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Abstract

We study the semiclassical method for the system in which
fermions and bosons are strongly coupled together. This method
is the 1/N expansion around "the classical solution" which takes
account of the reaction from the Dirac sea and excited fermions,
where N is the number of the equivalent fermion components.

On the other hand, in the ordinary semiclassical approximation
the Planck constant is used as an expansion parameter. This is
also reviewed for self-containedness and the explanation of the
stationary phase approximation in the path integral formalism.

Taking the Gross-Neveu model as a theoretical laboratory,
the renormalization program for the excited state is studied in
the framework of the semiélassical 1/N expansion. For the system
in which the subtraction scheme can not be applied, the multi-

plicative renormalization is performed.
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§1. Introduction

"In recent years, a piece of experimental data of the
lepton-hadron deep inelastic scattering agrees with predictions
of the Weinberg-Salam model even with those corrected by the
QCD highér order calculation. This supports that the fundamental
tneory of the particle physics may be the gauge theory. While
the perturbative approach to the gauge theory works well in the
short distance region of particle reactions, non—perturbative
methods seem to be necessary in treating the long distance °
behavior of the particle reactions. Up to this time non-
perturbative approaches have not been enough developed to give
reliable proof for the quark confinement and to calculate
particle spectra. It is, therefore, an important problem to
develope and study the details of non-perturbative methods.

In this article we discuss two semiclassical approximations.
One of them is the ordinary WKB.methodl) in which A is used as
an expansion parameter. This is refered to as WKB(R) in this
paper. The other is the semiclassical method for the syétem
in which fermions and bosons are strongly coupled together?’3)
It is the stationary phase approximation (S.P.A.) around "the
classical solution” which takes account of the reaction from
the Dirac sea and the excited fermions. This is the 1/N
expansion method and is refered to as SPA(1l/N), where N is
the number of the equivalent fermion components.

We will summarize the procedure and the characteristic

feature of each method.

(1) The ordinary WKB method (WKB(h)) for the system with
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‘many degrees of freedom was formulated by Dashen, Hasslacher and
Neveu'). 1In this method, one finds the classical solution of the
equation of motion as the first step of the approximation.

The classical solution, in general, involves some arbitrary
constants, sa(a=l,-o--, f), due to the continuous symmetry of

the system. Let us denote this classical solution by ¢cl(t, X; s).
- In the second step, one changes the dynamical variables from

the original one, ¢, to the zero mode coordinates S, and éhe

quantum fluctuation around the classical solution, n. These

S, and n are defined by

(P(t,f\ = ¢oe (t,X ;4 + 7 t,% a0y, 1

where n satisfies

D= [ D - . L
S"Lx{aa?éd(t,x',xu%?(’(,x,m-@)(a-l,-,’s‘).
(1.2)

The equation (1.2), since 8¢cl/asa is the eigenfunction

associated with the zero mode S v implies that the quantum
_fluctuation is orthogonal to the zero modes. In the third
step, one treats the zero modes as quantized coordinates
disregarding the quantum fluctuation. This step is the

zeroth order approximation of WKB (1) and leads us to the
Bohr—Sommerféld quantization condition. In the fourth step,
the guantization of n is taken account of under the action

(or the Hamiltonian) approximated up to the second order with
respect to n. This is the first order approximation (the full

WKB approximation) .



The characteristic feature of WKB(h) is that the excited
states of the system are those which correspond to the periodic
classical solutions. It is the important difference between
WKBéh) and the perturbation theory. In terms of the graph
theory, the zeroth order of WKB(#1) is the tree approximation
for the proper graphs. The first order is the one-loop
approximation. From these graphical interpretation, it is
obvious that the renormalizable theory in the perturbatio; is
also renormalizable in WKB(h).

In WKB(H) for the system consisting of bosons and fermions;
the fermions are neglected in the zeroth order approximation
and treated as the quantum fluctuations in the first order.
If the fermions are strongly coupled with the bosons, WKB (H)
seems to be a wrong approximation. In many practical models?'s)
there exists no interesting classical solﬁtion if the fermions
are treated as the perturbation to the bosons. We will,
therefore, consider the semiclassical approach in which the

reaction of the fermions are taken into account in the zeroth

order approximation.

(2) The semiclassical method for the boson-fermion system
(SPA(1/N)) is the 1/N expansion method when the system has an
O(N) symmetry. The basic idea of SPA(1/N) was first presented

2) and the full semiclassical

by Dashen, Hasslacher and Neveu (DHN)
program (WKB) was formulated by Kikkawa and the author§) In the
path integral formalism, the fermion coordinates (anti-commuting

coordinates) are first integrated out to obtain an effective

action containing only boson coordinates (commuting coordinates).



AThis means that the fermions are quantized in the background
fields of the bosons. In evaluating the path integral for the
"effective action of the bosons, S.P.A. is adopted. As the
second step of SPA(1/N), one finds the stationary point of the
effective action. The solution which provides the stationary
point is called "the classical solution" (CS). This CS is the
solution of coupled équations for bosons and fermions and’takes
account of the reaction from the Dirac sea and the excitea
fermions. In the zeroth order approximation of SPA(1l/N) one
integrates out (quantizes) the zero modes of CS to obtain the
Bohr-Sommerfeld quantization condition. This step was givenr
by DHN?) In oxrder to complete the full semiclassical method
(WKB) , one has to evaluate the quantum fluctuations around CS
up to the quadratic term in the effective action. There
exists, however, a difficulty that the action for the‘quantum
fluctuations always becomes non-local due to the fermion
propagation which appears as a result of integrating the
fermion field beforehand. In order to aQoid the difficulty,
we introduced new auxiliary fields in reference 3. With the
help of the auxiliary field, the quantum correction term of the
effective action can be made local and quadratic with respect
to the boson fields and the auxiliary fields. Then the
integration (quantization) of the gquantum fluctuations can
be done and provides the first order approximation of SPA(1l/N).
In SPA(1/N) excited states with the definite fermion number are

obtained. 1In terms of the graph theory, the zeroth order of

SPA(1/N) is the tree approximation of the boson fields together



with the one-loop approximation of the fermion fielas for the
proper graphs. The first order is the one-loop approximation
of the boson fields while it includes the infinite fermion
loops. The renormalization in the zeroth order of SPA(1/N)
is, therefore, trivial. On the other hand, even if the system
is renormalizable in the éerturbation method, the renormaliza-
bility of the first order is not obvious in SPA(1/N). It is
because the proper vertex in the first order of SPA(l/N)«is the
sum of the proper graphs with different number of loops.

_The renormalization of SPA(1l/N) is one of the main
pufposes in this article. In order to célculate the renormali-
zation constants, one needs propagators and proper vertex
functions. If one wishes to perform the consistent renormaliza-
tion program in a non-perturbative method, one has to define
proper vertices within the method. We will, therefore, calculate
the generating functional for proper vertices, I', (proper T)
in the semiclassical method (SPA(1/N)). Once the renormalization
constants are determined by using proper T in the vacuum sector,
the energy‘levels of excited states can be shown to be finite'
bf the use of these renormalization constants. |

In Sec. II we will review the semiclassical method for the
boson system (WKB (1)) which was formulated by DHN%) In Sec. III
the semiclassical method for the boson-fermion system (SPA(1/N))

2)

will be studied. This is the summary of the works by DHN and

Kikkawa and the author>) In Sec. IV the renormalization program

in SPA(1/N) will be studied in the Gross-Neveu model%3)

3)

Although some were reported in the previous paper;’ main part



of ﬁhis sectionvis new. In Sec. V we will discuss the questions
about the renormalization in the 1/N expansion methods. As

the special case we will study the system including (mw)z/N
term as well as o (V) term. The renormalization of this system
in the zeroth order approximation of the 1/N expansion has to
be performed by the multiplicative renormalization program,
rsince the usual subtraction scheme can not be applied. This is

2

also the original contribution of this paper.



§II. Semiclassical method for the boson system

A. Preliminary remarks

| In this section we treat a system with r commuting coordi-
hates q; in the path integral (PI) formalisms). The generali-
zation to field theory is straightforward. In ordér to compute

energy spectra, it is useful to calculate the propagator G (E)

defined by

G(ra)—ﬁ__H ___En

where H is the Hamiltonian operator of the system and'En is the

L EE

) (2.A.1)

energy of the n-th eigen state. From (2.A.1l) one can confirm
that the energy spectra are obtained by inspecting poles in the

propagator G(E). In the PI formalism, G(E) is represented by

GT(E)='-l‘gooolT'Tr[ {%{(E‘H)-Tﬂ . (2.A.2)

SolT £ (T) W( ET) (2.A.3)

where the partltlon function Z(T) is given by

Zm= § [M&Ld%ﬁ)l8(?:m-—2(o>)
x?/x,{o[%goolt("P%—H\} | (2.2.4)

. X dPee) r
./QJUh‘L g i\ijbd g )“ (QTL‘K.f] 8(%0(\—%(0\)

n

K—o00
E—»0)
LK .
x ‘Q”UP[%%“ & {Pery @(m—H(M}] | (2.A.5)



In (2.A.5) the time interval T is devided into K bits (€3T/K),
q(t=ke)z=g(k), p(t=(k—%)€)5p(k) and q(k)={g(k)-g(k-1)}/e. We will
use the compact functional notation (2.A.4) for PI and perform
formal integrations as if the integration variables are continuous
in time. One has to, however, reconfirm the results by using the
discrete PI defined on a finite mesh (2.A.5). In order that the
procedure of functional calculations has precise agreemeqﬁ with
that of the discrete PI, the Hamiltonian in (2.A.5) has éo be a

7)

midpoint Hamiltonian ‘', i.e.,

H(ky = H (“P(_lz) ; 3 (k) , (2.A.6)

where q(k)={q(k)+g(k-1)}/2. There occurs, however, no factor
ordering problem within the semiclassical approximation because
the reordering effectss? are of order-ﬁ%.

' The wave function Wn(q) of the n-th -energy eigen state can be
obtained by inspecting the residue of pole in the propagator

G (3.8 E)= {8l == 1% L‘\I’ a5 e
’ E-A -

(2.A.7)

—QOJT @ex ey eﬁET

This propagator is useful in both the Mlnkowski semiclassical
method (WKB¢h)) and the Euclidean semiclassical methodg) such as

the one appears in the instanton business.

B. Transition amplitude
In this subsection we will apply the stationary phase approxi-

mation (S.P.A.) to the Feynman transition amplitude. This approach

10)

was first given by Keller, Gutzwiller and Maslov and developed

1)

by DHN This section is the review of these works. The



transition amplitude is given by

F(se T =lelexpl{-+ATHISY
T
=S;|jo Id"?(t\ 43 (t\] g(@(ﬂ-%\ 6"(‘(;(03—%') (2.B.1)

(amhY
(7 -
«enp| £ dt (v %-Her, )]
In the classical limit (#+0) S.P.A. to PI(2.B.1) will work well.
One first looks for the stationary point of the exponent J(action,

fdt(pé—H)) in PI(2.B.l), and findsit to be the classical solution

(pcl’ qcl) of the Hamilton equations;

; oH - |
@ = = - -3-—H- 1=1 - F) ‘ (2.B.2) -
1 E-PL " JP.L Bg’b ) ( > ’ )

which satisfies

%i(T\= 2£

a— / N
. %i,(O)- gi , (1=1,+,¥) : (2.B.3)
because of the delta functions in (2.B.l). This is of order*ﬁo.
Second, the quantum correction is calculated up to the second

order in (5,&) by substituting

B, ()= 8&,; (t)+ &;(“ , R (t)=“ﬁq,i(t)+ﬁ(ﬂ , (1=1,~,F) (2.B.4)

in the action. The Gauss integral is dominated by the region

|§l,|&|5ﬁ1/2 so P and g are of order ﬁl/z. This shows that S.P.A.

to PI (2.B.l) is the -A expansion.
By the substitution of (2.B.4) the transition amplitude F

turns out to.be
— . 1 ~ - -
AL W(%SJ)XEO[%‘%V E o) 8Eer 87 Fo)

' (2.B.5)

x exp(3 Sg ),



where

Sa = §at [ PE-1{B Mg B+ 2B (35 H), 8

(2.B.6)
+ g(BngH)ﬁ ]f]
and
T .
SJ = Sodt[‘Pd%J—l_l(ﬂod,z-&X]. S (2.B.7)
The matrix notation is used in the above, e.g., ’
+ (B‘PB?H)JJ?‘) = ﬁaH (‘1"4,‘&&)1’5;' (1.3=1,-,r) (2.B.8)
af ok, ’ ST

There is no linear term with respect to (P, q) in the exponent
owing fo the stationary condition (2.B.2). By the condition for
the classical solution, (2.B.3), the restriction on g in (2.B.1)
is reduced to the condition on a, i.e., &(T)=§(O)=Oiin,(2;B.5).
The integrétianoveriiisperformed by completing the square. In
order to rewrite‘the resulting PI in the configuration space,
one should note the relations between Hamiltonian and Lagrangian

formalisms;

L(%,?;)'—‘JP"&-H -, %) | (2.B.9)
and

Aii= (05.95L) g = (05,20 )3 = Ays

?

Bii = (25,2107 - (B 3 H)g (34,25, H)y

= (35, 95, L.)a = G

(2.B.10)

O
Y
ad .
]

’ -1
= =35, 04, F) g + (3,3 My (34,24, H)y (34,25 H)a
3 ) b

(1,3,k, 8= 1f'>V).
_lo_



If one performs the § integration, one obtains the following

representation of F; Y
2

- = ‘Q/X/P( S&)S.‘L ol”é(t)]H [clet/-\(t)/A]

(2.B.11)
8 (Fem) 8 (T (on) %P Q_)
where the quantum action %2 is given by
T I . . - ) d
SQ=&°‘J‘(3°&A% +2\32+5"§c%)  (2.B.12)
~o0 _
and
T . -
S,Jl:godtL(g.i,- &a) . ' (2.B.13)
The deferminant factor in (2.B.11) '
T I/
1l [detA(ﬂ/A] gmr [det{A(%um g (k) (unm)"l (2.B.14)
(- o) )

should be kept in the confiéuration PI when the coefficient of
the quadratic term with respect to the velocity in the Lagrangian
is nontrivial. It should be noted that the action of the quantum
correcﬁion (2.B.12) can be obtained by expanding the Lagrangian
around the classical solﬁtion, too.

To make the integral over &, we introduce the mapping

~ t . - ~
Yy = ?}(ﬂ-g dt’ R Rt g @) (2.B.15)
(o]

and its inverse

%(t) ) - R(t)g dt' R (t') R(tf)‘é(t' (2.B.16)

The rxr matrix R has to satlsfy the Euler equation of the gquantum

action (2.B.12),

- 11 -



AR +(A+8-E)R+(B-00R=0,
and

RﬂT RTA-AR R' =B-B' (2.B.18)

?

where the superscript T represents the transposition. - The end

point conditions on vy,

lé(o):o ; : : (2.B.19)

R(T)S:dt R $ctry=o ) (2.B.20)
are derived from both the equation (2.B.1l6) and the end point |
conditions on & in (2.B.1ll1). One can avoid the restriction on
y (2.B.20), which is non-local in time, by introducing Lagrange
multipliers oy (i=1, --, r)l).. The Jacobian of the transformation
11)

(2.B.15), which is a Volterra integral equation , 1s given by

det (%%:)

I

W{—_{-SZM t{ Rty Rﬁmﬂ (2.B.21)

I/
_ [c\et R(T)l 2
det R(o)
The factor (1/2) is due to the midpoint prescription previously

mentioned. Then F can be written in terms of y and a;

det RM 2 #S& 7 - A
b= Llet R(o)l € &Eo {0("3 (ﬂlgo{det A&)/AX Y€ (o))

T : : (2.B.22)
dat I}_S 1 ' S
*gmy AP T 0{2 YeorAmydey + & RaR %<t>§ dt
If one notes that y(T) has no restriction and shoud be integrated

out, the integration in (2.B.22) can be performed as follows:

- 12 -



One first changes the variables from y(k) (k=1, --, K) to
z(k)=§(k) (k=1, --, k), then the integrations over z and a are

performed by completing the square. The result is

_ det R(T) Va J’-S T -1 -1T T -
ko= [JZt—R(oxl pRd Idet{R(ﬂSgt (RerAeoR (n)R(T)}] (2m ik )"
. (2.B.23)
it -l
= W(ﬁ SGQ‘ T -1 -1 1T 2
T det (R Reoy)- det [g:lt Reo» Ay R (t»}] :,
: T )
The determinant factor in (2.B.22), 1 [det A(t)/A]l/z, cancels
t=0

out with that induced by the z-integration. This can be checked
by the precise calculation using tﬁe discrete PI.

Finaly, let us prove the equality
V54 (3,8)
- 98: 9%

where Scl is considered as the function of g and q' through 9.1

-|' T -t - -1 _ . _
.—.--[R1 (ﬂ{godt Rty ActsR (-t)} R '(O)L,;ﬁ ’(1,1=1,--,Y3, (2.B.24)

as shown in the condition (2.B.3). Let us define the rxr matrix

Q by

Qq3) = }-—céi’,—i—ﬁ) c G@,i=1,r), (2.B.25)
3

The m-th row of Q, Q(m)

, is the solution of the Euler equation
for the quantum fluctuation ¢, (2.B.17), which can be proved by
differentiating the Euler equation for the classical solution 9.3
by g'. From the fact that qcl(T)=q and qcl(0)=q‘ it is obvious

that

Q#=T)=0 , Q(t=0)=1 (identity matrix) . (2.B.26)

(2)

The 2-th row of R, R , is also the solution of (2.B.17). For

two solutions of the Euler equation (2.B.17), (5(1), §(l)) and

- 13 -



3, 33,

, there is a constant of motion,

g ) ~

g PP~

~(2)

% 7 (2.B.27)

where 5 is derived from the quantum action (2.B.12) as

1%=A§+B§, , (2.B.28)

Then the rxr matrix defined by

My = RPTAQ™+BE™E-{RYA+RY g1 Q™
e - . (2.B.29)
(RPAQ-RTAQ+ R (B-BNHQA),,, , ('Q,'m:‘j_,‘.)y))B

is a constant of motion. By the use of (2.B.18) M turns out to

be
M R (ty At R(ﬂ (R(‘t)Q(‘t)) . ' (2.B.30)

One can integrate (2.B.30) over time to obtain

~R (o = [S;{t R'er Aty Rﬂml ™M

(2.B.31)

- Wolt R'(ty Ay R"Tm] R AMmaQ () )

where the equations (2.B.26) have been used. If one notes that

354 _ 3L (g4 g, | (is1,euh)
8. 2%, ’

azscl/aqaq' can be written by

31509 B%‘dm(-n .a L . ‘az :L

£2d ) - (340, § o) + L@ D

3608 38 Vim0 A0 Ea e 2% 3%, 3(3‘.2(\‘) %Jm\
= (A(T) Q.(T\\ii' | (1,3,m =1,..)y); (2.B.32)

- 14 -



Thus the equality (2.B.24) is proved by using (2.B.31) and (2.B.32).

As the result of (2.B.24), F turns out to be

F= (E}E‘KY/IW(% SJ)[det@fg&,ﬂ - . (2.8.33)

If there are critical points (turning points) along the classical

trajectory, additional phases are needed in (2.B.33)%0)’12) They

will not be important in what follows and will be disregﬁrded from
now on.. | |

So far, we have evaluated PI (2.B.1l) around one classical
orbit satisfying the end point condition (2.B.3). In a system
with many degrees of freedom there exists, in general, a discrete
set of classical orbits satisfying the same end point condition.
Since the quantum fluctuation around the classical orbit is of

1/2

order A and the separation distance between classical orbits

is of order‘ﬁo,‘the transition amplitude F should be the
summation over the contributions around all classical orbits, i.e.,
. . ¥ v.
=2 i\ ; Y Sa ?
. exp (£ Sy)|det| 7555
dastrcal 2THh R AELVE6
Q‘l -
(84M= &, Fu(r=3)

(2.B.34)

C. Zero mode
In the following we will evaluate the partition function Z(T)

which is written by the transition amplitude F as

AT =Sdkg F(@,%-;T) . (2.C.1)

- 15 -



Substituting the approximated form for F in WKB({) (2.B.34) into
(2.C.1l), one obtains that

. a2 4 ‘
Z(.T)‘:go\'”%tzf (E%K)Y/aldet %}Lﬁ] 2%{9[% SJ(%:Z;S. (2.C.2)

The sum 2 in (2.C.2) implies the sum over a discrete set of

cl
classical orbits satisfying the end point condition qcl(T)=qcl(O)=q.
The g-intergration may be performed by S.P.A.. The stationary

points are given by

O:BSJ (%, %) N 354(3/3') ='PJ,.;(T)"VP~H(°) (1=1,+-,r) (2.c.3)
‘a%f\. %.r=g 38.1' g/_:z st ) .

This stationary condition with the help of trace condition,
qcl(T)=qcl(O)=q,Aselects classical periodic orbits with period
T from the sum over a discrete set of classical orbits in (2.C.2).
If the classical periodic solution is not invariant under any
symmetry transformation of the system, the transformed orbit is
an another periodic orbit with a different end point. It is
convenient for the practical purpose to exchange the order of the
summation and the g-integration in (2.C.2). In-that case the sum
should be taken over the discrete set of all the periodic orbits
which can not be connected by the symmetry transformation, while
the orbité connected with each other by this transformation should
be regaided as the same orbit. For later convenience we will denote
the parameters of the symmetry transformation by Sy (a=1, -+, f)
and the transformed claséical periodic solution by &cl (t;s).

It is, in general, impossible to find all the periodic orbits,

so some approximations are needed. We will therfore approximate

- 16 -



the sum in (2.C.2) by the sum over a family of periodic orbits
including multiple traverses of the basic orbits.

Let us expand the classical_aétion Scl (g,q') around a
stationary point g* up to the second order in g-g* and q'-g*.

For this purpose we will define rxr matrices G and H by

Grsﬂ-as&(/%'z) 7 ‘-—‘-CT
(D AEG e gagagr Y

3Sa (8,81 4__,‘ |

3(3,‘%\')3(@;‘@:3 &= Z'=@*-‘-\ji’ ,(i,‘i=1,",Y). (2.C.5)

By the use of G and H the classical action can be approximated as

(2.C.4)

liiaz

Su(2,8)= Sp8% e+ 5 (8r272%8") G (& + 272 8%)

| | (2.C.6)
+ o (3-8 (3-89

where linear terms and cross terms with respect to (g+g') and

(q—q') do not appear because of the stationary condition (2.C.3)

and the time reversal invariance of the system, Scl(q,q')=scl(q‘,q).

In this approximation, azscl/aqaq' can be written by

'S ey
TRYRE (G,; - }"ii)' (2.C.7)

When the end points g and ' are near the stationary point

g*, the classical solution 9eq (g,q9') can be expanded as

Bui (38,8 = -g&ﬁ(t) + %t- (t)) (2.C.8)

where &cl(t)=qcl(q=q*, q'=g*). In (2.C.8) the quantum correction
'§ is the solution of the Euler equations for the quantum action

SQ (2.B.12) satisfying the end point condition

- 17 -



2. 4-0=3/-%" , "z;(t=‘n= 2.-%7 ECEIRUNS Y (2.C.9)

Using the quantum action S, and the quantum correction ﬁ, in the

Q
same approximation as (2.C.6) the classical action can be written by

5&&,%’3" Sd(%“,%")af Sa[gl. (2.€.10)

This equation implies that one can obtain the'information;about
G and H from the quantum action SQ.
In the quantum action around the periodic orbit the coef-
ficients, A, B and C, are periodic functions of time. The Euler
equations (2.B.l17), which are linear in g, are second ofder dif-
ferencial equations with the periodic coefficients. For these

equations, one can find the 2r-independent solutions, E(a)(t),

with the property that

)

£% ctem) = exp (-iV,) BTty (B=1,-,aF isl,b),  2.c.11)
Since the classical periodic solution has to be stable, all the
va‘s should be real and are calied stability angles. The
stability angles appear in plus-minus pairs, v and -v, because
the Euler equations are real. The classical periodic orbit Ecl
has the arbifrary parameters S, due to the symmetry of the
system and Bicl/asa is a periodic solution of the Euler equation
for quantum correction. This means that each freedom of the
symmetry transformation makes a pair of v's zero. From now on
wé will assume that all zero stability angles correspond to the
symmetry and not accidental, i.e., f-independent pairs are zero.
Generally, a time-independent quantity mw(g(t), §g(t)) can be

expanded up to the first order in g as
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N
A
where the coefficients of g and é are periodic. If a solution

(o)

— _ T3 = N TC - = A .
=TTy 30+ 25 (5, %0) & +%§i(m,z&)z¢ L(=1orY

g

T has a non-periodic term. Any solution with non zero stability

with va#o contributes to 7, the time-independent quantity

angle, therefore, can not contribute tola conserved quantity, 7,
up to the first order in quantum correction. "

Let us assume that real symmetric rxr matrix G has f'(€r) zero
eigenvalues. Making a local change of coordinates,G can be
transformed into a block diagonal form;

Gfu' =G, =0 (i=1,-,§" . 3=1,.,7) (2.C.12)

b ]
In this coordinate system, the f'canonical momenta P; (i=1, .., £')

are conserved at least locally, i.e.,

p,ﬁ?’;BSJ 354_,L G . ( ’ ¥\ _ . ,
il P =t =2, [0 (%;+8;-28)=0, (1=1,-,%),
8, 28] a=
, (2.C.13)
Conversely the invariance of the system under the continuous
transformation leads that the canonical momentum for the symmetry
coordinate is conserved and G has zero eigenvalue. We will
assume that all zero eigenvalues of G correspond to the symmetry
of the system. This is equivalent to the previous assumption
that all zero stability angles are due to the symmetry of the
system. We can, therefore, identify the zero eigenvalues of G
with pairs of zero stability angles and f'=f. 1In the coordinate

system where G is block diagonalized as (2.C.12), the coordinates

q; and qi for i=1, .., f represent thé symmetry coordinates, and
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é(t)'s satisfying éi (T)=§i (0)=0 for i=f+l, -+, r span the stability

angles v=0 manifold of the solutions of the Euler equations for

quantum correction. Using H the conserved momenta P; (i=1, --, £)

can be written by

(2.C:14)

,
Pom 3 (B0 B) SIS H (658 | i, ),

2 agl

K

, ¥ represent non-zero -

The coordinates q; and qi for i=f+1,
stability angle modes and these can not contribute to any

conserved quantity up to the first order in the quantum fluctuation.
Then, '

Hii =H;:=0 , (i=h, v, $53=%+1, 1), (2.C.15)

From the above arguments one can find that the zero stability

angle modes are completely decoupled from the non-zero stability

angle modes, i.e.,

5 r-3

£ -5
~~—~ A SO ‘
G = (-0—’%-)'} d H=.(H 0\ | (2.C.16)
© Cf }Y—§ ? 0 F? }y-f )
where G has no zero'eigenvalues and
—l-z _ —bl . . .
'_J.H'j = Sa , . (1,;=1,..’§) (2.C.17)
33,_'3‘3-3 %:-2/23* .

The partition function Z(T), then, has the following form;

Z(T)—Z %P[ SJ(z z*‘>]A WAV

(2.C.18)
(@,,e(owicm): £¥)
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where

. Sﬁzg 2 1, :
= (L g | det [ 25 I ] ~
Ao "-(mﬁ) g g[ ) (ama') 3=g=g*l , e
PN A 7
= 1 r-5) ~ A : X
No=(gz) 1% [det(2(5-A)) tp| (140669
(2.C.20)
and means the sum over a discrete set of periodic orbits.

Qojt~

J .
To obtain further insight into the zero mode problem*we will

study the physical meaning of A, and A We introduce the change

0
of wvariables by

Bihy= &y, (tsact) + Goltsamy) (A=, m) (2.C.21)

—

r
IR LT RLCSWA RN i
T4, B (sl 5)

In (2.C.21) &cl (t;s) and g (t;s) are transformed from &cl(t)

and g(t) by the symmetry transformation with the symmetry
parameters S, respectively. The symmetry coordinate sa(t)
corresponds to a pair of zero . stability angles. The coordinate
g(t) orthogonal to sa(t) correspbnds to the non-zero stability
angle. The factor Ay (2.C.19) comes from zero stability angle
modes (symmetry coordinates). We separate the symmetry coor-
dinate into two parts. One of them is a time~dependent mode
with the fixed end point. The integration over this mode can be

approximated by S.P.A. and give the determinant factor

L \$/a ‘S' ~
(o P [t (230)] ]

in Ay (2.C.19). The other is a constant mode. The zero eigenvalue

of G is due to this constant mode. The integration over this
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constant zero mode is the trace integral over a classical orbit,
dfq in (2.C.19), and can be performed exactly.
The integration over the quantum fluctuation § orthogonal

to the zero stability angle modes gives us the factor A, (2.C.20).

Q
The straightforward. evaluations of G and H are difficult but the

factor A, may be obtained by the following way. The product of

Q
can be written in PI form by

Ab and AQ ,

Ay FAYY g [?{lfg;r d %(1)13(8(1) 2(0)\%19( Sa) (2.C.22)

where SQ,'which has:béen defined in (2.B.6), is the quantum action
around the periodic orbit acl" This PI is performed by a Gaussiaﬁ
integral and is proportional to the inverse square root of the
determinant of the operator in SQ. The inverse of the determinant
is singular due to the zero stability angle mode. However, we
already know how to extract these singular pieces. What we want

to know is a contribution from the non-zero stability angle modes

which is non-singular and this is the factor AQ.

D. Quantum corrections (Stability angle method)
In this subsection we will evaluate the factor AQ which is
a contribution from the non-zero stability angle modes in (2.C.22).

The gquantum action S, (2.B.6) in (2.C.22) is written in terms

Q
of the periodic functions A, B and C defined in (2.B.10) as

e

T . - . - .
Sa=g:{t1'5(t)’im -2 {(P-ZRVA (P-BF)-7C % )s] (2.D.1)

We will diagonalize the quantum action SQ under the periodic

boundary condition in (2.C.22). This is equivalent to solving
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the eigenvalue problem for S, (2.D.1l). For convénience sake we

Q
define a 2rx2r real matrix D and a 2r vector X by
_[(A'B A
D(‘t)" (BTAﬂB_C—}_BTA-\): Da+my (2.D.2)
)
X = (%m} | (2.D.3)
Pyl . o
The eigenvalue equation for SQ is given by
[—‘j—— + D[ X - E v
e e 1B Xty | Xe@+T)= X, (4) (2.D.4)

Note that

G:.D="DTO’2)

where o, is a Pauli matrix. This property of the real matrix D
and the periodicity of Xk imply that the eigenvalue E. is real

and
(at X Yo (BTE L a
4t X G,Xk=ggat.1(ﬂ G- TrP)=0  for E4E,

*
If there is an eigenfunction Xk for the eigenvalue Ey (#0) , Xk
*
is the eigenfunction for the eigenvalue ~Ep. Let {Xk’ Xk} be
-a complete set of eigenfunctions. The orthogonality and completeness

are given, respectively, as

T + T
° )

TyT T 4 (2.D.5)
So Ky O Xy dt = Soxhdn X:o{’( =0
and

Zh‘ ':‘-I" {(Xh(* ))(X: () Gz) = (X:(f)) (X:(t’) 6'2)] =1-8§¢t-t/y  (2.p.6)
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The quantum fluctuation X can be expanded as

’ < _J
X(*)= 2‘:—1-'_\?[0" Xh(t)+ (ﬁ. X’:(t)] (2.D.7)

and the gquantum action S, (2.D.1l) is diagonalized with respect

Q
%

to ay and ay - Then PI (2.C.22) is proportional to_ the inverse

square root of the product of all eigenvalues Ek'

In order to obtain further information for the eigenvalue

Ey s We will study the equations of motion for S, (2.D.1),

Q

H‘ﬁ t D(ﬂ] X(t_) =0 .. (2.D.8)

These equations are equivalent to the Euler equations for S
(2.B.12). As previously stated one can find the 2r-independent

solutions with the property that

&) .
X (t+T)y = xXp (—1))“) X@“(t) . (2.D.9)

These solutions satisfy the orthogonality and completeness;

| et {:)) (p)T
{ X6, X =~ X0 6, X%, - Sup |

(cuT @>¥ (2.D.10)

'3 ®
X 0, X =X @)0, X tty= 0

z[(x o) (X 0.) - (X0 (X0 6] =1

From these solutions one can make the complete set of the

*
eigenfunctions {Xk, Xk} and eigenvalues E, by

X, () = W['L())d-riﬂlt)“t/‘r] Xmﬁ) ’ (2.D.12)

tk:(‘)oe*inrt)/'\‘ ) (71:'0,11,...) | (2.D.13)
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where the sufix k represents the set of indices (o, n). Then
one can calculate the right hand side of (2.C.22) by using
stability angles. The contribution from the non-zero stability

angle modes is proportional to

o= 4 A
Vd#o N=-m k el% 1 N=-00

(M#o0) Lﬁt)}x
=TT i (2 “—vz' |

Wio

(2.D.14)

Using the fact that the stability angles come in plus-minus pairs

the factor A, amounts to be

o
AV [v,,>o ‘AM"(\)“)]
bmat x ep{-1 3, Tl [1 %p(—wo,]

=WX{Z}WP{-1§ 0} enpi- 15 M
n, C »

where n, is zero or positive integer. The constant factor in

-1

n

(2.D.15)

(2.D.15) may be determined by comparing it with the result of
harmonic oscillators and gives no dynamical effect. The physical
meaning of (2.D.15) is as follows: The first factor is the

analog of the zero point energy. The exponent of the second

factor represents the energy of excited state modes with the
occupation number {na}. One can confirm the above interpretation

by reminding . that the stability angle 2 equals the energy |
times the time interval T if the classical solution is time-
independent. The fact that the occupation number takes any positive
integer value or zero is the characteristic feature of bose

systems.
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E. Energy spectrum
Using previous results the partition function Z(T) can be

written in the semiclassical approximation (WKB (h)) by

Zn= 2 ATl ompli S a1z, 7. espliL (e 2,1}
& i (%> 0) 3. E.1)

where the zero mode factor A, is given by

This should be compaifed with the partition function for a harmonic

oscillator system with a angular frequency w,
- . w I . V
ZW(TW%OW{*(WE‘M)T} - (2.E.3)

Thé ba;tition function in WKB (f) (2.E.1l) has a large factor
4 -f/2. This comes from the quantum correction of the symmetry
coordinates which correspond to the symmetry of the system

violated in the classical periodic orbit. For the trivial orbit
which.is time-independent and invariant under the symmetry trans-

formation, the partition function in the semiclassical approxi-

mation becomes
. Y
£, o it (T)=%P(—$LEJT)Z W[“ifg (’/lu%)qu} (2.E. 4)
{nu} (Wy>0) , ’

- where E4 is the classical energy for the trivial orbit and W,
is the angular frequency of the a-th mode. In this case the guantum

correction is simply an assembly of harmonic oscillators and
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£/2 than that for non-trivial orbit.

smaller by a factor of h
Now we can calculate the propagator G(E) defined by
(2.A.1). For simplicity we assume that the symmetry violated

in the classical solution is only the time translational invar-

‘iance. According to (2.E.2), the zero mode factor A, is given by

2 2 \z '
A= () T (E24) e

where 1 is the basic period of the classical orbit ch(t), i.é.,
T multiplied by a certain positive integer % (revolution number)
is the time interval T. 1In order to obtain a pole term in G (E)
one has to sum over the multiple traverses of the basic orbits

in (2.E.1). For the multiple traverse of the basic orbit, the
action Scl(T) and the stability angle va(T) are simply the revo-
lution number £ times those of the basic orbit; Scl(T)=2 Scl(T),
va(T)=2 va(T). .The propagator G(E) can then be obtained by
substituting (2.E.l1) into (2.A.3), and changing the integration

parameter from T to the basic period T,

G ()" 2 5 (ae i r(“;“")

nt 9=l

: . (2.E.6)
x %P[%X{Soq('cw E '(‘-112_'_1 (M+ )Y, ('c)“ '
The exponent in (2.E.6) is proportio;al to a large number a7l
One can,therefore, perform the t-integration by using the
stationary phase method ana make the summation over & to obtain
GEer®Z, & 5T, cmy exp[E AW (B, fnud)]
:._-T—".(_E.)Z ‘Q/XP[;:{ \/\/(E,{’nd’;)l (2.E.7)

R 1 - Pl WEE, ()]
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In (2.E.7) T,(E) is defined by the stationary condition

A QL‘ ES - f‘ |
T J(T3 - 2.E.8

o ZO(E) ( E_ )
and

Y1 ’
WE) = Sp (LEVET @R 2 (M) U(Te), 2z

From the pole in (2.E.7) the quantization condition of energies

is given by

WE Md)=amkm  (M=p1,9,) (2.5.10)

In the zeroth order approximation of WKB (h) (2.E.10) gives us

the Bohr-Sommerfeld quantization condition

W, (E)= 5y (TNt E T8y =2k M, (m=0,1,2,).
: (2.E.11)
This is valid only for a large integer m since the left hand

side of (2.E.1l) is of order h’. Even in the zerbth order of
WKB (fi) one has to quantize the zero stability angle mode. Note
that one can not obtain the pole terms in (2.E.7) if one disregards
the quantum correction of the zero mode (2.E.5). In the first
order approximation (the full WKB (h)) one obtains (2.E.10) where
the third term in (2.E.9) is the small quantum correction to the
classical orbit. The quantization condition (2.E.10) is,
therefore, valid only for small occupation numbers n, .

For a static trivial classical orbit, it is obvious from
(2.E.4) that the excited state energy for the configuration {na}

is given by

W
= () = Ed + dz, (ﬂﬁ 3'{\ 0, - (2.E.12)
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In closing this section we remark the following: 1In the
semiclassical approximation one does not need the Hamiltonian
and can calculate everything by using the Lagrangian. In

practical models this simplifies the calculation.
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§III. Semiclassical method for the boson-fermion system

A. Effective action

In this section we will formulate the semiclassical method
for the system in which fermions and bosons arevstrongly coupled
together. Our method is applicable to any field theoretical or
qﬁantum mechanical model if the Lagrangian is bilinear with respect
to the fermioh field. Even if the four-fermion coupling term is
included, it can be easily decomposed into a bilinear form by

13)14) As remarked at

using an auxiliary field as is well known.
the end of Sec.II, we will use the configuration space PI with
the Lagrangian instead of the phase space PI with the Hamiltonian.

The model Lagrangian considered in the following is

L =0 Man-§ el -Velt +NL o) o

where NLB(¢) is the boson field Lagrahgian including self-
coupling terms and $=w+y°. For the Hermiticity of the Lagrangian
V(¢) is a real arbitrary function of the boson field ¢ and Pu(¢)
should satisfy y°Pu+Y°=Fu. In order to clarify the expansion
parameter, we assume that the Lagrangian of the boson field is
proportinal to N and the fermion field ¢y has N internal components
in addition to the particle-anti-particle degrees of freedom, so

- N _ ‘
that Yy stands for .Z w(k)w(k). If the other quantities are

k=1
independent of N, the expansion parameter of our semiclassical
method (SPA(1/N)) is 1/N. The space-time dimension is assumed

5) 4)

to be (n-1)+1 in general. The bag model and the quark-string
model are considered to be special cases of (3.A.1).

The partition function of the system is given by
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| Z(T) =g [dqfoltpolfb]gg(q’(f, 0+ P:, 1) 8( (2, 0- b1
=1

< T det[r°T(s)] %wqo[ig:d“x L(%,¢, )]

t ) (3.A.2)
where
T[n T w‘n-‘.—‘ Ed
SOJ X = g dt g d X (3.A.3)
0 oo

and the path integration of the fermion field (anti-commuting

15) Sincé we know how

coordinate) is defined as the standard way.
the Planck constant A appears in Z(T) and i is not expansion par- .
ameter, we take A=1 in (3.A.2). It shouldAbe noted that if the
coefficient of w+30w, iy°r®, is field dependent, the determinant
factor I det[y°T°(¢)]1~' is needed in the PI formula (3.A.2) in
order tﬂat the PI formalism agrees with the Hamiltonian formalism.
One can confirm this by comparing the perturbation expansion
formulas derived from these two methods. The abbreviated notation
[dw+dwd¢] implies the functional integration with the measure for
the boson field which is derived from the phase space PI as in
Sec.II. Since we know how to treat this measure we will disregard
it in the following. The periodic condition for the boson field,
¢(§,0)=¢(§,T), and the anti-periodicity for the fermion field,
¢(§}O)=—w(§,T), in (3.A.2) are due to the trace condition in the
15)

partition function.

Before going into the semiclassical approximation we perform

the fermion integration and get
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| ) | y
2 (M= g[o“b] [det{(l"") (i7", %%F"—V)}l

x—\;&(fﬁ(i,o)— <b(i,-n)e/x4o[iN S:Ql“x )

Ed

This procedure implies that the fermion field is quantized in the
background field of the boson. The determinant factor in (3.A.4)
equals the product of all the eigenvalues defined by the eigen-

value equation,
. rl i " - - 0 ' =3
[’Lr 0p 3 ul” —-V-l EA’,“ (X,T)‘EA,mr _%A,fn (X, M) (3.a.5
)

with the anti-periodic conditon

%Am (X,1+T) =~ %A.'h (3¢, 1) | (3.2.6)

The boson f£ield in (3.A.5) is periodic with the period T due to
the delta functions in (3.A.4). As was done in Sec.II.D the
eigenvalues of (3.A.5) can be expressed by the stability angles

¢, which are defined by the pseudo-periodicity
A .

.LPA (7—(‘,_“)': “Q/X/P{"L gA[dﬂ} LPA (i, O)) (3.A.7)

where wA(Q,t) is the solution of the Euler equation for the

fermion field,
. 'A . —
[1r’ ’ay %BPPP—Vl q)A (I)'t):O_ (3.A.8)
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The eigenvalue EA n and the eigenfunction £ of (3.A.5) are
14

CA,n
given by using the stability angle Ta and the solution of (3.A.8)

as

%Aﬁ\ (X,t) = %P(—iEA,'n —UL\)A (iﬂ, (3.A.9)

Epn =- 1@+ 5161} /7 | (m=0,41,+) a0

kd

Note that (2n+l)w in (3.A.10) is due to the anti-periodicity for
the fermion field, while the periodicity for the boson coordinate
gives us 2nw in (2.D.13). Let {wA}3be the complete set of the

solutions of (3.A.8) which satisfies the orthogonality and com-

pleteness as

00

nts . S
g_ol x Y @Zol'el @1 = Oa,A

(3.A.11)

%:, ‘LPA (X, ) LPA (f’,t)ro(t) =8 (f-)’Z’)) (3.A.12)

respectively. The complete set of the eigenfunctions of (3.A.5)
is given by {EA n} defined in (3.A.9). Its orthogonality and
4

completeness are given,respectively, as

.
" . 0 ,
%ool X§, ol @1)=T sax o, (3.5.13)

‘ w—
— -3 - 0 o -
T Z;‘fn %A:‘“ (%, t) %A.'n (x,:t’) r' t) = S(f"t’) B(x-x’) (3.A.14)
The determinant factor in (3.A.4) is then given by
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[det [P (it 23, r ]
TR Eam] [T {1e 28 ]N

n=-co -0 Qn+)[T

=[E we(éA/l)]N

o« ) .?(N,Wa)ﬂ%f)[lNz’g -1Z%A§A] . (3.A.15)
)

{'ﬂA" A>o

where the sum is taken over all sets of integers n, such that
OSnA$2N. "The degree of the degeneracy, p, for the configuration

{nA}.is given by

@N)!
?(N, {n.h) = 1:0 @AN-n O M, . (3.2.16)

Due to the charge conjugation invariance of the Dirac equation
(3.A.8), the stability angles L, appear in plus-minus pairs with
equal magnitude but opposite signs. In the last expression of

(3.A.15) we assumed that Za >0 for A>0. In what follows we

=C—A
will use the positive stability angle only, i.e., we will assume
that ¢, is always positive. Since there are equivalent N fermions
and N anti-fermions in the Lagrangian (3.A.1), the occupation

number for the A-th state, n is restricted by the Pauli principle

A
such that OgnAgZN in (3.A.15). The physical meaning of (3.A.15)

is obvious by the fact that the stability angle Ca equals the

time interval T times the energy of the A-th eigenstate for a given
potential V(¢) in (3.A.8) if ¢ is time-independent. The first

term in the exponent in (3.A.15) represents the Dirac vacuum

energy, while the second corresponds to the energy of the excited
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fermions with the configuration {nA}. Substituting (3.A.15) into

(3.A.4) one obtains that

Zm =2 SN D U1 T 8(bcs.or- bz

* OXp {II-@R— [ .){InA},T]} _ (3.A.17)

The effective action for the configuration'{nA}, Ieff[¢j{nA},T],

is given by

_'[”H- (4] {’YIA},T] =N { SodmeB (9) +§ ‘SA[d)ﬁ_%ﬂA(SA Ef]z{ 18)

In (3.A.17) we omitted an irrelevant constant normalization

factor. It should be noted that (3.A.17) is still exact.

B. Semiclassical approximation for the effective action

Our semiclassical method for the boson-fermion system,
SPA(1/N), will be shown to be a 1/N expansion method and becomes
a good approximation when N is a large number. In evaluating
(3.A.17) one should note that the effective action Ieff.(B.A.lB)
is proportional to a large number N if the occupation number n,
is zero or of order N. In these cases one can apply the station-
ary phase approximation (S.P.A.) to each term of the occupied
fermion configurations {nA} as in Sec.II. In this method, 1/N
obviously plays the role of i in WKB(#). This shows that our
semiclassical method is a 1/N expansion.

As the first step of the approximation the stationary point

of the effective action for a given configuration {nA} is given by
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8 Toy [& (03] /56 =0 | (3.3.1)

The solution of (3.B.1l) is called the classical solution and
denoted as ¢cl’ This classical solution, ¢cl' takes account of
the reaction from the Dirac sea of the quantized fermion under
the boson background field ¢cl as will be seen later. Since N
can be factored out in (3.B.l) the classical solution ¢ci?is of
order N°. 1In the second step the quantum correction around the

classical solution is calculated up to the second order in n by

substituting

- - - l -
bz, ty= by 3,0+ 7= TR, (3.5.2)

into the effective action Ieff{nA}‘ Since the Gauss integral
over the quantum fluctuation n is dominated by the region
(n/vVN) 2<1/N, n/V/N is of order 1/VN (n is of order N °).

The above procedure implies that the occupation number of
the fermions dressed with the boson background field is not
changed within the periodic motion of ¢. We assume that the
fermion number {nA} is a fairly good gquantum number as one usually
expects in the quark model.

In order to obtain the expansion of the stability angle L
we substitute

2)

D =0+ 137V = Bl + D14y, 11 5 Do ).
oM s T ey e 5T g0y e
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Ea 161= Eapy (041 5 B 160,11+ 1y Bain 1,17,
- (3.B.3)

%Am[cﬂ %Am”’,ﬂ _/‘,\T %Ah» [P0, 41 %A n [d’d ’Z]

into (3.A.5). In (3.B.3) the superscript (i) denotes the power
of 1/V/N which equals the power in n. As in the usual perturbation

(1)

method, E(l) and E are calculated by comparing the same order

A,n
terms in both sides of (3.A.5).
In the zeroth order, (3.A.5) provides

(o) ) oy () (o)
: 3.B.4
g' Aﬁi lo 'E/Lm ( X

with the boundary condition

©) 0
%A,"n (T)=- %A,'n (O\ ) _ (3.B.5)

The orthogonality and completness are the same as (3.A.13) and
(3.A.14), respectively, where the zeroth order quantities are
substituted. In order to simplify the calculation we introduce

the new function w(g) defined by

()}

© _ . 0)
Y. (X, 1) = xp (1 E:\m't) %A.‘h (X,1) . (3.B.6)

These functions satisfy

©)

D

k\)m 0 (3.B.7)
a =0

o : |
LPAO)(X,T) = \Q/XJP (—1 §f)) LH:M(;C' . 0) (3.B.8)
)

where the zeroth order stability angle C(ﬁ) is given by

@,(:) :—[(.’z')'l-rl)7t+E:\"f11 T] ) | (3.8.9)
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which is n-independent. The orthogonality and completeness for
w(g) are obtained by substituting the zeroth order quantities
into (3.A.11) and (3.A.12).
The first order term provides us with
" M T —0©) _u) b) '
. — b
TEA)’Y\ - .%A - KOJ X LPA D ('Z)LPA ' (3.B.10)

and

‘-'E> u) (©
q}“) = — = A (h (3.B.11)
A PRECTY D )kPA )

where w(i) is defined by

uy

R ) .
LP;):—: \Q/X,P(’L Eant) %A.'H- (3.B.12)

and P, is the projection operator oﬁto the state w(ﬁ).‘ The
equations (3.B.10) and (3.B.l1ll) imply that Eéig and w(i) are n-
independent.

At this point, one can inspect the stationary condition
(3.B.1) of the effective action Ieff' From (3.A.18) and (3.B.10),
and reminding that n is the small variation around ¢cl’ one obtains
the stationary condition,

dls 1N TR G Na\ e

=B _ + 0-B T (y BDLPA_,_X(__A) oD

3e® 26 F nag R INTGET =0 s

with the Dirac equation (3.B.7) for w(ﬁ). This is the time-
dependent Hartree-Fock equation which has been first given in

2) Note that if one neglects the third term

field theory by DHN.
and chooses {nA} such as g nA=N, (3.B.13) with the Dirac equation
(3.B.7) becomes the Euler equation for the Lagrangian (3.A.1).

From this fact one can see that the third term in (3.B.13)
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corresponds to the reaction from the Dirac sea and the fourth
term to the reaction from the excited fermions. The solutioﬁé
{¢cl,w(£)} of the coupled equations (3.B.7) and (3.B.13) are
called the claSsical_soluﬁions for the given configuration'{nA}.
DHN has imposed the Bohr-Summerfeld condition on the classical
solutions. The full semiclassical approximation (WKB) needs
further approximation and this step was performed by Kikkawa and
the author3). |

The second order term in (3.A.5) provides us with the second

order stability angle,

TtAm == %:)

—~© ) T — .
Scr" o° D (’l)LPA \J"x LP:‘ D(z)('Z)LP,\U. (3.B.14)

Summing up all terms calculated above, one obtains the approximated

effective action,

_.[_9%{7 {'ﬂq} N’SJ {n,3 ‘*‘gor"J(L ('l)*‘za zAH)J 'Z]"%(%Yg(m[¢& ’Z]

n (3.B.15)
where

ISUQ Mat = SOJ“Bc Lg (dg) + ; ( |- %A) %;?[43‘9,'2] (3.B.16)

)
3(

)z 3 LB (’bu’ﬂ

(3.8.17)
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The effective action (3.B.15) is non-local due to the non-locality
of the second order stability angles (3.B.l4) with respect to 1.
Therefore,. we do not know whether the integration over n provides
the simple form, exp[-ig(nd+%)va], which is expected by analogy‘
with the discussion in Sec.II.D. It will be of great advantages

if one is able to make Ieff local. In fact, using a set of
infinite auxiliary fields {XA} the effective action Ieff can be

Fd

rewritten as

I%{'ﬁﬂ’: N Sy [y, inal] + SQ [ds %, (M1] . (3.B.18)

| T (@) - @
So"z‘xolmx[LB (- ( ) L ,’XA)] (3.B.19)
]
( — (0 — (0) ) u; o
a = o D+ D, + % DY,
+ L—P:‘ mm L‘J("’ (3.B.20)

where the.subsidiary conditions for Xp and n,

T = (0} )]
g(}OMI LPA ]—: 'rXA
(XAti Ty= ©%p (‘i (SLO))XA (3, 0), (3.B.21)

1z, M=1a,0),

are imposed. The equivalence of (3.B.18) with (3.B.21) to (3.B.1l5)
can be shown by integrating out the PI formula with the action

(3.B.18) over ¥, i.e.,
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V815 .5 20y eap| i Toyy (3.8.18)]

Le/)q)[t-_[ (3.B.lS)}= . (3.B.22)
% (6] 5G.8.anesp|iTop 3.5.18),_ |
4 R=0

The equivalence can be formally shown if ¥'s are aséumed to be

either commuting or anti-commuting coordinates. We emphasize

that x is assumed to be the commuting coordinate in what follows.
The quantum effective action SQ{QA}_(B.B.19) is now local

and quadratic in the multicomponent commuting field H={n,X1,X2s--}

and one can apply the stability angle method as in Sec.II.D.

If the new stability angles vu({nA}, T) to the Euler equations

of S, for the guantum fluctuation H are obtained, the partition

Q

function turns out to be

M= 2 Z‘C[Ccpﬁ,ﬂ] O(N, 11.1)
UTIRYAIE

v (3.B.23)
<enp L8 Ty (103,70

where T is the basic period of the periodic classical solution
¢cl and T/t=¢ ( positive integer). The effective action I_..
({nA},T) in (3.B.23) is given by

Tagg (041, =N-Sp04ma1,0) - B+ )R (011,70, (3.8.2)

In (3.B.23) we used that Scl({nA},T)=2-Scl({nA},T) and va({nA},T)
=£va({nA},T). The occupation number p, of the a-th mode takes
zero or an arbitrary positive integer. The factor 1 comes from
the trace of the zero stability angle mode and [CCl(T,T)]l/2

represents the quantum correction of the zero stability angle
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coordinate like (2.E.5). This factor may be calculated by the

collective coordinate method and satisfy [Ccl(T,T)]1/2=[Ccl(T)]l/%0f.

C. Energy spectrum

From the expression for Z(T), (3.B.23), one can easily see
that the propagator G(E) can be obtained. through the same way
as in Sec.II.E, where 4 is replaced by 1/N. By inspecting poles

k4

in G(E) the energy spectra are given by

W(E,{n.}, () =2Tm | (M=0,1,2,+) (3.C.1)

where W(E,{nA},{Pa})Tis defined as

W (B, I, LD =N Sy (Inad, TN+ E T, (2)
(3.C.2)

- L (R Y (13, T, )

In (3.C.2), 1t¢(E) is the solution of
i Sy ({nat, ) =- N - (3.C.3)
In the zeroth order approximation, (3.C.1l) provides us with

the Bohr~Sommerfeld condition proposed by DHN,

Sd({’nﬂ,'(o(li))*' _'_\JE_ G () =2T % i (3.C.4)

This condition is valid if m is of order N. Note that nA,is also
of order N or zero. In this case E becomes of order N, too.
We emphasize that even in this approximation the energy includes

the quantum effect of the fermion under the boson background

field.
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The quantization condition of energy in the first order is
the equation (3.C.1). The third term in (3.C.2) gives the quantum
correction to the energy for the configuration ({nA},{paD and
the occupation number pa of the a-th mode should be of order N°.
For a static classical solution ¢cl' the excited state energy for

the configuration ({nA},{pd}) turns out to be

-E (M3, i) =N ds&j?*‘m_z‘;m@) d s

(in,17)
dt

(3.C.5)

which is T-independent.

So far we have not considered the renormalization problem.

It will be discussed in the following sections.
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8§IV. Renormalization in the semiclassical method

A. Semiclassical method for the Gross-Neveu model
Taking the Gross-Neveu model as a theoretical laboratory,
we will study the renormalization program in the semiclassical
method. The Gross-Neveu model is a good example of applying our
method, since the non-trivial classical solution does not appear
if the coupling.between the fermion and the boson is switched off.
The model is given by the Lagrangian in - the 141 dimensional

space-time,

L_.q; q) "-E{LP + (LV Y )  (4.A.1)

(k)¢ék), I’Y oM and the suffix u

where muwu stands for . Z v
=l 13):14) that

means the unrenormalized quantity. It is well known
with the help of a subsidiary boson field 94 for the composite
field auwu the Lagrangian (4.A.1) can be rewritten as the bilinear

form

L%= LT)u (17~ Quo’u)LP“_L_\J (Su:z . | (4.8.2)

Since this Lagrangian is a special case of (3.A.1), one can apply
our SPA (1/N) in Sec.III to this model.

In terms of the renormalized quantities, (4.A.2) becomes

Lq’c =P(i 5‘213(5”‘\)-—%] 2.6 . (4.A.3)

Since we are interested in the renormalization in SPA (1/N), the

' two constants Zq and Z, are needed. In general the wave function

3

renormalization constant 22 and the counter term for four-fermion

vertex (ﬁw)z are necessary. In these cases although the subsidiary
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field o seems to be a superfluoﬁs variable if the four-fermion .term
is needed, ¢ shoﬁld be still incorporated as a representative of
the dynamical variable for Yy becauseAthe propagator of Py has
a pole in the 1/N expansionl3). We will discuss £hese problems
in Sec.V.

‘Since the renormalization in SPA (1/N) should be performed

order by order in the 1/N expansion, we expand the renormalization

constants Zl and Z3 as

Z= 1 53+ 0 (AN,
_ | ¢ .

23 = .3(3‘))+ —)\Tg(;)'*' O (I/Nz) .

The stationary condition (3.B.13) for the Gross—Néveu model

(4.A.4)

turns‘out to be

©) @ ,0 — (o ©
300 == IR BYT s L (T ) B " (4-2.3)

which should be solved together with the Dirac equation,

('L'H— ng) L\):,) _ O’ : (4.7.6)

. . . 0
and the normalization conditon for w; ),

2 [

[+ o]
ol o
_ (4.A.7)
Swolx G Y. = 8aar

(o)

The zeroth order stability angle EA

is given by the pseudo-

periodicity

()] . 0 o ‘
q{\ (X, T)Y= Q/X»P(-lgf\))%“(x,o)_ (4.2.8)
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1’V go)) are determined by

(4.A.5)~(4.A.7), the effective action Ie

Once the classical solutions (o
g 1n SPA (1/N) is given
by |

I%(M&TFNSJ({WA},TH Q({m}l"n-rsw ({,},T) .29

where
T

.SOQ ESOOPI (‘51'3(:)0';)+ };,(l— %“\ S(: [Cual 7 (4.2.10)
Sa= S;ol‘x{"zl'éf”p_ %(l—%\ ta,:?A (’)(A,’z)]j ) (4.2.11)

/Swumx = &o " ("'213:“0';)+ -; (l—q,‘z]A) 3(,” 3 %@‘S:” (4.2.12)

and

]iQF))A» = (_X.A (19-364)Xa - @(_%:’) A+'YA YY) 72 B (4.A.13)

The renormalization program is performed by the following
steps. In the first step the renormalization constants are
determinéd in the vacuum sector ({nA=0}). In the second step
using these renormalization constants one can show that the
physical quantities, for example the difference between the vacuum
energy and the excited state energy, become finite in the other

sector ({nA}#{O}).

B. Renormalization of the vaccum sector

In order to determine the renormalization constants, one needs
propagators and proper vertex functions. 1In the-perturbation
method the proper vertices are defined by using the Feynman graphs.

Since the semiclassical method has no reference to the graph theory,
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one has to define the proper vertices in the framework . of the
semiclassical method. We will, therefore, calculate the generating

functional for the proper verticesl6)’l7)

I' (proper T) in the
semiclassical 1/N expansion method. |

Let us introduce the generating functional W with the source
functions J, B and E,respectively, for the field operators %, 7
and @, whose vacuum expectation values are associated with o, ¥
and y. This functional U generates cbnnected Green's functions

and is defined by

%0 ,

opli1, 5= |24 v 0tpl (L NI TETT )],

' (4.B.1)
where J is commuting function, and B and B are anti-commuting
-functions. Sihce we ‘are interested in the vacuum sector only
in this subsection, the time interval T is taken to be infinite
from the outset in (4.B.l)16). The justification of this procedure
can be checked by comparing U in (4.B.1l) withthe contribution from
" the vacuum sector for the finite time intervai T, which is taken

to be infinite at the end step. By using W the proper T is defined

by
‘_'[G,Q,\P] EN[ZY,B,{_S]‘ Sfx (NG T+ EL\ML—PB) ‘ | (4.B.2)

The vacuum expectation values o, Y and ¥ in the system with the
non-vanishing source terms are given by

Y/ 5 US
O(x)= — A Wiy = - Y
(x) N $ Jooy (< » Y)Y~ B

(4.B.3)

SB( )

Note that there .are the following relations
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o’ __ oI N
oG NI ﬁ=’8 ).éﬁzfg‘ (4.3.4)

In (4.B.3) and (4.B.4) the derivative with féspect to the anti-
commuting field is defined by the left derivative.

As the first step of calculating the proper f, we evaluate
Qﬂlg) by the samermethod as in Sec. III. The integration aver VY

fields provides us with

U3, 8,81=-1 ] (=] 0np (iNT5l%3 7.8, 8141, 4 [z;w,éﬁ, (4.5.5)

where

T2 78 815 (-2 54T 1) -iTde (3+192)
| (4.B.6)

*ﬁg gzx.ol’x, Yo Sz (,, %) B ()

and, up to the zeroth order in 1/N (the leading order is of order

N),

Teumt 1233.8,8] =gol‘oc (-3'3‘;’2‘)+5f"3§ o 2 (0t Sz (o)

<06 -0
(4.B.7)

| o wz 2 s n
+ 53, %Smdx.olx,ol % B 6D, 06,062 66y Sy 6,360 ()

The fermion propagator SZ under the background field of I is

defined by

SZ,(D(.,XJE (’5+i32)—(x,,x,)' : (4.B.8)

The notations trand Tr in (4.B.6) and (4.B.7) represent,
respectively, the traces with respect to y-matrices and space-

time coordinates together with y-matrices. Since excited states
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do not contribute to (4.B.5) due to the infinite time interval

in the usual iec prescriptioan), (NIZ+I ) is supposed to

count

eqqal Ieff ({nA=0},-T+m) in (3.A.18) if the source terms are

switched off. Note that the Dirac vacuum energy multipliéd by

the time interval T, Nzg [z] in (3.A.18), becomes (-iN) Tr

(7 +ﬁiZIgZ) as T goes iﬁf?nity. We assume tha£ 88 and Yy are of

order N because the fermion field vy has N internal components.
Since IZ is multiplied byiN in the exponent of (4.B.5),

we can apply S.P.A. to (4.B.5) as in Sec. III. Then we make

an expansion of the exponent in (4.B.5) around the stationary

point Zc up to the zeroth order in 1/N by substituting I(x)=

zc(x)+n(x)//ﬁ1 Note that the leading order is of order N. By

performing the integration over n one obtains

N‘NIZ[ZJ +%T; SZSZ J +0 (l/N) (4.B.9)

where the stationary point Zc is defined by

SIX ' :
g = A (4.B.10) -
SZ z:zc O'

. Substituting (4.B.9) into (4.B.3); B,_§ and the stationary point

Z which is functional of J, B and B through (4.B.10), can be

solved in terms of o, ¥ and ¥ as

Bxy=-1 (¥ +13C o0y + 15 8 [6,F,9; xT
)

B (x)

Zeoos Go + 0 206,595 %]

The proper I' is calculated from (4.B.2) if (4.B.9) and (4.B.11)

"

-'L‘P(xa(—a’ﬁ 180060) + = Bm[@@,q);x] (4.B.11)

]

are substituted;
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6,3, 91=NTz[2-6,L5] . B-—ws - NXaxm

+2i3 8 P S, 1“‘*?2;2[2 6,8 1Y -1 PST

+1 %=, B= + P,
me‘l[ GB- S LP ‘=—.Ll-kPS°—]1 (4.B.12)

where

Sc’ (D(.,XQE. (Y+1 ﬂﬁf‘(x,,z,)'  (4.m.13)

In obtaining (4.B.12) Z(l), B(l) and E(l) were cancelled out up
to the zeroth order in 1/N. Some algebraic computation leads

us to

—th

| [(5 ¥,¢7= Nl[cq» y1+1 6 3971+ L6, P, 4] s

where -

=g

{_ 3?(52.,.?\').@({3_36)@}41&“ (a-big(y) , (4.B.15)
.I_'m - 21'[‘ 9,,\[5 3(1-3)+L‘3u5 4 5£4,%)

™ 3 SN’(x)S a0 Yesy + Py S 4, x)kP(x}]l (4.B.16)

]cuwi' Sdz {"'5 6‘*‘5 3WQ}0’+3"’gm5 (x, :06(1)} (4.B.17)

It is worthwhile to note that when y=0 in (4.B.15)~(4.B.17) F(O)

(1) . _ .
T and Fcount correspond to Soyr SQ and S count with {nA—O} in
(4.A.10)~(4.A.12) respectively.

From (4.B.14)~(4.B.17) one can understand what SPA (1/N) is

19). The proper

if interpreted in the language of the graph theory
I' in the zeroth order approximation of SPA (1/N), P(o) (4.8.15),

consists of the proper tree graphs and the proper graphs with
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fermion one-loops (see Fig.l). This implies that the first term
in Scl (4.A.10) correspohds to the proper tree vacuum graph and
the second term which is the sum of all the stability angles for
the fermion eigen modes, Zc(o), stands for the sum of the proper
~ vacuum graphs with fermioﬁ gne—loops. The first order proper T,
r(l) (4.B.16), consists of the proper graphs with the boson one-
(1)

- loops, while infinite fermion loops are included in T (see
Fig.2). This corresponds to the sum of all the stability angles
for the quantum fluctuation, —Z%va ({nA=0}, T+o). The first

3 , ,

order counter terms in T (4.B.17) are shown in Fig.3. The

count
above results can be understood from the fact that the o-
- propagator is proportional to 1/N and one fermion loop provides
a factor N due to N equivalent fermion components.

The renormalization in the zeroth order of SPA (1/N). is,

therefore,.performed by the usual one-loop renormalization

program. On the other hand, the first ofder of SPA (1/N) is not
a simple two-loop a?prbximation. Note that the proper vertex in
the first order of SPA (1/N) includes the proper graphs with
different number of loops. This means that even if the system
is renormalizable in the perturbation method, ﬁhe renormali; |
zability of the first order is not obvious in SPA (1/N).

In the Gross-Neveu model one can show that the renormaii—
zation in SPA (1/N) can be performed order by order in the
parameter 1/N.

The vacuum expectation values ¢, ﬁo and ¢, of the field
operators g, % and @ in the original system without source terms

are given by (4.B.4) as the solution of the stationary conditions

of the proper T,
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. Y
el _ 81 _ 8T _ 0 (4.B.18)
80 3¢ sy ' .

From (4.B.14)~(4.B.17) it is obvious that ?@0=0 satisfies

(4.B.18), so wo and @0 are supposed to'bé zero. If we assume

that the vacuum in this model is invariant under the space—timé

translation, the vacuum expectation value O, should be a constant.
Before solving (4.B.18) one has to perform the renormatization

program at a certain renormalization point u to determine the

renormalization constants by some renormalization conditions.

After these procedure ¢, is represented in terms of u, the coupling

constant g and the expansion parameter 1/N. Conversely p is

- written in terms of o,, g and 1/N by sblving this relation‘ahd

so the renormalization constants are. At this point the stationary

condition

Y 0 3
$G60 6=, W.§.o 0 ) | (4.B.19)

b

can be interpfeted as a renormalization condition for Z,. It
vshould be noted that o, has to be restricted such that the proper
' is maximum at the point o=0016). This condition implies that
the o field has no tachyon. In this paper we adopt (4.B.19) for
Z, and thé following renormalization conditon for Z,,

SN |

SG(Rf-Ojng(P,)BLP(PB\ szo,w=¢)=b— g7 (4.B.20)

whereO'(Pl) and others.are the Fourier transforms of o(x), etc.

Before going to practical calculations we comment on the

regularization of divergences. In order to perform the consistent
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renormalization, one has to use a common regularization method
throughout calculations. 1In particular one has to compute the
"sum of the stability angles for the fermion excitation Zg(o),
the sum of the stability aﬁgles for the quantum fluctuaﬁiﬁn
Z%va({nA}) and the proper I' (4.B.14) by the same method.
> Since the time interval is taken to be infinite‘from the
.outset in calculating the prbper P‘ it is useful to integrate
over the space-time coordinates in the infinite volume. On the
other Aand, in making the sum over the stability angles it is
convenient to quantize waves in the finite box and the finite
time interval. The continuuﬁ limit (infinite volume limit)
vshould be taken after finding the integration measure for the
quantum numbers which are assigned to each stability angle mode.
In theileading order of 1/N the renormalization constant
(o)

z, is determined by

Nk =0 _ | (4.B.21)
Sd 6=60,LP=¢=0 '

The result is

o _ 1§( . ‘ __3_5 2, L . |
83 -2-[(1&0‘}{ kz_gz(s: = I TC L\O\/gdo)’ - (4‘B'2?)

where the straight cut off regularization is adopted. It is

obvious that the expansion of Z, in (4.A.4) agrees with the

renormalization condition (4.B.20) in the leading order of 1/N.
The renormalization conditions of the next to the leading

order in 1/N turn out to be
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g(r'm'*'rwﬂ)_ =0
56  lo=Go,y=f=0 |
(4.B.23)
S(r‘m*r@

%0 S sy 6=G,,W=¥=0

(o)

where z, is substituted so that the renormalization constants
are determined order by order in 1/N. From (4.B.23) one obtaines

Y 32 1
3 = g ldh =
AR g (k - 31 :) B (— hz) %ZG:)

=7 I (N/5562) + zgmuta

%;n 1 y 1 (4.B.24)
= Tl e - 3&707)21
=- %[ﬂm(l\‘/zfac ) +23"{1- ﬁm(/\‘/a O, )}}
where
O LY T e o A N o
B(-b,SG,) —/ = | arsor - 0 (4.B.25)

(o). (1)

If z; 7, 2z,

(1)

and z, so obtained are substituted into (4.B.14)
‘the proper T becomes finite up to the next to the ieading order
in 1/N except a constant divergent number which cén be swept
away by the subtraction of the vacuum energy.

It should be emphasizéd that although F(l) (4.B.16) includes

the infinite number of loops,T (4.B.17) has finite numbers

count
of counter terms which are linear with respect to the renormali-
zation constants. This fact enables us to perform the renormali-

zation by the subtraction scheme even in SPA (1/N).
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C. Excited fermion states
In general, it is difficult to solve the stationary

condition (3.B.13) with the Dirac equation (3.B.7). To do so,
‘one has to solve the Dirac equation in an arbitrary boson
background field to obtain the complete set of the fermion wave
functions which are functionals of the boson field. After
substituting these fermion wave functions into (3.B.13), the
classical solution for the boson field is determined by (3.B.13).
. For static classical solutions in the Gross-Neveu model, DHNZ)
succeeded in solving the stationary condition (4.A.5f with
(4.A.6) by using the inverse scattering method. In order to
obtain time-dependent solutions, some speculative conéideration
is needed. One approach is given by restricting configurations
of the boson field into a certain set of functions.

»Iﬁ the case of 0oy having a single discrete level and which

is occupied by n, excited fermions, the classical solution for

(4.A.5)~(4.A.7) is given by

Oa ()= 0. + £ [tank K-8 tank K Gcrs)] e

: where

K= 36 M (T ) 8°=T+|Ey’”(—’§§:m.

(4.C.2)

The fermion wave function for the discrete level is

LP(O) | 7 [ Arch K (X+3,)
(XY= 2 ek K (= 5,) | (4.C.3)
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and for continuum levels

1k b+1KWK(x+60

() e
ik, x) = lszN(h k+iK (11:‘ 2?6\ {k+iKtanhK (x=6p3} | 4-€-¥
0 )

where the normalization constant N(k) is given by

N(k)=L - 2K/ (k*+K*) | (4.c.5)
and L is the length of the quantization box. In this case, the
energy levels of the leading order in 1/N are determined by using

(3.C.5);

— - — d J _ L y T N,
En, = 1T —7—23601\1 .,M/xn.(—aL W), (4.C.6)

where the fermion occupation number n, of the discrete level is
restricted to OSnoSN—l because there is no solution for nOZN.
The divergence in the energy is cancelled away by that in the

(o)

‘renormalization constant z, which was determined in the vacuum

sector. The degeneracy number of the state {no} is

@N)L/ 1,1 (aN-1,)

which is derived from (3.A.16).

Quantum corrections are calculated from (4.A.11). Since fhe.
above classical solution is static, the stability angle of the
quantum fluctuation becomes the angular frequency times the time
interval T. Then we will find the eigenfrequehcies of the quantum

fluctuations_‘.xA and n which obey

(12-30a)Xa + 37 LPS‘:O) | - (4.c.7)
-3+ 23( PN, + Ay ,‘f’\—ﬁ%’(@f’xniwf’):o' (4.C.8)
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Eliminating Xpr one obtains the homogeneous integral equation

for the eigenfrequency u,

0) o
3(3 703 () =,32Xd'6' Ko (1M1 %, 4) ?w“é)’ (4.C.9)
where
-1t ,
T, 1) =§%_f;t_) 1,060 € ' - .colo)

The kernel function to the configuration {n } is given by

(0)

K., ({m;x,gpg(%&l)[ A(X)G'w v (0339 (1-R) Yo 1)
+ BT Gy (G 4,507 (1- R Tx]

='_‘ [ { S Ny P e 1 G (G 30,9 (1-RIW k. 4y

+ (1= 28 Ty Gy e, (5%, 9) (-PIE 0]

A= gy 412

(4.C.12,

004, 0y = (4,5, -w ]
where the energy of the zeroth order fermion state mA'is defined
by w(k)=]g20§+k2 for the continuum state and q0=/gzo§—K2 for the
discrete level state. The fermion propagator in the boson
background field On1 for the configuration {n,} is obtained by
substituting the classical solution 0.1 into (4.B.13);

' 1E (-1
E N(l@ (© () 5 (0
q)(h X)Llj(k,'g\e(X-‘é\"' q)(—k,x)q)(-h,g)e(g-x)
(4.C.13)

: —fp2_.2_.2
where k=JE°-g“0] ‘
It may be instructive to give an alternative expression for
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(4.C.9),

S[-s‘;" 8<x-a)-i-§-{<N-"»\gc%§m Gie (65.%) G, (Oa4,%)

IE 0 G (6 1% Gy, (a3, x\}l’z (49)d4=0
(4.C.l4)

+-fn§
C, lT
The crucial point in (4.C.14) consists in the E-integration.

The contour C, which corresponds to the usual i € prescription,
provides us with the vacuum pdlarization amplitude (Fig.4). The
contéur C, takes the round path avoiding the discrete eigenstate
pole which is occupied by the excited fermion (Fig.4). In general,
for each component of the fermion field which has N components, .
the contour C{ A} must be introduced. This contour avoids the
eigen state poles which are occupied by the excited fermions or
antifermions (Fig.5). 1In this representation n, is restricted

A

to OSnASZ, which implies that each component of the fermion field

has only particle-anti-particle degrees of freedom. By the use

of the contours C the kernel function (4.C.11) for the config-

{ny}

uration {nA} is given by

| | CNCdE JMC :
Ka,({ﬂAE;I.ZF N £ =2.\ =R Te (Gd X, ) He- w(Gd 4, I) (4.C.15)
k=l C{Tﬁkq_ .

N
where n = | nk) Note that (4.C.14) with n_ =0 and ¢ _.=0
A k=1 A : _ 0 cl "o
1 .
equals the term inside the square brackets in F( ) (4.B.16) with

¥=y=0 and o=0, . From this fact one can confirm that r*) (4.8.16)
equals Z( 2)\) ({n 2=0}, T>») in (3.B.24) as previously commented.

In the usual 1 € prescription excited states can not contrlbute

to the proper T' because of the infinite time interval. The

expression of the kernel function (4.C.15), however, implies
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that if the contour C{n } is adopted in the energy integration

A
of the Fourier transform of P(l)

(1)

‘instead of the usual i e pre-
scription,. T can provide us with the excited state energy.
At the same time one has to use an appropriate contour for
Tr 1n (Z+igo) in P(o) (4.B.15) when one finds the classical solution
from the stationary condition 6P(°)/60(X)=0.

The diverging term in the r. h. s. of (4.C.9) can be
eliminated by z(o) in the 1. h. s. which was determined in the
vacuum sector.

For the static classical solution, the energy of excited

state ({nA}, {pa}) is given by

.E({m},{ﬂ’xFN{dea% Ga({m x)~ L( )T S [Gal}

fdx 23 65 (g0 -39 S0-2) 5 L )
t 2 (B+ 3) 0, ({n.h

(4.C.16)

where wa({nA}) is the eigenfrequency of (4.C.9). The divergencies
in (4.C.16) are eliminated by substitution of the renormalization
~constants determined.in the vacuum sector except for the divergence
which is independent of ({nA}, {pa}). However, the-energy.measured

from the vacuum energy,

MICCARERE E({'fm,{ﬂ}\—E({o},{on) C 4.ca17)

is finite.
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§v. Multiplicative renormalizatioﬁ

A. Renormalization by the subtraction schemé

As pointed out in Sec. IV. B, the renormalization of the
Gross—Neveu model can be performed by the subtraction scheme
even in SPA(1/N) if the Lagrangian (4.A.3) is adopted. Up to
" the first order of SPA(1/N) the four-fermion vertex is finite
in the particular model Lagrangian (4.A.3), although it can be
divergent as far as the power counting is concerned. 1In the
‘higher order the cancellation of the devergenée in the four-
fermion vertex has not be known. “If the four-fermion vertex is
divergent its counter term, g2z, (yy)?/2N, is needed in (4.A.3).

For the O(N) symmetric ¢* model%o) SPA(1/N) -can be aléo
applied.» In this model, even if the subsidiary field B for the
composite field 2 is intrqduced, the ¢* vertex is still
divergent in the 4-dimensional space-time. The counter term
Zsg?¢*/2N is necessary in addition to the B¢? vertex. |

We will, therefore, study the Lagrangian including the
gzz“($¢)2/2N term as weliAas the gzic(@w) term in the following.
If the renormalization constant 2, does not include the zeroth |
order term in 1/N, Zu=z(i)/N+O(l/N2),'theugdditional counter
term, |

2

2 . — : '
%‘ EN Kd’x { S, ey - T\|l' Py Yoo | (5-2.1)

)

appears in T (4.B.17). 1In this case, the renormalization

count
can be performed by the subtraction scheme. In the O(N)
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symmetrlc ¢* theory, the renormalization can be performed by
the same way as in the Gross—-Neveu model.

The o(y§) term generates the (VP) 2 term in‘the Lagrangian
(4.A.1) if o is integrated out. Therefore, one has to prove
that the separation of the o (V¥) term from the (Il—np)2 term
gives no effect to the physical observable quantltleslg)

This is a future problem.

B. Multiplicative renormalization in the 1/N expansion method

In this subsection, the Lagrangian defined by

| =bipy-Nze zaw% = (PY) (5.8.1)

is adopted. This system is equivalent to the Gross-Neveu model,
but the subsidiary field o is incorporated in a diffefent way.
The rehermalization constant Z, is supposed to include the
zeroth order in 1/N; Zg-z(2)+z(i)/N+O(l/N2). In this case

the four—fermion vettex is proportienal to a factor 1/N in

the leading erder of 1/N. On the other hand, if the loopwise

" contraction over spiner indices is taken,.each fermion loop
provides a factor N dﬁe to N fermion components. Therefore,
all proper vertices include infinite loops and terms with any
higher power of the renormalization constants in the leading
order of 1/N as shown in Fig. 6 and Fig. 7. One can not
separate counter (subtraction) terms from the proper vertices
and the renormalization in the leading order of 1/N should be
performed by the multiplicative'renormalization. Since we are study-

ing the renormalization program of this model only in the
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leading order of 1/N, we will omit the superscript (0) in the
following.

In the multiélicative renormalization program, one first
arrénges the renormalization constants by using integral equa-

tions in which a finite number of the renormalization constants
appear, Thén one can determine the renormalization constants
under appropriate renormalization conditions. Since all proper
vertices are divergent, one has to substitute the renormaliza-
tion constants determined above into these proper vertices and to
" examine whether they become finite.

In the vacuum sector of this system, the propei (Ip)

vertéx function turns out to be

((‘T)W»W =-1M , | (5.B.2)

where M is the fermion mass in this approximation and determined

by the integral equation (Fig. 6),

M Zyd ‘ k -'Dtk, v +Z§0’ | (5.B.3)

()

The vacuum expectation value o, of the ¢ field must satisfy that

G°=—Z—L- LRVIRRCA) O, (5.B.4)

23 24 3‘ 23 24 ’

which corresponds to the stationary condition 6P/60|o=00=0.

The proper (J#)2? and o(Jy) vertices with zero external momenta

(Fig. 7) are given by
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(5.B.5)

<(¢W>W = - N‘ ( 3’*\((5(%})\7

SELIETT WA

From Fig. 6 and Fig. 7 one findsthat the proper vertices consist
of infinite loops and the renormalization constants while,the
numbers of the renormalization constants in (5.B.2)~(5.B.5)

are finite due to the integral equation (5.B.3). This fact
enables us to calculate the renormalization constants under

some renormalization conditions.

We will adopt the following renormalization conditions,

<6(¢LP)>MM‘W%WJNW =-'i§) | (5.B.6)
<(LT’W)2>W \}ww artonal momnita

and (5.B.4). The renormalization constatns are, then, determi-

193 .
N~ (5.B.7)

ned from these renormalization conditions;

| EY a2 |
Z.=Z4 :-23 .+§l%o =[1+§tﬂm(/\2/M‘)‘% ]_’ , (5.B.8)

where the fermion mass is given by

M=13ad, (I- 32\ . (5.8.9)

These renormalization constants make the proper I' to be finite

in the leading order of 1/N.
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It is more complicated to perform the renqrmalization of
this system in the higher order of 1/N. We have not known
how to proVe the renormalizability in the multiplicative
renormalization in general. This analysis is an interesting

problem.
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§VI. Conclusions

In this article we have studied the semiclassical method
(SPA(l/N)) for thevboson-fermion system in which N is the number
of equivalent fermions and used as an expansion parameter. ' In
particular, since SPA (1/N) is not the loop expansion, it is
necessary to check whether the renormalization program can be
performed consistently in the framework of SPA (1/N). We have
formulated the renormalization program from the generél viewpoint.
This analysis will be useful for the renormalization in other
non-perturbative methods which will be developed in future. It
has been shown that the multiplicative renormalization is necessary
and possible in the leading order of 1/N expansion methdd'for the

particular Lagr;ngian,
L=9i¥¢-Nz06"-2246 t?wf% Py, ©v

Finally, we would like to point out that the following
pfoblems should be investigated as next steps.
(1) The treatment of the zero mode in the usual semiclassical
method has been discussed in Sec. II. C, according to.DHNl).
It has been found that the mapping (2.C.21) may seﬁarate out
the zero mode from the non-zero stability angle modes. By this
‘mapping, the intuitive meaning of the zero mode becomes more
clear. It is also necessary to show explicitly that thé zero
mode factor in SPA (1/N) can be separated out in the similar way.
(2) The multiplicative renormalization method has been épplied

in the leading order of 1/N for the Lagrangian (6.1). It is

interesting to study whether or not the multiplicative renormal-
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ization program can be constructed for the O(N) symmetric ¢“
theory in the 4-dimensional space-time.

(3) Our final purpose is to compute hadron spéctra by using
SPA (1/N). To do so one has to find "the classical solution”

for a 4-dimensional model and it is an open problem.
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Figure captions

Fig. 1

(a) Feynman rules for the Gross-Neveu model with the
Lagrangian (4.A.3): Wavy and straight lines indiCaté'
the boson and the fermion propagation, respectively.

(b) The graphical representation of the leading order
proper I' (4.B.15): Lines with o and Y indicate the
external fields of the boson and the fermion, respectively.

Fig. 2 The graphical representation of the next leading |

order T (4.B.1l6).

Fig. 3 The graphical representation of the counter terms
rcount (4.B.17).
Fig. 4
(a) The analyticity of the integral function G GE—w in

(4.C.14): Bold and dashed lines indicate the cuts of
GE—w and GE’ respectively. A circle means thé discrete
pole for the fermion from GE’ a bold circle for the
fermion from G,_ ., a circle with a cross for the anti-
fermion‘from GE’ and a bold circlé with a cross for the
anti-fermion from GE—w'

(b) The contours C and Cg¢: The contour C, which cor-
responds to the usual ie prescription, provides the
vacuum state. The contour C, provides the state in
which the discrete level is occupied by one excited
fermion.

Fig. 5 The contours C{nA}: c{no=0} and c{no=l}
Co in Fig. 4, respectively. C'{no=l} provides the state

equal C and
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in which the discrete level is occupied by one anti-
fermion and c{no=2} corresponds to the state occupied by
one fermion and one anti-fermion.
Fig. 6

(a) Feynman rules for the Gross-Neveu model with the

| Lagrangian (5.B.1): Wavy and straight lines indicate the
boson and the fermion propagation, respectively. |

(b) " The fermion mass M: The loopwise contraction over
spinor indices is taken in this figure and Fig. 7.

Fig. 7 The proper vertices.
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