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ABSTRACT

This thesis treats sevéral problems assoclated with
the theory of fuzzy automata and fuzzy grammars which was .
studied while the author was in the doctor course of Depart?
. ment of Electrical Engineering, Faculty of Engineering '

Sciences, Osaka University.

A fuzzy automaton was formulated by Wee and Fu by
using the concept of fuzzy sets and fuzzy systems by Zadeh.

It 18 shown that )_-fuzzy_language by a fuzzy automaton is a
regular language, The family of fuzzy languages defined by
- fuzzy automata forms a disfrlbutive lattice and the complemeﬁt
of the fuzzy language éan be characterized by an optimistic
fuzzy‘éutomata. ‘

A new form of fuzzy grammar, which is called an n-fold'
fuzzy grammar, is defined and some of its properties are
investigated. The n-fold fuzzy grammars are a'generallzation
of fuzzy grammars defined by Lee and Zadeh, where the grade
of appllcatlon of the rule to be used next is conditioned by
the nf 2 1) rules used before in a derivation. The n-fold
fuzzy grammars with CF rules can be shown to generate CS lan-
guages, although fuzzy grammars with CF rules can not generate

CS languages.



Finally, a general formulation of formal grammars 1s .
developed. A pseudo grammar is defined and from it various
kinds of grammars which have or have not appeared in existing

literatures are derived.
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CHAPTER 1
INTRODUCTION

Fuzzy set is a cdncept originated by Zadeh [1] in
1965. The ideas of fuzzysets are to cover the classification
of objects encountered in the real life. In reality there
| are ad jectlives like good, appropriate, beautiful, rich etc.
wherein, clearly, the classes of the type cited above do not
constitute classes or sets in the usuai mathematical sense
~as these terms, since they dd not dichotomize all objects into
those that belong to the class and those that do not. Fuzzy
sets concept has certain properties and 1mplication of use in
dealing with such a class in a quantitative manner. |

To characterize such a fuzzily defined class, Zadeh
introduced the concept of a membership function which assigns
to each object of the class a grade of membershlip ranging
fullmembership (grade = 1) to nonmembership (grade = 0), and

. established many interesting mathematical structure of the

fuzzy sets theoren.

Although research in this area is still somewhat
. tentative, it looks very promising. Papers have appeared
oﬁ.aspects of fuzzy sets (Zadeh [1,4,8) , Goguen [5] and
‘Brown (6] ), fuzzy automata (Zadeh [2,7,11) , Wee et al.

[ 18,19) , Santos [20~24] , Mizumoto et al. [25,30]) ,

Fu et al. [27] , Kitajima et al. [28,31] and Otsuki [29] ),
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fuzéy languages (Zadeh et sl. [16,38] and Mizumoto et al.
[39~u43, 48] ), pattern recognition (Zadeh (1,4,14]) ,
Bellman et al. [ 3) , Wee et al. [18,19]) ,;Gitman et al. [12]
~ and Tamura et al. [13] ), fuzzy algorithms (Zadeh (723 ),

| fuzzy topological space (Chang (9] ), fuzzy logics (Marinos
(10] ), an&'decislon—makings (Bellman et ai.-[lS] ). |

One of the problems in computer science is the gap
between natural langusges for human beings and programming
11anguages for digital computers, sinoe the former are much
more complex than the latter. This is due to the fact that
. natural languages are fuzzy in nature but programming langu-
ages are precise. | '

To reduce the gap between them, 1t 1s matural to
“introduce randomess into the structure of formal languages
or automata, thus leading to the concept of probabilistic.
languages [ 49+~ 52] or probabilistic automata [32~ 37] .
Another poselbility lies in the introduction of fuzziness.

The first step in this direction was made by Wee and Fu

[ 18,19 ] s who formulated fuzzy automata based on the concept
of fuzzy sets and fuzzy systems by Zadeh [1,2] as a model of
learning systems such as pattern recognit;on and automatic ‘
controls. And then Lee and Zadeh [38]'def1hed.fuzzy languages

ahd fuzzy grammars as an extension of formal languages.
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This thesis treats several problems concerning'withgff;v"

 fuzzy automata and fuzzy grammars.

’ In Chapter 2 we briefly review the concept of fuzzy i{
‘gets originated by Zadeh [lj and fuzzy languages for the
. preparations of fuzzy automata and fuzzy grammars which will

- be discussed 1n the later chapters.

v Chapter 3 treats the problems of a fuzzy autbmaton,

":which was formulated by Wee and Fu [18, 19] as a model of

. learning systems such as pattern recognition and automatic-

contro; systems, It 1s shown that the capablility of fuzzy
automata as acceptor is the same as that of finite automata,
although fuzzy automata include the deterministic and non-
deterministic finite automata as speclal cases, whose result
was proved by Santos [21) independently. Moreover, the
threshold of fuzzy‘automata can be changed arbitrarily. " The
- fuzzy languages'chéracterlzed by fuzzy automgta'consfitufé a

» distributive lattice, and the complement of the fuzzy language

‘can be characterized by an optimistic fuzzy sutomaton.

In Chapter 4 fuzzy grammars by Lee and Zadeh [38] 5 .-
and conditional fuzzy grammars (or n( 2 1)ff61d fuzzy grammars)
are discussed. In n-fold fuzzy grammars the grade of appllé
cation of the.rule to be used next is conditioned by the n

rules used before in a derivation. The n-fold fuzzy graﬁmars'-'

whose‘rﬁles are of context-free form can be. gshown to generate;5 ‘_:
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context-sensitive languages by setting a threshold appropri- :
ately. Puzzy grammars with context-free rules, however, can
not generate context-sensitive languages. As to n-foid-fuzzy |
grammars, we focused our attention on n-fold fuzzy grammars '

- with type 3 rules as a preliminary step.

In Chapter 5 we develop a general formulation of formal ‘
grammars by extracting the baslc properties common to the
formal grammars appeared in existing literatures. A pseudo
grammar is defined and from 1t the well-known probabilietic
Vgrammers and fuzzy grammars are derived. Moreover, several
interesting grammars such as UUX grammars, UM grammars, (U .
‘grammars, composite B-fuzzy grammars;'end mixed fuzzy grammare,i
which have never appeared in any other paper before, are derived.
The pseudo grammar called a pseudo conditional grammar,
‘whose weight of the application of a rule is conditioned by
f-the rule used just before in a derivation, is aleo defined
and from it several interesting conditional grammars are derived _

"in the same manners as pseudo grammars.
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CHAPTER 2

FUZZY SETS AND FUZZY LANGUAGES

2.1 Introduction

We shall briefly review some of the basic definitions
relating to fuzzy sets originated by L. A, Zadeh [1] and define
fuzzy languages by using the concept of fuzzy sets, which will

be needed in later discussions.

2.2 Fuzzv Setsg

Informally, a fuzzy set 1s a "class™ with fuzzy
boundaries, that is, a "class" of objects in which there
1s no sharp boundary between those objects that belong to
the class and those that do not, e.g., the "class" of real
| numbers which are much larger than, say, 10. A more precise

definition of fuzzy sets may be stated as follows.

Definition 2.1. Let X ={x} be a collection of objects
(points). Then a fuzzy set A in X 4is characterized

by a membership (or fuzzy characteristic) function n, which
is ‘defined on X and takes values in the interval (0, 1] 1.9.;

py ¢ X->[o, 1] (2.1)
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' The value of “A} at X uA(x), represents the gnagg_gz
" pembership of x in A1; If A is a set 1n the uaual

sense, p,(x) 1s 1 or 0 according as x does or does,nPti-;;f?:fi 
belong to A . ' : : . My
A fuzzy set A 1g represeﬁted as a 3°£ °f'0rderea'§ff] 

'pa;rst
A = {(x, p‘A(X))} ,’ | xé-x | (2.2) -

Examnlg_abl; Let X be the set of integers from 0 to 100
- representling the ages of individuals in a group, and let A E
be a fuzzy set of a middle-aged” 1nd1v1duals.- Then,.such
a set may be characterized, subjectively of course, by the
| membershlp function such as3 |

x(=age) | B0 41 42 L3 b 45 46 47 4B 49 50 51 52 53

py (x) I 0.3 0.5 0.83059. 1 1 1 1 1 0.9 O.8>o;7-o.5 0.3 -

. where only those pairs (x, pA(x)) in which palx) 1s positive

 are tabulated.

T In a more éeneralicaee, the range (or memﬁership space)
of the membership funotion can be taken to be a partially
ordered set or, more particularly, a lattice [5] s which wlll
. be discussed in Chapter 5. :



We turn next to the several preliminary definitioms

of fuzzy sets which we shall need in later chapters.

' Equality*:  Two fuzzy sete A and B are‘gcmal, written
@88 A =B, if and only 1f p,(x) = pp(x) for all x in X,

A=B & plx)=ps(x), xeX

Conteinments A fuzzy set A 1is contained in,
suhaat. of a fuzzy set B, written aé A< B, if
ir p,y(x) 2 pplx) for all x in X,

Complementationt The complement of a fuzzy set

by A end is defined by pg(x) = 1 - p,(x) for

I = 'p“_&'(x) =1 = pa(x), x €.

Uniont The union of two fuzzy sets A and B,
AU B, 418 a fuzzy set C = AUB characterized
max [ p,(x), uB(x)]. for all x in X,

(2.3)
or is a

and only

(2.4)

A 1'3 ‘denoted ‘_
all x in X,

X (2.5)
written as
by uc(X) =

(2.6)

C=AUB &> pglx) = max [pylx), palx) ], xex



Note that AU B 1is the smallest fuzzy set contain=-

ing both A and B.

Intersectiont The intersection of two fuzzy sets A and
B 1s a fuzzy set C, writtenas C= A (\}B, defined by
Cpelx) = min[pA(x), 'p.B(x)] , for all x in X. ' _

L (2.7)

C=ANB & polx) = mn [uA(x), p.B(x)] y XE X

By a dual argument to the above, we see that AN B
is the largest fuzzy set which is contalned in both A and B.

| Empty Fuzzy Set: A fuzzy set A 1is empty if and only if
it is 1dentica11y zero on X, The empty fuzzy set will be

denoted by ¢ .

$ = p.q,(x) =0, x€& X 0 (2.8)
. Universal Fuzzy Sett A fuzzy set A is universal if and _

 omly 1f 1t 1s ldentically unit on X. The universal fuzzy

;‘a_et is a space X.

X & pfx) =1, xex (2.9)
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The operations C , U, ﬂ‘,'and = on fuzzy sets
have:a number of basic algebralc properties. Some of

these are as followsi

(1) AcaA (W) |

(2) ACSB, BSA = A=B (W).
(3) AS&B, BSC = AGC '(umﬂnmiﬂf.

) AVA=a4, ANA=A (W)"-

( 5) AUB=BUA, ANB=BNA (W)

AU (BUC)

(6)  (AUB)Uc S
| (agsoclative law)
(AnB)nc=Aan(BANC) J o

(7) AV(ANB) = 4
(absorption law)
ANnN(AUB) =A '

 '(8) AU(B(\C):(AUB)(\(AUC)} | o
- (distributive: law)

AnBVYVC)=(anB)U(aNnc

> 1

(9)‘ = A (involution law)

B

]

(10) TEUB =

AN B |
(De Morgan's law)
AV

i

ANB)=

E
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(11) AUX::X, ANX=A

AUd=1, andb-9¢

(12) Generally,
AU A ¢ X

(1dentity law).

(fallure of complement law).
AnEsxd ‘ :

i From the properties concerning with fuzzy sets, we
see that fuzzy sets form a distributive lattice, but do not
form a Boolean lattice, because A 1s not the‘complement

of A 1in the lattice sense,

In addition to the operations of union and inter-
.. gection, we can define other operations to form combinations
‘of fuzzy sets and to relate them to one another. Among these

_are the following.

Algebraic Product: The algebraig product of A and B 1is
denoted by AB and is defined by p,p(x) = p,(x)py(x) for
all x in X, |

AB & pplx) = pulxdpg(x), x€x (2.10)
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_lz.ehnal.c__umt‘ The alg.e.bmmmof A and ‘B s denoted
by A®B and 1s defined by

(2.11)

A® B & 'bp,AQB(x) ='pA(x) + p,B(x) -"p.Av(x,)p.'B(x)., x & X '~

It is easy to verify that

A®B=(KF) BRI ¢ %1 2
. Abgolute Difference: The gbsolute difference of A,‘ end

B is denoted by |A - Bl and is defined by

|a - B < % A-B| (x) = I pplx) - pB(x)l, JF_& x (2.13) £

Convex Combinations Let A, B, and \ bve arbltrary fuzzy“

: eété. The gonvex combination of A4, B, and\ 1s denoted
by (A, B, \) end is defined by the relation: ) -

(A, BsA) =A A +AB | | (2.14)

“where [\ 15 the complement of A..  Written out in terms of

' membership funotions, (2.14) reads



- 1B -

‘ “(A,B;A)(X) = uA(x)pA(;) +(1- pA(x)]uB(x.),‘ xeX ;(2;15)_ '

A basic property of the convex combination of A B,

and A is expressed by

AnB S (A, B;A) S AUB, forall A - (2.16)

- Belation: A fuzzy relation, B, in the product space X x ¥
= {(x, y)} s XX, yeX, is a fuzzy set in XxX characterlzed

by a membership function pp which assoclates with each ‘
ordered pair (x, y) a grade of membership pR(x, y) in [0, 1]
More generally, an p-ary mzzx relation in a product ‘space |

- X = X x X X eiie X X' is a fuzzy set in X characterlZéd ‘ p
by an n-variate membership function pB(xl,xz,...,x )i xié Xy i,

1 =1 2,---,1‘.1.

wlm: Ir Bl and Ré ~are two fuzzy
relations in XZ, then by the gomposition (or product) of
Bl and 82 is meant a fuzzy relation in X2 . which is denoted
by BJ.Rz and is defined by ,

. ix, 5l = 1 (xy ¥), ue (v, 2) ) (2017)
‘-uR].Rz Xy 2 supym n[llnl x }' ’ llgz v ] G
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where the supremum is taken over all y in X,

Comment: We can give other two different definitions
concerning with. the compoéltion of fuzzy relations by the

following!
(xy z) = inf (x, y) (y, z) (2.18).
"3132 Xy 2 ymax (1*31 X Vs PBZ y ]
vy Rz(x, z) = gup [pBl(x, y)°p32fy, z) ] (2.19)

1
, y

where the operation "." is the product in the ordinary sense.

We may ' call (2.17) as max-min composition, (2.18)
as min-mex composition, ard (2.19) as max=product composition.

In what follows, in order to avold a confusing multi-
plicity of the composition, we shall be using (2.17) for the

most part as our definition of the composition.

Examnlg_zﬁa.- Let X be the real line Rl. Then x» y 1is
a fuzzy relation in Bz. A pubjective expression for I

in this case might bes

0 o-coo.oooooo xéy

1
100

(x - y)?

wplx, ¥) = ceve XDy

1l +
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And the compoéition (2.17), RR, of the above fuzzy relationé“

R 1s"a fuzzy relation such as x >»” Yy and is characterized

by the following membership function:
0 » o,oooco ..xfs.y

pBR(x, Y)‘g 1l

‘ 100 ‘ . '.,.’.. | x> y
1+ EEESES?EA '
2

- Conditioned Fuzzy Setat A fuzzy set B(x) 1n ¥ ={y} 1s

'conditioned on x Aif its membership function depends on x

as a parameter. This dependence is expressed by ug(y/x).

Suppose that the parsmeter x ranges over a space x;f f'r

Then, the function pp(y/x) defines a mapping from X to the
space of fuzzy sets defined on Y, Through thiszmapping; a

fuzzy set A in X induces a fuzzy set B in I’whioh_ib-defiﬁe&&f:;‘[T

by

Rt

pply) = Bupxmin-[“A(X)"PB(Y/X)] S f (z;éd)f‘Af

where p, and pp denote the membership functions of A and B,
respectively. In effect, (2.20) 1is a special case of the
composition of fuzzy relations (2.17). o B
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2.3 Fuzzy Languages

A fuzzy language 1s defined tb be a fuzzy set of the
set of strings over a finite alphabet. The notions of union,
‘1ntersection, concatenation, and Kleene closure for such langu-

ages are defined as extenslons of the correspondlng notions in

the theory of formal languages [5#, 55]

Fuzzy Langusges? A fgizx language L 1is a fuzzy set in Z .

"L oan be written as the set of ordered pairs

(o}, xes® (2.2)

“where nL(x) 1s the grade of membership of x in L. Ve
‘assume that pL(x) is a number in the 1nterval [0, 1]

A trivial exampla of a fuzzy 1anguage is tﬁe'setv

L= {(a, 1.0), (v, 1.0), (aa, 0.8), (ab, o. 7),

(b, 0.6), (bb, 0.5)} 1in{a, b}

T More generally, we can define L-fuzzy languages as an

extension of fuzzy languages, which will be denoted in Chapter -
5. | |
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It 1s understood that all strings in{a, b} other
than those listed have the grade of membership 0 in L,

The operations of fuzzy languages can be defined as
an extension of those of ordinary languages.'\-

; end L2 be two fuzzy languages in X*

Union: The union of L1 and L2 1s a fuzzy language denoted
by L1U L

Let L

and defined by

2
X
ppup (x) =max [ (x), up (X)), xe35” (2.22)
1 2 1 2
Intersection: The intersection of L, and L, is a fuzzy

language denoted by Liﬂ I, and defined by

”‘Lln Lz(x) = Min [ p.Ll(-x), p.Lz(x)] , :Fé E* (.2.23)

T In the ordinary formal languages, & language L over 2
.1s a subset of E* and the operations of languages are defined

as followst

gnmz L1U L2 = {xlxeLi or xeLZS’
Intersections Lln L2={x|x€'L1 and xeL}
Complements T = g*.1- {xlxé‘z‘* x?&L}
Concatenations L, L, ={uvlueL1 veL,} '

W’ ; L = LOU LULLULLLUOOOOO
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Complements The complement of a fuzzy language L 18 a if'
~ fuzzy langusge demoted by L and defined by

gl = 1 - gglx),  xe ¥ (zam

Concatenations The goncatenmation of I, end L, 15 a fuzzy
language denoted by L1° Lé y or dually L1° Lz_ and defined
as follows: Let a string x in Zx;be expressed as a con-
“catenation of a prefix string u and a suffix string #,vthat

is, X = uv. Then

op (x) = in [ pp (u), (v)) (2.25)
'p.Ll Lz X supum n [ p.Ll u | . }).Lz _ ]
dually
.1 (x) = inf ‘( )y nr (W] (2.26)
uLl L2 x n umax [uLl ul, ng j ]

" where the supremum of (2.25) and the infimum of (2.26) are

taken over all prefixes u of x.

Kleene Closures By using the concatenation Iﬁ?Lb qr Ll'Lz,"
_ A
- Kleene ¢losure of a fuzzy language L (written as ﬁ‘ y or L ).

. is deflned as

t¥= 19V LULeL VLeLeLV oor  (2.27)

T = 1% LALLALLLN .. (2.28)



2.1 Conclusions

It should be noted that, although the cohcept of fuzzy
 sets (fuzziness) has some resemblance to that of probability
'(randomnesé) which treats an inexact concept, there afe‘esseﬁF
tial differences between these concepts.  “Randomness® has

| to do with uncertainty concerning membership or nonmembersh1p 
of objects in a non-fuzzy (or crisp) set. "Fuzziness", on
the other hand, has to do with classes in which there mayAbe
-’gradee of membershipkintermediate between fullmembership and‘
nonmembership. In fact, the fuzzy sets theorylis a calculus
of vagueness, ambigulty and embivalance rather than likelifoéd;-‘ ’
and, therefore, the notion of fuzzy éets'is completely.nqn- o
~statistical in nature. , -
Although the fuzzy sets theory is still in 1t}1nfancy,
‘} it will be able to do af least ﬁhat the probability theofy}haé )
done and, moreoier, wlll come to play an important role in a '
wide variety of problems relating to "soft" sclences such as

- gocial seciences, manégement sclences, economics,‘linguistics,
‘etc.- and to "hard®™ sciences which are ﬁoo complex of too 111-

defined to admit of precise analysis, say,-large-scale systems,

- 1arge-scéle traffic control systems, pattern'recqgnition, machine

translaiibns,'artif;cial 1nte111gence, information retrieval,

etc.

| Despite these arguments and promises, one must not
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expect too much 6f fuzzy sets. Ordinary set theory has been
of greatest 1mportaﬁce in providing a convenient language

for mathematical thought. They have not made the exercise of
creative intelligence unnecessary'either in mathematics 6r its
applications. Similarly we should not expect more of fuzzy
sets than they facilitate the development and study of models
';ln the inexact ecienoes,}and that they be an interesting area

for pure mathematical investigation.
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CHAPTER 3

FUZZY AUTOMATA

" 3.1 Introduction

Among varidus types of automata, as 1is weli-known, ‘
are deterministic, nondeterministic and probabilistic Antomata. =¥
Recently, W. G. Wee [18, 19) proposed another' type of auto=
mata which he named fuzzy automata. - The formulation of fuzzy
automata 1s based on the concept of fuzzy sets and fuzzyAsystéms -t
defined by L. A. Zadeh (1, 2] . 'Fuzzy automata include deter-
- ministic and nondeterministic finite automata as specia1.Caées :
 and also have some properties similar to those of probabiiistic
automata { 32, 33, 34, 35, 36, 37) . In addition, fuzzy auto- .
mata may be available, as 1tslappllcatlons, toAsimulating lear- 
“ning systems such as pattern recognition and automatic control

o systems [15, 18, 19, 27, 28, 29, 30, 31] .

In this chapter,'it is shown that, although fuzzy

automata 1nclude deterministic and nondeterministio finiﬁef
automata, the capablility of fuzzy'automaton<as an acceptor 13
~ equal to that of finite automaton, which was proved by :E- Se
‘,Santqs independently (21) . And the threshold of fuzzy aﬁtomata:

f’can be changed arbitrarily by changing the values of each element

" of the fuzzy transition matrix and the initial state deslgnétor. -
(Moreover, the famlly of the fuzzy sets (that is, fuzzy events)

Cof 1nput strings oharacterized by (pessimistic) fuzzy automata |



5 1s closed under the operations of union and ”1ntersection"}
—o in tho sense of fuzzy sets, and the complement of the fuzzy
event is characterized by an optimistic fuzzy automaton.

We show that the similar properties to those mentioned

vabove also hold for optimistioc fuzzy automata.

3.2 Fuzzv Automata
A fuzzy automaton was proposed oy We G. Wee [;8, 19]
~ as a model of pattern recognition‘and automatic cdntroi |

. gystems. An advantage of employing a fuzzy automatom as a

~ learning model is its simplicity in design and computotion;_ _i
m A learning fuzzy automaton is cleafly nonstationary. In -
‘this chapter, however, we assume a fuzzy automaton to be
stationary and extend the deflnition'by Wee as followss
t.In Wee's paper, the initial state of a fuzzy automaton is

| given in deterministio‘way. But we will 1ntrodmoe the fuzzy;”

- distribution, that is, the initlal distribution.

ey Let 3 be a finite non-empty alphabet. The set of
. all finite strings over I 48 denoted by 24i The null
. string 1s denoted by ¢ and included in ¥, #() 1s the

' - number of elements in the set S.

- Defimitdon %1. A finlbe fuzzy automaton over the alphabet

'S 18 a system



A= (S, m{Fc)|oes}, &%) (3.1)

.vwhere ‘ |
(1) s 3{-81’82"'°’5n}' is a non-empty finite set of 1nternalfl
states. ‘ |
(11) ﬁ is an n-dimensional fuzzy row vector, thet’185~
n= (n8 ,nsl;-o-,ns

. : 1 "2 n

. 18 oalled the initial state desismator. | |

" (111) G 18 a subset of S (the set of fihalﬁstates).

, (1v) 5% (8 82,...,8 )' is an n-dimehsional colum57 ‘ '

), where Oé_rrs:_é 1, Vl‘éién, and .
i LB “

®n

,vector whose 1-th component equals 1l4if BieG and 0 otherwise,
'and 18 called the final gtate desisnator.

v)  For each o¢ 3, F(d) isa fuzzy matrix of order n

} (the ﬁlm &mam..en matrix of A) such that

F(a) = | fa;-BJ(O) lI 181,380, ,“A(_j.z)‘

| Let element fsi’éj(o)' of F(d) bve fA(si,J,s’) T |
‘_"where 1,BJ&S end o €& 3. The funetlon f, isa member-"
’_:_;ship function of a fuzzy set in S x T x S 1.e., R
£, SxTxS->(0,1). f, may be called the fuzzy

mnammm That 18 to say, for s,teS and 062 ,
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r (s,d t) = the grade of tramsition from state s
to state t when the 1nput is o .

The unity fuzzy transition function 1mplles such a.

¥ 'trana1t1on may exist definitely.

Remark. Ir f, takes dnly two values O and _i! then
a fuzzy automaton A 1is & nondeterministic finlte automaton.

In addition, only any one element of each row of matrix F(O).
o6&y , 1is "1" and the rest elements of each.row are all '
* equal to "O". Then a fuzzy autohéton A is a dg&gzm;n;aﬁ;g_
. . . ’ : ST

The grade of transition for an 1npﬁt string of length
m 1s defined by an m-ary fuzzy relation. The fuzzy transi-
‘tion function is as follows: For input string x = bl°2"°dﬁ

fA(B’x’t) l . ‘ : ' . (3-3)
[:== max min (fA‘BsoloQi)va(ql’oz;qZ)’;"’fA(qm-liom’t)]v7 
_quqzo"rqm_]_es ’ ' S

f;gz the grade of trensition from state 8 to state t When: -

the input string is x = 0102-..0 o



Definition 3.2. For €y X, ¥y & Z*. and' B, t?S,

; 1 ifs=t , .
fA(s,e,t) = . ' (3.4)
0 if s ¥ t, '

lfA(s,xy,t) = mzxe gin[fA(s,x,»q),fA(q,y,t)], ~ (3.5)

Especlially, we call a fuzzy automatoh with the grade
of transition under the operafion "max min" a pessimistic
fuzzy automaton (pfa), and a fuzzy automaton under the opé-
ration "min max" an gptimistic fuzzv automaton (ofa) (20] .

Definition 3.3. An gptimistic fuzzy gutomaton over the
, . . S
alphabet I 18 a system :

B =(s,n,{F(a]oes'},®), (6

where S' is a finite nor-enpty set (th_e internal staj:es of
B'), #s')=n'. is an n'=dimensional row vec’tjor

(the initial state designator). A fuzzy transition function
‘fé. is deﬁped as followst: For ¢, X, y€ 2"“_ and B8, t€ S';
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| 0 ifs=t
fé.(s,e.t) = - (3.7)
| | 1 if skt | |

f;.(s,xy,t) = mi:emg'x[f};.(s,x,q), f};.(q,y,t)], (3.8)

B | ' '
G is a subset of S (the set of final states), and an

L ;
n -dimensional column vector (the final state designator) . —

] : ‘
[ ] [ ] ] [ ] .
Sl (88y,88,9+++,88,3) 18 defined such that S, = 0 if
' ' '
8y ¢ G and 881 = 1 otherwise.

| . , . g
Note that an element of zero in mw  means the definite

o ’, existence of such an initial state. In this paper, unless

. .ptated especlally, by a "fuzzy automaton" we shall mean a

‘pessimistic fuzzy automaton.

Let us show the fundamental properties of fuzzy i

matrices. .
We denote by 8y the (1,3) th entry of a fuzzy

matrix A, where 0 S a, J-.S. 1. We defines
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 hsB &

,0=||0!].

C=AoB

c

yj = mex mln(aik,b )

Kk k]

1 if i=)
A; *Ilmljﬂ where m13=
0 if 1%}

8132 By
E=[1]

C=AXB

Cyy = minkmax(aik,bka)

0 if 1=)

¢ L} L . .

I =||mij||where my 4= SR
, 11f 1%)

™1 . g B, B0 =1’

The following fundamental properties are derived

-f l1mmed1ate1y from the above definitions:

Fundamental Properties
'(1)'.. 0SS ASE (1)’ 0<BSE |
" (2) Ae(BeC ) = (AeB )C | (2)' ax BAC ) = ( A%B MG
(3) AeI=TIcA=aA (3)' Bx1' = 1%B =B

(4) A°0=0cA=0 - |
(5) APopd w AP*a (aP)d = AP
(6) 1r ASB ama CSD,
 then X $B °D.

?
(4) BXE=E#B=E

(5)° BB = BP9, (BP)%= BPY
(6)' if ASB and CSD,

then AXC € BXD,
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The definitions and the properties shown on the 1eft'__ o

b side of the tables glven above relate to the operatlon ‘p ’; 551
‘and on the right slde to the operation * TR Moreover, the fii 
operations_'o " and " x" correspond to a pfa and an ofa, !

- respectively. -

The domain of the fuzzy transition matrix F of a

_ ¥fuzzy automaton A can be extended‘from‘ z to Z*;as fdllowsig“,

1 5

. _"Mmm_ub - For x = 0;0500.0, ek, o eZU{e}. and

| :l_é 1Sm, déf;ne n x n fuzzy transition matricea F(x) by
 the following,

(1) F(e) = I (nxn identity matrix), -

‘??._,1~,.', _F'(‘x‘)}'_= F(o))oF(0,)00eeenensoBlo )y

, | Let F(x) =||f 408 (x)||,where 1 & 1,5 n; then
1';obviously ‘

.fél’BJ(X) = fA(Bi’x;sj); v!  1‘ ‘ v(3;16xl!i:g

ﬁdNoﬁ’ffor A= (S,w, {F(q)l g € 2}, BG); definei

£4(x) =moFx)e 8, for xeZ® (3.11)
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_ ) fA(x) is designated as the grade Qr tzanﬂitign of A
‘when started with initial distributlon ™ over S to enter

;;into a state in G after scanning the 1nput string x. Then
*ﬂ‘an input string x 1is said to be ac ggpted by A wlth grade
n,fA(X)o

Now, by using the fundamental propertiesvmentiohedvj,ffdi;ff

~ above, we have the following theorems.

' Theorem 3.1. Let F(o) be any n x n fuzzy transition iy

. matrix, then the sequence . F(o), F(O )s F(OB) evesss 18-

“?_ultimately periodic.

- Prooft Let T ={f,,f,,ec00,f) } be the set of all the
d_elements which ocour in the matrix F(o), then thé numbéf“ﬁ'
‘{lof different matrices which can be obtained by multipling

=7 2
'Q:F(o) is at most k® , that 18, finlte.

Ehe.om_i...a If I < F(d), then et
. | (3 12)"

I & F(0) € F(02) € ... S F(eB1) = F(aP) = F(o?*) = vesesl

‘Proof: - We can prove our theorem in a similar”way dn a

~ Boolean matrix [26]) .
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3.3 A-Fuzzy languages

We show that the capablllty of fuzzy automata as an
acceptor 1s the same as that of finite automata, though fuzzy
~ automata include the deterministic and nondeterministic finlte

automata as special cases, which was proved by E, S. Santos

~ independetly [ 21] . ' Furthermore, évery fuzzy 1anguage?'¢anfﬁ_j :

“be represented in a fuzzy automaton with any threshold A

“,guch that 0 A< 1.

‘Definition 3.5. Let A= (S, m {F(o)]o ‘-‘.Z} , 8% ,.b,e'v;'f"f"j.?*fi’..’-'Z;: ’

a fuzzy automaton and A . a real number 0 £ ] <1, The:.s'et;_,}:i'_:‘»
of all input strings accépted by A with parameter A is

deflined as

e ) = (e Flg@oAl Gy

. A 1s called a fhreshold of A and 'L(A, »A) 'a
A_:MMgnm; For O $A< 1, a lenguage L 18
A -fuzzy if and only if there exists a A suoh that L =
| L(A, »A). A language L is fuzzy if and only if, for
,' some ?g » 1t 18 A -fuzzy.
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Theorem 3.3. A -fuzzy language L(4,° ,A) 1is a regular
language.

Proof's For a fuzzy automaton A = (S, w, {F(o)| o€ Z}" v
8?), let us define F(ryx) = meo F(x), where F(m,x) 1is an
n=-dimensional row vector, xéz* and /n = #(S).

Define now the relation B on Z* by the definitions .v ) 1
x B y Aff  Flu,x) = Flm,y)  (3.14)

- _for all x, y & E.* Then: B 4is clearly an equivalence rela-‘-"

“tion on Z’f "Furthermore, for any zeZ*, ,

F(W’XZ) = F(F(WQX),Z) o

= F(F(r,y)® = Flm,yz). | (3.15)

Therefore, xz B yz holds.

Hence R 18 a right congruence relation on ¥,
" Ag to the number of éﬁuivalence classes, let T =

{  SFE PYRERE } be the set of all the elements which ocour
' in the matrices F(Oi),l < 1€ #(3), and in the vector m. |
' Then the number of equivalence classes is at most K7, Anyhow,

R has finite rank. Moreover, 1t is easlly verified that

- L(A, e ,A) is the union of some of the equivalence classes.

The ssme theorem also holds for en optimistic fuzzy .=

- automaton.
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‘Definition 3.6. For a fuzzy matrix A =] a“" y Oéaué 1

eand d a real number such as 0S d £1, we define a fuzzy -

| ]
matrix A =| aUIl as followss

+ d yi‘f a

' aiJ 1] $1-4,
- 1 otherwise.,.
- Lemma 3,1. For two fﬂzzy matrices U and V of the same

order, let the fuzzy matrices defined 4in Definition 3.6 |
4 ] : ‘ - N
~be U and V , respectively, then, for two fuzzy matrices
- ' ' ' } : AN SR
“W=llw“ll and W ="W13" guch that W=UoV anda W =
REE | O ‘ : i on
U9V , we have that
€1l-4d,

. wij + d }11‘ Wy

LI

3

1 otherwise.
: EI'.Q.Q.i* It ig olear from thé property of the operation "o ",

n : ' i )
| Likewise, for a fuzzy matrix A =|| 84 | eamd a
' .
. areal number 0£d S i, define a fuzzy matrix A" =
P
||_alj[] as follows:
' ~,
=4,

a - d if aij

0 otherwise.
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"‘I‘hen the similar result as' in Lemma 3.1 holds.

‘Theorem 3.4. Every I_fuzzy language is ) ~-fuzzy for any ;\,
such that 0<£ A< 1.

- Proofs Let L = L(A,°, p,) and let A = (S, wm, {F(o)|o
&€ 3}, 8) be a fuzzy automaton, where F(a) ="f«8 " (o),

: . 1 L L
= (g ), 8,984¢ 5, and 0 € 3.  Omitting the trivial case

% ;
A = p, we can assume that A ¥ pn.

(1) In the case of ) > ui |

Consider ‘the fuzzy automaton A = (S 14 .f.F (OH o
€3 } )v where S S, 2 =3, 8 = SG._' And the fuzzy
tr?nsition matrices F (@') = || fei’ (o) " , o e E ! and o :
(m, ) are defined as follows! | ERREET

.85_

f (a) + (A-p.)

81’83
if f (0)41-,'{+p,,
8,98
1"
1 otherwise.
m + (A=pn) Af n g1-1+p,*-
. 8 8 I L
' i 4 e d :
" =
2

1 otherwise.
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- Thus, ‘according to Leﬁma 3;1, for x e-zxﬂy -

meR(x)e 8% 4 (A=p)
. . o F ° 8 < - ,k
TreR (x) o Bq ; Aif w o F(x) 872 1 A+,-_u

1l otherwise.

Therefore,

L(a',o ,A) = L(A,*, p) when X > p.

(2) In the case of X < nt

[ ] n " » ’
‘Consider the fuzzy automaton A = (S, n*, {F (Q)l o

S 3 Y
3 & 2"}, 3¢ ) where "= S, Z"= e 30 = 5%, Aund the fuzzy

. 2 '" n "
transition matrices F (d) =l|f8 8 (d)|| where 6 & £, and
1773 ' '

m= (n_, ) are defined as followss

°
r fsi,sd(o)_- (=) |
" it f ()2p =,
f8y48,(0) = < . "%y o
| .0‘ otherwise.
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.ﬂsl- ('p. -A) if WBIZ )1 "A )

0 otherwise.,

Thus, for x & Z*i

moP(x) e 8% = (p =)

" 1t moF(x)e 892 4 - A
n"oF'(x)"BG = e E -A’

0 otherwise

Therefore,
. ,
L(A ’ 0 ’A) = L(A, o ’ ].I.) "hen )< e

’ | ]
Hence, it follows that in both cases L = L(A ,9 ,A) or -
" |
L(A ,°,A), which implies our theorem.

It 18 easily shown that the same theorem holds for

an optimistic fuzzy automaton.
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3.4  Clogure Propertles of Fuzzy Automats

In this .section, we use the concepi: of}fuzzy sets
vlnstead of the set of input strings w;th threshold)..«

It 1s shown that a famlly of fuzzy events characte-
- rized 'by not only pessimistic fuzzy automata (pt‘a for vshrort)
but _aiso optimistic fuzzy automata (ofa for short) is ’closed
“under the operations of 1_nterse'c‘stion‘and union in the fuzzy
# sensé. And the complement pf the fuzzy eiren'c by a pfa

(an ofa) is characterized by an ofa (a pfa).

Definition 3.7. For a pfa A = (S, m, {Flo)|o € 3}, 8%),
let a fuzzy event ve the fuzzy set in 'z‘,* which 1s characterized

by
fA(x)’s"n'oF(x)v" BG, x e 2%5 (3.16)

We denote by L(A,») the fuzzy event by a pfa A and, similarly,
by L(B,X) the fuzzy event by an ofa B,

Definition 3.8. For two pfa Ay and A,
A= sy, my, {F(a)] o e 3}, 8%1)

A= (8, my, {F,y(0) | o€ 3}, 8°g),
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',',v"\(ivefine_.av m:.n_nf.a 'A1® A, a8 followsz\‘_
A,® 4, = (s, n, {Flo)| o€ 3}, 3%,

'v,'wh'ere
-8 Slx 82 -[(Bi,tj)isie Sl’ 'tJe SZ’ 1_1j..m, léjén} _

G = G;x Gy m ='#(Sl) anc.. n = #_(Sz). As to the fuzzy t;rariQ .

sition fimgt:.pn fA1® Az ,'Of a min pfa A1®A2‘, defing‘_ ‘ |

fa @4 ((8:8),0,(a,r)) = mn [, (8,0,0)s8, (,0,7)]
1° %2 | | -
for (s,t),(q,r)€S and ocel.

 - Moreover, the mn-dimensional row vector m- 1is Ade_ﬁned‘

“as follows: V'

o F,oryb‘ (ai’tj)e S, 1€i%m, and 1.4..1Sn,- :

e » .
moe= e, lE(81,1:3)

- where

5(si,tJ) = min'["lsi'_ "th]“;_

t

and (sy,8,) = xal;t1>,(al,t2),;..,(sl.th),(sé,tis;ﬂ..;gsa;ph),-1i; -
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And the mn-dimensional column vector O 1s also & =
- t%he8%2 . |
‘- -Hence, the fuzzy transition matrices ofrorder mn of
- A®A, 18 as followss _ | -
 For two pfa Al and 4,, let F (o) =|lféi’sj(d)"
and Fz(d) gllftk’tl(g)" be fuzzy transition mgtrices of
Ay eand A, respectively, then fuzzy transition matrix F(o)

" of Al.® A, 1is defined by
o) = 2098 70 (g @
Twhere

f(si,tk).(s_J,tl)(O) = mm[fsi’sj-(o)’ ftk?tl(O)]

= fA1® Az((si’tk)’o’(si’tl)).

Note that the operation ® of fuzzy matrices 6orreséﬂr

wjﬁondsuto the temsor product of ordinary matrices.
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Lemma 3.2. For fuzzy matrices Ays A,y B, By, A and B,

for row vectors ™y and mn,., and for column vectors 861

, 2
and 802,' we have that

(1) (A By )®(A °B,) = (A1®A )°(B,®B,).
(@) A~s°1)® (mp Bo5%2)
= (n,®m,)*(A®B)* (610 8%)

= min [11 oA'S 1,’ w °B°8G ]

(3) A®A,, m@mu,ees are fuzzy matrices.

- Proofs Obvious.

This enables us to prove the following closure theorem.
Theorem 3.5. Let Ay By A, and A ® A, be pfa as in Definition
3.8 and 'L(A )y L(A, °) and L(A ®A-,°) ‘be the fuzzy events

',characterized by Al' A2 and A1® Az, respectively. 'J}heh. in

the fuzzy sense,

L(Al,v)n L(A2,°) = L(Al® Az,o). . (3.17)
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Proof: The membership functions of fuzzy events L_(Ai,'ﬁv) g it
L(4, °)andL(A®A )are | ' R

(e = e
i G
fAz(x) = n2°F2(x)°8

camd £y @4 (x) = weR(x)ed],
e 19 A2 | ,
o bespédtiv’ely. . From Lemma 3}2, ﬁ,e haves

.A'f | .(.x) = .n°F(x)v°Sq
by st SRR Sl
= (m®m,)e(F (B F,(x))o (371 8%2)
£, mln[nf Fl(x)°501. nzéﬁz(x)°502] |

" ._"‘_',é»xﬁ.in[rAl(:':), 'rAz(x)J

. for all xe 2.*

 Corollary 3.1.  For two ofa B, and B,, let L(Bl.*)

_.“"f_and L(Bz,*) be the fuzzy events by B, and BZ’ respectively,:i .

' 'vlthe‘n.f in the fuzzy sense, there exists an ofa B such _that

B0 U L(Bx) = L(B,K., - (3.28)
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Proof: In Definition 3.8, by replacing = the operation "min®
by the operation "max" and defining a max ofa, we can easilyi_’

prove Corollary 3.1.

We have shown that the family of fuzzy'events'by'pfa
is closed under intersection, and the family by ofa 1s closed
] under union in the fuzzy semse. |
Next, we will verify that the famlly of fuzzy events S

*by pfa (ofa) is closed under union (intersection) in the fuzzyA‘“

sense.

Theorem 3.6. For two pfa A, and Az; let L(Al,é) and'L(A2,°) 
be fuzzy events by Al and Az, respectlvely.'then, in the

fuzzy sense, there exists a pfa A such that

L(Al,o)\J L(Az?f);f.L(A'°)? -  ;.S?f19)  B

: . o ’ T a i ey G., "
A1=b ‘(’{ 81’8290.o’8m} ’"1’ {Fl(d)ldé-Z}, 8 1)_{:‘2

,,_ﬁdw;~oohsidér'a pfa A, that is,
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A= {Siv,-’-’o,smstls"-otn}n“’a {F(O)ldéz}. 80)9 |

_ where mw, F(0) and 8% are given as follwss

;'Let 

™ g.(néi,nsz,.,.,ne ) emd m, =_(“ti’ht g"f’ﬂtn){

m 2
-~ then
n= (nsi’.-.b’"Bm’"tl""’"tn)_8 (ﬂlﬂ?-)o
- | _?l(o) 4]
- F(0) = |
0 Fyle)

i R S R



Sy ,(2)‘ R ("1"2)’_ - N 50 = max [nf&S@l, ﬂ203'802] .

'¥{ Thereque, let

3 and
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2 .

fAl(x) = frl'_’ Fl(x)"SGl‘,v_'
fA2 Ax) = nvaz(x)°8g2,

fA(x)'=ln°F(x)°SG :

. be the membership functions which characterize fuzzy events

IYL(A1,°), ’L(Az,f) and L(A,°), respectively. Then, for x¢3J

" "we haves

ka(x)"

= meF(x)e 8¢
F,(x) 0 561

- = max [ mpe Fl(x.)°801. nzon(x)c'SGZJ B

m_ag [ fAl(x). fAz(x)J'.

* &

(rmr. ) ® . cp S
12 | ( o Fz(x) 8% , BRI



..1;,3.‘.

729;9115:1_1&3; ‘ For two ofa B, and B2; 'i9f_ L(B1,*)vf-,r‘ :
end L(B,,X) be the fuzzy events by Bl.iandu7Bzg_reapéct1761Y;i“ 

_ Then, in the fuzzy sense, there exists an ofs B such that

L(B,%) N L(B,,%) = L(B,x). . "3-.29" o

ZI:Q.Qf.’ Fp;' two ol’fa} B, and Bz}. that 1s,
By = (S, my, {Fl(d)lvoez}l,‘vsﬁ).
and o B, = (sz,- oo {Fz(d‘)’\onez}.,v”S.Gz_)‘. |
,  iat‘ﬁ§ defiﬁe'an ofa B as,follqwéf"

'.B,‘_""_?.\(‘sv nl,'{F(o)l»o‘é‘Z‘}.{: 8%, . .
‘whéﬁe S = S]'.-U S, 8;nS, =& . " "',':‘(T’l"z)’” '

[ Fy(0) E - . '
. F(o) = .~ forall din 3, -

L f .SG' ( BGI) '.
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Then, we can'prove our Corollary immediately in a similar

way as in Theorem 3.6.

We shall show the 'ihdlusion property of pfa.

Theorem 3.7, Given two pfa A1 and A2 as follows:

Al "v_(sl; nl.'{Fl(o)lo,e s}, 8%1),

a5y, my {Fplo)oesl, aGé>7
If #(51-‘)4 = #(sz), F, (o) s 1?2(0) fér all ¢ in 3,
" & ﬁz yand 8% & 8%,
then, in the fuzzy sense.,

L(A,,°) < L(Az,o). '

Proofs We can easily show that

fAl(x) S fAz(x) for ‘x(-Z*

(3.21)

from the basic properties of. fuzzy matrix descoribed in

Section 30 24
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Obvibusly, the same theorem holds for ofa.

Next, we shall show the complement of fuzzy event

| -:;by a pfa (an ofa) is characterized by an ofa (a pfa)
 Defimition 3.9. If A= (S, m, {Flo)loes}, 8% 1sa

4 _p‘fa}, then a-mm,gmu'gm of A 1is defined as fol_loivs"z",

A =, {F'(o)loez}, SG_),_’:

e ]
 where S =-'So Ag to the fuzzy transition funotlon fA. of

[ . )
‘A, foroe€l, x,yc—z , 8yt e-S » and £, of A, we define:

£1408,0,8) = 1 = £,(8,0,8),
vf:\.(‘s,xy,t) = min max[f‘;.(s,x,q); f;.(q,y,t)] |
q .
= 1 - fA(B,xy,t)’

“and the initial and final state vectors are

"'3 (1.1,;0‘,1) - 1T, and SG = (1,1,000’1)f-'§90

»Note that we can easlly define a oomplementary pfa B of

“an ofa B ina similar way. ,
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Lemma 3.3. For a fuzzy matrix U = | unll,_ let U =] uuﬂ '

be fuzzy matrix such that

uid = ] = uljo

. 'Y TR '
For fuzzy matrices Ul' Uz".‘" Um’ let Ul‘, Uz,.'.., Um

be fuzzy matrices as defined above, respectively, then

. 1l eee 1.
[ ] . . - ;
019 U2° oo.fUm + Ul*sztoo*Um =(]:. e ]:.) ,.

_ R
Theorem 3,8, Let A. be a pfa and let A be a comple-

mentary ofa of A, then, in the fuzzy sense,

L(A,°) = L(A',x). (3.22)

Prooft et A= (S, m, {Fo)|oe3}, ) be apra ema
A"=_(S, rr', lF'(o)Ioe 23, 3¢ ) be a complementary ofa of A,
then by Lemma 3.3, for xez*,
. .
£a(x) = moF(x)ed"
L
=1 -m4F (x)x8°

=1- fA.(x).
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[ AT
s = :

Therefore, we have L(A,e) = L(A ,*). 

gg;gllazx_zhi; For an ofa B and a complementary pfa B

of By 1n the fuzzy sense,

LB =B, (e
. 2zgg£t -+ Immedlately.

We have shown that the family of fuzzy events chara-

v "cterized by pfa (ofa) constitutes a distributive 1attice, but

f;idoes not constitute a Boolean lattice clearly.

| . 3.5 Comclusione

The pessimistic (optimistic) fuzzy automata are no .

ﬁT'more powerful than the finite automata as measured by sets

' 1ﬂof accepted input strings. The thresholds can be set
f‘-arbitrarily by changing the values of each element of the
= fuzzy transition matrix and the initial state designator.

“} “Moreover, the family of fuzzy events characterized by

f,fpessimistlc (optimistic) fuzzy automata is closed under the

},-ioperatlons of union and intersectlion in the sense of fuzzy

| gets. And the complement of the fuzzy event by'a pessimistic

k; 3(an optimlstic) fuzzy automaton is charaoterized by an optiml-

H‘stio (a pesslmiatic) fuzzy automaton,
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" CHAPTER 4

)

CONDITIONAL FUZZY GRAMMARS

4.1  Introduction

Natural languages such as English have 1ncbrrec£neas
and ambigulty syntactically énd semantically. It is nétural
to introduce randomness into the structure of formal languages
in order to specify natural languages with amblguityliu9, 50,
51,,52] . Another way of extending the concepts of formal
languages to those of natural lanéuages is thé introduction
6f fuzziness. The first step to this direction was made by

.:Lee andeadeh [38] s who 1ﬁtroduoed fuzzy grammars as.aﬁ extenQ.v
»’}ﬁlon ofﬂordinary formal'grammars by using.éhe.ooncept of fuzzy> 
R }sets. The notion of fuzzy grammars was introduced by the

; author, independently (397 .

In this chapter we shall discuss fuzzy grammars,‘and

 conditional fuzzy grammars (or n{=Z1)-fold fuzzy grammars)

 which were defined by the author.

Ordinéry formal grammars have the property thgt, after
'?applying a‘rewrlting rule to an intermediate Btrlng in'a*deri-f |
‘vatioh, the next rewriting rule to be used can be chosen arblff
(trarily; This arbitrariness, however, is not Bufficient.fofll

' desoribing natural languages with fuzziness. For example, f 7
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consider the following rewriting rules: (1) S-—>-A bites B,
(2) A —>the dog, (3). A-->the boy, (4) B —>the boy, |
(5) B—> the dog. Then the sentences generated by these
rewriting rules with an initial symbol S are as follows.
{the dog bites the boy, the dog bltes the dog, the boy
bites the boy, : the boy bites the dog }. Generally speaking,'
a sentence "the boy bites the dog" is rather doubtful semanti-
cally. We may say that, after applying the rewriting rule(3)
to the intermediate string "A bites B", it is not rather
proper to apply the rewriting rule (5).
To specify such a condition, we have defined condi-

tional fuzzy grammars, more precisely, n-fold fuzzy grammars,

in which the grade (or the propriety) of the application of

the rewriting rule to be used next is conditioned by the n rules
used before in a derivation. The grade approacheé to unity
nearer and nearer as the propriety becomes higher. in the
case of applying several rewriting rules, we use the concept

of composition of fuzzy relations.

We show that the set of all strings whose grades of .
the generation by fuzzy grammars with type 1 (1 = 0, 1, 2, 3)E‘
rules are greater than a certain threshold is a type 1 lan-
guage. But the set of all strings whose grades by fuzzy
grammars with type 2 rules are between two thresholds is not
necessary a type 2 language.

n=-fold fuzzy grammars whose rules are of the type 2

form can be shown to generate type 1 languages by setting a
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1threshold appropriately. As to n-fold fuzzy grammars, however,“f'r“

we focused our attention on n-fold fuzzy grammars with type 3

" rules as a preliminary step.

4.2 Fuzzy Grammars

The notion of fuzzy grammérs déflned by Lee and'Zad§5& 5"
'[38], and Mizumoto, et ' al.(39] is a natural generalization |
of the definition of formal gremmars. In this section we
shall show that the set.of:all strings whose grades of the 
generation obtained by fuzzy grammars with type i (1=0,1,2,3)

~ rules are greater than a certain threshold is a type 1 languagé.i'A

But the set of all strings whose grades by fuzzy grammars ﬁltif :
type 2 rules are between two thresholds is not necessary a
~ type 2 language. The seme holds for fuzzy grammars with.:'
- type 0 rules. ' | A

" Definition 4.1. A fuzzy grammer (FG for short) 1s a system
FG = (vN, vT, P, S, J, f) o (41)
-~ Wwhere - .
(1) . VN 1s a nonterminal vocabulary.

"(11)“ VT; is a terminal vocabulary.i
. (111) S 18 an initial symbol in Vye
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(iv) . P is a finite set of productions such as -
(r). u-s>v  flr) e (4.’2)‘ i

" where r €& J, u-»v 1is an ordinary rewriting rule with u - o

e Vg ={e}, ve (VU vT) » and f(r) 1s the grade of the

. application of the pro_ductlon r , which will be denoted &
. in ﬂ(vi). |

3 (VY)V- ;' J 15 a set of (rewriting rule) labels as shown 1n (1v)i
iJ={r}

4 (yl) O 1s alx_nembership function such as
£+ J— (o0, 1]). | o (83)

‘_f may be called a fuzzy function and the value r({r), » e J,’
is the grade of the application of a production r .'\‘ '

We assume that, to each rewritlng rule, there can

. correspond more than one label, but not conversely.

T  We often say the label r as the production r for

. .convenignceé. .
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| " Next, we shall briefly explain a derivation chain with 0
fuzzy grades (fuzzy derivation ohain). S

If (r) u—v f(r) 1is in P,

any strings in (VU v, ), then

£(r)

aus —>» avp
r

- (b)
" and avB 1is sald to be directly derivable from auf with =
the grade f(r) by the production r . If a5, @, cee ,'“al;l

are strings in (VyV VT)* | |
5 (1&.5)

Cflry) £r,) | tlr ) |
ao-—éb al, al-—-—>v QZ, sescsee ,: m 1_’ am . i
; S o r : r s

R S 2 : Q

is sald to be derivable from a,

S a .
then @ .
4 The expression

f’rif Tas oo 5 Ty oo
A

£lr))  flr,) ‘f(rm)

ao-—-—> al———a- 02—> seosnce ——#a : (’4' 6)
!‘1 'r2. rm o

and o end B a_re};_.' Yo

by the productions.



e

;will“be referred to as a tnﬁzz,dgzixgﬁlgn chain of'iengﬁh»aﬁ*g'

| from ao to‘ am by the productions .rl,:rz,r... % Sl

When ao = S, :'am B X (e VT*) in (#.6), 1030"

(5.7) .

f(r ) f(r ) f(r )
S ——-’al——-—) (12-—->......——>a_1-———>-x ’
T T2 L "m

'S 1is sald to generate a terminal string x by the pfoduotions
"rl’ rz, cee 5 T e In general, there are more than one fuzzy"

" derivation chain from S to x .

Definition 4,2. The grade of the generation bf terminal

. string x (€ V&f) by a fuzzy grammer FG, which is denoted

as fFG(x) , 18 glven as follows by using the concept of the

'i'compositlon of fuzzy relations of (2.17) and by the fuzzy
T'derivabion chain from '8 to x of (4 7) Cléarly, fFG(x)
16 in [O, 1) . AT

fpg{x) = max m}n [ f(rl), f(fz),‘...glf(rm)] 'g4;8i.i

:  ; where the maximum is taken over all the fuzzy derivatlon .

‘thains from S to Xo
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We shall define a language generated by a fuzzy
grammar FG with the threshold Ay 0SS AL,

Definition .3,  Let FG = (Vy, Vp, P, S, J, f) be a fuzzy
: grammar and A, a real number 0 = A < 1, then a languasge
: generated by FG with the threshold A 1s defined by B

L(FG, A) = { xeVF | £lx) DAY (4.9)

Moreqver, we can also define other languages as-

:;:foilowst

w. ~For two thresholds A and A, with 0% 1, <AL,
a 1anguage L(FG, A ,Zz) is defined by the followings

(RO, Ay, A2) = { x e VIR | A< rpglx) 822 (4,200

‘Besides, for a thres_ﬁold A » a language L(FG, = ,XA) 1is
defined as

| L(FG, ==,A)‘= {_x € V:I f‘m(x) =) } | ‘..(l"oil) |
| i '

3 .'_,"‘"\"';where_?g s 0&AS 1.



17E .
S,J £), higve Vi ={s A, B, C, D, E},

- gnd the productions are

(1)
(2)
% (3)
»_»v_'(u) -»
- (5)
(6
(7)

A string, say, a°b

0’5 '0‘8 0‘9 009
8 —> ABC —> gABC —> 32_1_3_6 e azb_l_B_C —% a
1 6 7 8 95
0.9

S —> ABC
S —> ADC
S —s DBC

S —= ABE

S —»= AEC

A —= gA

A —» g

2,2

a—— abza ’

" 11

005 ;

0.8,

0.7
0.6

0.6

0.8

9.9

-55 o

(8)

(9)

(10)

(11)

(12)

(13)

(1u)_

(15)

0.8 .

Let FG bs the fuzzy grammar (VN’ T’ P,

B —> bB‘:’ e

B—>b _0.9”.

C —>aC 0.8

C —> 2 0;9

D —>alb 0.8

D —> ab 6.8
B —>DbEa 0.8

E —» ba 0.8

b

a 4is obtained by the following derivation.



- 56 -

where the underbar in the 1ntermediate string represents the

1ocation where the next production was applied.

|  The grade of the generation of aZb2a by this deri-
vation 1s the minimum value among the values indicated over

the arrows, l.e.,
min A(OOS’. 008, 009| 008’ 0.9’. 009) = 005 a

Similarly, for the same string azbza, “the folleﬁihg‘ef‘

' t*derivation is also possible,

0.8 0.9 0.9 - 0.8

e, 6 v SR
E §_——> ABE ——>» gABE —> az_liE — a2b§ > a%b% .-
ok 6 7 9 15 D
In this‘case, we have 0‘6 Furthermore, we can -
2.2

“show other derivations of a“b“a , whose grades are shown to -

' {ebe less than 0.6. Thus we have fpgla 2p2g) = 0, 6 from (b a).’_if |

Continuing in this manner, we cen see that the 1angu-,[r :

' .ages generated by FG are, for example
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) L, o.us) = { atnlak| 1,J.kz_1}'~i“ ot

(11)  L(FO, 0.55) = {alpde¥| 1,5,k21, 145 or 3%}, : o

(112) L(Fe, o. 75) = {a“Jb-’ k l 1,5,k 2 1}
av) "L(FG 0. u5. 0.55) = L(FG,_ = ', 0.5).

= {albtal] 121},

It is interesting to note that languages (1), (11),

. ‘and’ (111) given above are all context-free languages, but

L languages (1v) are context-sensitive languages.

~ ‘Bemarks In this example, the language {aibJakl 1,3,}: = 1}4

18 generated by the rewriting rules whose labels are (1) and

"~ (6) ~ (11), And the language {aibj_akl 1% ;or X k}
18 by the rewriting rules of (2) ~ (15).

oL 'W. . A fuzzy grammar FG in which the rewriting
rules are of type 1 (1=0 1,2,3) is denoted as i-FG - The

"-;r' —-m%

. ;--f]:rf.'v'j“»language by 1-FG with the threshold A is defined as L(i-FG 7\ )'.,ﬂ‘,'-: i

-u«‘n—,—

| .T.hznrﬁm_LL.J.- For any A (0€ A<1), a language L(i-FG A) 18
e »a type i language in the sense of Chomsky, where 1 = 0,1 2’3. :
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Proof: For thé 1-FG = (V, Vs Py S,'J, f)_ with the .
| ‘threshold A (0 é)§< 1), let J( ) be the set of all '
lsbels such that £(r)>A s where ré&d ., : More prec’iAsel»’yv‘, 8
Jr) = { r| f(ﬂ?l}{ Then L(1-FG,A) 18 a language
which was 6btained from the only f'ewriting rules correspo'nding}t ,
‘to the labels in J(A) . IL(1-FG,A) 1s, therefore, a i

 type 1 language, where 1 = 0,1,2,3.

Theorem 4#.2. For the 1-FG, where i = 0, 2, the languages

- languages.

‘ .' Proof: The language L(1=-FG, )\, ’ )»z ié given by the'dif-
ference L(1-FG, A;) = L(1-FG, A2). We know that the type 1

(1 = 0, 2) languages are not always closed under the difference.

Thus, the lenguages L(1-FG, A;) and L(1-FG, A2) are ‘type 1 S
- :’ lahguages, so L(1-FG, A, , X\2) 1s not always a type 1 len-
guage, where i = 0, 2. Similarly, L(1-FG, = ,)\) 1s given ‘
"by' L(1-FG, 2 ,A) - L(1-FG, A), where L(1-FG, Z ,A) 1s '
defined as {x & VT \ fpgix) ZA} -Cleafly, L(i-FG 2,
A ) 1s a type 1 language, so L(i-FG, = ,A) is not always
 type 1 language, where i = 0, 2.

E_Q_tg_t L(3-FG, A , A2) and L(3-FG, = yA )  are also type 3
languages, since type 3 1anguages are closed under the
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~difference. We can not, however, conclude whether L(l—FG |
Al Az) end L(1-FG, = ,A) are type 1 languages or not.y;f
'_tvFor 1t is not known whether type 1 languages are closed under:ff‘,;

'bthe differenoe or not.

In this section we shall define an n-fold'fuzzy gram=
‘mar in which the grade of the application of the rewriting
. rule to bevused next is conditioned by the n rules used before
1n a derivation, where n > 1., And 1t is shown that n-fold

fuzz& grammars with CF rules can generate CS languages.

Definition 4,6, An un(Z 1)-fold fuzzy grammar (n-FG for short) -

' is a system,

n-FG = (Vy, Vo B, S, J, {1, 250000, £ }) (h12)

where VN’ VT’ S, and J have essentlially the sameé meanings as.
those for the fuzzy grammars denoted in the previous section, f

_ and ‘P ipg a finite set of rules with labels such as

(r) u—s>v a3
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where ré€ J, u-»>v 1is an ordinary rewriting rule with u f
€ Vy -{_s} and v e (Vy UV) J={r} 1s a set of}-
(rewriting rule) labels. £y (L =0, 1, .i. ; n) isia;"*
(conditional) membership function of‘a fuzz&‘set in the't

label set J and is defined as follows:

(a) In the case of 1 = 03 f, 18 a membership funotion

- from JS to [0, 1] s 1.0.,
fo ¢ Jg —> (0, 1] | (Bo24)

;fwhere Jg 1s the set of all labels whose rules are initial
rules. The value fo(r) in {0, 1] represents the grade of
- the application of an Anitial rule r in Jg. Y

B ~(b) In the case of 1S 1S ns f, 1s a conditional

. membership function such as

RIS |

fl(rl, !‘2, e-o ’ r1; I‘1+1) e [0, 1} (b.lS)

a endrrepreeeﬁts the grade of membership of r, ., in J given
| 'rlg Tpy see 5 Ty in J. In other words, f (rl,r secesly} :

) 1is designated as the grade of the application of the 4-,,-
- rule r1+1 after the i rules Pys Tpy ooy r1 were applied

d'eeqﬁentially'to the intermediate string in a derivation.
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| In what follows, we shall call f, (120,1,000,m)
A ’,‘as an 1=fold rnzzz function. | e
‘ We assumed that, to each rule, there may correspond

more than one label, but not conversely.

;ggmazks , _For all r in Jg, all 1 (1=1,2,...,n), and all -
' rl.rrz,..i, r, in J, let ' L

fo(f) = f(r),

Lylrygs vy cvee y i3y ) = f("1+1)'

 ;Then n-fold fuzzy grammar beocomes a fuzzy grammar denoted =

in. the previous section. Thus we may call a fuzzy grammar

'»,asfa 0=-fold fuzzy grammar.

Now, we shall explain how to use 1=fold fuzzy functions

“fi" 1=0 1,---,n, in a derivation.

The expression

S maSpy al—+ a2—> I EEER ] —-’am . i (u.16) '
o T2 T3 Ty W

.~i*‘w111 be referred to as a derivation chain of length m by the
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rules Tys Tpy eoe ,'rm from S ¢to @ .

When the length m of a derivation chain is m< n,
the fuzzy functions fo, fl, ceee fm-l are employed as
follows?

Let fo(rl) = g fl(rl;rz) = oo fz(rl,r2;r3) =
“3’ eeees 4 aNA fm-l(fl’rz""’rm-l;rm) il then we put

each fuzzy grade pys pys =es » p €0, 1] over the arrow
by the following. | '

L] L "~ Pped M 7
8 —> o —» B> cees —>a _,—> (%,17)
r r | :
1 2 Tl  Tm

Moreover, when the length m is m> n, we let m = n + J,
b ;1. Then, in general, after the n rules rJ, rJ+1’ cese

. Tht j=1° where j 2 1, were applied sequentlially to the inter-

"mediate string, the grade of the application of the rule rn‘._‘1
is characterized by an n-fold fuzzy function fn. Let

fn'(rj'rjﬂ"”"rn+3-1;rn+3) = Py J= 1, then the grades
Mn+1? Ppe2t *°°* 0 Mgy 8T expressed as follbws, where p,,
Bpr eoe y W, 8re dependent on the fuzzy functions fo, fl,

sees g fn-l as mentioned before.
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(4.18)
Lo B B2 "n lJ‘n+1‘ o Pnag
S,ﬁ’ a1—> ces =P an — an+1——) cee —-> an+J.‘.
rl r2 rn rn+1 I'n+d

We shall call this derivation chain with fuzzy grades
~as fuzzy derlvation chaln.

_ We shall next explain a fuzzy language characterized
by an n-fold fuzzy grammar n-FG . -
’ Lét (4.19) bve a fuzzy derivation chain from an initial

symbol S to terminal string x in Vg, , that is, .

L} P2 Hie's

S 3 al‘ﬁ‘ az — s se — ak (=X). ) (4619)
R 'rz STy

- .Then the grade of the generation of x by this fuzzy derivation

chaiﬁ is defined as

min [ ‘p,l, p,z, sese p,k ] . (quO)
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_ By using the concept of composition of fuzzy
relations (see (2.17) in Chapter 2), the grade of the

generation of x in VT* by n-FG 1s given as follows.

pn_FG(x)}= max min [ ) pé, cese "k] . (h.21)

where the maximum is taken over all the fuzzy derivation

| chains from S ¢to x.

‘_ Definltion 4.7. A fuzzy language by n-FG 1s a fuzzy

‘set in VE* characterized by the membership function '“ﬁ;FG(x)»
as defined in (4.21) and may be called an n=fold fuzzy lan=
guage which is denoted as L(n-FG),

Espeoially. we call an n-fold fuzzy grammar with the
- -grade of the generation of the terminal string under the

operation "max min" as in. (b 21) as an n_zgld_ngngimlazln
fuzzy grammar (=n-PFG), and an n=fold fuzzy grammar under .
' the operation "min max" which will be defined in (4.22) as

an p=fold optimistic fuzzy grammar (=n-0FG).

Mpeora(x) = min max (ngs wps veee s “k'v}". } (h.22)



" A fuzzy language characterized by n-OFG 1s denoted
as L(n—-OFG) N |

In this paper, unless stated especially, by an

', n-fold fuzzy grammar" we shall mean an n-fold pesaimistic ';' - ‘

fuzzy grammar.
, Exmnnle_l}_,.z,. Consider the following 2-fold fuzzy grammar,

2-F6 = (Vy, Vs P, S, J, {1, £y, fz} )
where Vy :-?{'S, A, B} . VT =={_a, b, c} y P consists of
" the followings.
(1) s-—>4 , (4) B —>cB
(2) A —>ahpb , (5) B—>c¢

(3) A—>ab,

. And the 0, 1, 2-fold fuzzy functions are

fo(i) =1,
£,(1;3) = 0.9, £,(1;2) = 0.8
£,(1,3;5) = 0.9 , f,(1,2;2) = 0.8

| £,(2,2;4) = 0.7 , £,(2,450) =’p.7
f£,(k,l452) = 0.7 , f,(l,2;2) ='o.7;-

£,(ly453) = 0.6, £,(k,335) = 0.6
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and all other f, and f, are 0.5.

2

R Now, we shall obtain the grades of the generatlon‘bf
 the terminal strings by this 2-FG. A string, say, a3b3 3

is obtailned by the following fuzzy derivation chain. -

1 .8 - 0.8 = 0.7

'S —> AB —» aAbB —» a2Ab’B —»> a2ab%B
12 2 b l
- 0.7 o. 6 0.6 . -

4 3 5

The grade of the generation of 33b3 3 by this T

fl'derivation is given from (4.20) as follows.
mn{ 1, 0.8, 0.8, 0.7, 0.7, 0.6, 0.6) = 0.6,

The 0, 1, zéfold fﬁzzy functions used sequentlally‘;';f

~'in this derivation are

,fo(l) =1, fl(l;z) = 0.8, f, (1,23 2) = 0., 8,;l

:} fz(Z,z;u) o] 0.7, 'f2(2,4§U) = 0.7,'.lfé(ugbgj)a=:0?5’.f '  

| :fé(4,3;5) = 0.60
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Similarly, for the same string 63b303, the followlng

'derivation 15 also possible.

1 0.5 0.5 o -

§ —s» AB —s AcB — aAbcB —> aébc?B :
‘ 1 Iy 2 4 '

0.7 0.6 0.6

—_— azébzozB — a3b30_2_B. —_— a3b303..

In this case, we have
min [ 1, 0.5, 0.5, 0.5, 0.7, 0.6, 0.6 ] = 6.5.

' Furth_ermore,i ive can also show the different fuzzsr
~derivation chalns of adbled sy whose all grades are shown to “ 

 be 0.5 .

‘Hence, the grade of the generatibn of alvle’ by
.2-FG is given as thw maximum value among the grades for alln-i_"

. ‘the fuzzy derivation chains of a3b3 3 (see (4.21)) Thus, %

we have p.z_m(aBbBcB) = 0.6 .

Continuing in this manner, we can see that the fuzzy

e language characterized by 2-FG 18 ;
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L(2-F0) = { (x, py_pg(x))} |
= {(abc,' ob.9) } U {(82n+lb2n+1c2n+l’. 0.6) l n 2 1} "

U{tavled, 0.5) | (1,2) % (2n-1,20-1), LLnZﬂ

Let L(2-FG, A) = »{x & VT*I no FG(X) >} 5 where
08 A<1; end leb A = 0.85, 0.55, 0.45 . Then

L(2-FG, 0.85) = { ave}.

| L(2-FG, 0.55) = {a?8" 120712071 | 4 2 1},

_In the case of n=1 in n-FG, 1l=-fold fuzzy funoc=-
tion rl of 1-FG = (Vy, Vow P, S, J, { £, fl} ) ocan be
- represented by the m fuzzy vectors whose dimension is m, |
'v_where m= #J), That is, let J =={r1',‘ rz’, elat rm}, then >

| _forv egch (ri) W->v, in P,

T

i ‘gh“r'e.re »Arrlrjk'c fl(ri;rj) and 1,..1. = 1’2’"°,"m'¥.. o
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Example 4.3. Let 1-FG be (VN’ ‘vTo p, S, J, {fot fl} )y
where VN = {S, A, B, C}', Vi =>{a, b, p} § 'fo(l) = 0.9,

and the rules with fuzzy vectors are

1 2 3 4 5 6 7 8 9 ,10'

(1) s—=aBCc ( o7 .8 9
(2) A—at (.7 . |

(3) B> ( 7
W) cemoc (.7 o

(5) A->ofa ( .8

(6) B—>1Bb ( | 8

(?7) C—»cCo ( .8 .8

(@) Aema ' .9
(9) B—=b ( | .9

{100 c—>o (-

We assumed that the values of the blank portions of

-ﬁ:»w  the fuzzy vectors are in the interval (0, 0.65).

A string, say, a’b%c’ 1s obtalned by the following

. fuzzy derivation chaln.
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§ —> ABC —» 8ABC —> aAbBC —» 8AbBoC —= a2AbBoC
1 2 3 b2 -

lo7A 0.7 0.7 0.9
— azAszoC — azAszozc —_— a3b23020 — a3b3 20
3 - b » 8 9

0.9
— 33b3030
10 -

 The grade of the generation of 83b3 3 by thla derivation 18
~ from (4.20) as follows.

nin [ 0.9, 00‘7., -007, see 067" 0.9, 009) = 0.7 -

Similarly, other derivation chains of et3'b3 3 'are.,

2 conald,ered.

0.9 . 0.8 0.8 0.8
S —» ABC —3 glAgBC —> aAabBbC — a_abBbcCo
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0.8 0.9 0.9

—_— aBbBbcCc __> aijcCo — a.3b3 3

8 9 10

In the above case, we have 0.8 . Furthermoré, we can also ,
’ '. show the different derivations of adbla> , the grades of which
are all less than or equal 0.65 . Thus, fl_m(83b303) = 0.8.

Contlnuing in this manner, we can see - that the languages ‘

A'fwith the thresholde generated 'by this . 1-FG are, for example, :

'_L(1-Fd,_ 0.95) = $.

»'"t:'-_" L(1-FG, 0.85) =" {abe}. |
o o) .vi:"-_.ﬁL(l..F'G', 6.75) u {agn-lbzn-J.OZn-l I nx1l.
3_*-1:,(1.',170, 0.65) = {_anbnonllné 1y,
.L(1-FG, 0 )= {aPb%"| pya,r 2 1%.
"’_'-L(1..FAG, 0.65, 0.75) ={ a®"p%* | nz 1},

 L(1-F8, = , 0,8) = {[a201p20Ho204l | 4 21,

where the language L(l—-FG 0.65, 0. 75) is defined as = |

{ xeé VT I 0.65 < pq,_ Fc(x) 0.75} and the language L(l-FG
s o, 8) is as {xe VT Ip.l FG(x) = 0, 8} (see Definitlon bob).



It 18 interesting to note that, as shown in the above
examples 4.2 and 4.3 , the languéges L(n-FG,A.) by n( = 1)~
fold fuzzy grammars n-FG with the rules of CF form can be
CS'languages.  But L(Fﬂgfk)- by fuzzy grammars FG (or 6-foid
fuzzy grammars) with CF rules denoted in the previous éection

are CF lenguages.

Bl N-Fold Type 3 Fugzzy Grammars

In this section we discuss n-fold fuzzy grammars with
type 3 rules only. It 1é shown that there exist n-fold fuzzy
grammars which realize “union", "intersection";, "concatenation®,
 >and "Kleene closure" of fuzzy languages characterized by n-fold
:-type 3 fuzzy grammars. And fuzzy languages defined by n-fold
A.-type 3 fuzzy grammers can be characterized by (n-l)=fold type 3

fuzzy grammars and vice versa.

Defipition 4.8. An n-fold tvpe 3 fuzzy grammar (abbreviated
n-F@) 1s an n-fold fuzzy grammar (Vy» Vg, P, S, J, {fo;fl,...
,rn} ) in whioh each rule in P ig of the forms

(r) A-—> aB or (r) A— a
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where r € J, A,BE-VN, and a‘éV;_[

Similerly, we can define an n_mld. mg_‘i fuzzy
grammar (n-OFG for short). B 7',05225§;€ZZ

Now, we shall prepars for the following notations
" in order to put restrictions on the domains oflo,l,...,n-"

B fold fuzzy functions without loss of generality.

Let J,; bea set of all the labels such that the
nonterminal symbols of the left and the right’hand sides of
the nonterminal rule in P are A and B (e VN) resi)eotively'.
And let J, be a set of all the labels such that the left
hand side of the rule in P is A (€ VN). Moreover, for non-

empty 1 label sets J Ty a s eeveey Ip y let us
Aohy’ TAyA, *Thy a8y

define the set of label strings of length i as follows.

(4.24)

J = J J evs 00 J
[ NP W W W ‘Al_lAi

= { rlrz'”'ribl rke- JAk-]_Ak y K = ]3’ 2; oy 1} ’
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~which shows that, after the rule Ty (k=1,2,,.;;1-1).wa5 ug,d K

in a:derivation; the next rule rk¥1 18  applicable.

Now, we shall define the i-fold fuzzy functlon f

f 1=0,1ye0e4n, using JA A v oA and JA defined above._ 

g o

01 1 i
~ (1)  As to the 0-fold fuzzy function £or let A, = 5 in J,
‘and define - - N
- fylr) € (o, 1) e 7R (4.25)

for each r € Jg.

(11)  As to the 1-fold fuzzy funotion £, 1=1,2,000,0-1,

 let A0= S in Ta A vudA and define

01 1

AL '~ fi(rl.rz,...;,risri_’_i)_ _e‘[o, ;J (1.26)

' for each T.P._ ceel, & Jap and rv «J, . -

N This s carried out for all the non-empty. sets
% '} N ‘J'b' Y anga J,'. '
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;_(4111) As to the n-fold fuzzy function f,» define
fn(rl’r2’°f°"rn3rn+i)§ (0,2} \_.(9.2'»7_) e

for each r.r.eseer €& J ~ and r € J, .
; 1" 2 n AoAlooooAn “at+l An

This is carried out for all the non-empty sets .

JA

. ' and J,'.
oAl....An An

Theorem 4,3. For two n-fold type 3 fuzzy grammars n-FG(.l) |

 and n-FG(’Z). let .L(n-FG(l)), and L(n-FG(Z)) ‘be the fuzzy
: languages by n-FG(l) and’ ’,"FG(.Z)’ respectively. Then, in

 the fuzzy sense, there exists an n-FG such that
L(n-Fe) = Lin-Fe'2) U p(mre2)), | (h.28)

Prooft  Let n-FG'l) ana 2-76'2) b as follows. '

_:__n.m.(.z')'?‘ (VN(Z)’ .vé‘z):’ P(z.)’ 5,5 J(2),{80’ Baeres gn} 3



- 76 =

| '_yw'hereit 18 assumed that vN(l)'h VN(Z). =P ama-
';J(,l)f.\' J(2) =d .,

Now,-oonsider an n=-FG, that is,

: n_FG = (VN, VT’ P, S,‘ J, {ho, h1, iro ‘_, hn} )

] where VN’ VT, P, J, and ho’h1’°"’hn ‘are:give#vas_r°11°?3ﬂv;v- -

Vp = Vg (1)U v, (z)

(1) (2)' : :
P=P'"'U PV PLU P .

L)y g(2) ‘
Jma Vs apag,
 where I R A L

Psy JI, PII’ and JII are defined as follows:

'?'[I]rs For each initial rule (r) S;=> w 1in P(l),}ﬁherev

J (1), we construct a new initial rule of P such as e

r-€
r(T (r)) S —> w , where + (r) 1s a different new label,
Iifand S is a new initlal symbol of n-FG , Let PI and |
 ,JI be the set of all new 1n1t1a1 rules obtalned above and zfr
lirthe set of labels corresponding to these initial rules, res-j}

~7peot1ve1y. Formally,-



-

P = {('r (r)) S~>w I(r) Sl

Sy

RS = {r) ] r eqsil’ 1.

- (I1)+ Ve can get Py; end Jpp for the 1n1tial rules.

in *P(z) in a similar way as (I). That is,

- w é P‘l), réJ(l) })

Jir = {'rz(r)l reJSLZ)'}.

| 'Flnally, the i-fold fuzzy function hi,' 1=0,1,o-‘,n,“"
of n=-FG 1s defined by the following.,

'}"';.("aA)‘ : 0_-fold fuzzy function h, is given as
fo(r) » 90000070"00 . 1f p‘ﬂ Tl(;‘)éJIv
'..ho(p) =

go(r) otooon;oo 1f p=1‘2(r)eJ,II.

where h°' is not defined for other peJ.l
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i-fold fuzzy function h

g 1! 1=1,2,¢0000,n=1, 18 given,_

aé_followsi

o

i

where

'ff‘c)y

hi(pl'pz"""P15p1+1)

. fi(rlﬁpzt'f;‘!p13p1+1)
. it p, =7 (r)ed " eafl)
A~oo.ooon..1f pl='rl rl I'and. pz,n-o,p1+1e
81(?19P2!"":p13pl+i)'
k ; 000'0.6. 1f p1= 72 rl II andpzo"Osp1+1€' )

by 1s not defined for other pl,pz,..;,p1+ie-J. P

n-fold fuzzy function h, 1s

'. hn(Plspzs""’Pn$ n+1).

-
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o <r1'pz'----’pn’ 1)

tecscce lf pl’g’r (r )E'J and pz,ooo,pn+1(—J(l)

fn(p1!p2900.ogpn3pn+1) sevove ‘if pl’p2"‘°'Pn+1e J(l) g

< gn(rl.pz.--u.p $Ppe)

eeeee® lf pl = T (rl)e JII and pz,ooo,p +1eJ(2) |

- \ €,(PysPpseesosP 3P q) seceee Af Pl'Pz""'Pnﬂe".(Z)

.- where h, 1s not defined for other plgpz.u-.p 1€ 9 J

P  Example 4.%4.  Let us conaider two 2~ FG(]') and 2,-FG(2)
g ‘such that | | IURR

2-rMa (s, a1, fa, v}, 2, 5, £1,2,9) {000,050 )

where P(l) consists of the followings.
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@) s;—>aa,  (2) A—>bA
(3) A — g

and .O, l, 2-fol¢ fuzzyvfunctions»'to, fl"fZ‘ are

fo(l) = 0.1 ,
£,(132) = 0.2, -£,(133) = 0.3
: £,(1,2;2) = 0.4 , "fé(i,2;3)'§lq.5w-_u

f£,(2,252) = 0.6, | £,(2,2;3) 550.7'

e s o, s ) )

}157wheré. 2(2) oconsists of

(5): 8, = g

(4) S.—> vs 5

2 2
'?saahdflo; 1, 2-fold fuzzy functions 8gr 8 85 are
| go(u) = 0.9 , gy({5) = 0.8

31(4;4) = 0.7 : g1(4;5) = 0,6

&yl b31) = 0,5 , 8,k 135) = 0.4



e
Bk .""311.265 SN i
' L(z-F0) = L(2-ra(1)) U‘L(z-gc“;t('?))"i-;f‘
‘1,8:.::81Ven aé -' .1‘0116,,8“..- |

2-FG

= ({5,5,,8,,8}, {a,d} , P, 5, {1,2,3,4,5,6,7,8} 5 {nghysm} )
whei‘e B dons_lsts of the.foilowlngs. |

' (2) A.'—r.-bA,"_ | | (6)‘ .8 -—>aA

»

‘(3)‘ A —>a y _  (7) .8 —> 1S
W) 8, bS,, (8 5 —»a | o

" 'where _*fl(l) = 6, ,72(4) = 7, and ’72(5) = 8.  » R
And 0, 1, 2-fold fuzzy functioms hg, hy, h, a&re
EE hy(6) = r(1)= o_.1.
C o hy(7) = go(u) = 0.9 .

 nyl8) g,(5) = 0.8
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h1(6;2) fl(l;z) = 0,2

hi(6;3) = f1(1;3) = 0.3

b (754) = g, (4;54) = 0.7
hl(7;5) = gl(h;5) = 0.6
| h,(6,252) = £,(1,252) = 0.4

 h2(6,2;3) = f2(1,2;3)1= o.5»f;a

0.5 1f

1y (7,k3) = g,y sh)
.» h2(7sl"‘;5) = 82(‘#”435) = ’0:4

N hz(z,z;z) = 1,(2,2;2) = 0.6 L
- 8,y(2,253) = 1,(2,2;3) =:o;7,, o

hy (b, lslt) = g, (b, l3k) = 0.5

'h2(4,4;5) gz(h,u;S)_n'O.h

§ 2thzgm_&.&. For two fuzzy 1anguages L(n FG(l)) and L
L(n-FG(Z)) by n- FG(I). and N FG(Z?, respectively, there

exista an n-FG }suoh that

 bw-Fe) = Lw-reM) N oL@eret®) . ze)
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"i;42§§g£§- For two n-FG(l) and n-FG(z), that is, -

el (v () g R0, 5,0 SV, (¢, f.lv,_,..,fﬁ} bos

p-Fa2)a (VN(Z) J(z)

| ’ {80981"°‘a3n}' ) g

. let us define an n-FG as follows}
n-Fé = (Vy, Vp, P, S, J, {‘ho,hl,....,hn} )

- where the rules in P are given by the followings

(1) (2)

“F [I] ¢ For two nonterminal rules in P and P

'tha_t the terminal gymbols of tHe right hand side of these

two 'rtilea are common, say, \aeVT. " That is, for .
() A -> ah,& P e (p) B, -> aBze-P(Z)r. f

lét a _ﬂ_evw_nontermlnal rule in P be defined as ‘follous:v.A

(r,p)  <A;,B> —> a<hy,By>,

such
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(1) (2)

(IIJ H For the two terminal rules in P’ and _P

as

(r) A ->aer)  aa  (p) B —> acp(®),

‘where the:tdrminal symbbls are oommbn, define a new term;ﬁai”~."

rule in P as follows:

(r,p)  <A;,B>—> &,

such

Let P be the set of new rules obtained 1n.[I]‘and e

““fV[II] and J, be the set of labels corresponding to these

’

Linewvrules.' Then P and J in" nP%G are given as follows.»ﬂ_<-

,? = \J’ P s and N J = U Ja .
a€ Vp | a€Vp.

ZEQQ;MoreoVer,‘ VN s the set of pairs <A1,B > obtained 1n fI]¢

N‘

and [1];], and s =<sl,s > o Clearly, we have R ‘ f

Vﬁ_g VN(_]')J! VN;z)_,_ Py x'_,_(z).



Now, we shall obtain i-fold fuzzy fumotiom h,. = -

(a)  0-fold fuzzy function h, is given as
-hy((ryp)) = min [fo(r), ‘gO(p)] weee Af (r,p) =-'§ ;

. (b)  1-fold fuzzy funotion h,, 1=1,2,¢e¢,n, 15

hi ( (I‘lypl.) ’ (rz ,Pz) ye ‘e ‘1 (1'1 ipi )3 (ri'i'.l"pl'i'l) )

= min[fl(rl’rz’f"’ri;riﬂ)’ gl(pl,pz,...,pi;p“‘.l)] v.

" where (r,»p, )€J and k=1,2,...,1+1.

W, For the two fuzzy lenguages L(n- FG(]')) and
L(n-FG(l)) i me FG(l) EHA Fe FG(Z), respectively, there

e ~ exists an n-FG which realizegthe concatenation of L(n-FG

(l))

o end La-F6'3)) (see (2.25)).

L(n-F0) = L(n-Fo‘1))o L(n-ra(2)) 30
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Prooft Let

1

n-FG(l) = (VN(]'), VT(Vl), P(l), Sl, J(l)—,{fdsflvf'fofn}) |

nera() o (v (2), %m o2) 5 (2)

’ ' Pos v ,{Sosslv".ngn} )

 where VN(l)n VN(Z) = ana 31032 o,

- We construct a new n-FG,
n-FG¢ = (Vy, Vp, P, S, J, {ho,hl,...,hn} )

where S = Sl’ VN = VN(I)\J VN(Z), VT = vT(l)L[ VT(z);

We introduce the following notations in order to

’ Let P . (1), and Ptﬁi) be the sets of nonterminal
- rules and terminal rules, respectively, in P(i), i=1,2,

And let J (1) and thi) be the sets of the labels

(1) end P (1), respectively.

y._correeponding to the rules in P
' g _

Then, clearly, we have P(l) =P . (1)\) ptii) and

A J (1)\1 Jtii) for each i=1,2.
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" We shall next obtain the rules of ‘neFG,

For each terminal rule (r) A= a 1in Ptél)'and'll‘

~ an initial symbol S, of n-FG(z), we construct a new rule

7 | hadd ot
(r) A—> aS2 » where the label 1s not changed. Let P be

‘the set of such rules, then P of n-FG is givén as -

| (1) ' (2)
P| .Pnr UPUP "
Let us obtain i-fold fuzzy function hi’ 151,2,;.,,n..

”;(a) 0-fold fuzzy function h, 1s

ho(r) = fo(r) soee it rEJS (= Jsl

' (b)  1-fold fuzzy function by, 1=1,2,+..,0-1, 18 given

as follows.
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h1("1’r2"“’r1“'1+1)

(

fi(rl,fz,...,r1;r1+1) ‘"seee0 if 4 rl,rz,kooo,ri_'.le J(l)

| | (where z;le- Jsil) )

(1) o (2)
) 1+1€- J
» ri_’_ievJs;z_))»

go(riﬂ) oooo-o if rl,rz,o,u,ri and Y

: (1)
(where r,€J 5,

gl_J(rJ_‘_l,. ) ,r1;r1+1)

evee 1f ?l,rz,ooo,rJeJ(;) and- rj'i'l’.‘..’ri"l'leJ(Z)‘

\ (wpere r € JS](_I)’ € JS;Z)’ ls .1.< 1)

_where h, are not defined for other rj,rpjeee,r, €7,
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(o) . n=fold fuzzy function h, 1is given as follows. %

'For j (1 s J<n)

1

( £ (rl,rz,o-., +1) XXX if rl’er’.g.-."‘rn-}-’le J(l)

) ecsses o if rl,rz,ooo,r G-J .

( rn+1

gn.J (rJ+1’rJ'+2,o ve ,rn;rn.‘_]/)

esvoee if rl’rZ".,’rJe J(l) and rd‘*'l"..'.' leJ(z)
| | (2)y
(where ?J+16J ) )
( ) | o Af ¥ e-'J‘Z)
\ Sn rl’rZ’...’ +l eose . r1, 2,000, n+l

" where hn is not defined for other rlyrzsf'"rn...l G"J_-
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Theorem 4.6. For a fuzzy language L(n-FG) by n=-FG, there

exists an n-FG which realizes Kleene closure (see (2 27))
R X = . .
L(n-FG ) = L(n-FG), N (4.31)

Proofs For‘the n-F¢ = (Vy, Vp, P, S:F J,{fosflr""fn})_v_"‘
_ let an n-'-FG' be (Vy Vo P, 8", 3, {hysbyseeesh ¥ )0
~ where Vy={s YU vie P 1s obtained from (1], (1I),
and [III] denoted later. It is assumed that‘-the mappings
Tys Ty 81 T, in (z3, (1), ana (11I) ,'reﬁpectklvelﬁr,‘ ‘
-are all one to one mappings from labels to mew labels, and.

the obtained new labels are all different from each other.

(1) s+  For each 1n1t151 rule (r) S <> w in P sy We
construct a new initial rule ('r;ﬁ s' > W 1n Px

~ Let PI ba the set of such new initial rules and J; be.
i :;'»the set of the labels oorresponding to these initial rules.’}'

- Formally.

Pr={(r(r) s'>w|(r) 5> weP, reg ),

Jr ={'rl(r)},
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(II) ¢+  Por each terminal initisl rule (r) S ->a 1in P,

define a new rule (7,(r)) S'=> aS . Then, let
]
Pip = {(-rz(r)) S —> aS"_(r) S ->aeP, reJSS,

Jip = {Tz(r) i,

(111] s For each terminal rule (r) A—» a in P, construct

]
a new rule ('ra(r)) A— aS in P and let
Prrr = {(75(r)) A—>as|(r) A->acr},

I ™ {‘1'3(1')} ,

{J - '] 0 .
Then, P and J in u-FG are given from [I] § [II] :
‘and'[III]‘ as follows,

? ]

] .
I =3V Vi Vg Viry,

: 0
‘where all labels in J are different from each other.
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It is noted that in any derivation we start with an
} ' 1n1t1a1 rule in P; or P;; (not in P, Pri1), and then rules 3
1 Por PIII are used throughout 1in the derivation (see Fig.A;/'

4.1). !

Now, we shall obtain i=fold fuzzy function hi."

(A) o0-fold fuzzy fumction h, 1is as follows.

f‘ro(r), | ceees Af pa=T(R)Edy

""_r:o(p)-“n \ folr)  eeeer af p=T,(r)edy

1 Jieee af (p) S = ¢

0

~ - where h, 1s not defined for other peJ .

',[B] ~ 1=fo0ld fuzzy function ‘hi’ i=1,2,e00,n=1, iB glven’
by the followinga. Note. that let h,, i=1, 2,...,n91, be
b (plgpz.o--.pisp,_ﬂ). then' p,€ J;V Jr; and pz.m.pﬁl



P

; . _ " ¢
Fig. 4.1. Derivation flows of rules in n-FG .



o Gl

e S.P-l) _The‘cases Of D,secesD, € J and p“_le-J U‘JIII:

2 cases arlse.

(b-1-1) When py = 7, (r)€d;

hl(pl'pZ’ L0 O !Pi ;pl"'i)

fi(rl,pa,ooo. ’p1;p1+1) . Oo‘o if p1+1e J’

£,(rpsppreccespyifyyg)  ooe Af pyg=ralry g )edpg,
(b-1-2)  When p, = T,(rj)€drgi
it a vAhi.(plgpz’lo.oo’p‘l;pl-’-l)
fi_l(pz,..oo.-,pi‘;p’..’_l) | see if p1+1e J’ .

ri_l(pz.'.f...p.ﬁr“l) eese AT P1+1"""'3_(r1+1) € I



(b-2) The case of p,€& Jyryt
hy(DyseeeesPyipyyy )

fo(p1+1) ees Af p, €7,

folryyq) o0 A pyy=rylr eIy,

where p, € gV Jyp end PyrecsPy €IV Jpgp o

(b=3) The case that there exists J (2 s J S i-1),
and ple' JIII’ pJ+1’.oo’p1é- Js .

hi(pl’... ,pJ'pJ""l’. LA 9p1‘p1+1) A

fi-J(pJ""l,...'pl;pi"'l) ) 1f pi+léJ

fl_J(p1+1,.-.,pi;ri+l) eoe if p1+1=1’3(r1+1)é JIII 3

where pl& JI U JII ‘ 'Emdf p?!"“’pj-le J U JIII i
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Finally, we shall give n-fold fuzzy function »hﬁ P

w i : . ]
(c] Let h, be h (D sDysecesP iPyyq) » then p €7,

and PZ’...’Pn"'le JIIIU J .

(c=1) The case _°f Ppreeesp, €9 and _pHI'eJ v ‘_TIII $

L cases arise.

(c=1-1)) When P, € Ji"; |

Let p, = 7,(r;) , thenA
by (PysPyreeesPyip L)
fn(rl'Pz""'Pn‘Pnﬂ) if pn+1eJ’
:n(rl.pz.---.pn:rnﬂ) e ar i’hﬂ"‘ *3("n+1) € JIII_"’ :

(e-1-2))  Wnen p € J37

124

hn(pl’pz’""'pn; n+1)
fn-l(pZ’pj’.'..’pn;pn'i‘ll) ’ o000 | 1f pn+le J ,‘

((c=1=3)) When p,&Jyry? See (c-3) defined later.
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((c=1=4)) Wnhen P,€ 7 ;

h (PysPyseesp 3P, 4]

rn(pl’pzi' LU ’pn;pn+1) e it pn.'.le J,
fn{PysPyse e apyiTy 1) 1f Ppn= 7 ‘n+1) e &

(6=2)  The case of p € Jyyp}

hn(pl'pz’ XK ’pn;ph-l-l)

fo(pn+1) e if pn+16 J »

folrpyy)  eoe AT ppg= 3("n+1)e"TIn.

. ,
“where P, € J and pz,...,pn_leJU i *

| {c=3) The case that there exists some J (1 )8 n-i-),‘
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By (PyseeesDysPypgrce s sPyiPryy)

f'1'1-.1(1:'.14'1’“' ’pn?pn+1) o 1# Pre1€ 7

)ed

fn-J(PJ+1""'Pn’”n+1) e Af Py Tolr ) €Ty

. » '
where p, € J and PpseeesPy 1€ J Vv Jrr *

This concludes the way how to obtain hy» 1=0,1,000,n¢

Theorem 4,7. For a fuzzy language L(n-FG) by n-FG, there
- exists an n-fold type 3 optimistic fuzzy grammar n=-OFG whioh

~ realizes the complement of L(n-FG).
L(n-O0FG) = L{n-FGJ. (4.32)

glﬂﬂt’ For an n-FG = (vms vTo P, S, Jyf{fotfla""fn} }s
v L B

let n-OFG be (Vy, Vi, P » Sy T, {ngshyseeeny} ). The

rules which generate VT* s Where Vp = {al,az.u-,am} » are

given as follows.
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(p) S5 —>a;s, - (pgy) 5>
(pz)‘ 5 —- aZS gt t(pm+2) S — a,
(.pm) S—+ a3, , (pZm) S —» a,

Let P1 be the set of such rules and let JI be
B _the_ set of labels corresponding to these rules, that is,

: . ) ? ‘ ’
,‘J‘.'[ !.{ PysPpseeesDy }e Then the’ mle set P and label set
.J  in n-0FG are given as follows. .
' U _ J' U -
P =P PI and = J JI

" _vivh_er'e JNJdp = b,

~ Let us give 1-fold fuzzy function h,, 1=0,1,4+.,n,

e d (a) ~ 0=fold fuzzy function h, 1s

| l-fo(p]'.) , sees 1f piéJ,
:ho(p]'_) =

1 | eees if piéJI.
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"(b).. .1=fold fuzzy function h,, 1=1,2,040,1, 18

by (pysDyreeesDy Dy ,4)

1 - fl(pl’...’pi;p1+l) e 1f pl’pZ’...’pi*’leJ’.

1 ees otherwise,

It oan be proved from the fact, in general,

min max [ 1-}11, 1-p,2, ..{ ,1-pk ]

= ]- ma;t min[pi, Boo --o,p.k].

S S

"'-'Qv'.:l':noreover, 1t 18 noted that, if there exists at least one
. element equal to 1 among the grades RytRpseee sy, then we

o T f‘hav_gv |

e [iangeeeeeeing) = 3
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Next, we shall show that =n( = 1)-FG can be tranafoi'med
‘to (n+1)-FG and n(Z 2)-F6 to (n-1)-FG. }'

Theorem 4,.8. ‘For an n-FG, n>1, there exists an. (n+l)-
FG such that | '

L((n+1)=FG) = L(n=FG).  (B.33)

- Eroofs  For n-FG = (VNs st P, 5, J, {foyfls'“’fn} )y let
(nt1)-FO ve (Vy, Vy, P, S, J, {hyshyseeeshsh 0} ), where

~ 1-fold fuzzy funotion h, s 1=0,1,¢0.,n+l, are as follows,

(a) . The case of 0 = 1 S nj h, 1s

h, = £, 130,1,000,1‘10

~ (b)  The case of 1=n+l; h_,, 1is given by the following.

| Let n-fold fuzzy funotion f, of n-FG be f (rl,rz,
TRV Wi, q+1) &nd its label string P Tyeeer,  be an’element

~of A0 1eeh (see (4.24))., Still more, let J(Ao) be the
set of labels such that the nonterminal symbol of the right-

" hand side of the corresponding rule in P 1is Aoé VN‘ Then,

.‘hn-l-l of (n+l)-FG 1.5 as follows. Let
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hn+1(r’r1’ ® ..0 ,I‘n;rn+1)

= fn(rl""’rn;rn-l-l)
for every redJd(Aj).

- Iheorem 4,9.  For n( = 2)=FG, there exists an (n-1)-FG
‘such that

" L((n-1)-F6) = L(n-FG). (4.34)

m: For n-FG = (VN, VT’ P’ S’ Jr{.foyfl’""fn} )’

' ' ' '
let (n-1)-FG be . (st vTa P,5,J, {ho’hl""’hn-]_} )

] ) -9 . ] .
where VN = {(0) }U {(r) \ re J} and S =¢0>. P 1is obtained
by the foliowlngs. |

(1) ’For each mitial rule in P, that is,
(r) S — aA and (r) S —> &,

B - N
" let us construct new initial rules in P as follows.
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(0,r) 0> —>a <>

and (o,r) <02 —>a

(2) For two nonterminal rules in P such that the non-

" terminal symbol of the right hand side of the one rule is
coincident with that of the left hand side of the other rule,

that is, for the following two rules

e
(rz) AZ—‘a_AB ’

L

(rl)_ A —ah, ,

L,

define a new nonterminal rule such as

(rl.rz) <ry> —> .a'<r2> .

(3)  For a nonterminsl rule and a terminal rule in P such
that the nonterminal symbol of the right hand of the nonter-
minal rule is colncident with that of the left hand of the

tei'mlnal rule, that is, for the following two rules

(rl) Al—->alA2 ’ (1‘2) AZ_’azb'.
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"'1ét_uq construct a new terminel rule such as

(rl,rz?_ <r1> —> 8,

, , A | ,
| Let P_ be the‘get of new rules which were obtained
] ’ - .

An (1), (2) and (3), and let 'J be the set of labels corres-
~ponding to these rules. '

j-fold fuzzy funotion h, (1=0,1,+.¢,n-1) 1s given
“ as follows. DAL T
. (a)  o-fold fuzzy function h, 1is

ho((O,r)) = fo(r). ’ rG-JS.

| '1;(b) - 1i=fold fuzzy function hi, 18]1,2,0000=2, 18

1

hi( (O,rl), (rlgrz),‘ ssee, (ri_lgri) H (r1’r1+1))

’ fi(rlgrz, KX ,rn;rn_._l‘) .



()  (n=1)=fold fuzzy function h 4 is
| hn_l((o,rl), sssese (?npz,rn_l);(rn_lfrn)).
= .fn_l(rl,rz, ° o .o ’rn-li'rn) ’
| -and

'-hn_l((rl.rz), OQOOOf s (nn_l,rn);(rn,rn+1))

= -fn(rl’rz’ teee ’rn;rn+1) *

From the above two theorems 4.8 and 4.9 , We can

" transform n( = 2)-FG into 1-FG aﬁd, conversely, 1l-FG into-

Next, we shall show that 1-FG can be transformed into -
0-FG (or fuzzy automaton) and also 0-FG can be transformed

1nt° ' l-FGo
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‘ Eh.QQI‘.QmJL..J.Q. . Given an 1-FG, there existé a fuzzy automaton
A guch that ’ | F o |

L(A) = L(1-FG) - . (4.33)

and vice versa.

| nggf . (=) Let 1=-FG = (VN’ vTo b, o!.J’ £fo’,f1}')'
" then a fuzzy automaton A = (S, 85 ‘{F(a) | aeVT}', G) 1is

" defined as follows.

The set of states 18 S ={<0>} VU {<r>| red},
- the initlal state By 13(0) » and the set of final states
G 1is {.(_r) | re Jtr} » where J, . 1s a set of all labels

| ‘whose rules in 1-FG are terminal rules,. l.e.,
Tep s{rl (r) A>a .S

Before we obtain the fuzzy transition matrices F(a)‘
| . with a €Vps let us introduce a label set J%,  For ea_ch |

a e-VT, ‘define J% as the set of all labels such ’che:t the
gt terminal symbol which appears on the right-hand. sldeof ‘th‘ef ) -

- rule is a (e VT).  More precisely, we define -

e g ST EITTE
B ) s i Ny,

Jagirl(r) A— EB} U-{rl (r) A-—va}
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for each a eV o Clearly we have that, for a, 'b_e-VT' 'A

, (1)‘ J8 N Jg° = <‘> .....'_.if a!e,b,

(11) U & = J.
aeVT

Now, we shall obtain the fuzzy tranai#lon matricesv‘_g,.':_,’___' sl

F(a), a€Vp, of a fuzzy automaton A by the followings. -

- Kpyp & S, and r, pe JU{0} .

I cases arise’

',(1) For each rule of the form (r) A —s>aB ,,m, 1-,-01(1,

i ; fuzzy funotion fl(r,p) » Where ae-VT is given, A, BC-VN~ e

2 ‘are arbitrary, and pe I let

rl(r;p) veee AF p&dg N J8, ,.
£,0<r>, a8 ,<p>) =

0 - 'otheruise.



(2)° .For each terminal rule (r) A—a, let
£,(<r>, 8,<p> ) =0

-~ for all peJd,

.(3) - For each 0-fold fuzzy function fo(p_).' P&dyy let
Kr> =<0> and |

fo(p) .'_'.0_00 if p(- JoanaD
£40<0>, a,<p> ) =
0 ves otherwise‘ .

("") : when <p> = <0> ’ lét.

1,0 <>, 8, <0> ) =0

e, ;f'or all red,
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(@ )  For a fuzzy automaton A = (S, By » {F(a )\ a, € VT} ,
G),- let 1-FG be (VN, m Py 6, J, {fo,f 1), where VN

- <> | 8¢ S} ,and O =8 1>+ The rules of 1-FG are given
a8 follows. To the element fA(si, ak, 8, ) of the fuzzy
transition matrix F(a ) , correspond the rule such as
<31>->ak<83> , where 1€1, j$n, 1€k€h, n= #(S)}’,'"‘i
~and h = #(Vq) « Then the number of the corresponding rules,:
that is, the number of' their lsbels is n2h .

~ Finally, the terminal rules are given as follows. '

| For each rule <8, = g, <s J> obtalned above, ir .
Jeo that is, J is a final state, then we give a terminal i
rule as <8;>->a, . Thus, the number_ of labels of the
:; terminal rules is hng, where q = #(G).

Hence, the total number of labels, i.e., #(J) is

2

" mn© + mng (=t) . We can appropriately attach the iabe]_.s to

 the rules obtained above without overlapping. In. thlsvpaper,ﬁ

" the label r of the rule whose form 18 (r) <8 - ak<33> =,

L 18 1n{1 2,...,hn§’ and the lebel r of the terminal rule :
(r) <81> —5 ak is 1n {—hn +1,ooo,t} *

iy _1[,"1 3

[I] O-fold fuzzy funotion f, is as follows.

Next, we shall obtain 0,1-fold fuzzy functio n" fo and LI
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(1) If the initial rule is of the form (r) ’<81>—> a<s‘>v L
_' where. re€ J.

5> and 8, 18 ‘an initlal state of fuzzy suto- :
maton A , then ' -

fo(r) = rA(al, a, 8).

4 (11)  If the initial rule is of the form () <8,> —=>a ,
" and let this rule <{8;> —> a be obtained from the rule
| .,<s‘i> ~> a<s> for some sfe'G, then

fo(r).s fA(sl, a, Bf)'

[II'}  1-fold fuzzy function fl(r;p) ‘18 given as follows,
where r-th rule is of the form (r) <s,> — < 84> s
‘14 r€ m?, and 15pst. o -

: _-_(1‘) . In the case of l1&p< s

If the p-th rule 1s (p) <s> ->a<s'> , then
fA(ﬂo a, 8') eoee Af BJ = 8,.

0 esee AT sJ’es.
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: ‘(11) - In the case of hn2+1$ p s ts

} Let the terminal rule (p) <sd>—>a be obtained': . :
from the rule <s>->a{s.> for some s5.& G, then .

rfA(B, a, Sf) eeose 1# BJ =8,
',fl(r;p) = {
l 0 . suan ~ I BJ‘ ¥ 8.
S Example 4.,5. Let 1=FG = (VN’ vuIn P, o, Js{fo_ofl} )y

where VN = {og A} » VT = {a, b} ’ fo(l) = 009, fo(Z) " 006;

 “and the rules with fuzzy vector are

(1) o —ah (0 0 2 5 a1 )
‘}m-o»m'(.5;8'046 o )

(3) .A-—> ah (' 0 0 3 .35 .7 )

() A — a0 (4 .9 o0 .0 :.o')

(5) A—b (1 1 1 1 1)
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~ Then we can comstruct a fuzzy automaton A= (s8,¢ 0>,
{F(a) F(b)}, 6), where S ={<02,<1>,<2>,<3>,<>,<5>%,
| -{( 5}, and the fuzzy transition matrices P(a) end F(b)

are glven as ‘followss

o> <1> <2> (3> 4> 5>

o> [ .9 - | E
1> .2 W5
F(a) = 5 RIS ~
<3> .3 .55
as | o ST
0> <¢1> <2> 3> <b> <5>
I - | N
. F(b) = | -
<hy .9 |
<52 | : R
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Note that the values of the blank portions of F(a)

and F(b) are equal to 0 .

. Example 4.6. Let A= (S, s, {F(a) | aevT} , G) be .
‘a fuzzy automaton, where S ={sl, 8 } " = ]a, b} G =

‘ {sl, 52} » and the fuzzy transltion matrices are

8y 8, 81 8,

- 81 05 . ' ol . 51 o2 b ov7
F(a) = - s,  F(b) = |

8, o3 «8 8y 9 6

Define 1-FG = (vN’ VT’ P’ 0, J, {fog fI} ) as foiloxfs.

AVN ={<91”<82>} » Vp={ay b}, 0=¢s>, eand the 0-fold
E fu_zzy function fo is '
L £501) = 0.5, f£,(2) = 0.4, £,(3) = 0.2, £,(4)=0.7,

£g09) = 0.5, £5(10) = 0.k, £(11) = 0.2, £o(12) = 0.7.

' :Hrv And the rules with fuzzy vector are
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12 3 45 6 7 8 910111213 %1516

.v(Zjl..)<s.1>->a<sl> (.5 o4 .2 .7 . o5 4 2.7 )
| (2)(81)-)a<82>( ' i .}8 9 6 ,'.3'.8'-.9 .6): :
R (3)<sl>9b<sl> (.5 o 02 .7 5 Wb a2 7 o R
(4 )<sp->besp ( ¢33 .8.9.6 ’_.3.'.8"._9 +6)
\(.5)“’2*’““1’ (5 .4 2.7 | .5 .l&. v.?.? R :
| '(6)<52§+a<82>( 3896 L 3.8.9.8
(7)<eprbespy (5 o4 02 07 5 ok 2 7 o ) :
© (8)capbeay 3 .8.9 .6 S e
(9) <apsa T L | )
- (10)<sl>->a ( i ) ‘,
(lcapn L Y
(12)¢spsd 1 gL
(13)<sp>a  ( 1 )  ,?
L (epea 1 S
",‘_'__'-_(15)<32>-ib‘ ( 1 )
‘ 1 Py

:.(16)<32>->b B ¢

It is.moted that, in the fuzzy vectors from (1) to (8),

- ~ the values of the blank portions are 0, and the rewriting rule,

.g'__A_'_say, <81>->a in (10) is obtained from the ruie <sl>—)a<sz>
. with s,€0, o '
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'_hggzgm_&gLL Fuzzy languages L(n-FG) characterized by |
n-fold type 3 fuzzy gremmars n-FG form a distributive lattice. ';

"zzggtt It 18 clear from Theorem 4.9 and the theorm_that,
fuzzy events L(A) defined by fuzzy automata A form a
distributive lattice (see Chapter 3).

4.5  Concluslons

As the reader can see, the concepts of n-fold fuézy_
grammars and, especially, fuzzy'grammarsAcan be discussed
readily as extensions of ordinary formal grémmans} The.
proofs, however, are generally somewhat longer since they
involve not just the positivity of fuzzy functions but their
value 18 in the interval [0, 1}

The theory of fuzzy languages offers what éppéars _
to be a fertile field for further study. It may prove f.oz~

"~ be of use in the cqnstructlon of better models for natural

"1'languages and may contribute to a better understanding of

_*f the-ro1e of fuzzy algorithms and fuzzy automata in decision‘:"
__'.maklng, pattern recognition and learning process of languages,
‘and other processes involving the menipulation of fuzzy data. e
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CHAPTER 5

GENERAL FORMULATION OF FORMAL GRAMMARS

. 5.1 Introduction

By introducing the concepts of\randomness‘and fuzziness
into the structure of formal grammars, some interesting grammars’
'suoh as probablilistic (or stochastic) grammars and fuzzy '
grammars have been formulated [38 39, 40, 41, 42, 43, 49, 50

51, 52).

In this chapter, we develop a general formulation of
formal grammars by extracting the baslo properties common to
' the formal grammars appeared in existing literatures. _lBy
corréspondlng the elenent.of the approprlato'algebra,'say;
"the complete distributive lattice, to eéoh rule of a pseudo
grammar, the evaluation (or weight) of the application of the

rule is given. We evaluate a sentence'by performing the

. .'operations of the corresponding algebra to the weight of the

rules used in a generation of the sentence.

We derived from the pseudo grammars wlth various types

" of algebras the well-known phrase-struoture grammars, probabi-

listic grammars, and fuzzy grammars. St1ll more, the grammars,
-n;which have never appeared‘bofore,}say,\Jz<grammars,lJﬂ grammars,
n]J grammars, composlte B-ruzzy grammars,,mixod fuzzy‘grammars,

" ‘and label string grammars, are also derived.
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It can be shown that there are max-weighted grammérs,.
max;probablllstic grammars and label string grammars as speciai
cases of Ux grammars, (pessimistic) fuzzfr'grammata and phr?ase
structure grammars as special cases of Uﬂ'gfammars, and

optimistic fuzzy grammars as special cases of [IU grammars.

The pseudo grammar called a pseudo conditional grammar,
. whose weight of the applidation of a rule 1s conditioned by
the rule used just before in a d’erlvation, is also defined

and from it several 1nterest1ng conditional grammars are

derived in the same manners as the pseudo grammars, .

5.2 LeFuzzy Sets

We shall briefly review L-fuzzy sets by J. A. Goguen
(5] for the purpose of Li% gremmars, |\[]grammars, [JUgra-

mmars, and fugzy grammars which will be defined later.,

. L=Fuzzy Setg! A I:mm m A in a space X ={x} is

‘characterized by a membership funotion p, such as .

p.A ] x—>L¢ . . (501)

where L 1s called a membership space and the value y,(x)
& I-< -_represents the grade of mgmlzgmhm of x in A,

A membership space L may be assumed to be a partially
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~ ordered set or, more particulary, a lattice.

When L 4is the unit interval [0, 1],’»A is a fuzzy

set defined by L. A. Zadeh {1). |HMoreover, when L contains -

 '«on1y two points 0 and 1, A 18 a non-fuzzy set and its mémber-

ship function p, reduces to the conventional characteristic

"funotion of a non-fuzzy set.

The notions of containmment, equality, union, and
intersection of L-fuzzy sets are ‘defined as extensions of the

corresponding notions in the ordinary non-fuzzy sets.

Let A end B be two L-fuzzy sets in X, and let
ny and pp be membership functions of A and B, rgspeotié‘
vely, then, for all x in X,

I'WL - agn a0 B glx),  (5.2)

| m: | A= e uA(x)='p.B(x),' (5.9

 Untons AUB > gy ygle) = py() U pB(x),‘ (5.4)
Dutersectignt AN B < gy glx) = ny(0) 0 pglx), (5.5)

‘where the operations =, LI and [1 represent an order relation, |

- lub, glb in L, respectively.

In the case of L ={0, 1], that is, fuzzy sets by
Zadeh, the operation ll reduces to max, and [1 to min, - In

addition, the complement of a fuzzy set A 1s defined as .
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Q_ngmgm;_: , e A &S uK(X)=1-pA(x). (5.6)

| In this paper, the structure of the membership space
L 1s assumed to be the complete distributive lattice (or,
more generally, the complete lattice ordered gemigroup) on .

account of L-fuzzy relations denoted hereafter [S]T.

L-Fuzzv Belationt A L-fuzzv relation B in the product |
gpace X x ¥ = {(x,y)! x¢€ X, yeI} is a L-fuzzy set in x}_x'?[ |

characterized by a membership function pgy l.€.,

pg ¥ XxY¥—=>L, (5.7)

T ‘ A complete lattice which is a semigroup with identity

.under X and also satisfies the distributive law; for X,¥,

xx(U y ) =U(xxy, )"
1 Ty i
 and (u x)xy =U(xx% ¥),
L - , R | i

1s a gomplete lattice ordered semigroup (=glosg).  Still |
more, if X 1is replaced by {1 in oclosg L, L becomes'a mn].m
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Product of L-Fuzzvy Belations! Ir -Bi. and Ré' aré'two
L-fuzzy_relatidnsAin X x'X, then by the product (or gompg= -
- sition) of B, and B, is meant a L-fuzzy relation in
‘X x X which is denoted by B,BR, and ig defined as followss

Irfr L is a oclosg, then

e n (x 2) =0 [ me (xR (3, 2)),  (5.8)
Py ‘lajr'[ualx'y he, ' 2],

_where U and X are the Operationa of lub and semigroup in
L, respectively.

If L 1is a complete distributive lattice, then -

vayp, (%0 2) =U (g, (%0 9011 g (3, 2)), (5.9)

re (% 2) =1 (o (6 DU wp Gy z) ], (5.10)
_ Y '

If L-fuzzy relation B 1s a fuzzy relation by‘Zadqh,
 that 18, B 1s characterized by a membership function

- then the product of fuzzy relations B, eand B, 1s defined
. as speclal cases of (5.9) and (5.10), that 1s, | |
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",I.BIRZ(X’ Z) = infymax [ ]].al(x) y)’ sz(YQ z’]. (5013)

Note that the operation of the product of (L-) fuzzy

relatic:s ras the associative property, i.e.,

B, (B B ) = (3132)33 | - (5.14)

: Hence, let B,, Bz,...., B be the (L-) fuzzy rela-
tions on X, then the product 3132...3 » 58Y, 1n the case of N

o (5 8)v is defined as

“Rlnz...an(xl' xn+1? . | :ﬁ5.15)j

: .‘_‘ A [ Hnl(xl' xz)x&unz(ng x3)*""'* uRn(xn’ xn+1)]f<.

Let the membership space L be the Boolesn lattice B,

then the convex combination of B=fuzzy gets s defined as

follows:
" Convex Combinations Let A, C, and A be B-fuzzy sets.
Tre convex combination of A, C, and A 1s denoted by (A,C;

) gu? i5 defined by the relations



- 122 -

(a,csA) = (ANAV (AN o), (5.16)

where /-Lt 1s the complement of A .
It 1s easy to verify that, for all B-fuzzy sets A

_Note: In the case of L =[0, 1], that is, fuzzy sets by

- Zadeh, the convex comblnation of fuzzy sets A C and/&

18 given by (2.14),that is,

(ac;A)=AA+RC. (5.18)

Next. by using the concept of L-fuzzy sets, we shall
define L=fuzzy languages. For simplicity, we call L=fuzzy
languages as fuzzy languages hereafter,

Let I be a finite non-empty alphabet. The set of
- all finite strings over 3 18 denoted by + The null
string is denoted by € and included in '2*.

_nzzx_.angnagzs.* A fuzzy lapguage FL 1s a L-fuzzy
| set in 2 oharaoterlzed by a membership funotion auch as":

' .p'FL' Z*‘> L



- 123 -

The operations such as containment, equality, union,

- and intersection of fuzzy languages are the same as those of' '
L-fuzzy sets mentioned previously (see (5. 2) ~o (5 5)).

_ Moreover, the notions of concatenation and Kleene ologure of |

ordinary languages can be extended to fuzzy languages by the

followings
Let Ll and sz be two fuzzy languages in 2*,
and p.L1' and p.i be membership functions of Ll and Lz,
> .
respectively.
Concatenation | concatenation A
G s The of Ll and VL2 is a

fuzzy language denoted by LeL, or Ly L2 and defined
‘as follows: Let a string x 1in E* be expressed as a
concatenation of a 'prefix string u and a suffix string v, '-

“that 48, x= uv. Then

uLl,Lm_u[pL(u)n nL(v)] ~ (5.19)

o (x) =0 [ (WU (), (5.20)
R

where U} in (5.19) and T in (5.20) are taken over all prefixes

au of x.

Note that the concatenation L1° Io2 in (5.19) 1is

related as UM grammars snd L1 L, in (5.20) 1s related as

NU grammars which will be defined later.
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,Mm3 By using the concatenation L1° L2 or
' 'Lln_'Lé, Kleene glosure of a fuzzy langusge L (written as

. :
¥, or T ) 1s defined as

L = € U L U LeL U LeleL U ofot‘ ' & (5021)
'I\l =2 g n L n L'L n L'L'L n oo;o. (5.22)

5.3  Mardous Kinds of CGrammars

In this section we define a pseudo grammaf-each
production of which has a label, an ordinary rewriting ruie,~
end welght u(r) as in (5.24) and derive from it various
jklnds bf grammars, which have, or have not appeared in the
existing literatures, by employing an appropriate algebra
"_system as a welghting space and perforﬁing the corresponding ~

operations to weights -p(r)'s.

Definition 5.1 A pgeudo grammar (PSG 'for_shoi’t); is a

' sys:t'em:

PSG = (Vg Vo B, S, 0, My ) (5.-23)-
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where

(1) Vy is é nonterminal vocabulary.
(11) Vp 18 a terminal vbcabulary.
(a11) S 1s en initial symbol in Ve

(iv) P 18 a finite set of productions such as
(r)  w—>v alr), 0 (5.28)

“there red, u>v is an ordinary rewriting rule with -
+ € V -{e} amda ve (VU VT) , and plr) 1s a weight
‘of the application of the production r S which will be

| denoted in (van)', ' ”

_f_ (v) J 18 a set of (rewriting rule) labels as shown in (iv).’
J"{_I‘}o
(vi) M 1s e welghtiug space.

(vi1) u 1is a funoction such that

pt JIM, o ‘(5;25):"

T ; In this paper, we often say label r as productio” r

_-'for oonwenlenoe.



"’-J'l,m from a_ to a by the productions Ty r2,r3,...,r

-'156 -

 p - may be called a weighting ﬁmg_ugn and the value p.(r)
1s a mm of the application of a production Yo

The expression

plr;)  ulr,) p.(r3) A;;.(rm) | |
aQ —> O —> 0, —> ceee —5 O (5.26)

: m
:.‘1 r2 r 3 I‘m

| - will be referred to as a ’n_ej.ghm mmghaln of length -

o m?

: 'where 00. ala---, L € (V \V V ) The meanings of weights

~ ulr) denoted over the arrow —> in é'derivation chain will

”'be stated in each grammar defined 1ater. | _
 When o, =5, @ =x (e Vo ) in (5.26), L.e.,

- (5.27)
ale) wle) e
S —>» a1—> ‘az '——? 00006 P am_l —?X,
- rl | r2 . - ; rm

- S 1is said to generate a terminal string x by thg productions )

. 'rl, rz,..»..,_ L In general, them'are more than one weighted- ,_

~ derivation chain from S to x.
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| Now, we shall obtaln iarious kinds of grammars by -
- adopting the _appropr:late algebra systems as_the welghting
spaces M of a welghting function pt J—»>M of a pseudo -
grammar PSG, and by pei'formingthe corresponding opefatibns
to nlr)'s. | '

(1] U* crammar (= Uxa)f

(1-a)s Let the welghting space M in PS¢ be the
complete lattice ordered semigroup -L. Namely, the weigh-
ting funotion p 1is |

n s J-> L,

In this case, p can be regarded as the membership

funotion of a L-fuzzy set in J.

(1-b)s  The grade of the generation of x in V;_f by

. U% G, which 18 denoted as p yxg(x)y 18 given by using the
concept of: the product of L-fuzzy relations of (5.8)‘ and by
the welghted derivation chain from S to x of (5.27).
_'Ciearly, pyus glx) is in M (=L), |

“' Ag special cases of U+ q, there are (1] UN Grammar,
[XI] Max-Weighted Grammar and (XII] Max-Probabilistic
' Grammar which will be defined before long.
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b uxol® = U (ulryx u(rz)*.;.-.*mm)], »(5.'28): '

where the lub |l 1is taken over all the weighted_. derivation |

chains from S to x.

(zz] 4N GRAMMAR (=LH'\ a)f

(11-a) The welghting space M 13 the complete distri- f
'butlve lattice L' 'y that 18, n is B '

ps 'J—>L'.

(11-b):  The grade n yq G(x) of the generation of x

) b 3
i in VT

relations of (5.9). X

by U G 1s given by using the product of L-ruzzy

pune® = U Cate)) N atr) 1wl i), (50290

where Ll 18 taken over 'al.l the welghted derivétion ohains

from S ¢to X.

T [V] (Pessimistic) Fuzzy Grammar and [VIIIJ Ordinary :
'Phrase Structure Grammar are consldered as speoial cases of

U n Grammar.
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 Example 5.1, Consider the following W[l G,
’ ?
Una = (YN’ 'V.'I" Py Sy 7, L, p)
e o '
where Vy ={S, 4, B, ¢, D, E}, Vy={a, b, ¢}, L 1s the

. Boolean lattice in Figure 5.1, and P 1is

(1) s—ABC O, (6) A —=aA

(14) E —>bEo

© (15) E —»de

. ‘ ) (]
‘Fig. 5.1. Struocture of L

I

(2) s—>apc x, (7)) A—>a I
(3) 8—>DBC x,, (8) B—»1bvB I
(4) S —» ABE (9) B—sb I
(5) S - AEC e (10) ¢ — ¢C I
1 (11) ¢ —e I

) (12) D—>abb I
* *2 (13) D—>ab I
1

I

Then a L—fuzzy language characterized by NG 1s
-L(Llﬂ @) -—{(a plo¥, | 143, sk} U { (adode¥, x)axs, Jsk}
{(a plck, xz)\ 1=}3, J’ek} U {_(a vlel, 0)‘121}.
where 1, 3, k21.

It 18 interesting to note that the set of all the
‘strings x in Vg such that p yng(x) = 0. 1s {a'vlel| 1>1}
and this language is a contoxt-sensitive language.
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(zz1)  0OY crammag (= MU ol

(1141-a)s It is the same as (ii-a), -

(111-b)s  The grade 1 nug{x) of the generation of x
18 given from the product of Lefuzzy relations of (5.10).

prnel =N [ate) U plr)U et e o (5.30)

where [| 1s taken over all the weighted derivation chains

from S ¢to x.

Let L'= B (complete Boolean lattice) in (ii-a) and
(111-a), then we cen define UM G and NUG on B, which
may be written as UIl BG and MU BG, respectively. We will
denote the grades of the generation of x by LIIIBG and
NU BG as u npelx) ' o # nupg(x)s respectively.

" (1v]  COMPOSITE B~FUZZY GRAMMAR (=CBFG)

(iv-a)s The weighting space M is the complete Boolean
lattice B.

| 1 As a special case of [|U Grammar, there is [VI] Opti-

~ mistic Fuzzy Grammar.
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(1v-b)s. | The grade ”CBFG(") ot‘ the generatlon of X
1s defined frem (5.16) as |

weppe(x) = (@M p ypg(x)U@Np Ba(x)), 1)

where @€ B and @ (€ B) 1s the complement of «.

[ v] ( Essmxsmxcz FUZZY GRAMMAR (-—-PFG), or MAXIMIN |

»GRAMMAB (38, 39]

(v-a)s _Let L'=[0? 1] 1n (11-35-

(v-b):  The grade p.PFG(x) of the generation of x
by PFG is given as follows by using the product of fuzzy

relations of (5.12), in other words, by replacing ll by max
end M1 by min in (11-b)s

~ pppg(x) = max min [ plry )y nlry), eeee p.(rm)], (5.32)
- where the maximum is taken over all the derivation chains

from S to x.

. (v1)  OPTIMISTIC FUZZY GRAMMAR (=OFG), or MINIMAX GRAMMAR

(vi-a)s It is the same as (v=a).
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(vi-b):  pgpg(x) 1s given as follows by using the
| product of fuzzy relations of (5.13), that 1is, by replacing
M by min and | by max in (111-b).

POFG(x) = min mak [ p(ri), u(rz),:-?y- 4u(rm).]. (5;33)'

where the minimum is taken.over a11'the_der1vation chains

~“from S to x.

[ vII) = MIXED FUZZY GRAMMAR (=MFG):

(vii-a)t It is the same as (v=-a).

(vi1-b)s  pype(x) 1s given as follows:

‘where a and b are real numbers such that a+b=1, and the

~ subseripts PFG and OFG denote (V) (Pessimistic) Fuzzy Gra=
mmar and (*VI] Optimigtic Fuzzy Grammar, respectively;f

T vnI] PHRASE STRUCTURE GRAMMAR (=G)

(vlii-a): L '{0, 1} in (11-a) or (v-a),

'(Y$11-b)* pg{x) 1s obtalned in the same_manner as
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Notes In this case the language L(G) generated by G
18 defined as

L(G) = { er;\p.G(x) =1},

.. (1x] VEIGHTED GRAMMAR (=WG)

(ix-a): The weighting space M" 1s the set of non-

negative real numbers.

(1x-b)s  p{x) 18 given as followss
mia(x) = 3 plry Jonleyde ceemplr,),  (5.35)

 where the operations n T " and "." are sum and produot in the

. ordinary sense, respectively.

(x] .PBOBABILISTIC (or STOCHASTIC) GRAMNAR (=PG)[14»9 50,51)

 (x=g)s M= [0, 1] , 1.0., p(r) € [0, 1], and, in
addition, ul(r) satisfies the following constraint:



For each Ju'

zulr) =1
reé€ Ju

where J is the set of all labels such that the left hand

 side of the rewriting rule in the production of the pseudo

grammar PSG is u (¢ V -{e} ).

(x-b)s pPG(x) is defined 1n the same manner as uwG(x)"
in (1x-b) cen be regarded as the probability of the gene-
of x by PG, '

Comment: It is assumed that the rewrlting rules are of
context-free form and the derivation is a left-most deriva-

~tion,

[X1]  NAX-WEIGHTED GRAMMAR (=MWG)

(xi~a): It is the same as (ix-a).

~(x1-b)= We take the maximum in stead of taking 3
_' in (11-1)), Aioec 9

e (%) = max [ p(rl)-p(rz)i ....-p(rm)]; | (5.36)

| It'is'noted that the expression above can be obtained
by replacing |} by max and X by ¢ inUX¥G of (I]).
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(x1I)  MAX-PROBABILISTIC GRAMMAR (=MPG)

(x11~a)s It is the same as (x-a).

‘  (x11=b)s p.MPG(x) is obtained in the same manner as

[XIII)  LABEL STRING GRAMMAR (=LSG)

| (x14i=-a)s The weighting space M 1s J*, where J
18 the set of labels. .The weight p,(r), re I, i.s deﬁned as-

plr) = for each re€ J,
(x111-b)t  prga(x), x€Vp, 18 given as

nrs(®) = V [ aley)e e, .‘..'.-u(rm)_] 3

where the operations "y " and ". " are union and concatenation
of (label) strings, respectively. This expression (3.37) can
' be obtained by replascing || by V and X by « in LI*_G of { IJ.
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Note: We could regard "LSG(X) as the set of all the label.
strings from S to x. Let C be the subset of J*i then -
the language ;

R
Lo= { xeVp|uggglxin ¥ ¢

 can be regarded as the lauguéges controlled by control ‘

language € [53].

5.4 Various kinds of conditional grammars

In this section we define a péeudo conditional
grammar (PSCG for short) as an extension of a pseudo grammar -
PSG denoted in previous section and derive from 1t several
interesting conditional grammars, which have or have not
appeared in the existing papers, in the same ways as we have

derived from PSG various kinds of grammars 1n}séctlon_5s3.

 Definition 5.2. A pseudo g.qnduzml'gmnman (PSCG';ror_'-

" short) is a system

 PSCG = (Vs Vi Py Sy 3y My { s my})s: (5.38)



ol

, w'hgre_ V Vs Sy J and M have essentially the same meanings
" as ‘those for the PSG in. the previous seotion. P is a set

 of the rules with labels as followss

M 18 a weighting function which is oalled an .'Lnum m]_g,
| nm@m ﬁms_unn such that |

ot I M, . (s.am0)

~_where Jg 1is the set of all labels whose rules are initial s, L

,'z"'ules. “2 is a mnm_tmnal mi.shﬂng" function as followss
nplr/rt) € W, s

where r, r'€ J, p,z(r/r') represents the weight of the -
_"vapplicatil'on of the rule r given the rule r' used Jpst

before in a derlvation.

It 1s noted that the notion of a conditional weightlng
‘function 1s similar to that cf a condltional probability
_function. In what follows, we shall write p, for p.l

and p.z 11’ there ocours no confuslon._
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If the derivation chain from S to x ( €V, *) 18
S —» Ctl —_— 02—> seee —> am-l o x, (5.‘}1)
‘ rl I‘2 ; rm ‘

then the weights jp are put over the arrows as follows:

| u(rl) p.(rz/rl) e p.(rm/rm_l) ‘
. E S — al ——> a2—> 00000 amupn am-l : > x. ‘.‘ (5.42) 7.
1 2 m

Now, let us define various kinds of conditional

grammars.

(a) conprrronar Ll ¥ grAMMAR (= ¢ WX G)

(a=1)s The weighting space M in CUX G 1is the

_coinplet‘e lattice .ordered semigroup L.

(a=2)1  The grade of the generation of x in V,l,;k

by CUWX G, 1s given as follows by using the conoepi: of ‘thé
‘product of L-fuzzy relations of (5.8) and from the welghted
derivation chain from S to x of (5.42) |
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re e oix)

=l [p.(rl))k u(rz/i'l)* p.(r /r) % eeis X u(r /rm 1)] (5 lfj).

where the lub LI 1s taken over all the wWelghted derivation

-chains from S to x.

[B)  conprTIoNar LN _cRAMMAR (= C UFlG)

(b=1)s  The welghting space M 1is the completé distrie
: v ] .
butive lattice L ,

(b=2)1 llcunc(")' X € VTA: is given from the product
', of L=fuzzy relations of (5.9). '

reuna(x)

Lo u [u(rl) n p,(rz/rl) Il eceee n‘p(rm/rm_l) ]. ' (5.‘}!}) '

" (¢) conprrTIONAL MU cRAMMAR (= C L o)

~ (e=1)3 It is the same as (b-1).

(0=2)1 “CI'ILIG(") is given from (5.10) as tollowlst.
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renu g x)

= ﬂ[p.(rl) u p(rz/zfl) U .... u p,(rm/rm'_l).]. | (,5_.1&5)

(D)  CONDITIONAL COMPOSITE B-FUZZY GRAMMAR (= CCBFG)
(a=1)s . The weighting space M 1is the complete Boolean
lattice B, |

(a=2)%  poeppg(x) 18 as followss

"where a€ B and a (€ B) 1is the complement of @, and
roun sg{x) end ugpupglx) eare the grades of the gemeration
‘of x by CUNBG and cNuge, which are grammars CUMG of
‘[B] ena cNUG or (C) on complete Boolean lattice B,

| respectively.

[E] CONDITIONAL (PESSIMISTIC) FUZZY GRAMMAR (= CPFG),
or CONDITIONAL MAXIMIN GRAMMAR [ 39]

(e=1)s 'I,':- {0, 1] 1n (b-1).

(e=2)1 reprg{X) 1s given from (5.12) as follow_si -
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- nrgppg'x)

TV‘= max min [ p(rl), p(rz/%l),}-..;»;‘u(rm/fm_l) ]. (5}47)_'

(¥ CcONDITIONAL OPTIMISTIC FUZZY GRAMMAR (= COFG), or

. (f=1)s It 18 the same as (e-1),

(£=2)2  poopelx) 1s giﬁén from (5.13) aé,followst‘

| neorc (x)

= min max [ p(rl), ”_(ré/rl)’ ...."’ p,(rm/rm_l) ]..' : : (5.’48)

- [ @] conpITIONAL MIXED FUZZY GRAMMAR (= CHFG).

(g=1)s It is the same as (e-=1).

(g=2)s  peypg(x) 1s as follows?

"CMFG(X)
- a ucppa(x) + b PCOFG(X)' o ‘ ;(5.49)_

where a and b are real numbers such that a +b=1,
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[ H ] - CONDITIONAL PHRASE STRUCTURE GRAMMAR (= CG)

(h=1): L'= {O, 1} in (b-1) or ké-l);’.

(h=2)1 pog{x) 1is obtained in the same manner as

poprgix) 1in (e-2).

- Note: CG can be regarded as Programmed Grammars withf-

‘success fields only defined by Bosenkranz [46] .

[ 1) CcONDITIONAL WEIGHTED GRAMMAR (= cWG) (52] -
(1=1)1 M 1s a set of nonnegative real numbers.

(1-2)s uch(x) 18 given as

= Eplrp)e wlrg/ry)e conneonlng/rg ). (5.50)

[ J) coNDITIONAL PROBABILISTIC GRAMMAR (= CPG) { 52)

" (3-1): M=[o0, 1] end, in addition, pir) eamd p(r'/r)
satisfy the following constraints, respectively.



L -

2 p(,r)‘s 1,
rE?JS

2 u(f'/r) =1,
r'e J '

 where Jg 1s the set of all labels whose rules are initial

rules.

(3=2)%  popglx) 1is given in the same manner as iucwd(x).fl
Vin (1“2)0 .

[ k) CONDITIONAL MAX-WEIGHTED GRAMMAR (= cmwe)(52]

(k=1)s It is the seme as (i-1).
. (k=2)s Ve take the maximum in stead ofitaklng' 2 in
(1-2); 1090, | | ' V

quMWG(X) .

.'»é'max [11(1’1)' u(rz/rl) ® seee ® u(#in/rm_l)']. .j (5051)



- 144 -

(L) CONDITIONAL MAX-PROBABILISTIC GRAMMAR (= CMPG) (52)

(1-1)t It is the same as (3-1).

(1=2)%  pypg{x) 1is defined 1pothe~same menner as

p‘CMWG(X) in (J"Z)o

5.5  Conclusions and Remarks

We have derived various kinds of grammars and condi-
tlonal grammars from a pseudo grammar and a pseudo oondition31 
| grammar. , As an extension of the pseudo conditional grammar, .
we can consldef the pseudo grémmar whose welght of the appli=-
cation of the rule to be used next is oonditioned by all the

rules used in a derivation. In this case, say, in the case

~of LI* G , the grade of the generation of x 4is glven as’
U (wlry ¥ wlry/ry )8 nleg/ryamp) % eeese X uleg/ryirys ceergy) ),

In the Weighted Grammar of (IX] 4in section 5;3, we
adopted the set of nonoogative real numbers as the wéighting
pace M, and the product and the sum as 1ts operations.
In this case, M forms a semiring. Therefore, we hope
| that more 1nterest1ng grammars will be formulated by adopting
the approprlate algebras such as semiring, ring, and field. . |
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CHAPTER 6

CONCLUSIONS

: Although the theory of fuzzy automata and, especially!}
fuzzy languages 1s young itself, it offers what appears to be
a fertile field for further study. The theory of fuzzy
languages might be of relevance in the constructlon of betten

. models for matural languages and may flnd»some practical
applications as informatlion retrieval and machine translation

| systems. It may also be of use in dealing withvproblems
relating to fuzzy systems and fuzzy algorithms in demision
making, pattern recognition and learning process ofblanguages,t

and othér‘processes involving the.manlpulatipn of fuzzy data.

v Computers would become more powerful if we could
v 41earn how to design computers that can understand natural

languages themselves or something close to them and manipulate.
.:fuzzy concepts and respond to fuzzy 1nstructions 1n much the

same way as human beings are oapable of doing.
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