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A Unified Th~ory of Elementary Particles 

with the Non-linear Spinor Field 

Kazuyasu Shigemoto 

Abstract 

Starting with a non-linear spin or interactions of Nambu-

Jona-Lasinio type, 'f,ve have derived' in a unified way the 

Weinberg-Salam theory for the electromagnetic and the weak 

interactions of leptons and quarks and the asymptotically free 

gauge theory of Gross, Wilczek and Polizer for strong inter

actions of quarks. Here we have introduced a universal cutoff 

in our fermion loop calculations, and retained only divergent 

diagrams. All the gauge bosons and the Higgs scalars are 

created as composite states of fermion-antiferrnion pairs.As a 

result, all elementary particle forces are shown to be related 

with a single coupling strength, i.e., the fine-structure 

constant. The lowest order corrections to the gauge coupling 

constants are also considered. 
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§l. Introduction 

Up to now, hundreds of many elementary particles, 

inciuding resonances, are found by experiments. As the number 

of elementary particles are so huge, we want to consider 

that all these particles are not really "elementary particles", 

but "composites" built from more fundamental particles. 

This idea has a long history. In 1949; Fermi and yangl ) 

have proposed a theory that the pion is composed of proton 

and neutron. Then, in 1959, starting from the non-linear 

fermion interaction, Heisenberg2 ) has developed a comprehensive 

theory of elementary particles which are composite states of 

fermion and antifermion pairs. In 1961, starting from the 

same Lagrangian as that of Heisenberg, Nambu and JOna-Lasinio3) 

proposed a dynamical model of elementary particles based on 

an analogy with superconductivity. In this model, the massless 

pseudoscalar composite state of nucleon-antinucleon pair, the 

idealized pion, appears as a Nambu-Goldstone beson when 

nucleon mass is generated by spontaneously breaking the chiral 

symmetry. Subsequently, with a nonlinear vector interaction, 

Bjorken4 ) and othersS ) demonstrated that the photon can be 

considered as a collective excitation of a fermien-antifermion 

pair. In 1974, in the Nambu-Jona-Lasinio model, Eguchi and 

sugawara6 ) found a set of equations which describes the 

collective motions of fermion-antifermion pairs which is 

equivalent to the Higgs Lagrangian. Then, Konisi, Saito and 



shigemoto7) examined the same model of Eguchi and Sugawara, 

and found that the Nielsen-Olsen8) type theory is obtained 
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and the type II superconductivity phase is realized in hadrons. 

Hadrons behave as string like objects, and this explains many 

experimental evidences like the duality and the linear rising 

trajectory. 

On the other hand, the extensive theoretical works to 

unify all the interactions of elementary particles were 

performed for last several years. In 1967 and 1968, weinberg9 ) 

and salamlO ) proposed the theory to unify the weak and the 

electromagnetic interactions as a gauge theory. In this model, 

the weak interactions are mediated by the very heavy bosons, 

and the weak interact-ions become renormalizable. The distinct 

part from the former theory, among other things, is that the 

Weinberg and Salam theory predicts the processes mediated by 

the neutral currents. These processes were found experimentally 

at CERN in 1973. The existence of these neutral currents is 

taken as one of the evidence that the Weinberg and Salam theory 

is true. While, in the world of hadrons, the strong inter.-:" 

actions between quarks are explained by using the colored 

gauge theory. The necessity of this color freedom is evident 

from the existence of n and from fermi statics, and the 

colored gauge theory is the local theory on this color freedom. 

One of the merits of this colored gauge theory is, of course, 

it is renormalizable. This theory can also explain the scaling 

phenomena found in 1970's at SLAC and other places by colliding 
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high energy electrons to protons and neutrons. These scaling 

pheneomena tell us that in deep inside of hadrons, the spin_ 

1/2 particles, partons, are freely moving. In 1973, Gross, 

Wilczekll ) and Polizerl2 ) have found, in the frame-work of the 

colored-gauge theory, the fact that in the deep region inside 

hadrons the above free parton picture can be actually realized 

(asymptotic freedom). Therefore, the scaling-phenomena are 

one of the aspects of the colored gauge theo~. This asymptot-

ic~lly free gauge theory of Gross, Wilczek and Politzer, 

therefore, is a promising theory to explain the strong inter-

actions of quarks. Until now, there have been many attempts 

to unify the Weinberg and Salam theory and the colored gauge 

theory. 

We regard leptons and quarks as fundamental particles. 

Then along the above two lines of study, in this paper, starting 

13) from only the fundamental leptons and quarks, we attempt 

to construct the theory to unify the weak and the electro-

magnetic and the strong interactions, all interactions between 

elementary particles except gravity. ,Terazawa et. al. 14 ) also 

have proposed the same unified model after our first proposal 

of this kind work. In our approach, we have introduced a 

universal cutoff and retained only divergent diagrams. In our 

picture, the photon and the weak vector bosons are considered 

as composites of lepton-antilepton or quark-antiquark pairs, 

while L~e colored gluons are considered as those of quark-

antiquarkpairs. As a result, the arbitrary parameters involved 
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in the original Weinberg and Salam theory and the original 

colored gauge theory are largely removed. The Weinberg angle 

is determined to be sin2 sw = ~for fractionally charged quarks, 

which coincide with the prediction of Georgi-GlashowI5 } in their 

unified SU(5) gauge model of all elementary particle forces. 

In §2 ,.starting with a Lagrangian of self-interacting 

leptons, we construct an effective Lagrangian·of the Weinberg-

Salam type, and the Weinberg angle and various coupling constants 

are determined. In §3 , the above model is extended to a more 

realistic one including quarks. In §4, the renormalization 

effects to our unified model is discussed. Finally,§5 is 

devoted to a summary and concluding remarks. 



§2. Unified lepton model 

In this section, we consider how to realize the Weinberg-

Salam model in the framework of superconductivity model by 

using the functional integral technique. This method ,was 

proposed by Kikkawal6 ) and Kugo l7 ) to obtain 'the 

collective motion of the fermion-antifermion pairs. 

We begin with the 'nonlinear Lagrangian of the Weinberg-

Salam massless leptons only: 

L' , L 'Y-a L + R ,'Y-o R 

5 

;-:2 f:2. (C·l"'L )(R'O ~R) T 1-3 (R~~R)"1- (2-1) , 

where 

) (2-2) 

i.e., the L- is the iso-doublet while R is the iso-singlet. 

The four-fermion interactions here are of the most general 

form invariant under the global SU(2)L 13 U(l) gauge group. An 

- -+ 2 - 2 interaction of the type (L y ~'T L) is reduced to (L Y II L ) by 

' .. Fierz transformation. This Lagrangian is, of course, 

unrenormalizable, so that we introduce a cutoff in a familiar 

way.3) 

There are five possible composite states of lepton and 



antilept6n, i.e., two vector-isoscalars U
11 

and v~, one vector

isovector U
11

, one scalar-isospinor K and its conjugate Kt. 

They will interact with leptons in the SU(2}L ~ U(l} 'invariant 

way: 

, 

6 

) {2-3} 

Therefore, we introduce such fields into our Lagrangian as 
, 

auxiliary fields, and get another form of Lagrangian ~ which 

is effectively equivalent to the original Lagrangian ~ 

- 04- :t -7:2. U~ 
-t- [ K R -to R K' L 1- 0. k K + bUt" + C I-' 

where 

0.. -
1 3 

) b= -.L -4-f 
Ta 1 

c.- i ) - - f 
3 

Here we have set V = 2U' in order that the brackets 
11 II 

• 

, (2-4) 

(2-5) 

in (2-4) are of "the Weinberg-:-Salam type. The equivalence of 

" Land L.," can be easily seen by taking variations with respect 

to lepton and auxiliary fields independently. Inwhat 

" ., / 
follovls, 'itle start with the" Lagrangian ~ and regard the boson 



-+ 
fields K, 'U . and U as ,well as L ,andR to be: independent 

1.I 1.I 

'operators ,. 'of'. each other. 

In order to obtain the effective Lagrangian for those 

bose'fields, we make use of the path integral technique. 

Defin~ the effective Lagrangian oCeff by 

~p\ i ~~ l~tf \ 

Carrying out the path integral over the independent lepton 

fields, we get 

- l Tv-
1 I/"T 

,y2; r-. I\L 1 ...L 2'( . U AD - \"( (:) " 

7 

(2-7) 

Here, in the logarithmic term, the fields appear in the 

projected form. For details, see Appendix. The logarithmic 

term corresponds 'to a series of lepton loop diagrams if it is 

expanded into Taylor series in bose fields. We retain only 

2 divergent terms proportional to a cutoff parameter A or 

logA2 • 6) ,7), because, .. as it is easily seen by a simple dimensional 

analysis, the other higher derivative terms vanish in an infinite 

cutoff limit. 



8 

- ~ 1 K (er 
(2-8) 

where ) 

(2-9) 
) 

(2-10) 

U l-'" - at-' U" - a", Ut-' (2-11) 

Here m is an arbitrary dimensional constant, and is chosen e 

to be the electron mass. 

-+ 
The created vector fields U and U enter of the Weiriberg-

1..1 1..1 

Salam type· in (2-4) and (2-8). This suggests to us that the 

created vector fields can play the role of local gauge fields, 

if they happen to be massless. In the following this will be 
-+ 

shown to be the case: We require that the fields U1..I and U1..I are 

massless, i. e. , 

cl -b ";::0 ~ho\ ?,q -c =0 (2-12) 

and that the mass term of K is finite, i.e., 
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(2-13) 

solutions to Eqs. (2-12) and (2-13) are 

f - ..L .t._.:L TO(~) 
) 3 - -.3~ ~ h. -- 2.4d dt. (2-14) 

Then, after some rescalings such as 

(2-15) 
) 

we have the Higgs type Lagrangian 

.l.. ~ 
- 4 B .... v 

(2-16) 

, 
where 

1 -
) W (2-17) 

This shows that at this stage the created vector fields A~ 

and B can be regarded as the gauge fields, though the original 
II , 

Lagrangian ~ does not have the local gauge symmetry. 

Finally we take into account the interactions between 

-+ (L, R) and (et>, All' B
ll

), which are obtained from the starting 
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• Lagrangian ~ , and add them together with the lepton kinetic 

parts to the .L H' after rescaling (2-15). Then what we 
~ggs 

get is the following Lagrangianof the Weinberg-Salam type: 

L w. S. 
--

(2-18) 

where 

• 

Here it should be noted that in any calculations based on the 

above Lagrangian we should not take into account of one-

fermion loop diagrams where bosonic fields are attached as 

external ones, because such diagrams have already been consider

ed. This rule will be formulated in the following way16) • 

The starting Lagrangian L." can be written as 

, (2-19) 

where L counter terms = a I I 2 3b + 2 c 2 L -s- <I> + 4S A~ + 4S~ - Higgs· 

The one-fermion-loop diagrams can be seen to be always cancelled 
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by L Therefore, the above rule is satisfied counter terms' 

if we adopt the Lagrangian of the form (2-19). 

It may be surprising that the model with global 

SU(2)L 3 U(l) symmetry should be equivalent to one with local 

SU(2)L 0 U(l) symmetry. This occurred due to massless 

-+ conditions (2-12) for U and U • 
Jl Jl 

From our Lagrangian (2-18) we can see that arbitrary parameters 

involved in the original Weinberg-Salam model are largely 

removed here. We summarize in the following the main results 

which are drawn from (2~18): 

i) The Weinberg angle Sw is fixed to be Sw = 300, 18) 

because of the definition tanS w = g'/g together with our 

result g'/g = 1/13. 
. 18) 

ii) This leads to M
W

·= (/3/2) Mz = e/(/2G
W

) 1/2 = 76(GeV). 

ta) If the gauge symmetry is broken by the: vacuum: expectation 

Ji 1/2 . 
value <~>o = (-2A) ,then the electron acquires a mass 

Ji 1/2 2 2 me = <~o>Ge = (-~) ,or 2me = -Jl (>0), because of Ge 

:= g/Ii The equation 2m2 = -Jl
2 coupled with (2-13) gives e 

..L -- (2-20) 
2.0.. , 

or 

1 

. , (2-21) 
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~~ 

which is essentially nothing but the Nambu-Jona~Lasinio 

self-consistent equation for the electron mass me •3 ) 

iv) After the spontaneous symmetry breaking, the Higgs 
2 2 . 2 

boson has a mass mH = -2~ = 4me or mH = 2me , because 

. . 
~, 

2 2 
2m = -~. These results are of course based on the bare e 

coupling constants A, g', g and Ge • Some of them could be 

modified if we take into account the renormalization 

effects. This problem is discussed in §4. 

Finally we make a remark on the choice of auxiliary fields. 

In the path-integral approach we first face the question of 

how to choose auxiliary fields. The Weinberg-Salam model has 

. + 
been created from the Lagrangian (2-1) by choos~ng u~, u~ 

and K as auxiliary fields and for special values (2-14) of 

coupling constants +i. One can easily see that another choice 

of auxiliary fields leads to another composite theory which is 

realized by another values of coupling constants f i • It 

should be noted that the special coupling constants (2-14) 

+ 
make only the special channels u~, u~ and K excited and thus 

the Lagrangian (2-1) turns out to be of the Weinberg-Salam 

type. 
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§3. Unified lepton quark model 

Following the same method of §2, in this section, we 

propose a further unified model including leptons and quarks. 

It is shown that a Lagrangian of self-interacting leptons and 

quarks generates the unified model of all the elementary 

particle interactions, i.e., the Weinberg-Salarn model and the 

asymptotically free colored gauge model of Gross, Wilczek and 

Politzer. 

We begin with the following Lagrangian which includes 

leptons and quarks: 

L - { 1.) ,"i (3 -"~j U -,.~ U ) ti 

-+ F· t'''("( a _to Y~. U )'(j 
l" J 

-to Q j l I i k r) + h. c. ) } 

1- R~ tOY l () -:..,' YPj U -, AGo Vc..) R ~ 

(3-1) 

-to Co.) C. 1:3 k R; Th.e.) } 

+ k \ K 1'4 + 
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where 

) 

) 

and 

}.a·-::: -n IUn e . -t A t.oS e 

The quark fields L., R. and R? are all color triplets, while 
J J. J 

the leptonic fie·lds 1. and r. are color singlets. The' L. and 
J J ) 

1. are weak iso-doublets, while R. and r. are iso-singlets. 
J J J 

The vector V l1a is color octets. The Y j r S are the weak hyper-

charges of corresponding leptons or quarks. The Lagrangian 

(3-1) is invariant under the global SU(3)color~ SU(2)L~ U{l) 

group. 

The bosonic fields K, U
l1

, U
l1 

and V a play the role of 
11 

auxiliary fields, because they do not have kinetic terms. 

The Lagrangian (3-1) is effectively equivalent to the purely 

self-interacting fermionic system. This can be easily seen by 

taking variations with respect to bosonic and fermionic fields 

independently. The above choice of auxiliary fields is the 

necessary and sufficiant one for our purpose. 
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The effective Lagrangian L eff for those bosonic fields 

is defined by 

~p t l ~dcrx L~-tt \ 
_ ) [d (in~ptn~l'\t f-tyrrUo \,\ tl'~ leAs)] ~p { l)d\.i. } 

(3-2) 

Carrying out the path-integrals over fermionic fields, we get 

_ 1 +l!e "(·('(flUt~.U)/\'-1 \~O~;K~ 
S d~ L-ett - -.: L ""{;. ~~ 

):1,2 i~b Qj KT I\L , 1 T I~ '(rj~' U I\R 

.-L b· K+/\ 'v l L \ • 0 
o 

i~' ,'2. 

~. ( 3-3) 

We retain only divergent terms proportional to a cutoff 

parameter A2 or log A2. After some trace calculations we get 

an effective Lagrangian 
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(3-4) 

+\c.\k\'4 '1\ < ll<\l.) -to:[:2. <. \k\~) ~ 

(3-5) 

• 

Here we have used 

I 
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.: (1\ d.'tp 

t>,= -tZ[\ft'J(P~G\k'K.t'l>)' , 
,-0 (1\ d~P 

(32.-== - (Ui)<tJ <.p~<tKla»l. 

~ (" d~P 
~:: - ('l.1i)<t) (p'l...(b~1" (~)<I KI~> ) ~ 

,:. 1\ clf"p --- -

:I (\ -::: -Ul\' ~ CP~-<b~~) <-I Kit) )1. '" 

where < 11<12> is a vacuum. expectation value of IK\2. 
The created vector fields can play the role of local 

gauge fields if they happen to be massless. In the following 

we require that they are mass1ess, i.e., 

(3-6) 

• 

Then, after some rescaling such as 
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(3-7) 

, 

we have the Higgs type Lagrangian 

(3-8) 

where 

(3-9) 

Finally we take into account of interactions between 

(1 ., r., L., R.) and ( <f>, it , B , Ca), which are given by the 
J J J J 1.1 11 1.1 

starting Lagrangian (3-1), and add them togather with -the 

fermion kinetic parts to the ~H' after scaling (3-7). 
~ggs 
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Then \vhat \'le get is the following Lagrangian: 

Ltot~ 

(3-10) 

where 
) 

( 3-11) 
• 

The Lagrangian (3-10) apparently contains the Weinberg-

Salam Lagrangian for leptons and quarks. It contains furthermore 

the vector color-gluon theory in the following form: 

(3-12) 

where q= (p, n, A, c) and V a is a vector color-gluon. The vector 
II 

coupling constants g, g' and f are given by (3-7), i.e., 
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(3-13) 

Here we have set B=B l =Bt= S3=B 4 , since Sj' 5 do not 50 strongly 

depend on mass terms in Sj' s for large cutoff A. This shows that 

the Weinberg angle is fixed to be 

(3-14) 

and g, g' and f are related to the fine-structure constant e 2 

through 

, (3-15) 

Our Lagrangian (3-10) is invariant under the local 

color SU(3) 0 SU(2)L'0J(1) gauge group. If the Higg5 scalars 

develop vacuum-expectation values 

(3-16) 

both SU(2)L and U(l) gauge symmetries are spontaneously broken. 

Then, by choosing the U-gauge such that 
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, ( 3-17) 

relevant fermion acquire masses, i.e., 

, 
and 

). 

( 3-18) 

) 

The Wand Z boson masses are given by 

~ 

~ . S"O'2. _ ( 1\ d, ) 1 ,,::::::!.3 ca (<::n vt -= (62 1 ~ V) ':L 
H w ::. ct-- - -fi~w Al.U\'6w - 3/8 ~ . ~ J ( 3-19) 

H~ 
(3-20) 

These equations together \'lith (3-18) and (3-19) gi",e us relations 

The Higgs scalar n generate the following mass 

(3-22) 

In the approximation of m , m , m , m , m,\ « m, the mass of e ~ p n A C 

the Higgs field is approximately given by m == 2m • n C 
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The vacuum-expectation values <~> are given by equation: 

a \J C 1~1) .\ - 0 
o I ~ I \<b\ ~ < I~I) ) 

from which, together with (3-18), it follows that 

1\ c.l~p ~ 0. 1. o.~ 3(b~i- c:.~) . 3 ( b~TC:) ~ = -.: ~ t>ll)~ 1 p'"- ,7,,;- -t P _ '" ~ -t ~_ "'~ _ "'~ -t P'-"'~-"''' ~ } ( 3-23) 

This is nothing but Nambu and Jona-Lasinio's self-consistent 

equations for fermion masses. 

Finally the S.' s defined before can be written, in terms 
" J 

of fermion masses, as 

.. ' (1\ d'p 
(3.:: - O,,1\)<t) (p'1._rn~)4 , 

...L (1\ a<tp 
(?> a= - c.11\)~ J C~-mp- m~)l ) (3-24) 

They do not so strongly depend on fermion masses for large 

cutoff A. From (3-24) one can see that the typical cutoff A 

is given by (A/m)2 - exp(3042) »1. This permits us to set 

S == f3 1: f3 2~ S:f S 4· 

In this way, we can construct the unified theory of the 

weak and the electromagnetic and .the strong interactions start

ing from fundamental leptons and quarks only. 

Our main results from our composite unified theory are: 

i) The Weinberg angle is fixed to be sin2ew=3/8, and created 

gauge-field coupling constants g, g' and fare related"to"the 
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fine-strucute constant e 2 as e 2 _ ~g2 = ~,2 = ~f2. This 

coincide with the result of Terazawa et. al. 14 ) and hence with 

that of Georgi and GlashowlS ) based on the SUeS) gauge model. 

ii) The Wand Z bosons acquire masses M = 62.1 GeV and 
w 

MZ = 78.S GeV. 

ill) The mass of Higge scalar is given by mn == 2mc when charm 

quark is heavy. 

Some of these results, of course, could be modif~ed if 

we take into account of further renormalizations. The way of 

this renormalization is discussed in the next section. 
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§4. Renormalization effects to the unified model 

The unified theory, thus derived, is a "bare" theory in the 

sense that it is taken into account only of fermion loop diagrams. 

The aim of this section is to calculate the other renormaliza-

tion effects to the "bare" theory. 

We consider that all the leptons and quarks is sequentially 

obtained if (v e ' e, u, d) are replaced by (V p ' p, c, s), 

(v
T

' T, t, b) , •••• By introducing auxiliary bosonic fields 

the non-linear spinor Lagrangian for this system can be written 

as 

• 0.' .1 Rf" 
+ R: " -( t a - 3.~ '(po B - i ~"CI1l.) i 

J J 

(4-1) 
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The Lagrangian of j=l is that of (V e , e, u, d). Similar 

sequential Lagrangians are those of sequential multiplets. 

In (4-l) , n is the number of sequential multiplets (ve ' e, u, d), 

(V~, ~, c, s), (v
L

' L, t, b), ••• Carrying out the path

integrals over fermionic field, the effective Lagrang~an is 

given by 

(4-2) -

• 

We retain only divergent terms proportional to a cutoff para-

After some trace calculations we get the 

effective Lagrangian 

, 
(4-3) 
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where 

) 

) 

and 

v c. \<t>\~) -= < "!.Jf-ec.t·v~ pot-4!.~tAoJ.. of \~, ) 
The massless conditions for the vector fields 

.+ 
and Ca A 

l1' 
B 

1.1 11 

have been imposed, i.e., the constants m., n. and p. in (4-2) 
) ) ) 

have been so chosen as to be cancelled by 11.2_ divergent terms 

2 . 2 a 
of A Band C ,respectively. 

l1' 1.1 1.1 

The kinetic terms in (4-3) will be normalized by 

, 
so that 

) 

3 .3 -- q.11~ • 

Here we have the Sj~ do not so strongly 

depend on mass terms in Sj'S for large cutoff A. If we add 

the fermion parts in ~ to ~eff' then what we get is the 

following Lagrangian: 

L :: Lvv. s. T LOc.p . . , (4-6) 
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where 

L w. s. 

- b j (L;<PR~ ... h.c, ) 

...L4 B"l. 
t"v 

(4-7) 

and 

L,G,C.D = ~ [tt~·t~o~- ~~~C;)ll-~C~uL 
. <l=u.«..... .. (4-8) 

The first Lagrangian ot:w.-s . is just of the Weinberg-Salam 

type for leptons and quarks, while the second one ~Q.C.D. 

is of the quantum chromodynamics type without quark mass. 

Here the "bare" coupling constants g, g', and f are given by 

(4-5), so that the "bare" Weinberg angle is fixed to be 

AL(Yl '2. e\N == (4-9) 
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Next, we consider the renormalization effects to these 

bare coupling constant. 

First, we calculate the wave function renormalization 

constant z: of B~ to order g,2, other than fermion-loop 

contribution. In this case, the vector-meson self-energy graph 

is considered only of the Higgs-scalar loop. Thus we have 

9'~ 
6'f-. 1 T , 

(4-l0) 

where use is made of the same S as defined in (4-5). The 

renormalized coupling constant g'R is, therefore, 

9;2. = (Z ,6 T' (Z~ )' Z: C H\<j9S ) 9/~ = 2:<Hi53S) 9'1 

1 

IT (4-ll) 

2 B B B 
Here. we have used g' = 9/(20nS) of (4-5) and ZI = Z2 ' Zl being 

the vertex renormalization constant of B -ferrnion-fermion and 
~ z: the fermion wave function renormalization constant. 

For the A~ field the charge renormalization constant z~ 

and the wave function renormalization constantz 3
A have con

tributions from A. itself plus Faddeev-Popov ghosts and also 
~ 

from the Higgs scalar. These are known to be 11), 12) 
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(z t (A)) -I :::= 1 - 9~ ('Z - ~) (3 
) 

(Z A -I S~ 
l (rl'S5S)) :::- , ;- "6 P-> , 

(A -\ 1 - 3'1. ( '; - d. ) (3 ~.3 CA)) ':::: (4-12) , 

, 
where a is the gauge parameter. The renormalized coupling 

constant gR is, therfore, given by 

9' -_ (J A )3 ( 7 A ( )3 Cl f:\ )-'2. ( '7 A )-l. ~ 
R. c.:!. (~ C3 Hi9SS) I (A) C- I CHiS5S) !3 

1 1 
== 

C ~~ - ¥ ) (3) - b:L ~ (4-13) 

where to the second order the gauge dependent terms have been 

cancelled out and use is made of g2= 3/(4nS) of (4-5). 

In the same way, renormalization constants z{ and z~ 

of the gluon field c
ll
a have contributions only from c

ll
a itself 

plus Faddeev-Popov ghosts. The results is also known to be 11) ,12} 

(4-14) 

The renormalized coupling constant fR is, therefore, given by 

2 

(Z~ t ~O"t\) )3 C. )-2-:5- R. = (..z \ (~O l'\. ) f '2.. 

t~ 1 f 

1- II'Y"~ - - ( 4-15) 
(4-h. b3 () --:3 -\\)~ 



where the relation f2= 3/ (4nS) of (4-5) has been used. 

Reca1ing the relation 

_\- -
e'- + 

) 
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( 4-16) 

for the electric charge e, and substituting (4-11), (4-13) 

into (4-16), we have 

1 
e?' = 

) (4-17) 
or 

1 
( 4-18) 

Eliminating S from gR' glR' fR and e, we get 

f~ 
.32.n 7 

b,-tb2, e,\. er - f 

~TI b3 
(4-1\) ~ ~h _ l \ 1~7 ) (4-19) 

~ blTb~ '€,'\. 1 e.l. - t ~1\ ) -= -<2.(h~e~ - bl. ~~ ct-"R ( 4-20) 

9~4 b lot' b~ e1. e" : (4TI ) - (.602 ee • ~1\ q.'R b , (4-21) 

. 2R where the renorma1ized Weinberg angle s~n e w is given by 

S~ 
Il. 

( 4-22) 

Those lowest order corrections to coupling constants are 

of the same order as those from fermion loop diagrams. But, 

as the number n of the sequential mu1tip1ets becomes large, the 



more the correction parts become small. The rough estimate 
. 

of the region when the perturbation becomes reliable is n ~ 9. 

As n -+ co , the Weinberg angle sin2 e~ tends to the previous 

value 3/8. The numerical values of sin2e~, f2R/4~ and S 

against n are shown in Table 1 through the formula (4-22), 

(4-19) and (4-18), respectively. One can see from this table 

th '1 ff b AI· 6.9 2 e tYPl.ca cuto parameter to e H m - 10 for S - o. . 
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To be compared with the experimental ~veinberg angle, n becomes 

relati vely large number n = 20 - 30. The number n of sequential 

multiplets has been restricted in our theory to be n ~ 9, because 

of posi ti vi ty of g'~' g; and f;. Then, the asymptotic free· 

theory is not realized to this order. Our conjecture on this 

point is the following: The S-function of the renormalization

group equation for the c~a field is positive to the lowest order 

of the coupling constant f and for n ~ 9. If, however, higher 

order corrections to the S-function make it negative for large 

f, and if its fixed point fO be of order of electromagnetic 

coupling constant e, then the asymptotic freedom will be 

approximately satisfied in our case. 

P ' 11 th "1 k b " d' b 19) l.na y, 0 er Sl.ml. ar wor y Georgl., QUl.nn an Wel.n erg 

should be compared with our result. The sharp difference is 

that they start from the SUeS) symmetric limit of the coupling 

constants g, g' and f, and calculate renormalization effects 

to them, whereas we never use such a symmetry group. They 

leave the gauge coupling constants in the symmetric li~it to be 

free parameters, \,lhile our gauge coupling constants are all 
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completely determined by fixing the model, that is, by fixing 

the number of the sequential multiplets. 
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§ 5. Summary and concluding remarks 

We regard leptons and quarks as fundamental spinor 

particles. Then, starting from the non-linear spinor inter-

actions of Nambu-Jona-Lasinio type, we have approximately: constructed 

the Weinberg-Salam theory for the electromagnetic and the weak 

interactions of leptons and quarks and the asymptotically free 

color-gauge theory of Gross, Wilczek and Polizer for strong 

interactions of quarks. All the gauge bosons and the Higgs 

scalars are creat~d as composite states of fermion-antifermion 

pairs. Arbitrary parameters involved in the unified theory 

are all determined by the physical masses and the cutoff 

parameter~ As a result, the gauge coupling constants are all 

related and can be written by the fine~structure constant. 

We thus obtained the unified model of the strong, electromagnetic 

and weak interactions by dynamically creating the boson fields. 

This is the quite different point from the unified model of 

Georgi and Glashow based on SU(5) group. We further have 

calculated the lowest order corrections to our unified model. 

There is a further attempts20 ) to unify not only the strong, 

electromagnetic and weak interactions but also the gravity from 

the Nambu-Jona-Lasinio type Lagrangian. In that theory, the 

gravitational constant is connected with the fine-structure 

constant. But there are some difficulties to understand such 

created spin 2 field to be the Einstein's gravitational field. 

Until now, there is no evidence that the gravity play the 
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important role in the elementary particle physics. Therefore, 

our unified model is sufficient to explain the interactions 

between elementary particles. 

There still remains the important and difficult problem. 

We assume that leptons and quarks are fundamental. Then there 

arises the question why these quarks are- not found by 

experiment. This quark confinement problem will be solved in 

future. 
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Appendix 

Proof of (2-7) 

Using the proper representation of the y-matrices. we can 

write 

'Ill-A L ::: ( 
0 -0:-'" ) (0 I 

0 

) , 
it" "R. = 0, 0 , -()'"' 0 ) 

# 

( 0 () 

) \; 0 

) /\L - .. 
I\.R'::: 

0 , '\ J 0 
" , 

where c:s-t-t -= (1,0-" ) (j t"-.:: (1 - tS"t' ) ) I 

• 

We define the two-component spinor RI' R2 , LI , L2 in the follow-

ing way, 



, , 

where both Ll and L2 are iso-doublet. Using these two 

component spinors, the Lagrangian (2-4) is written as 
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(A-I) 

The functional integral is performed over the independent fermion 

fields R2 , Ll , RI and L2 • After performing the path integral, 

the effective action is given in the following form: 

. 
-\ 

1 1-



o~ 

,·C).a K 
()"'" I 

,().a KT 
0"1. 

~( ().UT~':C'U) 
e>"'" 
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(A-3) 

) 

where tr means the trace of 2x2 matrices for the spinor index. 

Well, let's consider the following quantity 

_, 00 (; )rrt\ --\. T~L
h_ n 
"-1 

\'"('0 'l.¥,UI\R 
~1. ;) i)1. L. 

\"t.() K I\R 
c,"l. ) 

- l"(·a k+ 1\ In 
.:(·a y. (U+-:t.\)I\L. 
a"-

where the each element of 

..l ( I.. , ) 
2. \ I.. I 

.l.. ( 1 -I 
) 2. \ I: -I ) I .!. ( I .... I) ~ ( I .. -I ) 

2.. \-1,-1.1 -\ .... t 

(A-4) 

(A-5) 

, 

- (A-7) 



is a 2x2 unit matrix, and Tr means the trace of 4x4 matrices 

for the spinor index. Each (1,1), (1,2), (2,1) and (2*2) 

component of (A-G) is always proportional to each matrix of 

(A-7).Then, using the relation 
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) T--l (<Tcr)l\®i u~)1: tr{cr-cr)~ 
J 

(A-8) 

and noticing that K and Kt always appears as bilinear form in 

the diagonal element, we obtain the relation 

-~ 

k I\R 1-

~[ 
, 

-L kT j -.: '\:y 1 T -\0"'0 2<:>. U - ) -"<).0 -
_1 K f - -_-9 

-a' 0='0 1 + - ().U-t-()·"'C·U) 
} -,' rs·a 

Therefore, the effective Lagrangian takes the form of (2-7). 
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Table Caption 

Calculated values of the Weinberg angle sin2e~f the colored 

2 -2 
gluon coupling constant fR/41T and cutoff parameter B=(41T) 

1n(A/m)2 against the number n of sequential multiplets. 

. 2eR 2 
B n Sl.n W fR/41T 

9 0.193 0.183 0.436 

10 0.216 0.089 0.382 

11 0.234 0.064 0.340 

12 0.248 0.052 0.306 

13 0.259 0.045 0.278 

14 0.269 0.041 0.255 

15 0.277 0.038 0.235 

16 0.284 0.035 0.219 

17 0.290 0.033 0.204 

18 0.295 0.032 0.191 

19 0.300 0.031 0.180 

20 0.304 0.030 0.170 

30 0.329 0.025 0.109 

40 0.341 0.023 0.081 

Table 1 


