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ABSTRACT

This work was done in the Electrical Engineering Ph.D.
Course at Osaka University and some parts in this thesis have

already been published in other articles.

When solving field problems ( boundary-value problems )

we will face in most cases the difficulty that is complicationw

of wave functions in being dealt with.analytically, and occasion-

ally it will disturo the final developments in obtaining
solutions. In some caSes.this may be avoided by émploying
numerical methods, however many unavoidable cases lie: around
us. We would be obliged to resolve this important subject rather

in viewpoints of Engineering than Mathematics.

To this purpose, a method of using complex variables
Z z available for two-dimensional prpblems, is proposed where'.
z =x + iy and Z is the complex conjugate of z. Fields are

" expressed with these complex variables and are related to

the corresponding regular functions of a single varigble'z
through a new field-description.

| The field-matching is performed at junctions of
- the regions, in which the.sets of wave functidns are given, by

- the analytic continuation of the correSponding regular functions

" instead of the fields, using the theory of regular funchion.



It is illustrated to the B plane taper in a rectangular wave-

- guide.

- To outer fields such as radiation fields, the field
~description with a contour integral represeﬁtation in a complex
plane is given.}The complex variables z, E_ then are changed by
a transforming funciion. This is applied to the boundary-value
problems with arbitrary boundary. An approximate method is
developed under the assumption of small boundary. The two dimens—
ional scattering by the perfectly conduqting obstacle with
arbitrary cross section is solved,

.Furthermore it is applied to the scattered field' in the rect—t
'angular waveguide with an inductive post or a capacitive poét.
_'The transmission coefficient_and fhe reflection coefficient are

obtained in the general forms for arbitrarily shaped posts.

vi



Chapter I

INTROVUCTION

Electromagnetic field problems today cover a vast area
in the Electrical Engineering. In this area,the'Boundary—Valuef
Problems are the main subject matter. Tts noticeable advances
will be found now, nevértheless,it is still subjected to a
troublesome pfoblem. One of the difficulties is how t6 embody
the solutions which have been specified by boundary conditions,'
either numerically or analytically. Particulafly,it is demanded
in thg_Engineering. Certainly,it is in the underground‘of field

problems,but one need light up it all the more.

The modal expansion is one of the commonest techniques

- for solving the Helmholtz ejyuation with boundary conditions.

How to determine its coefficients will greatly depend on the sets
of complete wave functions to be chosen. The labor of analytical
manipulation will increase uhless the orthogonality is established
on the boundary surface. Consequently, the techniques of machine
computation are eﬁplo&ed on account of décreasing the analyticai‘“
labor : the variational methods [1,2] y the poinf matching methods

[3] + ete. .

Integral equations may be excelient only to represent

"the fields including the boundary conditions. However,they are

disadvantageous to be exposed in the concrete form which is



ncalculable,because éf the complicated kernél functions,
Hence,the integral equations are solved by numerical means [4,5]
except for special cases., | ’

It could be found that the ﬁumerical techniques except
the method of nets [6:]involve the analyticﬁl maﬁipulation in
léading to the final equations to be solved,and the complibation
~of the wave functions disturbs the smoothness of the analytical
development ;= 2as described above. Thus,it is feasonable to expect
some fine techniques to reduce our anélytical effort. The method
of using a complex variable i.e. conformal mapping has rgmarkably
succéeded in static field problems. The same idéa for time-
varying fields is found in the Wiener-Hopf techniques [7] .

. However,these are limived to the restricted boundary-shapes to
which the Fourier analysis is applied . .

The atteﬁpt to express th? field with complex variableé
.was initially made by Vekua [8]. In his wérk, a new field
describﬁion was presented with a complex integrai of a regular

function, however,it is restricted in a closed region.

~ Through his description,if can be pointed out that the regular
function corresponds to the field,one t; one , and in addition; -
“fhe rea1 part represents the correSponding static field;

In this respect,)he has.extended the complex analysis‘for sfafiqi

ifields to that for time varying fields, though it must be noted

¥



that it can not be applied to radiation fields.,

This thesis follows applicably on the customary
courses in the Blectrical Engineeriné in that the treafment of
using the complex variables reduces our analytical labor, |
~ therefore,is primarily concerned with an exposition of the mathe-
matical tools, together with a series’of examples,

Chapter II is mainly devoted to investigating the fieid‘

description for the outer fields ( radiation fields ) which

has never been found and to improvihg it so as to be convenient
to actual shapes of boundary. The Vekua's description is con;
currently described to utilize in the next chapter.
Chapter III is concerned with the field continuation
in the two different regions which are partially .common.
If the field is given by a modal expansion, it is so-called
" Mode-Matching " . This is appliéd %o the E plane taper at
the junction in a rectangular wavegﬁide iﬁ viewpoints of a complex
1variable, much mofe to appreciate a mathematical device. |
Chapter IV is devoted to apply the giveh formula to
the scattering by an arbitrarily shaped obstacle, which is- .
aésumed to be a small size and a perfect conductor.
The examples of wavegﬁide problems are given in ChapterEV to
make the formuia more widely applicable. These were‘dealt with
by Miles [9], schwinger [10,11] , Marcuvitzr[12,>l3] , Collin [14],

'eté., using the variaticnal methods, Lewin also showed another



technique [15:' in fhé case of a cylindrical post. The é,pproxima.te
_progedure is similar to his one. It howevér is suggesfed that 7
the method proposed gives genéral formulationé for érbitrarily
shaped pgsfs.. The specific posts are .cylindrical posts, str.ip'"s,
Squaré posts, and allvdf them are examined fqr two céses‘{:A'D

Il

the inductive posts and the capacitive posts.



" equationt

. Chapter 1I

FIELD DESCRIPTION

The fields satisfying the Maxwell's equations have

. been studied very well within the expressing by real variables,

- 8o the details are omitted, and we start from the following.

Let a relevant coordinate system be ( X,Y,Z ),and

suppose that the field propagates along the Z axis with e-JPz,

where E is a constant. The field u thén gsatisfies the Helmholtz

.—-—u‘+-—-—'u_+k uw = 0 - (2.1)

where k= ’kﬁ —{52 ' k°= the wave number in free space.

‘Equation (2.1) is a monochromatic, two dimensional equation, and

is quite equivalent to purely two dimensional problems concerning

its analys:Ls. In the following,the analysis is developed. with this

assumptlon - whloh is also made to the boundary For gimplicity,

-the normalized coordinate system is employed:

x=%kX , y=%k¥Y o | (2.2)

‘ Throughout the thesls, ‘all the quantities in the normallzed

' _system are written in principle by small letters and the corres— -



‘Number ",and "i" is a spatial imaginary unit ( i2== -1, j =

'ponding ones in the original system by capital letters. The time

factor is‘eJu)t- and ”j"vis called here'"vTempofal Imaginary

. Unit ", While

Z=x+iy B - - (2.3) .

" ( z is not & normalized axis of Z ) is called " Spatial Complex

2

-1 ). We should concentrate our attention rather on "i" than

"j",. The bar denotes the complex conjugate of the complex number

including both.the imaginary units, with respect to i ..

The boundary in the normalized system is 7 ,and the " boundary '

implies ]’ unless explicitly specified ( see Fig. 2.1 ).

- The relaiion

y L5 (20).

and its complex éonjugatellead'tq the hyperbolié equation,

~

instead of (2.1) :

e

YR-X

I
-

u + u

(2.5)

It is obvious that all the components EX’EY'EZ7HX’HY’HZ of

fields satisfy the above equation. The transverse fields can'be.



. e % g
- expressed by the well-known, differential formulae , and these

become with (2.4)

where ve,vm are an electric

potential respectively, and

i

By - 1B =
By - iy =

015/
3]

<}
(0]

(2.6)

NI(y
N

<
3

complex potential, a magnetic complex

are functions of z,z :

ve-a(_@.g T
(ﬁ 'I_J%z> (2.8)

" here & = the permittivity, JA = the permeability, and ko=(0 ‘E}l .

The expression (2.6) is familiar to static fields [2 ]although

the potentials are different: the static potentials are functions

-of z only, whereas;(2.7)(2.8) involve two complex variébles.

¥ With vector representation, the transverse fieldstt, H{ are .

. where

I

_%Vt Ej +

- '%'1%‘ Vt K

ilz
™o

M .'
% |+ % Vi %
ik
—éTc"J‘ thz

g 18 a unit vector béihg'directed‘to,thé'z-axis.v



It is readily seen from (2.5)(2.6) that

(é.9)

Static fields make the left hand side of (2.9) to zero, so the

above relations do not hold for the static fields..

The partial derivatives with respect to z,E unfortunately make

the physical interpretation obscue, instead permit us to deduce

‘a great deal of useful mathematical tools. For instance,the nor- -

" mal component and the tangential component of the eléctric

field on T' can be represented simultaneously by the real part

and the imaginary part of

( n_ + iny ) E, - iE, ) = —mz-g—-z- v, (2.10)

respectively, where nx,ny are the normal components vs. the nor-

malized coordinates, and |/, = n_+ in_ . Furthermore,we could
Z x s
expect that in the limit of k= O’Ve or Vﬁ tends to a trans-

forming function ( a mapping function ) which is regular so that

‘the expressions (2.6)(2.9) extend the complex analysis available

~ for static fields to +that for time varying fields, especially,

on successive derivation from the statical treatment.




2.1 General Remarks

The theory.of complex analysis was well studied -
‘in the field .of mathematiqs and broadly used as a tool in that
of the Engineering. Nlevertheless, one can find that most partSof
the the§ry.which seem to be of interest in a way still remain

to neglected onesy because the theory was built up under the ass-—

umption of a single variable z , —~ 8o the application to the
casés of two variables z,z such as the fiélds described 5efore
becomes extremely difficult.

Frmnthisstaﬁdpoint,we define a certéin opefaxor 5—{
E with which the field u is related to the regular function éé of

z only'one to one.

w = Hé C(e.11)
VEvidently,the opefator depends on what form of the regular
. function is to be chosen. If such an éperaiér exists, all the
behaviors of the‘field can be understood by studying the correéé‘
.ponding regular function. It is a straightfoward matter to seek
out this operator in the present chapter,—- it is-desc;ibed in
the latter éections. In this section, the'general propérties of

this operator are studied briefly.

It is apparent that the operator &{_ involves all



the characteristics of the wave and includes the variable z .

. Therefore?the operator defined at a éertain.point in the complgx;
plane is different from that at another point, thereby so is
the cdrre‘sponding regular function,too.

Suppose,the field u
exists in the region R ( see
Fig.2.2 ), ar-x‘d the regions Ry,
R2 including the points zl,z2
respectively arevdonstrained

in Ro, and assume that any

source of u does not lie in Ro.

We dare denote the fields in

Fig.2.2 Rl’RZ by U9, respectively

The different regions in . and. similarly the corresponding
the z plane where (2.11)

regular functions by aél'-Q§2'
1s defined. : :

Then,

T ean
2 H2§z . ' (2.13)

e
1

1'72
respectlvely. 0f course, 421 ( or ﬂéz ) is regular in R ( or

R, )andHl(oer)lsvahdlnR (orR )e

where }4_1, &l_ are the operators defined at the points .42

10



- except for e Zy e

Since uy is the same with 15.2 in the first place, the expression .
(2.’13) could be tra.ns.formed. into the expression (2.12) by the

" transforming operator " ﬁ 12 °

sz HlDlzl» - (2.14)

The right hand side may be considered : an analytic continuation
of H 1 into Hz. Thus,wer can interpret as follovfs: the Blz .
is the operator which transforms the regular function defined in
32 into that corresponding to w, in R, through an analytic cont-

1 1

inuation ( this is not a conventional one for regular functions

NS

of =z only ). Let us' define é as

?{;2:]312&52 ' (2‘15)A

Substituting (2.14) into (2.13) and comparing the result with
(2.12), we find that Q o is a regular function and is equal to .
Q 1° - . . |
b.= b, inr  (2.16)

It is noteworthy fha:b @1 and éz differ from each othe‘r,:
l —

3

11



2.2 Inner Field

The E field and the H field are fundamental solutions
to Maxwell's equations with charge free and the -combination '
constitutes the most actual field. Onershould remember the fact

that the field behavior can not be discussed from one component

- of the field but from two components i.e. electric and magnetic

field components to the same direction. This fact allows us to

" conclude that the regular function associated with the E field

and that with the H field are undistinguishable. Therefore we

~examine henceforth the field descriptions separately for

both cases: The symbol 1 represents either EZ of HZ. In the fdr-_‘
mer case,the field deécription is of the E field and in the lat;
ter case, is of the_H'field. In the following,the u is not sﬁe-
cified_explicitly. |

The source free field in the closed region to X’ (

see also Fig.2.1 ) is named here " Inner Field ". For this one,

the Vekua's fiéld description [8] is quoteworthy; his derivétion
is based just on the method of solving fhe h&perbolic equation

- (2.5)~[2,8] . We now explain his one from another point of

. view briefly, moreover,reasonably , to confirm the follow of

the latter chapters.

Equations. (2.6)(2.9) are consistent both for the E

]

. field and for the H field snd thereforelwe can write down ,

12



in general for u,as

Q/
=
[\
=3

—_ , u = k B 7(2-17)

o!
N
o
N1

Note that u is a real function with respect %o i, but forget it
before t.h'e derivation, instead consider at a finé.l step. First,

.we put

-_—

u = @ (z) + z 421(2) + 20 (:b.z(z) e | (2.18)

where é(z), ,él(z), «.. are regular in the inner region.

By substitufion,E can be obtained. Purther,the differentiation
of E leads to u. Compare the resulting u with (2.18). We then °
" have

-1 ! .

Ql(z) = = é(z)f éz(z) =—'% §l(z),

e - S (2019)
N OEEE T N FITHT '

where é;l(z) denc;te the first derivativés. In the above, We shall
put @1(0)= §2(o) = ... =0, Instead, we must add . a series of
z only to (2.18) ( Beginning from the term z )y — sucﬁ a series
must forfunately vanish in view of (2.17). From (2.19), | ?n(z)

| ié derived successively: witﬁ'exchanging the order of integfation

eeg (G aa(Gap = (7 (z-plar ,

13



Py g B2 — z; n-1 |
O, (2) et o (z-t) d§(t)dt.
? (=1)™(a-t)" ~
= - go ft _ @(t)dt (2.20)
n 5

n = 1,2.’000.00

By (2.18) and (2‘;20)’.one can represent'x‘l, uéing the Bessel fuﬁcti- '

b.on jo [16] , as A o . »
. < '. . I

$(2) - sf;Jo(Z’ i(z-t) ) Q(w)as  (2.21)

0 .

At_thi_s stage, bring to mind the real .function condition of u 3

Evidently, the real and imaginary parts of (2.21) satisfy (2.i)

or (2.’5), so that we can confine ourselves to the real part to .

the purpose of‘ expression of u.

u = (2.21) + C.C. o (2.22)
where C.C. designates the complex conjugate of (2.21) with respect
to i, The above equaticn is just the Vekua's one [8:] .

The field description (2,22) bears the important

14 .



statements that in the vicinity of the origin which is to
say, actually, in a situation of quasi-static approxiﬁation;
uis approximately Qé(z) + C.C. where the second term means the
complex conjugate of the preceding term, and that if the vari-
ables %,z of u(z,;) can be regarded in mind as individual, then
u(z,0) becomes é(z) + W— The former suggests utilization

of conformal mapping to time varying fields. The -latter produces

a substantial mean for invefse operator H_l : The u(0,0), which

is equal to é(O) + é(O) s is actually the value of u at the

origih, and so the imaginary part of i(O)A is meaningless. Thus,

.

one cén assume to take
@(0) = a real number with respect to i T "(2423)

Then -

’. H-lu? éZ)

= u(z,0) - %u(d,o) ©(2.24)

—~~

Finally,it is added that Vekua has proved the existence of é
assuming (2.23) and the H8lder condition of u on r [8],a.nd ‘besides
that the uniqueness also can be proved [17] , thereby t‘he field

corresponds ta the regular function,one to one,

15



2.3 Outer Field

We have,in the previous section,introduced the Vekua's
field description for the inner field. We now here suppose the
" Outer Field " - which is defined as an outgoing wave in the

outer region ( see Fig.2.1 ); obviously it must specify the radi-

" ation conditions. We know that on account of its familiarity,

the handling of it has been playing a major role as yet in the
Microwave Engineering [}8] » This would encourage us to examine
a new field description for outer fields. To establish it, this
section is mainly devoted.

First, focus attention 6n the previous successive deri-
vation to ask why its simulation for.this case may end in failure.
The successive manner is certainly powerful and interesting.
But,l) the source terﬁ being nondescript in its complex represen—
tation ‘must be added to the right hand side of.(Z.S), 2) (2.5)

also does not involvs in itself,thé radiation conditions. Thus, -

" the present circumstances are quite dqifferent to the previous

ones. From the reasons, it might be thought a short cut to seek out

the field description by trial.

‘The field is absorbed at the infinity just like a trans-
mission line wave at a matched 1oad. The terminal, that is to say

' the infinity is a singular point. Therefore,one should not

~ antlclpaxe a line integral , like (2.21), over the interval [21041

16



Instead, a contour integration could be taken. Moreover, the Bes-
sel function of zero order Jo appearing in (2.21) should.be_
exchanged by the Hankel function of the second kind of zero order
ng) o éf radiation. The corresponding function'ﬂz;(z)
must be regular in the outer region even at the infinity. It is,
iﬁ other words,bounded in the modulus, According to the "'Liou—
ville's theorem " [19] , all the éingularities of IQ; are lécated
in the inner region, together on X’. AQditionally, referring to

the condition (2.23),the analogy
‘ﬂz;(co) = a rsal number with respect to i (2.25)

might be permissible. Now return to the previous section to
investigate the statical relation in question between \y; and
the outer field. The u in a quasi-static sense has become the
twice of the real part of as before, and the field behavior .

has agreed with that of @@ . In this case, however, there exists_

‘a difficulty on the way of analogy. Becauée,two.dimensional '

static fields involve a logarithmic function - whose correspond-—

ing function is log z, which is a multi-valued function - not

regular in a strict sense, and thus not suitable. On’the other

hand, the constant behavioerfEQ;'at the infinity as mentioned

above (=‘g[*(00) ) does not correspond to any one in actual .

'cases.:So one should relate it to the logarithmic field.

17



Por our present purpose, these considerations, in fact, provide

the’following expression:

1 . |
u (z,2) == A X(z,2;0) K(z,z; £(t)
. A K(z i + = . t)g(t qt
+ C.C. | S B (2.26)
Where
K1) = T3 82 3 ) - (2.27)

Ao g = Y*(m) '

the suffix of u implies the outer one, the origin is chosen in
-the interior, X::is oriented in a positive sense as excluding

" the point z ( see Fig.2.3 ), and‘the integration is carried out
over it. The function K of t is regular within the interior,

so that the constant term of 'HI* (= \H;(OO) ) does not contri-
bute to the integration at all. It is in&olved in the first term\-

instead.

Agcording to the Runge-Walsh's theorem [19] % fly”*

can be expressed by a Laurent series:

18



N

| '\y*(z) = ‘NEg‘o Z-ﬁ‘—gz : (2._28)
. n=0 b4 |

where bn 01:2 1) are " spatial and temporal complex constants';
but bo (= iﬂ;(oO) ) a temporal one, and all of them depend on N.
~This is different slightly fromIfhe:conventioﬁal'one. Namely, -
the set of bﬁ is altered in each summation. At ény rate, however,
TDT* could be approximated by a finite series within the range'
of accuracy designated beforehand. In fact, the finite sum cgn
only be realized. Thérefore, in a situation of the realization of
the summation, (2.28) can be understood as uéual.‘Use of (2.28)
in this sense, as all the singularities are poles, leads (2.26)
to the " integratioﬁ-lesé " evaluation. This is fhe well—known

" Residue Calculus [2,19] : indeed, the value 6f the ihtegral

U A .
tYy z | -
: ' , Fig.2.3
P el : ' s
/" N "~ T 1 .
- ’,,—,—’Yr\) R ]c’ he outer region and |
_ ! . : az in the z plane.

19



is equal to the residue of the integrand. The residue can be
obtained without too much effort by tﬁe Laurent‘expanSion.
This is really one'of_our aims and actually saves a.considerable
amount of analytical and computational labors. |

To hake the relation between fhe field and the corres—
ponding regular function .clearef oy substitute (2 28) 1nto )

(2 26). Then, u51ng +he formula [16]

3 B[R )

Dt | A ECD

&, LIPS
= W) ——Pep) T ea)
(m=1)! ;
m=1
Cls] > 1¢0)

where 3z ==_?ele, we obtain immediately

N

u (z,z)—- IC3 b, H( .)(2_9) + %Iirgol ;_(.%?_ H§12)(2? l).?-_‘-ing
+ C.C. B | : (2.30)

where - H(z) J =3 ( be careful for "j" ); Y = the Neumann funotion.

20



It is readily seen from the above that u is, no doubt, an out-

' going wave. We now turn to (2.28) and cofine ourselves to only

one term - say, the n—th term. We then recognize that z © is

associated with the n-th cylindrical wave and iﬁ.spite of the

assumption |z|>|t| this fact is valid in the whole outer region.

Even though finitely summed up, it still remains unchanged.

Consequently, after all, the expression of'(2.30)_must be preser—

ved at every point of the outer region. This is the so-called
Layleigh Hypothesis, which has been doubted regarding its conver-

gence [20—233 « In this respect, the present statement replies to-

.the Question clearly.

In the statical limit, (2.26) must-be able to agree
with a conventional complex representationiiﬁ sfafics. For the
purpose qf illustration,>eva1uate the derivative B‘K/b t,'by a
straighfforward differentiation, taking info éccount of thevsin—

gular term involved. We then find

' _i—; K = :Z + 1og(.z—'t) —;1—; J°(2 "'z'.(zf-t) .)» ;

+ rggulér terms : . (2.31)

The second and third terms are, if the points z,t are located in

%he neighborhood of the origin,{negligible compared to the first
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term. Accordingly, the derivati&e b K/é)t can be approximated by
the function having a pole'of order 1 at t= z. The.second term

| of (2.26) then exhibits the Cauéhy integral though it may be
somewhal différent: the Cauchy integral is presented >in the int-~
eriqr and the present one is in the exterior, vice versa.
Therefofe,by deformétinn ot bzlinto the two closed contours
surrounding the points t=2,00 closely in suchxa way that at. no
tiis & singalarity of the inkegrani is croased, the va;ﬁé of

the integral can be computed directly. It is

Vo) - Tua (2.32)

S — hand, the Hankel function ng)beéomes (i + 20+

2 log.p')/7tj approximately, where C is the Euler constant (=

0.5772¢0s ) [16] . The function 2 log f caﬂ be expressed by the

complex form log z +.log z . Needless to say, the latter is the
cohplex conjugate of the former. Accordingly, a giance of the C.C.
in (2.26) shows:that.thé Tioreh Genm peh o suplaned Ty a (T3 +

2C + 2 log z ). Thus,

u (5,5 W00 (T + 26+ 142 20g2) - W,yla)

+ C.C. | | 0o (2.33)
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Evidently,.at this timo, U does no£ satisfy the Helmholtz equa-
tion, bui the Laplace equation. In such a limiting expression,
insertibn of (2}28) enables us to intefpret about the coefficien—
ts bn on physical grounds. The bn are, in short,'thé multipole
sources in the multipole field ekpahsion [?4] — although their
signs or factors may, strictly speaking, be somewhat different.

It should be noted that all the bn mentioned above imply the limi-
ting values bn(OO), and the values for a finite N are, in fact,
the approximate ones; Of course, there exists an essentiél diffe-»
rence in expression:i.e. the one is with spatial complex numbers
and the other is with vector ones.,

As is well-known [2] , the Z component of the field can
be regarded, in such a statical limit, as an electric potential
or a magnetic potential. Suppose, for convenience, that u is
an electric potential and its boundéry value is zero.

Fﬁrthermore, remove the fermv(ﬁtj + 20 ) dn thg ﬁarenthesis.
Then, (2.33) results in a.purely statical expression:-We will

find at this stage that the function

2 V(00 108 2 + { We(00) - m(z)}

must, in effect, be a mapping function by which the outer region

is transformed into an upper-half plaﬁe. From this resulf$ it
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might be suggested that 1) the field ( wave) expression is ;ont-
inuously connected with the corresponding static field, so
(2.26) is, in this regard, the extended Cauchy integrél; 2) it
'is possible to utilize conformal mépping techniques'poéitively
in field manipulation, and in addition, the regular function
obtained in the neighborhood of x~ from the boundary coﬁditions,
can be combined ﬁith the far field by means of the Laurent expa~

nsion ( refer to (2.30) ).

2.4 Alterative Description for Outer Fields

What kind of regular functions is to.be associated
with the field, is influenced strongly by the choice of the ope-
rator J«L y as mentioned before. It should be chosen so as to
be suited to practical cases as much as possible; It is doubtful
whether the previous field des;ription is applicable evenrto
the cases of strange shapes of boundary of not. The purposes of
the present section are first to point out its failing and second-
ly to improve it from <tandpoints of application.

fis Ehell mow revonsifer kot (2433)s It is, of course,
valid in the neighborhood of the origin. Also, fecall the assump-

tions that Yﬂ is a closed curve, the interior possesses non
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zero—-area and the origin is chosen in it. The zero—area inner
region is out of the preceding discussion. However, a thin plate
boundary, likeva strip — which is very interesting in the Eng-
ineering, belongs to such a case. Obviously, if disregarded and
applied, the origin must be taken on the boundary curve, and in
consedﬁence,the'field diverges at this point, contrary fo its
‘actual behavior ( refer to (2.33) ).This arises from the " bad-
ness " of the field description. In other words, the logarithmic
'singular terms being contained in (2.26) are isolated and are
not manipulated through any integral disposal. Acéordingly,

‘we shall first integrate (2.26) by parts to put the first term

in the integrand; wec haove

K(z,z;t)g[(t)dt + C.C. (2.A34)_

uo(z,E) =
. 200 i

C

where

1If(z) = Iﬂ_%(oo) E Z \j[*(z) '(2.35.)

The functionlﬂj(z) is also regular in the outer region. As far as
looking the above right hand side, 1L(.séems to behave as if it
“diverged at the origin, but surely there exists the bounded -

function, at the origin{ waich does not diverge ( this is touched
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‘later; its general form is (2.41) ):

The K involves the function log { E(z—t)} = logz + .
log (z-t). Siﬁce the latter is to be integrated with respeét o ty .
the singularity may fade away. But the former works only as a mul-
tiplication factor and its singularity still remains. It turns
out, from this fact, that one must contrive to put out the sin-
.gularity, for instance, by replacing z by (z—t) and integrating
with respect to %..In accordance with this idea, the improved
field description is examined in the following.

Let us, for couvenience,. shift the z-plane only by,zo

(= x, + iy, ), and define the g -plane, newly, as
% = 2z — 2z (2.36)

Also, put ? -t - Ze Evidently, any geometric figure in the g -
plane is unchanged. Therefore, Fig.2.3 can be quoted in this case, .
too, of course, mentally by interchanging z with & and t with ? .
This is always implied, hénceforth} unless explicitly specified.
We shall here rey;eat again that & and z, also ) and t can b
regarded as.identidal in the following development. '

"To avoid the inevitable difficulty, descriﬁed before,
which one is to encounter nccessarily, as'it is, when employing
 the field expression with z or'g , the variable § is transferred

to the variable w through a conformal transformation.
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Let the transforming furction be E(w). ,Suppose, E(w) maps the
exterior in the § —plane onto the exterior [w|>1l. Of course,

r correspdnds to |wl=1i.e. R ( see Fig.2.4 ). Needless
to say, the infinity in the % —plane is mapped into the infinity
in the w-plane. The E(w) at infinity must behave in proporfion -
to w linearly. Its coefficient can, since the geometric picﬁure
in Atllle w-plane is unchanged by any rotation, bet me;,de a positive

real number by an appropriate rotation. We have therefore [l]

E = o w+ Bl + Bz o+ ..83 Foaeen 'V - AT (2-37)

(A>0)

where Bn are spatial 'complex constants. Specifically, remember

the fact that no conztant term is contained in (2.37), though

the shifting factor z, is, in fact, chosen in such a way.

For the moment, we shall interpret about Bn’ on geo-—
metrical bases. Proceed with the argument, constraining all points
on | or ]’]'U . The point E in the E -plane draws the boundary
curve with a motion of w on rw . Obviously, we can write w = elqj.-

Imagine the equation obtained by dividing the both sides of (2.37)

by o( W. 'l‘hi‘s resulting series may be regarded as a Fourier series

with the initial term unity,— the left hand side exhibits the

normalized amplitude of g versus X w i although it may be a comp-
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lex number, and the expansion coefficients Esn—l/C{ for the
powers e-ln¢’ shows how much the normalized amplitude deviates
from the unity. In fact, if Bl= Bz= . =O,. [ is a circle
with radius O( , and if BZ= f33= +ees =0, Yis an ellipse,
and in general, if an nr--regular polygon is indicated, only
B(m_l + Hm) ( n= 0,1,2,.0. ) domlna‘beo

Now, we turn to the main discourse. Let u be a corres-—
ponding point of ? ,in the w-plane. The ‘? is restricted to E; .
and u is to the corresponding contour K’cw ( see also Fig.2.4 ).

Using the variables w,u,and considering the previous suggestion,

we reach
- 1 ~ | _ ‘
5(5E) = — (5.8 7)) W(7)ay
1 | '
+ C.C. S ’ (2.38)
whgre
~ . 1 ' ———— du
1G9 = G( 1 &3 7 )"""—
§°($§’Z)_ ST 8 G885 107 .

" , :
R (239)

G (E,E37.,7)= -Ti ng)(zJ(s-g)(g-f) )

(2}40)
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and H(()z?: J, —JT_, as before ( be careful for "j", again ).
It is worth remarking that the integration of (2.39) is performed
for eliminating the singulafity at %_:0 a.nd'is'to be carried oﬁt'
in the following manners:

1) Among the variables ? y ? of Go, always devoting a'ttentionr
to 72- - which is a function of u, because —7- ( or u ) is trans-
ferred to 7 ( or u ) Ly taking the complex conjugate of G (-=
g ), | |

2) Evaluating tle residue of 60 i.e. the vaiue of the consit-
~ant term of f}'o with respect to ﬁ,

" 3) Taking the complex conjugate of the x.'e-sult'ihg value.
Consequently, the functionra; can be regarded as fche improved

one of the function XK.

The function ’Q which has been regular in the exterior

and has vanished at infinity, can be expressed by a series of w—l. :

On the other hand, it may be convenient in computing the integral
of (2.38), by the residue calculus, to multiply - Uf vy the
regular function d E /dw - which tends to a constant a;t‘ infini‘hy.

" Therefore, considering the above fact, we write

+ aeee _fw (2.41)

d %-' a a; a
= + +
aw

g[(i).

where ,al, a «ss are spatial and ‘cempo_ral complex constants,

2’
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but a , analogous to I_LI'*(OO), is , from the behavior of \I{(g)

at 1nf1n1ty ( refer to (2.35) ),

a = a real number with respect to i (2.42)
-Evidently, these coefficients contain all the informations of
the boundary conditions, &nd in a manner of speaking, determining
them is equivalent to knowing the field behavior. We shall avoid

- further discussions to describe the deté.ils in Chapter IV.

30



Chapter III

FIELD CONTINUATION

Discontinuous changes of geometric boundary structure
provide at once{necessity of the so—dalled " Field Continuation”.
) Various maxhematidal means have been,or aré yet, proposed and deve—
loped 5y many mathematicians and teéhniciéﬁs [2,10,15,25-28,etc.] ,
in particular, in the field of applied mathematics.’ | |
One may still be gble to recognize their glorious contributions,
.in the texts, to radiaiioﬁ from waveguides, diaphragms or bifur-—
cations in waveguides, “iffraction or scattering'by apertures,
etcs. The most typical ones among them are: the'&éﬁiational meth-
. ods [l,2,lO] y the point matching methods[}], the methods of
integral equatidns [lBJ s the Wiener-Hopf techniques [2,7,25] .
It may, however, safely be said that actual demandé e#ceed their;
vabilities. In fact, those, except the last pﬁe, are based on the
treéxment with real variables,‘so that the ™ complicatioﬁ." of
wave functions, probqbly, reduces their capabilities.

Fortunately, Section 2.1 suggests that the above diffi-
culty may be overcome by dealing with the corresponding regular
- function— which is, in fact, with a simple fofm. The analytic
continuaiion of regular functions signifies that two fﬁndtiohs,

- both real and imaginary parts, are, at the same time, continuous-

ly connected. As to the field, this corresponds just to the fact
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" that both tangential electric and magnetic field components musf
- be smooth, Therefore, the use of regular functions facilitates

the mathematical manipulation.

3.1 General Treatments

The general theory has been discussed in Section 2.1;
and has been proceeded without any detailed explanation. We shall,
in the present sectiou, give more concrete expressions, restrict-.
ipg discussion to the fieid contiﬁuation.

We first consider
the two regions R, and R, showm
in ?ig.3.l. fhe éircumferences
cross each other at the points

P and Q: i.e. R1 and R, possess

2

a common region. Let uy and u2

be the fields in Ry and R, ,

respectively. Furthermore,

Fig.3.1

assume that those have already

Field continuation in satisfied any given conditions

partially overlawnped ° . : :
. o on the circumferences, except
regions.

on the broken arcs P-Q -
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where the boundary values are unknown.

Obviously, in the common region, uy and v, must be

identical., Con'sequenfly,_ the opera{ors HI and Hz' are, if

their reference poinits are situa‘b.ed at the same poirnt Zy in the‘

common 'region,. 5130 identical; besivdels,tvhe corr'es'ponding Vregu_laz.-

functlons Q and Q are equal to each other. According 'i:or

the 'theory of complex analysis [19:| ' fortunately, 1dent1ty of
1

those functlons_ in the nelghborhood of z. establlshes that in the

whole region Rl + R2. On the other hand, in a small disk including

Z19 §I agd @2 ,ar*a given, from (2.24), b‘y

_@;(z) = wy(2,3) - ¥ uy(2y,3,)

I - ’
=) == (s ma)® G

n=0

d
:Z Vén n ,(Z _ Zl)n (3.2)
n=-0 nt i ‘ _ }

where €o=—%,- Gn =1(n>1), and
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on-
°h = > z® ul(z,zl) -z
_ T ="
dn
4 = 5on uz(z,zl) .
- 71
( n = 071’21010 )

Hence, the above c, and dn can be evaluated directly by differen-
tiation, after achieving the complex variables representatibn for
the glven fields by substitution of x = (z + z)/2 and y ==(z
- z)/21 . Using them , one can attain the field contlnuatlon,

in other words, the field matching , by

6 = 4 | ‘ (3.3)

It must be confessed here that in usual cases, c, and dn involve
‘unknown factors to be solved; fér example;if uy and u, are given
in each region by a modal expansion, those indicate fhe‘expansion
éoefficients.

In actﬁal-calculation, the.number of the equations of .

(3.3) should be the same to that of the unknown factors.
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Occasionally; it provides an algebraic equation- a simultaneous
equation. It §hould, in éddition, be remarked that one need not
take account of usual two conﬁinuityAconditions for tangential
components.

Secondly, suppose that Rlland R2 have no common region
but their circumferences are in contéct with each othér at the
points P and Q ( see Fig.3.2 ). Also, establish {he same assump-—

tions with the previous case for u),u

” @,and @2 . The field u

exists in the whole region as assumed, and 52‘ or @2‘ can,' in addi-
tion, be determined in the whole region, in view of analytié

: continuation. Therefore, &Qﬂ or &{zdefined in Rl or R2 must be
continued analytically in the whole region. It follows that the

suffices .of those operators

represent only the reference

A} !
P Y
L4 .
'_--—'t-_-.:.‘.--ﬁ‘ '2
* .
¢ N ]
. . "

R,

\ points, but not the regions. .
\ .

This is the reason why the -

\ |

operation of }4_1 to u, is

A ]

t t
‘.z ¥ [
. ool
st By
\‘ .'

R, Q

1

possible— ;this question may

.Y

arise in the following.

Fig.3.2 : We shall define the

: : C . :
Field continuation in the function EE-Z in Ry, ( see:
region R,, bridging the - Fig.3.2 ) as an analytically
gap between R, and R, . , o
1 2 _ continued function to §§2 .

This could be achieved, as is
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ion of éz defined in R

well-known, by the idea of a chain of desks—~ each of them being
the region of convergence of a Taylor series of the function [19].

Ir , in (2.13), §2 was replaced by Qg, such an expression was

valid in R,,. Obviously, such a-field represents both u, and u

12 1l 2
in the only R12' We shall thus write it as ug in a sense of analy-
tic continuation. The ug can, really, be obtained from (2.22):

‘ . z
i - c b3 = 0
w(z,2) = P%(z) - \ L= (2 | (z-5,)(z-1) ) DC(+)as
1 L2 0 2 =2
ot ,
Z, |
+ C.C. - . (3.4)

By transformlng the above equa‘tlon w1th H.l , we have a function

.of z associated with uC and at least regular at the p01nt z,.

1
We shall repeat the fact ul-_-; HZ §2 5 Accordlngly‘, from'(2.14),

~1 C H—IlH).Z ic 3312 @g . Compare this resul‘fz with,
(2.15). Then, we have to reca.li the matter that the large domain
Ro defined in Section 2.1 stands compérisbn with the smaller do-

friain Rl2 in this case. It should be remarked that in the previoﬁs

. case, all the singularities were removed from Ro, so the express-—

R, hald s Ry, by virtue of ana.lyti’c cont— .

.,1nua'l:10n,— that is to say, @2 was substituted for (b2 . In con-
- sidering the definition (2.15) strictly, 11; would be reasonable

o :to replace é‘.zin (2.15) by Qg e Consequently, in the pre-
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~ .
'sent case, 53%2 Ep.g is iiz . This can be obtained actually by

s : ; . . -1 C - G, =
t k H eCo - < .
aking the inversion operatlons\zl_ i.e ul(z,zl) - ul(zl,zl)

S i , = _— '
+ inz) --g 5___J°(2 (z,-2,)(z-t) )_cp_gmdt

zzbt

. - . -Z-la . —
+ § (z.) —5_ s JO(Z Wz~2,)(z.-%) ) Qc(t)d-{ -
2" Uz Ve /J 2% 2

(3.5)
where :
o= X+ C zla ' B c -
éz(zl) — ?‘z(zl) - ;—JO(ZJ(ZI—EZ)(Z]_—%) )éz(t)dt

2 .
= a real number with respect to i - (3.6)

Bquations (3.5)(3.6) can be carried out, at least, by a direct
computatlon, with the use of Bessel's identity. In short, §§22

obtained by a poss1ble mean must be expressed by

@ L én n (z-z ) : . .(3‘.7)

n=0
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and aél leads to

) N
" Clearly, the equality between é >

c. = e | » . (3.8)

n = 0,1’2,010

It is needless to say *hat this is the field continuation cond-

tion.

3.2 Application to the E plane Taper at the Junction

The theory described in the previous section may be
somewhat vague to imagine its substance. It is now our task to
clarify the concept furthermore with application tola simple
structure of boundary. This application is limited to the géometé
rical configuration of Fig.3.2. Its interpretation will cover that
of the case of Fig.3.1l.

Figure 3.3 shows tﬁe two dimensional B pléhe taper
connected with a parallel plate waveguide. All the quantities
written in the Figure are, as a matter of course, normalized
ones. The 0 is an origin, and the O" is a point_of'intersection
" to the x axis and the extension line of a taper plane. The O' is

restricted to the x axis and also lies in the‘sickle—shapedipart
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with two arcs— the one being a part of the ciréle with the cepter 
0" ( the radius b cosec Oo ), the other being a part'of the cir-
cle with the center O { the radius &b ). |

We now define the region x £0as™" Waveguide Regionl".
Both the field and <he corresponding regular function in this
regioh are distinguished from the others with use of the subscript
"W", While, the region .9";2 1b cosec 60 is named " Taper Region",
and the corresponding subscript is "T". The 0 and O' are refer-
ence points pertaining to these regions. |

Suppoée, a fundamental mode with the magnitudé unity
is incident ffom the left side, and thereby radiation occurs in
fhe taper region. We write the fields approximately,xusing lafge

integers Nw and NT’ as

N
W —
E Yy = e-fox+ BRQ cosg,‘g—{yenx
=0
(Xﬁ_O) (309)
T (2)
2 " 1"
u, = T, H& (2 9..)008\)2 )
2=0 |
(3.10)

( > $v cosec 6, )

. where }(22——- (2£7r_/b)2;4, )G=23, %: ﬁ?T./eo :
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We shall consider, in mind, that the waveguide region and the
taper region correspond to Rl and R2 in the previous theory,

~respectively. Namely, z, = O and z, = d . The corresponding

1 2
regular functions ajw snd é’l‘ are, therefore, identical to 55_1

and §2, respectively. Thus, from (3.1), we have

N
a%e T 5
éw(z)= e -+ + Ry { cosh <=z e M4 _ %
; | £=0 e
- - c y
= ? -——--m'm 2" | (3.11).
m! .
m=0
where ' ' =

o = (% )"+ 3 > iRQ &Y+ AEymiy -LE)m
(3.12)

It should. be emphasized that the radius of convergence of v't‘}‘1e
‘series (3'.11) is unknown, but exists surely, may be extremely -
small, by virtue of the choice of the finite number NW’ With inc-
reasing Nw , the radius probably becomes small gradually_‘, but never
vanishes. The existence sustained supports a possibility of the |
" regular function matching " at fhe 'origin.. If, instead, infinite .

-

numbers were taken at the beginning, matters would be different
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at all.
Let us next evaluate §T as a series about 0'. Apply

‘the addition formulae of the Hankel functions [16]

(2\) e . a3 . i
| H& (2 9")cos ¥, " = Zn(vfzm(zd )3 (2 9' )coé me

m=-

(d'= 2b cot o, +d )

t ’ :
to (3.10) and expand Up around 0 in a sense of a series of the
Bessel functions. Further, represent the result as a function of

. .
complex variables z' (= Q'e_le’= z-d ) and z', using

soe mate & {Fz-/;v)"u (z1/21)0 §

In the same manner to (3.11), on putting z' = 0 , after all, we

obtain
00 :
A 6md'm Co.m- ‘
Pz = ) L SEE T (geamd) (3.13)
A m! : : )
m=Q ‘ :
where



' T '
i ’ (2) m,(2)
d. = 3 T | v 1
- ' > niHVn_m(Zd)+(l)HVn+m(2d)

= 0 - - (3.14)

"Questions regarding the convergence of (3.13) which ought %o
ocour here will be solved immediately by thinking of the following
statements: 1) as mentioned before, there must exist the corrés-
ponding regular functionkin thé whole " guiding region "; 2) the
regular function possesses a Taylor expansion whose circle of
convergence is determined by the position of the nearest singular
point of the function [19] - ihdeed, it lies ip the éxceptional-
region. These facts allow us to extend the circle of convgrgénce
of (3.13) at least up to the inscribed circle of the broken para—
" 1lel plates. It will be clearly understood on gebmetrical situa~
tions that such a circle contains the point O. This means that
(3.13) is also valid at O. Accordingly, we need not take any
‘artificial complication occurring in computing the function aég
analytically coniinued from O' to 0. Therefore, by substituting

, —~ ~
(3.13) instead of @g into (3.5)(3.6), we obtain Q;E,T (; @2 b
The integrations involved is, this time expressing the Bessel
function Jo as a series, carried out térm by jerm, andfafterwords

the result is rearranged,with the use of the Bessel's identity,

such that
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@T(z)=2%ﬂ— " G

m=0
wheré
00 | ‘ 7
e = }E:Zveh_g g (2a) + (-1)%7_, (2d) } d  (3.16)
=0

It should be kept in mind that the numﬁer of the unknown coeffi;
cients is Nw+ NT+ 2 . All of them are involved in c. and em; and
are determined by the £ame number of equaiioné - say, the algebra-
-ic equation being obtained by substituting - and e pfepared

above into (3.8).

Np 09 '
1 n An
2 T!L .el’l\Jm-n + (-1) J Hv at (-1) HV n
g=0 n=o -t - R
Ny
- % RQ{(%Y1+-2£'-)'"+(%YR—-L§)"’
g=0 :
= (" | L Gan
m = 0,1,2,400 N+ Net 1
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ﬁhere J and Hy, denote Jn(2d) and H(S)(Zd'), respectively.
This simultaneous equation will be solved with actually using
~an inversion process. We shall now assume that 90 is small i.e.
the incident field almost passes through and thereby 6n1y To’Ro’_

1

of 3 equations, will make it possible to-evaluate the unknowns

and R. dominate. Thié aésumption, then reducing (3.17) to a set
by hand. The result is

1

T = .
° Zk%ﬁ%l{.(Jn— jJﬂ) B 3(5%?)2(Tnéﬁ )(Jn+2+ 2Jn+ Jn—z) }

R = To[\"gan{ (I .+ 39}) + 3(5','17);‘)2( Y.z}’g .)(Jn+2+ 27 + Jl;_z)} |

- b2
Rl éTo (Zﬂ: 2} Gan (qn+2+ 2Jn+ Jn—2)

- (5.18)

where J' is the derivative of J and 2} denotes E ; o
n n o =0

‘The assumption of a small 60 is equivalent to taking a large d'.

i

The value of d is, in consequence, permitted to be small.

Therefore,, with approximation of . _ ;-

J0(2d) ~ 1, Jil(Zd) =~ 4+, Jn(2d) = 0 otherwise,

. 2 . . ‘ 1 o 1
( -1) | -3j(2a'3T -4
H(\f)(zdl).l\o lld' { 1 -3 41y6d|1 }e J( ol [ 2LY)
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we have

1

T T o 1 - j2d + —= [1 + j(f%’c—)z( Y -r )]

R, == 8d'{1+j(-—,’?c—)2(x+n)}

(3.19)

If the term (b/ﬂ:)2 is ignored in view of more rough approximation,
(3.19) coincides with the Lewin's result [;5] .

Finally, it should be emphasized again that-in (3.17), no integral
term is contained. This fact is desired in order that simultaneoﬁs ’
equations for field matching may be handled ingéniously in huéh
more 6omplicated Eases, :ather than being manipulated in simpler

cases in which conventional techniques are available.
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Chapter IV
APPLICATION TO SCATTERING

AND WAVEGUIDE PROBLEMS

Field scatterings have ever been studied since the
discovery of " waves ". Physica; insight also has been provided
into the behavior pf écaitering strongly depending on the shapé
of the scatterer, togéther with a complete comprehension of tie

Vphysical meaning. They have been analyzed as boundary value prow-
1ems, but individually and differently according to the boundary
shapes.,

Recently, we have the tendency to force the mathematical
situation to fit the " artitrariness " of the boundary shape,
with the progress of machine cqmputing techniques [4,5,6,29,30] .
One should desife if to be so even if the development of computers
was disturbed. It would seem that this unificatioﬁ could be found
faintly in the variational methods [;,2,10] . Cer%ainly, it is
achieved in the expres#ion and there is no question in itself.
However, on the stagé of performance of the calculation, a fatal
difficulty— that is to say, the disposal of_compliqated»integral

4_‘terms involved , dependent on the choice of trial functibns—lmay
ariée. -
The aim of this chapter is to show that use of the

field description in Section 2.4 makes us unify the manifold
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scattering analyses for boundary shapes. First,vthe field scatf-
.ering by a perfectly conducting scatterer wi.th arbitrary cross
section is analyzed in free space. Seéondly, the same thing is
done in a rectangular waveguide. For the sake of simplicity;
the boundary size of the scatterers is assumed to be small. In
fadt, the E.field scattering is approximated within the range of
accuracy of order 2 with.respeCt to the boundary size, and the H
field one is withiﬂ the range of accuracy of order 4.

Throughout this chapter, the auxiliary equations derived
in the way of mathematical deformation of equations are listed up

together in the rear of this thesis. To those equation numbers,

the "A" is affixed.

4.1 Scattering Problems

In this section, a monochromatic, two diménsional scaﬁ—
tering in free space is dealt with under the assumption of a per-
fectly conducting, small scatterer. The E field'scattering:is
descriged in the‘first part,~and the H field one is inithe later
part.

We shall imégine the boundary curve Y’of cross section

of a scatterer ( obstacle ) shown in Fig.2.3, and devote our
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attention to the manipulation of (2.38). Then, we assume that
u, is a Z component of the scattered field, and the wave number

k is

K =J ki - 62 | (4+1)
( refer to Page 5 ). It goes without saying that all the cfua.n%itie_s
associated with the coordinates are normalized with .this value.

We éhall first describe the scattered field in a far
zone; the modulus ifi is larger than l’?l
To this burpose, replace in the mathematical formula (IV-1) ( Ap-

‘ péndix iV ) a,z 'by --’2/5 2' §(§ -7 ), and in (IV—-2) %, ‘;by

& gg, =4 E'? , respectively. . From bo‘ch the resultlng ones,

we have
B2 [(§-73E 7))
00 n—m
ZZ v ()T e
m=0 n=0 B

(4.2)

The G0 is obtained by multiplying the above one by —TL'J . It is
permissible to regard ’Z as .a point near Y and therefore as
a small value in the modulus. We shall here approximate Go with

~an_accuracy of order 3 regarding the boundary size. This will ~
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enable us, in (4.2), to take account of only four terms in each

sum. The powers ofv? can, from (2.37), be expressed by

7 =1

7 = ou+ ...,

’22 = 0(2u2+ 20(@1+

n> = Ko 3d?Bour 3d%B, + .en (4.3)

where the above omitted terms consist of the powers of u-l and
those do not contribute to the following calculations.

Equation (2.39) says, according to the-résiduevtheorem, that -

if Go is expanded into a series of u , the value of the constant
térm ( the initial term ) of this series just becomes/a; .
Therefore, substituting the complex conjugate of (4.3) into the
terms ’;Z-n of (4.2), rearranging to a series of %, and malti-

plying the constant term by —ﬂ_’j, we have

+ M - -v
) -_ . m g% _
TUSE - i) (- P




It should be recalled %that the quantities 0( ? . and? are
of order 1 . Further, ca.lculate (2.38) in a similar manner and

within the same accuracy. Note that \_L[(’] )d?z is replaced by
(a/u+a/u2+a/u3+ )du
o 1 . 2 o6 00

( refer to (2.41) ). Of course, the contour \{(;also must be

replaced by ch .lComputation of the residue of the resulting
integrand ( the coefficient of the term u-l').le‘ads“to the far
field u_:
o
w(5,5)- -1 B2 (29) a
o d = Ly 55 o
o~ 2 -i6 A =
-3 52 (2p) ¢ day -dZB, 3 )
I 2 ~-216 2
=13 Hg )(29) et ( 20(@13.0 ‘+d a._2/2 )
. (2 ~3i0, ,2 2 43 y
T Hg)(zg)) o7340( 4 B2, +d (31;1/.2' +of3ay/6 )
+ C.C. ‘ : ; (405)

, ie
where 8, is a real number, as assumed before, and 5 = Ee

( this differs from the definition in Section 2.3 ).
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Evidently, this represents an outgoing wave. Needless to say,

the positive angular dependence of u i.e, the behavior with ele,

¢“*®,... , is involved in the term C.C. . It should be remarked
that a,n ( n24 ) have no cdntribufion to the far field of order
3 - indeed this number "3" may be able to bé altered to "4" or
"5" when tﬁe.order of a is taken into account ( tﬁis is touched
later in the case.of the H field scattering ).

To determine the coefficients a, from the near field,

evaluate Go in the neighborhood of Y with the mathematical for-

—— ~ '
mula (IV-3) ( x —> 2J(§-'z WE-7) ). The G, is given by -
the value of the constant term of Go with respect to 57;vas_

mentioned before:( see Appendix IIT )

—

C(E.8:7)

{lLJ + 20 + log(§ - 'Z) + Log(d| W)Hl ~E(5 -7 )}
(&9 )i+ E - Bofi - oo - B3 )

(4.6)
The (4.6) is expressible in terms of u. Substitute it into (2.38).

The integration can be carried out in the same manner with the

previous one. We write the result ( the near field ) only :
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(3,5

aoi(l -£Z)(TTj + 2C + 2 logd +2‘log [ w) ) 

2 E(w-B/w-B, J2w? - @3/3w3- vee ) }

| {(1—55)/w— g(’t3+zc—1+2logo<

"+ 2log |w| )+ d (of w- @l/w-@/zw -
_53/3;3_... )+ E(By/ad + B3+ . )}

{(1 —§§)/2w + g(o(/w+ ﬁl/3w + -

ﬁ2/4w + oeee ) }
+ a ‘{(1 —§§)/3w + g(O(/Zw + gl/4w +

ﬁ2/5w + eee ) }

+ eeeeee + CuCe | (4.7)'

+

4

It should be kept in mind that since (IV—3) is expanded in order
3, the approximation of (4.7) is also retained in this order, -
although it is valid under the assumption'that the orders of a
;are not taken into account i.e. they are of order zero.

We have not touched so far oﬁ the orders of a . The a -
will, in fact, be determined by the boundary conditions énd_
therefore contain the " information " of the boundary size. It
all a, retaiﬁ their magnitudes as the sige decreases; in other
kords, fhose‘are of order zero, then nb éuestioﬁ arises in thg

above development; However, if all an‘have the orders at least
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larger than zero, matters will be altered: i.e. the accuracy of
the preceding approximation will be improvéd.
To go on with this consideration, we shall write a, ’

- as follows:

n n n n

AR (O BN €V B ¢ N e 8

n = 0,1,2,0000

where the shoulder number of a.r(lm) indicates the order number, -
the term being of order m .

Henceforth, we. shall restrict the ané.lysis to the E
scattered field. Let f( E,%") be the boundary value of u .
Obviously, we can represent it as a function of w and W o At this
s . il - . -l . '
time, as a matter of course, w is e and w is e . Accordingly,
we shall, for eimplicity, rewrite £(% &) as £().

The boundary value is always expressible in the following form:

(w=o¥)
The imaginary part of fo is meaningless, so that for ,cdnvenience,

fo is assumed to be a real number ( with respect to i p

We shall also write fn ( given coefficients ) in the same fashion
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with (4.8):

£ = fr(lo) + fl(ll) & fr(lz) ¥ oeee - | (4.10)

n =O,1,2,oooo

Here, it is assumed for nA= 0 that all of fgm) are real pumbers
in'di\(i dually.

Since the obstacle is a perfect conduc*l;,or, the» bqundary
value £(lf) is given by the negative value of the incident fieid_'

uz . Further, f(lI/) can be expressed by a Taylor expansion:

-

1

Bui(fvo)
..‘ bg Jg
2u(0,§)

2EF

s - ] g

U“AT
t

- uz(0,0') -

i
O

UYY |

it

0

The first term is a constant of order zero, and the second and
third terms are of order 1 . We should recall that evidently,
from (2.37), § and E have no constant term. These facts lead

at once.to

f£02 0 (n21), M=o (4.11)
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One will take notice of the fact that these relations relieve
the complication of equa’ions. We shall explain thié in detai1. 
To this purpose, we first consider the zero order approximation:
Ay and f are approxirated only by a(o) and f( ), respectively.
In addition, the higher order terms of (4.7) are removed. As the
result (4.7) is expressed sihply in the zero order form.
( Keep in mind that of , 8 gare of order 1, but w, logo( R
'log , ' are of order zero ! ) Such an express1on is related on

Y to the same order boundary-value:

), o) (02 GG,
o 1 2

5 o '(o)
- (903 + 20 + 2 logd )aov |

+ Sgo)w + Eéo)wz/Z + vees + C.C. _ (4.12)

where, of course, W = eiv,, lwl = 1, and the bar denotes the

complex conjugate the same as the C.C. does. The (4.12) can be
regérded as a Fourier expansipﬁ in the interval [b, 27[],-~one'
cycle of the polaraéoordinate in the w-plane. Thus, by virtue of'

(4-11);

a(()0) - - f(()o)/( T3 + 2C + 2 1oé0( )

A% = o (n21) - (4.13)
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It is seen with substitution of (4.13) into (4.7) that the 1_ow'est'
" (zero) order.term is involved in the only first brace and the‘>
remains are of the orders at least larger than véero. In a simi-
lar ménner, we shall piﬁk out the first order field“from (4.7),
considering (4.13). Notice that the same neglect of the higher.
‘order terms in each brace is still performed. Accordlngly, we

have, from (4.11),

a(l)' = 0
(o}

Ve il (nz21) 0 g

Equations (4.13)(4.14) permit us, in order 2, to ignore, $1 ‘Gach -
brace of (4.7) except for the first one, the second order termé.‘
In short, the second order field exhibits rather a simble feature. -
For convenience of the calculation of the second order terms
involved in the first brace of (4.7), we shall introduce the se-
cond order quantifies Pn agd Qn ( see (A-1)(A-2) ). |
It is seen easily thét the second order field éontains fhe zero

(0)

order coefficient a e On the boundary, we have

fﬁ ) + f(z)w + f(z)w2 + ases + C C. . : .”5

(2)

- —(“_3+20+21ogo( ) ag
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+2$((f,tj+2c+2logo’( )(Po/2+

le + P2

sz2 ¥ ssna a(o)
o]
+ 52y 4 3(22/n o -'é.gz)w3/3 o

+ GG = (4.15)

2 ,
W o+ e60 )+QO+Q1W+

By substituting (4.13) for ago), we get

a(()2)= - { fvéz) + Pofgo) + 2_gof(()o)/("ft’j +
2C + 2 logdf )}/('n_‘j +2C + 2 logd )
5.512)3 n ?‘r(lz) + 2 nl"nféo)+ 2 'n@nfc()o)/ (’ﬁj |
+2C + 2 logg )

(n=21 ) ' (4.16)

where Pn and Qn are defined in (A-1) and (A-2), respectively.

. With use of (4.13)(4.14)(4.16), the far field of order 2 can be

written as

w (8,F) = -3 82 (29)( a9 +a02) )
i 52 (29) o0 dalt)
.—'ﬂ;’j H;z)(Zy) 30 20(?13,20)

4+ C4Ce ' SRR - (4-17)
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If we give the constants o{ and Bn instead of indication of the
boundary shape, and expres: the boundany—value as the fashion of
(4.9) with knowledge of the incident field, we can obtain the above
coefficients with a straightfoward computation.

f(0).
0

As seen, is the half of the negative wvalue of the

incident field at the origin. In a zero order approximation, f(¢))

0) (0)

isg 2 f( . Then, the value ofc{ is very small{ so that a,  'can,

o
furthermore, be approximated by -fgo)/ 2 logd{ and the other
coefficients are negligible. The zero order far field, therefore,
results in the expression of quasi-static approximation [2,31,32] o
We shall give physical interpretations a few more to (4.17).

The (4.17) is separated into three.parts. The first bart is ab
quasi-static field and its correction term. The secondApart shows

a dipole field produced by a uniform gradient of the incident

field ( a constant transverse electric field ). The third one is

a quadrupole field,- indeed, which arises in order that the field
induced by the only monopole source may be corrected on the bound-
ary surface,— the determination of the magnitude is therefore
independent of that of the dipole field strength, and this-source

is induced only when the boundary'cﬁrve is distorfed from a cir-

cle, more strictly speaking, F;l does not vanish,

We shall next focus our attention to the H field scati-

ering. Henceforth, regard u  as a Z componeht of the H scattered
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field ( = HZ ). It may be convenient in the following to define

a complex normal in the f—plane, such as the )nz in (2.,10):
= n + in .18)
}n?E - £y (4.18)

where n and n are two fundamental components of the out-—

_ Ex gy ,
ward normal to ) in-the & -plane. It is readily seen from (2.4)

that the c"omplex representation of the normal derivative is

b Y =) |

- (4.19)
dn o€

On the one hand, the small displacement Ag restri’qted to b/-
indicates the tangential direction. Thus, mf = - idg /ldg l.
.On the other hand, the corresponding displacement A w in the
w—-plane is 1 W |Aw| . By substitution, we find ]nE-_— (wAf/A W)e

l Aw/A% l . Therefore, in the limit,

18 | dw
dw cl§

m; ==

Employment of the polar coordinate w = j.) e1¢ yields
= w “
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.

o

W
Q/
o
o

-+
f |

o/
=1

As a matter of course, (4.20) is defined on f‘CW .
A glance of (4.20) shows that the normal derivative

ih the %-ﬁﬂang is transfafmed into-that'in the w-plane,- being
familiar aé a polar éoordinate. If we remove the restriction -

9@ =1, (4.20) will be ektended to the whole outer region.
The differentiation with réspeot {to g%wis associated with that
along the curve in the E —plane corresponding fo the radial line
in the w-plane. The uo/a n at an arbitrary point is therefore
related to the tangential glectric field on the closed cu;ve
which passes through this point and is perpendicular to the corr-
esponding radial line. We should bring to mind the fact that

the I dw/d§ is a weight function for the transformation and

contaihs, if the boundary possesseé edges, the properties of

singularitieSof‘stafic fields at these points [2]. The behaviors

of time varying fields at the edges are the same as those of

static fields [25]v. Accordingiy, the extended normal derivative-

(4.20) y~ being divided by this factor,- poésesses no singularity,
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i.e., it is a smooth derivative. This fact may be advantageous

in analytical viewpoints. Furthermore, this extended normal

derivative makes it possible to let Qw,approachlnﬁiy after the

handling of equations at a far point. This is just an analytic

" continuation. This manipulation will make us avoid mathematical,

troublesome questions e.g. convergence of the series.

Let us differentiate (4.7) with respect to ?w. In prac-

tice, it is carried out with use of the first operator written at

the right hand side of (4.20). It is noteworthy that the term C.C.

contains not only w, but also w. For convenience, we shall int-

roduce the second order quantities In and Kn ( see (A-5) ).

Using them, we obtain

S,
ST

+

ao{Z—(T(_j+2C+210go( (I

To ) - I1 B f1 }
a { W+ oW (QE /@ Ty

2C -1 + 2 logf )+(Io+io)/w

o)

(4.21)
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Tﬁe (4.21) exhibits, in the limit of EH;= 1, a Fourier series.

The In and Kn’ at‘this_time, can be expressed by a series of

ei¢l (= w ) and §i¢/ (z w) ( see (A-6) ). We shall turn to

(4.21), again. The first term in each brace is of order zero, and
‘the rests are of order 2. The determination of the coefficients

are achieved by the similar manner to the one for the E field

scattering. Specifically, we write the boundary-value of uo/af%

as
25 i
u_.
g(Y) = Y
S
=:‘g + g.w+ g w2 + seee + C.C. (4.22)
o 1 =g ot
(w= &)
Also,
(o) . (1), (2) - : '
g, = gn +g, v g e (4.23)
n= 0,1,2’-000
where g(m)is a real number, for all m, withirespect to i.

o

We shall imagine a Taylor expansion of the incident
field uz ( refer to Page 54, the middle ), and remember the fact

that the order of (4.20) is zero. It will be found that with
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operation of (4.20), the constént term being of ordef zero vanishes
and the first order terms behave with d & /dw and d.é Jaw .
However, w ( dg,hhf),— which is one part of the first order boun-
dafy—value,— does‘not contain a constant term in itself.

-

Accordingly, from both the facts,

gﬁo):: 0] for all n A (4.24)

gV = o | - (4.25)

The (4.24) suggests that the order of the boundary-value is at
least equal to, or larger than, unity. The a, should have, there-

fore, the same order:

a£0)== 0 for all n ' (4.é6)

This will be used in the following without specification.
Substitute (4.8) into (4.21) and rearrange it with
respect to the orders. We shall omit the details. To order 1,

the following equality is established on Y— 3
(1) , (1) (1) 2
=

+ gy W + gy W + see0  +C.C,

-2 agl) - 5§l)w; Egl)wz - «s. + C.C. - (4.27)
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Thus, with (4.25),

a(()l) = 0 (4.28)

A = -3V (n21) @29

To order 2, we find the same fashion with (4.27), permitting

. difference of the superscript-numbers. Thus,

L2 _ @),
° ° (4.30)
HONIC

- g, (n>1)

One will be able to constrict the higher order equations includ-
ing (4.28)-(4.30), and to get the higher order coefficients with
a successive process. We shall proceeé within the range of accu~
racy of order 4. It is readily seen from (4.5) that the far field

with this accuracy demands the additional cohputations of a(3),

a§3), and a(4)

o The computations may be somewhat complicated;

because, the third and fourth order equations of (4.21) contain
the first and second order coefficients.WhichAhave already been
prepared above, respectively, énd in fact, the arrangement of

In and Kn as a Fourier expansion exhibits rather complicated
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forms. The Fourier series of In,Kn are, with use of the zero order
quantities RQ 1Sy ’UQn’ and Vﬂn ( see (A-T) ), given in (A-6).

Omifting the details, we write the results only.

a§3) - - g(()3)/4
00
= TR - By ) B e
n=1
+ C.C. (4.31)
a§3)= —§§3-)+O(2{(T[j+éc—l+

2 1oed (B - Bret/el )

+(2—2R0+U01)_§l)

+ ( F?n_z/c{ ) [B/n - 1/(n_1):]} (1)

+0( z{ ntl n Rn+1 # Sn+l )/n

+ (B /() [1/n * 1/(n;1')] } gt (4.32)
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' ac()4) _ - gc()4)/4

le( L=R 3 +2C+2 log{ )
AT

v —
\O(Z'Z\( By = Bn—l/O( )gr(f)/en
n=1

+ C.C. . (4.33)

(1)

These seem to be somewhat complicated, compared to an

(2)

and a
n
However, the infinite sums involved can, occasionally, be replaced
by the finite sums, provided the series (2.37) is approximated
by several terms -( this approximation is often permissible in
practise, for example, refer to Chapter V ).
Using (4.28)-(4.33), we have the H scattered, far field

of order 4 such that

uo(zré) =
s B (2p)( al?) 4 o3 4 214y

-3 12 (29170 f (ot 4 o
+a ) - o ByE

~ 'ng)(2?>e—2ie{ 20(@1%2)
+ ol et + 22 )y }
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-5 1@ (29)e7 (2, alt)2
+ c{3a§1)/6 )
+ CuC. (4.34)

where the.Hankel functions are expressible in the asymptotic
form: Hélz)(Zy) P, (([-EP)—% exp [— 2j ¢ + jlemtl) /4] :
To the 1owest degree of accuracy, only the monopole field with
the amplitude —'E’ja(()z) and the dipole field with -3 of a](.l), L

(1)
1

are retained. The a has been obtained, in the expansion of
the incident field, from the first order terms,— which produce
a constant éransverse electric field. This means, as is well-
known, that the source of the dipole field is an electric polar-

(1)
1

ization induced by the incident electric field, so a is related
to this polarization in a " spatial complex répresentation e

' On the other hand, the magnetic charge which is the source of

the monoﬁole field, is induced'inéide the obstacle so as to cancel
a circulating electric field around the obstacle,-— being caused
by the incident magnetic field passing throughgthe cross section.
If the cross section possessed no area such as a thin plate,

this chérge did not arise. These results agree with those of
Bladel [32]. The above mention allows us to conclude that the

electro— and magneto-static approximatidns ,— introducing electric

and magnetic potentials,—~ can be done in order to approximate
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the near field, and in order to determine the coefficients of
the far field with an accuracy of order 2. It should be noticed,
from (4.29)(4.30), that both the types of approximation are acco-—

mplished independently.

-

4.2 Waveguide Problems

Suppose that the ﬁho mode is incident on a perfecfly
conducting post in a rectangular waveguide. The transverse‘elec—
tric and magnetic fields are orthogonal to each other. When the
post is parallei to the electric ( the magnetic ) field, it is
called " Inductive ( Capacitive ) Post ". We shall now take the
post axis Z, the propagation axis x, and the positipn of the
walls Z= 0,D and Y = 0,A. The field varies with cos(nfZ/D)

or sin(nf°2Z/D), so that the wave number in the X-Y plane is

=] kg - (n T[:/D)z _'-v | (4035)

. For unification of coordinate systems, the present coordinates
are also normalized likewise: i.e. A and D correspond to a and
d, respectively. The arrangement in the z-plane is depicted in

Fig.4.1.
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I+t is possible to remove the walls if, instead, the
coﬁcept of " Image Posts " is conceived. We shall separaie.the

Green's function into the two parts:

= @ & - (4.36)

G : :
_green o green 1 green

where the first part is the Green's function in free space.

Co green = “T5- ng)(zj<’§—? WE-7))
- (4.37)

The second.part is the function for expressing the " Image Field "

Evidently, we have the relation between G and the'previous
o green
function G_ such that G = 4G . Similarly, we define
o o} 0 green
Gl 4 “~G1 spaan, G 4°9C G spesn Then, the scattered

field can be written, on the analogy of (2.38), as

3,3 = §oE.En W)y
. E ) ®

+ C.C. (4.38)

where, needless to say, u denotes the scattered field in the

rectangular waveguide, and represents the Z component of the
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electric ( the magnetic ) field when the incident field is the
E ( the H ) field, regarding the Z axis,— that is to say, when
the post is parallel ( perpendicular ) to the shorter side .of

the waveguide, and finally,qr'is

Cw (4.39)

As found in the fundamental texts ( for example, [14,15]),

the Green's functions for the E and H fields are given by

09 ' |
Y o (/¥ e)sintapy/a)sin(aqy/a)e Yal<F]

n=1

Ggreen=: 0o |
Z ( C-n/)’na) cos(nify/a)cos(nqy'/a)e .Ynlx_x']

n=0

(4.40)

respectively, where erl = (n’it/a)2 - 4, and Yo= 2.

To the far field description, it isvpermissible to replace the
Green's function by the propagating terms involved in (4.40).

Now, consider that the H 0 mode is incident and is

1
travelling to the left with the magﬁitude unity.
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f sin({y/a)e g(x—xo) (= E; ) (4.41)

i s e
u e

\[ e Kx%o) (=5 ) (4.42)

Since (4.42) is constant in the Z direction, k is equal to k_,

and Y& becomes a pure imaginary ( plus sigﬁ ) with respect to

je. Whereas, k for (4.41) isJ ki - (T/1)? , and Yn (n>1)
_are real numbers. Acqordingly, 'Y; are different in both the
cases. |

To evaluate the reflection coefficient R and the trans-—
mission coefficient T; substitute the propagating terms of (4.40)
into (4.39). Note that |x—xq=’j:(x—xo) T (X'—Xo), x'-x =
(7 +’7 )/2. Further, notice the fact that sin(f y/a)exp[tn(x—xo)]
and expﬁtg(x—xoi]express the behaviors of the propagating mode.

We shall neglect them on the calculationé of R and T. We get in

this way

R 1 + |

« = —— &« OV (7)ag  + c.c.. (4.43)
T -1 2T i _ : '

1A
( for inductive posts )
- R 1 .j ’ iLf ) ( )
= L YW (»)a + C.C. : 4.44

T -1 21 A ARk .

&

1L



( for capacitive poéfs )

where

-+
k(D) =_

1 v -—
- (4Tt/rla)sin|_’ﬂ:(2yoi + 9 -7 )/Zai.]
© Yew ' |
SN g (4-45)
T
L (7)) =
1 N _
2 r~ - (ZCIT_‘/ roa) e— Y; (‘Z +7 )/2 du/u (4.46)
T i

Yew

The evanescent mode-amplitudes can be obtained in a similar manner.
" The regular function Q(E) is given by (2.41). The bou-

ndary conditions decide the coefficients. Let uy be thevimage

. . - . nd
field. It is seen that the interchangesof G and G with Gl and Gl,

in (4.38) and (4.39), lead +to the expression of u, . Of course,

1

the scattered field is the sum of uo and ul. It is also a matter

of course that both regular functions dinvolved in the expressions

T2



of uo and ul are the same.

The.near field of u has already been obtained in the
previous section. Provided that —( u* +uy ) is regardéd as an
" effective incident field in free space ", in determining the

coefficients, the previous results are, therefore, applicable.

Specifically, we shall write the boundary—-values of u, with prime,

1
such that
f'(Q/)::.— uy =-fé + flw +_féw2 + «as + C.C. | (4.47)
' )= - EL_ = o ' " 2 c.C 8)
g'(Y) = 3om u, =gl + glw+ glwt + ...+ C.C. (4.4
- _ it
( ?W— 1, w = ¢ )
“and
v e(0) (), L (2) e
£f1o= f! + 1 + ! = . (4.49)
g = @ g o (4.50)

( n=011’2’... )

Evidently, f({) and g(qi) given in the previous section must be
replaced by £({’) + £r(lP) and g(@) + g (), respectively.
Namely, we must exchange fgm) in (4.9)—(4.16)»f0r fim) - fé(m),

and similarly, gr(lm)in (4.23)-(4.33) for gr(lm) ¥ gr'l(m)-

13



It is noteworthy that the " provisional coefficients ",
- Being obtained by merely replacing the bouhdar&—value,— contain
the prime boundary-value componenﬁs fﬂ(m)( or gé(m) ) of the
saﬁe or sméller orders. This fact will, later, make us to employ

-

a successive process.

It would be a straightfoward matter to calculate the
prime boundary-value components. We shall, therefore, repfesent
the image field with spatial complex variables. The real varia-

bles—expreséion is well-known [}4,15] « Therefore, only by the

rewriting, we have

o _
1
2 .
C'1 green .. Hc() )(2‘§'7‘21na[)
43 n =
n%0
1 Oy |
¥ — Z H(oz)(zl {,E-? + Zi(yo-—na)\ )

43 Y—)

(4.51)

where the minus and plus signs are associated with the inductive

»

‘and capacitive posts, respectively. Note that the arguments of

the Hankel functions in the first sum and the second sum are

equivalent to 2 J(x—x')? + (yﬁy‘—Zna)z' and 2 J (x—x')2>+
(y+y'—2na)2 , respectively.

By the help of the well-known addition formulae of the

14



Hankel functions [§6 ], we attain the following deformation ( re-

fer to Appendix I ):

T 5 g " J (E- .?F 750 5 lesy hylE-7 |
Ze 1<§.7> - §>} ;I%ZIVI; 7|

(4.52)

where, as defined in (A-9), An are constants, but Bn are functions
of the position yd of the post. The definitions of (A-9) may, in
general, be disadvantageous on actual calculations. Hence, Ao,

B,y Byy A, and B

1 72 2’

are reformed, in Appendix II, into the available fashions; the

- only which we need in the final results,-

“display of the results is in (A-10).

Application of the previous section williforce us to
approximate Gl with an accuracy of order 3. Unéér the assuhption
of the small moduli of 53 ,§ ' ? , and f , and with use of the math—
emétical formulae (IV-7), (4.52) reaches {A-11), approximately.

As has been mentioned repeatedly, its constant term with respect
o ~

~to u,— being involved in 7 ,— results in Gl;bThus,

15



’EZ(E',E i) = |
Ao{l—g(f—’z)ki%& 1—5(5—7)}

¥ in, {o{‘fiﬁ ~(5-E+7)0+ dB, -

EE/2+ £7/2) }

- (AZ/Z){ (E-7)%+ £+ 20(E1§

2 (8,/2) { (E-7)%+ §2+ 2d B, |

tiayo] 507 - 52-sdfiE kB, |

| (4.53)

Referring to the evaluation of u in the previous section, we have
the image field for the case of the inductive post, within the
range of order 2, such that v

w(3,E) = (a2 )(al® 4+ al2) o £E LL0),

o}
¥ iB1> (2 & ago) + o agl).?
- (a3 (£ + 2d By &L

+ C.C. : (4.54)

~ The Fourier expansion of §§ and § 2 in the above are given in

(A-12)(A-13). By substitution, we obtain £'({/):
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f'(o) = = (AO_BO) ago)

fé(l) = 0
f;(z) = - (AO—BO) a£2) + %H(AO—BO)(I - Po)
B + 2 O((Az—BQ)(ﬁl + El) } a(()o)

o'(Bl(agl) - 5&1))/21

+

g = -2 (o -By) 27

(4.55)

For the moment, we shall confine ourse]_.veé to the com-—
putation of the reflection coefficient and the transmission coef-
ficient for the case of the inductive post. Substitution of (4.55). _
into-the n pfovisional coefficients " mentioned above, leads to
the simultaneous equations,— being solvable in a succeséive manner.

The solutions are:

aéo)=. — fgo)/(ﬁfj +2C + 2 logd - A+ Bo)
agl)-_- 'f‘§1) + 2iB1 (o( - F)l ) a.(()o)
a§2)= - a})o) - { fgo) + féz)

-l 3y (e 2y 2 } /

{(1 - Po)( o3+ 2¢C i 2 logwo(r. - A

11



+B)) -2q +2 ()((A2 —Bz)(@l + (.Z;l)

+ 2 o{zBi [1 - (Pl+ El)/zo(] }
T ‘ | | | O (4.56)

Note that aél),vanishes because of f§1)== fé(1)= 0.

It is clear from a glance of (4.5) that the above three coeffici-
ents make it possible‘to express the far field with an accuracy
of order é,— in tﬁis case, which is a scattered, travelling mode.
To the present purpose, therefore, we can ignore the terms higher
than a3. Employment of the residue calculus to (4.45) and expa-

nsion of the integrand yield, within the range of order 2,

) —
4T/ Y1) { [1- o(El - (/2% El/z ] sin(Ty,/2)
© YL B2ty eos(y,/2)
+ (/2a1) 9 (1 = Y17 /2) cos(ly,/2) |
+' [J_, .Yl)z‘/z - 122/2 + (‘/Z'Z/za)z] sinz’)tyo/a)

- (4.57)

~ Substituting (4.3) into (4.57), and using the residue calculus

in (4.43), we obtain

18



R | :

. 1} = (87/ Y12 { [1 - (1 -TC%/2a%) ((91
+ B ] sntiay |
i‘ X‘l(ﬂ:/2ai) O( ({31— Bl) cos(’r[yo/a)}

¢ a
(o}

T e | (T r2e) ey - By
. cos(’f[’yo/a) 24 Ylo( /2)(&1 + 51)‘

e sin(Ty_/2) } , | O (4.58)
where a,= a(()o) + aﬁz), and a, = a&l). This is a general expression

for fhe inductive post with arbitrary cross section. At this stage,
however, calculation of the boundary-value still remains. This

is achieved by making use of (A-12)(A-13)(A-14):

£0) = _ % sin(ry_/a)
f§1) = - (T/2a1) (o] - Bl) cos(TLy /2)
- Y/ + B)) sy /)
fg2) - — Ylo(k/z)v(ﬁ/zai)( {31 - El)
eeos(Ty/a) -
_.{ (2/28% - AP, +El)/2
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—~Po/2 .} sinfﬁjyo/a)

(4.59)

It should be notiésd thgt (4.58) does not contain thé parametefs

ﬁBZ’ﬁ33’ ads ,_egﬁliqiﬁly!f_daringly to say, those are invol&ed
in P;»and Q;, In other words, C(and ?51 play a méin role” of the
shape depéndence. It is readily seen that the neglect of‘ﬁgzz,g3 3
ees y in (2.37) is equivélent to the replacement of the bound-
ary cur&e by an ellipse, — having the major‘axis 2 (CX +l£31| )
and the minor axis 2 (c& —|E%[ ¥s Therefore, the doncept of an

" Effective Elliptic Post " is quite reasonable in the secoﬁd
order theory, although Po and Qo ﬁust be corrécted. When ﬁgn;: 0
i.e. 2 cylindrical post is assumed, (4.58) just coincides with
the Lewin's results [15:]. When the given cross—sectional geom—
etry of K’has no component of an ellipse in a sense of Fourier
expansion, such as a square, a hexaéon, etc. ,‘£31 vanishes, so
(4.58) becomesvthe same one that is obtained in the case of a
cylindrical post, - eXCépt fpr Po and Qo. This fact means, there-—
fore, that for such posts, the replacement by ;he corresponding
effective radii is availéble.

We sﬁall next direct our attention towards the capaci-

tive post. The analysis is identical to that of the inductive

post. It should, however, be kept in mind that to order 4, the
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(2)

expression of the far field demands the hine coefficients ao ’

ac(>3) 73(()4) ,a§_1) ,a:(LZ)',’ a§_3) ,agl) ,aéz) , and agl) . Accordi:ngly, we

shall take account of only the first four terms in (2.41).

+
. The fundtion L’U?) is, to order 4,

+
L(7) =

(2T ‘(oa) % 1 YO’Z/z + Ti ("Zz + 20((31)/8 |
Y P dB w3d? By )

(4.60)
Accordingly, from (4.44), we obtain
. =R _ . _
p_1 | = W7 2) {1 + Yool ( @1 +Bl)/4
L SO B, +'B )/16 _}ao
@Y 2 Yo [1+ Y2 ( @1
ﬁl /8] (a. + a )/2 .
+ Yoo’ (ﬁlal +{3,3)/16 _}
+ (27 Y 2 dez(a +3,)/8
- E(eT/ foa_) 'X%P(a +3,)/48
(4.61)
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where

o = a2, 03, @
i ey = all) a2 03)

oy = ol 4 of2)

2y = oV

The (4.61) is, needless to say, a geﬁeral expression for the
capacitive post with arbitrary cross section.
The following task is, in sequence, to determine the
coefficients. Fof this purpose, we shall, beforehand, approximate
(0)_ (1)_ 4

ul within the range of order 4. Recalling an = 0 and a.o = 0,

we can obtaiﬁ uy as follows:

ulkg’g) =

(8g#3. )2, - E§2?))

+ O( {(Aoﬂaz)g + (A2+Bo)§} (a§1) . a§§2).)
- (a3, JCE? v 2dB o+ [Py §
iBy {z% (2! + a3y 4 ) - d?ga_w
A2z + d 8z + of Byl |
g0 { B e Bl

+

+
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+Vd3a§1)—-3d2§ aél) } + C.C.

-

where a_,a and a
o?’1’ 2

(4.62)

are the same ones as those in (4.61). It is

noteworthy that in (4.62), the terms all of whose orders are less

than, or egual to, 2, are constants,and in consequence, vanish

through the normal derivative. This fact implies that the effect

of the presence of the walls is negligible in the second order

theory. The value S)wbﬁ

1/bfw' can be expressed by (A-15).

Then, by letting the observation point E approach a point gh r,

-~ that is, Pw——é 1, and by subé{ci’éuting (2.37),(A—6)(= Io),

(A-16), and (A-17), we can obtain

o
I

n

g'(‘2)= 0 ( n)O.)

. |

2iB, (o + E’l) a.(()z) - (A_+B,)
od (A - B et

- (4, ) of (of o - B 13())
2. o 21 - R )(A_+B,) a(()2)

- 13,0201 = m)afY - 3

(4.63)
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(m)

+ g' in (4.29)-(4.33) leads to
{m)
n

Replacement of g bj &,

the simultaneous equations for a . Indeed, they are solved by

a successive manner. We shall show only the final results:

D o o), Vo zg) (a2 )
a,(f) = (4.30) ( n>0)
a§3)= (4.31)
SR - 18y (o + By) )
- (A0+B2)O( (f ggl) - B 18 &)
- ) of (ol et - B 1'(”

+ (4.32)
ag4)= 0(2(1 - R )(A 4B ) g(z)/2

1) =f1 .
03 - 3, (68 - &My e
+ (4.33)

(4.64)
where the numbers (...) denote the right hand side terms of the
corresponding equations.

We éhall now repeat the statement mentioned in the
previous section ( Page 67 ): In the second order theory of the

(2) (1)
1

H field scattering, the two coefficients a o and a can be
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-

detefmined by the magneto— and electro-—-static approximations,
This statement is also applicable to this case; because it is,
as'mentioﬁed, permiséiblé to remove the walls, and to discuss

the relevant maitprs in free space. Let us consider this fact in -
a standpoint of the Tfnetwork,( see Fig.5.2 ). Ignore the high-

er terms in (4.61). A little calculation leads to

1+ R-T v - (877:/{03.) ac()z)

1 — R-T £ (2 Tol/2) (a](_l) + agl))

Each of them determines the series arm impedance le and the

51 individually ( refer to (5.11)(5.12) ).

As has been described, a§2)

shunt arm impedance jX
(1) .
( or a; ) can be obtained by the
magneto— ( or the electro- ) static approximation. Therefbre,;
). ( or X, ) can be computed with the magneto- ( or the elect-
ro- ) static approximation.
Calculation of g(ﬁ) still remains. To order 4, g(qy)

is given by

-
v

g(¢) —w.s Vo (E+E)/2 + C.C.

- (Yo/z)(wdE/dw + §/da) |
. .{1 + (Xo/2)(§+§) + (X§/8)($+§)2

1
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v ([2/a8)(E+E)° }

.Consequen‘t ly, we have

21C

; 1 —_
gr(lm)_: _ ___: g én, (Xo/2)m(§+g)m—l
2“- 0 (m"l)! .

o (wag /aw + ﬁd‘ g/dv—r) el d;ﬁ

where w = elfé , and the point Z§ is restricted to r .

Particularly,

g§l)= - Yo(d _El)/z
gV= nY,B/2 (n22)
£ - Y22 =R /4

86

' (4.65)

(4.66)

(4.67)



Chapter V

EXAMPLES

The results we have obtained in the previous chapter

-

meet our actual.needsAby.indicaiion of the boundary shape i.e.
inspection of the boundarj parameters CX and E}n . fhe-previous
chapter, therefore, makes us to concentrate our whole mind upon
the study of obtaining the boundary parameters with knewledge of-
costructional requirements., This may be achieved by'censfructiﬁg

" the conformal mapping functions. It is therefore worthwhile to
1look up them in the texts or the dictionaries ( e.g. [33] ) bef-
orehand whether the desired functions has already been studied.
Even if those were not found, we could, fortunately, ask for
help to the numerical techniques: Kantrovitch and Krylov [}]
proposed various techniques for conformal mappihg.

This chapter is not‘concerned with fhose techniques,
but quotes the results. We devote ourselves to the illustration
and the understanding of our method as a mathematical tool.

The simpler, comprehensible examples-are exaﬁined in order that
fhe concept of the Fourier expansion of the boundary shape may
be able to stand on physical situations. Particularly, the aff-

’ection of the Fourier components to the far field might be

understood in these examples.
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5.1 Scattering by a Sfrip

W(_e sha1>1 consider a perfectly conducting strip situated

.in free space, with the width b and the angle (%7 to the x axis,
. in the normalized goqrdiria.te system ( see Fig.5.1 ). For the case
Cb = 0, the rigorous transforming ( mapping ) function is given

§ = (b/4)( w + W—l ) [2] p.451 ). The trans—

]

by z
forming function for the case of an arbitrary angle, can be
obtained by an appropriate rotation in such a way that C{ be-
comes a positive real number. A few considerations lead to the
replacement of g by fe_lq) and w by w_e—lq> .

ol 2i ‘

g = (v/4) (w+e d)/w) y 2y =0 (5.1)
Evidently, the edge points in the 25(:: z )-plane are mapped 7
at the points ha elq)in the w-plane. In addition, assume that

the plane wave propagating along the x axis is incident on the

strip.

i I 25x _' (5.2)

We shall deal with both the E field scattéfing and the H field

scattering, together. Insert (5.1) into (5.2), and expand it

88



into a series around the orign. Derivation of (4,9) and (4.22)

from those equations would be made easily. As the results, we

have
i f(()o) i, f§1)= 3(v/2)cos ¢ ;b
£{0) (b2/8)c<;&:2d3 o £{2) _ (+%/8)cos’d o2id
all the others 1(1 £(1), (2) 0
g(l); - (jb/2i)sin4'>e;i¢ : ggz)—.-_- = (b2/4i)sin.d?cos(i) 21,
g§3)_ (jb3/16i)sin¢cos2¢ S .g(()"’): o,
g§3)_ (jb3/161)siﬁ¢éos2¢e"3i¢ , 'g(()4)= 0,
all the others gr(ll).,gr(f) - 0
(5.3)
" Also,
of = v/a4, B = 9214’/4 ,
P = b2/8 , F, .-_—. b2 e—2i¢/16 ,
Ro=so=o,go=o, )
U= V= 1/(n+1),
all the others @n,?n,Qn,R ’Sn.’U,Qn'VQn = 0
(5.4)
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Use of 'these quahtities enables us to evaluate the coefficients
in a straightfoward manner, with (4.14)-(4.16) and (4.28)-(4.33).
Further, by substituting the coefficients into (4.17) and (4.34),

we obtain,

for the scattered E field to order 2 :

2= =T 90 - Voo /a)/ | @ - B0 (s
+A2C+210gb/4)} -
75 B2 (29)(50%/4) cos $ cos(e ~$)
-1C3 H( )(2§>)(b /8) cos 2(9 -5/ (i + 2c

+ 2 1og b/4 )

(5.5)
for the scattered H field to order 4 :
u, =1zH§2’(29)(b2/4){1 - (v%/8)(3 + 2¢ - 5/4
+ cosch + 2 log b/4 )} sinC!? sin(® —CF)
‘ SRR (2)(29)(*04/64) s1n(¥>cosct7 sin 2(® —4>)
& W_H(Z)(zg)(b‘l/lza) s1nq>s1n 3(6 cF)
(5.6)
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- 542 Cylindrical Capacitive Post

Figure 5.3 shows a perfectly conducting,cylindrical
’capacitivé post in the rectangular waveguide guiding a TElo mode.
The post7axis Z is perpendicular to the shorter side. The post
radius measured in the nérmalized.coordinaigs is g% ; The wave

number in the perpendicular plane to the post axis is, as a matter

of course,

x =J - (/m)? (5)
Such a post is the most typical one to which an arbitrary cross—
sectional post is reduced with the concept of the effective radi-
us, so we can see the aﬁalysis and the result in the éommonest
texts. Even in our analysis, this is the most special, the easi-
est type. This section is, therefore, devoted to comparison with

- the Lewin's results‘[15] and those of the Waveguide Handbook [13].

In this case, things are simpler; the transforming

.function is § = §g w o Thus, :

=9+ Ba=o0 (n21) (5.8)
2 = iy - (5.9)

o (o}

By (5.8), we find
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n n
R = 85 =0 ( n>0)
s Uﬁn =V, =0 (n,f >0)

- : _ (5.10)

A direct insertion of (5.8) into (4.65) leads to g(ql) or gim).
Furthermore, substituting (4.64) into (4.61), we arrive at the
conclusion. As a traditional expression, we shall represent their
properties by the T-network shown in Fig.5.2; The series arm im—

pedance le and the shunt arm impedance sz are related to R and

T with [13,14,15]

l1+R-~-T

X, = ' (5.11)
! 2 -(1+R-=T)

(5.12)

Only by substitution, we obtain

o= -2 5 Y, 93 {1”"3‘-(3(090)2* § 6T -1

o]
+ 2C + 2 log 9O-AO-B‘+—3£-—)}

SR P (5.13)
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o)

B I SN T fl—i—(rgj)%?z(”[j
2 e \; gg 'l 8 oJo o'l
+20+1+2%g § - -3 -4 -8

2

(5.14)

Note that both the values of the second parentheses in the braces
are real numbers with respect to j . As seen in (A-10), the A
Bo’A2’ and B2 involve the rapid converggnt infinite—sums.

Lewin has obtained Xl and X2, neglecting those sums. Such an app-
roximation in this case leads to a coincidence. It must, however,
 be confessgd that the Lewin's Xl differs only by thé term -1 inv-
olved in the parenthesis of (5.13). This difference is caused by
his rough approximation {:15, p.40, (2.56):] .

It is possible to say that with more precise approximation,
Lewin's one becomes coincident. It should be noted additionally

that our results and the Lewin's corrected ones differ from those

of the Waveguide Handbook, together.

5¢3 Cylindrical Inductive Post
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We shall consider a perfectly conducting, inductive
post parallel to the shorter side of the waveguide ( see Fig.5.4).
The post radius is also 90 « The wave number in the perpendicu-

lar plane to the post is

k = k : (5.15)

To this casé, the T—netwofk of Fig.5.2 is also applicable.

The quantities of (5.8)-(5.10) depend only on the cross—sectional
geometry of the post, but not on the position Ts and fﬁe arrange-—
ment of the waveguide, so that those can be used in this case,

t00. Omitting the details, we write the final results:

% = =T/ Y2 YISJ )? sin®({y /2) - (5.16)
X, = ( { a/40) cosec? T[y /a) { 2

—(|L§’/a) [ ~ Sp cot(Ty /a)] }

- % 3%y - (5.17)

, -
where SR and SR are real quantities ( with respect to j ) such

that

S = -logo{ -C- Ti/2+ (A-B)/2~ (2T /
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Y,2) sin®(Ty /2) : (5.18)

Sf't = - (o/T) B, - (TC/ Y2 sin(2y /) (5.19)

-

The more available forms of S, and Sy are given by (A-19).
It should be added that our results coincide with those of the

Waveguide Handbook.

5.4 Capacitive Strip

A perfectly conducting capacitive strip is shown in Fig.
5+5. The angle 4>to the x axis is chosen arbitrarily. The width
of the strip in the normarized coordinates is b. The wave number
is, of course, (5.7). The quéntities (5.4) are also usable in this
case. We shall cut down all the explanations of derivation to

avoid the duplication. The impedances of the T-network are:

= - WA b oos™ (5,20

3%, = (a/Tb)(4/ Y.b) cosec’d { 1 - (Y, v/8)%cos 26 /2
- “(ob/4)2/8 + (v°/8) [1[3 + 26 - 3/4
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+ 2 log b/4 ~ A - B, + 29L/ ‘foa

% (A2 + B - 2_‘)‘[/ Y,2) cos 2c1>] (5-»21)

Note that the term‘bf the bracket of (5.21) is.a real numﬁef
with respect to j. As CF tends 1o zefo, Xl and X2 go to zero and
infinity, reSpeptively.'This fact agrees with the physical situ-
ations. In addition, note that the réplacement of ¢>by TE"4D
does ned change the fashioné of (5.20) and (5.21). Indeed, this
is the reason why the symmetric T—netwofk representation is
possible, although the constructional geometry is asymmetric.

If q>==?t/2, then X1==0..To this case, Lewin has obtained X, by
the method of iﬁtegral equations. However, by reason of an essen-—
tial -difference in both the manipulations between the present one
and the Lewin's.one, those can not be borne comparison with each
other; for instance, we are counting the order of log b/4 as
zero. Fortunately, the numerical comparison bears a good coinci-

dence.

5.5 Inductive Strip
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Figure 5.6 shows a perfectly conducting inductive strip.
Figure 5.2 is also held in the cases ¢ =0 and Cb =T/2.

Repeating to say;.the quantities (5.4) are usable ( z, = iy Y

-

It is needless to say the TE incidence.

10

For the case CF = 0

X = - (4T/Y,)( le/a,)zsinz(‘[&o/a) (5.22)

jX2'=_ (Yla/zlr"lt)cosecz("]’['_yo/a) \ SR B (b2/8) S; :

- [('IT_b/4a)2 - (Ylb/4)2] | SRE - §x /2

(5.23)
For the case (I)='ﬁ_'/2:
X, = 0
< _ 20— 2 S
Xy = (Yya/4 )eoseoX(Ty /a) | Sy + (57/8) 5
. [ crmer]
-2 (‘ﬁ_’bﬂla)z [SI'{ - S co‘b(ﬂ:?ro/a)] & }
| (5.25)
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The S and Sp are defined in (5.18) and (5.19), respectively:(
n T

in this case, O( =b/4 ). The SR

‘is a real quantity with respect

to j, such that

S = b, -5, + (T/Y,0) [m/a)z R ri] sin3(Ty_/2)
C (5.26)

. 1
The aval‘lable forms of SR’SR' and SR

are in (A-19).

5.6 Inductive Square Post

A perfectly conducting, inductive square post is depict-

ed in Fig.5.7. Also, the TE mode is incident. The post is ins-—

10
erted with the angle 4) to the x axis.-

We shall qubte the transforming function which trans-
forms the square region enclosed by the straight lines §= £ 1,
ik 1y ivnto the outer region to a unit. circl;a in the w-plane. _'I"his
has been obtained by successive means [l:l,§ = (1125/1024) x‘v -

§'203/2048) w3 4 (1/2048) w1 L Thus, by &> (2/b) & P g

. e"icl) ( refer to Page 88 ), |
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C=olw+ (33/w3 ¥ .87/“7‘ - (5e2n)

z = iy, » (5.28)
where
ol = o0.559316 v '
| (33: _ 0.000222.0| 4P
_ 8i
B,{ = 0.000444 ¢ e ¢
the others = 0 (5 29) ,
A_c cordingly,
2 2 :
P, = 1.008140 ¢f ) Qg = = 0.997287 o '
P4 = - 0.090262 o(ze"‘iq), Q4 = --0.0601290(23'41(1) i
Pg = 0,000444 o(ze‘&cp, Qg = - 0.0003,810(2{8"‘(1> g
R = S = 0.024421, W, = 0(2(1 - 0.180444 e‘_‘4i¢ ),
R, = - 0.000120 P W = 0.009029 c(ze‘Siq> .
pY _— 3 . 2 ’— 3 . "
S, = = 0.000281 e 414? » W= = 0.000080¢("e 121 '
all the others Pn’Qn’Rn’Sn’wn = 0.,

" (5.30)
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U = V_ = 0.02442/(n+3)

on ) on

Uy = B,/ (047)

Vyn = S,/ (043)

HU1 $he offiens Wy o¥), =@

(5.31)

As mentioned before, to calculation of le and jX2, the other
ﬁ%n except F%l ( in this case, E31==0 ) do not contribute.

Therefore, the calculation is simplified very much:

% = = CE/ (Y d)? sin’ (v /2) (5.32)

Ry = (F/aTD) cosec®(Ty /a) 4 s+ q
_ (,ﬂ:o(/a)2 [SI'{ - Sy cot(Ly /2) :l 2}

R

The above expressions are very similar to. those for the cylind-

where S, and S! are given in (A-9) as available fashions.
rical inductive post ( see (5.16) and (5.l7) ) except for Qo. _
The replacement of Qo by _CXZ permits the error only 0.3 per cent.

To the inductive square post, therefore, the concept of an effe-

ctive radius (= o( ) is very profi{able. The Waveguide Handbook
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[}3] exhibits another form. It should, however, be confessed
that such a form,—- being obtained as a general expression of re-—
- ctangular posts with the concept of an effective ellipse,-— does

_not tend to the form for a cylindrical post, in the limit.

5.7 Capacitive Square Post

Finally, we shall consider a perfectly conduqting,
i capacitive square post shown in Fig.5.8. The matters concerning
the fields and the posf are the same as the previous ones. fhe
quantities of (5.28)-(5.31) can be used in this case, too.

The evaluation of g(m)

by may be somewhat laborious,— are achieved

by a straightfoward computation of (4.65). We abbreviate every
explanation of the details and make haste to the results. The

impedances of the T-network are:

TYod’ v o
X, = - 3B {0.97558 + —%—( }{oo()z(o.989o7
. |
2 — -
+ 0.12030 cos 44; ) + ¢ [0.95176 (T3 + 2¢

+ 2 l.ogo( k& = By +-}2?;—';) - 0-97537] }

(5.34)
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o

a
. 3 2,
X, = ¥ ——s il - —=—(Y.0{)(0.97285
2 (I\CX-OO(Q 8 Yo
+ 0.,06015 cos 4<F ) + g‘z(ﬂ:j + 2C + 0.93694
+ 2 1ogc( ~ A -B -A - B+ — )y}

(5.35)

If the.terms involving cos 447 were neglected, the above express-—
ions became the approximate ones for the cylindrical capacitive
pdst ( refer to (5.13) and (5.14) ). It'is importanf to notice
that the rotation of the post affects the fourth order_terms

" within the error ten per cent.

Froﬁ geometrical considerations, it is readily seen
that substitution of 4) for ﬂ:—-¢> must be equivélent to replace-
ment of 7, by a - Yo * We can easily ascertain this fact in (5.34)
and (5.35). Further, we can recognize the fact that this system
is mirror symmetric,— although we represenfed this system as the

symmetric T-network after recognition of this fact.

s
‘e
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Chapter IV

CONCLUSION

‘Tﬁe aim of this thesis was.to save our analytical effoff,
_as‘much asvpoésibie) in the handling pf complicated wave functions,'
which were oécasionally encounfered in field problems— in parfi;
cular, in the bouﬁdaryfvalue problems. Machine computation seems
to be ﬁowerful in this regard since one may be able.to leave
ever& trouble bccurring in—'indeed; only iﬁ— computation to a mach-
ine; In the other sided view, additionally for the purpose of

prompting the numerical techniques, a pure analytical approach

“to such a troublesome matter is desirable and may be, perhaps,

instructive.

' As an experiential fact, we know that as far as the
conventional wave functions and manipulations are used,_the thing
mentioned abové still remains uhchanged. In short,if desired so,
those must be—- may be impossible - radicalized in a sﬁitable way e

.The Vekua's excellent idea, as has beénrdescribed, is
of interest in a mathematical standpoint. It seems, however, that
his field description islslightly apaft from our aim grounded in
the Engineering. Of course, its benifical points were aqceptéd
here and successfully applied to the field continuation in;a wave-

guide. At that time, we observed that the expression of the corres—

ponding regulér function as a Taylor expansion played a special
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role i.e. the "flattenization" of éxponeﬁtial functions varying-
steebly. We should emphasize this respect rather than the employ-
ment of complex variables.

The outer field description obtained by trial may be-

\ considered aﬁ»extension of the Cauchy Integral which is familiar

in a complex énalysié and is a worthwhile, mathemafical'tool in'
static field problems. In fact, it was ascertaiﬁed.that both co-
incidéd with each.qther in the limit of 1ow4fréquency. Such an - -
expression may,ﬁe suited to discussion of behaviors of the 6uter
fields in viewpoints of.ﬁathematical rigor, but séems to-be out

of interest in view of mathematical tools . The improved desc-—

ription is fit for this purpose, vice versa., However, it was some— -

‘what complicated in the fashion, so that we ended ih the approxi-
mate use. Nevertheless, the concept of the Fourier expansion of
vboundary— unlike the cohventional analysés - carried a general

expression for an arbitrarily shaped obétacle. Besides, all we

had'proceeded was discussed in a mappéd domain whose boundgry
was a unit circle; beiﬁg a smoéth curvé. As the result, we dealt
with an edged curve the same as a smooth curve, wifhout too much
effort.-So to speak, such a convenience bears on the seeking of
the transforming function. This can be regarded as the "simpli-
fication" of a complicated model, or the "transposition" into a

simple model, and it is therefore just our aim at the beginning.

The latter question will be solved immediately by employment of
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tﬁe successive techniques.proposed by Kantrovitch and Krylov [l] .
The field near the obstacle was not represented here.
If desired, it can be achieved by a few additional calculations.
.The near field is, as described, the corrected one of the guasi~-
- statically approximated field; the most rough sblﬁtion is obtained
by a conformal mapping. Therefore, this field obtained will

cover the near field behaviors almost.
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AUXTLIARY EQUATIONS

(a-1)- P, =O(_2+l51|2+ “32!2 t oeenen
" Pniz()(—g‘nil+ %Apm@m+n (221) " (3050
w1 oo B e Bl B e
- 00 _
| Qn = n}-l - l)o(pn—l+ E(-;— *+ .m_i_ﬁ )Bm Bm+n
| (n>1), the first term = O for the case n=1 .
(A-3) §§= P /2 + Pow + P2w2 + sunee + C.C. ( w=ei¢)

(A-14) g(o(w - ﬁl/w - 62/21&2 - 533/31/«3 - eee ) ¥+ C.C.
- =—(Q0+Ql-w+Q2w2+ sie - + Gals (w:eisu)
(A-5) I_-= EwaE/au

L, == (df/dw)(olv’« - él/ﬁ - Bz/zﬁz - E3/3ﬁ3 - eee )
w (d%/dv_w)( ﬁl/2w2 + EZ/BWB’ + '63/4“;4 + ees ) |
- (dé/dﬁ){o(/mwm + B/ m2)d™2 & B/ (me3p™>
, .. k (n>1) '

K
o

K
m

(A-;6) The values on Y R -eisb )
‘ (03] . ® (0
2 2 g
I,=d"(1-Rr) -q Zﬂzl(Rl’ Bp-1 /A b - of® g\t{slz

RV EEN WO VL
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1= P~ ol Z{QO ﬁﬂ1/<¢“1>°‘}
-O(ZZ{KO—% D Pyl § /8

.K "O(QUOI/W " d Z{ﬁl Byt 4
' 'O(Zi -1
{=1 le 00 :
K - d2(—l~ gl " m+1)/wm+1 - O( 22{6 m+l
B/ } el dzﬁ{ _—
(4 ,Bﬁ_lxmd}/wm“ﬁ“
( BOE O, m 21 )

where

(A-T) R,Qz i;li m?mgmﬂl /O( °

5, mZ=1:(m +0) ":’)m g 2
= 2
Ty ;1 @ pm+l/(n+ m+Q)o(
fos) o

(48)  AGrw) = (By/dws Bofolw® + o )fu s (Byfodw s
ﬁ_;)/()( WE ot e )/U~2 + (63/0( W +_B4/ _w2 + eee )/u.3 + eee
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- (4-9)

(A~10)

. | |
a=-T; mZ;:{Hf(f)Mma) + Hfi)uma)}

A1=A3=A5=.... =0

) 2 1(2),,
R tE AR Z{Hn )(4ma - 4y,) +

' m=1
82 (4ma + 7))
A( n>0 )

o= 26+ T[_’J + (C/ X'oa) - 2 1log((l/a) +
= - |
2 < (ssT::/.ao/JL Yo(n/2)(nfl/a + z(n)}
n=1

Bs= -2 1og{2 sin(ﬂ_‘yo/a)} + (TL/ Yoa) %

0 ’ N
2 < (8]L/a) cos(2afly,/ aV{ {o(mIL/2) (T /2 + Yn’}

n=1

- "
B= - (I[/22) cot(Ly,/a) - 2;(471/31) sin(2nfly_/2)/
| n= |

{)(n(n']t/a + Yn)}

. =
A= (L/2)%12 -1+ (7 Y,2) - 72X (8T/2)/{Y, (Tl /2

n=1

Y%

108



(A-11)

(A—lzj

(A-13)

(A-14)

2

(T/22)%c0sec®(Ty /2) + (TL/Y,2)
N |

— Z (8‘7{'/3,) cos(Enﬁtyo/a)/{Xn(nﬁt a + Xn)Q}

‘%{L-(i—zxé—i)}ifs{l—(§—§x§—?ﬁ
3] (52 D3 F ] (5907
c(E-p2Tan (747 5){1-2@ 73
—7)} f%:LB3{(§—7)3+-(2—§)3}

E E%= W /2 v ww+Wed 4, + C.C.
(weei? )

where

W, = zd(@l*'él)

W, = 20{E2

Wy= g%+ 29(‘_5_3 + B2

= 208+ 20 BuBn  (223)

%: QO(pl + 20{B‘z/w + (){zw2 + (ﬁ'i + de3)/w2 ~

= S . = e
+ W3/w +W4/w * eamee

i(P)

(w=e

£(ll) = - sin J(E-(yo + §2,;i§) e%Yl(gfg.) -
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- sin(fLy,/2) - ((lf/a) cos(qLy, /a) (5 -%)/2i

- Yy sin(Ty /2) (E+E)/2 - ( Y1/4i)(’TE/a)
 eos(yy/e) (37 - EP) - sinlfey /a>{<712/a

- g+ E >—4$§}
(a-15) @, Bul/b?w = -2 (di’/dw){ (Ao+ Bo>"§

+ (A+ B )§ la (2)

{(A + B2)(w dg/dw) + (A + B )(w d?g'/dw)}o( (a(l)

+ a(z)) -3 B, (v & /aw) {2 (a(() ) & a§3))

IO I RO VRO P,

+1 3, (7 a& /aw) ol ( s aél) - d aél)/z) + C.C.

(A-16) wa¥/aw = w - By/w -2 @z/wz ~ 3,@3/w3 e
(A-17) §(w dg/dw)—o( W ’0(@2 -(&31+2o((§3)
(w=el?)

(A-18) u; = (A - B,) a§0)+ 2 i Bl{(o(—gl)w - Ezwz —B3w3 =
}(O)—{(A'—B)(P +2Pw+2Pw2+...)
+(A—B)(W +Wlw+WW + e )} (O)

+ (A= B) a§2)+ i Blo(. &1)+ c.C.

(w= elt/} y refer to W in (a-12). )
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(A-19)

SR = - log Q( + log {-(2a/’j]:)sin(‘ﬂ'_yo/a)} = 2 sinz(’l‘[:yo/a)
0 | -
+ (87L/0) 3% sin® v /2)/ {Y, /=) 02 + X))
Sp=  cot(f[y,/a) - sin(2Ty,/2)
Y
+ 4 Z Sin(2nﬂ:yo/a)/{¥n(nﬁ_’/a + Yn)}
n=2
Sp= (‘/[/a)z/lz -1+2 (/~L/§.)2sin2(’ltyo/a)
- ({/\L'/2a)2c:osec2(’[[’_yo/a)
= 2 2
- U6T/2) 33 sind /) V(a2 + Y) }
n=

( Y2 =@/a)® -4 )
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APPENDIX I

Evaluation of (4.52)

— et — p—

- In 'Fig.?I, let the segments AB,PQ,BP,AQ,BQ be d

AB'TPQ’
’ ’ , respectively. The 4, is assumed to be large compa-
1 2 o AB

red to 91 and 92. The angles 91,92, and 90 are measured versus
the horizontal lines perpendicular

to the segment AB. Let us define

the spatial complex variables %1
" i8 ie
and gz as 91e 1 and .?28 2
respectively. -
Use of the mathe-

matical formulae (IV-6) leads to

B2 (or, ) =

Fig.l

00 :
Z H§12)(290)Jn(291) e—ln(eo+el)

Construction of n=-

image points -
. - (I—l)

_Q _
Hﬁz)(2 S)o) = ot 10,) 7 7 (i)™ Hr(nz)(szB)Jmn(z %) A Es,

m=-0

(I-2)
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fa" 5_1 '!2l o—ine, Jn(2l§2—gll)
g2~ &1 - |

. _ |
— E /; Jm(gyl) Jm+n(2 92) elm(ez—el) (1-3)

msz
(9,>D)

Substituting (I-2) into (I-1), changing the order of sum, and

using (I-3), we find

H(z)(QrPQ) == -

&0
2 PP ea) (5,8 72 |5 S/ [ 5"

m=-~a

(1-4)

In the same way, we can obtain the same result in the case ?2< 91.
We shall first assume that A is an origin of the £ -plane and

B is restricted to the imaginary axis ( the point i2na , n>0 ).
This means that P is a source point )Z on the image post, and

Q is an observation point % . Hence, we have rPQzlg—)Z— i 2na.|.

Conversely, if B is an origin and A is situated at the point

- i2na ( n>0 ) on the imaginary axis, the points P and Q are
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an observation point and a source point, respectively. In this

time, we have rPQ,= I §—7+ i 2na [ . Thus
H(()z)(ZngZ - i 2na| ) =

}j( 0" 82| wg RS 7 |5-7]"

M= -6
(n ZO)
(1-5)

Similarly, -

) =

ng)(zl§-5f+32i (v~ na)

m

’ |
T (-1)™ 52 (4] na - 7, \)(§ 7" (2‘§ }ZI)/I% L

m=={
<n%0> ’
T (1-6)

Substitute (I-5) and (I-6) into (4.51), and see (A-9). Then,

recalling G , we reach at once (4.52)..

1= 47:-(}1 green
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_APPENDIX II

Evaluation of Ao’Bo’Bl’A2’B2

Equations (4.40) are two types of the Green's functions
demanded in the e%;ressions of the E field scattering and the H
field scattefing. For convenience, we shall rewrite both with
use of the mathematical formulae (IV-10), such that the one differs
from the other only by the sign. Then, it is possible to compare
both the resulting onés with the fashions in-which (4.37) is

added to (4.51). In this way, we obtain

% X
-3 ZH&Z’(zrn) = (2TE/a)_ZO (€,/Y,) cos [(n’:‘z/a)
n=- n=0

s (y - y" )] e; \{n l x-x'] _ (1I-1)

where Y; =:\J(x - x')2+ (y -y - 2na)2 . Put x=x', y'= O.

A glance of the definition of Ao shows that

)
‘#

. {TL'J- 82 (2y) + (2T /2) Z(en/ Y.) cos(nlly/a)
n=0 . y::O
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Referring to (IV-3), we can replace the first term of (II-2) by

G[3 + 26 + 2 log y . On the other hand, ;*;1 involved in the

second term can be deformed as (nﬂ:/a)-l + 4[};(nﬂ:/a)(nm[/a

+ \(;)il—l. In this deformation, the series of (II—2) concerning

the terms (nﬂ:/a)—l can be readily summed up with the help of
(Iv-8). This is so-called "dominant series" ( such a manipulation
is described in detail in [;4, p.34l]‘). The dominaﬂﬁ series be-—
comes - 2 log [é sin(ﬂ:y/Za)]_cg - 2 1og(7/a) - 2 log y .
The sihgularity of the first term of (Ii—2) is therefore cancelled.
We thus obtain the fashion of A of (A-10) .

We shall next consider Bo' Putting x= x' and 2y°=:y-y',

in (II-1) , we arrive at

(o}

(84
N 7

B, = (2f/a) 5 (/) cos(enlly/2) (11-3)
ni= ‘ '

This becomes (A-10) in the same manner as in A .

The definitions of B_ and B, make us;to notice that
= & —
B, = % (a3B/ay,) | (I1I-4)

Accordingly, a straightfoward'differentiation of Bo of (A—lO)

leads to the available fashion of Bl‘( see (A-10)").
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By substitution of (IV-5)( m=1 ), we find

o0 :
R R IR IR

N= -~

- ] (1_1—5)
Let us, in turn, deform the above expression in the following
manners: 1) Putting x'=0, y'= 0, y=2 y,» and x>0 in (II-1).
2) Differentiating both the sides with respect to x. 3) Dividing |
both t.he sides by x 4) Letting x approach zero.

In so doing, fhe sec-ond term of (II-—S) becomes

&0 A
(72 2L €, (57N
n=

’ cos(Zn‘ﬁ’_'yo/a) (11-6)
x>0

o o
We shall decompose e {nx as e_'(n“'/a)}C + e—(n’(t/a)x [e(n /a

- Yn) * . l:l . Note that the second term is approximately

equal to (nj[/a —X‘n)x. We thus find

Y o SOTIE e )

(I1-7)

Insertion of the first term of (II-7) instead of e Y'nx /x in

(II—6)jlead_Ls to ('|\|_"/2a)2 cosecz(‘lT__'jo/a,) ( refer to (IV-9) ).
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e shall, in sequence, use the identity nTL/a-—X;1==- (2a/n90)

+ 8/{(n‘][\:/a)(nﬁj/a. + Tn)Z},except for n=0, in order to sum

up the series regarding the second part of (II-7). Then, the tefm
" for n=0 = 29/ X;a,)'is to be taken into account after the
manipulation5 The ;Bove decomposition makes it possible to use
(1v-8) again in the series involving (2a/n][). Namely, the use

yields - 2 log [? sin(ﬁ:yo/a)]. In such a way, we have

By = =B % (ﬂ:/Za)zcosecz(ﬂ:yo/a)‘+ 29T/ X;a

(0]
-2 log [2 sin('ﬂ:yo/aﬂ+ (8T72) ) | cos(2nTly/2)/

n=1
o o 2
{(n(l-/a)(nru/a Yy k
(11-8)
Substitution for Bo leads to the final result (A-10).
Looking the definition of A2, we notice
_ NUE) N G _

o .

Note that the second term is approximately equal to — 1 — (4y§)_l.
Whereas the singularity of Bz_is (ﬂ:/Za)?coseCZCH:yo/a) =~

241 —~, 2 . ) .
(4y0) + (JC/a)“/12 . Therefore, the summation cancels the sing-

ularities. The limiting value of A, in (II-9) is given in (A-10).
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APPENDIX TIT

Performance of the Residue Calculﬁs

"A function f(z) which has an isolated‘singularity can
be expanded into a‘Laurent serie‘s, and the value of a contour
integral whose integrand is £(z) is given by the 2J[i times of
the res;due ii;e. the coefficient of zm1 of such a Laurent series".
T_his is called the Residue Theorem [19]. In appiying this theo-
fem to (2.38) or (2.39), we should pay attention to the Laurent
expansion of the integrand with respect ‘l;o u . Howéver, a logarith-
mic function log(%—‘Z) involved in G0 may disturb its perfor-
mance, The other terms being the powers of Z can, easily, be
expanded into a series of u by only rearrengement. Briefly speak-
ing, the Laurent expansion of log(g—Z) is our present purpose.

First, we shall 'assume that lwl)‘u\}}lri.e‘. ch

is a largely closed curve. Then, 1og(§ —7) can be expressed by

log($ -7)

I

log [O((w ~w(1 -/ )] '; |

= loglolw) - &) - 3B - 3B - ...

~A _%A2_§A3-..} |

(I1I-1)

where A is — defined in (A-8) - a regular function of w and u,
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and A additioﬁ, REAGE G0 meho 85 aibhem.of wadd —>00 .
Certainly, (III-1) is a Laurent series. We always use this series
regafdless bf that assumption. Its validity can be said by the‘
iﬁterpretaﬁion of "Analytic—Coﬁtinuation";‘because, it is surely
is sufficientiy large;rand the functidn is conti;
§

uation, one may conceive a question of divergence of the series.

valid when l§

nued analytically as

becomes small, In the way of the contin-

:This gquestion will be solved immediately by considering_the fact
‘fhat:there is no sourée in fhe outer region- say, there belongs

- no singuiarity to-the outer region, and the fact that the funct-

ion can be‘confinued until a singularity of the function is enc—
éﬁntéred. Whereas, all the singularities lie in the disk iw]<(1
( |u|<:1 ), Therefore, such a procedure is reasonable in the

whole outer region.
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APPENDIX IV

Mathematical Formulae [16]

- (l)n

. (2) 2 o jg:j 0 (2) .
(1Iv-1) ( |1+ ) "y 2 Hn..(‘)
| ( Jak1)
(-2 | e+ EP([245) =
ZE:; — SF +(n-m) (2)(J—-) . (IZ|?4§|)

=0 m! 2
(1v-3) Hc()z)(x)u (=3/9¢) {'[[j + 2C + 2 log(x/Z)} (1 - x2/4)
- (§/2T) =%, C = 0.5772156649...
" ( to order 3 )
(17-4) HOENEILE: SN I L
(1v-5) H(z)(x) + H(z)(x) = 2m H( )(x)/x<
(Iv-é) | zm( lxz + y2 -2 xy cos 8 )
3. = ta
= {(x -y ) /(x -y &° }ng z_, (x) 7 (y) ™
n=-¢
_ ing) 2, (0@ ™, )

n=-¢

121



" (IV-T7)

(Iv-8)

(Iv-9)

(1v-10)

giirs 3= 7. o HA2Y y and @ is the angle which
m m m .
corresponds to the side y of a triangle,—,g is def-

ined as the angle between the sides x and y .

I (2x) ~ 1 - %2, 7,(2x) > x - § x°,

J2(2X)f.:_-' = x2, 'J3(2x) o %x ¥ ( to order 3 )

0 A
~nXx _ 1 ___ sinh x
N C—n cos(ny) e ~ %2 coshx - cosy
n=0 -
( x>0, €o= % =1 (n>1 ) )
COS X COS § = —%{cos(x + y) + cos(x - y)}

sin x sin y

fl

£ {(cos(x _ v) —-cos(x + y)j |
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Fig.2.1

The boundary in
the normalized
coordinate sys-

tem.

Fig.2.4
The bouﬁdary cu—
Tve Yw and the
contour Y;W in

a mapped domain

( the w-plane ).
The Yw is a un-—-

it circle.
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]

Fig.3.3

Configuration of
the E plane taper
at the mouth of a

waveguide.

Fig.4.1

The scatterer in
a rectangular

waveguide.
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Fig.5.1 K

A perfectly cond- : ’ (b

ucting strip in : t)

e

- the normalized

coordinate system. .

Fig.5.2

The‘T—network.

125



Fig.5.3

The cylindrical
capacitive post
in the normalized

system.

Fig.5.4

The cylindrical
inductive post
in the normalized

system.
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Fig.5.5

" The capacitive
strip in the
normalized sys-—

tem.

Fig.5.6

The inductive
strip in the
normalized

system.

d

reecas e
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Fig.5.T

The inductive
square post in
the normalized

system.

Fig.5.8

The capacitive
square post in
the normalized

system.
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o

SYMBOLS

a spatial imaginary unit.
a temporal imaginary unit.
a complex conjugate with respect to i.

the ébmplex conjugate of preceding terms with

respect to i.

relevant coordinates,

normalized coordinates.

X + iy.

the propagation constant in the Z2 direction.
the wave number in free space.

the wave number in the X-Y plane,l ki— e?
or ﬁjki—(n?[/D)z .

a complex variable.

a field or a point in the w-plane.

an operator.

a regular function in the inner region.
a regular function in the outer region.
see (2.27). :

the coefficients ofil[* .

a regular function in the outer region.

a complex constant, a shifting factor.
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C .

u L3
o

ul .

X',y

vy

o green
Gl green

green

the boundary curve in the z and % —planes.
a closed curve in the z and E —-planes.

a point in the %f-plane.

see (2.37).

the corresponding boundary curve ( unit circle )

in the w—plane{

the corresponding contour in the w-plane.
the Euler's constant (= 0.5772156;.. )5

a radiatién field,

an image field.

the variables of the Green's function

( ?z.x' + iy -z ).

the mode amplitudes in a waveguide in Section

or the parameters in Chapters IV, V.
the coefficients of radiation modes.
the reflection coefficient.

the transmission coefficient.

the field in the waveguide region.
the field in the taper region. v
Afizll?t/b)z _ 4 in Section 3.2,

4{(n7[7a)2 -4 in Chaptef Iv.

the Green's function in free space.-

the Green's function for the image field.

+ G .
o green 1 green
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@ c:? Hoz OQ\Z

o]

G

=

G

:E‘UP):

s

Pn’Qn’sn’UQ, n’Vﬂn’In’Kn

g(¢):

g™ ¢

see (2.40).
see Paée T12.
0y +’6§ , See (4.39).

4ﬂ:(}o green’

47ZGL green’

4(’\I:Ggreen'

the boundary value for the E field.
the coefficients of If(ék).

the boundary value for the ﬁ field.

the coefficients of g’(({/),

e (), (@)™, 2™ see (4.47)-(4.50).

]nz’ lﬂ; : the complex normals, see (2.10) or (4.18)f

SD,e:

e n °
an .
aﬁm) H

z = ?ele in Section 2.3,
§= 9ele in Chapter IV.

= 3 =1 ( n>
€= %, €,=1(n>1).
the coefficients of g o

see (4.8).

~ the parameters defined in (a-1),
(A"Z) 1 (A“5) v(A'é) 1 (A"7) .

L ]
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