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Abstract

In this paper we discuss a classification problem of homogen@-spheres in the
complex Grassmann manifol@(k + 1,n+ 1) by theory of unitary representations of
the 3-dimensional special unitary gro§(2). First we observe that if an immersion
x: & — G(k + 1,n + 1) is homogeneous, then its imagéS?) is a 2-dimensional
p(SU2))-orbit in G(k+ 1,n+ 1), wherep: SUR2) — U(n+ 1) is a unitary represen-
tation of SU(2). Then we give a classification theorem of homogeneoysh2ses in
G(k+1,n+1). As an application we describe explicitly all homogerse@uspheres
in G(2, 4). Also we mention about an example of non-homogenealmsntorphic
2-sphere with constant curvature @\(2, 4).

1. Introduction

It is one of fundamental problems in differential geometoy study the rigidity
and homogeneity of special surfaces and submanifolds inendRiemannian manifold.
The most important and interesting case is that the ambiemifold is a space form.
For example, minimal surfaces with constant (Gaussiaryature in real space forms
have been classified completely ([3], [4], [11]), and minirRaspheres with constant
curvature in the complex projective spa€#" also have been classified completely
(I1], [2]). We wish to study 2-spheres with constant curvatimmersed in the complex
Grassmannians which is a generalization of the complexeptiop spaceCP".

The complex Grassmann manifa@{k+ 1,n+1) is the set of allK+ 1)-dimensional
complex vector subspaces @'+1, which is isomorphic to a Hermitian symmetric space
U(n+1)/(U(k+1)xU(n—k)). We equipG(k+ 1,n+ 1) with a canonical K&hler metric
which isU (n+ 1)-invariant and has Einstein constanh 2(1). Particularly,G(1,n+1) is
the complex projective spageP", which has constant holomorphic sectional curvature
4. However, the geometric structure @{k + 1,n + 1) is much more complicated when
k > 1. For example, whek > 1, G(k + 1, n + 1) does not have constant holomorphic
sectional curvature, and the rigidity of holomorphic cwve G(k + 1,n + 1) fails ([7]).
For this reason, it is hard to generalize some perfect egiltsubmanifolds inCP"
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to the ones of submanifolds in a general complex Grassmasnidowever, when the
integersk, n are small, there are some results about minimal 2-spher@gkin- 1,n -+ 1).
Minimal 2-spheres with constant curvature@{2, 4) were determined by Z.-Q. Li and
Z.-H. Yu ([14]), and holomorphic 2-spheres with constantvature inG(2, 5) were also
investigated by X.-X. Jiao and J.-G. Peng ([10]).

In [1], S. Bando and Y. Ohnita proved that all minimal 2-sgsemwith constant
curvature inCP" are homogeneous, and later, H.-Z. Li, C.-P. Wang and F.-E c\A&+
sified homogeneous 2-spheres @P" in [13] by the method of harmonic sequence.
The purpose of this paper is to classify homogeneous 2-sphiercomplex Grassmann-
ians (see Theorem 4.1), which is a generalization of [13]. siheuld point out that our
original idea derives from [1] and the observations of thémrasult in [13]. They in-
spire us to consider this problem from the angle of the upitepresentation theory of
SU(2), which is quite different from the method used in [13]. AS applications we
give an explicit description of all homogeneous 2-sphere§{2, 4) and their differ-
ential geometric quantities (see Theorems 5.1 and 5.2).

It is worthy to notice that minimal 2-spheres with constaotvature in spheres
([8], [9]) and complex projective spaces ([1]) are alwaysnlegeneous, but it is not
true for the case when the ambient space is a general complessi@annians. To
show this phenomenon, we prove the non-homogeneity for ampbe of holomorphic
2-sphere with constant curvature @(2, 4) given in [14] (see Theorem 5.3). There-
fore, this phenomenon also reflects the complexity of thergedc structure of general
complex Grassmannians.

Our paper is organized as follows. In Section 2, we recall esdrasic facts of
unitary representations &U(2). In Section 3, we prove that if an immersian S* —
G(k+1,n+1) is homogeneous, then its images?) is a 2-dimensionap(SU(2))-orbit
in G(k+1,n+1), wherep : SU(2) - U(n+ 1) is a unitary representation &UJ(2). In
Section 4, we give a classification theorem of homogeneosgh2res inG(k+1,n+1)
which generalizes main theorem of H.-Z. Li, C.-P. Wang antt.PNu in the case of
CP". In Section 5, we describe explicitly all homogeneous 2esph inG(2, 4).

2. Preliminaries

In this section, we will agree on the same notations in [1} aegin with recall-
ing some basic facts of irreducible unitary representatiohthe 3-dimensional special
unitary groupSU(2), which is defined by

SUR) = {g: (Z _glb);a,be(c, |a|2+|b|2=1},

and its Lie algebrau(2) is given by

5u(2)={X=(\/;_1X _Jz—lx);xeR, yeC},
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with a natural basiges, 2, €3}, which is given by

= (%0 ) =m0 0) e ()

Set T = {expPe1); 6 € R}, then we have the homeomorphissi ~ SU>2)/T.
The tangent space of the poiff][e S* can be naturally identified with the subspace
span {2, £3} of su(2). We define a complex structure @3 such thats, — v/—1e3 is
a vector of (1, 0)-type.

For each nonnegative integer let V,, be the representation space3fl(2), which
is an @ + 1)-dimensional complex vector space of all complex homeges poly-
nomials of degrea in two variableszy and z;. The standard irreducible representation
pn Of SU2) on V, is defined by

(2.1) pn(9) f (20, 21) := f(azo + bz, —bzy + azy),

whereg € SU(2) and f € V,. If we view the elements of¥,, as polynomial functions
of S* = {(20, 21) € C?; |20? + |z1|> = 1}, we can define &U(2)-invariant Hermitian
inner product (, ) onv, as follows

(n + 1)!
27T2 B3

(f, h) = f.hdv,

where h € V,, and dv is the volume element of°. It is easy to check thatuﬁ”)}
defined by

1 n—k k

ul = 0<k<n,

is a unitary basis oW,. Sincepn(g)u(kn) € Vh, we can write
n
Pa(@u = Y 2 (a by,
1=0

where {1} (a, b)} are polynomials of degrer in {a, &, b, b}. By (2.1), we have

| ~[1(n=1)! N =K\ (K\ _p sk apnkopy_&
22 m@b= " > ( ) )(q)ap(a) apn-k=pP(_p)a.

K(n—k! =~

Let C"*! be the complex number space of dimensiant( 1), and{E;}_, be the
standard basis of"*1. With respect to the unitary bas{s(k”)} of V,, there is a natural
isomorphism betweed, andC"*1. Under such isomorphism, each linear endomorphism
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pn(g) (for g € SU(2)) can be represented by a matmk((a, b)), which is still denoted by
pn(0). It is easy to seen(g) € U(n + 1), thus we have a Lie group homomorphism

on: SUR) — U(n + 1),
g~ pn(9) = (Ai(a b)).

The representatiop, of SU(2) induces an action ofu(2) on V, which can be de-
scribed as follows

d
P (OUP) = | p(exptX)(u”)
2.3) = —Vk(n—k+ Dyu™, + (n — 2k)v—1xu®

+ V=K T Dyu®,,

for 0 <k <n and X € su(2). Using the matrix notation, we get a Lie algebra homo-
morphism pn, : su(2) = u(n + 1), X — pn«(X), which is the differential of the homo-
morphismp,. From (2.3), in terms of matrix formg,.(X) can be written as

nv/—1x J/ny
-J/ny (n-2v/-1x 2(n—-1y
(2.4)  pne(X) =

—/Ny  —n+/—1x
3. Homogeneous 2-spheres in complex Grassmannians

In this section, we shall reduce the classification probléimoomogeneous 2-spheres
in complex Grassmannians to an algebraic problem on unigpyesentations dbU(2)
whose classification theory is classical and well-known.

An immersionx: § — G(k+ 1,n + 1) is said to behomogeneoysf for any two
points p, q € S there exists an isometry of S*> and a holomorphic isometry of
G(k+ 1,n + 1) such thatz(p) = q and the following diagram communicates

2L 5Gk+1,n+1)
(3.1) 5\1 la
P2 5G6K+1,n+1),
i.e.,Xxoo = ooXx. We can identifys (resp.o) with an element 05Q(3) (resp.U (n+1)).

All such o form a subgroups of U(n+ 1) andG acts transitively orx(S?). It's known
that such 2-spheres G(k + 1,n 4+ 1) have constant curvature, but they are non-minimal
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in general. Standard examples of homogeneous 2-sphef&8"irare so-called/eronese
sequencevhich are completely determined by S. Bando and Y. Ohnit}.([1

As mentioned above, an immersion S* — G(k + 1,n + 1) is said to be homo-
geneous if the groul = | (G(k+1,n+1),x(S%)) acts transitively orx(S?), or equiva-
lently, x(S?) is a 2-dimensionalG-orbit in G(k + 1, n + 1). SinceS? is compact, we
know thatG is also a compact Lie subgroup bf(n + 1).

Lemma 3.1. The groupé = {6 € S(O3); X o 6 = x} consists the unit element
I3 only.

Proof. Leté € G, then 1 is an eigenvalue @f, so the action o6 on S has a
fixed point p. The differential map ok ands at p satisfy

Xsp © Oup = Xup-

Since x.p is injective, it follows thatc., is an identity map. Thus, we obtath = I3,
which completes the proof. O

By this lemma and the commutation diagram (3.1), we obtairataral Lie group
homomorphismi: G — S(O3), o — ¢. Up to now, we can prove our following prin-
ciple result.

Theorem 3.2. If x: § — G(k+1,n+1) is a homogeneous immersidahen there
exists a unitary representatiop: SU(2) — U (n+ 1) such that XS?) is a 2-dimensional
p(SU(2))-orbit in G(k + 1,n + 1).

Proof. Letg be the Lie algebra os and i, : g — 0(3) be the Lie algebra homo-
morphism induced by.. SetH = kerx andh = kerx,, thenH is a closed normal Lie
subgroup ofG whose Lie algebra i§. Obviously,h is an idea ofg. SinceG is compact,
one can equig with an Ads-invariant inner product , ). The orthogonal complement
subspace of) in g with respect to theAds-invariant inner product is denoted by .
Thenh?' is a subalgebra of and also an ideal of. So there exists a unique connected
Lie subgroupK of G with its Lie algebrah’. By the fundamental homomorphism the-
orem of Lie algebra, we obtain the following Lie algebra iswphisms:

A(bh) = () = g/b = bt

Since x(S?) is a 2-dimensionalG-orbit and H acts onx(S?) keeping every point
fixed, we know thatx(S?) is also a 2-dimensionaK -orbit. Therefore, we obtain the
relationship dim..(h1) = dimht = dimK > 2. One can conclude that.(h1) = o(3) by
the well known fact that there is no 2-dimensional subalgeifro(3), and hencey* =~
0(3). Then we get a covering homomorphisiix: K — SQ3), which implies thakK is
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isomorphic toSU(2) or SQ3). If K =~ SU(2), thenp: SU(2) SK < U(n+ 1) defines
a unitary representation &U(2). If K =~ S(O3), let ¥+ be the adjoint representation of
SU(2), then the map

p:SUR) L saoR) S K s Un+ 1)
also defines a unitary representation3§(2). This completes the proof. ]

Two homogeneous immersions S — G(k+1,n+1) andx: & — G(k+1,n+1)
are said to besquivalentor congruent if there exists an elemerm € U(n + 1) such
that x = Ao x". According to Theorem 3.2, the classification of equivalelaisses of
homogeneous 2-spheres @(k + 1, n + 1) is reduced to the following two problems:
(I) Classifying the equivalence classes of unitary repregems of SU2);

(I1) Determining all p(SU(2))-orbits in G(k+1,n+1) of dimensior2, here p : SU(2) —
U(n+ 1) is a unitary representation of SQ).

The problem (I) is classical and well-known in the repreagah theory of com-
pact Lie groups, namely, the sffon, V), n =0, 1, 2,...} forms all inequivalent ir-
reducible unitary representations $tJ(2) and every unitary representatignof SU(2)
can be expressed as direct sum of irreducible ones. To soévg@roblem (Il), we can
prove the following theorem:

Theorem 3.3. An orbit M of p(SU(2)) on Gk + 1,n + 1) is a 2-dimensional
sphere immersed in & + 1,n + 1) if and only if M goes through the point W
G(k + 1,n + 1) which is a(k + 1)-dimensional vector subspace invariant by T.

Proof. Suppose tham = W - p(SU(2)) is a 2-dimensional orbit for somé/ €
G(k+ 1,n+ 1), andH is the isotropy subgroup d8U(2) at the pointW. It is easy
to see thatH is a 1-dimensional closed Lie subgroup $8(2) and its Lie algebra
is a 1-dimensional subalgebra @i(2). Thus there is an elemeit of su(2) such that
h = spang{X}. According to some basic theory of linear algebra, therstexie SU(2)
and a nonzero real numbgrsuch thatg=Xg = xe;. Henceg=thg = span{e1} and it
follows thatg=*H°g = T, where H® is the connected component bf which contains
the unit. Taking the poinW = W - p(g), then the isotropy group &V is g~'Hg
which containsT, i.e., W is a k + 1)-dimensional vector subspace invariant by the
action of T. Thus, we prove the sufficiency of our theorem, and the négefsdlows
from the fact thatsu(2) has no 2-dimensional subalgebra. ]

4. Classification theorem of homogeneous 2-spheres G(k + 1,n + 1)

In this section, we will give a classification theorem of h@eneous 2-spheres in
Gk+1,n+1).
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In virtue of Theorem 3.3, the problem (Il) was reduced to deteing of all K+ 1)-
dimensional vector subspaces invariant Dy Let p: SU(2) — U(n + 1) be a unitary
representation c8U(2) andp|r: T — U(n+1) be the restriction op from SU(2) to T.
SinceT is a torus group, we just need to determine all 1-dimensiwaetor subspaces
invariant by T.

If p is irreducible, i.e.,o = p, for some nonnegative integer By (2.2), it is easy
to see that

(4.1) ( VST

= ) — diag{eﬂ"e, erl(n—2)9' . e—Jflne}.
0 eV

Hence,{E;, 0 <i < n} are eigenvectors o0b,(T) which belong to eigenvalues

eﬁne ' eﬁ(nfzi)ey L eﬂ/flne’

respectively. ThusW = spa{E;} := [Ei], 0 <i < n, are all 1-dimensional vector
subspaces invariant by. Define the mag¢™} by

M. & = suR)/T — CP",
gT = Wi - on(9) = [ 7],

which areSU(2)-equivariant immersions o into CP", here £ = (A2, A1, ..., M.
The sequenc¢¢g‘), 5“), ..., ¢M} is well-known asVeronese sequenda CP" ([1],

[2]). The Gaussian curvaturk and the Kahler anglé of ¢i(”) are

4 n—2i

- 1 9_+l
nt2mn—i) ¥ Tnrano

respectively.
If p is reducible, themo = p,, ® -+ @ pp, andC"*t = CMlg... o C™ ! with
n=ny+---+n +r -1, i.e.,

p: SUR2) > U(n + 1),
g > p(9) = diag{on,(9), Pn,(9), - - -, on, ()}

Set E;’; = E;, wherei =n;+---+n4_1+ jo +a—1 and 0< j, <n,. It follows
from (4.1) that a 1-dimensional vector subspace invarigniTbmust be spanned by a
complex vectorv with the following form

(4.2) v:clE;‘ll+---+crE’-‘r’, c,€C,1<ac<r,
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where{n,, j, | = 1,...,r} are nonnegative integers satisfying
4.3) N —2j1=Np—2jzg="++"=n —2j.

In general, a K + 1)-dimensional vector subspace invariant Dycan be spanned by
k + 1 complex vectorqv; |i =1,...,k+ 1}, where eachy has the form (4.2) and
they satisfy ¢, vj) = 6; with respect to the standard Hermitian inner product ( , )
on C"*1,

Combining Theorems 3.2 and 3.3 together with the above azgtsnwe obtain
the following classification.

Theorem 4.1. Let x: S — G(k+1,n+ 1) be a homogeneousphere in Gk +
1,n+1). Then there exist nonnegative integéns, j1, | =1,...,r}, ..., {Ny, jk+10 |
a=1,...,r} satisfying

N+ 4+n +r=n+1,

0<jt1ar s jktta <Ny (@=1,...,1),
N1 —2j11="N2—=2j12="+- =N — 2]y,
N1 —2jk+1,1 = N2 — 2Jks12 ="+ =N — 2jks1r
and complex constantssi , |[i =1,...,k+ 1,0 =1,...,r} satisfying
'
Z Gi,aChadijiine = din
a=1

such that x= Ao f, where Ac U(n+ 1) and f is defined by

f: =SUQ2)/T - Gk+1,n+1),

(n1) (n2)

(nr)
i fj(lrsl) o2 f‘(lr'f) Cur fj(lhr)

1, 7] .

gT — Cz’lfiz.l 02,21:]‘2'2 s Cor sz,r
011 f™ G f™ o g, £

Jk+1,1 Jk+1,2 Jk+1r

REMARK. Theorem 4.1 is a generalization of main theorem of H.-ZQL{P. Wang
and F.-E. Wu in the case @P" ([13]).

However in order to classify completely it is necessary ttedwrine all{n,, ji, |
a=1,....r}, ..., {Ng, Jkt1e | =1,...;r}and{ci, i =1,....,k+ 1, a=1,...,r}
satisfying the above conditions. In next section, we will il@ompletely in the case
of G(2, 4). In the case of more general complex Grassmanniansvonll need more
efforts to do them certainly.
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5. Explicit description of homogeneous 2-spheres iG(2, 4)

In this section, we will describe explicitly all homogenso-spheres irG(2, 4),
from which, one can find a family of non-minimal homogeneotspBeres inG(2, 4).
To do this well, we should consider the following four casespectively.

Casel. If p = p3, thenp: SUR2) — U(4) andp,: su(2) — u(4) can be given by
(2.2) and (2.4) explicitly as follows

ad V/3a%b J/3ak? b3
(5.1) o(Q) = —x/§8f|5 a(lal* - 2|bj%)  b(2la* - |b[?) V3ar?
' V3ab?  b(b|?—2[al?) a(jal*-2b|?) 3% |’
—b® V/3ab? —/3a%b as

3/-1x 3y 0 0
—V3y  V/—1x 2y 0

0 -2y —v/—Ix 3y

0 0 -3y  —3J/—1x

(5.2) p(X) =

By the arguments in Section 4, we know th&], 0 < k < 3 are all 1-dimensional vec-
tor subspaces invariant By. Then spap{Ey, Ei}, 0 < k <| < 3 are all 2-dimensional
vector subspaces invariant Ay, so we get the following six homogeneous 2-spheres.

(I11) The base poinW = [é (1) 8 8], then

) ad V/3a%b +/3ap? b
f:$°~06@4, gTH[—ﬁaza a(ja? —2b") b(2la?— bf?) v3ar? |

(11) The base poinW = [8 8 é (1)] then

f: G2 4) gTH[‘@a‘B2 b(lbf* - 2laf’)  alal* — 2|b[?) */éazb}.

—b? V/3ab? —/3a% as
(12) The base poinWW = [

3 2 3
f: S G2, 4), gTI—>|: a V3ah v/3al? b }

3ab? b(bj2—2a?) a(jaj2—2/bj2) +/3ab
(12') The base poinW = [8 é 8 (1)] then

f: 2 G2, 4), gT;_>|:_\/§a26 ajal* - 2|b2) b(2lal? - |b?) JéabZ]_

—b® /3ab? —/33%b as
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(I3) The base poinW = [é 8 8 2] then

f: -G, 4) ng—>|:a3 Vaalh /3l bs].

—b® J3ab? —/33%h &

(13) The base poinW = [ 2 8], then

/3% a(lal?—2b) b(2laP— b?) V3K
.2
(8004 9T | Uk Mot ae a2k e |

It is clear that the casesifland (i) (i =1, 2, 3) are Hermitian orthogonal with
respect to the standard Hermitian inner productC4f

Casell. If p = p1® po D po, thenp: SU2) — U(4) and p,: su(2) - u(4) can
be written explicitly as follows

a b 0 O
b a oo
(5.3) P@=|"% o 1 ol
0 0 0 1
A/ —1X y 0 0
_ -y —+/-1x 0 0
(5.4 px(X) = 0 0 o ol
0 0 0 0

by (2.2) and (2.4). Then, the restriction representapop: T — U(n + 1) is given by

diagieY ¥, e V¥ s diagleV ¥, e V¥, 1, 1).

So, we get two inequivalent homogeneous 2-spheres up(49-equivalent.

(l11) The base poinW = [é 8 (1) 8] then

f: G2 4), ng—>|:g b0 0}.

We know that (II1) and (119 are also Hermitian orthogonal with respect to the standard
Hermitian inner product ofC*.
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Case lll. If p = p2® po, similarly, p: SU2) — U(4) and p,: su(2) — u(4) can
be written as follows

a2 V2ab B 0
| —v2ab |a]?—|b? +2ab 0
(5.5) p(9) = B2 —\/EEB 52 ol
0 0 0 1
2J=1x 2y 0 0
| v2y o0 V2y 0
(5.6) p<(X) = 0 -2y —2J=1x o]

0 0 0 0

by (2.2) and (2.4). The restriction representatjgh: T — U(n + 1) is given by

diagleV Y, e VY) i diage® Y, 1,62V ¥ 1),

Hence, all 1-dimensional vector subspaces invarianT kare [Eo], [ E2] and [v], where
v = ¢ E1+CoE3 with |c1]?+|cy|? = 1. Then up taU (4)-equivalent, we have two isolate
homogeneous 2-spheres and two 1-parameter families of gmeous 2-spheres.

(IN1) The base pointW = [é 8 2 8] then

a2 J2ab R 0
b2 —v2ab a2 o

f: - G2 4), gTr—>|:—

(11" The base poinW = [ 8 2] then

1
0

oo

f. G2 4) gT}—>|:_\/§a6 laj2— b2 /Zab o}_

0 0 0 1

(I12) The base pointW\; = [(l) Cé’st 8 sigt ] t € [0, /2], then

2
fi: @ - G(2, 4), gTI—>|: a v2ab 4 0 ]

—+/2abcost (ja®2— |b[?) cost +/2abcost sint

(I12") The base poinW; = [8 —s(;nt g coost ] t € [0, /2], then

- _ ah 32
fo: =G, 4), ng—>|: v/2ab a 0 }

B2
V2absint (|b]2 —|al®)sint —+/2absint cost

It is easy to check that (ll) and (Illi") (i = 1, 2) are also Hermitian orthogonal
with respect to the standard Hermitian inner productC4f
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Case IV. If p = p1 & p1, thenp: SU2) — U(4) and p,: su(2) — u(4) can be
written as follows

a b 0 O
b a 0 0
(65.7) P@=1"% o a bl
0 0 —b a
v —=1x y 0 0
B -y —+/—1IX 0 0
0 0 -y —+/=1Ix

by (2.2) and (2.4). The restriction representatigh: T — U(n + 1) is given by

diagie¥ ™, eV} 1> diagle” ¥, e VY, /Y V),

Hence, the 1-dimensional vector subspaces invarianfl bgre [v;] and [v2], where
v1 = ¢1Eg + B> and vo = diE; + dy E3 with |C1|2 + |Cz|2 = |d1|2 + |d2|2 = 1. Then
up to U(4)-equivalent, we have two isolate homogeneous 2-sphemdsa family of
homogeneous 2-spheres.

(IV1) The base poinW = [é 8 (1) 8], then

w2 a b 0 O
f: - G(2,4), gT+—>|:0 0 a b:|'
’ ; _ 0100
(IV1) The base pomW_[000 l],then
-ba 0 O
f: - G2 4), gTI—>|:0 o _b a}'

And also, (IV1) and (IV]) are Hermitian orthogonal with respect to the standard
Hermitian inner product ofC4.
g 0 ¢ O . 2 2 2 2
, with |c C|c =|d dalc=1
0 d 0 d2i|W| c1|® + |Co|* = [d1]* + [d
and p := ¢, — cpd; # 0, then

(IV2) The base poinW = [

f(Cl, Co, d1, dz)l SZ — G(Z, 4), gT = |: Ga Clb A Czb i|

—dib ha —-dyb dha

Thus, we have completely classified homogeneous 2-spheré$2i, 4).

Next, we will give some geometrical descriptions of thesenbgeneous 2-spheres
in G(2,4). We only compute the geometric quantities of the cée For other cases,
we omit the details of calculations and just list the resuitSable 1.
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Let @ = (Qp5), 0 < A, B < 3 be theu(4)-valued right-invariant Maurer—Cartan
form of U(4). The Maurer—Cartan structure equationsud#) are

Then the canonical Kahler metric &(2, 4) and its Kahler form can be written as

ds’ =" Q- Qur,
V-1 _
®=T;Qai’/\%i’,

where the range of the indices are= 0, 1 andi = 2, 3 respectively.

We choose a unitary frame fiekl= (ep, €1, &, €3) along f, whereesy = Ea- p(0),
A=0,1,2, 3. Itis easily see from (5.2) that the pull back of Madzartan form can
be written as

WaH ?(]ﬁ 0 0
—Ed_’ 2 ¢ 0
(5.10) e'Q = 2 3
0 —¢ w2 7¢
0 0 —\/7:_3(]; w33

With wgg 4+ wgz = 0, w7 + w3 = 0 andwgy = 3w,7, Where¢ is a complex-valued (1, 0)
form of S?, which defined up to a factor of absolute value 1, and the iedumetric

is f*ds? = ¢.

If we write
(5.11) f*Qug = 0ag = Apd + bagd,
and

A=(ay), B =(hy).

It follows from (5.10) that

= (22) o=

So the Kahler angle (defined in [5]) of is cosf® = tr(AA* — BB*) = 1.

0 0
0 0

)
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The structure equations & with respect to the induced metric can be written as
(5.12) d¢ =—p N o,

(5.13) dp = 5914,

where p is the complex connection form arid is the Gaussian curvature &, with

respect to the induced metric*ds?. Using the Maurer—Cartan structure equations (5.9)

we obtaind¢ = dws = —(w3—wii) A . It gives p = w3 —wq1 by (5.12). Making use

of (5.9) again, we getlp = d(w,—wy7) = (1/2)p A¢, which impliesK = 1 by (5.13).
Taking the exterior derivative of (5.11) and using (5.9), get the covariant dif-

ferential ofa,; andb,; (defined in [6]) given as follows

Da,; = Pui® + A0,
Db,; = 0,i¢ + I,

where

(Pa) = S ~@)=(g o) =(5 o)
0 \/75, 00 00

The second identitieg,; = O imply that f is a minimal immersion ([6]). By the iden-
tity (1'.15) in [15], the square length of the second fundamentah fisr

(5.14) S=4) (la,*+1r,i[) =6.

a,

Through some similar straightforward computations, we tget following theorem.

Theorem 5.1. The differential geometric quantities of homogenegtspheres in
G(2, 4) are given inTable 1,where te [0, 7/2] and u = ¢;d; — cxd; # 0, and K is
(induced Gaussian curvaturef is the Kahler angle and S is the square length of the
second fundamental form.

REMARK 1. In the case (IV2), whefu| =1, f(cy,Cp,d1,dy) are totally geodesic
with K = 2. They are allU (4)-equivalent to

(Iv2) f: G2 4), gT+—>|:a b0 O]

0 0 —-b a

The others in the case (IV2) are non-minimal. The one giverlig) (resp. (1112))
with t = /4 is U (4)-equivalent to the one given in (IV1) (resp. (IVL([7]).
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Table 1.

Case | Minimality K cosf S
(11) Yes 1 1 6
(11) Yes 1 -1 6
(12) Yes 2/5 | 1/5 0
(12) Yes 2/5 | -1/5 0
(13) Yes 2/3 0 8/3
(13) Yes 2/3 0 8/3
(n1) Yes 4 1 0
(11 Yes 4 -1 0
(1) Yes 1 0 0
(mw) Yes 1 0 0
(1112) Yes 2 1 4 cos 2t
(n2) Yes 2 -1 4 cog 2t
(IV1) Yes 2 1 0
(V1) Yes 2 -1 0
(IV2) 2/lulP | 0 | A4Q—|uP)/Inl?

REMARK 2. Since every closed totally geodesic submanifold of a fgemeous
Riemannian manifold is homogeneous ([12]), Theorem 5.b alntains a complete
classification of totally geodesic 2-spheresGii2, 4).

By Table 1 and the above remarks, we obtain

Theorem 5.2. Up to U(4)-equivalent the one given in(12), (12), (111), (11",
(In1), (N1, (IvV1), (IvV1) and the one given ifivV2') are all totally geodesi@-spheres
in G(2, 4).

REMARK 3. The l-parameter family of homogeneous holomorphic Zgshin
(1) was first discovered by Q.-S. Chi and Y.-B. Zheng in.[7]

REMARK 4. There are some differences between our classificationttendlas-
sification of minimal 2-spheres with constant curvatureG2, 4) by Z.-Q. Li and
Z.-H. Yu ([14]). The case (IV2) in our classification is notntained in theirs, and
there is a holomorphic (thus minimal) 2-sphere with corstarvature K = 4/3 in
G(2, 4) given in [14] which is not contained in ours.

To conclude this section, we want to prove that the holomior@hsphere with
K =4/3 in G(2, 4) mentioned in Remark 4 isot homogeneous
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SetS> = C U {oo} and z is the local coordinate of?, and define the map

1 0 372 o}

¢: & — G(2,4), Zl—>|: \/* \/*

Theorem 5.3. The holomorphic embedding is not homogeneous.
Proof. We choose a unitary frame fiedd= (ey, e, €3, &4) along ¢ as follows:

1
e = —(1, 0,437, 0),
Al
1 8 /1
= —[-2v221z% 1+ 3|z* |/ 2z /221 + 3]z%) |,
A2 37 V3
1 1.
e3_)\’_3<01_\/;zloll>y
1 1 8 1 22
= o _v32( 1+ 2122) = /S5 14 Z1712 Y542
e M( Va2(1+ 3122). - 52 1+ Ja7 -200a¢ ),

= 1+ 3|z%,

A2 = /14 3|22 + 6]z|* + 10|26 + 9]z[8 + 3|z|1°,

1
Ay =41+ §|Z|Za

10 1
Ay = \/1 + §|z|2 + 4|z|* + 2|2|® + §|z|8.

where

By direct computation, we get

w3 = (dey, €3) =0,

2 1+ (1/3)|)
wyy = (dey, &) = V3 ;)54/ )|Z|)
3(1+ 3|2
vy = (dey &) = % dz,
2/6(2z|° + 3|z]* — 1
o = (A ) = VORI

3A2Ag
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Thus, the metric induced by is

3

9 AS* = w133 + w101 + W0 + Wpdy = (ENEDE dz dz,

which implies the (induced) Gaussian curvatife= 4/3. Set¢ = +/3/(1 + |z|?) dz,
then we have

22(1 + (1/3)|21%)( + |2)

0
A
(5.15) A=
1+3z2A+12P) 2v/2(202|° + 31z]* — 1)(1 + |z]?)
3hohs 3hoia
by (5.11).

Up to now, we have two ways to show thatis not homogeneous. The first one
is thatz = 0 is an isolate zero point of dét and rankA |,—o= 1 by (5.15), which
implies thaty is not homogeneous. The second one is that the square lehgtie o
second fundamental form @f is given by

_16(3+ 2|77 + 3|z
B 91+ (z»?

by the first identity of (5.14), which is not a constant, anddey is not homogeneous.
O
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