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GENERALIZATION OF A THEOREM OF PETER J. CAMERON

Minoru NUMATA

(Received October 29, 1976)

Peter J. Cameron [3] has shown that a primitive permutation
group G has rank at most 4 if the stabilizer G, of a point{ is

‘doubly transitive on all its nontrivial suborbits except one.

The purpose of this paper is to prove the following two

theorems, one of which extends the Cameron's result.

,'I"h_,g’__\r,__em l. Let G be a primitive permutatlon group on a

finite setf), and all nontrivial G-orbits in Cartesian product

_Q&Q_ be K, ce-r F A ¢ oesey At' where GO( is doubly transitive

<

on li(c() = {é!(o{,@) e ri}’ 1< i< s and not doubly transitive

onA (o0 » }<= i<t Suppose that G has no subdegree smaller

than 4 and that t > 1. 'I‘hen, we have

_sg 2t - r,

where r —/r{A ’A

then we have

‘{"Sfo]"j, 1< < } Moreover 1f r =1,

s§2t—-2

( For the notation r’* I’ see the section 1 )

’thveqreg 2. Under the hypothesis of Theorem 1, if r = t,

then s = £t = 2, and G is isomorphic to the small Janko simple

group and Gﬁ( is isomorphic to PSL(2, 11).




>

For the case of t:i 3, I don't know the example satisfying thé
equality s = 2t - r, and whenvr = 1, the example satisfying the
equality s =2t - 2. I know only three exmaples with t = 2 and s = 2.

The small Janko simple group Jl of order 175560 has a
primitive rank 5 represestation of degree 266 in which the
stabilizer of a point is isomorphic to PSL(2, 11) and acts doubly
transitively on suborbits of léngths 11 and 12; the other suborbit
lengths are ilO and 132 { see Livingstone [7] ). The Mathieu group

M,., has.a primitive rank 5 representation of degree 144 in which

12
the stabilizer of_ a point is isomorphic to PSL(2, 11) and acté
doubly transitively on two suborbits of length 11; the other'
suborbit lengths are 55 and 66 ( See Cameron [4] »).

The group [Zj X Z3 X Z3]S4 has a primitive rank 5 represen-
tatidn of degree 27 .in which the stabilizer of a_point is S, and
acts doubly transitively on two suborbits of length 4; the other

suborbit lengths are 6 and 12. I conjecture that it may even be

true that s is at most t.

1. Preliminaries
e e O Y e

Let G be a transitive permutation group on ;';1 finite set R,
and /]l be a subset of the Cartesian product QxQ which is fixed by
G ( acting in the natural way on fXQ), then A_(o() = {ﬁéQl (£, @ )GA}
is a subset of . fixed by G, - This proceduré sets up a: one—to—oﬁe
correspondence between G-orbits in (LX) and Gq-orbi{:s in .

The number of suAch orbits is called the rank of G. _
.A* = {(\5,0( )l («, 0 )véA} is the subset of OQx(l fixed by G
paired with 4; A is self-paired if A= /|*. Note that
!A(o()l = }A*(o()l = ]AI/I.Q!. 1f ["and A are fixed sets of G



. 3
in xQ. . let IPA denote the éet {(c(,(ﬂ )‘ there exists Y€S{l with
(L, Yyel’ , ()",Q)GA ; X# B}, this is also a fixed set of G.

The diagonal {(o{, x)| Y€} is a trivial G-orbit. If [’is a
nontrivial G-orbits in QX , the ['~graph is the reqular directed
graph whose point set is () and whose edges are precisely the ordered
pairs in J. A connected component of any such graph is a block of
imprimitivity for G. G is primitive if and oniy if each such graph

is connected.

For a G-orbit r,in .Q’(-Q, the basis matrix C = C(]) is the
matrix whose rows and columns are indexed by N, with (o, 3)
entry 1 if (¢/,B )< [ , 0 otherwise. All of the basis matrices form

a basis of the centralizer algebra of the permutation matrices in G.

Let G be a group which acts as a permutation group on {2,
and 7T the permutation character of G i.e. the integer-valued
function on G defined by 7{g) = number of fixed points of g.
The formula

7t, 1) =L Z’ll’(g) = number of orbits of G,
G iG] .
geG
is well-known. If G acts as a permutation groué on 9“1 and ).,

with permutation characters 7?1 and 7[2, the number m of G-orbits
in le ‘O“z is

4. .

G

In particular, if G is a transitive permutation group én {}_with

permutation character 7, the rank r of G is given by



r =. (7?,7‘:)(; = sum of squares of multiplicities of"

irreducible consitituents of 7¢

If G acts doubly transitively on A’Zl and .QZ,
I y — ‘33 D = ’
(M~ ’i[‘z)G 2 or 1 according as 74 7t2 or ﬂ'l # '/1‘2. ,

Lastly, we note that if G is a primitive permutation group
onr_Q, then. for o, 3 (#) &L, either Gy # Gg or G is a regular
group of prime degree ([8}, Prop. 8.6); pfimitive groups with
a subdegree 2 are .Fxfobeniﬁs. groups of prime degree ([8], Theorem
18.7); prin}i;{.:ive groups with a subdégree 3 are classified by

W. J. Wong [9].

2. Lemmata
PR P W N

Throughout this section, we suppose that G is a primitive but
not doubly tra:isitive group on a finite set [}, and ]1, T' PR
_are G-orbits in QxQ such that Gy is doubly transitive on
T;(Ol) 1 =1, 2, ...; ’/2'1 and 7C:_ are the permutatiop characters
of G, on ]71(0() and \'z(o(), respectively, and let.'Ci = C(T'i),

. .
C; = C(T:.) .

Lemma 1.  { P. J. Cameron [2]. Proposition 1.2 )
Y a T E .

Gy 1s.doubly transitive on T*i(o() .

et

Lenma 2. ( P. J. Cameron [3]. Lemma 1 )
F:iL‘o["i is a G~orbit in Ox0O, and if }l”i_(e()l> 2, then Gg( is |

not doubly transitive on .T’i°ﬁ‘<0 ‘



Lemma 3. ( P. J. Cameron [2]. Theorem 2.2 )
W
For (O(S)QT’ r,weputv “7(0()1 andk —-”"(ﬁ()m ?(6)]
v, (v.-1)

=i 17
k. -
i

Then k <v and

V.“ 3 T ————
_If Vi> 2, .then k1<= "?'“Z'f" when particulary ki 2, then

v. = 3 or 5.
1

In the following, we set

v(v -1)

| (]'J’.L(ool =, DeThen] =2,

Lemma 4. ( P. J. Camerbh [é}. Lemma Z.i )

ITem el = | o[’*(ool

/I{_/mm»}\/ T?_ 7‘ rf' r if and only if IP]_ ‘ 2(&){ = .

A A A
al L S

proof. I1£ |y rz(oz>\< H’ (oo] @]+ we nave ]T’ @ A Fz(@) I >1
for some (o, §) €[], ror PR T’(o(m F’ ((5),
(Yy V) € ool and (1 ¥)€ Toele so [Ty = 515
Conversely, if [ie[] = [5°[3. for (Y{, V)€ Trl; = T’; [, we can
choose o ana @ such that €[} (V) A fi(rz), 6 eré(a’ ) A Pz(rz
since 16~ [@2 Y1, ¥, |[n D@l >1.
mhexesore [0 560} < |3 60] ~ [T 000




Lemma 6. T‘ rz is the union of at most two G-orbits in X1,

and ]y 7(? 1f and only 1f rl F is the union of two G-orbits

1
in .Qxﬂ

Proof. Since (7Z_.'L’/}é, 1.)G = (7[‘1, 7[‘2)(; < 2, and //Zil is the
permutation ¢haracter of Go( on Tf(o{)x Pz (/) G has at most
two orbits in {(04, T 6)1 K, r)& E, (¢, 6) ¢ r‘27’ and hence,
fio fz is the union of at most two G-orbits. If 7[’1 #7., then
G is transitive on {(O(, ¥, 5)] (L, 7)€ Fl’ o, §) & Pz}, and hence,
. .
Pfrz is a G-orbit in NXfL2. Now, we shall assume that T =7,
* o ¥ - L3
‘and r’lorz is a G-orbit in (1X£). We put v = vy = Vys and
* 7
m= T 5] for @ §r€ [
If m = 1, then since fio FZ is a G-orbit, G is transitive on
jot, v. ] rnea€ll 1 01 €T, Therfore (T, @, = 1,
and hence, ‘Tl #'Rz, This ‘is contrary to the assumption
If m > 1, then there exist quadrilaterals (X, Tl' &, Yz)

*-
whose edges are successively rl' B, r; and 17 and whose vertices

are all distinct. Counting all of them in two ways, we have

\Q\,m(m - 1) ~I‘L\~"—‘;<’—li—l)klk2',

SO
vim - 1) = (v - l)kz.

Hence, v = kz. This is in'\possible\ by Lemma 3.



Lemma 7. If 7.«[.
W’D&/ ~ 1 1

Proof. Now assume

following figure,

and hence, T;_" rlD(:_“IiU PI"F:L Since K"K is the union of
at most twq G-orbits in NxL, we have l';_o Pi = EOT?_ U r’:f* E.

By the assu.mptioh of this lemma, i&’&“’“l =
\Fenl IR el = w2
So
| ‘ 2v, (v, - 1)
=l = e oo+ [Tl -~

viki = 2(vi - 1).

Therfore, v = 2. All of the suborbits of the primitive group
with a subdegree 2 are self-paired. This is cox_itrary to the

assumption of this Lemma.

Lemma 8. Let ﬁo? be the union of two G-orbits 2., and
Ny ] i 2 ] - i

22’ We set v = V1= Vy Si = C(Zi), s-i = !Zi(o()} , 1 =1, 2,

* -
and C;C, = alSl+ aZS’_zf Then we have




i) Syr S, > .v- If §l = Vv, G, is double transitive on Zl Q) -

e 2
ii) v = alsl—j- a,s,

. S * ) x . s .
_Jii_.i) rl° '|71 # onr’z if and only .-.1;_f ay = :a‘,} = 1

E3

iv) if sy = v(v - 1), then G"T: # 15 ], and ]”;o)"z containes -

some F
—

Proof:; i) Assume sy = V. 'i‘hen (’]t;, 7['(.5_-\1)) =1 or 2
’ .k . *
according as Tt} # T 2.q) ox Iy =T« Zl) where ’/E(Zl) 'is the
permutation character of G, on Zl(o() . If 7{‘; # T( Zl) , for
éézl (0(),de('6 is transitive on r’;_(o(). Thus ]”;(o() = r;(d').
Therefore Gy = G p5 = G = Gg. This is impossible.
% = ST e T L@} T % T | ,

. A
So we have ’/t_‘l = %(Zl) » and hence, s, = v and Gy is doubly

transitive on Zl(o() .
ii) For the matrix F such that any entry is 1, we have

R 2 .
F(C,C,) = Vv°F and F(a;S;+ a,s,) = (alsl+ a,s,)F,
' v2 = s, a,s
so | i i R 2

iii) The existence of the following figure is équvalént to
% %

el = 120 |

| I B

<
gn



It holds also that the figure exists if and only if a; 2 2

for 1 = 1 or 2.

iv) By ii), v2 = alv(v - 1) + azéz. Since s Z v,

= a2 = 1 and s2 = v. Therefore we conclude that

<|’, containes some r by i), and

r;i# r rkbylll).

Lemma 9. Ef ) 7—" "1,‘2 G« is not doubly tran51t1ve on r)l ).

PR VR R

Proof. Assume that Go( is doubly transitive on ]’I [’2(0().
If \Tl Fz(o()l 7 lr (o()l then Gy has different permutation
characters on F*(c{) and T’l r’z(o() Hence, for ({,¥ )& ]"’l, Ga{'f is
transitive on rfarz (o), so, Pz'(z’) = rkor ). Therefore

= =Gy. . r

G{T,z (?_)'} {r r,zm)} o This is 1mp0551b1e Thus
we obtain l]”zo) VW] = [T, e0]= | ()] . on the other hand,
for (5, V)€ Ty TLMNC e (®. so, T5o[(d = L.

This is also impossible.

~

Lemma 10. Assume °T§(_ = ° and Tio T72 be -.the upion of
two G-orbits Z and Zz, put ”7 (o()] = I r;(o()l = v,
”7 f*(ool = "“’ ~ L, Sl = s, i=1, 2; ana (A S,@0)]

t for a"ér')b(o(). Then, we have the following quadratic

»equatlon“for £ - :

2

viv - t)2+ vt
S. S
O

I
Qo
.

- v - k(v - 1)

-
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Particulary, i) when sl gl(‘]:——:]-'—) ’ the quadratlc equatlon has
at most one root for 0 < t<T vy 11) when t = l, then s ='v,

2

v (v- l)

5] =il and Go( is doubly transitive on 2. (D() .

Proof. For Y¥;, ¥, (#) € r'l (™) , counting arguments show that

(v-t){v(v-t)- }
(v-—l)sl
: ’ t(vt-s,)
_ZWVETSH T
\lf;_"fl’ﬂ P, 00 A3, e0) De

(v-t) fv (v-t) -s]} t (vt—sz)

H_; @SR IR T’z (Y,) N Zl (D()l

(v - 1)k =l(_‘s.’+_t_). (v - t) +_YE_ -t = V(\sf—t) +_ls)'£ - v,
1 2 S

2
-v - k(V-'l).

_v(v—t)2 + vt
Sy S2

0

We shall prove the latter assertions, We p\it

2 .2
£le) = LB L FE kv - 1)
1 2

When sl>___ f‘%::-l'), then £(0)<T 0. Since the coefficient of

t2 in.f(t) is positive, f(t) has at most one root for 0< t << v.

When t = 1, then sz<= v. By Lemma 8 i) s,2V. Sos, =V,
and hence, G, is doubly transitive on 22 (), and Sy =~!]-§Zi:—l)- .

. Lemma 11. Let Tﬁ’r be the union of two G-orbits Zl -and
SRRt o

Zz, and Gx doubly tran51t1ve on Z (0() and Z (), then
HE me < 3.




,But k.

11

Proof. This lemma due to P. J. Cameron. ([3], Lemma 4.)
We put H’]'_(o()' = Ir;(ol)l = v, and assume [21(0()’ # v. Then,
Gy has the différent permutation characters on rfl(O() and Zl (X),
so, for (X,0)€& Zl' Gy g is transitive on \’i(O{) . Hence,
0 7
= ) = = * =
Ti;_(d) ]‘;(6). Therefore, Gy - G{r;‘-,(o()} Gﬂ—,z(a)} Gg-

This is impossible. - Thus we conclude that [Zl(tx)l v. In the

same way, we have 122(0()! = v. _
.

Now, if G_vﬁ # Bor’z, then by Lemma h’;o rz (o{)l = “”I (o()l

\rz(ot)l = v2. Therefore, v = ]r‘Io Pz (o()l = lé:l (00‘ + l__}:z(oc)l = 2v,
*

so v = 2. Thus, when v > 2, we obtain that [';_'0["; = FZDFZ'
For 3’6\_’;(0{). we 'put t = WZ(X)n Zl(o()l . Then, for
(Yl, )‘z)é H°P;, by Lemma 10 we have the following equation.

n

k, = I, () A T, )l L Aw-02 + £2 - v}

2t (v-t)
v—-1l

=V -
Vv . ) RS V2 . .
If ¢ =-—2—, “’(Yl)n rz({z)l = v + m is not integer, so

2

't'f lor t>v+l . Hence k =v--2—t—(—v—-—tl>v--:-"-(v+l) =—§-(v-l).

2 2 . v-l =
2 2(v-l) by Lemma 3, so equallty holds, and thus v = 3

or 5 by Lemma 3 , and t ——-2—(v+l) or = (v—-l) . Counting arguments

- show that \FZ(TJ.)-/‘ Pz'(}’z)n Zl (0()'\ = E._(E_:!:) for Yl’ YZ (#) &£ F1(°<)°

Therefore v — X divides t(t - 1); this excludes v = 5, and so. v = 3.

Lemma 12. For r, P v )—’3, if Zis alG—orbit-

l»_l

'cpntax.i:ned dn FT;QVZ N i”;or:;, and ‘rl (O()l.> 3; then Gy is not

doubly transitive on Z(Dl) .
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* % * * '
Proof. 3 <P; DT U [3- If Gy is doubly transitive on
Z(o(),' X"fi is the union of at most two G-orbits by Lemma 6,

* _% Ltk
so 3 o[y = [’; U r3. " This is contrary to Lemma 11.

Lemma 13. If EO[’; = D°FLand 757?.‘2' then IVL— Vz\ 22,

and “—7 P*(O()l > “71 B(O()l

Proof. For (Y, 8) é riolz, we put

m= @A T3 -

Count in two ways quadrilaterals (¥, )"l, 5, YZ) with Tl # Tz

whose edges are successively ri;_, V ’ Tg, and

17 then we have
v (v -1) V.V
2 1l 12
L(Z‘ k2]_<l = Lﬂle(m—l) ’
sOo.
. (v2 - l)kl = vl(m - 1). (1)
-If vy = Vz\'r then kl = V- This is impossible. If vy =V, + 1,
then k, > 5% and hence, by Lemma 3 v, = 2, v, = 1. This is
also' impossible. Thus we can conclude that [v - v2 __? 2.
vy (v ‘
Assume IG"]‘?_(O(){ “-i r (o(){ - V'I'hen
> m(vy = 1). . (2)

12

From IZOF;_ = );c gr WE have also

kzvl 2 m(vz-l) . : (3)
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Therefore, (1) and (2) yield
lfkl+m. (4)‘

By Lemma 3 and (3), we have
v2(v2—l)

2v X

2

A

= m 7

2

SO

2

A
A

v .
m<E . - (5)

Thus (4) and (5) yield

1
kl Z 5Vy-

This is contrary to Lemma 3.

. x x
Lemma l4. (P. J. Cameron [3]) If r1°Y& = f1° 2

‘then-fiori # r;;r:.

Proof. We shall prove this lemma in a different wéy from

P. J. Cameron's. Assume T}°T’ = Tl“rﬁ = r’orﬁ., We put

v (V v, (v -1)

U’ (oo( w——;—- lPOV ol = - \Ne Fz(oo\

where m = ]I’i(o() AT,®] for . 6) e Eo[’; Then it is )
trivial that m > 1 from the above formula, and hence, T§7TH = r§°F§-
Thus, by Lemma 13, H’lo]';(c()l< ‘F’l’of’l(u)[ = \\}’F{(Ml . This is

contrary to assumption.
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Now we shall investigate from Lemma 15 to Lemma 22 the
necessary condition that the intersection of rivrz and qv P3 for
‘;’_. I, [; (#). -is not empty.

~ * . *
Lemma 15. If 7Z'l /2 # L3 and 7t2 =’/k‘3, or 7(\1 = /L2 =’R,'3
N\w )

?Pq@#/ , then ri (\T:°E=ﬁ.

Proof: Assume T ='/§ # T, and //(\;' = ’/23;. Then we have '_
vl = v2 = v3. We put v = vl = v2 = v3. By Lemma 13, E‘fi # fg'ﬂé,
and hence, lﬁof;(d)l = Ui(o()l 'Irg@()\ = VZ. by Lemma 5.
If r;o [72 (\YFIOB # g, then sincg ﬁo r3 is a G-orbit and _f’}!”z is
a union of two G-orbits, we have ﬁ_é Y’z ? ]";o r3. Therefore

[l pe0] > |Fe 3w

Similarly, we can prove the lémma for the case of 7[1 ’}fz =7I,"

= v2. This is impossible.

and ’/T; 75%;.

* N* * *
Lemma l6. - ]35 7‘[175_ /_LZ'. ’/L‘l # 7?3 and 7t2 # ‘7\!,:3, then

ET'; AT Ts = 2-

Proof. By the assumption', Esr;, G"r; and f’;or3 are
Gforbits. Assume E"fg = E*’r; For (e{,ﬁ)@ qu;, we put

l(;(d)ﬂrz(S)‘ = m, and l)';_(o()nv r’3(5)| = m,.

For ;. ¥V, (A& rl'(b() ,‘ we put
I A Tyl = =
. Then, since Tio Pl = )’;2‘(0\”3; we have

vy (vy=1) 2V3

"——]q'——‘ = \TI"P_I(OU\ = ‘F; _V3(d)\ T Tx
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- so

- 1)x = v,v.k.. (1)

vy (v 2V3©1

l .

Count in two ways quadrilaterals (o, ¥, J,¥) whose edges

R - %
are successively f’ ’ f, f; and ]"1, then we have

v, (v.-1)
11
lﬂl—_—fl—_—k x —lﬂ\ 3n oM
so
(vl .- 1)x = vam,. (2)
(1) and (2) yield
v,m, = klvz. : (3)

If m2-> 1, there exist quadrilaterals (¢, 6 1’ d. @2) whose
edges are succe_ssively G, rg, Tz and r;, whose vertices are

all distinct; count all of them in two ways, we have

(
[11v1 kX, _LQL___m(m -1),

sO

- 1k (m, - 1).

(v 2 = Vil

1

On the other hand, .from )_io Pl'= r;or' ,

v (vz-:_-

vylvy = iy, = vylvy - Dk

1V ViV (F‘z—‘:_l).'

2~ Viv2

SO

- 1)k, . | (4).
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(3) and (4) yield

This is contrary to Lemma 3.

= m = 1 = 1
Thus, we have m,, m, and vy klv2 For (,Y¥ )& 17 So ¥ is
transitive on F(O() \{Y} and since 7 ’Z‘ # 7 ,it is also transitive
on T'z (Y). -Count in two ways (r', §) such thatY & r’l(o()\{\’i

6€I_;€ (¥) and (Y' §)e r3, then we have

- ._._1_
(vl x = v, kl.

This is impossible.

Lemma 17, If ’Z‘l # 7[‘2, /Ll 757( and T;_" F.I = r;°f7;, then

P Y T

E;."Tz _nFI" Va = 9.

Proof. Assume '[";o ]”2 = ]—io B By Lemma 16, ’I'Zz; =7l';. We put
vevi w=v,=vy, m= [TTea To@®)| = [Rean Thd] >1
¥ ™
for (o, O)€ 119772. and x = l)z(rl)m P3(K‘2)] for
Y Y, D€ TLen.

Count in two ways quadrilaterals (o, ‘(l, 0 3’2) whose edges

% .
are successively Tl, rz, T; and r; then we have

lﬂlv(v-l)k X = ‘Q]— mm,
l

SO

(v - 1)x = wm. (1)



Next, count in two ways quadrilaterals (X, Yl’ o, )’2)
3 * . -
whose edges are succes§;vely fi, ]’72, "’2, T;I. and whose vertices

are all distinct; then

[xﬂv(vll)k X UQ}XE-m(m—l),

e - 1k, = win - 1). . | (2)

(1) and (2) yield

(v - 1) (x - kz) = w, that is, x >k2 > 1. : (3)

Since x > 2, there exist quadrilaterals (Y, 51, Y'- d‘z) whose
edges are succeséively 3, T'*, T‘ and Tf whose vertices are all
distinct, and (Y, X‘) S T’ Tt I’z count all of them 'in two.ways,

.-»! then

[ w(w - l)1=fﬂly—(—%—l—2x(x - 1),
2

(= “"‘;(51)0 T;()'é) m]"loﬁ();‘)l for 0., 32 (#)é I;(r) )

SO

l= x(x-1)
k2.
By the definition of ), )< k2. On the other hand, since x > k,,

>\=_L§—-H >k,. This is a contradiction..
5 _

Lemma 18 If /L 7—"2‘ / 75/ and r"r* = P“r‘* then

9% = 4%

(TN
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]

Proof. By Lemma 6 J.= ]Z°T§ (}{g is a G-orbit. Let § = €(2),

* *
€,C, = myS, C;C; = myS and [Ze)] = s.

For the matrix F such that the value of any entry is 1, we have

*
VlVZF = F(ClCZ) = F (mzs) = m,sF,

2
so i .
ViV, = m,S.
Similarly
On the other hand, by Lemma 16, 7' ='Q' and hence, v, = vy
. *
So, m, = m3. Thus we can conclude that ClC2 = ClCB’

Lemma 19. If clc2 C1C3 ana |[} )] = v, >3, then we have
i) T, = Ty, %i # 2,/
i) [Ty # T2 T LA
i11) v %%Yz Fr=vyt ‘Tf(rl)/\ TB(XZ)‘ - 1 for
' -‘Yl'Yz)é Pl |
iv) | Fl(oo{ ' ——1—%1———1)

e

. " - 7. .
Proof. By the.assumpt}on 11 Tz = }l fg: For the matrix F

such that the value of any entry is 1, we have

*
F(ClCZ)

A Y

* %
(FC )c = (v;F)C, = v, (FC,)= v V,F.

VSimilarly

*
F(C1C3) = vlv3F.
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So

We shall show that v1 # v2 = v3. Assume v = v1 = vy, = v, and

put D = C(r’;a[’l). if r;a]“’lr.)’;o[’z, then “"lo]’z(o()l
Pl # Dl Dl =15 @] - [Rwl, therefore
TiQT; = Tgérg' by Lemma 52 We put k = kl =7k2 = k3.

*

T x
2 + k(v —~ l)C2 +

* %* ' * * *

c,(c,C,) = (C;C4)C, = (VE + kDIC, = vC
: *

terms no involving C,.

Similarly

* % *

* %*
Cl(ClC3) = vC3 + k(v_h l)C3 + terms not 1nvolv1ng C3

So

* * : *
(VE + kD)C2 = {v + k(v - 15}03 + terms not involving C3.

*
-8ince the coefficients of the basis matrices in DC2 are at most v,

the above formula is impossible.

Next, if IioT} # fior;, then Ti°f1 # rzo(;; and Dcz does not

*
involve C3. Now

* - % Y* £ 3 . *
€ (€;C,) = (CyCy)C, = (VE + k,D)C, ,

I

* * F3 * D C* %
cl(clc3) (clcl)c3 = (VE + kl ) 3 .—-vc3 +

*
terms not involving C3,
*

% *
and hence k. DC, = vC, + terms not involving Cy

7172 3
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. _
For (7’1.Y-2)€ '1°P1 and (Y &) € l—’;, we put
' * x - — {
Then from the above formula we have

\.v R * -
t == . (1)
kl ] .

Counting in two ways triplilaterals (Y,,0, Yz) whose edges

are successively T;, Fz and riorl, we have
x = vt . | (2)
(1) and (2) ifield.

(v - I)x = v,

which is a contradiction. Thus we can conclude that vy # Vo, = Vg
* * *

and hence, 7lf'2 # '/Ti #’12'3. Therefore, we obtain 7?2 =7l‘3 by Lemma 16,
o -1

T;orz 7# r;_" rl 7# Téo r'3 by Lemma 17, and hgnce we have i) and ii)

-0of Lemma. :
For (!, }') c Pl' count in two ways the ordered pairs (Y, J)
. - * L _*

such that y'¢ \’i(o()\{r}, --8€[,(¥) and (Y, §) € 37 then

. * .o
since rlorl # 13013 we have

(v;-- Lx = v,. . ' (3)

Now, we shall show that x = 1. Assume x > 1, then there
exist quadrilaterals (Y, 51, Y 52) whose edges are successively
* * . .
]"2, P3, T73 and Pz whose edges are all distinct, and ()f, Y'")

% - L
érlorl; count ;[ all Of them in two ways, then we have
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V. (v, =1)
A _ 1'°1
‘ﬂ\ V2 (V2 - l)l = Iﬂl T

x{x - 1),
(A= [ A DSy A [ for s 83, (1, &)
e]”; (8,.5,0€ T;?P; ),
e | |

(\fz - l))\kl = vi(x‘— 1) = (vl -1)x + x .- v, =V, v X - v

Thegefore, x 2 vy~ 1. If x = v, then (v2 - l))_kl = V2’_ v (oo1)
which is a contradiction. If x > vy then v - 1)x> -—l—k—];——— .

1

2= vy

So (7f;, 7[‘(‘[“;::\"1 r)) )G‘r= 1, where /at [’Igf’l (Y)) is the permutation
. *

character of Gy on Plo Pl(r). Hence, for (Y, ¥')& on Pl’

Gy; ¥ is trapsitive on T;()’). So r;(h = T;;(T')- This is

impossible. ' '

e o L _ 2
Thus we havex=vl-l, kl—x—l, v, = (vl-l_) and

[Fe B AT3@] = vy for (1, 8) € T
Now, count in two ways qua_drilaterals (¢, Yl' Yor T3) such

T that (D(l Yl) é-PZ' ((7%17[2)' (o, Y3) < P3’ and (Tll Yz) ’ (Yl' Y-B)
éﬁﬂ’ll )’2 # }'3 ; then we have

LQ.‘V3 (vy = N =\-Q.\ v,vy vy = 1),

(X =.lﬁ° Pl ) n TI“E 3N rz‘"’“l for Yo, ¥3 (F)-

€[3@))
SO -
)\. Vl fvl—l) ~ vl (vl 1) _ vl-l .
vy~l (vl—l)z—l vy~2
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Therefore, vy = 3. This is contrary to the hypossesis of Lemma.
Thus we can conclude that x = 1, and hence, by (3) we have

vy =V, + 1 =‘v3 + 1. This proves Lemma iii).

Léstly, we shall show that kl = 2. If kl = 1, .then

lﬁ’rlml = vy vy - D < GeRe0] g vpvp = vy - D)

This is impossible. Now, we have

. . - ) . . V

u= |Tpmna o) =—}§L for (¥, §)€ [’
. v ) :

and 2 kl<71_ .

Count again in two ways quadrilaterals (of, Tl, Yz, T3) such
that (X, YDE [0 6 Y), (8 ¥) € Ty and (Y, V),
* , : ‘
M1 V1
Kty - Dtvy - 22X =11 v; - D - D

3.’
1 X

(X = [P0 aTeR 0 Ale] for v, ¥; 9 € FED
S0 |

. 2
.k" _ vl(vl—kl) u(u—l)k1

_ u(u-1)

2 2 k,u-2 °
(v1 2)kl .(klu-2)k1 1

If u is odd, then klu—Z “divedes u-1l . This is impossible.

We put u = 2u0, then

2u0(2u -1) u0(2u0—l)

)‘" = 0 =
Zkluo~2 kluo—l

Therefore, we conclude that kl = 2,
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- *
Lemma 20, IfTh =T, # Ty and 1300, N KA EL
* * * .
then Vl‘=V2-—V + 1, E"Fl”é !2 | andrl’rz =T17P3Ufi‘

for some f;.

" Proof. By assumption, 2:= riOF; is a G;orbit containea
nr}rz', We put v = vy = vy W = vy, “;(Vl’n L) ==
for (Y ) € el DA Ti®| =yaa [Ta Fdl=a

for (63 €3, LM A ZTeo] =t for @, T)e T;.

* * 3
By Lemma 15,’t2<#'ﬁ5, and hence, l;o 3 is a G~orbit. We have

V(vﬁ;l) = |Reral= “;"T;QE)

SO

(v - I)x = wk, . | (1)
vw _ vt
We have also | ()| = 2¥ = J%,
and so
wy = tm. (2)

Count in two ways quadrilaterals (d, ¥yr O Tz) whose edges

are Successiveiy Ti, r;, Yg and Ti, then we have
D - 10y,
‘so
(v - 1)x = wy; - {(3)
(1) and (3) yield

y = k- | | (4)
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From (2) and (3),
‘(v - 1)x = tm. (5)

We shall show that m = 1. If m> 1, then there exist
quadrilaterais l, ri, O, Xé) whose edges are successively
%
F*, f’, rs and I}, whose vertices are all distinct; count all of

them in twé_wéyé;- ) then we have
W(w-l) -
mx_r ;=)
sor
(w - Dk, = vim - 1).
. On the other hand, f£rom (3) and (4)

(w - 1)k, = vk, -k = (v - 1)x - k

1 1 1’

therefore

vim=1) = (v - 1)x =k

1’
so

ogy(x-m+~1)=x+kl<zv.' o (6)
(6) yields

X = m,iv =m + k, . ' . . (7)

1

From (5) and (7),

£E=v ~ 1. | (8)
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Thus | S()] =2 = xle=l)
, 1
If Ear; Z Eor;,' then by Lemma 10, () = v (v-1)

kl+l *

_ .

This is a contradiction. So we have Il°P* # r r;_, and hence,
1=y=k,. (9)

Therefore we have m = v Z 1 from (7) and (9), and w

= (v - 1)?
from (2) and (8). So ‘

IToTr o] = (BT e ——————*w‘}”c’;l.’

> 2w =2(v - 1)%> v(v - 1).

This is imppssible. Thus, we can conclude that m = 1, and then
_%

r;_cll # )qzarqz\" -and hence, l = y =

[Tl =

-~ By Lemma 10,

kl' Therefore, by (2) w=v - 1,

v(v - 1). By Lemma 8 iv), riorz ="Zuri for some Fi’

. Lemma 21. If rt-ﬁ r*9P # g, and v v v, > 3, then the
oyl Qi g ’ 17 Vor V- d
M/V\,\ . 3
following hold;

1) if T =T, = /L3, then7[' =75

11) if T 7(,'2 # % ’Z" then ’T.’z ;f/\f;

iii) if .”E_ # Tpr T3r

*
t}.‘en /‘2 T3 G = c1‘:3

and_ Vi =Y + l_= v, + 1.

Proof. We have this assertion by arranging from Lemma 15

t6 Lemma 20.
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LemvaZZ Suppose that"r’;er'z and Gto 1"3 contain a G-orbit 5,

1_n QKQ_ and 71\ —//. 7Z'3, lT’(O()‘> 3. For 7(1, Yz (f) T;(c()
‘and Béz(o() , the following hold;

i) it P“Pl = el% = Bel}, tren [ D] >1,
\Ty TS *&> 1 ana |G A T’(rz)nZ<o()l>1
11) if [Py = 0o # f; P3, then )Fluxm P11 >

U’ (ot)/\f’ (6)! H’(a')m F3(r ] =1, |Sw =Y§l’%{l,

and r* Pz ‘contains some rk
i) if T[] # el Dy F3. then |0 ATLO] = [T} o) AT

“ [I;(rl)n )3(3'2)\ =1, |Ze| vy, ana PP,

;.'»‘

contains some r and T:'L

BT

)3 contains another T:'] .

Proof. Put lZ(o(m 0,00 A T5ep] =2\ for Yl,.ﬁrz ) ‘éP;(o()_."
G0 @] =%, [0 A T = x5 for w,5)€ I |

Count in two ways quadrilaterals ({, b’l,g ’ Yz) whose edges are

successively r’;, T T’; and rl' and (&, )& X ; then we have
-1 ‘ V
=l [Zenlxpx

SO

i

viv - 1) = |Z 0]y, ' (1)

* ®
Assume H_"FI # rzo]";' ]’73.,‘-7; Then we have \_rl(d)(\?z(S)l

- T~ 7@l

ll

1. By (1)

viv - l))\ =’ lz'(d)\ .
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Since )Z(o{)’ '<='V(V - 1), we h;’:lve k= 1 and (Z(Ot)l = v(v - 1).

By zemna 6 i), [IoTy = 5 U ana iy = VT for some [, [3-

s 00 . ) *
By Lemma 8,1ii), we have clc2 =S +Cj, CC3=5+Cy. (S=C(X))

.t N - - . m
If C Cj, then ClC2 Clc3' and hence, by Lemma 19 /Ll 5—‘_71'2, 'Zc'3.

This is contrary to the hypothesis of this lemma. Thus C, # Cj,

that is, (7 # [ so TN [0 AP0 = A A TR0 -
Therefore IP(\"]_) AL (2(2)' [I(O()/\ B(Yl)n PBQ/Z)I =)\ = 1.
Thus we have iii) of Lemma. V '

Next assume G.Ori = rzofg # r3o[’§, Then we have

lﬁ(oo,\ F3(5)l . By (1)

viv - D)= |Zelx,. | (2)

Count in two ways triplilaterals (¢, 5' a") whose edges are

success:Lbly Z [’* and ‘l' then we have
|Zet)] x, € viv - 1). | (3)

If x2'=

1, then ,[Z(C()[ = v(v - 1) by (2) and (3). By Lemma 8. iv),
G_o PI # 1_2’9]7;. This is contrary to the assumption. Therefore we
have x2> 1, A= 1 and lz (ol)\ x, = v(v - 1). Since li(d)) x

=vv -1, |ZWA PN =v-1for KYIET]-

.. v(v=-1 * : .
By Lemma 10. ii), li‘(o()! =——]—£l£_—-_'-_—)-i and rlqiz cont;a:.ns some Pi'
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Now we shall show that F ) A r' (¥,) = r;(b’l)m T (TZ
NZ(d) s for Yy, ¥, €[ (0. If [y A T3
2 DO A NORANS, then [1oly = Pro]3. But [0
= Iz @] + 10w =—X;(.v—;%—+ v<v? ana [T} (30| = v°.
This is impossible. Therefore, |[,() N (]
= o N T~ T @] = A=1. Thus ve have ii) of Lemma.
Last assume DTy = Tl = Dyl we shall show that |

x, = |TJ @A T5@® ]| >1 and x, =[r';_(o(5nr;<5)l > 1. We note

that kl= k2 = k3,_ therefore we put k = kl = k2 = k3. I X, = X3 = 1,

by (1) we have lj(c{)l = v(v - 1). By Lemma 8. iv)

Gaﬁ # st [#, [-;9 ]73*. This is contréry to the assumption.

If x,>> X3 = 1, we have (Z(d)] = -v—}i-‘f_—*—_—];%: as before, and x, = k + 1.

We put T’;OF_.’ =3 VY35,
x = lfi‘(d)(\’r;(ﬁ')\ for (0, §') < 3, and

= =v-1. -~ ¥

t = [f;nrl) NI | =57 for (YD <P
Since F°P* = l—"'f’* and x, = 1, there exist quadrilaterals

1°'1 3°'3 3 ! - :
(¢, 3'1, 8',-’1‘2), with Yl # Tz and (of, §') éj', whose edges are
. % : .
successively \"1, E, F; and H Count all of them in two ways -
then we have

i)
x(x-1),

v-1
lﬂ\v(v-l)kk Ku v (v- k+l

SO

_ (v=1)k _ t(k+1l)k _ tk(k+1)

x-1 = =1 ERFDFI-E tk+1
k+1 -
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Therefore t = 1, and hence, v = k + 2. This is impossible by Lemma 3.
Thu; we have X, > 1 and 333> 1.

Now we shall show that X\ >1. If A.=1, by (1) we have
viv - 1) = lZ.(CX)lxzx?‘

Since Xy > 1, there exist quadrilaterais &, ¥, O Tz) , with
- . § L3
Xl # 'TZ and (o, §) € 3.. whose edges are successively ri, I, [

rar.ld rl' Countiall. of them in two ways, then we have
-1
]11|11%%——2k)2 =l£1]];2(d)lx2(x2-1),
) *
O, = ”;(xl) ADREY AT e0| for Yo v, ) €[ em

SO

%, = |3 (0| %, (x,-1)
2 v{v - 1) ’
and by (1),
A - xz-l

| 2 X3 *

x.—1 v o
Thus : ~is a positive integer. Since x3> l, in the same way,

3
x3-1

we have that p” is a positive integer. This is impossible.
, 2 ' '
Thus we have i) of Lemma.

| o ' = a g T |
Lemma 23. If rlﬂ = _rz rz _»a;nd_’l‘L’:L # IL2, then for Aany'

AT e, e

[ 05 o0 LoD IeTT

1 J
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. f’ N (7* S
Proof. Assume i°rj D E" 1- DNote that 'vl - Vz! - 2
* * L ’
by Lemma 13, anc.i hence, ) #7(2. If {[1, {;} .= {Il' [72?, then
since. ri" P: ié a G-orbit, ):"P; = HOF;_ = r2° T;. This is a coni:rary
to Lemma l4. Therefore we can assume that IZ # Ti, PZ'

If f; = rl’ Fthen r;°rl(\ r} ri- # §. By Lemma 21.we have v2.=vl-l.

9 _
{n‘.' Fjj n{rl' r?}“ 8.
x
~ From'vy # V,, we may assume v, # v,. Since ‘go{’l N r’lo[; # ,G;
v, T Vy T 1 by Lemma 21. . . T ; .. on the other-hand,

. *This is a contradiction. Thus we have

% S
from lvl - v2] 2 2, vy # Vo 'Since T;ori(\ P2°[; # @, in the

same way, we have v, =V, - 1. This is a contradiction.
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Lemma 24. If E_"]ﬁ; = l—;t’r; =.-E0T§=A, 7[1 = 722 =7Z‘3 and

L et W W s T =<

e S R ek 8, T AT 2T T T a4

Probf. Assume E’°]—'2 D_A_ and G"r; :>A . We put v=v, =v,

. ' N * %
= vy and k =k, =k, = k. Since 71‘1 ?7(.\2 =’/?_“3, we have 7;?1 =T, =75
by Lemma 21. We shall show that ﬁoa = r;o Pz = ‘]'z';or’?’.

If Y* Ti T;, 73 Tg, (A(d)] = v(v-1l) by Lemma 22. iii).

since ]T{orl(cx) = [Feiw] = [Aw]
Pon #roﬁ by Lemma 8. iv). If r;orl = r;orz # T’;o r)3,

IA(D{)I ~vlv-1) by Lemma 22. ii). This is impossible. Thus we can

v(v-1l), we have

k+l
. - - * _ *° o 3 _ 0,7*
conclude that ﬁ l = PZOPZ = T’3 P3. If |3 Fz = Pl )3, then
% v o .
ClC2 = Cl 3 by Lemma 10, i); and hence, Vi = v2 + 1 by Lemma 19. iii).

This is contrary to the hypothesis of this lemma. We shall show

that k> 1. Ifk =1, {T’l P o) =L = g(v-1). since

T;*’ P3 7?;_”[71: i}g # r3oT’3 by Lemma 8,iv).. 'i'h.is‘ is contrary to the

‘assumption. Count in two ways quadrilaterals (¥, Yir o Yz)

whose edges are suécessively T]’_, T’;, ]’73 and 17 ‘then we have

v(v—l) v(v—l)

SO

(1)

kx = x2x3.

Here we put x, = \E(o{)(\ rz(é)], X3 = (T;_(O() n‘r3(5)\ for



31

(o, )€/ and x = [{2(3’1) (\Tz()’z)(\d | for ¥, ¥, (#)ré)‘;m).

We shall show that x, x2 and x3 are smaller than k. If

x, 2 k, then for o, ¥) € i [A(«)nrzml 2v - 1.

Of course, lA (&) n,‘r;(r)] S v - _l‘, and hence, IA(W) ) P;(b’)l

v{v-1)
kK+1

contradiction. We can prove in the same way that x3< k.

= v - 1. By Lemma 10, idi), we have '\A(O()‘ = , which is a

Then, (1) yields
x <x2, x3<k. _ (2)
Now

* -
— 1 L
cl(czc3) = Cl(xD + yS*')

14

-

c*
(cy

2)03 = (xzD + yzs)C3 = X, (v-1)C

3 + terms not involving C_ .

(4 =Tl BT =4VZ . el = 4 Vs,
=c(Ad), D' =c(4"), s =cC(5) and S' = C( ") )

Since x, > x and the coefficient of Cy contained in ClD' is

at most v -.1, C, is contained in ClS' that is, r;i r;, ':)Z

3

On the other hand, since ‘l P* jj there exists the follow1ng

’

figure.

Therefore r;_oi’3 'DZ! *. Thus rIoP3 = A'n zﬂ' = r;or3.
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- * o P s
By Lemma 10, i) we have ClC3 C2C3 So, [ 7!/(_3 by Lemmé 19, i).

This is contrary to the hypothesis of this lemma.

Lemma 25. If v,, v,, Vv and v, > 3, then the following figures
AR 1 2 3

[ T T e L X PE L P b e TR T e e o T T N At i = e el S DY AN Mrsian T £ AT = SAmeA

don't exist.

Fig. 1l Fig.,2 Fig, 3 Fig_.4

Proof. For each figure above, we assume its existence and

show that it implies a contradiction.
Non-existence of Fig 1.
Case I. 7(.\l #Royr War Wy

By Lemma 18 and Lemma 19, vy = vyt 1= v, +1=v, +1,

|y P*(d)' H"z(o()m I’3(6)| = H’z(op (\D(a)[ = 1 for

£, §) Fl" Pl and '7[‘2 =’/'L‘3= 7t4. Now let us consider the following

figure.
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Then by Lemma 22, 1) and iiil), we have
° * = o |
[PreTie0] = vytvy-1) = (vy-1) (vy-2).

Thus,

v .-1) :
|Gy en] L By (vy=2),

sO

This is contrary to the hypothesis of this lemma.

Case II. T, =T, # ‘lt3,' -

By - Lemma 21, vy =V, =V, + 1 = vy + 1 and

* * %*
’ICB =T, #TM,. But considering the following figure,

E M

. R
L —
Tk

we have v, = v, + 1 by Lemma 20.. This is impossible.

T =T = 7
Case III. Ll L ‘ﬂs # -

By Lemma 20, vy = vV, = Vy =V, + 1. But since there exists

the following figure,
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we have Vg = V3 + 1 = v, + 1 by Lemma 21 , which is

a contradiction.

case 1. Ty =Ty =y = 1, [T = T = TP = Tyl

1

Existence of the following figure is contrary to Lemma 24.

Case V. TG 7[ =Ty =Ty Eoﬁ: = T72°T; = F;[’; s r:f_r:'
Since I’l”I = [T = E°T’;,'.we have by Lemma 22, i)
U—,Z(Xl) A T3] >1 for (¥, ¥ € [°[], and hence, o= T;°T3°
so, we have |[e[ (| < v, (v;~1) by Lemma 8, iv). on the other
hand, since [*T] = [T, = [T, # B",PZ' we have by Lemma 22, ii)

l_E(h) A rz(rz), = !E(Xj_) (\TB(‘(Z)] = 1 for (‘(l, Yz)é_ r]’.cr*..

Then from the existence of the following figure,

we have )E_Qﬁ(o()] = v, (vl-l) by Lemma 22, which is a contradiction.

(Case VI. Ty =70 =T3 =%y GOFI = > F* £ [3 P3' e ﬁ

There exist the following figures, where 2, is a G-orbit.
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" Fig. a Fig._'.b
From Fig. a, we have lZ(o()l =v (vl-l) by Lemma 22, iii).
: ' | v, (v,-1)
On the other hand, from Fig. b, we have lZ(D()l =—T3T
' 1

by Lemma 22, ii), which is a contradiction.

Case VII. T =T, =T = 751; ]‘ic)’; £ [“zor’*, {;,’7;' ’}]4-
From E‘T’I 7 E"r;' ‘B"Tg' we have H-ziwl)/\ T}“fz)l =1

for ¥, Y, (A € [J(), by Lemma 22, iii).
Simj_larly: from rlo r; # l} r;, L}FI, we have l);(fl) 2 D(Yz) l = 1

* > ™ ,7* *
for Y1, ¥, A E (N, From [ J5 4 17 D11

we have by TLemma 22

“}]”I(a()\_, = vy (v, - 1), (1)

By Lemma 21,-’11‘; = ‘7‘[; =72:Z. Therefore we have by Lemma 8, iv)
% P % * e
(2o # 33"7?3' [5°T% # o0y ana (o1, # 157,

N .
and Eorj (2 gi, j(#) < 4) contains some n{. (2)
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We put
‘ _ A :_ _ . * %
VEVy TV T V3= Yy E°Pl =4, Tyl = Az'
- * ; * '
BT =4,V r34‘)4 = 4,V 577, anap) = c(hp),
b, = ctd), s = (3 and s' = |30 |
gow,'

*
(C2C3)C4 = (D1+Ci)C4 = (V—l)C3 + .

The.coefficient of C, of the above equation is v - 1 or v by (2).

3
Next,
. * — '
c2(c3c4) = C2(D2+xS ),
SO |

2 _ v(v-l)

v = + xs'.
ks
By Lemma 8, i), s'-i v,
so
v-l'
xgv-k——-Sv-Z. (3)

2 _
We shall show that Yi‘TZ #F>'. If TZ°F4 = 5 ', there exists

the following figure.
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Since E"PZ = AlU r'j' Wg have ]Z"]-Z = Al = E"F;. This is
contrary to the assumption of this case. From E’°T§ n [;“ FZ > Al

and (2), for Y,. YZ (#) & r;‘(o() we have by Lemma 22, iii)

F;(?fl)(y]‘;(b-’z) =1, (4)

If TZQZ' _contair.ls 37 It.hen we have [20[33 =T’Z° P4 v =.', and by (4)

P o § - . .
CZS (v k4 )C3 + terms not involving C3.
When k, = 1, v -{-;—:L= 1. Sso T;'Az contains r3, by ().
When k4'> 1, v=-12>v —%?—%—. So, x = 1, and hence BQAZ
4

contains E .

In all cases, we can conclude that E‘_Az contains 37 and hence,"

T‘; °r3 ')A 5- Thus, we have the following figure.

N _T7% 3 . . .
So, ll"] 1= gOTZ' This is contrary to the assumption.

Non-existence of Fig. 2.

case I. Ty #Tyr W3-

From T5o[, \Taels # # and oty #Tps T, we have |Dol7 (]

_ vy lvym) _
= 2 A T

+ 1 and Ho‘fi # BOP; by Lemma' 21 and

7
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Lemma 19. On the other hand, mo[’i«()( - )r;o[’l(a()l = lr’;orz(c()(
. “’I (d)[ . ]]‘;(d,)[ = vl'(vl-l); This is impossible.

Case II. TC =%2 #%3.

By Lemma 20, vl = v2 = v3 + 1. On the other hand, from the

" existence of following figure,

P
G

R [

=

We have vy =V, +1=v, + 1 by Lemma 21, iii). This is impossible.

1
cose 112, T, =T, =T [T = T T - T
' % ' g
. By ;.emma 22, for (Y, B)< r’lcPl, 1< l?i(b()A?;(S)‘ and
1< lTI(O() ra) Tj;(a)] . The counting auguments show that
) * : * *
|73 00 T’z(ﬁ)l = \H‘h’(\ Pzarz)\ and \?l(o(m T3(5)\
’ — * * _ *
= \E_(Yl) N E('Xz)\ for (\(l, Yz) < ‘1" . Therefore, Plo["l = Ff?z
* *x . * *
= T§°P3’ Now H.T’z') Tlc?l and ]"'19)—’3')’1”1 °P1' Since we can show
that’/tz =ﬁ; =(/t; by Lemma 21, . . we have a contradiction by

i.emma 24,

Case 1IV. ’R‘l =TT, =T, ]}T’I = ]’;,P; # ]'go]'g

From ﬁorz (3'\7}?3 D) V;orl, we have ‘T;."Pl (o()\ =—¥—}i—11§_-§:—)- by Lemma 22.

This is impossible.

Case V. Ty =T, = T3 Vr’ﬁ # Pz"P;' rs[];
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. * o * * ..
By Lemma 21, we have‘ﬁi = ﬂ2 =‘ﬁ%. - By Lemma 22, iii),

IT}QTi(N)l =>Y(Y—%), and by Lemma 8, iv), (ivfa # [ig[’z-
z 7

From the existence of the above figures, we have Ti°r% = Ti°Pl()T§°Fé'

Therefore, |
2 - Rl Rl -Irprel
=']Ti°l’_1(°“\ + (?;9]’2(4)] = v(v-1) +——"‘§;“.

This is impossible.

Non-existence of Fig. 3.

For the above -figure, if :Zi ='§E2 then there exists the

.following figure.
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This is contrary to non-existence of Fig. 1. Thus we have

' * *
) Zl 7‘22. ’7?1 .=7L'2. E_°F;=21UZZ and G is not doubly
transitive on Zl(O() and 2_, ) by Lemma 12. So, by Lemma 20

o e T =T 2 aso [, =TT

. * x : i
_ ='r3o]"3 = T’4or4 by Lemma 2. From 720[3 ()T’;"R;?ﬁ‘r’l' this is

contrary to Lemma 24.

Non-existence of Fig. 4.

There exist the following figures.

‘Fig. a Fig. b

Case I. ’II’; 74’/1';.

By Lemma 21, we have v, = v, + 1 from Fig. a,and'v = v, + 1

1 2 2 1

from Fig. b. This is impossible.

: % * *
Case II. 7[1 =T, #7TC5-

By Le 20 h = v, =v, +1and [ T?"P*f Fig. b
)4 mma » we have v, = v, = Vv, an 22#llrom ig. b.

On the other hand, Bor’; = ]-;or;_ .C-—TZQV;. D) FfP;r and rz"ﬁ_ has some

IR o T s s s .
'i by Lemma 20, and hence, [;orz =1y "1' This is impossible.

Fz” I = P;' r3 y

T;"?z = f’}Y’s' which

* * ok *
Case III. ’/fl =T, =T3 T’l"Pl

i

_By assumption, r’;orl A FZOFB _)'l’;orl
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contrary to Lemma 21.

*

case 1v. 7 =M =2, [0 - Ty A 3Ty
From Fig. a, Ho]‘; = TI"TI v ]"i for some ri by Lemma 22. So, -
Tl’o}"; (\ rlo']’; _—_-7 G°F; and Hoﬁ(ﬁ() = Vé‘]?_i) This is impossible.
Case V. 7"1—/ /‘3 Plrl ﬁf}fﬁf’z
e put Z— [i° Fs Tl

By Lemma 22, {Z‘(o()l =yl
1

From that rl r* D H Tf, we have [ OP Z UE Pl So

v(v-1) v (v-1) _ - - -
k1+l' + k]_ « Therefore kl = 1 and v l = kl + 1 = 2.

This is contrary to the hypothesis of this lemma.

*

Case VI. er-; =(;‘c; =T ﬁo Iy ¢-r§, P, T;°?3'
We put Zr:r’lof’; TP By Lemma 22, we have [P =2ZYT;.
T = 2 0Py oo o Ty Ty an [560] - v stns
[P D[} End [[o75D [ 5 wemave [} = = [ 13-
On the other hand, since Tje[,, > [p°]} and [ [3 @] = viv-1),
[y P; [}°], by Lemma 8, iv). This is impossible.

. ' . * *
M. For G, P and I3, suppose that l‘,’fzn [}'[73-

~ —t £ o ——

contains a G-ngbits S in DX, and Vir V v, > 3. Then,

2" 37

there does not exist Fl such that Fl°r': =Z.
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Proof. From non-existences of Fig. 2, Fig. 3, Fig. 4 of

Lemma 24, we have this assertion.

Lemma 27. (P. J. Cameron [3], Prop.)

r* # [? and 17 Iﬂ < (’\qj (J(r'l/r'*)u(]—;'t ' ), then G has rank 4.



3. Proof of Theorem 1.

“zTJ
W\./W‘-—/'\f'\z\ AN

We put

]
n

i #_{VjUf Er;} »
..Yi. {0 Tl D44

and assume that X Z

= x. >xr+l = =X, = 0. Counting in

two ways triplilaterals (T;{, ]z, Ai) such that &ij '_)Ai,
we have by Lemma 9 and 171

2 &

s“"< >y, .

i=1 * |

The eqguality means that, for any T)i and | jr we cannot have

Ef’r; = AkU.AX' Ak Firg

When xi>.0, by Lemma 26 yi< x

> J._+s_. .Whenxi=0, by
non-existence of Fig. 1 of Lemma 25 Y;  2s. ‘Therefore
.2 t . X
S<=Z yiSZ(x.+s)+2(t—r)s,
i=1 i=1 *

SO

s2 'g (r + 1)s + 2(t - r)s,

s'§2t-r+1.

(1)
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wow, 16t A = [T}, and ve put |
={ {0 1} wmosaerea pasx| [T 5 4,0 T3 # T
{7 ‘
ror [[] f {I’,]}? (#) €A, fF mn{T’ )’ja g b

 Lemma 26 Therefore |B| = 2]a|. Furthermore, for | [’}
L. RV »ea and for [0, [ e 1,05 1 Tio [se
]’*i'oo Tx AT:.‘_OOQ, [".;q [ ﬁoo[; are disjoint to each other by
non-existence of Fig. 1 of Lemma 25. Thus we have

[a] + (s - [B]) =s - [a| <t S (2)
and by Lemma 26

]A]-—lgt-r. ) (3)

. Assume § = 2t - r + 1. Since the equality of (1) hold

= =S =3
Yy = %; + s, and hence |a] =5 and 5 -1St-rby (3),

and hence, 2t -~ r + 1 = s<; 2t - 2r + 2. Sor = 1. Therefore,

if r > 1, we conclude that SS 2t - r.

We shall show that when r = 1, s < 2t - 2. Assume r = 1 and

_ , _ ‘
thsZZt-l, al'{dput A=fi'r;_, 15155. If/r[i__r,ﬁxj

for some ]: and r;, ther.x by Lemma 23, d(t];;[l* for any r]’(, T:e(#),
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*
and hence, rio rkﬂriorl = g. So s S t. This is contrary to the

assumption that t > 2. Thus, it holds that T, = T,= """ =T
’ - * ) -
rNow, Suppose !i"]; = d qu for some ,i' Pj ;nd ]_;, and pv..xt
D=C(A)’ r:;or}’{.-_-. A'Uri' DI=C(A')’t=)r;.(d)nr§(@)l for
(of, )€ r;:, x = !Pi(d)n.r?(c‘})l for (¢o{, §) cd, v = v, =V, = -,
k =k, =k, = """ . Then we have
1l 2 )
* : ]
(C_]._Cj)ck = (tCk + xD)Ck = +tvI + tkD + xDCk ,
- .
ci(cjck) = ci(t'ci + x'D') = t'vI + t'kD + x'CiD'..

(£' = [[;(o()nl";(é)) for («, )€ 7’;, x' = Hg(oz)n P;(S)l
for (of, §) € /'.) ‘

We have t = t' by counting in two ways triplilaterals (&, @, )
whose edges are successively r;._, [; and [;, and have ld(o()l = [A '(o'()['
"and x = X' by Lemma 10.

So,

’ ] - P - o0
CiD DCk (v l)Ck + .
v(v-1 . . . .
If Ci # C., (A' (o(){ =-—é+—1—)by Lemma 10. This is impossible.
.Thus Ci = Ck' Similarly, C:j = Ck‘

When S = 2t, then the equality of (1) holds. Thereforé, for

any ri' there exists E such.that I:"’r:; = AUP}: for some —r]):.

So, as is shown above, [: = Pj = fl’{ Therefore we have for any- B_.
R Th [T = AVT wna [T AT Th = 8
for [2# P
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When s = 2t - 1, then |a]< t - 1, and from (2) s - (a] < ¢
So [AI =t - 1.  Therefore, there is a unJ.que ]7 such that for any

ri (# r), r r :bJ We shall show that for any E, T)j (#),
Fi"[)j contains some I—}:. Assume [}F; = A};U-/ll for some IZ, r; (#) .
Count in two ways the paired (rl;, An') such that [:."]_:1 containsdn,

then by Lemma 25 ; we have:

2t=s+1<#{} [ DA -}<2t

So, _équality holds. Thus for any Ak' there exist [; and ]-; (#)

such that T;-"K; and K"P; contains A k* Therefore we may choose

% * ‘ ™ ™
Ta such that T;L"ru (\riora # @# and la 7£/u' Then T’ F* ?F P A
This is impossible. Thus, aga'in as is shown above, we can conclude

that for any Pi (# Tu)'
T #Tir 'Fio?i = LV T} ana
* , . T
T?i.orm Aria]-i =g for (m 7 ‘n’ Tn’

Thus if s z 2t - 1, there exists Z such that

e

—7% *
o YTy

72 —
FiP‘P;and /ioli i it
By Lemma 27, this show that G has rank 4. This is impposible for
s 22t - 1 and t 2> 2. ' ) A

4. Proof of Theorem 2
NW e ,’»\, g

When r = t, we have s< t by Theorem 1. On the other hand,

from s Z r = t, we conclude that s = t = r.
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We put EOI/?_ = Ai' A = {{Tk’ 732?: unordered pair] &’E Y. T
T; # f:{}. Then] i{ -1<t-r=0, so (Ail gl.

. : - . . - - - o A
Count in two ways triplilaterals (T'i, Ij’ Ak) such that /ia[’j D,Ak-'

we have

32535 ;.'

SO

s < 3. (1)

Case t = 2. If IGM)' # [PZM)I , by T. Ito [6], G is
isomorphic to the small Janko simple group and Gy is isomorphic to
PSL(2.11). We shall prove that the cAase of ]T'l (o()[ = ’B(o{)l does
not occure. We put lT’l (K)] = ”’2 (o()' = v. It is easy to prove

that '/Z'l =(l\f2. We shall show that T;. and Pz are self paired.
” ‘
If not, then rl = le’ Since TiOﬁ # Goi’; = TiaT’l, we have that
-]Z"T’l -)?Tfr;_, ﬁ°K(= B"P;) by Lemma 7. By Lemma 11, there
exists a G-orbit 5 in Eo]’l %aa%}{_ Gy is not ?-transitive on =(X), and
2 # Al’ d 9" This is impossible for t = 2. Thus, we have
i 2 ™
el = 4,V4 ,- so. v* = lrl"Pz“’Ol = “’fllwl + “}B_(&)l

= Y(v-1) Vliv—l). This is impossible.

ky 2

Case t = 3. For this case, the equality of (1) holds. So we

have |[A;[ =1 for 1< i £ 3. We shall show that if E"T’:;: Al-

thep ):_ = T;_ or TIII = T’l. If T)i' Fj Fal fi' then since'ﬁnrinTzvﬂ # 4.

there exists a G-orbit 2_ in rio Pi N ]”;0 rj such that G is not

*
2-transitive on > () by Lemma 12, and for any E’_, E° Pi #D_ by
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Lemma 25. From r = t, this is impossible. Thus we may assume

that there exist the following figures.

.

Fig. a . | ~ Fig. b " Fig. c
v, (v,-1)
_ ID* - 1'°1
If N, #‘Té.’té, then v,v, lT¢ L] = “ 1°[1(4)\ R
from Fig. a, so vl;>-v2. Similarly, v3‘>>vl from Fig. c. Therefore
v2(v2—l) . '
vB:%‘VZ. On the other hand, VyVy = k2 .from Fig. b, so

v, >v,. This is impossible.’ Thus we have'ﬁz =772 =7t3. By Lemma 7,

e Ty and77 are self-paired.

Thus °I2 1 UA_-LI T; I3 = qudz' E_ EUAS'

Put rj(d)l = v, then by Lemma 8, iii) we have
Ml(ool = (4, = |4y00] = viv-1).

We put

D, = C(A)andc c(lpP,1<i< 3

D1C3 = xlD1‘+ x2D2 + x3D3.

Then



D2C = xle + terms not involving Dl , |
_ (2)
D;C4 = x3D, + terms not involving D, -
Now
(ClCZ)C3-= (Dl + C3)C3 = vI + D3 + Dl 37
c,(c,c ) =¢C (D, + C) =vI + D; + D,C;.
So
DZC = D1C3 + D3 - Dl = (xl-l)Dl + xzD2 + (x3+l)D3.
Similarly
D3C = chl + Dl - D2 = xlDl + (x2--l)D2 + (x3+l}D3.
Next
(clcl)c3 = (vI + Dl)C3 = vC3_+ D1C3 , )
Cy (clc3) =C, (D3 + c2) =Cy + .Dl + D3cl».
So
D3C = D,C_, + (v-l)C3 - D1

Similarly

173

(xl—l)Dl + %D, + x3Dgy + (v—l)C3.

49



D.C.. = D.C., + (v-1)c; - D

172 271 2

= (x;-1)D; + (x,-1)D, + (x,+1)Dy + (v-1)C;,

3 .

D2C3 = D3C2 f (V—l)C2 - D

=.xlDl + (xz-l)D2 + x3D3 + (V—l)Cz.

_Furthermore

|
&
+
)
N

(ClCl)C2 = (vI + Dl)C2 =

cl(clcz) = cl(c3 + Dl) =C, + D, + D.C

So

D,C; = DyC, + (v-1)C, - D

171 172 3

50

(3)

= (xl—l)Dl + (xz—-l)D2 + x.D, + (v—l)C1 + (v—l)Cz.

33

D,C, = D,C, + (v-—l)C3 - D

272 273 1

= (xl—l)Dl + (xz-l)D2 + x D, + (v—l)C2 + (v-1)C

33

D,C, = D3C1 + (V—l)Cl - D

33 2

33

Thus (2), (3) and (4) yield

Xy = Xor xl_— 1 = x3..

3

(xl--l)Dl + (xz--l)D2 f x.D. + (v--l)C3 + (v—l)Cl. (4)
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We put X3 = X, then
v =X

l+x2+x3=(x+l)+(x+1)+x=3x+2. (5)

It is easy to show that the graph (_Q, }_) v E) is a c;trongly

regular graph with parameters 3v, 2, 3.

o

@D

From the condltn.ons of the ex1stence of the strongly regular

graph, (see (1} p. 97) it holds that

(3-2)2 4+ 4(3v-3) = 12v - 11 = 42, (6)

(s is a positive integer)

_ _ 3.2, 3v(v-2)
m = —————-2 3- d{(3v 1+3-2) (d+3-2) 2- 3} =3V +—~—-———-——2d . (7)

(m is a positive integer)

From (7), Eléﬁ'_z.) is integer, and hence

12v - 11 = d2 is ' a divisor of vz(v—2)2.

So

12v - 11 is a divisor of 112-132.
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From v = 3x + 2, we conclude
‘v = 11. .

Lastly, we shall prove that the primitive group satisfying
these conditions does not exist. It is easy to prove that )
Gy acts faithfully on [Z(D{). We shall show that for Xl' )’J’_ (#)

& rl (o), Go(, 3’1'\(_‘1 has the fixed points in T;_(O()\‘{Tl, )’i}.

- B o
ror (of, Y0 € 13, put [} = Do A Ry ana{ry} = Ry A G0

Then, Gd'],i fix TZ and TB. So we must have that (h’z, TB)C Pl'

Now, for »X ’ }'i" (#) GT]_(O(), put {51} = G(Xl)f] T’z(b']'_): {82}
- _
= rz(Yl)(\ ll('r]'_)- Then GD(:T]_'T_-;_ fix 51 and 52.
Since (¥, )"i)é—: r3, we have (61,52) 4’:‘ FB.
Therefore r;_(xl)[) P3(52) = {6} 75{8 qu .
So, Gq,'rl'ri fix 51 and . Since ,;_(Xi)'-; o, 51‘: 5-(75),
in the same way, we obtain that Go( r AR has the fix points in
rirte]

I U yr . R

Il ((x)\{)’l Yl}' The order pf GD< is at most one million.

If G, is non-solvable, then the minimal normal'subfroup of Gy is
non-solvable simple. From [5], it is isomorphic- to the Mathieu

.group M., or the transitive extension of the alternating group A

11 5
act on ten points. These groups have not the representation such
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that it is doubly-transitive on eleven points and it's stabilizer
of two points has the a&ditional fixed point. Thus, we can conclude

that G, is solvable and the order of Gy is 110. So |G| =[f[11-10
= 364+11-10 = 2> 5-7-11-13. G is non-solvable group and (|G|, 3) = 1.

But there does not exist such gfoup by M. Hall [51.

Osaka University
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