ - '( )J
- ~ A2 { (~- ~ ) 2 + tf -~ )2} :!: i B21 (~_~ ) 2

+ (~- 'Z )21 +i BI .(~ - L+Z-5)tI - i( ~ - ~ )(5
1 + 1 ·5 - 3 - ~ 3}- ~ )J - '6 L B3 t (5" -2) + «( - s )

(A 12) ~2 + ~ 2 -_ W /2 W W 2' C C- S ~ 0 + IW + 2w + •••••• + ••

( w= ei'f )

where

-
W0 = 2 cA t ~1 + ~ 1 )

WI = 2ct~2

W2= cA
2

+ 2~~3 + J3i
- n-l -

Wn = 2~ ~n+l + l~f ~ m?n-m ( n.?:.3 )

(A-13)

(A-14) f( if') = . 'It' (
- S1.n - y +a 0
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(A-15)

(A-16)

(A-17)

(A-18)

- sin('\LYo/a) - (1C/a) cost1[y/a) t5" -5 )12i

- 41sin({[y/a) (t +~ )/2 - ( Yi 4iHlI/a)

. 2 -2 \ r,,-2 2
cos({[Yo/a) (~ - S ) -sin(~y/a)\. (ILia

._ 2)-( ~ 2 + ~ 2) - 4 ~ ~ } /4

~w OUl/o~w = - 2·w (d$=/dvd { (Ao+ Bo)~

+ (A+B)t la(2)
2 2 ~ j 0

+ { tAo+B2)(w d ~ I dW) + ~A2+ BaH~ d~ / dw)} c{ (ail)

+ a(2» _ i B (w d~/dw) j 2 (a(2) + a(3»)
1 1 ~ loa

_d~ (a~1
) - a:i

1 » + ~ ~ a~1
) + d 2a~1

)/ 2 J
+ i B

3
(w d~/dw) cJ.. (~ ap) - cA a~1)12) + C.C.

wdS/dw = -l» - ~/w - 2~2/w2 - 3~/w3 - .....

S(w d5/ d\-l) = c{2w2 - ~ ~2w - (~i + 2d~3)W2 -

( w=ei<p)

(0) \ - - 2 - 3
"i = (A0 - B0) a0 + 2 i B1 1. t ~ - ~1 ) w -:; ~2w - ~3w - ••

}a~O) - l(Ao:'" BoHPa + 2 P1w + 2 P 2w
2

+ ••• )

2 J (0)+ (A2- B2) (Wo + W1w + W2w + . • • • • ) ao

+ (Ao- Bo) a~2)+ i B1c\ a~l)+ C.C.

( W= e i r . refer to W in (A-12). ). .n .
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(A-19) SR = - log d.. + log t(2a/1I)Sin('f[y/a)} - 2 Sin
2 (1[YO/a)

C<) ..

+ (~/C/a) ~::? sin
2(n/[y

o/a)! {¥n(nlI/ a)(n1[fa + Yn )J

- (l6/L!a) Z Sin2(ntry !a)/-\ y, (n1L/a + y)21
n=2 0 l n n J

( D~ = (n7[/a)
2

- 4 )

.•
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APPENDIX I

Evaluation of (4.52)

. -----In Fig.I, let the segments AB,PQ,BP,AQ,BQ be dAB,rp Q'

91' 92' 90' respe~ti vely. The dAB is assumed to be large compa­

red to 91 and 92 • The angles 81,82, and go are measured versus

Use of the mathe-

complex variables ~l

'9 '8
~ 1e~ 1 and J2e~ 2 I

matical formulae (IV-6) leads to

respectively.

the spatial

to the segment AB. Let us define

the horizontal lines perpendicularp

A

B

Fig.I

Construction of

image points
.• (1-1)

(1-2)
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(1-3)

Substituting (1-2) into (I-I), changing the order of s~m, and

using (1-3), we find

eo

>-m:--:",H)m H~2) (2dAB) (S2- $l)m J m(2\S2- 5~)/IS2- $11 m

(1-4)

In the same \-lay, we can obtain the same result in the case ~2<~\.

We shall first assume that A is an origin of the S-plane and

".
B is restricted to the imaginary axis ( the point i2na , n> 0 ).

This means that P is a source point ~ on the image post, and

Q is an observation point?;. Hence, we have rpQ=I~-~ - i 2na I.
Conversely, if B is an origin and A is situated at the point

- i2na ( n>O ) on the imaginary axis, the points P and Q are
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(1-6)

an observation point and a source point, respectively. In this

time, we have r p Q=I~ -~ + i 2na r . Thus

co

L (-i) m ~~2~(4\ n Ia ) (5 -z )m J m( 21 ~ - ~ I)/I~-t Im
m"-M

(n ~o)
(1-5)

Similarly,

eo

>((-i) m H~2~(41 na - Yo I)( 5-Z)m J m(21 t -~ I)/I~-zIm
m=-CIJ

(n~o)

Substitute (1-5) and (1-6) into (4.51), and see (A-9). Then,..
recalling Gl = 4~ILGl ' we reach at once (4.52).. green
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APPENDIX II

Equations (4.40) are two types of the Green's functions

demanded in the expressions of the E field scattering and the H

field scattering. For convenience, we shall rewrite both with

use of the mathematical formulae (IV-IO), such that the one differs

from the other only by the sign. Then, it is possible to compare

both the resulting ones with the fashio~s in which (4.37) is

added to (4.51). In this way, we obtain

(II-I)

where In = J(X - x' )2+ (y - y' - 2na)2 • Put x~ x ", s '» O.

A glance of the definition of A shows that
o ••

A =o

00

{ /L j H~2) (2y) + (2/[/all Iy .: n/ Yn )

. n=o .
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Referring to (IV-3), we can replace the first term of (11-2) by

7[j + 2C + 2 log Y • On the other hand, y--1 involved. in the
U n

second term can be deformed as (nTL:/a)-l + 4~(n'l[/a)(d[/a

~+ ~n)J -1. In this deformation, the series of (11-2) concerning

the terms (n~/a)-l can be readily summed up with the help of

(IV-8). This is so-called "dominant series" ( such a manipulation

is described in detail in [14, p.34l] ). The dominant series be­

comes - 2 log [2 sin(TiCY/2a)J~ - 2 l~g(7iL/a) - 2 log Y •

The singularity of the first term of (11-2) is therefore cancelled.

We thus obtain the fashion of A of (A-lO).
o

loTe shall next consider B. Putting x e- x ' and 2y = s-s'
o 0

in (II-I) , we arrive at

B =o

oo
(21t/a)>: (E / y:)

O
n nn",

cos(2nILY fa)o
(11-3)

This becomes (A-lO) in the same manner as in A •
o

The definitions of B0 and Bl make usc t o notice that

~ (d B !dy )o 0
(11-4)

Accordingly, a s t r-adgh't f'owar-d differentiation of B of (A-IO)o

leads to the available fashion of Bl' ( see (A-10)').
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By substitution of (IV-5)( m=1 ), we find

- Bo

(11-5)

Let us, in turn, deform the above expression in the following

manners: 1) Putting x'= 0, y'= O~ y= 2 y , and x/O in (II-I).
o

2) Differentiating both the sides with respect to x , 3) Dividing

both the sides by x. 4) Letting x approach zero.

In so doing, the second term of (11-5) becomes

• cos(2n'jLy / a)
x7 0 0

(11-6)

We shall decompose e- )lnx -(n1L/a)x -(nlt/a)x [ (nIC/aas e + e e

- V'n) x ]\, - 1 • Note that the second term

equal to (n'f[/a - (n)x. We thus find

is approximately

-CnlI/a)x /e x

(11-7)

Insertion of the first term of (11-7) instead of e- ~nx Ix in

(11-6) leads to (1tI2a)2 cosec2(]:yo/a) (refer to (IV-9) ).
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We shall, in sequence, use the identity nf"ua - rn =-. (2a/n/[)

+ 8/t(nltJaHntc/a + r n)2J ,except for n=O, in order to sum

up the series regarding the second part of (II-7). Then, the term

for n =° (= 27C/ '[0a ) is to be taken into account after the
-

manipulation. The above decomposition makes it possible to use

(IV-8) again in the series involving (2a/nTI:). Namely, the use

yields - 2 log [2 sin(~yo/a)J. In such a way, we have

B2 - - Bo + (1[I2a)2cosec2(lCyo/a) + 27[/ roa

00

- 2 log [2 sin(7[yo/aB + (87C/a) >:cos(2n1ty/a)/

n=l

(11-8)

Substitution for B leads to the final result (A-10).
o

Looking the definition of A2, we notice

(II-9)
-:

N t th t th d t' . t 1 ecual, to - 1 _ ( 4y2)-1.o e a e secon erm 1S apprOX1ma e y ~- 0

Whereas the singularity of B2 is (~/2a)?cosec2(TL:yo/a)~

( 4y2)-1 + (~/a)2/12 • Therefore, the summation cancels the sing­
o

ularities. The limiting value of A2 in (11-9) is given in (A-IO).
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APPENDIX III

Performance of the Residue Calculus

"A function fez) which has an isolated singularity can

be expanded into a Laurent series, and the value of a contour

integral whose integr~~d is fez) is given by the 2~i times of

the residue i.e. the coefficient of z-l of such a Laurent series".

This is called the Residue Theorem [19J. In applying this theo­

rem to (2.38) or (2.39), we should pay attention to the Laurent

expansion of the integrand with respect to u • However, a logarith­

mic function loge 5" -2 ) involved in Go may disturb its perfor­

mance. The other terms being the powers of Z can, easily, be

expanded into a series of u by only rearrengement. Briefly speak-

ing, the Laurent expansion of loge s-2) is our present purpose.

First, we shall assume that \w\>\U\»l Le. '(cw

is a largely closed curve. Then, log($ -~) can be expressed by

.J

109(~-z) - log [c« W

log(tX ,.)

- u)(l -Ll J.;
(;) t(;) 2 - ...

(III-I)

where L1 is - defined in (A-8)
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and in addition, tends to zero as either of w and u --7 O<J •

Certainly, (III-I) is a Laurent series. We always use this series

regardless of that assumption. Its validity can be said by the

interpretation of "Analytic Continuation"; because , it is surely

valid when IS!iS sufficiently large, and the function is conti­

nued analytically as I~ Ibecomes small. In the wa:y of the contin­

uation, one may conceive a question of divergence of the series.

This question will be solved immediately by considering the fact

that there is ~o source in the outer region- say, there belongs

no sing~larity to the outer region, and the fact that the funct-

ion can be continued until a singularity of the function is enc-

ountered. Whereas, all the singularities lie in the disk IW\<:l

( Iu 1<1 ). Therefore, such a procedure is reasonable in the

whole outer region.
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APPENDIX IV

Mathematical Formulae [161

(IV-I)

(IV-2) (z + ~)~ H~2)(p) -

00

L 1
~ Z·Mn-m) H~=~(F)

, 2m ( Iz I>I~IJ
m;O m.

(IV-3)

(IV-4)

(IV-5)

(IV-6)

H;2){X)~ (-j/'iI:J ~l) + 2C +2 10g{X/21 (1 - x
2
! 4)

- (j!21[) x2 , C = 0.5112156649 •••

. ( to order 3 )

00

- ~ (x - y eie)!(x - y e-ie)}imL Zm+n(x)
I n==-ca

00

= e-im~'\' Z (x) J (y) ei ne
~ m+n nn=-co
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Z = J or H(2) . and (() is the angle which
m m m' :r

corresponds to the side y of a triangle,~e is def-

ined as the angle between the sides x and y •

(IV-1) J (2x)
o

2
e:t l - x , 1 3X-1fX,

1 2
:lX,

. ( I 3
J 3 2x) ~ '6 x , ( to order 3 )

-nx 1 sinh x
e =:l bosh x - cos yf cos(ny)n

eo

L ~ cos(nx) = - logt2 sin ~ ), (x>O)
n=l

CJ()

L
n=O

(IV-9 )

(IV-8)

( x"> 0, ~ = i, E::. I ( n> I ) )
. 0 n

(IV-IO) cos x cos y = ~ tcos(x + y) + cos(x - y) }

sin x sin y :- ~ lcos(x - y) -cos(x + y)J.

o.
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Fig.3.3
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Fig.5.1

A perfectly cond­
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Fig.5.2
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Fig.5·7

The inductive
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SYMBOLS

i a spatial imaginary unit.

j a temporal imaginary unit.

bar a complex conjugate with respect to i.

G.G. the complex conjugate of preceding terms with

respect to i.

X,Y,Z: relevant coordinates.

x,y normalized coordinates.

z x + iy.

.f3 the propagation constant in the Z direction.

k o

k

w

the wave number in free space.

~the wave number in the X-Y Plane'i \<0- ~

or Jk~-(ncrc/D)2 •

a complex variable.

u a field or a point in the w-plane.

a regular function in the outer region •

an operator.

a regular function in the inner region.

..
see (2.27).K

b
n the coefficients Of~*

a regular function in the outer region.

z
o

a complex constant, a shifting factor.

z - zo
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fcw
c

u
o

x ' ,y':

the boundary curve in the z and ~ -planes.·

a closed curve in the z and ~ -planes.

a point in the S-plane.

see'(2.37).

the Q9rresponding boundary curve ( unit circle)

in the w-plane.

the corresponding contour in the w-plane.

the Euler's constant (~0.5772156••• ).

a radiation field.

an image field.

the variables of the Green's function

x' + iy' - z ).o

Rl

T!

R

T

'1i

u.r

~

G
0 green

G
l green

Ggreen

the mode amplitudes in a waveguide in Section 3.2,

or the parameters in Chapters IV, V.

the coefficients of radiation modes.

the reflection coefficient.

the transmi ssion coefficient.

the field in the waveguide region.

the field in the taper regi on.

j (2 n1[/b)2 ••- 4 in Section 3.2,

j (n 7t/a)
2

- 4 in Chapter IV.

. the Green's function in free space •...
the Green's function for the image field.

G + G
0 green 1 green
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I(( See (2.40).
0

/G' see Page 72.1

'G' tG r:::-J
see t4.39).

0
+ Gl

G 4'iLGo gr-een"... 0

Gl 41tG:L gr-een"

G 41tGgreen·

ft l/J) : the boundary value for the E field.

f(m) : the coefficients of f(~).n

g(~): the boundary value for the H field.

g~m) : the coefficients of g( q;) ~

g'(Vl),f'(~),g~(m) ,f~(m): see (4.47)-(4.50).

lYlz' 1)1~r,9 :
the complex normals, see (2.10) or (4.18).

"S
z = S>e~ in Section 2.3,

S= gei e in Chapter IV.

E - 3-- - "2 ,o ~n = 1 ( nL:l ).

a
n
(m)

a
n

the coefficients of W .
see t4.8).

P ,Q ,5 ,U a ,V 0 ,I ,Kn n n )C.. n /L-n n n
the parameters defined in (A-I),
(A-2),(A-5),(A-6),(A-7).
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