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A Unified Theory of Elementary Particles

with the Non-linear Spinor Field

Kazuyasu Shigemoto

Abstract

Starting‘with a non;linear spinor interactions of Nambu-
Jona-Lasinio type, we have derived ' in 4 unified way the
Weinberg-Salam theory for the electromagnetic and the weak
interactions of leptons and gquarks and the asymptotically free
gauge theory of Gross, Wilczek and Polizer for strong 1nter—
actlons of gquarks. Here we have introduced a un1versa1 cutoff
in our fermion loop calculations, and retained only divergent
diagrams. All the géuge bosons and the Higgs scalars are
created as composite states of fermion-antifermion pairs.As a
result, all elementary particle forces are shown to be related
with a single coupling strength, i.e., the fine-structure
constant. The lowest order corrections tovthe gauge coupling

constants are also considered.



§1. Introduction

Up'to now, hundreds ofrmany elementary particles,
including resonances, are found by expefiments. As the ﬁumber
of . elementary particles are so huge, we want to éonsider
that all these particles are not really "elementary particles”,
but "composites" built from more fundamental particles.

This idea has a long history. In 1949, Fermi and Yangl)
have proposed a theory that the pion-is composed of proton
and neutron. Then, in 1959, starting from the ndn—linear

2)

fermion interaction, Heisenberg has developed a comprehensive
theory of elementary barticles which are composite states of
fermion and antifermion pairs. 1In 1961, starting from the
same Lagrangian as that of Heisenberg, Nambu and Jona—Lasinid3)
proposed a dynamical model of elementary particles based on

an ana}ogy with superconductivity. In this model, the massless
pseudoscalar composite state of nucleén—antinucleon pair, the
idealized pion, appears as a Nambu-Goldstone boson when
nucleon mass is generated by spontaneously breaking the chiral
symmetry. Subsequéntly, with a nonlinear vector interaction,

4) and otherss) demonstrated that the photon can be

Bjorken
consideréd as a collective excitation of a fermion—-antifermion
pair. In 1974, in the Nambu—Jona—L;sinio model, Eguchi and
Sugawaras) found a set of equations which describes the

collective motions of fermion-antifermion pairs which is

equivalent to the Higgs Lagrangian. Then, Konisi, Saito and



7)

Shigemoto’’ examined the same model of Eguchi and Sugawara,

and found that the Nielsen—Olseng)

type theory is obtained
and the type II superconductivity phase is realized in hadrons.
Hadrons behave as string like objects, and this explains many
experimental evidenceSlike the duality and the linear rising
trajectory.

On the other hand, the extensive theoretical works fo
unify all the interactions of elementary particles-were

performed for last several years. In 1967 and 1968, Weinbergg)

10)

and Salam proposed the theory to unify the weak and the

the weak interactions are mediated by the very heavy bosons,
and the weak interactions become renormalizable. The distinct
part from the former theory,lamong other things, is that the
Weinberg and Salam theory predicts the processes mediated by
the neutral currents. These processes were found experimentally
at CERN in 1973. The existence of these neutral currents is
taken as one of the evidence that the Weinberg and Salam theory
is true. While, in the world of hadrons, the strong inter-
actions between quarks are explained by using the colored

gauge theory. The necessity of this color freedom is evident
from thevexistence of @ and from fermi statics, and the
colored gauge theory is the local theory on this color freedom.
One of the merits of this colored gauge theory is, of course,
it is renormalizable. This theory can also explain the scaling

phenomena found in 1970's at SLAC and other places by colliding



high energy electrons to protons and neutrons. These scaling
pheneomena tell us that in deep inside of hadrons, the'spin,
1/2‘particles, partons, are freely moving. In 1973, Gross,

11) and Polizerlg)

Wilczek have founa; in the frame-work of thé
'colored'géuge theory,‘the fact that:in'the deep reéion inside
hadrons the above free parton picture can be actually realized
(ésymptotic.fréedom). Therefore, the scaling-pheﬁomena aré
one of thé aspects of thé’colored gauge theory. This asymptot—}‘
ically free gauge theory of Gross, Wilczek and Politzer,
therefore, is a promising theory to explain the strong inter-
actions of quarks. Until now, there have been'many attempts
to unify the Weinberg and Salam theory and the colored gauge
theory.

We regard leptons and quarks as fundamentai particleé.
Then along the above two lines of study, in this paper, starting
from only the fundamental leptons and quarks, we13) attempt
to construct the theory to unify the weak and the electro-
magnetic and the strong interactions,‘all interactions between

14) also

elementafy particles except gravity. /Terazawa et. al.
have proposed the same unified model after our first proposal
of this kind work. In our approach, we have introduced a
universal cutoff and retainéd only divergent diagrams. In our
picture, the photon and the weak vector bosons are considered
as composites of lepton-antilepton or quark-antiquark pairs,

while the colored gluons are considered as those of quark-

antiquark pairs. As a result, the arbitrary parameters involved



in the original Weinbexrg and Salam theory and the original

colored gauge thedry are largely removed. The Weinberg angle

ZGW = % for fractionally charged quarks,
15)

which coincide with the prediction of Georgi-Glashow

is determined to be sin
in‘their
runified'SU(S) gauge model of all elementary particle forces.

In §2 ;.starting with a Lagrangian of self-interacting
leptons, we éonstruct an effective Lagrangian-of the Weinberg-
Salam type, and the Weinberg angleAand various coupling constants
are determined. In §3 , the above model is extended to a more
realistic one including quarks. 1In §4, the renormalization
effects to our unified model is discussed. .Finélly;_§5 is

devoted to a summary and concluding remarks.



§2. Unified lepton model
In this section, we consider how to realize the Weinberg-
Salam model in the framework of superconductivity model by

using the functional integral technique. This method was
16) 17) |

proposed by Kikkawa and Kugo to obtain ' the S e
collective motion of the fermion-antifermion pairs.
We begin with the nonlinear Lagrangian of the Weinberg-

Salam massless leptons only:
o ——— . "—\-‘ [p— 2
L = Lival *+RivaR +4£(CwL)

+2 F, (CALY(RYWR) £ (RERY (2-1)

where

- 1= Y | _ Y, ‘
L= ng{e)‘:‘A e) = 3-e =A\gt
2 e -L\e > R=37e=Ns > (2-2)

i;e.; the |. is the iéo—doublet while R is the iso-singlet.
The four-fermion interactions here are of the most general
form invariént under the global SU(2); ® U(l) gauge group. An
interaction of the type (Eyu;r*[__)z is reduced to ()—__Yul_)zAby
.. Fierz transformation. _This Lagrahgian is, of course,
unrenormalizable, so that we introduce é cutoff in a familiar-'
'way.3)

There are five possible composite states of lepton and



antilepton, i.e., two vector-isoscalars Uu and’Vﬁ, one vector-
isovector ﬁu, one scalar-isospinor K and its conjugate Kf;
They will interact with leptons in the SU(2)L é U (1) invariant

way*

(L‘*@L)U“ L, (RwRYVM (I3 Ly-UM
(LRY-K | KF'(RL) | o (2-3)

Therefore, we introduce such fields into our Lagrangian as
L]
auxiliary fields, and get another form of Lagrangian . which

is effectively equivalent to the original Lagrangian /[, :

L= Livt(apt U v ZU )L + R aur2/UdR

2

+ L KQ “*—QKTL +a KK -\-bL-_)_J: +clU, R (2-4)

where
1 3
o= -
A (l.5-2-.2§3 ) b‘ 5_3__4_§:‘ >

-1
3 (2-5)

Here we have set’Vu = ZUu in order that the braékets.

in (2-4) are of the Weinberg-Salam type. The equivalence of

L and ;i!can be easily seen by taking variations with respect
to lepton.and auxiliéry fields independently.',Infwhét

» . . Y : .
follows, we start with the Lagrangian AL and regard the boson .



;fields KljUﬁ and 3u'as.well as L .and R to be: independent
'operatorS"bf;each other.

In order to obtain the effective Lagrangian for those
bosé'fields, we make use of the path integral technique.

: Deflne the effective Lagrangian dfeff by
e«p{c d“k[,aﬁls

(2—-6)
= S L d( independent fermion f.elds)] e,xp{ L }
Carrying out the path integral over the independent lepton -
fields, we get o . -
- 2 R
Satx Legs = (ot Joo KT +b U +< Ut
B Ly (uTOON J—'KARW
: -_— . . L. .
- Tv Log 1-¥a » UYd
T —— 2. UN
w(a A, 1= nra R
L il (2-7)

ﬁere, iﬁ the logarithmié term, the fields appear in the |
projected form. For details, see Appendix. The logarithmic
térm corfesponds'to a series of lepton loop diagrams if it is
expanded into Taylor series in bose fields. We retain only
divergent terms proportional to a cutoff parameter A2 or

2.6),7)

log A » hecause,.as it is easily seen by a simplé dimensional

‘analysis, the other higher derivative terms vanish in an infinite

cutoff limit.



' . - 2
Leg = B 1~ UwBGOK [* +2aradik|?
_ 4 ' — 2 2
TR IKI - %cu,w) -3 U (2-8)
§°
~Cd=bd Uy, ~(3a=~cru?
where ' . 7
‘1.
A R A
d = qmn)l » B= Gy Lo m, Rl
bmar 4 D - -3 - »
Uw =9, U, ~ AU —2Ux U (2-10)
Uy\v = a!* Ub—a» Uf‘ : - (2-11)

Here m, is an arbitrary dimenéional constant, and is chosen
to be the electron mass.

The created Vecto; fields Uu and ﬁu enter of the Weinberg-
Salam type in (2-4) and (2-8). This suggests to us that the
created vector fields can play the role of local gaﬁge fields,
if ﬁhey happen to be massless. In the folldwing this will be
shown to be the case: We require that the fields Uu and ﬁu afe

massless, i.e.,
d-b =o anol 3d-c =0 (2-12)

and that the mass term of K is finite, i.e.,



2.d O 2 -
2 RS- ey (2-13)
Solutions to Egs. (2-12) and (2-13) are
2 1 I 8
3(1‘ 39 532‘3"& ’5‘2‘"2%\*6(0\‘) . (2-14)

Then, after some rescalings such as

Az O 3 R 4 |
= 'ZJEB*_‘ ’ Ur«="z—f'5A*‘ ’ |<=—ﬁ3—¢)‘ (2-15)

we have the Higgs type Lagrangian
= _ ‘a’ . 2
Lo = Liggs = | (3~ 98- 92K )6 |

~12 141~ x 1

(2-16)
LR 2
< Ahv - —CLi- Bhv 5
where
1 9 1
)\: -y ’:: -_— = —
e » Y= 7 g . (2-17)

' This shows that at this stage the created vector fields Ku

and Bu can be regarded as the gauge fields, though the original

Vd
Lagrangian AC, does not have the local gauge symmetry.
Finally we take into account the interactions between

(L., R) and (¢, A, Bu), which ate obtained from the starting
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1
Lagrangian 43 » and add them together with the lepton kinetic

parts to the J: after rescaling (2-15). Then what we

Higgs
get is the following Lagrangian of the Weinberg-Salam type:

Lws T Ligs —Ge (TR +REL)

fTat(ardee -$2A0L g
where

Here it should be noted that in any calculations based on the

above Lagrangian we should not take into account of one-

Afermion loop diagrams where bosonic fields are attached as

external ones, because such diagrams have already been consider-
16)

ed. This rule will be formulated in the following way .

The starting Lagrangian JC, can be written as

(2-19)

>

.é = .ﬁH\'ggs *K —[H.;acj_c, = »Cfotql 'rvétmntn.v termg

= _a 2 3b 22, ¢ _ 2 _
where o(counter terms = —3 [¢]2 + ag- 2y * 18R ‘cHiggs'

The one-fermion~loop diagrams can be seen to be always cancelled
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by ‘Zicounter terms® Therefore, the above rule is satisfied

if we adopt the Lagrangian of the form (2-19).

It may be surprising that the model with global
SU(2)_ ® U(l) symmetry should be equivalent to one with local
SU(2)L B U(;) symmetry; This occurred due to massless
conditions (2—12) for Uu and ﬁu.
From our Lagrangian (2-18) we can see that arbitrary parameters
involved in the original Weinberg-Salam model are largely

removed here. We summarize in the following the main results

which are drawn from (2-18):

i) The Weinberg angle GW is fixed to be ew = 30°, 18)

because of the definition taneW = g'/g together with our

result g'/g = 1/¥/3.
| . - 1/2 $18)
.ii) This leads to M= (V3/2) M, =.e/(/§GW) = 76(GeV),

iii) If the gauge symmetry is broken by the: vacuum: expectation
value <¢>o = (-%;)1/2, then the electron acquires a mass

m, = <¢6>Ge = (—%?)1/2, or 2m2 = -u2(>0), because of Ge

= g/V/3. The equation 2m§ = —uz coupled with (2-13) gives

N A a'P
- = = S % (2-20)
20 )t ) (P-mg tie) ,
or
! = T (N-mg 105(11-“%:))
T o2 45,2,y 0 lent e 7, (2-21)
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._;;S .

which is essentially nothing but the Nambu-Jona-Lasinio
3)

self-consistent equation for the electron mass m,.

iv) After the spontaneous symmetry breaking, the Higgs

. 2 _ 2 _ , 2 _ '
boson has a mass my = 2u° = 4me or my = Zme, because
N 2m§ = —u2. These results are of course based on the bare

_coupling constants A, g', g and Gg- Some of them could be

modified if we take into account the renormalization

~effects. This problem is discussed in §4.

Finally we make a remark on the choice of auxiliéry fields.

In the path-integral approach we first face the question of
how to choose auxiliary fields; The Weinberg—Salam model has
been created from the Lagrangian (2-1) by choosing UU' ﬁu
and K as auxiliary fields and for special values (2—14)‘of
coupling constants-}i. One can easily see that another choice
of auxiliary fields leads to another composite theory which is
realized by another values of coupling constants--fi. It
should be noted that the special coupling constants (2-14)
make only the special channels Uu, 3u and K excited and‘thus
the Lagrangian (2-1) turns out to be of the Weinberg-Salam

type.

13
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§3. Unified lepton quark model

Following the same method of §2, in this section, we
propose a further unified model including leptons and quarks.
It is shown that a Lagrangian of self—interactingrleptons and
quarks generates the unified model of all the elementary
particle interactions, i.e., the Weinberg-Salam model and the
asymptotically free colored gauge model éf Gross, Wilczek and
Politzer.

We begin with the following Lagrangian which includes
leptons and qﬁarks: |

: L = >: {z) 'Y (o *f\(Q),U -\'TC.;G’ )l,‘

y=1,2

+¥; ‘.Yi( o “'Y\-J. d oy

+a; (K +he ) !

-r

I

AT u- 0= VL

{,2

J

[

"'—éi\"{(a—"YRjU —“>\°‘\/°‘)R,- | (3-1)
- p
t R‘: ‘Y (9 —'-l‘\(Ps u - » \/q)gj

— e
thy (L; KRy the) ¢ (L;KR,-*M-)}

A T R NIRRT NS AVA
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where

P .
R;P: Ne P ; RQ.: NeC » K = ':-CzKT

and

Ne=nhtse + X auUne

Ao = ~hANG + ACoSO -

The quark fields Lj' Rj and.R;) are all color triplets,'while
the leptonic fields lj and rj are color singlets. The'Lj ahd
lj are weak iso-doublets, while Rj and r. are iso-singlets.
The vector VJ‘ is color octets. The Yj's are the weak hyper-
charges of correspcnding leptons or quarks. The Lagrangian

color, sU(2) & U(1)

(3-1) is invariant under the global SU(3)
group. |

The bosonic fields K, Uu, ﬁu and V;i play the role of
auxiliary fields, because they do not<have kinetic terms.
The Lagrangian (3-1) is effectively equivalent to the purely
self-interacting fermionic system. This can be easily seen by
taking variations with respect to bosonic and fermionic fields

independently. The above choice of auxiliary fields is the

necessary and sufficiant one for our purpose.
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The effective Lagrangian z:eff for those bosonic fields

is defined by

@xp { Sd7(lCe§f§

S Lo ( independent fermion fyelds) | ©ep { d*ki}

(3-2)

Carrying out the path-integrals over fermionic fields, we get

' 1
1+‘ (\Q Ut'CU)/\L — ;KN
ot Logy = - Tlg| 7 ve
=T g SKIAL 1r mp U AR

“'Z-m"s ‘Yab \<*‘/\L 11. ¥ MR, U+ X VM) AR

=l

N i e)

) )

-l-Sd“—'x{ le"'.‘.mU: -tn\j:-t- \"\/v:U }

We retain only divergent terms proportional to a cutoff

- { L~
— N —_——C:

O

o : =N
w—%cj I<K¥AL o 1+ 2x- (\?’U*x VEINR

(3-3)

parameter A2 or log Az. After some trace calculations we get

an effective Lagrangian

A
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L o5 =~ 5(GrBr30:3) O = 5€9Bap, 4181100 U

: ' nwo. 2
= (Qytdat 3ds*3d¢'*n)3: —3r3d, + i @+ ~m) Uy

(3-4)
2
—'33:‘(33-‘-6‘\')6‘-0;“; - (4—01,1—<A-d<,~p‘)v;‘“ |

| o
- Cal@+ 03B T3 (Bhee]) B33 Gleeh)Be) | (2= ~RTH KL

2
PRl IE o T ClkR) ¢ Ta C )

where

ay H<| -
Li=- S(zr)‘rQ (- )"z‘sm‘)" P )

(htC
1= e\Sw_ﬁ o9 (1~ b‘ ‘)lK\)

rt €2)
~¢¢ mﬁ 203 (1— = I* )

Here we have used

= - N~ o - A '
\(Q.‘ \(22‘ 1 » (Ll‘\r\-'z‘ 3, -A\('_ _:\(“:__2

C
3
<

il
o

P‘B\_ - ay\,—jh + 2 D‘,hx ij

3

C
H
]
o
.
C

v av.LJh.
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g =1 _de e —i-jA il
C (M atp y
T N
2= )Y P~as <IKPy ~ % <“<‘!>(U'Dq' P~ a3<IKID)®,
dtp

o .S.SAz oa¥p —_ 2 N 4
S amt) P-Gire<iky ~ BT ORI Gk ) aiehaR): |

a'p

a‘p N R < SA
KIS ==
YIRE? ant) Gram e ar )

. A
- - 2
olg = (mjkg P UK~ (bt

R . SR
P memm(Eta>y 0 BT man) Graneny
g\ gtp |

2 L3 2 2 "
P —bcH UKID)

J S/\ dQP £
BT ~am¥) P gIkb) , BT Carp

|2.

where < |K12> is a vacuum expectation value of |[K

The created vector fields can play the role of local

gauge fields if they happen to be massless. In the following

we require that they are massless, i.e.,

L Wy,
m= 3QA,t3q, + %-dyr —gdq.'

nN= A&, tA&, t 3dat+ 3dq
J

P= 4da t 4 dg (3-6)

Then, after some rescaling such as
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- - 3 5. —0 - S —
Ot (a5ntg g, wam, ) Ans 2 An

= 9 : % ’=.§:
ek ( 366, "'36(321'44’(33""‘"‘@4) S BH»

(3-7)

»

- 3 <P . £ o
Ve ® (16(53-\-\6(3(,) Co=zCh |

1
<K=~ ( o B, *0(2(33+3(b7+c5)(33+3(b§+<:)(39) P
= — 1
g? ,

we have the Higgs type Lagrangian
*Z:eﬁ = -ZHiggs = —"q'_ Anv "Jq". B (3-8)

3G+ [ (2~ L9B - A3TR )|~ V)

‘i-
cec § o Lo (1=~ o <N) %

Finally we take into account of interactions between

> . . -~
(lj, rj, Lj’ Rj) and (¢, Au, BU' CJl), which are given by the
starting Lagrangian (3-1), and add them togather with ‘the

fermion kinetic parts to the xfgiggs after scaling (3-7).



19

Then what we get is the following Lagrangian:

Lot = L Higgs

+ T - e - 2228) &+ e~ T Y 8dy

> 3,2

_G§‘> (L;0Yv; th.co } |

PN {E iY(o- @Y. r-922R -4 ANCHL (3-10)

j=4,2 )

l

+ R .-v(a—%SIY%B 3.{- MCH ) R;

-+ -(ip 'Y (9~ ";5_9’\(95 B~ S;A“CQ)R;’

- G (D eR; +he) — G (GFRFene)y
where

AW Q; ) b, &) )
G =3¢ , Gy 5 o G;’= ”? (3-11)

The Lagrangian (3-10) apparently contains the Weinberg-
Saiam Lagrangian for leptons and quarks. It contains furthermore

the vector color-gluon theory in the following form:
N e B S RN

where g=(p, n, A, ¢) and Vua is a vector color-gluon. The vector

coupling constants g, g' and f are given by (3-7), i.e.,
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2 3 3 |
R AR TTSe———— = ‘2
J=@7 G, *36,736,— o3 » 9

¢

BT ARTIE IR, 4%3 ,

Il

-5-'2: 3 fa—X 3
q'BB+ q‘(sq. o %

(3-13)

= ~ ~ ~ 3 1 2
Here we have set 8_81;82:83264, since Bj s do not so strongly
depend on mass terms in B{ s for large cutoff A. This shows that
the Weinberg angle'is fixed to be

3/2

AN Oy = Fega

IR

_i .
3 (3-14)

and g, g' and f are related to the fine-structure constant e2
through
2 2 . 2 ) 2_._5_..':_.32_32
€=9 anow = €%-8 - 8 2 -'§rf “(?ij %; (3-15)

’

Our Lagrangian (3-10) is invariant under the local
SU(3)COlor 8 SU(Z)LQU(I) gauge group. If the Higgs scalars

develop vacuum—-expectation values
A [O .
<> = & (o)
®>=F (v | (3-16)

- both SU(2)L and U(l) gauge symmetries are spontaneously broken.-

Then, by choosing the U-gauge such that
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¢= J—lz:(ti’z) ,

(3-17)
relevant férmion acquire masses, i.e.,
ERCE-Y I T
Me= 8 F > W R Y,
and
vV C v S
m_ = e - = T
I o MeTRE Y,
(3-18)
= B b . L b,
T ®ZE > MaT T g
The W and Z boson masses are given by )
2 GOt _ 38 (e, V) = (62.1 Gev)®
-u‘ — - = - [=4 = . V
Mw= % ( ?.GW)ALU\ 6y . 38 ¢ (3-19)
. 2 '
[t
2 w o= 2 -
2 = (im = (785 GeV
Mz = &g, TeV ) . (3-20)

These equations together with (3-18) and (3-19) giwve us relations

k3 kY L % 2 2 ’01‘\- . 9 2 2
Mgt myu +3( myr Mp+ mytme)= ;('5 = 2x(—§x38) (GreV)

(3-21)
The Higgs scalar n generate the following mass
2
2 20 aftay +3(bt <) +3(brG:)
m = - .
] B (q‘zf al ...3([,"1(“) +3 (b:fcf))?' (3-22)

In the approximation of m , m , m_ , m_, m

« m_, the mass of
e u p’ n A c ,
the Higgs field is approximately given by m = 2m .
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The vacuum-expectation values <¢> are given by equation:

AVASLDI N
3 1] b= <11 )

from which, together with (3-18), it follows that

L Aty el o 3Grah | 3
. X T
== —LS Qmt { P"'_ mg F;l—mr’: P‘-m;-m,’; P‘mc"m;’ . (3-23)

This is nothing but Nambu and Jona-Lasinio's self-consistent
equations for fermion masses.
Finally the B; s defined before can be written, in terms

of fermion masses, as

o g\ datp ' K SA atp
&) 1= T Qmyt J (p-me)? » (.=~ am¢ C P"—m:; )»
A (A dtp _ X~ dtp
(33': - (‘23\‘)" S qS"-m;- m:' 2 > (‘Sq.' - (211‘)’*5 (P"—m;—m:)‘ (3-24)

They do not so strongly depend on fermion masses for large
cutoff A. From (3-24) one can see that the typical cutoff A
is given by (/\/m)2 ~ exp(3042) >> 1. This permits us to set
B=B=B,2B=B,.

In this'way, we can construct the unified theoxry of the
weak and the electromagnetic and the strong interactions start-
ing from fundamental leptons and quarks only.

Our main results from our composite unified theory are:

2

i) The Weinberg angle is fixed to be sin eW=3/8, and created

gauge-field coupling constants g, g' and f are related to the
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_ 3.2 .
= §f . This

14)

2 ., 32

fine-strucute constant e2 as e = 8g = %g'z

coincide with the result of Terazawa et. al. and hence with
that of Georgi and Glashowls) based on the SU(5) gauge model.
1i) The W and Z bosons acquire masses Mwé=62.l GeV and
M, = 78.5 GeV.
iii) The mass of Higge scalar is given by mnsszmc when charm
quark is heavy.

Some of these results, of course, could be modified if

we take into account of further renormalizations. The way of

this renormalization is discussed in the next section.
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§4. Renormalization effects to the unified model

The unified theory, thus derived, is a "bare" theory in the
sense that it is taken into account only of fermion loop diagrams.
The aim of this section is to calculate the other renormaliza-
tion effects to the "bare" theory.

We consider that all the leptons and quarks is sequentially
obtained if (ve, e, u, d) are replaced by (vu, u; c, s),

(vT, T, t, b),+++, By introducing auxiliary bosonic fields

the non-linear spinor Lagrangian for this system can be written

as
n » o
L= | Tert0-20p- PTAIL
=

'*'-\:5':’(( o - 'EE:YV).B)Y}
—a; (L;0r; thie ).

v T oy (0- o B- PER- T e L

+B; eria- P Yee - ¥XCH R

_ car . e
o A L R L
— — g
~b; (T; R the ) —¢ C;E Ry +he) (4-1)

o (O + m B+ AR TRCa }
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The Lagrangian of j=1 is that of (ve, e, u, d). Similar

sequential Lagrangians are those of sequential multiplets. -
In (4-1), n is the number of sequential multiplets (ve, e, u, d),

vy, ur cr s)y (v, Carrying out the path-

u

integrals over fermionic field, the effective Lagrahgian is

T, t, b), e,

given by

‘Sdﬁx.lie§§

n 1+ RV 2
F ) e TR
e WP Me, T+ 573 ¥ B AR
(4-2) ~
v Y(—-‘CA+-Y<¢ +58CHA, L LeFag |
~'42__R'£b3 -4 + L
5=1 Ya b5<b ’_\‘- > 1 1—..(67 (QYQB +£>~"C")l\e o
¢,
B CJ?‘#/\L) R & ;‘;3‘5 (-3-\( B+—->\Q'*)/\g

"'?—;‘Sdﬁx{ K & 1° +m5_/_\-,: + 05 B + p;c:z }

We retain only divetgent terms proportional to a cutoff para-

meter A2 or 1ln A2.

After some trace calculations we get the

effective Lagrangian
A2
'C‘CH :"-CL;.(Za) AI"W - 4

3 (25 ) C:j +ZZ |

~\/ C1$)1*)

(4-3)
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where

5

v -
(23)- 8 g6l |, (29"

WYL

'
'o!l“(Ol(aj-Hl(&} )|

[Z]

=i

C “ys ILS_-_-OC ""\._L?:L 2_g 2..¢
Zs) ¥ 2_ 3 G, N Zq-%(qj(i).+3b5(sj+3c)@j ), )

and

K SA d‘(-P

e_ _ x i L (" i
B ;= ~amy Paj<ield) (3;2‘0“)"5 Cp=

bireHcdl>)™
\/.(‘¢42) = (effective potential of (4] )

The massless conditions for the vector fields'zu, B and c2

H v
have been imposed, i.e., the constants mj, nj'and pj in (4-2)
have been so chosen as to be cancelled by A2— divergent terms
of Au2 ’ Bu2 and Cua , respectively.

The kinetic terms in (4-3) will be normalized by

(Z) = (28 = (zsy' =2 =1

so that
32- N 3L = ‘H’? 5 312 = ? . AN Q _
= n 7 = A ~ i
)=}
fz__ ji o~ _42_
= 4z a2 4ng .
r=y

Here we have set B%j= 82j= B, because the 835 do not so strongly
depend on mass terms in Bj's for large cutoff A. If we add
the fermion parts in XZ to<li , then what we get is the
eff
following Lagrangian:

lf = aéfvt S i-'a<j¢M:J2

> (4-6)
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where
L S >
= (g >
ws =D T e PRR- P e0 L
L - YL B Y —as(Lidg tha )

pm SN B L

pl
S . 9 — e '
+R) cyh (ah“ e \(Rj- Bi“) Q)- -&-Q‘: tb‘h(q_\~-‘5_3\rﬁ‘8”)?f
—b; CL;OR; +he, ) =g CC;9RY +h.c.

S

B,

l
£l-
%
¥
<
I
P

. cq’ 2 ?
+ ‘ (ah_ -L-S:CJ‘—A’}«‘ 3'3 Br\)¢ \ - \ICNH ) P (4-7)

and

—

L@.C.D. = 2

q:u'd‘...

3wt Freehel-Lenl

. (4-8)

The first Lagrangian °ZZW is just of the Weinberg-Salam

.=S.

type for leptons and quarks, while the second one.{CQ c.D

is of the quantum chromodynamics type without quark mass.

Here the "bare" coupling constants g, g', and £ are given by

(4-5), so that the "bare" Weinberg angle is fixed to be

7%

3 = 3
aln T e,,= gt 8 . (4-9)
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Next, we consider the renormalization effects to these
bare coupling constant.

First, we calculate the wave function renormalization
constant ng of Bu to order g'z, 6ther than fermion-loop

contribution. In this case, the vector-meson self-energy graph

is considered only of the Higgs-scalar loop. Thus we have

_ 311
8 . b= 1+ = (3

CHi S) 6

(Z 5 (riggs) ) , (4-10)

where use is made of the same B as defined in (4-5). The

renormalized coupling constant g&z is, therefore,

ey ' = 2 2 £ ;2
9 %= (R BT (Z, ) Ro(Higes) 9 =2, Higgs) 3

3'1- 1 _L
I+ _(2_911 (—?‘D'ﬁ‘%)ﬁ b,(& (4-11)
H 2 B_,B B i
ere. we have used g'" =9/(20nB) of (4-5) and Z --Z2 ’ Z1 being

1
the vertex renormalization constant of Bu-fermion-fermion and

B . . . .
22 the fermion wave function renormalization constant.

For the A field the charge renormalization constant Z{é

U
and the wave function renormalization constantzék have con-
tributions from Au itself plus Faddeev-Popov ghosts and also
11), 12)

from the Higgs scalar. These are known to be
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(Z P = g (2o 2y,

(Z?(H:ggs))—l T 4+ %2('5

b

(25 )™ = 1~32(—§3—a)(3’ (4-12)

= A -\
(Z? ¢ Higgs)) =(Zl (Hc335)>

)

where o is the gauge parameter. The renormalized coupling

constant gp is, therfore, given by

9: = ( Z S(A))g ( Z; (HiggS))s (Z?(A) )—2 (Z ?CHigss))_z 32

9 1 1

- 8Bde  (T- B, be , W

i

where to the second order the gauge dependent terms have been
cancelled out and use is made of gz= 3/(4nB) of (4-5).

In the same way, renormalization constants Zf: and Z;:
of the gluon field Cua have contributions only frvom Cua itself

plus Faddeev-Popov ghosts. The results is also known to be 11 ,12)

- L, 7. 9
(Z5cgmony) = 1 =% (‘L-5)0

-—‘
(Z§ (‘31“"“‘) =1 - (B-2)e (4-14)

The renormalized coupling constant fr is, therefore, given by
- c 3 c ~2
5“2 = (23 (%Qucm).) (Z‘CSQM‘D“V)) 5.7‘
I 1 {

(4-15)

—
—
—

L G N L
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2

where the relation £°= 3/ (4nB) of (4-5) has been used.

Recaling the relation
_ ‘ \
== gt
R

72
b My > . (4-16)
for the electric charge e, and substituting (4-11), (4-13)

into (4-16), we have

1
2 ———————
€ C bn+bz3(5 > (4-17)
or
1 1 137
C= Torpper = (%"—-q) o (4-18)
Eliminating B from IR’ g'R, fR and e, we get
2 32n _
i&@ —— Eﬁ:pz [SQ}) = &R il . —_—
R by '&/ T F-n BT, (4-19)
2 ‘ “ 1 2
b,tb ety . Ve
Se = L2 =} = . b
& by (&) AUNOF - wm , (4-20)
9;1 - b.*b ( et - —L—E . .g‘_.i
— = =2 (= = 2
4T b, 4 Loo*e,; 4w 5 (4-21)

where the renormalized Weinberg angle sinzéﬁ; is given by

R 3,2 b
Un ’EDVV = —;—J£~— = 2
: 9 t9o2 b\tb,
= 2 327 (4-22)
8 256n - 5o

Those lowest order corrections to coupling constants are
of the same order as those from fermion loop diagrams. But,

as the number n of the sequential multiplets becomes large, the
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more the correction parts become small. The rough estimate
of the region when the perturbation becomes reliable is n229;
As n+ o , the Weinberg angle sinZG%v tends_to the previous
value 3/8. The numerical values of sinzeﬁ}, f€{/4n and B
against n are shown in Table 1 through the formula (4-22),
(4-19) and (4-18), respectively. One can see from this table

the typical cutoff parameter to be A/m"los’9

for B~ 0.2.
To be compared with the experimental Weinberg angle, n becomes
relatively large number n= 20~ 30. The number n of sequential
multiplets has been restricted in our theory to be nzf?, because

of positivity of g'é, ng and ff? . Then, the asymptotic free

theory is not realized to this order. Our conjecture on this
point is the following: ‘The B-function of the renormalization-
group equation for the Cgi field is positive to the lowest order
of the coupling constant f and for n?9. If, however, higher
order corrections to the B-function make it negative for large
f, and if its fixed point f0 be of order of electromagnetic
éoupling constant e, then the asymptotic freedom will be
approximately satisfied in our case.

Finally, other similar work byAGeorgi, Quinn and Weinberglg)
should be compared with our result. The sharp difference is
that they start from the SU(5) symmetric limit of the coupling
constants g, g' and £, and calculate renormalization effects
to them, whereas we never use such a symmetry group. They

leave the gauge coupling constants in the symmetric limit to be

free parameters, while our gauge coupling constants are all
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completely determined by fixing the model, that is, by fixing

the number of the sequential multiplets. .
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8§5. .Summary and concluding remarks
We regard leptons and quarks as fundamental spinor
particles. ‘Then, starting from the non-linear spinor inter-
actions of Nambu-Jona-Lasinio type, we have approximately  constructed
the Weinberg-Salam theory for the electromagnetic and the weak
interactions of leptons and quarks and the asymptotically free
color-gauge theory of Gross,‘Wilczék and Polizer for strong
interactions of quarks. All the gauge bosons and theIHiggs
scalars are created as composite states of fermion-antifermion
pairs; Arbitfary parameters invqlved in the unified theory
are all determined by the physical masses and the cutoff
parameter. _As'a result, the gauge coupling constants are éll
related and can be writtén by the fine-structure constant.
We thus obtained the unified model of the strong, electromagnetic
and weak interactions by dynamically creating the boson fields.
This is the quite different point from the unified model of
Georgi and Glashow based on SU(5) group. We further have
calculated the lowest order corrections to our unified modelf

20) to unify not only the strong,

There is a further attempts
electromagnetic and weak interactions but also the gravity from
the Nambu-Jona-Lasinio type Lagrangian. In that theory, tﬁe
gravitational constant is connected with the fine-structure
rconstant. But there are some difficulties to uﬁderstand such

created spin 2 field to be the Einstein's gravitational field.

Until now, there is no evidence that the gravity play the

»
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important fole in the elementary particle physics. Therefore,
our unified model is sufficient to explain the interactions
between elementary particles.

There still remains the important and difficult problem.
We assume that leptons and quarks are fundamental. Then there
arises the question why these quarks are not found by
experiment. This quark confinement problem will be solved in

future.
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Appendix

Proof of (2-7)

Using the proper representation of the y-matrices. we can

write
Py ) o O
[ o = ol ~< | - ( ’ )
(oY o i (o}
= ’ N\, = ’
N ( o, 1 ) ) R (o, o )
. 3
where G‘“:(1'<}’c) , & M= (1,—6“.)

We define the two-component spinor Rys R2, Ll' L, in the follow-

ing way,
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- (B) e ()

where both L, and L, are iso-doublet. Using these two

?

- component spinors, the Lagrangian (2-4) is written as

R,

Ly

L= (R L) [ -To" (3t KT

. — ~
K , —V G‘H(ah*-tuh*\‘?U) (A-1)

2

+ - 2
+akK'K +bU, v <y,

The functional integral is performed over the independent fermion
fields ﬁz, El’ Ry and L2. After performing the path integral,

the effective action is given in the following form:

§a% o Zstfg = {(a% { o Kik +-E,[j;' t+c LJ:,&

{ t t
- PRV <
~¢ ty Loqy VY os » '3
_1 < ! — - (A-2)
—‘c-‘b ) 1 1' ‘.6;. (O.U*O-.CU)
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M
\ G0 «G.a _t n
Ok ._“;..(.‘)'“' - LG U = K .
- v — s
>—-—- n (A-3)

- . . — ——

n ) Yoy \6-8(6-,0.!. -z-U)
al P ov >

where tr means the trace of 2x2 matrices for the spinor index.

Well, let's consider the following quantity

' | S
‘ 1-L-wune Tz KA
- Ty Qoa Yo !
1 e (A=4)
s l_< Ng, 41— Y(Uf’CU)/\
72 1a "
oo | —= 2. UAr -2 Kt A -
=_c-r,,)_£;"_> > L (a-5)
=1 Y3 )
- ‘a’* KAr, S U+ DAL
) t
2.9 S 0- AL _‘ S)YK
..I.ic-\)"ﬂ 5 @Y, -5 (' ') (A-6)
= -\ v -
e K ._‘31:0‘“6‘ ®§_( )G,
- a‘~ (-—1 -|) L

»

where the each element of

S50 LA A, BTy
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is a 2x2 unit matrix, and Tr means the trace of 4x4 matrices
for the spinor index. Each (1,1), (1,2), (2,1) and (2,2)
component of (A-6) is always proportional to each matrix of

(A-7). Then, using the relation

‘R{(am“%ﬁ('{,‘.)}: & | T{eFTel () )}t“w&)ﬂ, @-8)

and noticing that K and K+ always appears as bilinear form in

the diagonal element, we obtain the relation

2 25.0n; T KTAL

¢ T fog |1~ ¥R D)
. ~
(Y2 K Ar | q- ‘.—1;5, Y (U+T-UIAL
'klog 1*;;020‘«), s <7
= = Y —roe VG
'1“- 1 —~ — oty =D
- &3 , AV TFEz e ureTu)

Therefore, the effective Lagrangian takes the form of (2-7).
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Table Caption

Calculated values of the Weinberg angle sin

gluon coupling constant f§/4ﬂ and cutoff parameter B=(4w)
2,n(A/m)2 against the number n of sequential multiplets.

2

n sinzeg f§/4n B

9 0.193 0.183 0.436
10 0.216 0.089 0.382
11 0.234 0.064 0.340
12 0.248 0.052 0.306
13 0.259 0.045 0.278
14 0.269 0.041 0.255
15 0.277 0.038 0.235
16 0.284 0.035 0.219
17 0.290 0.033 0.204
18 0.295 0.032 0.191
19 0.300 0.031 0.180
20 0.304 0.030 0.170
30 0.329 0.025 0.109
40 0.341 0.023 0.081

Table 1
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40
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