
Title FUZZY AUTOMATA AND FUZZY GRAMMARS

Author(s) Mizumoto, Masaharu

Citation 大阪大学, 1971, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/24454

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



FUZZI AUTOMATA AND FUZZY GRAMMARS·

by

MASAHABU MIZUMOTO,

February 1971

Submitted to the Faculty of Engineer1ng Sciences at Osaka

Un1versity 1npart1al fulf1llment of the requ1rements tor

the degree or

DOCTOR OF ENGINEERING

(Electr1cal Eng1neer1ng)

at

OSAKA UNIVERSITY

TOYONAKA, OSAKA, JAPAN .560



r:

- 11 -

ACKNOWLEOOMENTS

W1th the 1ndulgence of the thorough reader

I w1sh to expr~s3 my apprec1at1on to those

who have part1c1pated 1n the developm~nt

of th1s thes1s;.

To Prof. Kohk1ch1 Tanaka for h1s 1nvaluable gu1dance, substan­

t1al adv1ce and cont1nuous encouragement dur1ng the conduct ot

th1s thes1s. To the members of my read1ng comm1ttee for their

time and interest.

To Assoc1ate Prof. Junich1 Toyoda who has been my superv1sor

and has always g1ven eager d1scussions and constant encouragement.

To Profs. Tosh10 Mak1moto, Kazuo Fuj1sawa and Susumu Namba of·

Dept. of Electr1cal Eng1nee~ing, Profs. Makoto K1zawa and

Tadao Kasam1 of Dept. of Informat1on and Computer Sciences,

Profs. Saburo Tsuj1, Tcshio Fuj1sawa, Yoah1fum1 Sakura1 and

Yoshiyuk1 Sakawa ot Dept. of Control Eng1neer1ng, and Prot.

·J1ro Yamaguch1 of Kanaa1 Un1versity,for the1r cont1nued

encouragement to cont1nue graduate "stud1es.

To Assoc1ate Prof. Masamich1 Sh1mura, Drs. Se1haku H1guchi and

Tadah1ro K1tahash1 tor their en11ghtening d1scuss1onsand

cr1tic1sms.



- 111 -

To Assoclate Prof. Akihiro Nozaki of Tokyo University, Prot.

K1yoji Asai of the Unive~8ity of Osaka Prefecture, Lecturer

Yasuyoshi Inagaki of Nagoya University, and Prof. Namio Honda

of Tohoku University, for their several relevant conversations,

comments and suggest1ons.

To my fuzzy friends and oolleagues. Notably Dr. Candidate

Shiniohi Tamura, Messrs. Kazumasa Ozawa, Yoneharu Fuj1ta,

Mutsumi Sato, Hirom1tsu Harne, H1dekazu Tsuji, Norihiro Abe,

H1sashi Nakata, Che Jun Pak, Hyo Heng Kim, Tosh1h1ro Sato,

Yoshinori Ezawa, Kazutaka M1kam1, and Nobuhlto Yamamoto of

Prof. Tanaka's Laboratory, for their helpful oonversations,

cooperation, comments and suggestions. To Mr. -H1deo Kawa1,

Miss Hlroko Ueno, Miss Kazuko Okuno, and Mrs. Setom1 Takeuchi

'who have disposed of routin~ business.

Finally, to my· parents for their help and understanding

without which I probably would not have finished th1s work,

and to my fiancee Elko Haya~hl.forher enoouragement and

moral support.



- iv -

ABSTRACT

This thesis treats several problems associated with

the theory of fuzzy automata and fuzzy grammars which was

studied while the author was in the doctor course of Depart­

ment of Electrical Engineering, Faculty of Engineering

Sciences, Osaka University.

A fuzzy automaton was formulated by Wee and Fu by

using the concept of fuzzy sets and fuzzy systems by Zadeh.

It is shown that A-fuzzy language by a fuzzy automaton is a

regular language. The family of fuzzy languages defined by

fuzzy automata forms a distributive lattice and the complement

of the fuzzy language can be characterized by an optimistic

fuzzy automata.

A new form of fUZZy grammar, which is called anon-fold"

fUZZy grammar, is defined and some of its properties are

investigated. The n-fold fuzzy grammars are a generalization

of fuzzy grammars defined by Lee and Zadeh, where the grade

of application of the rule to be used next is conditioned by'

the n( ~ 1) rules used before in a derivation. The n-fold

fuzzy grammars with CF rules can be shown to generate CS lan­

guages, although fUZZy grammars with CF rules can not generate

CS languages.
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Finally, a general formulation of formal grammars is

developed. A pseudo grammar is defined and from'it various

kinds of grammars whioh have or have not appeared in existing

literatures are derived.
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CHAPTER 1

INTRODUCTION

1965.

Fuzzy set is a concept originated "by Zadeh (1) in

The id"ess of fuzzy sets are to cover the classification

of objects encountered in the real life. In reality there

are adjectives like good, appropriate, beautiful, rich etc.

wherein, clearly, the classes of the type cited above do not

constitute classes or sets in the usual mathematical sense

as these terms, sinoe they do not diohotomize all objects into

those that belong to the class and those that do not. Fuzzy

sets conoept has certain properties and implication or use in

dealing with such a class in a quantitative manner.

To oharaoterize such a fuzzily define~ class, Zadeh

introduced the concept of a membership funotion whioh assigns

to each objeot of the class a grade of membership ranging

fullmembership (grade =1) to nonmembership (grade = 0), and

established many interesting mathematical structure ot the

fUZZy sets theorem.

Although research in this area is still somewhat

tentative, it looks very promising. Papers have appeared

on aspects of fuzzy sets (Zadeh (1,4,8) , Goguen (5] and

Brown (61), tuzzy automata (Zadeh (2~7,111 , Wee et a1.

e18,19) , Santos [201\,024) , MizUlDoto et ale (25,30) ,

Fu et ale (271 , Kltajlma et ale [28,31] and Otsukl (29) ),
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fUzzy languages (Zadeh et a1. [16;38) and Mizumoto et a1.

[39"143, 48J), pattern rc;,cognit1on (Zadeh (1,4,14),

Bellman et a1. (3) , Wee et a1. (18,19) , Gitman et ale (12J

and Tamura et a1. (13] ), fuzzy a1gor1 thIns (Zadeh (7) ),

fUzzy topological space (Chang ( 9) ), fuzzy logics (Mar1nos

(10) J, and decis1on-makings (Bellman et a1.· (15] ).

One of the problems in computer science 1s the gap

between natural languages for human beings and programm1ng

languages for d1gita1 computers, sinoe the former are muoh

more oomplex than the latter. This" 1s due to the faot that

natural languages are fuzzy 1n nature but programm1ng langu­

ages are precise.

To reduoe the gap between them, it is natural to

introduce randomness into the struoture of formal languages

or automata, thus leading to the concept of probabilistic

languages [491\oo.52J or probabilistic automata (32"'37] •

Another possibility lies in the introduot1on of fuzziness.

The first step in this direction was made by Wee and Fu

( 18,19 1 , who formulated fuzzy automata based on the concept

of fUzzy sets and fuzzy systems by Zadeh (1,2) as a model of

learning systems such 8S pattern recognition and automatio

oontro1s. And then Lee and Zadeh (38) defined fuzzy languages

and fUzzy grammars as an extension of formal languages.
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._ This thesis treats several problems concerning with j

_fuzzy'automata and fUzzy grammars.

- In Chapter 2 we briefly review the concept of fuzzy

sets originated by Zadeh (1) and fuzzy Languages for the

preparations ot fUzzy automata and fuzzy grammars which will

be discussed in the later chapters.

Chapter 3 treats the problems of a fuzzy automaton,

which was formulated by Wee and.Fu (18, 19) as a model of

learning systems such as pattern recognition and automatic

control systems. It is shown that the capabi11ty of fUZZy

automata as acoeptor 1s the same as that of f1nite automata,

although fUZZy automata include the deterministic and non­

deterministic finite automata as special cases, whose result

was proved by Santos (21) independently. Moreover, the

threshold of fuzzy automata can be changed arbitrar11y. The

fuzzy languages character1zed by fuzzy automataconst1tute a

distributive lattice, and the complement of-the- fuzzy language

can be characterized by an optimistic fuzzy automaton.

In Chapter 4 fuzzy grammars by Lee and Zadeh (38) ,

and conditional fuzzy grammars (or n( ~ l)-fold fuzzy' grammars)

are discussed. In n-fo1d fUZZy grammars the grade of appli­

cation of the rule to be used next is conditioned by the n
. .

rules used before in a derivat1on.The n-fold fuzzy grammars

whose rules are of oontext-free form can be shown to generate
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context-sens1t1ve languages by sett1ng a threshold appropr1­

ately. Fuzzy grammars w1th context-free rules, however, can

not generate context-sens1tive languages. As to n-foldfuzzy

grammars, we focused our attent10n on n-fold fuzzy grammars

with type 3 rules as a prelim1nary step.

In Chapter 5 ~~e develop a general formulation of formal

grammars by extract1ng the basic properties oommon to the

formal grammars appeared 1n exist1ng literatures. A pseudo

grammar 1s def1ned and from it the well-known probab1list10

grammars and fuzzy grammars are derived. Moreover, several

interesting grammars such as U* grammars, un grammars, nu
grammars, oomposite B-fuzzy grammars,'and m1xed fuzzy grammars,

which have. never appeared 1n any other paper before, are derived.

The pseudo grammar oalled a pseudo condit1onal grammar,

whose weight of the applicat10n of a rule is condit1oned by.

the rule used just before in a derivation, 1s also defined

and from it several interesting oonditional grammars are der1ved

. in the same ma~er~ as pseudo grammars.
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CHAPTER 2

FUZZY SETS AI~D FUZZY LANGUAGES

2.1 Introduction

We shall briefly review some of the basic definitions

relating to fUzzy sets originated by L. A. Zadeh (1) and define

fuzzy languages by us1t~ the concept of fuzzy sets, wh1ch w11l

be needed in later d1scussions.

2.2 Fuzzy Sets

Informally, a fUzzy set ~s a "class" with fUzzy

boundaries, that is, a "class" of objects in which there

is no sharp boundary between those objects that belong to

the class and those that do not, e.g., the "class" of real

numbers which are much larger than, say, 10. A more prec1se

definition·of fUzzy sets may be stated as follows.

Definition 2.1. Let X ={x1 be a collection of objects

(points). Then a fyzzy ~ A in X is characterized

by·a membership (or fuzzy characteristic) function ~A whioh

1s'defined on X and takes values in the interval (0, 1) i.e.,

1J.A I X~(O, 1)
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The value of ~A at x, ~A(x), represents

membership of x in At. If A is a set· in the usual

senae, ~A(X) is 1 or 0 acoording as x

belong to A.

A £uzzy set A is represented as a set ot ordered

pairs l

x~X

Example 2.1. Let X be the set of integers from 0 to 100

representing the ages of ind1vidualsin a group, and let A

be a fuzzy Bet of a "middle-aged" individuals. Then,.suoh

a set may be oharacterized, subjectively of course, by the

membership funotion suoh asl

x(=age) 40 41 42 43 44 45 46 47 48 49 50 51 52 53

0.3 0.5 o.a 0.9 1 1 1 1 1 0.9 0.8 0.7 0.5 0.3

. where only those pairs (x, ~A(x» in which ~A (x) is posit1ve

are tabulated.

t In a more general'. case, the range (or membership space)
of the membership funotion oan be taken to be a partially
ordered set or, more particularly, a lattice (5) , which"!ll
be discussed in Chapter 5.
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We turn next to the several preliminary definitions

of fuzzy sets whioh we shall need in later chapters~

Equality. Two fUzzy sets A and Bare equal, written

as A. Bt it and only if ~A(x) = ~B(x) for all x in X.

A 1:1 B # ~A(x).1:1 ~B(x), xE:X

Containments A fUzzy set A is contained 1n, or is 8

snbset of a fuzzy set B, written as A~ B, it and on1y

if ~A(x) ~ ~B(x) for all x in X.

xE:X

Complementation' The complement ot a fUzzy set A is denoted

by i and is defined by ~A(x) 1:1 1 - ~A(x) for all x in X.

x EX

Unions The union of two fuzzy sets A and Bt written as

AU Bt is a fuzzy set C 1:1 A VB characterized by· ~c(x) •

max [~A (x), l1B(x)], for all x in X.

, (2.'6)

C • AU B ~ l1c (x) 1:1 max [l1A (x) , l1B (x) ] , x Eo X
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Note that A U B 1s the smallest fUzzy set contain­

ing both A and B.

Interseotion s The interseotion of two fuzzy sets A" and"

B is a fuzzy Bet 0, written as 0 =An B, defined by

lLO(X) = min ( lLA(x), 'l1B (X») , for all x 1n X.

(2.7)

c • A (\ B ~ l1c(X) = min [l1A(X)' llB(X»), x (: X

By a dual argument to the above, we Bee that A n B

is the largest fuzzy set which is contained in both A and B.

Empty Fuzzy Sets A fuzzy set A is empty if and only if

it'is identically zero on X.

denoted by e:p ~

The empty fuzzy set will be

Universal Fuzzy Sets A tuzzy set A is universal if and

only it it is identically unit on X•
. .

set is 8 space X.

~he universal fuzzy,

,"



- 9 -

The operations ~ , U , n , and - on fuzzy sets.

have's number of basic algebraic properties. Some 01'

these are as followsl

( 1) A f:. A (reflexiye law)

.A C. B, B ~ A * A = B (anti-symmetric law)

A s B, B ~ C 9 A '= C (transitiye law)

( 4) A U A = A, A n A = A (idempotent law)

( ,;) A U B = B U A, A n B = B n A (commutatiye law)

(associatiye law)
(A " B) n C = A n (B l'\ C)

(A U B) U 0 = A U (B U 0) ~( 6)

( 7) A V (A () B)

A n (A V B)

= A }
(absorption law)

= A

( 8) A V (B () C) =

A () (B U C) =

(A U B) (l (A V C) } .

(distributiye~lan)

(A () B) U (A (\ C) .

=
. A = A (involution law)

(10) (A U sr = AoB

(A n B) .. AU B
) (De Morltlm' B law)
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From the properties concerning with fuzzy sets, we

see that fuzzy sets form a distributive lattice, but do not

form B Boolean lattioe, because A is not the complement

ot A in the lattioe sense.

In addition to the operations of union and inter­

section, we can define other operations to form oombinations

of fuzzy sets and to relate them to one another.

Bre the following.

Among t~ese

A1gebraio Produots The algebraig produgt of A and B 1s

denoted by AB and 1s defined by ~AB{X)= ~A(X)~B(X) tor

all x 1n X.

AB ~ x«:x
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The algebraic .w.uD. of A and. B ,ls denoted

by A~ B and. ls deflned by

(2.11)

Ae a # llA6)B(X) ='llA(X) + l1B(X) - l1A(X)l1B(X)' x Co X

It ls easy to ver1fy that

A~ B a ( A B )

Absolute Difference. The absolute difference of A and

B 1s .denoted by 'A .. B\ and 1s def1ned by

I A ... B \ # ll\A..B\ (X)=' llA(X) - llB(X) 1, x E:. X

(A, B; A.) =: h A +1\. B

'.

where A1s the complement of A. Wr1tten out in terms of

membership funotlons, (2.14) reads
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A basic property of the convex combination ot A, B,

and A is expressed by

A n B ~ (A, B; A) ~ A U B, tor all h

Relationl A fuzzy relation, a, in the produot space X x Y

= t(x, Y)l, x(:X, y~Y. is a fuzzy set in X x Y charaoterized

by a membership function ~a which assooiates with each

ordered pair (x, y) a grade of membershi~ ~a(x, Y) in (0,1)

More generally, an n-ary fuzzy relation in a product space '
, "

X =~ x X2 x •••• x Xn 1s a fuzzy set in X charaoter1zed

by an n-var1ate membersh1p funct10n ~(xl'X2,···,xn)' x1~X1'.

1 I: 1,2, ••• ,n.

Composition of Relational It Hl and n2 are two fuzzy

relat10ns in x2, then by the composition (or product) ot

HI and H2 1s meant a fUZZy relat10n 1n'X2 wh10h 1s denoted

by B1B2 and 1s defined by

~R B (x, z) • sup m1n(~H (x, y), Von (y, z»)
, 1 2 y 1 2 '
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where the supremum 1s taken over all y in X.

Comment: We can give other two different definitions

concerning with. the composition of fUzzy relations bl the

following'

llB B (x, z) -= in! max (llB (x, y), llB (y, z») (2.18)
1 2 Y 1 2

llB a (x, z) -= sup (lla (x, l' )·l1B (y, z) ) (2.19)
1 2 . 1 2·

Y

where the operation "." is the product in the ordinary sense.

We may' call (2.17) as max-min composition, (2.18)

as min-max composition,. a~d (2.19) as max-product composition.

In what follows, in order to avoid a confusing multi­

plicity of the composition, we shall be using (2.17) for the

most part as our definition of the composition.

Example 2.2. Let X be the real line al • Then x:>~ l' is'

a fuzzy relation in B2• A subjective expression tor lla

in this case might bel

o ••••••••••• x ~ y

1 •• ·.·x > y
100

(x _ y)2
1.+ ---~-
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And the composition (2.17), RR, of the above fuzzy relations

R 1s a fUzzy relation such as x 4>~ y and 1s characterized

by' the following membe~ship function:

o

1

100

• • • • • • •

••••• x > y

conditioned Fuzzy Setal A fUzzy set B(x) in Y = { y} is

conditioned on x if its membership function depends on x

as a parameter. This dependence is expressed by }lB(Y/X).

Suppose that the parameter x ranges over a spaoe X.

Then, the function }lB(Y/x) def1nes a mapping from X to the

space of fUzzy sets defined on Y. Through this mapping, a

,fuzzy set A in X induces a fuzzy set B in y Jwhl oh ls,deflned

by

where l1A and l1B denote the membership funotions ot A and B,

respectively.. In effeots (2.20) ls a speolal oase ot the

compos1tion of fUzzy relations (2.17).
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2.3 Fuzzy Languages

A fUzzy language 1s deflned to be a fUZZy set of the

set of strlngs over a flnlte alphabet. The notlons of unlon,

Intersectlon, concatenatlon, and K1eene closure for such langu­

ages are deflned as extenslons of the correspondlng not1ons In

the theory of formal languages (.54, "5.5) •

Fuzzy Languagess ~A fuzzy language L 1s a fuzzy set In ~.

"L oan be wrltten as the set of ordered palrs

(2.21)

where ~L(x) Is the grade of membershlp of x InL. We

assume that ~L(x) Is a number In the lnterva1 (0, l)t.

A tr1vla1 example of a fuzzy language Is the set

L ~ t (a, 1. 0 ) , (b, 1. 0 ) , (aa , 0 •8 ), (ab, 0.1),;

(ba, 0.6), (bb, 0•.5) }
;t..

In {a, b~ ".

t More generally, we can defIne L-fuzzy languages as ,an

extens10n of fuzzy languages, whlch will be denoted 1n Chapter

5.
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*- .It is understood that all strings in ta, b} other

than those listed have the grade of membership ° in L.

The operations of fuzzy languages can be defined as

an extension of those of ordinary languages. t

Let Ll and L2 be two fUzzy languages in ~

UnionS The union of Ll and L
2

is a fuzzy language denoted

by Ll U L2 and defined by

llL U L (x) = max (llL ( x ) ,
121

llL(X»),
2

Intersections The intersection of Ll and L
2

is a fuzzy

language denoted by Li n 1'2 and defined by

l1L n L (x) = min ( llL (.x),
1 2 1

llL (x») ,
2

t In the ordinary formal languages, a language Lover I

is a subset of I~and the operations of languages are defined

as folloWBS

Union:

Intersection:

Complement.s

ConoatenationS

Kleene ClQsurel

Ll V L
2

= {. x l x f: Ll or x E= L2 ~

L
1

(\ L
2

= t x \ x E:- L
1

and x e L
2

}

L = ·I~-L=txlxExf x~Ll

L
1

L
2

= (uv I u Eo L
1

, v E: L2 }

L :::I LOU LVLLVLLLV •••••
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The complement of a fUzzy language Lisa

fuzzy language denoted by L and defined by

ConcatenationS The concatenatiQu of Ll and L2 is a fuzzy

language denoted by L10 L2 ' or dually Ll- L2 and defined

as follows: Let· a string x in r be expressed as a con­

catenation of a prefiX string u and a suffix string v, that

is, x· = uv_ Then

dually

l1L 0 L (x) = sup min (llL (u),
1 2 u 1

l1L (v») .
2

l1L- L (x) = inf max (llL (u), ~L2(v.»)
1 2 u 1

where the supremum of (2.25) and the infimum of (2.26) are

taken over all prefixes u of x.

K1eene Closure: By using the concatenation ~oL2 or Ll- L2,
Kleene closure of a fuzzy language L (written as L~ , or L )
1s defined as

'"L •

• • • •

..-.
I .
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2.1 Conclusions

It should be noted that, although the concept of fuzzy

sets (fuzziness) has some resemblance to that of probability

(randomness) which treats an inexact concept, there are essen­

tial differences between these concepts. "Randomness" has

to do with uncertainty concerning membership or nonmembership

of objects in a non-fuzzy (or crisp) set. "Fuzziness", on

the other hand, has to do with classes in which there may be

grades of membership intermediate between ful1memhership and

nonmembership. In fact, the fUZZy sets theory is a calculus

of vagyen~ss, ambiguity and ambivalance rather than 1ike1ifood,

and, therefore, the notion of fuzzy sets is completely non­

statistical in nature.

Although the fuzzy'sets theory is still in it infancy,

. it will be able to do at least what the probabi11ty theory has

done and; mor~over, will come to play an important role in a

wide variety of problems relating to ·soft" sciences such as

,'social sciences, management sciences, economics, linguistics,

etc., and to "hard" sciences which are too complex or too il1­

defined to adm1t of precise analysis, say, large-scale systems,

large-scale traffio control systems, pattern reoognition, maoh1ne

trans1ations,artifioial1ntelligenoe, 1n(ormation retrieval,

eto.

Despite these arguments and prom1ses, one must not
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expect too much of fuzzy sete. Ordinary set theory has been

of greatest importance in providing a convenient language

for mathematical thought. They have not made the exercise of

creative intelligence unnecessary either in mathematics or its

applications. Similarly we should not expeot more of fuzzy

sets than they facilitate the development and study ot models

. in the inexaot sciences, and that they be an interesting area

tor pure mathematical investigation.
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CHAPTER .3

FUZZY AUTOMATA

.3.1 Introduction

Among various types of automata, as is well-known,

are deterministic, nondeterministic and probabilistic automata.

Recently, W. G. Wee (18, 19) proposed another type of auto~

mata which he named fUzzy automata. The formulation of fuzzy

automata is based on the concept of fUzzy sets and fUzzy systems

defined by L. A. Zadeh (1, 2). Fuzzy automata include deter­

ministic and nondeterministic finite automata as special cases

and also have some properties similar to those of probabilistic

automata (.32, .3.3, .34, .35; .36, .37). In addition, fUZZy auto- ,

mata may be available, as its applications, tosimulatlng lear­

ning systems suoh as pattern recognition and automatic oontrol

systems (15, 18,19,27,' 28,29, .30, .31).

In this chapter, it is shown that, although fuzzy

automata include determinist1c and nondeterministio finite

automata, the capability of fuzzy automaton as an acceptor is

equal to that ot finite automaton, which was proved by ,E. S.

Santos independently (21). And the threshold of' fUZZy automata .

. can be changed arbitrarily by changing the values of each element

of the fUZZy transition matrix and the initial state designator•

. Moreover, the ,family of the fUZZy sets (that is, fu~zy .eve~ts)"

of input strings, oharaoterized by (pessimistiO) fuzzy automata
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1s closed under the operat10ns of "union" and "intersectionW

in the sense of fUzzy sets, and the complement of the fuzzy

event is characterized by an optimistic fUzzy automaton•.

We show that the "similar properties to those mentioned

above also hold for opt1mistic fUzzy automata.

).2 Fuzzy Automata

A fuzzy automaton was proposed by W. G. Wee (18, 19)

as a model of pattern recognition and automatic control

systems. An advantage of employing a fUzzy automaton as a

learning model is its simplicity in design and computat1on.

A learning fuzzy automaton 1s clearly nonstationary. In

this chapter, however, we assume a fUzzy automaton to be

stationary and extend the definition by Wee as tol1ows:

In Wee's paper, the 1nitia1 state of a fUzzy automaton 1s

g1ven ln determinlstic way. But we will introduce the :fuzzy

dist~ibution, that ls, the initlal distribution.

Let I be a finite non-empty alphabet. The set of

" all tlnlte strings over I 1s denoted by I~. The null

strlng ls denoted by & and included in ~*.#(s) is the

number of elements 1n the set S.

Definition '3.1. A flnite fUZZy automaton over the alphabet

system
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A == ( S, TT, {F(0) I 0 ~ I ~, rP -)

TT :I (TT ,TT , ••• ,TT ), where 0 ~ TT S ~ 1,
sl s2 sn 1

1soa1led the in1t1al .a.tate des1gnator.

1 ~ i ~ n, and

(111)

(iv)

G 1s a subset of S (the set of f1nalstates).
G . - )'8 = (8 ,8 , ••• ,8 1s an n-d1menslonal column'

_ 8 1 8 2 8n -

vector whose l-th component equals 1 1f sl E:- G and 0 otherwise,

and 1s called the f1nal state des1gnator.

(v) For each 0 Eo- I ,F(O) is a fuzzy matr1x of order n

(the fuzzy transition matrix of A) such that

F(O) == ~ f s s (0) ~
l' J

I

Let element fSi'SJ (0) of F(o) be fA(si,o,sJ)'

where 8i, 8j ~ Sand 0 E:- I. The funotion fA is a member·- _­

ship funotion of a fuzZy set in S x I x S; 1.e.,

fA I S x I x S -+ (0., 1). fA may be oa11ed the fuzzy

trane tiQn fun9tion. That ·18 to say, for s,t 60 Sando Eo I,
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tA(S,d,t) • the grade of transition from state s

to state t when the 1nput 1s d.

The un1ty fuzzy trans1t10n function implies such a

transitlon may exlst defin1tely.

Remark. If fA takes only two values 0 and 1, then

a fuzzy automaton A ls a nondeterministic f1nite automaton.

In addit10n, only any one element of each row ·of matri"x "F(a),

.d E:- L, 1s "1" and the rest elements of each row are all

equal to "0". Then a fUzzy automaton A ls a deterministiC

finite automaton.

The grade of transition for an input string of length

m ls defined by an m-ary fUZZy relation. The fuzzy trattsl-

tion function. ls,as followSI

~L~ and s, t (:0 S,

\

::I max min [fA(S,dl,Ql),f'A(ql,d2,q2), ••• ,fA(qm_l,dnl,t»
ql ,Q2'" ,Qm-l EoS"

-the grade of transition from state s to state t when

the input string ls x a .Ol02••• 0m'



Def1n1tion 3.2. For

- 24 -

:tC .
£, X, Y E:- ~ and's, t E:-S,

if s = t

if s ~ t,

Especially, we call a fuzzy automaton with the grade

of trans1tion under the operat1on "max min" a pessimistic

fUZZy automaton (pfa), and a fUZZy automaton under the ope­

ration "min max" an optimistic fUZZy automatem. (ofa) (20) •

Defin1tion 3.3. An optimistio fuzzy automaton over "the,
alphabet I is a system

,
B' = ( s", TT', {F' (d) IdE:' s'}, rP ), (,).6)

•where S 1s a finite no~-eropty set (the internal states of, ,
B)~ #(S) =n'. TT' is an n'-dimensional row veotor

(the initial state designator). A fUZZy trans1tion funot10n
, '~.f B, is defined as follows I For £, x, y.(;o i: and s, t E- S ,
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lf s = t

11' s \: t,

t~'(StXy,t) • min max (t~,(s,X,q), t~,(q,y,t»). <'3.8)
q E:- S' .

, ,
G ls a subset of 5 (the set of tlnal states), and an,
n -dlmenslonal column vector (the final state designator) .

, I

si E- G and SSl = 1 otherwise.

,
Note that an element 01' zero in rr . means the defin1te

exlstence of such an initial state• In this paper, unless

.stated espec1ally, by a "fuzzy automaton" we shall mean a

pesslmlstic fuzzy automaton.

Let us show the fundamental propert1es of fuzzy .

matr1ces.

We denote by ai j the (l,J) th entry of a fuzzy

matrlx A, where 0 '- a1J .~ 1. We deflnea

..
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0=1100,

c = Ao B

{

1 1f 1=J
I, = II m1J II where m1J=

o 1f 1~J

AGl+l = Am 0 A A0 = I,

E=l!l11

C = A.;t<B

{

o 1f l=J
I'= II m~j II where m~J= . ., ...

1 1t 1\:j

The follow1ng fundamental propert1es are derived

1mmed1ately tram the above def1n1t1onsl

Fundamental Propert1es

(1)

(2)

()

(4)

!(~)

(6)

O~A~E

Ao( BOC) = (AoB )oe

Ao1=1oA=A

A 00 = 0 0 A :I 0 .

AP.Aq III AP+q (AP)q = APq.'.
1f A"Band e' D,

-". ,#

then A..'e ~ BoD.

,,.

(1) ' ./"-O:!BaE

(2)' A*( BJeC ) = (A*B ')*e, , ,
() B*1 =1.*B=B,
(4) B* E = E.1C.B = E

(5)' BP*Bq = aP+q , (BP)q=BPq,
(6) 1f A ~ Band e ~ D;

then A*e ~ B *D.
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The definitions and the properties shown on the left

side of the tablesgiven above relate to the operation" 0 ",

and on the right side to the operation"* ". Moreover, .the

operations "0 " and" 'JI." oorrespond to a pfa and an ota, .

. respeotively•.

The domaln of the fuzzy transltion matrlx F ot a

*fuzzy automaton A can be extended from ~ to ~ ·as followss

Definition 1.4. For x = "1CS2.. •CSm~ ~*, CS i ~ ~ U (e}, and

1 ~ i f! m, define n x n fuzzy transition matrioes IF(X) 'by

the tollowing,

(1). Fee) II I (n x n identity matrix),

/ Let .F(X) =.11 fsl,s" (x) II ,where 1" -a it.1~ ~;. then

. obviously,

."
t s s (x)

l' "

.. :. How, for A :I ( .S, TT, {F(CS) I d E:o ~},&G), define
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fA(X) is designated as the irade a! transition of A. '

when ,started with in1tial distrlbution rr overS to euter

into a state in G after scanning the input string x. Then

an input string x ls sald to be accepted by A with grade

fA(X).

Now. by using the fundamental propertles mentioned

above. we have the following theorems.'

Theorem 1.1. Let F(d) be any n x n fuzzy transition

matriX, then the sequence .F(d).F(d2).F(d);; •••••• is

ultimately periodic.

,ProofS Let T = { f l ,f2, .... ,fk} be the set of all the

elements whlch ocour in the matrix F(d) , then the number'

of different matrioes whlch' can be obtainedbymultipllng2 ' '
F(d) ls at most kn • that is, flnite~

Theorem 1.2. If I ~F(d). then

D •••••

ProofS ,We oan prove our theorem in a sio~~ar way. in a
I • •

Boolean matrix (26) •
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3. 3 A -Fuzzy Languages

We show that the capability of fUzzy automata as an

acceptor 1s the same as that of finite automata, though fuzzy

automata1nclude the deterministic and nondeterministic fin1te

automata as special cases, which was proved by E~ S~ Santos

1ndependetly (21] •. Furthermore, every fuzzy language can

be represented in a fuzzy automaton with any threshold ;L

,.suoh that 0 6~< 1.

Definition 1.5. Let A a ( S. rr , {F(d) IdE:' i:l. SG)

a fuzzy automaton and A.· a real number 0 ~ A<1. The set

of all input strings accepted by A w1t~ parameter A 1s

def1ned as

A 1s oalled a threshold of A and L(A, 0 , A) a

a. -fuzzy language. For 0 ~ A. < 1, a language L 1s
/\ -fuzzy if and only if there exists a A suoh that L.-

.L(A, 0 ,A). A language L 1s fuzzy 11' and oDlr if J tot""
I

some ~ , it is ;\. "fuzzy.
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.;\ -fuzzy language L(A, 0 ,;l) is a regular

ProofS For a fuzzy automaton A = (5, TT, l F(d) IdE:- I},

fP), let us define F(n ,x) = rr 0 F(x), where F(n ,x) is an

n-dimensional row vector, x Eo ~* and I n = #(5).

Define now the relation B on ~* by the definitions

x R y iff F(TT,X) = F(n,y)

*for all x, y~ I. Then: R is clearly an equivalence rela-

-tion on.' t!' 'Furthermore, for any z ~ I*,

F(TT,xz) = F(F(TT,x),z)

=F(F(n,y}~) =F(n,yz).

Therefore, xz B yz holds.

Hence B is a right congruence relation on I*.
As to the number of equivalence classes, let T =.

{ f l' t 2' • • •f k} be the set of all the elements which occur

in the matrices F(di),l ~ i ~ #(I), and in the vector n.
nThen the number of equivalence classes is at most k. Anyhow,

R has finite rank. Moreover, it is easily verified that

L(A, 0 ,~) is the union of some of the equivalence classes.

, The same theorem also holds for an optimistic fuzzy

automaton.
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DefinitiQD 1.6. For a fuzzy matrix A = II a1 j II , 0 ~ a1J ~ 1

and d a real number such as 0 ~ d ~ 1, we define a fuzzy
• •matrix A =II ai j II as followSI

+d

otherwise.

Lemma 3.1. For two fUZZy matrices U and V of the same

then, for two fuzzy matr1ces
, ,

W=UoVandW:I

order, let the fUZZy matrioes defined in Definition 3.6
• •be, U and V ,respectively,

, ..
W.= II ~lj" and, W =" Wi j " suoh that
U 0 V ,we have that

, { "'1j + d
wi j = ,

, 1 otherwise.

Proofl It 1s olear from the property of the operation It 0 ".

Likewise, tor a fuzzy mat~ix" A 1:1 II a1j II andd',
a real number 0 ~ d ~ 1, define's fuzzy matrix Aft:l

It

II a i j D as followsl

,
- d

,
if a i j;; d ,

otherw1se.



- 32 -

Then the similar result ~s in Lemma 3.1 holds.

Theorem 1.4. Every fuZZY. language is A -fUZZy for any ,\

such that o,;t< 1 •

. Proof: Let L = L(A, 0 ,}1) and let A = (5, TT, \F(all 0

E:- }:}, 'OG) be a fUZZy automaton, where F(O) =IIf s (0) /I "
. si' j.

tr:: (TT
s i

) ' Si,Sj~5, and 0 ~~. Omitting the trivial case

A :: 11, we can assume that A ~ }1.

(1) In the case of .A > 11:
• •• •Consider the fUZZy automaton A = (5 ,TT ,[F (a) (0 '. ... . .

. .} G" G G .
eo}: , '0 ), where 5 = 5, ~ = ~, '0 :: '0 • ; And the fuzzy

• • I •. •transition matrices F (1(£:') :: II f s ,s (0) I , 0 Eo I , and, TT =
• . 1 j

(TTs) are defined as' follows:
. i

•f (0).=
si,sJ

1 otherwise.

if TT
S
~ 1 -;l + 11,

1 . i

otherwise.
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Thus,'acoording to Lemma ,'.1, for x E- ~*,

•
• GTT 'oF (x) 0 0 1:1

Therefore,

TT 0 F(x) 0 fP + (A - lL)
Gif TT II F(x)o 8 ~ 1 -;\. + lL,

1 otherw1se.

,
L(A ,0 ,A) = L(A, 0 'lL) whe~ A >lL.

(2) In the case of ).. < p.:

It" .. .

'Consider the fUzzy automaton A = (S , TT", (F (0) 10

" ""1 G .... G G
Eo I !' 8 ) where S = S, }; = }:, 0 = o. And the fuzzy

" II I Ittransi'bion matrices . F (d) = n f s s (0) I where a (;- I , and
i' j ... " "

'TT a (ns) are defined as follows I
1

f s s (a) - (lL - A )
i' J

o otherw1se.
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If TT
S
~ P. - A ,

1 .

otherwlse.

o otherwlse

Therefore,

•L(A, 0 ,i\.) = L(A, 0 '11) when A< 11.

t
Hence, lt follows that ln both cases La L(A ,~,)l) or'

•L(A ,0 , A), whlch lmplles our theorem.

It ls e8s111 shown that the same theorem holds tor

an optlmlstio tuzz1 automaton.
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3.4 Closure Properties of Fuzzy AutomAta

In this section, we use the concept of fuzzy sets

instead of the set ot input strings with thresholdA•. .

It is shown that a family ot fuzzy events characte-

rized by not only pessimistio fuzzy automata (pfa for short)

but also optimistio fUzzy automata (ofa for short) is olosed

under the operations of intersection and union in the fuzzy

sense. And the complement of the fuzzy event by a pta

(an ofa) is oharaoterized.bY an ·ofa· (a pta).

Definition 3.7. For a 'pta A = (5, TT, {F(a>ld E:- ! J, &G),

let a tuzzy event be the fuzzy set in b* whioh 1s characterized

by

. "

We denote by L(A,.) the fUZZy event by a pfa A and, slmilarlT,

by L(B,*> the fUZZy event by an ofa B.

DefinU;lQp ].8.
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def1ne. a min Pta. Al ~ A2 . as follows I

where

def1ne

for (s,t),(q,r)Eo S and 0 E-~ •

. Moreover, the mn-dimenslona1 row vector TT· 1s def1ned

as followsl

For (s1,t
J

) Eo S, 1~1~m, and 1~ J".n,

where

~ (s t) D m1n ( TTls • TT2t 1
l' j 1 j
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And the mn-dimensional column vector 0° is also 0° =

8Gl~· 8G2 •

.Hence, th~ fu~zy transition matrices of order mn of

Al qp A2· is as follows:

For two pfa Al and 1(2' let Fl(O) =1/ fSi,SjE.d)II

and F2(O) = II ftk,t
l

(d)" be fuzzy transition matrices ot

Al and A2, respectively, then fuzzy transition matrix F(d)

ot Al @ A2 is defined by

where

Note that the operation QP ot tuzzy matrioes oorres-·

ponds to the tensor product ot ordinary matrioes.
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Lemma ),2. For fUzzy matr1cesAl, A2, Bl , B2, A and B,

for row vectors tTl and tT2, and for column vectors oGl
G .

and S 2, we have that

(1) . (Alo Bl >®(A20B2) = (~(g) A2)o (B
1
0 B2).

. (2) (trloAoSG1)(g) hr
2
° B O OG2 )

a (tr
l

(8) 1T
2

) 0 (A@B)o(SG1 @ 0°2)

ProQf' Obvious.

This enables us to prove the follow1ng closure theorem.

Theorem ),5. Let Al, A2 and Al~A2 be pfa as 1n Def1nition

,3.8 and L(Al,o), L(A2,o.> and L(Al~At,o) be the fuzzy events

characterized by ~l' A2 and Al~A2' reSpect1vely.' ~en, 1n

the fUZZy sense,



Proofa

- .39 -

The membership functions of fuzzy events L(Al,o),'

and

respeotively.

fA (x) = "loFl(X)08Gl~
1

t A (x) • "zoF2(x )o&G2,
2

fA 0A (x) • "eF(x)o&G;
1 2

From Lemma .3.2, we havel'

, . 'G G
= ("1~TT2)~(Fl (x)0 F2(x»o(& 10& ,2)

• min [ "10 Fl (x)o&Gl, "2oF2(x)o &G2J

" *tor all x Eo ~.

~ ~,in [ t A (x), ~A
2

(x) J
, 1

Corollary 1.1. For two ora Bl and B2, let ' L(Bl ,* )

and L(B2,,* ) be the fuzzy events by Bl and B2, respeotivel;y,"

then r in the fu~zy sense, there exists an ota B such that

" , (,3.18l
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ProofS In Definition 3.8, by replacing the operation."min"

by the operation "max· and defining a maA gta, we can easily

prove Corollary 3.1.

We have shown that the family of fuzzy events by pta

is olosed under intersection, and the family by ofa is closed

under union in the fuzzy sense.

Next, we will verify that the family of fuzzy events

'by pfa (ofa) is closed under union (intersection) in the tuzzy

sense.

Theorem 3.6. For two pta Al and A2, let L(Al,o) and'L(A2, o)

be fuzzy events by Al and A2, respectively, then, in the

tuzzy senseg there eXists a pta A such that

(3.19)

Proof: Let Al and A2 be two pfa as follows:'

Al = ~,(sl,s2, ••• ,sm} ,TTl' {Fl(o)IOE-~;1, 8
G

l )",:

. G '
A2= ({ t l,t2, ••• ,tnl ,TT2, \F2( 0 ) 10 Eo }';},8 2).,

\.

".

Now, oonsider Q pta A~ that is,
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where . TT, F( d) and rP are glven as fol1ws I

Let·

. then

.Moreover, .

and

In general, in fuzzy matrices, we have that

(1)
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Therefore, let

and

be the membership funotions which characterize fuzzy events­

L(Al,o), L(A2 , o ) and L(A,o), respeotively. Then, tor XE- };.*,

we "'aves

0\
"

= max [Trlo F1(x')o5
Gl , 1'T2oF2(x )o 5G2J

·s ~ax [f
Al

(x), fA? (X»).
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Corollary 1.2. For two ofa B1 and B2, let.L(B1,*>
and L(B2,t > be ~he ruzzyevents by B1 and, B2• respectlvely.

Th~n, ln the fuzzy sense~ there exlsts an ota B such that

Proofa For two ofa B1 and B2, that ls,

, G
, B1 a (51' 1Tl' { F1(o >I0 E:- }:}'. S 1>,

and B2 ::I (S2; 1T2' {F2(d>\ Of:' ~1, sG2) ,

let us def1ne an ofa B as,followsl

(
F1E( d )

, 1(0) a for all 0 1n ~;
, ,
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Then, we oan prove our Corollary 1mmed1ate1y 1n a s1m11ar'

way as 1n Theorem 3.6.

We shall show the1nolus1on property ot pta.

Theorem 3.7. G1ven two pta A1 and A2 as to1lowsl

Al •. (Sl' TTl' {Fl (d)l dE- i:l, 8
01l ,

A2 • (S2' TT2' {F2 (e >\ d Eo i:1, 8°2).

then, in the fuzzy sense,

(3.21)

Proof' We oan eas1ly show that

for x Eo i:*

from the bas10 properties ot fuzzy matrix desor1bed 1n

Seot1on ).2.
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Obviously, the same theorem holds tor ota.

Next, we shall show the complement ot tuzzy event

,by a pfa (an ofa) is characterized by an ofa (a pta). '

DefinitiQn ),9.

pta, then aOQmplementarx~ of A is detined as tollowsl

•
A' • (s", 11", {F'(O)\O~L}' 'CP ),

tor 0 f: I, '
where
•

A "

,
S • S.

,
As to the' tuZZ)· transition tunotion t A' ot,* ., "
X,Y'~ ~ • 8,t E-S • and t A ot A, we definel

• m1n max (t~,(s,X,q),
q ,

• 1 - fA(s,xy,t),

t~. (q,~,t) )

and the in1tialand f1nal state veotors are

•
11' • (1,1, ••• ,1) - 11', and

,
~G == ( )' . ~G
u 1,1, ••• ,1 - u •

•Note that we oan easily' detine a oomplementary pta B ot

an ot« B in a simil~ way. .
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For a fuzzy matrix U iii 1/ ui j" ,

•

be -fuzzy matrix such that

• I I

For fuzz)' matrices Ul , U2,·:·, Um' let Ul ' U2,···, Um
be fuzzy matrices as defined above, respectively, then

•••
• ••
• • • n·

Theorem 3.e,. ,
I

Let A, be a pfa ~nd let A be a comple-

mentar, ofa of A, then, in the fUzzy sense,

'QProofl Let A = ,(S, TT, (F(o)lo Eo ~1, S) be a pfa and
•

A'= (S, TT I , 1F' (0) Id ~ ~}, SG) be a complementary ofa' at A,

then by Lemma :3.:3, for x (:0 ~*,

G
fA (x) =TToF(x)o S
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,
Therefore, we have L(A,o) a L(A ,*).

•CorQllary i.1. For an ofa B and a complement~y pta B

ot .B, in the tuzzy sense,

. Prootl

.' .'
L(B,~) • L(B ,0) •

Immediately.

We have shown that the family of fuzzy events chara­

cterized by pfa (ofa) oonstitutes a.distributive lattice,'but

does not oonstitute a Boolean lattioe clearly.

3.5 Conolusions

The pessimist~c (opti~istiC) fuzzy automata are no

.more powerful than the flni te automata as measured by sets'

. of accepted input strings. The. thresholds can be set

,arbltrarily by changing the values of each element of the

fuzzy transition matrix and the initial state designator.

Moreover, the family of fuzzy events oharacterized by

pessimistio (optimistio) fUZZy automata is olosed under the

operations of union and intersection in the sense of tuzzy

sets. And the complement of the fUZZy event bya pessimistio

(an opt1m1st1o) fuzzy automaton 1s charaoter1zedbyan optimi­

st10 (8 pess1m1st1o) fuzzy automaton.
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CHAPTER 4

CONDITIONAL FUZZI GRAMMARS

4.1 IntrodUction

Natural ;anguages such as Engli~h have incorrectness

and ambiguity syntactically and semantically. It is natural

to introduce randomness lnto the structure of formal languages

in order to specify natural languages with amblgul ty (49, 50,

51, 52) • Another way of extending the concepts of formal

languages to those of natural languages ls the lntroductlon

of fuzzlness. The flrst step to this directlon was made by

Lee and Zadeh (38) , who introduced fUzzy grammars as an exten­

tlon of. ordinary formal 'grammars by using the.ooncept of fuzzy

·sets. The notion of fuzzy grammars was introduced by the

author, independently (39) •

In thls chapter we shall discuss fUzzy grammars, and

oondltlona1 fuzzy grammars (or n(~1)-fo1d fuzzy grammars)

,whlCh were deflned by the author.

Ordlnary formal grammars have the property that, after

applying a rewritlng rule to an lntermediate strlng ln aderl­

vatlon, the next rewriting rule to be used can be chosen arbl­

trarily. Thls arbitrariness, however, is not suffioient for

desoribing natural languages with fuzziness. For example,
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consider the following rewriting rules: (1) 5~A bites B,

(2) A~ the dog, (3)· A-~ the boy, (4) B ~the boy,

. (5) B~ the dog. Then the sentences generated by these

rewriting rules with an initial symbolS are as follows. .

t the dog bites the boy, the dog bites the dog, the boy

bites the boy, ,the boy bites the dog}. Generally speaking,

a sentence "the boy bites the dog" is rather doubtful semanti-

cally. We may say that, after applying the rewriting rule(J)

to the intermediate string "A bites B", it is not rather­

proper to apply the rewriting rule (S).

To specify such a condition, we have defined condi­

tional fuzzy grammars, more precisely, n-fo1d fuzzy grammars,

in which the grade (or the propriety) of the application of

the rewriting rule to be used next is conditioned by the n rules

used before in a derivation. The grade approaches to unity

nearer and nearer as the propriety becomes higher. In the

case of applying several rewriting rules, we use the concept

of composition of fuzzy relations.

We show that the set of all strings whose grades of \

the generation by fUZZy grammars with type i (i = 0, 1, 2, J)

rules are greater than a certain threshold is a type i 1an-

guage. But the set of all strings whose grades by fuzzy

grammars with type 2 rules are between two thresholds is not

neoessary a type 2 language.

n-fold fuzzy gra~ars whose rules are of the type 2

form can be shown to generate type 1 languages by. setting 8
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As to n-told fuzzy grammars, however,

we fooused our attention on n-fold 'fuzzy grammars wlth type')

rules as a prelimlnary step.

4.2 Fuzzy Grammars

The notion of fuzzy grammars defined by Lee and Zadeh

(38), and Mlzumoto, et al.(39) is a natural generalizatlon

of the defin1tion of formal grammars. In this section we

shall show that the set of all strings whose grades of the

generat10n obtained by fUzzy grammars with type 1 (i=0,l,2,3)

rules are greater than a certain threshold 1s a type 1 language.

But the set of all strings whose grades by fuzzy grammars With.

type 2 rules a~e between two thresholds 1s not neoessary a
f i

type 2 language•

. type 0 rules.

DefinitiQn 4.1.'

The same ,holds for fuzzy grammars with

A fuzzy grammar (Fa for short) ls a system
, . '

where'

(1) VN, ls a nonterminal vocabulary.,
'/

'(11) VT ls a term1nal vocabulary.

(1,11) , S ls an In!tlal symbol ln VN•

(4.1)
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(iv) Pis 8 finite Bet ~f produotions suoh 8S

(rl.. u~v fer)

where r E: J, u~v is an ordinary rewr1t1ngrule w1th u

E: v;-{t}, V (;0 (VNU VT)~ ,and fer) 1s the grade of the

app11oat1onof the product1on r , wh1ch w1ll be denoted

. in (v1).

(v)" J 1s a set of (rewriting rule) labels as shown in (1v);.

J -{r}•.

(vi) f is a membership function such as

r ~ J ~ (0, 1). (4.3)

. f may be oalled a fuzzy funct10n and the value fer), r ~ J,

1s the grade of the application of a production r.t

We assume that, to each rewriting rule, there oan

oorrespond more than one label, but not conversely.

t We often say the label r as the produot1onr for

convenlellce, •
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Next,we shall briefly explain a derivation chain with

fUZZy grades (fuzzy derivationohaln).

If (r ) u -.. v f (r ) 1s ln P, and a and, 13 are

~y strings in, (VN U VT)* , then

f(r)
aul3 --+ avl3

r

and avl3 ls sald to be dlrectly derivable from aul3 wlth,

the grade t(r)

are strings in

by the productlon
~(VN U VT) and

r • , a
m

, (4.,5)

a •m

Then am' is said t~ be derlvable trom aO by the produot~ons

r 1 , r 2 , •••• r m• \The expression

t(r
1

) i(r2)
:. ,a

1
'>

r
1

' ,r
2

(l2',~ •••••••



- S3 -

, will be referred to as a fuzzy deriyatiQn chain of ' length, m

from ao to am by the produotions r l, r~, ..., r m •

When aO a S, am = x (E: VT*> in (4.6>, i.e.,

" s
f(r

l
) t(r2 )

>- al ~ a2 --)00)00 • • • • • •

f(r )
m

~ a 1 t-m- x ,

S is said to generate a terminal string x by the produotions

r l, r 2, ••• , r m• In general, there are mor& than one fuzzy

derivation ohain trom S to x.

Definition 4.2. The grade of the generation of terminal

string x (e vT'If.) by a fuzzy grammar FG, whioh is denoted

as foo(X) , is given as follows by using the oonoept of the "

composition of fuzzy relations of (2.17) and by the fUZZy

derivation chain from S to x ot (4.7).

is in 1°, 1) .

Clearly, fFG(X~

where the maximum is taken over 'all the fUZZy derivation

'ohains from 5 to x.
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We shall define a language generated by a fuzzy

grammar FG wi th the threshold A, o~;\, <: 1.

Definition 4.1. Let FG = (VN, VT, P, S, J, f) be a fUzzy

grammar and A a real number 0 ~ ;\. < 1, then a language

generated by Fa wi th the threshold A is defined by

Moreover, we can ~lso define other languages as

follows:

Definition 4.4. For two thresholds ).., and ;\.2. with 0~ X, <;l,.<J.,

, a language L(FG, A. ,A.2.) 18 defined by the following:'

Bes1des, for a threshold A , a language L(FG, - ,A) 1s

def1ned as

L(FG, 1:1 ,A) - {x e v#1 fFG(X) -;x.!: :(4.11)

if
', ~

"..
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Example 4.1. Let FG 'be the fuzzy' grammar (VN, V~, P,'

, S, J,. ~), where VN • {s, A, B, C, D, E}" VT ={ .a " .b} ,

and the produotlons are

(1) S~ABC O.S , (8) B~ bB 0.8

(2) S~ADC 0.8 , (9) B~b 0.9

(,) S -. DBC 0.7 , (10) C ~aC 0.8

. (4) S ~ABE 0.6 , (11) C~ a 0.9

JS) S --J- AEC 0.6' , (12) D~aDb 0.8

(6) A~ aA 0.8 , (13) D ~ ab 0.8

(7) A~ a ~.9 , (14) E ~bEe 0.8

(IS) . E ~ be 0.8

A string, say, a2b2a is obta1ned by the following derivation.

",'

0.5 0.8 0.9 0.8 0.9
§.~ ABC ~ aABC --. a2BC

~
2bBC ~ a2b2C·- - a _ -

1 6 7 8 9 !
,i

~

. 11

\
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where the underbar in the intermediate string represents the

location where the next p~oduction was applied.

2 2The grade of the generation of a b a by this deri-

vation is the minimum value among the values indicated .over .

the arrows, i.e.,

min (0.5, 0.8, 0.9, 0.8, 0.9, 0.9) = O.S

2 2Similarly, for the same string a b a, . the fo1~owing

derivation 18 also possible,

-~>~ aABE ~ a2!!E ~a2b! ~ a2b2a •
6 '7 9 1S

'. §.

0.6
~

4

0.8 0.8

In this case, we have 0.6. Furthermore, we can

show other derivations of a2b2a, whose grades are shown to
2 2 ~

be less than 0.6. Thus we have fFQ(a b a) = 0.6 from (4.8).

are, for example

Continuing in this manner, we can see that the langu-
i - . _ - •

~t2i}Y<ages generated by Fa

\
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(1) L(FG, 0.45) • {. a1bJak I 1,J,k~1}.

(11) L(FG, 0.55) .' { a1bJak I 1,j,k ~ 1, 1 ; j orJ , k l.

(111) L(FG, 0.75) • {a1+.1bj a k I 1,.1,k ~11.

(lV) L(FG, 0.45, 0.55)::1 L(FG, ::I , 0.5)

, = {a1b1a1 I 1 ~ 1) •

It ls lnterestlng to note that languages (1), (11),

'and (111) glven above are all oontext-free languages, but

languages (lv) are oontext-sensitive languages.

Bemarkl ' In this example, the language {a1bJak 11,.1,k ~ 1}
ls generated by the rewrltlng rules whose labels are (1) and

(6) 'V (11). And the language {a1bJak 11 \= j ,or J \= k }

ls by the rewrl tlng rules of (2) 'V (15).
,

Theorem 4.1. For any A (0 ~ i\< 1), a language L(l-FG, it) ls

language 1n the sense of Chomsky, where 1 a 0,1,2,3.

Definition 4.5. A' fuzzy grammar Fa ln whloh'the rewrltlng

rules are of type 1 (1=0,1,2,3) ls denoted as 1-Fa. The

language by l-Fa wlth the threshold;X ls deflned as -f'< l-Fa, A. )•
. .-q~9' '
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Proof: For the 1-Fa = (VH, VT, P, S. J, t) wlth the

thre~ho1d A (0" A. < 1), let J( A )be the set of all

labels such that· f (r ) >:;l ,where r £:- J . • More preolsely ,

J(r) = { r I f(r» A}. Then L(1-FG, i\. ) Is a language

wh1ch was obtalned from the only rewrltlng rules correspond1ng

to the labels In J(;A). L(l-FG, A), ls, therefore, a

type 1 language. where 1 = 0,1,2,).

Theorem 4,2. For the 1-FG, where 1 = 0, 2, the languages

L(l.;.FG,AI·, A2.) and L(l-FG, = ,A) are not always type 1

languages.

ProofS The language L(l-FG, Al , A2) 1s glven by the dlt-

· ference L(1-FG,;t,) - L(l-FG, A2 ), We know that the type 1

.. (1 = 0, 2) languages are not always closed under the dlfference.

Thus, the languages L(l-FG, AI) and. L(l-FG, A2) are type 1

languages, so L(l-FG, AI , ,Al) Is not always a type 1 lan-

guage, where' 1 = 0, 2. SImIlarly, L(I-FG, = ,~) Is gIven

,by L(1-FG, ~ ,A) - L(I-FG,).,), where L(l-FG, ~ ,A) 1s

. '*deflned as t x Eo VT \ f FG (x) .~A} • .Clearly, L(l-FG, ~ "

~.) 1s a type 1 language, so L(l-FG, = ,A) 1s not always

· type 1 language, where 1 = 0, 2.

!!QaS L(J-FG, AI , A;l) and L(J-FG, = ,A) are also 'type J

· languages, slnce type J languages are closed uDder the
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We oan not, h,owever, oonolude whether L(l-FG,

AI ,.A2) and L(l-Fa, = ,;l) are type 1 languages or not.

For it 1s not known whether type 1 languages are olosedunder

the d1fferenoe or not.

4.) " N-Fold Fuzzy Grammars

In th1s seot1on we shall define an n-fold'fuzzy gram­

mar 1n wh10h the grade of the application of the rewrit1ng

" rule to be used next 1s cond1tioned by the n rules used before

1n a derivat1on, where n"~ 1. And it is shown that n-fold

fuzzy grammars w1th OF rules can generate OS languages.

Deflnltion, 4.6.

1s a system,

An xi'( ;;; I)-fOld fuzzy g:ammar (n-Fa for sbort)

,,"

where VHf VT, S, and J have essentially the same meanings as

those tor the fuzzy grammars denoted in the previous:se~t~on,
. -:"; ..:.~~~:.::.-

,".-"';'

and "P 1s a f1nite set of rules with labels suoh as,

(r) u --=> v
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where r E:- J, u~vis an ordinaryrewriting rule witb u

Eo vN*-tel and v c (VN U VT)*. J' ={r} isa set of

(rewriting rule) labels. f 1 (i = 0, 1, ••• , n) is a

(oonditional) membership funotion of a fUZZy set in the

label set J and is defined as follows'

(a) In the case of i = 01

from JS to ( 0, 1) , i. e. ,

f O' is a membership funotion

where JS is the set of all labels whose rules are initial

rules. The value f 0(r ) in (0, 1) represents the grad'e of

the application of an initial rule r in JS• .

(b) In the oase of 1 f! 1 ~ nS

membersh1p funotion suoh as

f i 1s a oond1t1onal

and represents the grade of membership of r i +l in J given

rl' r 2, ••• ,ri 1n J. In other words, f i (r1,r2, .. • ,r1; ..

r i +l) 1s designated as the grade of the applioation of the'

rule r i +l after the irules r l, r 2, ••• , r i were applied

~equent1al11 to the intermediate str1ng in a derivation.
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In what follows, we shall oall f 1 (l=O,l, ••• ,n)

as an 1-fo1d fuzzy function.

We assumed that, to each rule, there may o~rrespond

more than one label, but not oonverse1y•

.RemarkS . For all r in JS' all 1 (1=1,2,.~.~n), and all

r l, r2'·.~' r 1 1n J, let

• Then n-fold fuzzy grammar beoomes a fuzzy grammar denoted

In. the prevlous sectlon.

as a a-fold fuzzy grammar.

Thus we may call a fuzzy grammar

Now, we shall explaln how to use 1-told fuzzy tunot1ons

~1' 1=0,1, ••• ,n, in a derivation.

The express10n

a2~ • ••••••~ am
r

3
r m

w1ll be referred to as a derlva~ion chain ot length m by the



- 62 -

rules 1'1' 1'2' ••• ,I'm from S to a.m

When the length m of a derivation chain is m€! n,

the fuzzy funotions f O' f l , •••• ,fm_l 'are 'employed as

follows 1

Let fo(rl) = ~l' f l(rl;r2) = ~2' f 2(r l , r 2; r ) =

~3' •••• ,and fm_1(rl,r2,···,rm_1;rm) = ~ , then we put

eaoh fuzzy grade ~1' ~2' ••• , ~m€:'(o, 1) over the arrow

by the following.

• • • •
~m-l ~m
~a l~m-
r m_l I'm

a
m •

Moreover, when the length m is m> n, we let m = n + j,

j ~ 1. Then, in gene~al, after the n rules r j , r j+l, •••• ,

.. r n+j-l, where j ~ 1, were applied sequentially to the inter-

. mediate string, the grade of the application of the rule rn+j
is charaoterized by an n-fold fuzzy funotion fn• Let

fn~rj,rj+1,•••• ,rn+j_1;rn+j) = ~+j' j ~ 1, then the grades

~+l' ~+2' •••• , ~+j are expressed as follows, where ~l'

~2' ••• , Pn are dependent on the fUZZy funotions f O' f l ,

•••• ,t 1 as mentioned before.n-
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(4.18)

III 112 lln lln+l lln+j
s~ al~ • • • ~ a ~ an+l~ ••• ~ a

n n+.1 •
r l r 2 rn rn+l r n+ j

We shall call this derivatlon chain wlth fuzzy grades

as !uzzx derivation Qhaln.

We shall next explain a fuzzy language characterlzed

by an n-fold fuzzy grammar n-FG •

Let (4.19) be a fuzzy derivation chaln from an initial

*'symbol S to termlnal strlng x' in VT, that ls,

~.

a
2
~.•••• ~ ak (=x).

r k

.Then the grade of the generatlon of x by this fuzzy der1vatlon .

chaln 1s deflned as

m1n ( lllt J12' •••• , ~ )
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By using the concept of composition of fuzzy

relations (see (2.17) in Chapter 2), the grade of the

generation of x in VT*by n-FG is given as follows.

lln-FG (x) = max min ( lll' 112' •••• , llk) •

where the maximum is taken over all the fuzzy derivation

chains from S to x.

Definition 4.7. A fuzzy language by n-FG is a fuzzy

* .set in VT charaoterized by the membership function lln_FG(x)

as defined in (4.21) and may be called an n-fold fuzzy JJm.::.

guage which is denoted as L(n-FG).

Espeoially, we call an n-fold fUZZy grammar with the

. 'grade of the generation of the terminal string under the

operation "max min" as in (4.21) as an n-fold pessimistio

fUZZy srammar (=n-PFG), and an n-fold fuzzy grammar under

the operation "min max" which will be defined in (4.22) ss

an n-fQld optimistic fuzzy grammar (=n-OFG).

(4.22) ..
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A fuzzy language oharacterized by n-OFG is denoted

as L(n-OFG).

In this paper, unless stated especially, by an

. Mn-fold fUzzy grammarft we shall mean an n-told pessimistic

fuzzy grammar.

EXamPle 4.2. Consider the following 2-fold fuzzy ~amma~~

where VN ~ {s, A, B}, VT = {a, b, o}, P oonsists ot

. the followings.

S~AB , B~cB.

(2) A~ aAb , (5) B ~ c

And the 0, 1, 2-fold fuzzy funotions are

fO(l) = 1 ,

f 1(1;3) == 0.9 , f l(1;2) == 0.8

f 2(1,3;5) = 0.9 , f2(1,2;2~ = 0.8

f 2(2, 2;4 ) = 0.7 , f 2(2,4;4) = 0.7

f 2(4,4;2) = 0.7 , f 2(4,2;2) == 0.7, .

f 2(4,4;3) -0.6 , f 2(4,j;S) == 0.6
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and all other. f l and f 2 araO.S.

Now, we shall obtain the grades of the generation ot

the terminal strings by this 2-FG. A string, say, a3b30 3

is obtained by the following fuzzy derivation chain.

1 0.8 0.8 0.7
§.~ AB -.. aAbB ~ a2Ab2B

~ a2Ab2cB- - -
1 2 2 4

0.7 0.6 0.6
~ a2Ab2c2B

~ a3b3c2B -;:. a3b30 3•-
4 3 S

The grade of the generation of a3b30 3 by this.

derivation is given from (4.20) ,as follows.
. , ,

min(l, 0.8, 0.8, 0.7, 0.7, 0.6, 0.6}'::a 0.6.

The 0, 1, 2~fold fuzzy functions used sequentially ,

in' this derivation are

1\

. fo(l) ::a 1, f l(1;2) = 0.8, f 2(1, 2;2 ) = 0.8,~
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Similarly, for the same string a3bJo3, the following

derivation is also possible.

1 0.5 0.5 0.5
.§ --;.. ~ ~. AcB --;:. aAbc~ ~ a!be2B

1 4 2 4

0.7
--;>

4

0.6

.3 .

0.6

In this case, we have

min ( 1, 0.5, 0.5, 0~5, 0.7, 0.6, 0.6 ) = 0.5.

Furthermore, we can also show the different fuzzy

derivation ohains of a3b30 3 , whose all grades are shown to

be 0.5 •

Hence, the grade of the generation of a3bJoJ by

2-FG is given as thw maximum value among the grades for all

the fuzzy derivation ohains of aJbJeJ (see (4.21». Thus,

we have ~2_Fa(aJbJoJ) = 0.6 •

Con~lnuing in this manner, we oan see that the fUZZy

language characterized by 2-FG is
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L(2-FG) = {(X, J12_FG(X»}

=t(abo, 0.9)} U {(a2n+J,,2n+lo2n+l, 0.6) I n ~ l}

U{(aibi c-1, .0.5) J (i,.1) " (2n-l,2n-1), 1 • .1,n·~ l}.

Let L(2-FG, ,A)' = {x ~ VT*I J12_FG(X) >;\ l ' where

o~;t< l~· and let.i\. = 0•.85, 0.55, 0.45. Then

L(2-FG, 0.85) = t abo }.

L(2-FG, 0.55) = {a2n-lb2n-lo2n-l I n ~ i.} ...

L(2-FG, 0.45) = t aibic.1 i,.1 ~ l} •

In the oase of n = 1 in n-FG, l-fold fUzzy funo­

tion 1'1 of ~-FG = (VN, VT, P, S, J, t 1'0' 1'11) oan be

. represented by the m f~zzy vectors whose dimens10n is m,

where m= #(J).' That is, let J = {rl '. r 2', ••• , r m}, then

for eaoh (ri). ~i~ V1 in P,

,
and 1,.1· 1,2, ••• ,m.
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Example 4. J. Let l-FG be (VN,VT, P, S, J, lfo' f l) ),

where VN ={S, A, B, C}, VT ={a, b, el , fO(l) • 0.9,

and the rules with fuzzy vectors are

1 2 J 4 5 6 7 8 9 10
(1) S -;.. ABC ( .7 -.8 .9 )

(2) A~aA ( .7 )

(3) B~bB ( .7 )

(4) C ____ oC ( .7 .7 )

(5 ) A~aAa ( .8 )

(6) B --;.. bBb ( .8 )

(7) C -.cCe ( .8 .8 )

(8) A~ a ( .9 )

(9) B -. b ( .9 )

(10) c ~o ( )

We assumed that the values of the blank portions ot ­

the fU~zy 'vectors are in the interval (0, 0.65 ) •

A string, say, aJbJo3 is obtained by the following

. fuzzy derivation chain.
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0.9 0.7 '0.7 0.7 0.7
§. ~. ABC --.. aA!!C ~ aAbBQ ~ a!bBoC ~ a2AblaoC

1 2 :3 4 2

0.7
~ a2Ab2BoC

. -
.3

0.7 0.9 ,
a2A,b2Bo2C ~. a3b2!!o2C ,.~' a3b30 2,g

8 9

-;.

10

The grade ot the generat1on' ot a:3b:303 by this derivation is

trom (4.20) as tollows.

, . ... ,

Similarly, other derivat10n oha1ns ot a)b)o3 are,

,. oonDi~ered.

·0.9 0.8 0.8 0.8
.2. ~ ABC ~ aAalaC --=.;. aAabBb.Q. ~ aAabBboCo

1 · S 6 7
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.0.9 , 0.9
~ aJbJcQo ~ aJb.3cJ.'.
9 10

In the above case, we have 0.8. Furthermore, we ~an also

show the different derivations of a.3b.3o.3, 'the grades of which.

are all less than or equal 0.65. Thus, f
1

_FG(a)b.3c.3) I: 0.8 •.

Continuing in this manner, we can see ·that the languages

w1th the thresholds generated bY' this. l-FG are,for example,

cp.

'L(l-FG, 0.85) =. { abo}.

L(l-FG, 0.75) • {a2n-1b2n-1c2n-l n ~ i I .

L(l-FG, 0.65) = ta~nonl n~ 1t.

L(l-FG, 0 ) = {aPbqor I p,q,r 6i 1 ~.

L(l-FG, 0.65, 0.75) = { a2~2no2n I n ~ i },

L(l-ItU, I: , 0.8) I: (a2n+1b2n+lo2n+1 I n ~ 1}.

where the language L(l~FG, 0.65, ,0.75) ls defined as

.t x ~ vr;t 10.65 < 111:~~"(x) ~ O.75} and t~e ianguage L(l-FG, ..

=- , 0.8) .lS8S {x £- V; IP'l_FG(x) I: 0.8} (see Definition 4~4).
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It is interesting to note that,as shown in the above

examples 4.2 and 4.3 , the languages L(n-FO,A.) by n( ~ 1)­

fold fuzzy grammars n-FG with the rules of CF torm can be

CS languages. But L(FG, i\.). by fuzz)" grammars FG (or O-told

fUZZy grammars) with CF rules denoted in the previous section

are OF languages.

4.4 N-Fold Type J Fuzzy Grammars

In this section wa discuss n-fo1d fuzzy grammars With

type 3 rules only. It is shown that there exist n-fold fuzzy

grammars which realize Uunion", "intersection", ·concatenation",

and "Kleene closure" of fUZZy languages characterized by n-fold

type 3 fUZZy grammars. And fUZZy languages defined by n-fold

.t ype 3 fUZZy grammars can be oharacterized by (n-l)-fold type 3

fuzzy grammars and vice versa.

Definition 4.8. An n-fold type J fuzzy gramma~ (abbreviated

n-FG) is an n-fold fuzzy grammar (VN, VT, P, S, J, lfO~fl'•••

,fn } ) in which each rule in P is of the forml

(r) A~aB or (r) A ~ a
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Slml1ar1y, we can detlne an n-fo1d type J fuzzy

"ammar (n-OFG tor short>'. -,o~stt:6

Now, we shall ~epara for the follow1ng notat10ns

1n order to put restr1otlons on the doma1ns of O,l, ••• tn­

fold fuzzy functlons wlthout loss of genera11ty.

Let JAB be·a set of all the labels such that the

nontermlnal symbols ot the left and therlght hand s1des of

the nonterm1nal rule 1n P are A and B .(€: VN), respeot1ve11~

And let JA be a set of all the labels suoh that the left

hand slde of the rule ln P 1s A (l: VN).Moreover, for non­

empty 1 label sets JA A ' JA A ' •••••• JA . A' let us
o 1 '.1 2 1-1 1

deflne the set ot label strlngs ot length 1 8S tollows.

(4.24)

••••• ·JA A
1-1 1
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which shows that, after the rule r k (k~1,2, ••• ,i-l)was used

in a 'derivation, the next rule r k+l is'applioable.

Now, we shall define the i-fold fuzzy funotion t i ,

1=0 ... 1, ••• tn,

(1) As to the O-fold fuzzy funotlon fo,'let Ai a Sin JA
l'

and define

(4.25)

for eaoh r ~ Js•

(li) . As to the 1-fold fuzzy funotlon t 1, 1=1, 2, ••••n-l,

let A a S in J A A anddeflneo AO 1··· 1

. . (4.26) .

Thls Is carrled out for all the non-empty. sets
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(111) As to the n-fold fuzzy funotlon fn, define

fn (rl t r 2, • • • • ,r ; r +1') (: [0, 1)n n . .

for each r lr2····rn E: JAoAl•••• An and ~n+l E- JAn'

This ls carried out tor all the non-empty sets

J" 'and J'
AOA1····An An •

Theorem 4.J. For two n-fold type J fUzzy grammars n_FG(l)

and n_FG(2), let L(n_FG(l». and L(n_FG(2»be the fuzzy

, .languages by n-FG (1) and n-FG(~) t respeotivelye' .Then, in

the fuzzy sense, there eXists an n-FG suoh that

(4.28)

ProofS Let n_FG(l) and n_FG(2) 1 '.>-be as follows.",--'1
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wherelt ls assumed that
J(1) (\ J(2) = ep II

and ..

. ,

Now, oonslder an n-FG, that ls,

v =V (l)U V (2)U{Sl. .
N N N J'

V = V (1) u V (2)
T T . T '

P • P (1) u p ( 2 ) U PI U PII '

J = J(l) U J(2) U J
I

U J
I I

'

. (I): For each lnltial rule (r) Sl -;.. W ln p(l), where

r·~ Js(1 ) , we oonstruct a new lnltial rule of P such as
i .1·

(lfl (r» S~ w ,where Ifl (r) ls a different new label,

and S ls a new inltlal symbol of n-FG. Let PI and

J I be the set of all new lnitlal rules obtalned above and
I

,the set ot labels oorrespond1ng to these 1nitial rUies, res~
"

'peotlvely_ Formally,
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(II) I We can get PI I and J I I . for the initial rules

1n . p(2) 1n a sim1lar way as (I). That 1s,

F1nally, the 1-fold fuzzy funot1on h1,· 1=O,1, •• ,n,

of n-FG is defined by the follow1ng.

·,(a) O-told fuzzy funotion hO is given as

fO(r) ••••••••• if p. Tl(r)E-JI ,

ho(p) •

goer) •••• • • • •• if P = T2 (r ) 6- J'lI'

where bO 1s no1; defined for other P E:: J.

..
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(b) 1-fold fuzzy funotlon h1, 1=l,2, •••• ,u-l, 1s given

as fo110wsl

and

.....,.
g1(r1'P2'····'P1;Pl+1) ,

if ( ) L J'd' "'"J(2)P1- T 2 r 1 .. ' II an P2"" ,P1+1 E: " •

•

'(0) n-fo1d fuzzy funct10n hn 1s

h (P1.P2.····.P ;P +1)n n n .

-,
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f n (r 1 ' P2· · · · · ' Pn ;Pn+l )

• •••••• if Pl' == T1 (rl~ £oJ1 and P2, ••• ,Pn+l ~J(l)

==

••••••

8n(rl ' P2' · · · · ,Pn IPn+l)

11' ~l == T2(rl)'~ J 11 and P2, ••• ,Pn+l e: J ( 2 )

where hn is not def1ned for other Pl,P2'··· ,Pn+l ~ J •

Example 4.4.

.suoh that

Let us oonslder two and

where oonslsts of the follow1ngs.
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and 0, 1, 2-to1d fuzzy funct10ns fo' f1 , f 2 are

/. .. (2) "( { } { } I (2) " { "}"2-FG • 52' a, b , P , 52' 4, S

And

where

f O(l ) 1:1 0.1 ,

.f1(1 ;2 ) 1:1 0.2 ,

f 2(1,2;2) 1:1'0.4 ,

f 2(2,2;2) • 0.6 ,

cons1sts of

. f
1

(1;3) I:: 0.3

t2(1,~;3)· o.S "

f 2 (2, 2 ;3 ) ~: 0.7"

and 0, 1, 2-to1d fUZZy functions go' gl' g2 are

gO(4) 1:1 0.9 ,

gl(4;4) 1:1 0.7 ,

g2(4,4;4) I:: O.S ,

goes) 1:1 0.8

gl(4;S) = 0.6

g2(4,4;S) 1:1 0.4



Then the 2-FG whloh reallzes

. ls,' glven as follows.

2-00

. . '

a ( {s,Sl,S2,A} , {a,b}, P, s, {1,2,J,4,S,6,7,al ~'{ho,hl,h21')

p •
where oonslsts of the followlngs.

(1) Sl~ aA, (S) S2-+ a

(2) A ...... bA,· (6) S ~ aA

(J) A -.a, (7) 5 ~ bS2

(4) 52 ~ bS2, (8) S -.. a

. ho(6) = 1'0(1 ):1: 0.1

, hi> ( 7 ) ,a go (4) III 0.9

hO(S)'a gO(S)'· 0.8
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h1(6;2) = f 1(1;2) = 0.2

hi(6;3) = f1(1; 3) = 0.3

.h1(7;4) = g1(4;4) = 0.7

h1(7;S) ~ gl(4;S) = o.~

h2(6,2;2) = f 2(l , 2;2) = 0.4

h2(6,2;3) = f 2(1, 2;3) := 0.5

h2(7,4;4) =g2(4,4;4) = 0.5

h2(7,4;5) ~ g2(4,4;5) = 0.4
,

h2(2,2;2) = f 2(2, 2;? ) = 0.6

. h2(2,2;3) = f 2(2, 2; 3) = 0.'7

h2(4,4;4) = g2(4,4;4) ·~O.S

h2(4,4;S ) = g2(4,4;S) • 0.4

Theorem 4.4. For tuo fUzzy languages L(n_FG(l»and

L(n_FG(2» by n_FG(l) and n_FG(2~, respect1vely, there
" .

eXists' an n-FG such that
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, .

PrQof* For two n_FG(l) and n_FG(2), that ls, -

n_FG(l). (VN(l), VT' p(l), 51' J(l), l fo, f
l

, ••• , fu
l ),

n_FG(2). (VN(2), VT' p(2), 52' J(2) ,{go,gl, •• ~,~r),

let us define an n-FG as followsl

where the rules in Pare glven by the followings

(I) I For two nonterminal rules ln pel) and p(2) sucb

that the terminal symbols of tfle right hand side oftbese

two rules are oommon, say,

and

, That ls, ,for

let a new nonterminal rule in P be defined as follows.. .
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as
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For the two terminal rules in p(l) and p(2) such

(r) and (p)

where the terminal symbols are common, define a new terminal

rule in ,P 8S follows:

(r,p)

Let P be the set of new rules obtained in (I) anda '.,

(II) and Ja be the set of labels corresponding to these,
. I ......

.new rules.' Then p and J inn-Fa are given as follows •.

J = U J a
a Eo VT .

•

. . .

VN is the set ~f, Pairs <A1,B1>~obtained in {l),f

'and lII], and .5,a (5
1,52)

• Clearly, we h~~~:""'s::-'~;,: It

and
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Now, we shall obtain i-fold fUZZy tunction hl •

. : (a) o-reia fuzzy function hO is given as

(b) 1-fold·fuzzy funotlon hi' 1=1,2, ••• ,n, is

Theorem 4.5. For the two fuzzy languages L(n_FG(l» and

L(n_FG(l»by n_~G(l) and n_~Q(2), respeotively, there

eXlsts an n-FG whlch realize, the oonoatenat1on of L:(n_FG(l»

and L(n_FG(2» (see. ,(2.25».

(4.30)



- 86-

ProofS Let

. We oonstruct a new n-FG,

where S == 51' VN = vN(l)U vN(2), VT =VT(l)~ V
T(2),.

and J • J(l) U J(2) •

We lntroduce the followlng notatlons ln order to

get P.

Let p~l). and Pt~1) be the sets of nonterm1nal

rules and termlnal rules, respectlvely, 1n p{l), 1=1,2.

And let J~l) and Jt~l) be the sets of the labels

correspondlngto the rules 1n Pn~l) and Pt~l), respectlvely.

Then, olearly, we· have p(l) = p~l) V Pt~l) and J{l) ==

J (l)'V J (1) for each 1-1,2.
nr tr
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We shall next obtain the rules of n-FG.

For each terminal rule. (r) A '~ a in Pt~l) and'

. an initial symbol 52 of n-FG(2), we construct a new rule
•(r) A ~ a52, where the label is not changed. Let P be

the ~et of such rules, then p' of n-FG 1s g1ven as·

Let us obta1n i-fold fUZZy funot1~n h1, 1=l,2, •• ~,n~

(a) O-fold fUZZy funct10n ho 1s

•••• if r E- J
S

(= J (1:» ,
. 51

"

(b) 1-fold fuzzy funotion hi' 1=1,2, ••• ,n-l, 1s g1ven

as tollows.
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• • •• •
(1)It r 1,r2,

••• ,r1E:- J

(where r
1

Eo J
S

(1),
1

g1-J(rj+l,···,r1;r1+1)

•••• 1t ~l,r2,••• ,rjE-J(1) and. r j +l, ••• ,rl +1 E- J ( 2 )

(where rl~ JS~l), rj+1E- Js~2), 1 ~ j < 1 )



~n-fold fuzzy function hn 1s given as follows.

For j (1 ~ j < n),

••••

• • • • • • •

--
••••••

; where' ~ is not defined for other 1'1,1'2'··· ,l'n+1 ",J.



- 90 .. \

Theorem 4.6. For a fuzzy language L(n-FG) by n-FG, there
•exists an n-FG which real1zes Kleene olosure(see (2.27»

• 'I:
L(n-Fa ) = L(n-Fa) •

Proofl For the n-FG:& (VN, VT, P, S, J, {to,tl, ... ,fn} >,
• • •••let an n-FG be (VN, VT' P , S , J , {ho,hl, ••• ,hn~ )

•• •where VN = {S ! U VN- P 1s obta1ned from (I) , (II) ,

and (III) denoted later_ It 1s assumed that the mapp1ngs

'T1 , 'T
2

, and'TJ in (I) , (II) , and (III) , respect1vely,

are all one to one mapp1ngs trom labels to new labels, and

the obta1ned new labels are all difterent trom eaoh other.

[I) I For each 1n1tlal rule (r) S ~ w 1n P, we
f ~,

construot a new 1nitial rule ('T1(r) ) S -+ W 1n P"-

Let PI be the set of such new in1t1a1 rules and JIbe

the set ot the labels oorrespond1ng to these init1al ru1~s.

Formally,

,I

\
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(II) & For eaoh term1nal 1n1t1al rule (r) 8 ~ a 1n P,,
S ~ a8 • Then, let

(III) & For eaoh term1nal rule (r) A-. a 1n p. oonstruct
•a new rule (T)(r» A --- as 1n P' and let

• , 0
Then, P and J 1n n-FG are g1ven trom (I), (II] ,

'BDd(III) 8S tollows.

, g

P • P U PIV PI I V PIlI V l (p) S ~ & ~ , .

,
J = J U J I U JII V JIll u LP \ ,

o
wbere all labels 1n J are d1fterent trom eaob other.
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It1s noted that 1n any der1vat1on we start with an

in1tial rule 1n PI or PI I (not in P, PIlI>' and then rules

1n P or PIlI are used· throughout in the der1vation (see F1g.

4.1) •

Now. we shall obtain i-fold fuzzy function hi. . .

LA) o-told tuzzy funotion hO 1s as follows.

to(r). • ••••

1

•• • • •

,
•••••

,
hO 1s not defined for other P ~ J •

[B) 1-fold fuzzy funct10n hi' 1=1,2, ••• ,n-l, is giVen

by the tollow1~s.Note.thatlet hi' 1=1,2, ••• ,n-l, be

.·h1(Pl,P2,···,PiIPi+l)' then' plE- JIU J I I and P2, ••• ,P1+1
E: JIll U J trom Fig. 4.1.



•
s~ w

F1g. 4.1.

- 9.1-

P, J

•Derivat10n flows of rules in n-F'G
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'.'
2 cases arlse.

••• lt Pl+1~ J,

«b-1-2»

i "
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=

(b-J) The 088e th~t there ex1sts J (2 ~ J ~ 1-1),

and P1 (:0 JIll' PJ+1'· •• ,P1 " Ja
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Flnally, we shall glve n-fold fuzzy functlon h •
n

(c l
,

Let hn be h
n

(P1,P2, ••• ,Pn;Pn+1) ,then Pl E:o J ,

4 cases arlse.

«c-1-1 » When PI E- J I ' ;

Let Pl a Tl(r1) , then

{

fn(rl·P2·····PnIPn+l)

. fn(rI,P2,···,Pn;rn+l)

• • • • • it Pn+I'=' J,

«0-1-2 »

• • • • It· Pn+1 6o J ,

«0-1-3» When P1~ J1111 See (c-3) deflned later.
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«0-1-4 » When P1 ~ J J

--

--
••• 1t Pn+1 E- J ,

•
where P1 E: J and P2' • • • ,Pn-1 €oJ U JIll •

.(0-,3) The oase that there ex1sts some 3 (1 ~ J~ n-l ),

and PjE JIll' Pj+l,···,Pn€:-JI

\
\
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-
••• 1f Pn+1Eo J I

,
wbere Plc J and P2,·.· ,PJ-lE:- J U JIll.

Th1s concludes the way how to obta1n h1, 1aO,1, ••• ,n.

Theorem 4.7. For a fuzzy language L(n-FG) by n-FG, there

ex1sts an n-told type J opt1~istic fuzzy gramm8r n-OFO which

realizes the complement ot L(n-FG).

L(n-OFG) s L'tn-FG(.

Proofa For an n-FG::I (VN, VT, P, S, J,{fo,fl, ••• ,fn \ ),
" ,let n-OFG be (VN, VT' P , S, J , {ho,h1, ••• ,hn1). The*. .rules which generate VT ' where VT = t 81,82, ••• ,am! ' are

given 8S tollows.
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..
(Pl) S -+ alS (Pm+l), S -:, al

(Pa) . s ..... a S ,'0,' (Pm+a) S~ aa. a
• •• •• •• •• •

(Pm) s~ a S , (Pam) S ~am m

Let PI be the set of suoh rules and let J I be

the set of labels corresponding to these rules, that ls,
•

J I ,.{ Pl'P2,··. ,P2m}- Then the rule set P and label set,.
J in n-OFG are g1venss follows •.

•P = P U PI

where J (\ J I IS ep •

and

Let us give 1-fold fuzzy funotlon hi' 1-0,1•••••n~

(a) . o-told fuzzy function ho 1s

1 •••• 11' pi ~ J I •
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(b) . i-fold fuzzy funct10n hi' i al,2, ••• ,n, is

--
1 ••• otherwise.

It oan be proved from the tact, in general,

Moreover, it 1s noted that, it there eX1sts. at least one

'element equal to 1 among the grades 1l1,112' ••• 'llm' t~en we

bave



..
- 101' -

Next, we shall show that n( ~ l)-FG can be transformed

to (n+l)-FG, and n( ~ 2)-00 to (n-l)-FG•

Theorem 4.8.

PO suob tbat

.For an n-FG, n~l,' there exlsts an' (n+l).

L( (n+l).Fa) III L(n.Fa).

ProofS . For n-FG - (VN, V'l" P, S, J, tfO,:f'l, ... ,fnS >, let

(n+l)-FG be (VN'V'l" P, S, J, {ho,bl, ••• ,hn,hn+l} >, where

l-told fuzzy funotlon h1 , 1-0,1, ••• ,n+l, are as follows,

(a) The case of 0 ~ j. ~ nl h1 ls

The case of l an+l;

1I10,1, ••• ,n.

hn+l ls g1ven by the followlng.

Let n-fold fuzzy funot1on fn of n-FG be :f'n(rl,r2,
.•••• ,rn;rn+l) and 1ts 1~bel.str1ng r lr2••• r n be an element

of JAoAl ••• An (see (4.24». Stlll more, let J(AO) be the

set ot labels suoh that the nontermlnal symbol of the rlght-

. band slde of the oorrespondlng rule ln P ls AoEo Vu• Then,

hn+l 01' (n+l)·FG ls 8S tollows. Let
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Theorem 4.9,

suoh that

For u(.~ 2 )-FG" there exists an (n-l )-FG

L«n-l)-FG) = ~(n-FG).

ProofS For n-FG: (VN, VT, P, S, J, t fo,fl" .. ,Cn} ),
• •••let (n-l)-FG be, (VN, VT, P , S , J , {ho,h

l
, '" ,h

n
_

l
} )

where V~ = {<o) t U E<r> \ r '''J1 and S·t: <0;>,' p' is obtained

by the followings,

-
(1) For each initial rule in P, that is,

(r) s ~ aA and (r) s ~ a,

/
~'.'

•let us construct new initial rules in P as follows,
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f' .

(O,r) (0) ~ a <r>

and (O,r) (0) -. a

(2) For two nontermlna1 rules ln P suoh that the non­

termlna1 symbol of the right hand slde of the one rule ls

colnoldent wlth that of the left hand slde of the other rule,

that ls, for the fo11owlng two ru1e$

-
deflne a new nontermlna1 rule such as

. (3) For a nontermlna1 rule and a termlna1 rule ln P such

that the nontermlna1 symbol ot the rlght hand of the nonter­

mlna1 rule ls colnoldent wlth that of the left hand of the

termlna1 rule, that ls, for the followlng two rules

- -
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let us oonstruct a new term1nal rule suoh as

•Let P be the"set ot new rules which were obta1ned
•1n (1), (2) and (3), and letJ be the set of labels corres-

pond1ng to these rules.

(a) o-fold fuzzy funct10n ho 1s

" .

(b) i-told fuzzy function h1, 1-1,2, ••• ,n-2, 1s
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(c) (n-l)-fold fuzzy function hn_1 is

hn 1«0,r1), •••••• , (r 2,r l);(r l,r»- ,n- n'!'" n- n

and

From the above two theorems 4.8 and 4.9 , we can

transform n( ~ 2)-FG into l-FG and, conversely, l-FG lnto··

n( ~ 2)-FG.

Next, we shall show that l-FG can be transformed lnto

O-FG (or fuzzy automaton) and also 0-00 can be transformed

lnto ·l-FG.
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A suoh that
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Given an 1-PG. there eXists a tuzzT automaton

and vioe versa.

L(A) • L(l-FG)

Proof's ( ~ ) Let l-FG = (VN• VT• P, 0. · J, l. fo,.f1~·)'
then a fuzzy automaton A::II (5. sl' {F(a) 1a E: VT1,G) ls;·

def1ned as follows.

The set of states ls S =t (0) 1 U t<r> \ r (:0 J ) ,

. the inltlal state 8 1 ls <0> • and the set or tlnal s~ates

.0 1s {.( r> I rE: J t r ~ ,where J t r ls a set of all labels

whose rules ln l-FG are termlnal rules"l.e.,

Before we obtaln the fuzzy translt10n matrlces F(a)

wlth a E:- VT, let us introduce a label set Ja. For each

a E:-VT, define ~ as the set of all·labels suoh th~t the
';:,1
':,f

term1nal symbol whioh appears on the rlght-hand. sldeHof the
!% •

~ • [r I (r)

More precisely. we define

A~ aB} U {r I (r) A.-,. a ~- -
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Clearly we have that, for a, be VT

••••• 1t a ~ b,

Now, we shall obtain the fuzzy transition matrioes

F(a). a Eo VT• of a fuzzy automaton A by the tollow1ngs.

Let F(a)·11 fA«r'), a ,<p~)" ,where <r>,

<p> ~ S, and r, p ~ J U {01 •

4 cases ar1ses

. (1) For eaoh rule of' the form . (r) A~ sa w1th l-fo1d·

. fUzzy funct10n t 1(r;p) , where aE-VT 1s given, A, BEVN

. arearb1trart. andpE- JB, let·

, 8 • <p) ) •

f'l(r;p)

o •• • • ·otherw1se.
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(2) .. For each terminal.rule (r) A-+a, let

for all p£-J.

() For each o-reie fuzzy function fo(P), pE-Jo' let

<r"> • <0') and

o ••• otherwise •

.(4) When (p). <0> t let

t A( <r'> t at <0> ). 0

tor all r f: J.

,
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(4=) For a fUZZI automaton A = (5, sl' (F(ak) \ akE: VT~'

G), let I-F~ be (VN, VT, P, 0, J, lfo,fl} ) ,where VN IS

t (sl'> \ sl E- ~1,and 0 = <sl'>. The rules of I-FG are g1ven

as follows. To the element fA(sl' ak, Sj) of the fuzzl

transltlon matrlx F(a
k

) , correspond the rule such as _

<s1> ~ ak <Sj> ,where 1 ~ 1, j ~ n, i s k ~- h, n· #(5),

,and h a #(VT). The~ the number of the correspond1ng rules,­

that ls, the number of their labels 1s n2h.

F1nall" the termlnal rules are g1ven as follows.

For each rule <s1'> -:,. ak <S j> obtalned above, lf

S j (:-a, that ls, S J ls 8 flnal state, then we glve a termlnal

rule as <8 1>~ ak • Thus, the number of labels of the

term1nal rules 1s hnq, where q = #(G).

Hence, the total number of labels, 1.e., #(J) ls

hn2 + hnq (at) • We can appropr1ate11 attaoh the labels to

the label r of the rule whose form 18 (r) <81>~ aiC <8J">

--ls In{1,2, ••• ,hn~, and the label r of the term1nal rule'

(r)(s1> ~ 8 k ls ln' Lhn2+1, ••• ,t} •.

the rules obtalnedabove wlthout overlapplng. In th1s paper,.

"

1_,1

Next, we shall obtain O,l-fold fUZZ1 funct1onjfo and '

(1] .e-reis tuzzl funotion to is as tollows.
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It the 1nitial rul~.1s of the form (r) -<Sy~ a <s>

rEo J(Si'> , and 81 . 18 'an 1nit1al state ot tUZZ1 auto-.

A • then

(11) If the 1n1tlal rule ls ot the form (r) <Sl) ~ a , .

. and let th1s rule <s1> ~ a be obta1ned trom the rule

<8 1~ ~ a <St) for some St E:' G,then

,

(II) l-told tuzzy function tl(r;p) 1s g1ven as tollows,

where r-th rule 1s ot the torm (r) (si>.-,.ak<sj>'

'1 '- r ~ hn2
• and l~p~t.

,(1). In the case ot 1 ~ p ~ ·hn2•

It the p-th ·rul e 1s (p) <s> ~ a <: s '> , then

~(r;p) •

•••• 1t S j • s,

o •• •• lt s J ft s •
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(11) In the case of hn2+1~ p' ta

Let the term1nal rule (p) <s'>~ a be obta1ned·

from the rule <s>~ a <sr> ror some SrE- G, . then

fAts, a, Sf) •••• 1f Sj • s,

. t l (riP) •

0 •• • • 1f s.1 \= S •

. Example 4.5. Let 1-00 = (VN, VT, P, 0, J, t fo,tl} 0),

. where VN ={o, A} , VT a la, bl , 1'0(1) • 0.9, t'0(2) • 0.6,

'and the rules w1th fuzzy vector are
.

1 ' 2 . 3 4 5

(1) o ~aA ( 0 0 .2 .45 .1 )

(2) o ~bO' ( .5 .8 0 0 0 )

(3) A~ aA ( 0 0 .3 .35 .7 )

(4) A~ao ( .4 .9 0 .0 0 )

(5) A~b ( 1 1 1 1 1 )
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Then we can conBtruc~ a. fUzzy automaton A. ( S, <0;>,

{ F(a)! F(b)} , G), 'Wher~ S ={<0>,<1},(2),<3>,<4)' ,<5>1, G'.

={<: s}], and. the fuzz;r'transi tion matrices F(a) and F(b)

are given as follows&

<0"> <1> <2> <3> <4> <.5>

<0"> .9

<:1"> .2 .45

F(a) •
(2"> .5

<3> .3 .55

<4'> .4

<5>

(0'>

<4>

<0> <1> <2> ()'> <4> <5>

.6

.1

.8

.7

.9 ,
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Note that the values ot the blank portions ot F(a)

and F(b) are equal to o.

Example 4.6. Let A = (5, sl' {F(e) I a~VT} ,G) be .

a fuzzy automaton, where S = { sl' S21 t VT• {a, b 3'. G·

{sl' s2.1, and the fuzzy trans1t10n matr1ces are

Sl 8 2 Sl S2

8
1

.5 .4 sl .2 .7

F(a) • , F(b) =-
82 .) .8 s2 .9 .6

Define l-FG = (VNt VT,
VN ={.<sJ?-< s?l, VT =i a, b} t

fuzzy funct10n f O 1s

p.o. J, t t 0' t 1} ) as follows.

o = <81'>' and the o-reia

fO(l) = 0.5,

f O(9 ) = 0•.5,

f O(2) a 0.4, f O(3 ) = 0.2, f O(4 ) = 0.7,

f O(10) • 0.4, fO(ll). O.~, f O(12) = 0.7.

And the rules with fuzzy vector are
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1 2 :3 4 5 6 7 8 9 10 11 12 1:3 1415 16

(1) <s]')~a( sf (.5 .4 .2 .7 .5 .4 .2 .7 )

(2)<Sr~a(s2) ( .:3 .8 .9 .6 .:3 .8 .9 .6)

(:3)<sr~b< sJ? (.5 .4 .2 .7 .s .4 .2 .7 )

(4)<sr~b(S2"> ( .:3 .8 .9 .6 .:3 .8 .9 .6)

(5)< s~~a<sr (.5 .4 .2 .7 .s .4 .2 .7 )

(6) (S2"'~8<S£> ( .:3 .8 .9 .6 .:3 .8 .9 .6)

(7)<s2>~b<sr (.,5 .4 .2 .7 .,5 .4 .2 .7 )

.< 8) (S2)-.b<si ( .:3 .8 .9 .6 .3 .8 .9 .6)

, (9) <sl">~8 t 1 )

(10 )<s..r~a ( 11. )

(ll)<sr~b ( , . 1 ),

(12)<si>-+b ( .n. )

(1J)<s2~~a ( J1. ')

. (14)(S2~~8 ( .11. )

(1,5 )(sz-+b ( .1l. ' ),

(16)<82)~b ' ( Jl )

It ls.noted that, ln the tuzzy vectors trom (1) to (8),

the values ot the blank port1ons are 0, and the rewrltlng rule,

S8Y, <sl>~a ln (10) ls'obtalned trom the rule <81>~a<82>

wltb 82'E::- O.



115

Theorem 4.11. Fuzzy languages L(n-FG) characterized by

n-fold type J fuzzy grammars n-FG form a distributive lattice.

Proofl It is clear from Theorem 4.9 and the theorm that

fUZZy events L(A) defined by fuzzy automata A form a

distributive lattioe (see Chapter J).

4.5 Conclusions

As the reader can see, the concepts of n-fold fuzzy

grammars and, especially, fuzzy grammars can be discussed

readily as extensions of ordinary formal grammaps. The
proofs, however, are generally somewhat longer since they

involve not just the positiVity of fuzzy functions but thei~,'

value is in the interval ( 0, 1) .

The theory of fUZZy languages offers what appears

to be a fertile field for further study. It may prove to

be of use in the construction of better models for natural

languages and may contribute to a better understanding of

the role of fUZZy algorithms and fUZZy automata in deoision '

, making" pattern recognition and learning process of languages"

:and otber processes involVing the manipulation of fUZZy data.
,"
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CHAPTER 5

GENERAL FOBMULATION.OF FORMAL GBAMMARS

-,

. 5.1 Introduotion

By introducing the oonoepts of randomness and fuzziness

into the structure of formal grammars,_ some interesting grammars .

such as probabillstio (or stoohastic) grammars and tuzzy

grammars have been formulated (38, 39, 40, 41, 42, 43, 49, 50

51, 52) •

In this chapter, we develop a general formulation of·

formal grammars by extraoting the basic properties oommon to

the formal grammars appeared in existing literatures. By

corresponding the element ot the appropr1ate-algebra, say,

the complete distribut1ve lattioe, to each rule of a pseudo

grammar, the evaluation (or weight) of the application ot the

rule is given. We evaluate a sentence by perform1ng the

'operations of the oorresponding algebra to the weight ot the

rules used in a generation of the sentence.

We der1ved from the pseudo grammars with various types

of algebras the well-known phrase-struoture grammars, probabi­

listic grammars, and tuzzy grammars. Still more, the grammars,

-wh1ch have never appeared betore, say, U~ grammars, un grammars,

nu grammars, oomposite B-tuzzy grammars, mixed fU~zy gramm~rs~

and label string grammars, are also derived.
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It can be shown that there are max-welghted grammars,

max-probablllstlc grammars and label strlng grammars as speclal

cases of U*, grammars, (pesslmlstlo) fuzzy grammars and phrase

structure grammars as ,speclal cases of un grammars, and

optimistlc fuzzy grammars as special cases of nu grammars.

The pseudo grammar called a pseudo conditlonal grammar,

whose weight of the applicatlon of a'rule ls conditloned by.

the rule used just before in a derlvatlon, is also defined

and trom lt several interest1ng oondltlonal grammars are

derived In the same manners as the pseudo grammars~,

5~2 L-Fuzzy Sets

We shall brlef1y revlew L-fuzZ¥ sets by J. A. Goguen

(5 ) for the purpose of U* grammars, un grammars, nu gra-

mmars, and fuzzy grammars wbloh w111 be defined later•

. L-Fuzzy SetsI A: L-fuzzy m A in a spaoe X III { X} is

oharaoterized by a membership funotlon ~A suoh as .

~A I X ~ L. <5.1) ,

where L ls oa11ed 8 membershlp space and the value ~A<x)

6 L ·represents the irade ~ membershlp ofx ''In A.

A membership spaoe L may be assumed to be a partlal11
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ordered set or, more particulary, a lattice.

When L is the unit interval (0, 1)" A isa fuzzy

set defined by L. A.' Zadeh (1). Moreover, when L contains

only two points 0 and 1, A is anon-fuzzy set and its member­

ship funotion ~A reduces to the conventional characteristic

'funotion of a non-fuzzy set.

The notions of oontainment, equality, union, and

intersection of L-fuzzy sets are-defined as extensions of the

corresponding notions in the ordinary non-fuzzy sets.

Let A and B be two L-fuzzy sets in X, and let

~A and PB be membership functions ot A and B, respeoti-"

vely, then", for all x in X,

Containment a "

Egual1tya

.Uniona

Intersection'

where the operations ~, LJ and n represent an order relation,

lub, glb in L, respectively.

In the case of L:: (0, 11 , that is, fuzzy sets by

Zadeh, the operation U reduces to max, and. n "to min~ In

addition, the complement of a fuzzy set A is defined as



Complements i ~ lL:A(X) sa 1 - lLA (x) • (5.6)

In thls paper, t~e structure of the membershlp space

L 1s assumed to be tne complete dlstributive lattice (or,

more generally, the complete lattice ordered sem1group) on

account of L-fuzzy re1atlons denoted hereafter (5)t.

L-Fuzzv Relations A L-fuzzy relati~ R 1n the product

space X x Y = {(x,y)' x~ X, yE Y} ls a L-fuzzy ' set 1n X xY

charaote~1zed by a membership funct10n P.R' 1.e.,·

lla s X x Y~ L. . (5.7)

t A complete lattlce whlch ls a semlgroup wlth 1dentlty

.under ~ and also satlsfies the distributive law; tor x,y,

x1 , Yi f: L ,

and

x ~ ru Yi) = U (x:f. Y1) .
1 1

.<~ xi) #y =~ (xl* y),

ls a complete lattice ordered semigrQup (-olosg). Stl11

more, it ~ ls replaced by n 1n c10sg L, L beoomes a Complete

distributive lattice.
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Product ot'L-FuZZY Belationsl ItB1 and B2 are two

L-tuzzy relations in Xx'X, then by the product (or QOmpO­

sition) ot B1 and B2 is meant s'L-fuzzy re1atlon ln

X x X wblch is denoted by R1B2 and ls detlned as tollowsl

It L is a closg, then

l1H B (x, z) • U ( l1B (x, y>* l1R (y, z)],
1 2 Y 1 2

where U and * are the operations ot lub and semigroup ln

L, respectlve~7.

It L is a complete distrlbutlve lattice, then

l1R R (x, z) = U ( l1R_ (x, y) n l1R (y, z»), (.5•9)
12' r L ,2

}1:a B (X,. z) • n ( l1a (x, y) U l1B (y, z»). (5.10)
1 2 y 1 2

,

If L-tuzzy relation B ls s tuzzy relatlonby Zadeh,

tbat ls, B ls characterized by a membershlp function

PH I X x Y -+ [0, 1) , (5.11)

then the product ot fuzzy relations H1 and H2 ls deflned

,as special cas~s of (5.9) and (5.10), that lB,'
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Note that the operation of the produot of. (L-) fuzzy

~Gla~1w~s ta~ the assooiative property, 1.e.,

(5.14)

Henoe, let Bl, R2, ..... , Bn be the (L-) fuzzy rela­

tions on X, then the produot B1R2•• ·.Rn , say, in the case ot

<5.8) \I is defined as

. (5.15)

Let the membership spaoe L be the Boolean lattice B~

then the oonvex combination of B~fuzzy set~ is defined as

follows:

.. Convex Combinationa Let A, C, and A. be B-fuzzy sets.

The r-onyP.'X;, nomb1nat3.on of A, C, and A ls denoted by (A,C;

:'.. ) S~~ ~o dofined by the relation:
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-(A,C; A. ) I: ( A n A) U (A n C),

where A, is the complement of A •

(5.16) ,

It is easy to verify t~at, for all a-tuzzy sets 1\ ,

A n C ~ (A,C; A ) ~ A U C. <5.17)
.. ;. ~

!ia.t.e.1 In the oase of L = (0, 1) , tbat1s, fuzzy sets by

Zadeh, the oonvex combinat1on of fuzzy sets A, C, and I\.

is given by (2.14) ,that ls,

-(A,C; A ) = A A + h C • <5.18)

Next, by using the ooncept of L-fuzzy sets, we shall

define L-fuzzy languages. For simplioity, we oa11 L-fuzzy

languages as fuzzy languages hereafter.

Let ~ be a finlte non-empty alphabet. The set of

all fin1te strings over }: 1s denoted bY~. The null

*string 1s denoted by € and 1ncluded 1n ~.

Fuzzy Languagesl A fUZZy language FL is a L-fuzzy

*'set in I oharaoter1zed by a membershlp funotion suoh as"

, .1lFLI~~L.'



- 12,3 ..

The operations such as containment, equality, union,

and intersection of fuzzy languages are the same as those of

L-fuzzy sets mentioned previously (see (5.2) rv (".5)).

Moreover, the notions ot ooncatenation and Kleene olosure of

ordinary languages oan be extended to fUzzy languages by the

followings

Let

and l1L and
1

respectively.

*'~ and. L2 · be two fuzzy languages in I ,

l1L be membership functions of L1 and L2,2

Concatenatious The concatenation of Ll and L2 is a

fUzzy language denoted by L1IJ L2 or Ll • L2 and defined

*as fo1lowss Let a string x in I be expressed as a

concatenation of a prefix string u and a suffix string v,

. tbat is. x:e uv. Then

l1L 0 L (x) =U ( lLL (u) n lLL (v) ) t

1 2 u 1 2

11~ L
2

(x) Ia~ (. 11~(u) U l1L
2

(v) ),

where U in (5.19) and n in (5.20) are taken over all prefixes

u of x.

Note that the oonoatenation L10 L2 i~ (5.19) is. ,

related as un grammars and Ll• L2 in (5.20) is related as
nU grammars whioh will be defined later.
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Kleene ClosureS By using the oonoatenation L10 L2 or

LI' L2• Kloene glosurA of a fUzzy language L (written as

L'fi
.'

~

O~ L) is defined as

'J(.

L • s •••• . (5.21l

"L Cl & () L ('\ L'L (\ L·L·L (\ ••••

5.) Various Kinds of Grammars

In this section we define a pseudo grammar eaoh

produotion of whioh has a label, an ordinary rewriting rule, .

and weight ~(r) as in (5.24) and derive from it various

. kinds of grammars, which have, or have not appeared in the

existing literatures, by employing an appropriate algebra

system as a weighting space and performing the corresponding

operations to weights ·~(r)·s.

Definition 5.1.
systems

A pseudo ~ammar (PSG for short~ is a

PSG • (VN, VT, P, S, J, M, ~)
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where'

(1) VN ls a nontermlnal vocabulary.

(11) VT ls a termlnal vooabulary.

(111) S ls an ln1t1a1 symbol ln VN.

. (lv) p ls a· fln1te set of produotlons suoh as

(1') u~v }l(r) , (5.24) .

where ~ Eo J, u ~ Y is an ord1nary rewr1t1ng rule with

* *u l: VN - t & I and v Eo (V1l V VT) , andll(r) 1s a we1ght

of the appllcatlon of the production r ,whloh will be

denoted ln (Yll)t.

(v) J ls a set of (rewrltlng rule) labels as' shown ln (lv).

J a{r} •

(vl) M ls a weighting space.

(vl1)' II ls a functlon suoh that

ll' J-?-M.

t In thls paper, we orten say label r as productlon I'

for oonvenienoe.
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~ .. may be called a weighting function and the value ~(r)

isa Weight of the application of a produotion r •.

The expression

(5.26)

will be referred to as a weighted derivation chain of length

m from ao ' to am by the pro;uotions r l, r 2,r3, ••• ,rm '

where ao' al,···, am E: (VN V VT). The meanings of we1ghts

~(r) ·denoted over the arrow ~ in a derivation ohainw1ll

be stated in each grammar def1ned later.

When ao = S, am ~ x (E VT~) 1n (5.26), 1.e.,

~(rl) p.~r2)

S ~ a l ~ .a2.~ ••••
r l r 2 .

'.; ~'. .

p.(rm)
~ a

m_l
~ x,

. rm

S is said to generate a terminal· string x by th~ produot1ons

In general, theN are more than one weighted

derivation chain from 5 to x.
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Now, we shall obtain various kinds of grammars by .

adopting the appropriate algebra systems as the weighting

spaces M of a weighting function p.1 J -. M of a pseudo

grammar PSG, and by pertormingthe oorresponding operations

to p.(rl's.

(i-a)1 Let the weighting spaoe M in PSG be the

complete lattioe ordered semigroup ·L. Namely, the weigb­

t1ng. tunotion p. is

).L I J~ L.

In this case,).L can be regarded as the membership

funotion of a L-tuzzy set in J.

*(l-bh The grade. of the generation of x in VT by

U* G, which is denoted as II U*G(X)' is given by using the

concept of the produot of L-fuzzy relations of (5.8) and by

the weighted der1vat10n ohain from S to x ot ·(5.27).

Clearly, p. U* G(x) 1s in M (=L).

t As special cases at U ~ G, there are (111 un Grammar,

(XI) Max-Weighted Grammar and (XII) Max-Probab11istio

Grammar whlob w11l be detined before long.
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.-
.~~. .~

where the lub U ls taken over all the welghted derlvatlon

chains trom S to x.

JJ n GRAMMAR (= un G)t

(11-a): The weighting spaoe M 1s the complete dlstrl­
•but1ve latt1ce L, that ls, ~ is

•11 I J~ L •

(li-bllThe grade J1 unG(x) of the generation of x

1n vi by un G . 1s glven by uslng the product .of L-tuzzy

-. relatlons of (5.9). \'

where U is taken over all the w~ight~d derlvat10n ohains

from S to x.

t (v) (Pessimistic) Fuzzy Grammar and (VIII) Ordlnary .

Phrase Struoture Grammar are oonsidered as speoial oases ot

-un Grammar.



- 129 -

Example 5.1. Cons1der the following un o,

,
un Q 1:1 (VNJ VT, P, S, J, L , 11)

wbere VN ={ S, At Bt Ct Dt E} ,. VT = { a, b,. c} ,

: a~olean lattice 1n F1gure 5.1, and P is

•L 1s the

(1) S -+ ABC 0,

(2) . S~ ADC xl'
() S~DBC xl'
(4) S --p ABE x2 '
(5) S ...:,. AEC x2 ,

•F1g. 5.1. Struoture of L

(6) A ~aA I

(7) A --+ a I

(8) B~bB I

(9) B-.b I

(10 ) C ~cC I

(11) c --;. 6 I

(12) D~aDb I

(1) D~ab I

(14) E~bEc I·

(15 ) E --+bc I

t
Then a L-fuzzy language character1zed by unG 1s

L(Un Q) = {<a1b Jck , I) \ 1\:.1, j~k1 U { (a1b Jck , X l ) \ 1\z j , " jak}

U{(a1bJck, X2 )\ 1=j , Jtrk} Ut(a1b1
0
1, O)ll~l)t

where 1, j, k ~l.

It 1s Interest1ng to note that the Bet of all the

str1ngs x 1n V,; such that J1 un G(X) = 0 . 1s {alb1o~ 1~1}

and th1s language lS.8 cont0xt-sens1t1ve language.
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nu GRAMMAR (= nu G) t

(111-a): It ls the same as (11-a).

(111-b) a The grade 1J. nu G(x) of the generatlon ot x
..

ls glven from the product of L-fuzzy relatlons of (5.10).

where n ls taken over all the welghted derlvation cha1ns

from S to x.

,
Let L = B (complete Boolean lattloe) ln (11-a) and

(ili-a), then we can define un G and nu G on B, whlch

may be written as un BG and nu 00, respect1vely. We w1l1

denote the grades of the generation of x bY' un BG and

nu BG as lL un oo{x) . and II nUBG(x), respectivelY'.

( IV 1 COMPOSITE B-FUZZY GRAMMAR (=CBFG)

(iv-a)a The we1ght1ng space M 1s the complete Boolean

lattice B.

t As a spec1al oase of nu Grammar, there ls (VI) Opt1­

m1stic FuzzY' Grammar.
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(iv-bh 'I'he grade l1CBFG(X) of the generation of x

is defined' from (5.16) as'

where a ~ B and, ex (Eo B) is the complement· of a.

( V) (~ESSIMISTIC) FUZZY GRAMMAR (=PFG), or MAXIMIN

GRAMMAR (38, 39)

(v-a) I
•Let L =( 0, 1) in (i1-a).

(v-b)a The grade l1PFG (x) of the generation of x

by PFG 1s g1ven as follows by using the product of fuzzy

relat10ns of (5.12), 1n other words, by replacing U b~ max

and n· by min in' (ii-b);

-where the maximum is taken over all the derivation chains

from S' to x.

( VI) - OPTIMISTIC FUZZY GRAMMAR (=OFG), or MINIMAX GRAMMAR

(v1-a)a It 1s the same as (v~a).
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(vl-b), POFG(X) ls g1ven as follows by uslngthe

product of fUZZy relations of (5.13), that ls, by replacing

nby. mln and U by max in (111-b).

where the minimum is taken .over all the der1vat1on ohalns

. from S to x,

( VII) MIXED FUZZY GRAMMAR (=MFG)·

(vil-a) I It is the same as (v-a).

JV11-b)a ~MFG(x) ls given as followSI

where a and b are real numbers such that a+b=l, and the

subsoripts PFG and OFG denote ( V) (Pessimlstic) Fuzzy Gra-'
. \

mmar and (VI) Opt1mlst10 Fuzzy Grammar, respeotlvely~

(vl11-ah

.( VIII') PHRASE STRUCTURE GRAMMAR (=G)

,
L.= {o, l}ln (11-a) or (v:-a).

(:vl11-b) , l1G (x) 1s obtalned 1n the same manner as
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No"e l In th1s case the language L(G) generated by G

1s .deflned as

WEIGHTED GRAMMAR (cWG)

(lx-a): The welght1ng space M ls the set of non­

negat1ve real numbers.

(lx-b): ~WG(x) ls glven as follows:

where the operatlons " ~ - and -.- are sum and produot 1n the

ordlnary sense, respeotlvely.

(X) PROBABILISTIC (or STOCHASTIC) GRAMMAR (=PG) [49,50,51),

(x-a): M= (0, 1J·, 1.e., ~(r) E (0, 1), and, ln

addltlon, p.(r) satlsf1'es the followlng oonstralnt:



';'.,

- 134 -

For eaoh J ,
u

}; lJ.(r) = 1
rE J

u

where J is the set ot all labels such that the left handu
. side of the rewriting' rule in the production Of the pseudo

#
grammar PSG is u (E VN - {t1 ). .

llPG(X} is defined in the same manner as l1WG(X}

and can be regarded as the probability of the gene':'.

of x by PG.

Commgnt& It is assumed that the rewritlng rules are of

context-tree form and the derivatlon is a left-most derlva-

tlon.

(XI] MAX-WEIGHTED GRAMMAR (=MWG)

(xl-a): It ls the same as (lx-a).

'(xl-b): We take the maximum in stead of taking }:

in (ix-b), i.e.,

It is noted. that the expression above can .be obtalned

by replacing U by max and. * by • in U* G of (1).
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MAX-PROBABILISTIC GRAMMAR (=MPG)

(xll-a)a It ls the same as (x-a).

(xll-b)a llMPG(x) ls obtalned In the same manner as

llMWG(x) ln (xl-b).

( XIII) LABEL STRING GRAMMAR (=LSG)

*'(xlil-a) a The weightlng spaoe M ls J, whereJ.

ls the set ot labels. ,The weight ll{r), r!: J, is detined 8S

ll{r) ::I r tor eaoh r E J.

(xiii-b) a *llLSG(x), ,x ~ VT, is given as

where the operatlons "V '~ and "." are union and ooncatenation

ot (label) strings,' respectively. This expression ().37) oan

, be obtained by replaoing U by V and * by' in U* G ot (I).
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~LSG(X) as the set ot all the label.

*Let C be the subset ot J, then

can be regarded as the languages controlled by control

language C [53).

5.4 Various kinds of conditional grammars

In this 'section we define a pseudo conditional

grammar (PSCG for short) as an extension of a pseudo gramma~

PSG denoted in previous section and derive from it several

interesting conditional grammars, which have or have not

appeared in the existing papers, in the same ways as we have
,

derived from PSG various kinds of grammars in section 5.3.

Definition 5.2. . A pseud~ conditional grammar (PSCG·for·

s~ort) 1s a system

PSCG • (VN, VT, P, S,J, H, {~l' 112} ),,. (S.38)
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where VH, VT, S, J and M have essentially the ~ame mean1ngs

as those for the PSG in' the previous' seotion." P is a set

of the rules with labels· as fol10wSI

(r) u~ v,

~l is a weighting function whioh is oa11ed ,an initial~

designatiUi funotion suoh that

111 I (5.40)

where

rules.

is the set of all labels whose rules are in1tial

isa conditional woightini functi~ as tol10wsl
",

)1.2 (r/r') EM. (5.41)

where r, r' E .J. 112 (r/r, ) represents the weight ot the

applioation of the rule r given the rule r'us~d just

before in a derivation.

It is noted that the notion of a conditional ~eighting

'function is similar to that, of a conditio.nal probabilitY'.

funotion. In what follows, 'we shall write 11 tor 111.

and 112 iithere ooours no confusion.
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If the derivation ohain from S to x ( Eo V *)T is

S ~ a1 ~ a2~' ••••
r 1 r 2

x, (S.41)

then the weights ~ are put over the arrows as fo11owsl

~(r2/rl)
a

l
~ a

2
--:;.. •••••

r 2

~(rm/rm_l)
-+0 am_l ~ x.',

rm
(S.42)

Now, let us define various kinds of oonditional

grammars.

( A) CONDITIONAL U *.GRAMMAR (= C U~ G)

(a-l) I The weighting space M .rn C U~ G 1s the
!

complete lattioe ordered semigroup L.

(a-2)1

by C U* G,

The grade of the generation of x in VT*
is given as follows by using the oonoept of tbe

product of L-fuzzy relations of (S.8) and from the weighted.

derivation ohain from S to x of (S.42)
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llcu*a(X)

. =U (J1(rl)* 1l( r 2/r l) * J1(r)/r2>* .... "* J.L(ra!rm_l)1 (5.4)

where the lub U is taken overall the.weighted derivation

. ohains trom S to X.

( B) CONDITIONAL un' GRAMMAR (.c una)

(b-l)' The weighting ~pace M is the complete distri­,
butive lattioe L.

...-
(b-2h llcUna(X), x E: VT, is given trom the produot

ot L-tuzzl relations ot (5.9).

J.La una(x)

(S.44)

( c) CONDITIONAL au GRAMMAR (= C nu a)

(0-1)1 It is the same'as (b-l).

(0-2)1 l1cnUa(X) is g1ven trom (S.lO) 8S tollows'
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llcnu G(x)

a n( ll(rl) U 1l(r2/rl) U •••• U p.(rm/r~_l)]. (,5.45 )

(D) CONDITIONAL COMPOSITE B-FUZZY GRAMMAR (-CCBFG)

(d-lh "The weighting spaoe M is the complete Boolean

lattice B.

'(d-2)S l1CCBFG(X)is as tollowss

where at: B and ex (~B) is the complement at a, and

l1Cun BG (x) and l1C nUBG(x) are the grades at the generation

of x' by CUnao and" CnUBG, which are grammars CunO ot

, ( BJ and cnuo of (CJ on oomplete Boolean lattice B,

respeotively_

(E) CONDITIONAL (PESSIMISTIC) FUZZY GRAMMAR (. OPFG),

or CONDITIONAL MAXIMIN GRAMMAR (39)

(e-l)l •.~. (0,1) in (b-1).

(e-2)a l1OPFQ(x) is given trom (5.12) as tollowsa
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llCPFO(X)

(5.47)

( F 1 CONDITIONAL OPTIMISTIC FUZZY GRAMMAR' (= COFG), or

CONDITIONAL MINIMAX GRAMMAR

(r-lh It 1s the same "as (e-1),

(r'-2)a llCOFO(X) 1s glv'en from (5.13) as followsl

•••• . (5.48)

,( G) CONDITIONAL MIXED FUZZY GRAMMAR (=CMFG)·

(g-l)1 It 1s the same as (e-l).

(g-2)1 llCMFO(X) 1s as followsa

l1CMFG(X)

III a l1CPFQ(X) + b l1COFQ(X)' . (5.49)

where a and b are real numbers such that a + b = 1.
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( H) CONDITIONAL PHRASE STRUCTURE GRAMMAR (. CO)

(h~l)1 L'= [0, 1) in (b-l) or (e-l).

(h-2)1 ~CG(X) is obtained in the same manner as

~CPFG(X) in (e-2).

Notel CO can be regarded as Programmed Grammars wIth

succeae fIelds only def1ned by Hosenkranz (46) •

( I) CONDITIONAL WEIGHTED GRAMMAR (a CWG) (52)

(1-1)1 M is a set of nonnegat1ve real numbers.

(1-2)& ~CWG(X) is given as

~CWG(X)

(5.50)

( J) CONDITIONAL PROBABILISTIC GRAMMAR (.= CPG) ( 52)

(j-l)& M= (0, 1) and, in add1tion, ~(r) and p.(r'/r)

sat1sfy the following constra1nts, respeotively.
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.! J.l.C,r>.·l.
rE,JS

}; lJ.(r'/r) • 1 ,

r'E J

where JS 1s the set of all .labels whose rules are 1n1t1al

rules.

(j-2)1 lJ.CPO(x) 1s g1ven 1n the same manner as . lJ.CWO(X)

1n (1-2).

( K J CONDITIONAL MAX-WEIGHTED GRAMMAR (. CMWG)(S2]

(k-lh It 1s the same as (1-1).

(k-2)1 We take the max1mum 1n stead of tak1ng I 1n

(1-2), 1.e.,
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( L) CONDITIONAL" MAX-PROBABILISTIC GRAMMAR (. CMPG) (52)

It is the same as (j-l).

(1-2)1 ~CMPG(x) is defined 1n the same manner as

~CMWG(X) 1n (j-2).

5.5 Conolusions and, Hemarks

We have derived various k1nds of grammars and condi­

tional grammars from a pseudo grammar and a pseudo conditional

grammar. As an extension of the pseudo conditional grammar"

we can consider ~he pseudo grammar whose weight of the appli­

oation of the rule to be used next is cond1tioned by all the

rules used in a derivation., In this case, say, in the oase

of U* G , the grade of the generation of x is g1ven as

In the We1ghted Grammar of (IX) in section 5.3, we

adopted the set of nonnegative real numbers as the weighting

space H, and the product and the sum as its operations.

In this oase, M forms a semiring. Therefore, we hope

that more interesting grammars w1ll be formulated by adopt1ng

the appropr1ate algebras such as semir1ng, r1ng, and field. ,
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CHAPTER 6

CONCLUSIONS

Although the theory· of fuzzy automata and, especially,

fUzzy languages is young itself, it offers what appears to be

a fertile field for further study. The theory of fuzzy

languages might be of relevance in the construction of better

models for natural languages and may find some practical

applications as information retrieval and machine translation

systems. It may also be of use in dealing with problems

relating to fuzzy systems and fuzzy algorithms in decision

;. making, pattern recognition and learning process of languages,

and other processes involving the manipulation of fuzzy data.

Computers would become more powerful if we could

learn how to design co.mputers that can understand natural
~~- ..

languages themselves or something olose to them and manipulate.

:tuzzy concepts and respond to fuzzy 1nstruotions 1n muoh the
. ._- .

same way 8S human beings are oapable ot doing.. .



- 146 -

LIST OF BEFERENCES

1.

2.

4.

5.

6.

8.

Zadeh, L. A., "Fuzzy sets", InfQrmatiQn and ContrQI, a,
3-38-353, 1965.

Zadeh, L. A., "Fuzzy sets and systems", Proc. Symp. S~stem
TheQrv. PQlytechnic Inst1tute of BrQoklyn, 29-39, 196 •

Bellman, B., Ka1aba, H., and Zadeh, L. A., "Abstraction
and pattern classification", J. Math. Anal. Appl., 11,
1-7, 1966.

Zadeh, L. A., "Shadows of fUZZy sets", ProblemY Pere~achi

InfQrmatsii, ~, 1, 37-44, 1966.

Goguen, J. A., "L-fuzzy sets", J. Math. Anal. App1., la,
145-174, 1967.

BrQwn, J. G., "Fuzzyeets on Boolean lattices", Bep. No.
1957, Ballistic Research Laboratories, Aberdeen, Mary~

land, 1969.

Zadeh,L. A., "Fuzzy algorithms", Information and CQntrQ1,
la, 94-102, 1968.

Zadeh, L. A., "Probability measures of fuzzy events", l.
Math. Anal. App1i., 21, 421-427, 1968.

Chang, C. L., "Fuzzy topological spaces", J. Math. Anal.
~., ~, 182-190, 1968.

10. Marinos, p. N., "Fuzzy logic and its application to swith­
ching sy-stems", IEEE Trans. Qn CQmputers, ~, 4, 343- ,
348, 1909. ,

11. Zadeh, L. A., "Toward a theory of fuzzy systems", Rept.
'No. 69-2, Electronics Re$earC~ Laboratory,Uniyersitv of
California, Berkeley, June 19 9. , " .

12. Gitman, I., and Levine, M. D., "An a1gor1thm fordetect1ng
unimodal fuzzy sets and its application as a clustering
teChnique", IEEE Trans. on Computer,. ~, 7, 1970.

13. Tamura, S., Higuchi, S., and Tanaka, K., "Pattern classl"'"
ficat10n based on fuzzy relations", IEEE Trans. on SSC,. .
(to appear in January, 1971).

,14. Zadeh, L. A., "Similarity relations and fuzzy orderings·,
Information Scieuoes(to appear).



15.

16.

17.

18.

20.

21.

22.

- 147 -

Bellman, B., and Zadeh, L. A., "Decision-making in a
fUZZy environment", Management Science, (to appear).

Zadeh, L. A., "Quantitative fuzzy semantics·, Information
Sciences, (to appear).

Mizumoto, M., "Fuzzy algebras and its applications"" ,
Mathematical Sciences, Diamond Publishers, (being
published serialy from April, 1970),(in Japanese).

Wee, W, G.,"On generalizations of adaptive algorithm
and application of Fuzzy sets concept to pattern c1assi.
fication", Ph. D. Thesis, Purdue University, June 1967.

Wee, W.G.,and Pu,. K.S., "A formulation of fuzzy automata
and its app1ioation as a model of learning systems·,
IEEE Trans. QD sse, ssc-5, 3, 215-223, 1969. '

Santos, E. S., and Wee, W, G. ~ ."General formulation of ;
sequential maohines", Information and Control, 12" 5­
10, 1968.

Santos, E. S., "Maximin automata", Information and CODtrol.
11, 363-377, 1968.

Santos,E. S., "Maximin, minimax, and composite sequentiai
machines·, J. Math. Anal. Appli., ~, 246-259, 1968•

24.

. , ,

Santos, E.S., "Ma:a1!t1n sequential chains", 'J. Math. Anal.
&m1.. ,2.2, 28-38, 1969. "

Santos,E. S., "Maximin sequential-like machines and
chalns" , Math. Sys. Theory, ~, 4, 300-309, 1969.

25.' Mizumoto. M., Toyoda, J., and Tanaka, K., "Some conside­
rations on fuzzy automata", J. Comp. System Sciences, ~,

4, 409-422, 1969.

26.

28.

Yoeli, M. "A note on a generalization,' of Boolean matrix
theory", Am. Math. Monthly, Qa, 552-557',1961.

Fu, K. S., and Li, T. J., "Formulation of learning automata
and automata game", Information Soiences, 1, 237-256, 1969.

. . ...

Hirai, H.', Asai, K., and Kitajima, S., "Fuzzy automaton
and its application to learning control systems". Memoirs
of the Facult* of Engineering, Osaka CIty UnIversIty,
~, 67-73,. 19 8. '
Otsuki. S•• itA model for learning,and reoognizing machIne·.
Ipformation ProQessing, 11, 11, 664-671, '1970(in Japanese).



30.

31.

34.

36.

·40."

41.

42.

- 148 -

Tanaka, K., Toyada, J., Mlzumoto, M., and Tsujl, H.,
"Fuzzy automata theory and lts appllcatlon to automatlc
controls", J~~~a~ ~f the Japan AssoclatiQn ofAutoma~
CQntrQl Engineering;, Ja. 9, 15-24,1970 1inJapanese).-

Kltajlma, S., and Asal, K., "Learnlng control systems
uslng fuzzy automata", JQurnal Qf the Japan Assoclation
.Qf AutQmatic CQntrQl Engineers, Ja, 9, 25-33. 1970 .'
~ in Japanese). " .

Rabin, M. 0., ~Probabi1istl0 autQmata", InfQrmatiQnapd
Cont r Q1, ~, 230-245, 1963.

Paz, A., "Some aspeots of probabillstio automata", Ipfor;'
mation and Control, ~, 26-00, 1966.

Turakalnen, P., "On probabi1lstl0 automata and their
generallzatlons", Ann. Acad.-Scl. Fennlcae., Serles A.I.
Mathematlca,-1968.

Turakainen, P., "On stochastlc languages", InformatlQp
and Control, ~, 304~313, 1968~

Nasu, M., and Honda, N., "Fuzzy events reallzed by flnlte
probabi1lstic automats-,_ Information and CQntrol, ~,

Nasu, M., and Honda, N., "Mappings induced by PGSM­
mapplngs and some recursively unsolvable problems or
flnlte probabI1lstl0 automata", InformatIon and Coptrol,
Jj,,250-273, 1969.

Lee, E. T., and Zadeh, L. A., "Note OD fUZZy languages",
InfQrmatlQn Soiences, ~, 421-434, 1969. "

Mlzumoto, M., Toyoda, J., and Tanaka, K., "On fUZZy lan­
guages", Trans. I?st. Elect. Commun.' Engrs. of Japan, iJ:Q,
5, 333-3~qj1970 In·Japanese).

Mizumoto,M., Toyoda, J., and Tanaka", K. , "Conditional
fUZZy grammars", Math. Systems Theory (submitted),

Mizumoto, M., Toyada, J., and Tanaka, K., "N-fo1d fUZZy
grammars", (in preparation).

Mizumoto, M., Toyod&~ J., and Tanaka, K., "Attempt of
lattice grammars", 1971 National Conyention Becordsof
the Ipst. Eljct.CQmmun. Engrs. Qf Japan, Spring 1971
. in Japanese, .

Mizumoto, M., Pak, C., Sato, T" Toyoda, J., and Tanaka,
K., "B-fuzzy grammars", 1971 National Conyentign Records
.Qr the Inst. Elect. COmmun, Epgrs, of Japan, Spring 1971
\in Japanese),



- 149 -

-44. Aho, A. V., and Ullman, J. D.,"The theory ot languages",
Math. Systems Theory, ~, 97-125, 1968.

45. - Abraham, S., "Some questions of phrase struoturegrammars
I", Comput. LiDguist.,~, 61-70, 1965. _ .

46.

47.

48.

Rosenkranz, D. J., "Programmed grammars and classes ot
tormal languages", J. of ACM, ll, 107-131, 1969. '. .

Friant,J., "Orammaires ordonnees-grammaires matricle11es",
CODsei1 National de 1a Recherche National Research Council,
MA-101, 1968. . .. ' . ..... ....

Mizumoto, M., TOJoda, J., and Tanaka, K., "General formu­
lation of formal grammars", Intormation SCiences -(to

.appear).
; t j •

XepQ; M. M.,"3HTpODHR HaRKoB, DopoxnaeuLix aBToMaTHoH
HnH KOHTeKcTHo~CB06onHoH,rpaMuaTHKauH,c OnH03HaQHHM BR- .

. BOnOy", ABTouaTH3a~HR nepeBona TeKCToB, HTH, No.129-34,
1968. .

50. Fu. K. S., and Li, T. J., "On stochastic automata and
languages", IntQrmation Sc~ences; 1, 403-419, 1969.

Huang, T., "On stochastic context-free languages", Intor­
matiQn Scienges (to appear) •

. 52.-_ Sa1Qmaa, A., "Probabilistic and weighted grammars", Infor­
mation and ContrQ1, li, 529-544, 1969.

Ginsburg, S., and Spanier, E. H., "Control sets on grammars",
flAth. Systems Theory, ~, 159-177, 1968. :

54•. Ginsburg, S., The Mathematigal Theorx Qf Cpntext-Free
_LanevaiQS, McGraw-Hill, New YQrk, 1966. '., . . .

Hopcroft,J.E., anliU11man, J. D., Formal LaDQIages
and Their Relation to Automata, Add18on~Wesley, Beading,
Ma8s., 1969.


