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Abstract 

We study the semiclassical method for the system in which 

fermions and bosons are strongly coupled together. This method 

is the l/N expansion around "the classical solution" which takes 

account of the reaction from the Dirac sea and excited fermions, 

where N is the number of the equivalent fermion components. 

On the other hand, in the ordinary semiclassical approximation 

the Planck constant is used as an expansion parameter. This is 

also reviewed for self-containedness and the explanation of the 

stationary phase approximation in the path integral formalism. 

Taking the Gross-Neveu model as a theoretical laboratory, 

the renormalization program for the excited state is studied in 

the framework of the semiclassical l/N expansion. For the system 

in which the subtraction scheme can not be applied, the multi­

plicative renormalization is performed. 
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§l. Introduction 

In recent years, a piece of experimental data of the 

lepton-hadron deep inelastic scatteri~g agrees with predictions 

of the Weinberg-Salarnmodel even with those corrected by the 

QeD higher order calculation. This supports that the fundamental 

theory of the particle physics may be the gauge theory. While 
$ 

the perturbative approach to the gauge theory works well in the 

short distance region of particle reactions, non-perturbative 

methods seem to be necessary in treating the long distance 

behavior of the particle reactions. Up to this time non-

perturbative approaches have not been enough developed to give 

reliable proof for the quark confinement and to calculate 

particle spectra. It is, therefore, an important problem to 

develope and study the details of non-perturbative methods. 

In this article we discuss two semiclassical approximations. 

One of them is the ordinary WKB methodl ) in which ~ is used as 

an expansion parameter. This is refered to as WKB(n) in this 

paper. The other is the semiclassical method for the system 

in which fermions and bosons are strongly coupled together~,3) 

It is the stationary phase approximation (S.P.A.) around "the 

classical solution" which takes account of the reaction from 

the Dirac sea and the excited fermions. This is the l/N 

expansion method and is refered to as SPA (l/N) , where N is 

the number of the equivalent fermion components. 

We will summarize the procedure and the characteristic 

feature of each method. 

(1) The ordinary WKB method (WKB(~» for the system with 
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many degrees of freedom was formulated by Dashen, Hasslacher and 
. 1) . 

Neveu • In this method, one finds the classical solution of the 

equation of motion as the first step' of the approximation. 

The classical solution, in general, involves some arbitrary 

constants, s (a=l, ••• , f), due to the continuous symmetry of a 

the system. Let us denote this classical solution by ~cl(t, Xi s). 

In the second step, one changes the dynamical variables from 
! 

the original one, ~, to the zero mode coordinates s and the a 

quantum fluctuation around the classical solution, n. These 

sand n are defined by a 

where n satisfies 

(1.1) 

) ol°x { ~...6. .. 4>J (t, X. ~.4.) 1 ? (t, X ~..4.) = 0 1 (a. = 1, ",l). 
(1.2) 

The equation (1.2), since a~ lids is the eigenfunction c a 

associated with the zero mode s , implies that the quantum a 

fluctuation is orthogonal to the zero modes. In the third 

step, one treats the zero modes as quantized coordinates 

disregarding the quantum fluctuation. This step is the 

zeroth order approximation of WKB(~) and leads us to the 

Bohr-Sommerfeld quantization condition. In the fourth step, 

the quantization of n is taken account of under the action 

(or the Hamiltonian) approximated up to the second order with 

respect to n. This is the first order approximation (the full 

WKB approximation). 
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The characteristic feature of WKB~n) is that the excited 

states of the system are those which correspond to the periodic 

classical solutions. It is the important difference between 

WKBfll) and the perturbation theory. In terms of the graph 

theory, the zeroth order of WKB(~) is the tree approximation 

for the proper graphs. The first order is the one-loop 

approximation. From these graphical interpretation, it is 

obvious that the renormalizable theory in the perturbation is 

also renormalizable in WKB(n). 

In WKB(n) for the system consisting of bosons and fermions, 

the fermions are neglected in the zeroth order approximation 

and treated as the quantum fluctuations in the first order. 

If the fermions are strongly coupled with the bosons, WKB(n) 

seems to be a wrong approximation. In many practical models~,5) 

there exists no interesting classical solution if the fermions 

are treated as the perturbation to the bosons. We will, 

therefore, consider the semiclassical approach in which the 

reaction of the fermions are taken into account in the zeroth 

order approximation. 

(2) The semiclassical method for the boson-fermion system 

(SPA(l/N» is the l/N expansion method when the system has an 

O(N) symmetry. The basic idea of SPA(l/N) was first presented 

by Dashen, Hasslacher and Neveu (DHN)2) and the full semiclassical 

program (WKB) was formulated by Kikkawa and the author:) In the 

path integral formalism, the fermion coordinates (anti-commuting 

coordinates) are first integrated out to obtain an effective 

action containing only boson coordinates (commuting coordinates) . 
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This means that the fermions are quantized in the background 

fields of the bosons. In evaluating the path integral for the 

effective action of the bosons, S.P.A. is adopted. As the 

second step of SPA(l/N), one finds the stationary point of the 

effective action. The solution which provides the stationary 

point is called "the classical solution" (CS). This CS is the 

solution of coupled equations for bosons and fermions and takes 
! 

account of the reaction from the Dirac sea and the excited 

ferrnions. In the zeroth order approximation of SPA(l/N) one 

integrates out (quantizes) the zero modes of CS to obtain the 

Bohr-Sommerfeld quantization condition. This step was given 

by DHN~) In order to complete the full semiclassical method 

(WKB), one has to evaluate the quantum fluctuations around CS 

up to the quadratic term in the effective action. There 

exists, however, a difficulty that the action for the quantum 

fluctuations always becomes non-local due to the ferrnion 

propagation which appears as a result of integrating the 

fermion field beforehand. In order to avoid the difficulty, 

we introduced new auxiliary fields in reference 3. with the 

help of the auxiliary field, the quantum correction term of the 

effective action can be made local and quadratic with respect 

to the boson fields and the auxiliary fields. Then the 

integration (quantization) of the quantum fluctuations can 

be done and provides the first order approximation of SPA(l/N). 

In SPA(l/N) excited states with the definite fermion number are 

obtained. In terms of the graph theory, the zeroth order of 

SPA(l/N) is the tree approximation of the boson fields together 
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with the one-loop approximation of the fermion fields for the 

proper graphs. The first order is the one-loop approximation 

of the boson fields while it includes the infinite fermion 

190 ps. The renormalization in the zeroth order of SPA(l/N) 

is, therefore, trivial. On the other hand, even if the system 

is renormalizable in the perturbation method, the renormaliza-

bility of the first order is not obvious in SPA (l/N) • It is 
! 

because the proper vertex in the' first order of SPA(l/N}·is the 

sum of the proper graphs with different number of loops. 

The renormalization of SPA(l/N} is one of the main 

purposes in this article. In order to calculate the renormali-

zation constants, one needs propagators and proper vertex 

functions. If one wishes to perform the consistent renormaliza-

tion program in a non-perturbative method, one has to define 

proper vertices within the method. We will, therefore, calculate 

the generating functional for proper vertices, r, (proper r) 

in the semiclassical method (SPA(l/N}). Once the renormalization 

constants are determined by using proper r in the vacuum sector, 

the energy levels of excited states can be shown to be finite 

by the use of these renormalization constants. 

In Sec. II we will review the semiclassical method for the 

boson system (WKBrfi» which was formulated by DHN~) In Sec. III 

the semiclassical method for the boson-fermion system (SPA(l/N» 

will be studied. This is the summary of the works by DHN 2 ) and 

Kikkawa and the author~) In Sec. IV the renormalization program 

in SPA(l/N) will be studied in the Gross-Neveu model~3) 

Although some were reported in the previous paper;) main part 
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of this section is new. In Sec. V we will discuss the questions 

about the renormalization in the l/N expansion methods. As 

the special case we will study the system including (~~)2/N 

term as well as a(~~) term. The renormalization of this system 

in the zeroth order approximation of the l/N expansion has to 

be performed by the multiplicative renormalization program, 

since the usual subtraction scheme can not be applied. This is 
! 

also the original contribution of this paper. 
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§II. Semiclassical method for the boson system 

A. Preliminary remarks 

In this section we treat a system with r commuting coordi­

nates qi in the path integral (PI) formalism6
}. The generali­

zation to field theory is straightforward. In order to compute 

energy spectra, it is useful to calculate the propagator G(E} 
$ 

defined by 

2:: 1 
'Y\ F-E 

- 'It 

., (2.A.l) 

'" where H is the Hamiltonian operator of the system and En is the 

energy of the n-th eigen state. From (2.A.l) one can confirm 

that the energy spectra are obtained by inspecting poles in the 

propagator G(E}. In the PI formalism, G(E} is represented by 

C:rCE)= ft ):cA T· Tt" r ~{i (E-Hn11 

:: J. ~"'r1 T . I (T) 'VXf (~ E T) 
tn. 0 ") 

where the partition function Z(T} is given by 

ZeT):: r -IT f cl·-P~'.l'Ht)I blo
( 6-(T) - &(0)) 

) t=o (~.Jt ) 

X ~t~\~Jt(-Pi-H)1 

:: 1Unt r f (I tg(R -IT d'"t>o~) I r 
K~co } l ~,.() \.::1 (:17t.1tf ~ (% (K)- 6-(0)) 

(e--. 0) 

x ~[ ~& c {l'Ck) i(l,) -HCk)}1. 

- 7-
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In (2.A.5) the time interval T is devided into K bits (£=T/K), 

q(t=k£)=q(k), p(t=(k-~)£)=p(k) and q(k)={q(k)-q(k-l)}/£. We will 

use the compact functional notation (2.A.4) for PI and perform 

formal integrations as if the integration variables are continuous 

in time. One has to, however, reconfirm the results by using the 

discrete PI defined on a finite mesh (2.A.5). In order that the 

procedure of functional calculations has precise agreement with 
• 

that of the discrete PI, the Hamiltonian in (2.A.5) has to be a 

midpoint Hamiltonian7 ), i.e., 

\-\ (I~) :: \-\ (..p(l~) ~ % p~)) , (2 .A. 6) 

where q(k)={q(k)+q(k-l)}/2. There occurs, however, no factor 

ordering problem within the semiclassical approximation because 

the reordering effects 8! are of order n~. 

The wave function ~n(q) of the n-th-energyeigen state can be 

obtained by inspecting the residue of pole in the propagator 

CT(g. ~/;E):: <%-\ 1 ~ \ If,:') = 2: i"~(g.)cq:')\~(~:,) 
) E - H 'r\. C - E'\'\. 

00 i.... (2.A.7) 
1 r --HT l.ET :: -:- ) d T < ~ I e ~ I %') e ~ 

t.1t. 0 • 

This propagator is useful in both the Minkowski semiclassical 

method (WKBfh» and the Euclidean semiclassical method9 ) such as 

the one appears in the instanton business. 

B. Transition amplitude 

In this subsection we will apply the stationary phase approxi-

mation (S.P.A.) to the Feynman transition amplitude. This approach 

was first given by Keller, Gutzwiller and MaslovlO ) and developed 

by DHN1 ). This section is the review of these works. The 
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transition amplitude is given by 

r (8-, '&'~ T) = < ~I ~ {- ~ H 11 \ ~/> 
~ T Id'" f>(t ) r. 1 ," '" :: ) ro (l1t~)r ~ & (t) 0 (g.c,)-%.) ~ (&(0)-&") (2.B.l) 

X eAf a (.a (1' i - H(1', %))] . 

In the classical limit (n+O) S.P.A. to PI(2.B.l) will work well. 

One first looks for the stationary point of the exponent '(action , 

fdt(pq-H» in PI(2.B.l), and findsit to be the classical solution 

(Pcl' qcl) of the Hamilton'equations; 

. 'dH 
~. == 

. dH 
d"Pi 

'f. == -'\.. ., 
'0 %1-1.. 

( 1.=1 .. r) 
) , (2.B.2) , , 

which satisfies 

%. (T) = ~. &. (0) = g: 
'I.. 1.. ., '\. 'l. (i==l, .. ,r) 

) 
(2.B.3) 

because of the delta functions in (2.B.l). This is of order nO. 

Second, the quantum correction is calculated up to the second 

order in (p,q) by substituting 

row '" 

gi.(t)= %J,i.Ct)+ &i(t) , "Pi.(t)=i'&,i(t)+1>i Ct ) (i"'-l,",\") (2.B.4) 

in the action. The Gauss integral is dominated by the region 

Ipl ,lql~nl/2 so P and q are of order nl / 2 • This shows that S.P.A. 

to PI (2.B.l) is the~ expansion. 

By the substitution of (2.B.4) the transition amplitude F 

turns out to be 

Fc%- %'OT)= \(JlYh(is&)f TI [ff~J)r d~~(t~ ~"(i(T))~t('i'(O)) 
,"\ ~"T ) t=o '?'7( J1 

(2.B.5) 
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where 

SQ. = (dt [ 15 t -~ { f5 (~t()'" H)& ~ +.2f5 (dt d& H\I & 
(2.B.6) 

+ & (d'6 dy,H )&g I ] 
and 

(2.B.7) 

The matrix notation is used in the above, e.g., 

(2.B.8) 

There is no linear term with respect to (P, q) in the exponent 

owing to the stationary condition (2.B.2). By the condition for 

the classical solution, (2.B.3), the restriction on q in (2.B.l) 

is reduced to the condition on q, i.e., q(T)=q(O)=O "in (2.-B.5). 

The integration over p is performed by completing the square. In 

order to rewrite the resulting PI in the configuration space, 

one should note the relations between Hamiltonian and Lagrangian 

formalisms; 

(2.B.9) 

and 

, 
\3i-l:: (()ii.d~iL\Q=- (d-ri()-PkH)~ (di'ltd~iH)dl , 
C1.1= (d&iO~lLJcl= C~i (2.B.IO) 

= -{d~i () %i rlJ J + (d~,: d-r
ll

}--l \R (d"" d-r
J 
H)~ (01' .. d &i}-\) eR , 
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If one performs the p integration, one obtains the following 

representation of F; lA 

F = ~ (~ S,Q ) ~ ft. [J>%Cil1 ~~. IdetACtl/A 1 ' 
x ~~ (~('n) br (~(O\) '<?IXf (~ .s Q.) , 

where the quantum action S is given by 
Q 

and 

T 

S J = \0 dt L (&cl, i& ) 

(2.B.ll) 

! 

(2.B.12) 

(2.B.13) . 

(2.B.14) 

should be kept in the configuration PI when the coefficient of 

the quadratic term with respect to the velocity in the Lagrangian 

is nontrivial. It should be noted that the action of the quantum 

correction (2.B.12) can be obtained by expanding the Lagrangian 

around the classical solution, too. 

To make the integral over q, we introduce the mapping 

~(t) == %(t) - \-tdt' R(t/) fil(t/) i'(t/) 
o 

(2.B.15) 

and its inverse 

?; (t) ~ 'j (t) - RCt)) \It' R-(t,) R (t') ~Ct') . 
o . . 

(2.B.16) 

The rxr matrix R has to satisfy the Euler equation of the quantum 

action (2.B.12), 
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r (2.B.17) 

and 

-I T • T • -I :1 
R R A - A R R = 8- 8 , (2.B.18) 

where the superscript T represents the transposition. The end 
$ 

point conditions on y, 

(2.B.19) 

R(T)~Tclt R-'(t)~(t)==O (2.B.20) 
o . , 

are derived from both the equation (2.B.16) and the end point 

conditions on q in (2.B.ll). One can avoid the restriction on 

y (2.B.20), which is non-local in time, by introducing Lagrange 

multipliers a. (i=l, .', r)l). The Jacobian of the transformation 
1 

(2.B.15), which is a Volterra integral equationll ), is given by 

(2.B.2l) 

The factor (1/2) is due to the midpoint prescription previously 

mentioned. Then F can be written in terms of y and ai 
If. . 

[ 
det R er) 1:Z ~ ScQ ( T T f 11/2 \0-

F = det R (0) e ) ~o r d"~ (t1 TIo l det I\(i:)~ ~ (~ (0)) 

(2.B.22) 

If one notes that yeT) has no restriction and shoud be integrated 

out, the integration in (2.B.22) can be performed as follows: 
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One first changes the variables from y(k) (k=l, •• , K) to 

z(k)=y(k) (k=l, •• , k), then the integrations over z and uare 

performed by completing the square. The result is 

- [detR(T'll/l iSJ[ { rT (-I -I -IT) T 11-IhI r;' 
\-:: det R(o) eit det R(T))1t RCi)Ac"t)R (t) RCT)} /(lRi-llJ:l 

T 
The determinant factor in (2.B.22), IT [det A(t)/~]1/2, cancels 

t=O 

(2.B.23) 

out with that induced by the z-integration. This can be checked 

by the precise calculation using the discrete PI. 

Finaly, let us prove the equality 

d _'l.5_d_C_&.,_:l = _ [ {CT) {(dt R'Ctl A'Ct) R'~ -tl r R-'( 0 )1 .. 
O~1. 'O'6 l l 0 t-a 

( i 1=1 .. 'rJ , , ») , 
(2.B.24) 

where Scl is considered as the function of q and q' through qcl 

as shown in the condition (2.B.3). Let us define the rxr matrix 

Q by 

-0 gJ, i (t) 

"0 &/i 
(i i =1 .. r) , , J) • (2.B.25) 

The m-th row of Q, Q(m), is the solution of the Euler equation 

for the quantum fluctuation q, (2.B.17), which can be proved by 

differentiating the Euler equation for the classical solution qcl 

by q'. From the fact that qcl(T)=q and qcl(O)=q' it is obvious 

that 

0. (t=T)::0 ') Q(t=o)=l (identity matrix) . (2.B.26) 

The ~-th row of R, R(~) I is also the solution of (2.B.17). For 

two solutions of the Euler equation (2.B.17) I (p(l) I q(l» and 
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(p(2), q(2», there is a constant of motion, 

(2.B.27) 

-where p is derived from the quantum action (2.B.12) as 

(2.B.28) 

Then the rxr matrix defined by 

MJ. 'M == Rti ) { A Q.(~) + B d'm) \ - t R<.l) A + R(.t} B"T \ Q' 
•• T T (2.B.29) 

= (R" A Q - R T A Q + R (B - 8 ) Q ) J 'lr\ (.2 ~ = 1 .. r) , ) )) 

is a constant of motion. By the use of (2.B.18) M turns out to 

be 

(2.B.30) 

One can integrate (2.B.30) over time to obtain 

- R-'(o) -= r )ft r~-'(t) A'(td~'T(-t)1 M 
(2.B.31) 

:: I \!t R-'Ct) A-I(t) R"IT(t)] RT (T) A (-n Q (T) ) 

where the equations (2.B.26) have been used. If one notes that 

( t:1 " r) , ", 
2 

a sc1/aqaq' can be written by 

(i;l,1)1'\ :: 1. ,. ) r) . (2.B.32) 
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Thus the equality (2.B.24) is proved by using (2.B.31) and (2.B.32). 

As the result of (2.B.24), F turns out to be 

(2.B.33) 

If there are critical ~oints (turning points) along the classical 

trajectory, additional phases are needed in (2.B.33)~O),12) They 

will not be important in what follows and will be disregarded from 

now on., 

So far, we have evaluated PI (2.B.l) around one classical 

orbit satisfying the end point condition (2.B.3). In a system 

with many degrees of freedom there exists, in general, a discrete' 

set of classical orbits satisfying the same end point condition. 

Since the quantum fluctuation around the classical orbit is of 

order ~1/2 and the separation distance between classical orbits 

is of order~O " the transition amplitude F should.be the 

summation over the contributions around all classical orbits, i.e., 

r = L 
~ 
~ 

(~cJ(T)= ~~ ~J(O)= ~/) 

C. Zero mode 

(2.B.34) 

In the following we will evaluate the partition function Z(T) 

which is written by the transition amplitude F as 

(2.C.l) 
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substituting the approximated form for F in WKB(~) (2.B.34) into 

(2.C.l), one obtains that 

Z (1) (I\'0q ~ ( i )\'"/!1ldet 1'LSJ I J I~ .oltb ! i S (4 )~ (2. C. 2) 
::)Ct 0 ~ 11l1L ~i-d&" i"=& ""'1 11. J (1, ~)J. 

The sum I in (2 .C. 2) implies the sum over a discrete set of 
cl 

classical orbits satisfying the end point condition qcl(T)=qcl(O)=q. 

The q-intergration may be performed by S.P.A.. The stationary 

poin ts are given by 

O:oSJ(%-'&/)1 T o.sJ(~I%')1 ==~ .(T)-wp .(0) (i=l '0 'r) 
Q 9 / J J1. eR.1. , ~ J • 

"'0 (t \. %-':: & 0 er 1. &' = & . 
(2.C.3) 

This stationary condition with the help of trace condition, 

q l(T)=q l(O)=q, selects classical periodic orbits with period 
c. c . 

T from the sum over a discrete set of classical orbits in (2.C.2). 

If the classical periodic solution is not invariant under any 

symmetry transformation of the system, the transformed orbit is 

an another periodic orbit with a different end point. It is 

convenient for the practical purpose to exchange the order of the 

summation and the q-integration in (2.C.2). In that case the sum 

should be taken over the discrete set of all the periodic orbits 

which can not be connected by the symmetry transformation, while 

the orbits connected with each other by this transformation should 

be regarded as the same orbit. For later convenience we will denote 

the parameters of the symmetry transformation by sa (a=l, .• , f) 

and the transformed classical periodic solution by gcl (ti S ). 

It is, in general, impossible to find all the periodic orbits, 

so some approximations are needed. We will therfore approximate 

- 16 -



the sum in (2.C.2) by the sum over a family of periodic orbits 

including multiple traverses of the basic orbits. 

Let us expand the classical action Scl (q,q') around a 

stationary point q* up to the second order in q-q* and q'-q*. 

For'this purpose we will define rxr matrices G and H by 

(2.C.4) 

! 

}-I .:;.2 d~ S ~ (t. g of) _ I 
1.1, ::.~\ ... , ) 

d(%i.-%~)()(ii-%;) ?t=g.'=i'!V a~ ){t,l=l,.·,r. (2.C.S) 

By the use of G and H the classical action can be approximated as 

SJ (&. &-'):: ScR (~'1-, ~~)+ ~ (&+ f/-.2~~) tr (% + g:'-~ %1L') 

+ ~ (%- %:') \-l (&-~/) + , 
(2.C.6) 

where linear terms and cross terms with respect to (q+q') and 

(q-q') do not appear because of the stationary condition (2.C.3) 

and the time reversal invariance of the system, Scl(q,q'}=Scl(q' ,q}. 

In this approximation, a2sCl/aqaq' can be written by 

(2.C.7) 

When the end points q and q' are near the stationary point 

q*, the classical solution qcl (q,q') can be expanded as 

where qcl(t}=qcl(q=q*, q'=q*}. In (2.C.8) the quantum correction 

'q is the solution of the Euler equations for the quantum action 

SQ (2.B.12) satisfying the end point condition 
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(2.C.9) 

Using the quantum action SQ and the quantum correction q, in the 

same approximation as (2.C.6) the classical action can be written by 

(2.C.IO) 

This equation implies that one can obtain the information,about 

G and H from the quantum action SQ. 

In the quantum action around the periodic orbit the coef-

ficients, A, Band C, are periodic functions of time. The Euler 

equations (2.B.17), which are linear in q, are second order dif-

ferencial equations with the periodic coefficients. For these 

equations, one can find the 2r-independent solutions, ~(a) (t), 

with the property that 

(2.C.ll) 

Since the classical periodic solution has to be stable, all the 

V 's should be real and are called stability angles. The a 

stability angles appear in plus-minus pairs, v and -v, because 

the Euler equations are real. The classical periodic orbit q cl 

has the arbitrary parameters s due to the symmetry of the 
a 

system and dq lids is a periodic solution of the Euler equation c a 

for quantum correction. This means that each freedom of the 

symmetry transformation makes a pair of v's zero. From now on 

we will assume that all zero stability angles correspond to the 

symmetry and not accidental, i.e., f-independent pairs are zero. 

Generally, a time-independent quantity ~(q(t), q(t» can be 

expanded up to the first order in q as 
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· where the coefficients of q and q are periodic. If a solution 

~(a) with v ~O contributes to ~, the time-independent quantity a 

~ has a non-periodic term. Any solution with non zero stability 

angle, therefore, can not contribute to a conserved quantity, ~, 

up to the first order in quantum correction. 

Let us assume that real symmetric rxr matrix G has f '(~r) zero 

eigenva1ues. Making a local change of coordinates,G can be 

transformed into a block diagonal form; 

~ .. = G .. :: 0 
q 1.l ·'a 1. ., ( i = 1 .. r/· ~ = 1 .. r) ) )J" ~ 0 » • (2.C.12) 

In this coordinate system, the f'canonica1 momenta p. (i=l, •• , f') 
~ 

are conserved at least locally, i.e., 

--r.. -1'./ ':: "0 SJ -as& r 
+ :: r. eT . (g. -t%! -2 &~~= 0 (-{ ~ 1 .. -S') 

1. 1.. 6- i1 1 1 a ' I > • o . () i~ l= l t. ", (2.C.13) 

Conversely the invariance of the system under the continuous 

transformation leads that the canonical momentum for the symmetry 

coordinate is conserved and G has zero eigenva1ue. We will 

assume that all zero eigenva1ues of G correspond to the symmetry 

of the system. This is equivalent to the previous assumption 

that all zero stability angles are due to the symmetry of the 

system. We can, therefore, identify the zero eigenva1ues of G 

with pairs of zero stabi1iLy angles and f'=f. In the coordinate 

system where G is block diagona1ized as (2.C.12), the coordinates 

q. and q! for i=l, •. , f represent the symmetry coordinates, and 
1. 1. 
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~(t) 's satisfying qi (r)=iji (0)=0 for i=f+l, r span the stability 

angles v=O manifold of the solutions of the Euler equations for 

quantum correction. 

can be written by 

Using H the conserved momenta p. (i=l, 
~ 

The coordinates q. and q! for i=f+l, •• , r represent non-zero, 
~ ~ 

stability angle modes and these can not contribute to any 

f) 

conserved quantity up to the first order in the quantum fluctuation. 

Then, 

(2.C.1S) 

From the above arguments one can find that the zero stability 

angle modes are completely decoupled from the non-zero stability 

angle modes, i. e . , 

-5 r-5 i r-j 
,.......-,. I"'""""--. ..........-...~ 

C,. ::: (%)}f H= (H I ~) 15 o ~ 1 r- f ., o H 1 Y-i , 
(2.C.16) 

-where G has no zero eigenvalues and 

(2.C.17) 

The partition function Z(T), then, has the following formi 

Z (T) =0 f'. <ViGp I t S cd &"', g "')] l:".o ' l::, Q 

%J ' 
(2.C.18) 

( !- c.R ( 0) ::: g & (1)::: & jf ) 
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where 

1:. 0 =( 1.: it r' ) 0\5& I dei ( ~ ~.s:g,) I &. f~ &" J 11: (2. C.19) 

( 
i )O--i)l!2 ( ) [ ~ I~ I . ,.., 

!l Q. - 17L 'Ii. \ rt-i 
%det U ( ~ -R ))1 'eIXf ~ a-6-t.l~(&-%-'I')J 

(2.C.20) 
and I means the sum over a discrete set of periodic orbits. 

id 
To obtain further insight into the zero mode problem'we will 

study the physical meaning of ~o and~Q. We introduce the change 

of variables by 

(2.C.2l) 

t-

Ea 
i .. = I 

In (2.C.21) qcl (tiS) and g (tiS) are transformed from qcl(t) 

and get) by the symmetry transformation with the symmetry 

parameters sa' respectively. The symmetry coordinate sa(t) 

corresponds to a pair of zero stability angles. The coordinate 

get) orthogonal to s et) corresponds to the non-zero stability 
a 

angle. The factor ~o(2.C.19) comes from zero stability angle 

modes (symmetry coordinates). We separate the symmetry coor-

dinate into two parts. One of them is a time-dependent mode 

with the fixed end point. The integration over this mode can be 

approximated by S.P.A. and give the determinant factor 

in ~o (2.C.19). The other is a constant mode. The zero eigenvalue 

of G is due to this constant mode. The integration over this 
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constant zero mode is the trace integral over a classical orbit, 

dfq in (2.C.19), and can be performed exactly. 

The integration over the quantum fluctuationq orthogonal 

to the zero stability angle modes gives us the factor ~Q (2.C.20). 

The straightforward __ evaluations of G and H are difficult but the 

factor ~Q may be obtained by the following way. The product of 

~o and ~Q can be written in PI form by 

(2.C.22) 

where SQ' 'which has been defined in (2.B.6), is the quantum action 

around the periodic orbit gcl .. This PI. :is performed by a Gaussian 

integral and is proportional to the inverse square root of the 

determinant of the operator in SQ. The inverse of the determinant 

is singular due to the zero stability angle mode. However, we 

already know how to extract these singular pieces. What we want 

to know is a contribution from the non-zero stability angle modes 

which is non-singular and this is the factor ~Q. 

D. Quantum corrections (Stability angle method) 

In this subsection we will evaluate the factor ~Q which is 

a contribution from the non-zero stability angle modes in (2.C.22). 

The quantum action SQ (2.B.6) in (2.C.22) is written in terms 

of the periodic functions A, Band C defined in (2.B.10) as 

We will diagonalize the quantum action SQ under the periodic 

boundary condition in (2.C.22). This is equivalent to solving 
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the eigenvalue problem for SQ (2.D.l). For convenience sake we 

define a 2rx2r real matrix D and a 2r vector X by 

(2.D.2) 

) 

(2.D.3) 

The eigenvalue equation for SQ is given by 

(2.D.4) 

Note that 

= - D' () . l, 
where 02 is a Pauli matrix. This property of the real matrix D 

and the periodicity of Xk imply that the eigenvalue Ek is real 

and 

* If there is an eigenfunction Xk for the eigenvalue Ek (iO), Xk 
* is the eigenfunction for the eigenvalue -Ek • Let {Xk , Xk } be 

a complete set of eigenfunctions. The orthogonality and completeness 

are given, respectively, as 

(2.D.5) 

and 

~ -+ l(Xh (t ))( X: (t') ()2) - ()( :(tM X: (t') (J'2) 1 " 1-S (-t- t/l (2.D.6) 

• 
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The quantum fluctuation X can be expanded as 

(2.D.?) 

and the quantum action SQ (2.D.I) is diagonalized with respect 

* to a k and a k . Then PI (2.C.22) is proportional to. the inverse 

square root of the product of all eigenvalues Ek • 

In order to obtain further information for the eigerivalue 

E
k

, we will study the equations of motion for SQ (2.D.I), 

( -'it 1- D C-t)) X Ct) :: 0 . (2.D.8) 

These equations are equivalent to the Euler equations for S 
Q 

(2.B.12). As previously stated one can find the 2r-independent 

solutions with the property that 

X~) (. ) (cO 
(1+ ,) = '-VXf -t))o( X (iJ (2.D.9) 

These solutions satisfy the orthogonality and completeness; 

(2.D.IO) 

and 

(2.D.II) 

From these solutions one can make the complete set of the 

* eigenfunctions {Xk , Xk } and eigenvalues Ek by 

(2.D.12) 

(2.D.13) 
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where the sufix k represents the set of indices (a, n). Then 

one can calculate the right hand side of (2.C.22) by using 

stability angles. The contribution from the non-zero stability 

angle modes is proportional to 

00 - If. I {OO 1- I ~ TT 'TI E ~ n ~ci n ( , + ))01 ,~ LI.,# 0 'lI ~ -/Xl k 1 v", '" 0 2." = -co .2. 'Itn n 
('11 :#0) 

f 

-I;. 
= TT .Aim. (~)l 2 

))cI~ 0 :1. 1 . 

(2.D.14) 

Using the fact that the stability angles come in plus-minus pairs 

:: toMA x 2: ~{-i2: f))ci 1 ~{- i La 'Yl~ Vat } 
fl)1c{ 1 ~>o lJ ... >o· , 

(2.D.15) 

where n is zero or positive integer. The constant factor in 
a 

(2.D.15) may be determined by comparing it with the result of 

harmonic oscillators and gives no dynamical effect. The physical 

meaning of (2.D.15) is as follows: The first factor is the 

analog of the zero point energy. The exponent of the second 

factor represents the energy of excited state modes with the 

occupation number {n}. One can confirm the above interpretation 
a 

by reminding. that the stability angle v equals the energy 
a 

times the time interval T if the classical solution is time-

independent. The fact that the occupation number takes any positive 

integer value or zero is the characteristic feature of bose 

systems. 
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E. Energy spectrum 

Using previous results the partition function Z{T) can be 

written in the semiclassical approximation (WKB ffi» by 

where the zero mode factor ~o is given by 

, 
(2.E.l) 

(2.E.2) 

This should be compa::-ed wi th the .parti tion function for a harmonic 

oscillator system with a angular frequency w, 

(2.E.3) 

The partition function in WKB (ii) (2~E.l) has a large factor 

~ -f/2. This comes from the quantum correction of the symmetry 

coordinates which correspond to the symmetry of the system 

violated in the classical periodic orbit. For the trivial orbit 

which is time-independent and invariant under the symmetry trans-

formation, the partition function in the semiclassical approxi-

mation becomes 

where Ecl is the classical energy for the trivial orbit and wa 

is the angular frequency of the a-th mode. In this case the quantum 

correction is simply an assembly of harmonic oscillators and 
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smaller by a factor of ~f/2 than that for non-trivial orbit. 

Now we can calculate the propagator G(E) defined by 

(2.A.l). For simplicity we assume that the symmetry violated 

in the classical solution is only the time translational invar-

iance. According to (2.E.2), the zero mode factor ~o is given by 

( 
I )112 

i:llt1\. 1: (2.E.5) 

where T is the basic period of the classical orbit qcl(t), i.e., 

T multiplied by a certain positive integer t (revolution number) 

is the time interval T. In order to obtain a pole term in G(E) 

one has to sum over the multiple traverses -of the basic orbits 

in (2.E.l). For the multiple traverse of the basic orbit, the 

action Scl(T) and the stability angle Va(T) are simply the revo­

lution number t times those of the basic orbit; Scl(T)=t Scl(T), 

Va(T)=t Va(T). The propagator G(E) can then be obtained by 

substituting (2.E.l) into (2.A.3), and changing the integration 

parameter from T to the basic period T, 

x v;tp[ ~ ~ {S&tc)+ E T -t~ (n. of ;)1;' «lJ1 
~=I ' 

(2.E.6) 

-1 
The exponent in (2.E.6) is proportional to a large number n . 

One can,therefore, perform the T-integration by using the 

stationary phase method and make the summation overt to obtain 

(2.E.7) 
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In (2.E.7) To (E) is defined by the stationary condition 

(2.E.8) 

and 

From the pole in (2.E.7) the quantization condition of energies 

is given by 

(2.E.lO) 

In the zeroth order approximation of WKB (n) (2.E.lO) gives us 

the Bohr-Sommerfeld quantization condition 

WO (F)=. Sc.Q(Co(E))-t-C lo(E) = lRn ')rt I (T(l= 0,1 ,1,,"). 
(2.E.ll) 

This is valid only for a large integer m since the left hand 

side of (2.E.ll) is of order nO. Even in the zeroth order of 

WKB (~) one has to quantize the zero stability angle mode. Note 

that one can not obtain the pole terms in (2.E.7) if one disregards 

the quantum correction of the zero mode (2.E.5). In the first 

order approximation (the full WKB (n» one obtains (2.E.lO) where 

the third term in (2.E.9) is the small quantum correction to the 

classical orbit. The quantization condition (2.E.lO) is, 

therefore, valid only for small occupation numbers n 
Cl 

For a static trivial classical orbit, it is obvious from 

(2.E.4) that the excited state energy for the configuration {n } 
Cl 

is given by 

(2.E.l2) 
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", 

In closing this section we remark the following: In the 

semiclassical approximation one does not need the Hamiltonian 

and can calculate everything by using the Lagrangian. In 

practical models this simplifies the calculation. 

! 
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§III. Semiclassical method for the boson-fermion system 

A. Effective action 

In this section we will formulate the semiclassical method 

for the system in which fermions and bosons are strongly coupled 

together. Our method is applicable to any field theoretical or 

quantum mechanical model if the Lagrangian is bilinear with respect 

to the fermion field. Even if the four-fermion coupling term is 

included, it can be easily decomposed into a bilinear form by 

using an auxiliary field as is well known. 13 )14) As remarked at 
the end of Sec.II, we will use the configuration space PI with 

the Lagrangian instead of the phase space PI with the Hamiltonian .. 

The model Lagrangian considered in the following is 

(3.A.l) 

where NLB(~) is the boson field Lagrangian including self­

t coupling terms and ~=~ yD. For the Hermiticity of the Lagrangian 

V(~) is a real arbitrary function of the boson field ~ and r~(~) 

In order to clarify the expansion 

parameter, we assume that the Lagrangian of the boson field is 

proportinal to N and the fermion field ~ has N internal components 

in addition to the 

that ~~ stands for 

particle-anti-particle degrees of freedom, 

N - (k) (k) L ~ ~ • If the other quantities are 
k=l 

independent of N, the expansion parameter of our semiclassical 

so 

method (SPA(I/N» is I/N. The space-time dimension is assumed 

to be (n-l)+l in general. The bag modelS) and the quark-string4 ) 

model are considered to be special cases of (3.A.l). 

The partition function of the system is given by 
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Z(T)"~ [dq/JtpHI ~ b(ljI(x,O)+tp(x,T)) ~(<\l(x,O)- ~(X,T)) 
-I T 

x~~ det[roro(cP)] ~ri~J·xL(l\',~.<p)1 . ) (3.A.2) 

where 

(3.A.3) 

and the path integration of the fermion field (anti-commuting 

coordinate) is defined as the standard way.15) Since we know how 

the Planck constant~ appears in Z(T) and ~ is not expansion par­

ameter, we take ~=l in (3.A.2). It should be noted that if the 

coefficient of ~tao~, iyOrO, is field dependent, the determinant 

factor~n det[yOrO (~)]-l is needed in the PI formula (3.A.2) in 
x,t 

order that the PI formalism agrees with the Hamiltonian formalism. 

One can confirm this by comparing the perturbation expansion 

formulas derived from these two methods. The abbreviated notation 

[d~td~d~] implies the functional integration with the measure for 

the boson field which is derived from the phase space PI as in 

Sec.II. Since we know how to treat this measure we will disregard 

it in the following. The periodic condition for the boson field, 

-+ -+ 
~(x,O)=~(x,T), and the anti-periodicity for the fermion field, 

-+. -+ 
~(x,O)=-~(x,T), in (3.A.2) are due to the trace condition in the 

. t' f . 15) partl lon unctlon. 

Before going into the semiclassical approximation we perform 

the fermion integration and get 
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(3.A.4) 

This procedure implies that the fermion field is quanti zed in the 

background field of the boson. The determinant factor in (3.A.4) 

equals the product of all the eigenvalues defined by the eigen-

value equation, 

with the anti-periodic conditon 

~A,'r\ (X.t-tT):::- ~A,'h ex,t). (3.A.6) 

The boson field in (3.A.5) is periodic with the period T due to 

the delta functions in (3.A.4). As was done in Sec.II.D the 

eigenvalues of (3.A.5) can be expressed by the stability angles 

SA which are defined by the pseudo-periodicity 

(3.A.7) 

where ~A(~,t) is the solution of the Euler equation for the 

fermion field, 

(3.A.8) 
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The eigenvalue EA and the eigenfunction ~A of (3.A.5) are ,n ,n 

given by using the stability angle sA and the solution of (3.A.8) 

as 

(3.A.9) 

) (rl=O)tl l "') (3.A.IO) . 

Note that (2n+l)n in (3.A.IO) is due to the anti-periodicity for 

the fermion field, while the periodicity for the boson coordinate 

gives us 2nn in (2.D.13). Let {1jJA}O'be the complete set of the 

solutions of (3.A.8) which satisfies the orthogonality and com-

pleteness as 

(3 .A.II) 

(3.A.12) 

respectively. The complete set of the eigenfunctions of (3.A.5) 

is given by {~A } defined in (3.A.9). Its orthogonality and ,n 

completeness are given,respectively, as 

(3.A.13) 

(3.A.14) 

The determinant factor in (3.A.4) is then given by 

- 33 -



[det t (rer' (ir~()~ + ~ d~ r~ -V)1r 
:: r 1] ft- .. CA.?> r 0<. 11] iL {1 + (2;+~))l If 
= L 1l ~ ( t;A h ) r 

0(. L ~ (N, {'YlA)) -e;xp[ iN.t-o \ - iL 'YlA 'sA 1 $ 

11tA 1 A>o., 
(3.A.15) 

where the sum is taken over all sets of integers n
A 

such that 

O~nA~2N. "The degree of the degeneracy, p, for the configuration 

{nA} is given by 

TT 
A>o (3.A.16) 

Due to the charge conjugation invariance of the Dirac equation 

(3.A.8), the stability angles ~A appear in plus-minus pairs with 

equal magnitude but opposite signs. In the last expression of 

(3.A.IS) we assumed that ~A=~-A>O for A>O. In what follows we 

will use"the positive stability angle only, i.e., we will assume 

that ~A is always positive. Since there are equivalent N ferrnions 

and N anti-ferrnions in the Lagrangian (3.A.I), the occupation 

number for the A-th state, nA, is restricted by the Pauli principle 

such that O~nA~2N in (3.A.IS). The physical meaning of (3.A.IS) 

is obvious by the fact that the stability angle ~A equals the 

time interval T times the energy of the A-th eigenstate for a given 

potentiaIV(~) in (3.A.8) if ~ is time-independent. The first 

term in the exponent in (3.A.IS) represents the Dirac vacuum 

energy, while the second corresponds to the energy of the excited 
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ferrnions with the configuration {nA}. Substituting (3.A.lS) into 

(3.A.4) one obtains that 

x €IXf f i I4fr [cl> ~ {'Yl A 1 ,T11 . (3.A.l7) 

The effective action for the configuration {nA} , Ieff[~;{nA},T], 

is given by 

I-t!{ (<I>; in .. 1, T1 =: N t \!1IxL B (<I» + ~ \ [4>11- f1lA \ [<pl, 
(3.A.18) 

In (3.A.l7) we omitted an irrelevant constant normalization 

factor. It should be noted that (3.A.l7) is still exact. 

B. Semiclassical approximation for the effective action 

Our serniclassical method for the boson-fermion system, 

SPA (l/N), will be shown to be a l/N expansion method and becomes 

a good approximation when N is a large number. In evaluating 

(3.A.l7) one should note that the effective action Ieff (3.A.l8) 

is proportional to a large number N if the occupation number nA 

is zero or of order N. In these cases one can apply the station-

ary phase approximation (S.P.A.) to each term of the occupied 

fermion configurations {n
A

} as in Sec.II. In this method, l/N 

obviously plays the role of n in WKB(~). This shows that our 

semiclassical method is a l/N expansion. 

As the first step of the approximation the stationary point 

of the effective action for a given configuration {nA} is given by 
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t· 
(3.B.I) 

The solution of (3.B.I) is called the classical solution and 

denoted as ~cl' This classical solution, ~cl' takes account of 

the reaction from the Dirac sea of the quanti zed fermion under 

the boson background field ~cl as will be seen later. Since N 

can be factored out in (3.B.I) the classical solution .~cl is of 

order NO. In the second step the quantum correction around the 

classical solution is calculated up to the second order in n by 

substituting 

(3.B.2) 

into the effective action Ieff{nA}. Since the Gauss integral 

over the quantum fluctuation n is dominated by the region 

(n/IN) 2~1/N, n/IN is of order l/IN ·(n is of order NO) • 

The above procedure implies that the occupation number of 

the fermions dressed with the boson background field is not 

changed within the periodic motion of~. We assume that the 

fermion number {nA} is a fairly good quantum number as one usually 

expects in the quark model. 

In order to obtain the expansion of the stability angle SA' 

we substitute 
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(3.B.3) 

In (3.B.3) the superscript (i) denotes the power 

of l//N which equals the power in n. As in the usual perturbation 

method, EA (i) and SA(±) are calculated by comparing the same order ,n ,n 

terms in both sides of (3.A.5). 

In the zeroth order, (3.A.5) provides 

(3.B.4) 

with the boundary condition 

(3.B.5) 

The orthogonality and completness are the same as (3.A.13) and 

(3.A.14), respectively, where the zeroth order quantities are 

substituted. In order to simplify the calculation we introduce 

the new function W(o) defined by 
A 

l \) (01 -1 _ ( • (01 ) (0\ 

lA (X, i) == "VXf 1 EA,')t t ~A 'n (X} i:) 
I • 

(3.B.6) 

These functions satisfy 

(3.B.?) 

(3.B.8) 

where the zeroth order stability angle ~(~) is given by 

~ (0) [ (01 1 
')A -::: - (1rt-t l)n: -+ l::: A,')\ T J (3.B.9) 

) 
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which is n-independent. The orthogonality and completeness for 

W(o) are obtained by substituting the zeroth order quantities 
A 

into (3.A.II) and (3.A.12). 

The first order term provides us with 

T r (/1 ~ l'h i1}O) (I) ( \J ~) 
:. -) :: CA J( 'I D (~)T, 

.A 0 A A 

and 

lV, (I) :: _ 

A D
lI ) 1I) (0) 

(1) TA 

where W(l) is defined by 
A 

l lJ II ) :. . (i F (01 t) CC:: II ) 

lA - ~ - A,')\ ':>A ,f)\. 

and PA is the projection operator onto the state w(~). 

(3.B.ID) 

(3.B.II) 

(3.B.12) 

The 

equations (3.B.ID) and (3.B.II) imply that E(l) and W(l) are n-
A,n A 

independent. 

At this point, one can inspect the stationary condition 

(3.B.I) of the effective action I eff . From (3.A.18) and (3.B.ID), 

and reminding that n is the small variation around ~cl' one obtains 

the stationary condition, 

(3.B.13) 

with the Dirac equation (3.B.7) for w(~). This is the time­

dependent Hartree-Fock equation which has been first given in 

field theory by DHN. 2 ) Note that if one neglects the third term 

and chooses {nA} such as f nA=N, (3.B.13) with the Dirac equation 

(3.B.7) becomes the Euler equation for the Lagrangian (3.A.I). 

From this fact one can see that the third term in (3.B.13) 
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corresponds to the reaction from the Dirac sea and the fourth 

term to the reaction from the excited fermions. The solutions 

{~CI'~(~)} of the coupled equations (3.B.?) and (3.B.13) are 

called the classical solutions for the given configuration {nA}. 

DHN has imposed the Bohr-Summerfeld condition on the classical 

solutions. The full semiclassical approximation (WKB) needs 

further approximation and this step was performed by Kikkawa and 

the author3 ) • 

The second order term in (3.A.5) provides us with the second 

order stability angle, 

T r= (:1) == _ re!),) 
-A,''f\. JA 

= _ rT,'IIxW(O) D('C'h) 1- PA OUI(h)l1)") -t{ TJ'It fij(O) De21 lU(O) 
) 0 CA I A l D(O) -c.. I A } X lA (In 1 A ( 3 • B. 14 ) 

o • 

Summing up all terms calculated above, one obtains the approximated 

effective action, 

where 

(3.B.16) 

and 
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The effective action (3.B.lS) is non-local due to the non-locality 

of the second order stability angles (3.B.14) with respect: to n. 

Therefore"," we do not know whether the integration over n provides 

the simple form, exp[-ir(n +12)V ], which is expected by analogy 
a. a. a. 

with the discussion in Sec.II.D. It will be of great advantages 

if one is able to make Ieff local. In fact, using a set of 

infinite auxiliary fields {XA} the effective action leff can be 

rewritten as 

(3.B.18) 

(3.B.19) 

-(0) D(l) L1}O) 
-I- LpA U1.) TA , 

(3.B.20) 

where the subsidiary conditions for XA and n , 

(3.B.21) 

are imposed. The equivalence of (3.B.lS) with (3.B.2l) to (3.B.1S) 

can be shown by integrating out the PI formula with the action 

(3. B .1S) over X, i. e • , 
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(3.B.22) 

The equivalence can be formally shown if X's are assumed to be 

either commuting or anti-commuting coordinates. We emphasize 

that X is assumed to be the commuting coordinate in what follows. 

The quantum effective action SQ{~A} (3.B.19) is now local 

and quadratic in the multicomponent commuting field H={n,Xl,X2, •. } 

and one can apply the stability angle method as in Sec.II.D. 

If the new stability angles va. ({nA}, T) to the Euler equations 

of SQ for the quantum fluctuation H are obtained, the partition 

function turns out to be 

co [ 1'12 ZeT)=L L .L l C&(l:,T) ~(NJ{nA)) 
f~l f~1 i=1 

(3.B.23) 

where T is the basic period of the periodic classical solution 

~cl and T/T=t ( positive integer). The effective action Ieff 

({nA},T) in (3.B.23) is given by 

The occupation number p of the a.-th mode takes a. 

zero or an arbitrary positive integer. The factor T comes from 

the trace of the zero stability angle mode and [CCl(T,T)]1/2 

represents the quantum correction of the zero stability angle 
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(. 

coordinate like (2.E.5). This factor may be calculated by the 

collective coordinate method and satisfy [C
cl

(T,T)]1/2=[C
cl

(T)]1/5Vr. 

C.Energy spectrum 

From the expression for Z(T), (3.B.23), one can easily see 

that the propagator G (E) can be obtained:- through the same ''lay 

as in Sec.II.E, where ~ is replaced by l/N. By inspecting poles 

in G(E) the energy spectra are given by 

W (E, {llA 1, f1'~ 1) = 2K m (m.=Q·l 1 , .. ) 
) J J J , 

(3.C.l) 

where W(E,{nA} ,{Pa.l) 'is defined as 

(3.C.2) 

In (3.C.2), To(E) is the solution of 

In the zeroth order approximation, (3.C.l) provides us with 

the Bohr-Sornrnerfeld condition proposed by DHN, 

(3.C.4) 

This condition is valid if m is of order N. Note that n
A 

is also 

of order N or zero. In this case E becomes of order N, too. 

We emphasize that even in this approximation the energy includes 

the quantum effect of the ferrnion under the boson background 

field. 
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The quantization condition of energy in the first order is 

the equation (3.C.l). The third term in (3.C.2) gives the quantum 

correctiori to the energy for the configuration ({n
A

}, {Pa}) and 

the occupation number p of the a-th mode should be of order NO. a 

For a static classical solution $cl' the excited state energy for 

the configuration ({nA},{Pa}) turns out to be 

which is T-independent. 

So far we have not considered the renormalization problem. 

It will be discussed in the following sections. 
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§IV. Renormalization in the semiclassical method 

A. Semiclassical method for the Gross-Nev.eu model 

Taking the Gross-Neveu model as a theoretical laboratory, 

we will study the renormalization program in the semiclassical 

method. The Gross-Neveu model is a good example of applying our 

method, since the non-trivial classical solution does not appear 

if the coupling between the fermion and the boson is switched off. 

The model is given by the Lagrangian in the l+ldiinensional 

space-time, 

where;;; ", 't'u't'u stands for 

(4.A.l) 

N 
I ~~k)l/J~k), j=y d~ and the suffix u 

means 
k=l ~ 13 )14) 

the unrenormalized quantity. It is well known ' that 

with the help of a subsidiary boson field cr for the composite u 

field ~ l/J the Lagrangian (4.A.l) can be rewritten as the bilinear 
u u 

form 

(4.A.2) 

Since this Lagrangian is a special case of (3.A.l), one can apply 

our SPA (l/N) in Sec. III to this model. 

In terms of the renormalized quantities, (4.A.2) becomes 

Since we are interested in the renormalization in SPA (l/N), the 

two constants Zl and Z3 are needed. In general the wave function 

renormalization constant Z2 and the counter term for four-fermion 

- 2 vertex (l/Jl/J) are necessary. In these cases although the subsidiar.y 
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field cr seems to be a superfluous variable if the four-fermionterm 

is needed, cr should be still incorporated as a representative of 

the dynamical variable for ~~ because the propagator of ~W has 

a pole in the l/N expansionI3 ). We will discuss these problems 

in Sec.V. 

Since the renormalization in SPA (l/N) should be performed 

order by order in the l/N expansion, we expand the renormalization 

constants Zl and Z3 as 

"1 1 -= 1 i- ~ ~ Cl') 1" 0 ( VN") } 

Z3 = ·tt~) -t ~ ~:1> + 0 (I/N 1
) • 

(4.A.4) 

The stationary condition (3.B.13) for the Gross-Neveu model 

turns out to be 

- t,(O) 0 :: - ~L LpCO)U;CO) + ~ L (:&.) meO ) l\)(O) 
3 eR A A lA A N 'f A lA , 

which should be solved together with the Dirac equation, 

and the normalization conditon for ",(0) 
"'A ' 

(4.A.5) 

(4.A.6) 

(4.A.7) 

The zeroth order stability angle ~iO) is given by the pseudo­

periodicity' 

(0) 

~ (X,T) = ( 
• l"" (0) ) (0) 0Xf - 1. JA tt (x, 0) . (4.A.8) 
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(0 ) 
Once the classical solutions (acl,t/J A ) are determined by 

(4.A.5)- (4.A.7), the effective action Ieff in SPA (l/N) is given 

by 

(4.A.9) 

where ,. . 

Sri =\ ~~X (-2Ii:)a~)+ L(I- ~~) -S:I[CJ&l 
o A J~ , 

(4.A.IO) 

~(I- ~) l~~A CtA/I) 1 , (4.A.ll) 

(4.A.12) 

and 

(4.A.13) 

The renormalization program is performed by the following 

steps. In the first step the renormalization constants are 

determined in the vacuum sector ({nA=O}). In the second step 

using these renormalization constants one can show that the 

physical quantities, for example the difference between the vacuum 

energy and the excited state energy, become finite in the other 

sector ({nA}¥{O}). 

B. Renormalization of the vaccum sector 

In order to determine the renormalization constants, one needs 

propagators and proper vertex functions. In the perturbation 

method the proper vertices are defined by using the Feynman graphs. 

Since the semiclassical method has no reference to the graph theory, 
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one has to define the proper vertices in the framework. of the 

semiclassical method. We will, therefore, calculate the generating 

functional for the proper verticesI6 ),17) r (proper r) in the 

semiclassical l/N expansion method. 

Let us introduce the generating functional car wi th the source 

functions J, Band 8,respectively, for the field operators E, ~ 

and ~, whose vacuum expectation values are associated with cr, ~ 

and ~. This functional 1Jf generates connected Green r s functions 

and is defined by 

~ti'l.6t1, ~,~]1= HJU'l" d'f11Qd{>\ ijl>X(L"ti'. +NI 1TB"YT~ $)} , 
(4.B.I) 

where J is commuting function, and Band B are anti-commuting 

functions. Since we are interested in the vacuum sector only 

in this subsection, the time interval T is taken to be infinite 

from the outset in (4.B.I)16). The justification of this procedure 

can be checked by comparing 7Jf in (4. B.I) with the contribution from 

the vacuum sector for the finite time interval T, which is taken 

to be infinite at the end step. By using 7.tr the proper r is defined 

by 

OC) 

l-'[(»tyl Y'l ~ lA)[1, ~ ~~ 1- ~ d~x (N cr }-t ~ 4' +Lp ~ ) 
-~ . (4.B.2) 

The vacuum expectation values cr, ~ and ~ in the system with the 

non-vanishing source terms are given by 

- ~llJ 
) tp(:;():::- - -

~ ~(X) 
(4.B.3) 

Note that there .are the following relations 

- 47 -



IT ==-N] 
~a (4.B.4) 

In (4.B.3) and (4.B.4) the derivative with respect to the anti-

commuting field is defined by the left derivative. 

As the first step of calculating the proper r, we evaluate 

~8) by the same method as in Sec. Ill. The integration Q~er ~ 

fields provides us with 

where 
00 

IZ[Z~J/~/~1 ~ \~:x:(- ~~:) Z2 ... ZT) -i l;.1n (w+i~ 2:) 
-00 

(4.B.6) 

and, up to the zeroth order in l/N (the leading order is of order 

N) , . 
00 00 

Ic.atAnct I L', 1, ~I ~ J :: ~ J~:>( ( - ~ ~~}Z :t) t- t"d ~ ol~:( L (X) U 3l' (XIX:) 
_~ I _~ 

The fermion propagator S'l: under the background field of l: is 

defined by 

-I 

S~(?(I)XJ:: (~+ i~Z) (X'/X:t). (4.B.8) 

The notationstr and Tr in (4. B. 6) and (4. B. 7) represent, 

respectively, the traces with respect to y-matrices and space-

time coordinates together with y-matrices. Since excited states 
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do not contribute to (4.B.5) .due to the infinite time interval 

. h 1 . . . 16) ( ) . d ln t e usua 1£ prescrlptl0n ,NI~+I t lS suppose to 
l.. coun 

equal Ieff {{nA=O}, T~oo) in (3.A.18) if the source terms are 

switched off. Note that the Dirac vacuum energy multiplied by 

the time interval T, NI~ [E] in (3.A.18), becomes (-iN) Tr 
AA 

(1 +izlg~) as T goes infinity. We assume that SB and ~~ are of 

order N because the fermion field ~ has N internal components. 

Since lE is multiplied by N in the exponent of (4.B.5), 

we can apply S.P.A. to (4.B.5) as in Sec. Ill. Then we make 

an expansion of the exponent in (4.B.5) around the stationary 

point E up to the zeroth order in l/N by substituting I{x)= c 

Ec{x)+n{x)/~. Note that the leading order is of order N. By 

performing .the integration over n one obtains 

where the stationary point Ec is defined by 

~ It. \ - 0 
~L ~c2!c - . 

(4.B.10) 

Substituting (4.B.9) into (4.B.3), B, B and the stationary point 

E , which is functional· of J, Band 8 through (4.B.10), can be c 

solved in terms of 0, ~ and ~ as 

(4.B.ll) 

The proper r is calculated from (4.B.2) if (4.B.9) and (4.B.ll) 

are substituted; 
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(4. B. 12) 

where 

-\ 

So-(:;("Xl.)= (¥+ i ~<SJ (XI:X.~). (4. B. 13) 

In obtaining (4.B.12) r(l), S(l) and B(l) were cancelled out up 

to the zeroth order in l/N. Some algebraic computation leads 

us to 

(4. B. 14 ) 

where 
ro 

r"' = ~~'x {- jt,' (s'+- ~\!! (iiHHS)lf11- i 1-.Rt CD -t i ~ (5') I (4.B.15) 

rll 
\ i T n [ (0) • ~ 

-=".2 It-)m 33 ~(z-~) + 'L~ iA.sCS'(:rJ~)SJ~Jl:) 

t ~ ~'lip (x.).5 .. (X,ll-) t.p(\1l -t 0/('01).3
6

(:1. X)\f (X))} (4. B.16) 

) -\&1 r I ~U) '1 I (" - I . }' 

~-Joo Xl-2"da 6 -~~I ~~tp6 +~:'3 iftSo'(:;(J:()6(~). (4.B.17) 
( 0 ) 

It is worthwhile to note that when W=O in (4.B.15)-(4.B.17) r , 

r(l) and rcount correspond to Scl' SQ and Scount with {nA=O} in 

(4.A.lO)-(4.A.12) respectively. 

From (4.B.14)-(4.B.17) one can understand what SPA (l/N) is 

if interpreted in the language of the graph theory19). The proper 

r in the zeroth order approximation of SPA (l/N), reO) (4.B.15), 

consists of the proper tree graphs and the proper graphs with 
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fermion one-loops (see Fig.l). This implies that the first term 

in Scl (4.A.IO) corresponds to the proper tree vacuum graph and 

the second term which is the sum of all the stability angles for 

the fermion eigen modes, 2~(O), stands for the sum of the proper 
AA 

vacuum graphs with fermion one-loops. The first order proper r, 

r(l) (4.B.16), consists of the proper graphs with the boson one­

loops, while infinite fermion loops are included in r(l) (see 

Fig.2). This corresponds to the sum of all the stability angles 

1 for the quantum fluctuation, -22v ({nA=O}, T+oo). The first 
a a 

order counter terms in r t (4.B.17) are shown in Fig.3. The coun 

above results can be understood from the fact that the 0-

propagator is proportional to l/N and one fermion loop provides 

a factor N due to N equivalent fermion components. 

The renormalization in the zeroth order of SPA (l/N) is, 

therefore, performed by the usual one-loop renormalization 

program. On the other hand, the first order of SPA (l/N) is not 

a simple two-loop approximation. Note that the proper vertex in 

the first order of SPA (l/N) includes the proper graphs with 

different number of loops. This means that even if the system 

is renormalizable in the perturbation method, the renormali-

zability of the first order is not obvious in SPA (l/N). 

In the Gross-Neveu model one can show that the renormali-

zation in SPA (l/N) can be performed order by order in the 

parameter liNo 

The vacuum expectation values 0 0 , Wo and ~o of the field 
A A A 

operators L, ~ and ~ in the original system without source terms 

are given by (4.B.4) as the solution of the stationary conditions 

of the proper r, 
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o (4.B.18) 
• 

From (4.B.14)-(4.B.17) it is obvious that Wo =~o=O satisfies 

(4.B.18), so Wo and ~o are supposed to be zero. If we assume 

that the vacuum in this model is invariant under the space-time 

translation, the vacuum expectation value 0
0 

should be a constant. 

Before solving (4.B.18) one has to perform the renormatization 

program at a certain renormalization point ~ to determine the 

renormalization constants by some renormalization conditions. 

After these procedure 0
0 

is represented in terms of ~, the coupling 

constant g and the expansion parameter I/N. Conversely ~ is 

written in terms of 0
0

, g and I/N by solving this relation and 

so the renormalization constants are. At this point the stationary 

condition , 

(4.B.19) 

can be interpreted as a renormalization condition for Z3. It 

should be noted that 0
0 

has to be restricted such that the proper 

r is maximum at the point 0=0
0

16 ). This condition implies that 

the a field has no tachyon. In this paper we adopt (4.B.19) for 

Z3 and the following renormalization conditon for Zl' 

b (J (P, :: 0) ~ t.p( P, ) b 4' (F1) -~ , (4.B.20) 

where a (P 1) and others ,.are the Fourier transforms of CJ (x), etc. 

Before going to practical calculations we comment on the 

regularization of divergences. In order to perform the consistent 
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renormalization, one has to use a common regularization method 

throughout calculations. In particular one has ~o compute the 

sum of the stability angles for the fermion excitation I~(O), 
AA 

the sum of the stability angles for the quantum fluctuation 

1 I2Va ({nA}) and the proper r (4.B.14) by the same method. 
a 

Since the time interval is taken to be infinite from the 

outset in calculating the proper r it is useful to integrate 

over the space-time coordinates in the infinite volume. On the 

other hand, in making the sum over the stability angles it is 

convenient to quantize waves in the finite box and the finite 

time interval. The continuum limit (infinite volume limit) 

should be taken after finding the integration measure for the 

quantum numbers which are assigned to each stability angle mode. 

In the leading order of. l/N the renormalization constant 

z~O) is determined by 

o. (4.B.21) 

The result is 

(4.B.22) 

where the straight cut off regularization is adopted. It is 

obvious that the expansion of Zl in (4.A.4) agrees with the 

renormalization condition (4.B.20) in the leading order of liNo 

The renormalization conditions of the next to the leading 

order in l/N turn out to be 
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(4. B. 23) 

~(r'h+'~)l 
bO' blfbt{ (jcO'o, l\'::qJxO 

::: 0 , 

where zeD) is substituted so that the renormalization constants 
3 . 

are determined order by order in l/N. From (4.B.23) one obtaines 

(1'1 

~I 

= ::!- r d~R l ~1 _ :l ~()) ~ b.l. 1 
1. J(~ J R'a._ ~·ao~ I ~ O~2_ ~~at)!l)2j 

(4.B.24) 

= - l~ [1. (A~/ Jf~'o':) +.2 a:" {I- .k (J\'/~ 2():) 1] 
, 

where 

(4.B.25) 

( 0) (1) (1) . If z . z . and z so obtalned are substituted into (4.B.l4) 
3 '3 1 

the proper r becomes finite up to the next to the leading order 

in l/N except a constant divergent number which can be swept 

away by the subtraction of the vacuum energy. 

It should be emphasized that although r(l) (4.B.l6) includes 

the infinite number of loops,T t (4.B.l7) has finite numbers coun 

of counter terms which are linear with respect to the renormali-

zation constants. This fact enables us to perform the renormali-

zation by the subtraction scheme even in SPA (l/N). 
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C. Excited fermion states 

In general, it is difficult to solve the stationary 

condition (3.B.13) with the Dirac equation (3.B.7). To do so, 

one has to solve the Dirac equation in an arbitrary boson 

background field to obtain the complete set of the fermion wave 

functions which are functionals of the boson field. After 

substituting these fermion wave functions into (3.B.13), the 

classical solution for the boson field is determined by (3.B.13). 

For static classical solutions in the Gross-Neveu model, DHN2 } 

succeeded in solving the stationary condition (4.A.5) with 

(4.A.6) by using the inverse scattering method. In order to 

obtain time-dependent solutions, some speculative consideration 

is needed. One approach is given by restricting configurations 

of the boson field into a certain set of functions. 

In the case of Gcl having a single discrete level and which 

is occupied by n excited fermions, the classical solution for o 

(4.A.5}-(4.A.7) is given by 

(4.C.l) 

where 

(4.C.2) 

The fermion wave function for the discrete level is 

(4.C.3) 
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r' 

and for continuum levels 

. (0) 1 
~ (R, X ) = J:2 N (t< )' 

ikx (. R + iK -t:anJt K (x-+ 00 ) 

k :1)( (ik? - ~cr.~ {k +ikt.Mt!K (X-~o)1 
J k ~ + 'l~O"o2. 

(4.C.4) 

, 
where the normalization constant N(k) is given by 

and L is the lengt~ of the quantization box. In this case, the 

energy levels of the leading order in l/N are determined by using 

(3.C.s) ; 

E = - ~ = ~ g C5 N ",'AA (71 rlo ) no d T )L 0 .!\!Nil. !l N , 
(4.C.6) 

where the fermion occupation number n of the discrete level is 
° 

restricted to O~no~N-l because there is no solution for no~N. 

The divergence in the energy is cancelled away by that in the 

renormalization constant z;o) which was determined in the vacuum 

sector. The degeneracy number of the state {no} is 

which is derived from (3.A.l6). 

Quantum corrections are calculated from (4.A.ll). Since the. 

above classical solution is static, the stability angle of the 

quantum fluctuation becomes the angular frequency times the time 

interval T. Then we will find the eigenfrequencies of the quantum 

fluctuations ,XA and n which obey 

( i if - ~ 6" & ) X A + ~? Lp~) = 0 J (4. C. 7) 

- 3~) ? + ~ ~ ( l¥:lXA + itA tp~) ) - ~ ~o (YJ:)X o 1" 'Xo tp;») = O. (4 .C. 8) 
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Eliminating XA' one obtains the homogeneous integral equation 

for the eigenfrequency w, 

~~) 1. fA) (X) = - ~l Id 'tJ 1<'0 ( {'no ~ ~ x} ~) '7.w ( '&) (4.C.9) 
') 

where 

(4.C.IO) 

The kernel function to the configuration {n } is given by o 

kcv ({ n. t; 'X,',O = ~ (~ -1)[ If':CXl trWA-tW (O'<t; x, '4) (1- eYI{loC\ll 
-(0) tOrt . 0 (0) 11 

+LVA (~) qWA-eo (()J, ~,:x::Yo (1- P"')Y;A()(~ tl1Al': {'n
o
1 (4.C.ll: 

_ [ { r ~ meO). L . (D) 

-- 1 )!1.J( N(/~) T(RJ'X)qW(A)+W(<S'&')XJ~)(I-PR)tp(}~,~) 

+ (1- 'Ylo)llJ(O) "- (. ( )W(Ol 1 N To (X) CfWoi-lo (JJ ,X,'(i) I-Po '0 (~) 

+ {(x, ~J w) -l; (~) JC, -w) n , 
where the energy of the zeroth order fermion state w

A 
is defined 

by w(k)=Jg2a~+k2i for the continuum state and wo=jg 2a;-K2' for the 

discrete level state. The fermion propagator in the boson 

background field acl for the configuration {no} is ~btained by 

substituting the classical solution a
cl 

into (4.B.13); 

r iE(t-t') 
GrE(O'c1~XJ~)=}dt e Scr=6J(X,t ;~Jt') 

. E N(~)r(llOl -(0) (0) -(0) e 1 = t Ir<. T(~,X)t.po~,~)e(X-~\+Lp(-k.x)Y'(-R.,~) (~-X)l, 

(4.C.12; 

(4.C.13) 

where k=JE2-g2a~' • 

It may be instructive to give an alternative expression for 
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(4.C.9), 

~ I -~Z' b (:x. -~) - i ~. t (N-'Il.) le ~~ tt erE (aJ; X,:I) tTE-", (0" ~ ~ > xl 

The crucial point in (4.C.l4) consist's in the E-integration. 

The contour C, which corresponds to the usual i £ prescription, 

provides us with the vacuum polarization amplitude (Fig.4). The 

contour Co takes the round path avoiding the discrete eigenstate 

pole which is occupied by the excited fermion (Fig.4). In general, 

for each component of the fermion field which has N components, 

the contour C must be introduced. This contour avoids the 
{n

A
} 

eigen state poles which are occupied by the excited fermions or 

antifermions (Fig.5). In this representation nA is restricted 

to O~nA~2, which implies that each component of the fermion field 

has only particle-anti-particle degrees of freedom. By the use 

of the contours C the kernel function (4.C.ll) for the config-
{n

A
} 

uration {nA} is given by 

. N \ clE 
kw(fnA1~x.~)= ~.La) :LTl iA G-E(crJ~XJ~)trE_CV(<5d~'<1;X) (4.C.l5) 

R-=I C{n~)} , 

N (k) 
where nA= r nA . Note'that (4.C.l4) with no=O and 0cl=oo 

k=l 
equals the term inside the square brackets in r(l) (4.B.l6) with 

~=~=O and 0=00 . From this fact one can confirm that r(l) (4.B.l6) 

equals r(-})Va({nA=o},T~oo) in (3.B.24) as previously commented. 
a 

In the usual i £ prescription excited states can not contribute 

to the proper r because of the infinite time interval. The 

expression of the kernel function (4.C.l5), however, implies 
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,-

that if the contour C{n
A

} is adopted in the energy integration 

of the Fourier transform of r(l) instead of the usual i E pre­

scription, r(l) can provide US with the excited state energy. 

At the same time one has to use an appropriate contour for 

Tr ln ($+iga) in reO) (4.B.15) when one finds the classical solution 

from the stationary condition or(O)/oa(x)=O. 

The diverging term in the r. h. s. of (4.C.9) can be 

eliminated by z;O) in the 1. h. s. which was determined in the 

vacuum sector. 

For the static classical solution, the energy of excited 

{
f I (I) ~ (I) ,,( "nA) I 0 .,.(0) } 

+ }JX 1~3 ()cl({'Yl Al;x)- a., ~'1: I- N T o~ JA [6&1 
(4.C.16) 

t 2: (~+ ~) lU~ ({nAn 
d 1 

where wa({nA}) is the eigenfrequency of (4.C.9). The divergencies 

in (4.C.16) are eliminated by substitution of the renormalization 

constants determined in the vacuum sector except for the divergence 

which is independent of ({nA}, {Pal). However, the'energy measured 

from the vacuum energy, 

M ({ 'YlA 1, {1'1( 1) = E ( {nA 1 , {~ 1) - E ( f 0' ) { 0 \ ) 
) 

(4.C.17) 

is finite. 
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§V. Multiplicative renormalization 

A. Renormalization by the subtraction scheme 

As pointed out in Sec. IV. B, the renormalization of the 

Gross-Neveu model can be performed by the subtraction scheme 

even in SPA (l/N) if the Lagrangian (4.A.3) is adopted. Up to 

the first order of SPA(I/N) the four-fermion vertex is finite 

in the particular model Lagrangian (4.A.3), although it can be 

divergent as far as the power counting is concerned. In the 

higher order the cancellation of the devergence in the four-

fermion vertex has not be known. ".If the four-fermion vertex is 

divergent its counter term, g2Z~(~o/)2/2N, is needed in (4.A.3). 

For the O(N) symmetric ~4 model~O) SPA(I/N) can be also 

applied. In this model, even if the subsidiary field B for· the 

composite field ~2 is introduced, the ~4 vertex is still 

divergent in the 4-dimensional space-time. The counter term 

Z5g2~~/2N is necessary in addition to the B~2 vertex. 

We will, therefore, study the Lagrangian including the 

g2Z4 (~W)2/2N term as well as the gZlcr{~W) term in the following. 

If the renormalization constant Z~ does not include the zeroth 

order term in l/N, Z 4 =z ( !) /N+O (1/N2 ) , . tlie_addi tionaJ, counter 

term, 

(S.A.I) 

appears in -r (4.B.17). In this case, the rertormalization count 

can be performed by the subtraction scheme. In the O(N) 
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symmetric $~ theory, the renormalization can be performed by 

the same way as in the Gross-Neveu model. 

The cr(WW} term generatesthe (~Wj2 term in the Lagrangian 

(4.A.l) if a is integrated out. Therefore, orie has to prove 

that the separation of the a(~w) term from the (~W}2 term 

. ff t t th h . 1 b abl t' t' 19) g1ves no e ec 0 e p YS1ca 0 serv e quan 1 1es. 

This is ao future problem. 

B. Multiplicative renormalization in the l/N expansion method 

In this subsection, the Lagrangian defined by 

(S.B.l) 

is adopted. This system is equivalent to the Gross-Neveu model, 

but the subsidiary field a is incorporated in a different way. 

The renormalization constant Z~ is supposed to include the 

zeroth order in l/N; Z4=z(~}+Z(~}/N+O(l/N2}. In this case 

the four-fermion vertex is proportional to a factor l/N in 

the leading order of liNo On the other hand, if the loopwise 

contraction over spinor indices is taken, each fermion loop 

provides a factor N due to N fermion components. Therefore, 

all proper vertices include infinite loops and terms. with any 

higher power of the renormalization constants in the leading 

order of l/N as shown in Fig. 6 and Fig. 7. One can not 

separate counter (subtraction) terms from the proper vertices 

and the renormalization in the leading order of l/N should be 

performed by the multiplicative renormalization. Since we are study-

ing the renormalization program of this model only in the 
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leading order of l/N, we will omit the superscript (0) in the 

follmving. 

In the multiplicative renormalization program, one first 

arranges the renormalization constants by using integral equa-

tions in which a finite number of the renormalization constants 

appear .. Then one can determine the renormalization constants 

under appropriate renormalization conditions. Since all proper 

vertices are divergent, one has to substitute the renormaliza-

tion constants determined above into these proper vertices and to 

. examine whether they become finite. 

In the vacuum sector of this system, the proper ('~1J1) 

vertex function turns out to be 

=-i M , (S.B.2) 

where M is the fermion mass in this approximation and determined 

by the integral equation (Fig. 6), 

(S.B.3) 

The vacuum expectation value 00 of the 0 field must satisfy that 

(S.B.4) 
) 

which corresponds to the stationary condition or/oola=oo=o. 

The proper (iVrp) 2 and a (1P1fi) vertices with zero external momenta 

(Fig. 7) are given by 
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(S.B.S) 

From Fig. 6 and Fig. 7 one finds that the proper vertices consist 

of infinite loops and the renormalization constants while .the 

numbers of the renormalization constants in (S.B.2)-(S.B.S) 

are finite due to the integral equation (S.B.3). This fact 

enables us to calculate the renormalization constants under 

some renormalization conditions. 

We will adopt the following renormalization conditions, 

< (j(lplP»fVlDlWt\~ ~ ~ 
«lV4')l>~'~ ~~ 

=-i~ 

= i~~ 
N 

, (S.B.6) 

(S.B.7) 

and (S.B.4). The renormalization constatns are, then, determi-

ned from these renormalization conditions; 

(S.B.8) 

where the fermion mass is given by 

(S.B.9) 

These renormalization constants make the proper r to be finite 

in the leading order of l/N. 
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It is more complicated to perform the renormalization of 

this system in the higher order of l/N. We have not known 

how to prove the renormalizability in the multiplicative 

renormalization in general. This analysis is an interesting 

problem. 
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§VI. Conclusions 

In this article we have studied the semiclassical method 

(SPA(l/N» for the boson-fermion system in which N is the number 

of equivalent fermions and used as an expansion parameter. In 

particular, since SPA (l/N) is not the loop expansion, it is 

necessary to check whether the renormalization program can be 

performed consistently in the framework of SPA (l/N). We have 

formulated the renormalization program from the general viewpoint. 

This analysis will be useful for the renormalization in other 

non-perturbative methods which will be developed in future. It 

has been shown that the multiplicative renormalization is necessary 

and possible in the leading order of l/N expansion method for the 

particular Lagrangian, 

(6.1) 

Finally, we would like to point out that the following 

problems should be investigated as next steps. 

(1) The treatment of the zero mode in the usual semiclassical 

method has been discussed in Sec. 11. C, according to"DHN1 ). 

It has been found that the mapping (2.C.21) may separate out 

the zero mode from the non-zero stability angle modes. By this 

'mapping, the intuitive meaning of the zero mode becomes more 

clear. It is also necessary to show explicitly that the zero 

mode factor in SPA (l/N) can be separated out in the similar way. 

(2) The multiplicative renormalization method has been applied 

in the leading order of l/N for the Lagrangian (6.1). It is 

interesting to study whether or not the mUltiplicative renormal-
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ization program can be constructed for the O(N) symmetric ~4 

theory in the 4-dimensional space-time. 

(3) Our final purpose is to compute hadron spectra by using 

SPA (l/N). To do so one has to find "the classical solution" 

for a 4-dimensional model and it is an open problem. 
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Figure captions 

Fig. 1 

(a) Feynman rules for the Gross-Neveu model with the 

Lagrangian (4.A.3): Wavy and straight lines indicate 

the boson and the fermion propagation, respectively. 

(b) The graphical representation of the leading order 

proper r (4.B.lS): Lines with a and ~ indicate the 

external fields of the boson and the fermion, respectively. 

Fig. 2 The graphical representation of the next leading 

Fig. 3 

Fig. 4 

order r (4.B.16). 

The graphical representation of the counter terms 

r t (4.B.17). coun 

(a) The analyticity of the integral function GE GE- w in 

(4.C.14): Bold and dashed lines indicate the cuts of 

GE- w and GE , respectively. A circle means the discrete 

pole for the fermion from GE , a bold circle for the 

fermion from GE ,a circle with a cross for the anti--w 

fermion from GE , and a bold circle with a cross for the 

anti-fermion from G
E 

. -w 

(b) The contours C and Co: The contour C, which cor-

responds to the usual is prescription, provides the 

vacuum state. The contour Co p~ovides the state in 

which the discrete level is occupied by one excited 

fermion. 

Fig. 5 The contours C{n
A

}: C{no=O} and C{no=l} equal C and 

Co in Fig. 4, respectively. Cl } provides the state {no=l 
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in which the discrete level is occupied by one anti-

fermion and C corresponds to the state occupied by {no=2} 

one fermion and one anti-fermion. 

Fig. 6 

(a) Feynman rules for the Gross-Neveu model with the 

Lagrangian (S.B.l): Wavy and straight lines indicate the 

boson and the fermi on propagation, respectively. 

(b) The fermion mass M: The loopwise contraction over 

spinor indices is taken in this figure and Fig. 7. 

Fig. 7 The proper vertices. 
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