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Abstract
In this paper we discuss a classification problem of homogeneous 2-spheres in the

complex Grassmann manifoldG(kC1,nC1) by theory of unitary representations of
the 3-dimensional special unitary groupSU(2). First we observe that if an immersion
x W S2

! G(k C 1, nC 1) is homogeneous, then its imagex(S2) is a 2-dimensional
�(SU(2))-orbit in G(kC1,nC1), where� W SU(2)! U (nC1) is a unitary represen-
tation of SU(2). Then we give a classification theorem of homogeneous 2-spheres in
G(kC1,nC1). As an application we describe explicitly all homogeneous 2-spheres
in G(2, 4). Also we mention about an example of non-homogeneous holomorphic
2-sphere with constant curvature inG(2, 4).

1. Introduction

It is one of fundamental problems in differential geometry to study the rigidity
and homogeneity of special surfaces and submanifolds in a given Riemannian manifold.
The most important and interesting case is that the ambient manifold is a space form.
For example, minimal surfaces with constant (Gaussian) curvature in real space forms
have been classified completely ([3], [4], [11]), and minimal 2-spheres with constant
curvature in the complex projective spaceCPn also have been classified completely
([1], [2]). We wish to study 2-spheres with constant curvature immersed in the complex
Grassmannians which is a generalization of the complex projective spaceCPn.

The complex Grassmann manifoldG(kC1,nC1) is the set of all (kC1)-dimensional
complex vector subspaces inCnC1, which is isomorphic to a Hermitian symmetric space
U (nC1)=(U (kC1)�U (n�k)). We equipG(kC1,nC1) with a canonical Kähler metric
which isU (nC1)-invariant and has Einstein constant 2(nC1). Particularly,G(1,nC1) is
the complex projective spaceCPn, which has constant holomorphic sectional curvature
4. However, the geometric structure ofG(kC 1,nC 1) is much more complicated when
k � 1. For example, whenk � 1, G(kC 1, nC 1) does not have constant holomorphic
sectional curvature, and the rigidity of holomorphic curves in G(kC1,nC1) fails ([7]).
For this reason, it is hard to generalize some perfect results of submanifolds inCPn
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to the ones of submanifolds in a general complex Grassmannians. However, when the
integersk, n are small, there are some results about minimal 2-spheres inG(kC1,nC1).
Minimal 2-spheres with constant curvature inG(2, 4) were determined by Z.-Q. Li and
Z.-H. Yu ([14]), and holomorphic 2-spheres with constant curvature inG(2, 5) were also
investigated by X.-X. Jiao and J.-G. Peng ([10]).

In [1], S. Bando and Y. Ohnita proved that all minimal 2-spheres with constant
curvature inCPn are homogeneous, and later, H.-Z. Li, C.-P. Wang and F.-E. Wuclas-
sified homogeneous 2-spheres inCPn in [13] by the method of harmonic sequence.
The purpose of this paper is to classify homogeneous 2-spheres in complex Grassmann-
ians (see Theorem 4.1), which is a generalization of [13]. Weshould point out that our
original idea derives from [1] and the observations of the main result in [13]. They in-
spire us to consider this problem from the angle of the unitary representation theory of
SU(2), which is quite different from the method used in [13]. Asits applications we
give an explicit description of all homogeneous 2-spheres in G(2, 4) and their differ-
ential geometric quantities (see Theorems 5.1 and 5.2).

It is worthy to notice that minimal 2-spheres with constant curvature in spheres
([8], [9]) and complex projective spaces ([1]) are always homogeneous, but it is not
true for the case when the ambient space is a general complex Grassmannians. To
show this phenomenon, we prove the non-homogeneity for an example of holomorphic
2-sphere with constant curvature inG(2, 4) given in [14] (see Theorem 5.3). There-
fore, this phenomenon also reflects the complexity of the geometric structure of general
complex Grassmannians.

Our paper is organized as follows. In Section 2, we recall some basic facts of
unitary representations ofSU(2). In Section 3, we prove that if an immersionx W S2

!

G(kC1,nC1) is homogeneous, then its imagex(S2) is a 2-dimensional�(SU(2))-orbit
in G(kC1,nC1), where� W SU(2)! U (nC1) is a unitary representation ofSU(2). In
Section 4, we give a classification theorem of homogeneous 2-spheres inG(kC1,nC1)
which generalizes main theorem of H.-Z. Li, C.-P. Wang and F.-E. Wu in the case of
CPn. In Section 5, we describe explicitly all homogeneous 2-spheres inG(2, 4).

2. Preliminaries

In this section, we will agree on the same notations in [1], and begin with recall-
ing some basic facts of irreducible unitary representations of the 3-dimensional special
unitary groupSU(2), which is defined by

SU(2)D

�

g D

�

a �

Nb
b Na

�

I a, b 2 C, jaj2 C jbj2 D 1

�

,

and its Lie algebrasu(2) is given by

su(2)D

�

X D

�

p

�1x �Ny
y �

p

�1x

�

I x 2 R, y 2 C

�

,
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with a natural basis{"1, "2, "3}, which is given by

"1 D

�

p

�1 0
0 �

p

�1

�

, "2 D

�

0 �1
1 0

�

, "3 D

�

0
p

�1
p

�1 0

�

.

Set T D {exp(�"1)I � 2 R}, then we have the homeomorphismS2
' SU(2)=T .

The tangent space of the point [T ] 2 S2 can be naturally identified with the subspace
span

R

{"2, "3} of su(2). We define a complex structure onS2 such that"2 �
p

�1"3 is
a vector of (1, 0)-type.

For each nonnegative integern, let Vn be the representation space ofSU(2), which
is an (n C 1)-dimensional complex vector space of all complex homogeneous poly-
nomials of degreen in two variablesz0 and z1. The standard irreducible representation
�n of SU(2) on Vn is defined by

(2.1) �n(g) f (z0, z1) WD f (az0 C bz1, �Nbz0 C Naz1),

where g 2 SU(2) and f 2 Vn. If we view the elements ofVn as polynomial functions
of S3

D {(z0, z1) 2 C2
I jz0j

2
C jz1j

2
D 1}, we can define aSU(2)-invariant Hermitian

inner product ( , ) onVn as follows

( f, h) WD
(nC 1)!

2�2

Z

S3
f � Nh dv,

where h 2 Vn and dv is the volume element ofS3. It is easy to check that{u(n)
k }

defined by

u(n)
k WD

1
p

k! (n� k)!
zn�k

0 zk
1, 0� k � n,

is a unitary basis ofVn. Since�n(g)u(n)
k 2 Vn, we can write

�n(g)u(n)
k D

n
X

lD0

�

l
k(a, b)u(n)

l ,

where{�l
k(a, b)} are polynomials of degreen in {a, Na, b, Nb}. By (2.1), we have

(2.2) �

l
k(a, b) D

s

l ! (n� l )!

k! (n� k)!

X

pCqDn�l

�

n� k

p

��

k

q

�

ap( Na)k�qbn�k�p(�Nb)q.

Let CnC1 be the complex number space of dimension (n C 1), and{Ei }
n
iD0 be the

standard basis ofCnC1. With respect to the unitary basis{u(n)
k } of Vn, there is a natural

isomorphism betweenVn andCnC1. Under such isomorphism, each linear endomorphism
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�n(g) (for g 2 SU(2)) can be represented by a matrix (�

l
k(a, b)), which is still denoted by

�n(g). It is easy to see�n(g) 2 U (nC 1), thus we have a Lie group homomorphism

�n W SU(2)! U (nC 1),

g 7! �n(g) D (�l
k(a, b)).

The representation�n of SU(2) induces an action ofsu(2) on Vn which can be de-
scribed as follows

�n�(X)(u(n)
k ) D

d

dt

�

�

�

tD0
�(expt X)(u(n)

k )

D �

p

k(n� kC 1)Nyu(n)
k�1 C (n� 2k)

p

�1xu(n)
k

C

p

(n� k)(kC 1)yu(n)
kC1,

(2.3)

for 0 � k � n and X 2 su(2). Using the matrix notation, we get a Lie algebra homo-
morphism�n� W su(2)! u(nC 1), X 7! �n�(X), which is the differential of the homo-
morphism�n. From (2.3), in terms of matrix form,�n�(X) can be written as

(2.4) �n�(X) D

0

B

B

B

B

B

B

B

�

n
p

�1x
p

ny
�

p

n Ny (n� 2)
p

�1x
p

2(n� 1)y
. ..

.. .
. ..

.. .
. ..

.. .

�

p

n Ny �n
p

�1x

1

C

C

C

C

C

C

C

A

.

3. Homogeneous 2-spheres in complex Grassmannians

In this section, we shall reduce the classification problem of homogeneous 2-spheres
in complex Grassmannians to an algebraic problem on unitaryrepresentations ofSU(2)
whose classification theory is classical and well-known.

An immersionx W S2
! G(kC 1, nC 1) is said to behomogeneous, if for any two

points p, q 2 S2 there exists an isometryQ� of S2 and a holomorphic isometry� of
G(kC 1, nC 1) such thatQ� (p) D q and the following diagram communicates

(3.1)

S2 x
K

Q�

K

G(kC 1, nC 1)

�

K

S2 x
KG(kC 1, nC 1),

i.e., xÆ Q� D � Æx. We can identifyQ� (resp.� ) with an element ofSO(3) (resp.U (nC1)).
All such � form a subgroupG of U (nC1) andG acts transitively onx(S2). It’s known
that such 2-spheres inG(kC1,nC1) have constant curvature, but they are non-minimal
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in general. Standard examples of homogeneous 2-spheres inCPn are so-calledVeronese
sequencewhich are completely determined by S. Bando and Y. Ohnita ([1]).

As mentioned above, an immersionx W S2
! G(kC 1, nC 1) is said to be homo-

geneous if the groupG D I (G(kC1,nC1),x(S2)) acts transitively onx(S2), or equiva-
lently, x(S2) is a 2-dimensionalG-orbit in G(k C 1, nC 1). SinceS2 is compact, we
know that G is also a compact Lie subgroup ofU (nC 1).

Lemma 3.1. The group OG D {Q� 2 SO(3)I x Æ Q� D x} consists the unit element
I3 only.

Proof. Let Q� 2 OG, then 1 is an eigenvalue ofQ� , so the action ofQ� on S2 has a
fixed point p. The differential map ofx and Q� at p satisfy

x
�p Æ Q��p D x

�p.

Since x
�p is injective, it follows that Q�

�p is an identity map. Thus, we obtainQ� D I3,
which completes the proof.

By this lemma and the commutation diagram (3.1), we obtain a natural Lie group
homomorphism� W G ! SO(3), � 7! Q� . Up to now, we can prove our following prin-
ciple result.

Theorem 3.2. If xW S2
! G(kC1,nC1) is a homogeneous immersion, then there

exists a unitary representation�W SU(2)! U (nC1) such that x(S2) is a 2-dimensional
�(SU(2))-orbit in G(kC 1, nC 1).

Proof. Letg be the Lie algebra ofG and�
�

W g! o(3) be the Lie algebra homo-
morphism induced by�. Set H D ker� andh D ker�

�

, then H is a closed normal Lie
subgroup ofG whose Lie algebra ish. Obviously,h is an idea ofg. SinceG is compact,
one can equipg with an AdG-invariant inner producth , i. The orthogonal complement
subspace ofh in g with respect to theAdG-invariant inner product is denoted byh?.
Thenh? is a subalgebra ofg and also an ideal ofg. So there exists a unique connected
Lie subgroupK of G with its Lie algebrah?. By the fundamental homomorphism the-
orem of Lie algebra, we obtain the following Lie algebra isomorphisms:

�

�

(h?) D �

�

(g) � g=h � h?.

Since x(S2) is a 2-dimensionalG-orbit and H acts onx(S2) keeping every point
fixed, we know thatx(S2) is also a 2-dimensionalK -orbit. Therefore, we obtain the
relationship dim�

�

(h?)D dimh? D dimK � 2. One can conclude that�
�

(h?)D o(3) by
the well known fact that there is no 2-dimensional subalgebra of o(3), and henceh? �
o(3). Then we get a covering homomorphism�jK W K ! SO(3), which implies thatK is
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isomorphic toSU(2) or SO(3). If K � SU(2), then� W SU(2)
�

�! K
i
,! U (nC1) defines

a unitary representation ofSU(2). If K � SO(3), let  be the adjoint representation of
SU(2), then the map

� W SU(2)
 

�! SO(3)
�

�! K
i
,! U (nC 1)

also defines a unitary representation ofSU(2). This completes the proof.

Two homogeneous immersionsxW S2
! G(kC1,nC1) andx

0

W S2
! G(kC1,nC1)

are said to beequivalentor congruent, if there exists an elementA 2 U (n C 1) such
that x D A Æ x

0

. According to Theorem 3.2, the classification of equivalentclasses of
homogeneous 2-spheres inG(kC 1, nC 1) is reduced to the following two problems:
(I) Classifying the equivalence classes of unitary representations of SU(2);
(II) Determining all�(SU(2))-orbits in G(kC1,nC1) of dimension2, here� W SU(2)!
U (nC 1) is a unitary representation of SU(2).

The problem (I) is classical and well-known in the representation theory of com-
pact Lie groups, namely, the set{(�n, Vn), n D 0, 1, 2,: : : } forms all inequivalent ir-
reducible unitary representations ofSU(2) and every unitary representation� of SU(2)
can be expressed as direct sum of irreducible ones. To solve the problem (II), we can
prove the following theorem:

Theorem 3.3. An orbit M of �(SU(2)) on G(k C 1, n C 1) is a 2-dimensional
sphere immersed in G(k C 1, n C 1) if and only if M goes through the point W2
G(kC 1, nC 1) which is a (kC 1)-dimensional vector subspace invariant by T .

Proof. Suppose thatM D W � �(SU(2)) is a 2-dimensional orbit for someW 2

G(kC 1, nC 1), and H is the isotropy subgroup ofSU(2) at the pointW. It is easy
to see thatH is a 1-dimensional closed Lie subgroup ofSU(2) and its Lie algebrah
is a 1-dimensional subalgebra ofsu(2). Thus there is an elementX of su(2) such that
hD span

R

{X}. According to some basic theory of linear algebra, there exist g 2 SU(2)
and a nonzero real numberx such thatg�1XgD x"1. Henceg�1hgD span

R

{"1} and it
follows that g�1HogD T , whereHo is the connected component ofH which contains
the unit. Taking the pointW

0

D W � �(g), then the isotropy group atW
0

is g�1Hg
which containsT , i.e., W

0

is a (k C 1)-dimensional vector subspace invariant by the
action of T . Thus, we prove the sufficiency of our theorem, and the necessity follows
from the fact thatsu(2) has no 2-dimensional subalgebra.

4. Classification theorem of homogeneous 2-spheres inG(kC 1, nC 1)

In this section, we will give a classification theorem of homogeneous 2-spheres in
G(kC 1, nC 1).
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In virtue of Theorem 3.3, the problem (II) was reduced to determining of all (kC1)-
dimensional vector subspaces invariant byT . Let � W SU(2) ! U (n C 1) be a unitary
representation ofSU(2) and�jT W T ! U (nC1) be the restriction of� from SU(2) to T .
SinceT is a torus group, we just need to determine all 1-dimensionalvector subspaces
invariant byT .

If � is irreducible, i.e.,� D �n for some nonnegative integern. By (2.2), it is easy
to see that

�njT W T ! U (nC 1),
 

e
p

�1� 0

0 e�
p

�1�

!

7! diag
{

e
p

�1n� , e
p

�1(n�2)� , : : : , e�
p

�1n�
}

.
(4.1)

Hence,{Ei , 0� i � n} are eigenvectors of�n(T) which belong to eigenvalues

e
p

�1n� , : : : , e
p

�1(n�2i )� , : : : , e�
p

�1n� ,

respectively. Thus,Wi D span
C

{Ei } WD [Ei ], 0 � i � n, are all 1-dimensional vector

subspaces invariant byT . Define the map{�(n)
i } by

�

(n)
i W S2

D SU(2)=T ! CPn,

gT 7! Wi � �n(g) D [ f (n)
i ],

which areSU(2)-equivariant immersions ofS2 into CPn, here f (n)
i D (�0

i , �1
i , : : : , �n

i ).

The sequence{�(n)
0 , �(n)

1 , : : : , �(n)
n } is well-known asVeronese sequencein CPn ([1],

[2]). The Gaussian curvatureK and the Kähler angle� of �(n)
i are

K D

4

nC 2i (n� i )
, cos� D

n� 2i

nC 2i (n� i )
,

respectively.
If � is reducible, then� D �n1 � � � � � �nr andCnC1

D C

n1C1
� � � � � C

nrC1 with
n D n1 C � � � C nr C r � 1, i.e.,

� W SU(2)! U (nC 1),

g 7! �(g) D diag{�n1(g), �n2(g), : : : , �nr (g)}.

Set En
�

j
�

WD Ei , wherei D n1C� � �Cn
��1C j

�

C��1 and 0� j
�

� n
�

. It follows
from (4.1) that a 1-dimensional vector subspace invariant by T must be spanned by a
complex vectorv with the following form

(4.2) v D c1En1
j1
C � � � C cr Enr

jr
, c

�

2 C, 1� � � r,
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where{n
�

, j
�

j � D 1, : : : , r } are nonnegative integers satisfying

n1 � 2 j1 D n2 � 2 j2 D � � � D nr � 2 jr .(4.3)

In general, a (k C 1)-dimensional vector subspace invariant byT can be spanned by
k C 1 complex vectors{vi j i D 1, : : : , k C 1}, where eachvi has the form (4.2) and
they satisfy (vi , v j ) D Æi j with respect to the standard Hermitian inner product ( , )
on CnC1.

Combining Theorems 3.2 and 3.3 together with the above arguments, we obtain
the following classification.

Theorem 4.1. Let xW S2
! G(kC1,nC1) be a homogeneous2-sphere in G(kC

1,nC1). Then there exist nonnegative integers{n
�

, j1,� j � D 1, : : : , r }, : : : ,{n
�

, jkC1,� j

� D 1, : : : , r } satisfying

n1 C � � � C nr C r D nC 1,

0� j1,�, : : : , jkC1,� � n
�

(� D 1, : : : , r ),

n1 � 2 j1,1 D n2 � 2 j1,2 D � � � D nr � 2 j1,r ,

� � �

n1 � 2 jkC1,1 D n2 � 2 jkC1,2 D � � � D nr � 2 jkC1,r

and complex constants{ci ,� j i D 1, : : : , kC 1, � D 1, : : : , r } satisfying

r
X

�D1

ci ,�ch,�Æ ji ,� jh,� D Æih

such that xD A Æ f , where A2 U (nC 1) and f is defined by

f W S2
D SU(2)=T ! G(kC 1, nC 1),

gT 7!

2

6

6

6

6

4

c1,1 f (n1)
j1,1

c1,2 f (n2)
j1,2

� � � c1,r f (nr )
j1,r

c2,1 f (n1)
j2,1

c2,2 f (n2)
j2,2

� � � c2,r f (nr )
j2,r

...
... � � �

...
ckC1,1 f (n1)

jkC1,1
ckC1,2 f (n2)

jkC1,2
� � � ckC1,r f (nr )

jkC1,r

3

7

7

7

7

5

.

REMARK . Theorem 4.1 is a generalization of main theorem of H.-Z. Li,C.-P. Wang
and F.-E. Wu in the case ofCPn ([13]).

However in order to classify completely it is necessary to determine all{n
�

, j1,� j

� D 1, : : : , r }, : : : , {n
�

, jkC1,� j � D 1, : : : , r } and {ci ,� j i D 1, : : : , kC 1, � D 1, : : : , r }

satisfying the above conditions. In next section, we will doit completely in the case
of G(2, 4). In the case of more general complex Grassmannians onewould need more
efforts to do them certainly.
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5. Explicit description of homogeneous 2-spheres inG(2, 4)

In this section, we will describe explicitly all homogeneous 2-spheres inG(2, 4),
from which, one can find a family of non-minimal homogeneous 2-spheres inG(2, 4).
To do this well, we should consider the following four cases respectively.

CASE I. If � D �3, then� W SU(2)! U (4) and�
�

W su(2)! u(4) can be given by
(2.2) and (2.4) explicitly as follows

�(g) D

0

B

B

�

a3
p

3a2b
p

3ab2 b3

�

p

3a2
Nb a(jaj2 � 2jbj2) b(2jaj2 � jbj2)

p

3Nab2
p

3aNb2
Nb(jbj2 � 2jaj2) Na(jaj2 � 2jbj2)

p

3Na2b
�

Nb3
p

3NaNb2
�

p

3Na2
Nb Na3

1

C

C

A

,(5.1)

�

�

(X) D

0

B

B

B

�

3
p

�1x
p

3y 0 0
�

p

3Ny
p

�1x 2y 0
0 �2Ny �

p

�1x
p

3y
0 0 �

p

3Ny �3
p

�1x

1

C

C

C

A

.(5.2)

By the arguments in Section 4, we know that [Ek], 0� k � 3 are all 1-dimensional vec-
tor subspaces invariant byT . Then span

C

{Ek, El }, 0� k < l � 3 are all 2-dimensional
vector subspaces invariant byT , so we get the following six homogeneous 2-spheres.

(I1) The base pointW D

h

1 0 0 0
0 1 0 0

i

, then

f W S2
! G(2, 4), gT 7!

�

a3
p

3a2b
p

3ab2 b3

�

p

3a2
Nb a(jaj2 � 2jbj2) b(2jaj2 � jbj2)

p

3Nab2

�

.

(I1
0

) The base pointW D

h

0 0 1 0
0 0 0 1

i

, then

f W S2
! G(2, 4), gT 7!

�

p

3aNb2
Nb(jbj2 � 2jaj2) Na(jaj2 � 2jbj2)

p

3Na2b
�

Nb3
p

3NaNb2
�

p

3Na2
Nb Na3

�

.

(I2) The base pointW D

h

1 0 0 0
0 0 1 0

i

, then

f W S2
! G(2, 4), gT 7!

�

a3
p

3a2b
p

3ab2 b3
p

3aNb2
Nb(jbj2 � 2jaj2) Na(jaj2 � 2jbj2)

p

3Na2b

�

.

(I2
0

) The base pointW D

h

0 1 0 0
0 0 0 1

i

, then

f W S2
! G(2, 4), gT 7!

�

�

p

3a2
Nb a(jaj2 � 2jbj2) b(2jaj2 � jbj2)

p

3Nab2

�

Nb3
p

3NaNb2
�

p

3Na2
Nb Na3

�

.
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(I3) The base pointW D

h

1 0 0 0
0 0 0 1

i

, then

f W S2
! G(2, 4), gT 7!

�

a3
p

3a2b
p

3ab2 b3

�

Nb3
p

3NaNb2
�

p

3Na2
Nb Na3

�

.

(I3
0

) The base pointW D

h

0 1 0 0
0 0 1 0

i

, then

f W S2
! G(2, 4), gT 7!

�

�

p

3a2
Nb a(jaj2 � 2jbj2) b(2jaj2 � jbj2)

p

3Nab2
p

3aNb2
Nb(jbj2 � 2jaj2) Na(jaj2 � 2jbj2)

p

3Na2b

�

.

It is clear that the cases (Ii ) and (Ii
0

) (i D 1, 2, 3) are Hermitian orthogonal with
respect to the standard Hermitian inner product ofC

4.
CASE II. If � D �1 � �0 � �0, then� W SU(2)! U (4) and�

�

W su(2)! u(4) can
be written explicitly as follows

�(g) D

0

B

B

�

a b 0 0
�

Nb Na 0 0
0 0 1 0
0 0 0 1

1

C

C

A

,(5.3)

�

�

(X) D

0

B

B

�

p

�1x y 0 0
�Ny �

p

�1x 0 0
0 0 0 0
0 0 0 0

1

C

C

A

,(5.4)

by (2.2) and (2.4). Then, the restriction representation�jT W T ! U (nC 1) is given by

diag{e
p

�1� , e�
p

�1� } 7! diag{e
p

�1� , e�
p

�1� , 1, 1}.

So, we get two inequivalent homogeneous 2-spheres up toU (4)-equivalent.

(II1) The base pointW D

h

1 0 0 0
0 0 1 0

i

, then

f W S2
! G(2, 4), gT 7!

�

a b 0 0
0 0 1 0

�

.

(II1
0

) The base pointW D

h

0 1 0 0
0 0 0 1

i

, then

f W S2
! G(2, 4), gT 7!

�

�

Nb Na 0 0
0 0 0 1

�

.

We know that (II1) and (II1
0

) are also Hermitian orthogonal with respect to the standard
Hermitian inner product ofC4.
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CASE III. If � D �2� �0, similarly, � W SU(2)! U (4) and�
�

W su(2)! u(4) can
be written as follows

�(g) D

0

B

B

�

a2
p

2ab b2 0
�

p

2aNb jaj2 � jbj2
p

2Nab 0
Nb2

�

p

2NaNb Na2 0
0 0 0 1

1

C

C

A

,(5.5)

�

�

(X) D

0

B

B

�

2
p

�1x
p

2y 0 0
�

p

2Ny 0
p

2y 0
0 �

p

2Ny �2
p

�1x 0
0 0 0 0

1

C

C

A

,(5.6)

by (2.2) and (2.4). The restriction representation�jT W T ! U (nC 1) is given by

diag{e
p

�1� , e�
p

�1� } 7! diag{e2
p

�1� , 1, e�2
p

�1� , 1}.

Hence, all 1-dimensional vector subspaces invariant byT are [E0], [ E2] and [v], where
v D c1E1Cc2E3 with jc1j

2
Cjc2j

2
D 1. Then up toU (4)-equivalent, we have two isolate

homogeneous 2-spheres and two 1-parameter families of homogeneous 2-spheres.

(III1) The base pointW D

h

1 0 0 0
0 0 1 0

i

, then

f W S2
! G(2, 4), gT 7!

�

a2
p

2ab b2 0
Nb2

�

p

2NaNb Na2 0

�

.

(III1
0

) The base pointW D

h

0 1 0 0
0 0 0 1

i

, then

f W S2
! G(2, 4), gT 7!

�

�

p

2aNb jaj2 � jbj2
p

2Nab 0
0 0 0 1

�

.

(III2) The base pointWt D

h

1 0 0 0
0 cost 0 sint

i

, t 2 [0, �=2], then

ft W S2
! G(2, 4), gT 7!

�

a2
p

2ab b2 0
�

p

2aNb cost (jaj2 � jbj2) cost
p

2Nabcost sin t

�

.

(III2
0

) The base pointWt D

h

0 0 1 0
0 � sin t 0 cost

i

, t 2 [0, �=2], then

Qf t W S2
! G(2, 4), gT 7!

�

Nb2
�

p

2NaNb Na2 0
p

2aNb sin t (jbj2 � jaj2) sin t �

p

2Nabsin t cost

�

.

It is easy to check that (IIIi ) and (IIIi
0

) (i D 1, 2) are also Hermitian orthogonal
with respect to the standard Hermitian inner product ofC

4.
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CASE IV. If � D �1 � �1, then � W SU(2) ! U (4) and�
�

W su(2) ! u(4) can be
written as follows

�(g) D

0

B

B

�

a b 0 0
�

Nb Na 0 0
0 0 a b
0 0 �

Nb Na

1

C

C

A

,(5.7)

�

�

(X) D

0

B

B

B

�

p

�1x y 0 0
�Ny �

p

�1x 0 0
0 0

p

�1x y
0 0 �Ny �

p

�1x

1

C

C

C

A

,(5.8)

by (2.2) and (2.4). The restriction representation�jT W T ! U (nC 1) is given by

diag{e
p

�1� , e�
p

�1� } 7! diag{e
p

�1� , e�
p

�1� , e
p

�1� , e�
p

�1� }.

Hence, the 1-dimensional vector subspaces invariant byT are [v1] and [v2], where
v1 D c1E0 C c2E2 and v2 D d1E1 C d2E3 with jc1j

2
C jc2j

2
D jd1j

2
C jd2j

2
D 1. Then

up to U (4)-equivalent, we have two isolate homogeneous 2-spheresand a family of
homogeneous 2-spheres.

(IV1) The base pointW D

h

1 0 0 0
0 0 1 0

i

, then

f W S2
! G(2, 4), gT 7!

�

a b 0 0
0 0 a b

�

.

(IV1
0

) The base pointW D

h

0 1 0 0
0 0 0 1

i

, then

f W S2
! G(2, 4), gT 7!

�

�

Nb Na 0 0
0 0 �

Nb Na

�

.

And also, (IV1) and (IV1
0

) are Hermitian orthogonal with respect to the standard
Hermitian inner product ofC4.

(IV2) The base pointW D

�

c1 0 c2 0
0 d1 0 d2

�

, with jc1j
2
C jc2j

2
D jd1j

2
C jd2j

2
D 1

and� WD c1d2 � c2d1 ¤ 0, then

f (c1, c2, d1, d2) W S2
! G(2, 4), gT 7!

�

c1a c1b c2a c2b
�d1 Nb d1 Na �d2 Nb d2 Na

�

.

Thus, we have completely classified homogeneous 2-spheres in G(2, 4).
Next, we will give some geometrical descriptions of these homogeneous 2-spheres

in G(2, 4). We only compute the geometric quantities of the case (I1). For other cases,
we omit the details of calculations and just list the resultsin Table 1.
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Let � D (�A NB), 0 � A, B � 3 be theu(4)-valued right-invariant Maurer–Cartan
form of U (4). The Maurer–Cartan structure equations ofU (4) are

(5.9) d�A NB D �A NC ^�C NB.

Then the canonical Kähler metric ofG(2, 4) and its Kähler form can be written as

ds2
D

X

�,i

�

�

Ni �
N

�

�

Ni ,

2 D

p

�1

2

X

�,i

�

�

Ni ^
N

�

�

Ni ,

where the range of the indices are� D 0, 1 andi D 2, 3 respectively.
We choose a unitary frame fieldeD (e0, e1, e2, e3) along f , whereeA D EA � �(g),

AD 0, 1, 2, 3. It is easily see from (5.2) that the pull back of Maurer–Cartan form can
be written as

e�� D

0

B

B

B

B

B

B

B

B

B

�

!0N0

p

3

2
� 0 0

�

p

3

2
N

� !11 � 0

0 �

N

� !2N2

p

3

2
�

0 0 �

p

3

2
N

� !3N3

1

C

C

C

C

C

C

C

C

C

A

(5.10)

with !0N0C!3N3 D 0, !1N1C!2N2 D 0 and!0N0 D 3!1N1, where� is a complex-valued (1, 0)
form of S2, which defined up to a factor of absolute value 1, and the induced metric
is f � ds2

D �

N

�.
If we write

(5.11) f ��A NB D !A NB D aA NB� C bA NB
N

�,

and

AD (a
�

Ni ), B D (b
�

Ni ).

It follows from (5.10) that

AD

�

0 0
1 0

�

, B D

�

0 0
0 0

�

.

So the Kähler angle (defined in [5]) off is cos� D tr(AA� � BB�) D 1.
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The structure equations ofS2 with respect to the induced metric can be written as

d� D �� ^ �,(5.12)

d� D
K

2
� ^

N

�,(5.13)

where� is the complex connection form andK is the Gaussian curvature ofS2, with
respect to the induced metricf �ds2. Using the Maurer–Cartan structure equations (5.9)
we obtaind� D d!1N2 D �(!2N2�!1N1)^�. It gives� D !2N2�!1N1 by (5.12). Making use
of (5.9) again, we getd� D d(!2N2�!1N1)D (1=2)�^ N�, which impliesK = 1 by (5.13).

Taking the exterior derivative of (5.11) and using (5.9), weget the covariant dif-
ferential of a

�

Ni and b
�

Ni (defined in [6]) given as follows

Da
�

Ni D p
�

Ni� C q
�

Ni
N

�,

Db
�

Ni D q
�

Ni� C r
�

Ni
N

�,

where

(p
�

Ni ) D

0

B

B

�

�

p

3

2
0

0

p

3

2

1

C

C

A

, (q
�

Ni ) D

�

0 0
0 0

�

, (r
�

Ni ) D

�

0 0
0 0

�

.

The second identitiesq
�

Ni D 0 imply that f is a minimal immersion ([6]). By the iden-
tity (10.15) in [15], the square length of the second fundamental form is

(5.14) SD 4
X

�,i

(jq
�

Ni j
2
C jr

�

Ni j
2) D 6.

Through some similar straightforward computations, we getthe following theorem.

Theorem 5.1. The differential geometric quantities of homogeneous2-spheres in
G(2, 4) are given inTable 1,where t2 [0, �=2] and � D c1d2 � c2d1 ¤ 0, and K is
(induced) Gaussian curvature, � is the Kähler angle and S is the square length of the
second fundamental form.

REMARK 1. In the case (IV2), whenj�j D 1, f (c1,c2,d1,d2) are totally geodesic
with K D 2. They are allU (4)-equivalent to

f W S2
! G(2, 4), gT 7!

�

a b 0 0
0 0 �

Nb Na

�

.(IV2
0

)

The others in the case (IV2) are non-minimal. The one given in(III2) (resp. (III2
0

))
with t D �=4 is U (4)-equivalent to the one given in (IV1) (resp. (IV1

0

)) ([7]).
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Table 1.

Case Minimality K cos� S
(I1) Yes 1 1 6
(I1

0

) Yes 1 �1 6
(I2) Yes 2=5 1=5 0
(I2

0

) Yes 2=5 �1=5 0
(I3) Yes 2=3 0 8=3
(I3

0

) Yes 2=3 0 8=3
(II1) Yes 4 1 0
(II1

0

) Yes 4 �1 0
(III1) Yes 1 0 0
(III1

0

) Yes 1 0 0
(III2) Yes 2 1 4 cos2 2t
(III2

0

) Yes 2 �1 4 cos2 2t
(IV1) Yes 2 1 0
(IV1

0

) Yes 2 �1 0
(IV2) 2=j�j2 0 4(1� j�j2)=j�j2

REMARK 2. Since every closed totally geodesic submanifold of a homogeneous
Riemannian manifold is homogeneous ([12]), Theorem 5.1 also contains a complete
classification of totally geodesic 2-spheres inG(2, 4).

By Table 1 and the above remarks, we obtain

Theorem 5.2. Up to U(4)-equivalent, the one given in(I2), (I2
0

), (II1), (II1
0

),
(III1), (III1

0

), (IV1), (IV1
0

) and the one given in(IV2
0

) are all totally geodesic2-spheres
in G(2, 4).

REMARK 3. The 1-parameter family of homogeneous holomorphic 2-spheres in
(III1) was first discovered by Q.-S. Chi and Y.-B. Zheng in [7].

REMARK 4. There are some differences between our classification andthe clas-
sification of minimal 2-spheres with constant curvature inG(2, 4) by Z.-Q. Li and
Z.-H. Yu ([14]). The case (IV2) in our classification is not contained in theirs, and
there is a holomorphic (thus minimal) 2-sphere with constant curvature K D 4=3 in
G(2, 4) given in [14] which is not contained in ours.

To conclude this section, we want to prove that the holomorphic 2-sphere with
K D 4=3 in G(2, 4) mentioned in Remark 4 isnot homogeneous.
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Set S2
D C [ {1} and z is the local coordinate ofS2, and define the map

' W S2
! G(2, 4), z 7!

2

4

1 0
p

3z2 0

0 1

r

8

3
z

r

1

3
z

3

5.

Theorem 5.3. The holomorphic embedding' is not homogeneous.

Proof. We choose a unitary frame fieldeD (e1, e2, e3, e4) along ' as follows:

e1 D
1

�1
(1, 0,

p

3z2, 0),

e2 D
1

�2

 

�2
p

2Nzjzj2, 1C 3jzj4,

r

8

3
z,

r

1

3
z(1C 3jzj4)

!

,

e3 D
1

�3

 

0,�

r

1

3
Nz, 0, 1

!

,

e4 D
1

�4

 

�

p

3Nz2

�

1C
1

3
jzj2

�

, �

r

8

3
Nz, 1C

1

3
jzj2, �

2
p

2

3
jzj2

!

,

where

�1 D
p

1C 3jzj4,

�2 D
p

1C 3jzj2 C 6jzj4 C 10jzj6 C 9jzj8 C 3jzj10,

�3 D

r

1C
1

3
jzj2,

�4 D

r

1C
10

3
jzj2 C 4jzj4 C 2jzj6 C

1

3
jzj8.

By direct computation, we get

!1N3 D (de1, e3) D 0,

!1N4 D (de1, e4) D
2
p

3z(1C (1=3)jzj2)

�1�4
dz,

!2N3 D (de2, e3) D

p

3(1C 3jzj4)

3�2�3
dz,

!2N4 D (de2, e4) D �

2
p

6(2jzj6 C 3jzj4 � 1)

3�2�4
dz.
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Thus, the metric induced by' is

'

�ds2
D !1N3 N!1N3 C !1N4 N!1N4 C !2N3 N!2N3 C !2N4 N!2N4 D

3

(1C jzj2)2
dz dNz,

which implies the (induced) Gaussian curvatureK D 4=3. Set� D
p

3=(1C jzj2) dz,
then we have

(5.15) AD

0

B

B

B

�

0
2z(1C (1=3)jzj2)(1C jzj2)

�1�4

(1C 3jzj4)(1C jzj2)

3�2�3
�

2
p

2(2jzj6 C 3jzj4 � 1)(1C jzj2)

3�2�4

1

C

C

C

A

by (5.11).
Up to now, we have two ways to show that' is not homogeneous. The first one

is that z D 0 is an isolate zero point of detA and rankA jzD0D 1 by (5.15), which
implies that' is not homogeneous. The second one is that the square length of the
second fundamental form of' is given by

SD
16(3C 2jzj2 C 3jzj4)

9(1C jzj2)2
,

by the first identity of (5.14), which is not a constant, and hence' is not homogeneous.
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