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Abstract
We determine the moduli space of the surfaces of general typestudied by

Catanese, Ciliberto and Hirotaka Ishida by using the familyof Hesse cubic curves.

Introduction

A minimal surfaceS of general type overC is called Catanese–Ciliberto surface
if it satisfies pg(S) D q(S) D 1 and K 2

S D 3. Then the Albanese mapa W S! E is
a surjection to an elliptic curveE D E(S). The general fiber of the morphisma is a
smooth irreducible curve, and the genusg is known to be two or three [1].

In [3], Hirotaka Ishida studied the caseg D 3. In this case,V D a
�

KS
OE K�1
E

is a locally free sheaf of rank three, and the natural rational map � W S! PE(V) is a
morphism [1, Theorem 3.1]. In [3], the surface is defined to beof Type I if � is an
embedding anda has only one singular fiber. Ishida studied precisely the Catanese–
Ciliberto surfaces of Type I. In this paper, we call this typeof surface a CCI surface
by taking the initials of Catanese, Ciliberto and Hirotaka Ishida. He got the following
theorem [3, Theorem 0.2].

Theorem 0.1. Let E be an elliptic curve defined overC. If E has an automorphism
of complex multiplication type, then there exist exactly two isomorphism classes of CCI
surfaces S with ED E(S). Otherwise, there exist exactly four isomorphism classes of
such CCI surfaces.

If we take an isogenyqW E0

! E of degree three, there exists a natural coordinate
system of theP2-bundle P(q�V). In [3], he fixed one of such coverings and showed
that there exist exactly four equations which define the pullbacks of CCI surfaces. Of
course, the CCI surfaces overE are recovered by descending the surfaces defined by
these equations. Only one of these equations is of Fermat type whereas the others are
not. However, by the elementary theory of abelian varieties, we know that there exist
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exactly four isogenies of degree three for a givenE, and each covering has an equation
of Fermat type defining the pullback of a CCI surface. We show that the four CCI
surfaces obtained by the Fermat type equations of differentcoverings are distinct from
each other. Namely, the Fermat type equations are enough forgetting all CCI surfaces
over an elliptic curveE, if we consider all isogenies of degree three.

In this paper, we construct a CCI surfaceS(�) for each� 2 C n {1} by using this
Fermat type equation, and we show thatC n {1} is the coarse moduli space of the CCI
surfaces. For each� 2 Cn {1}, the j -invariant of the elliptic curveE(S(�)) is given by

j (�) D
27�(� C 8)3

(� � 1)3

(cf. [2, p. 456] and [6]). Furthermore, we construct a globalfamily of CCI surfaces
with the parameter� in the threefold coveringT D C n {1, !, !2} of C n {1} defined
by � D �

3 by using the family of Hesse cubic curves onT .

1. The coordinate transformation on an elliptic curve

We use the following lemma which follows from the Riemann–Roch theorem.

Lemma 1.1. Let E be an elliptic curve defined overC and P a point on it. Then
we haveH0(E, OE(P)) D C.

Let E be an elliptic curve defined overC with a fixed additive group structure.
Let 3E W QE ! E be the morphism defined byQE D E and 3E(x) D [3x], where [ ]
indicates the calculation by the group law. Since Ker 3E ' (Z=3Z)2, there exist exactly
four unramified coverings of degree three ofE which correspond to the four subgroups
of index three of (Z=3Z)2.

Take a set of generators{P10, P01} of Ker 3E, and definePi j D [i P10 C j P01] in

QE for 0 � i , j � 2. We denote by

� a02 a12 a22
a01 a11 a21
a00 a10 a20

�

the divisor
P2

iD0

P2
jD0 ai j Pi j with

the support contained in Ker 3E. Since [P10C P20] D [ P01C P02] in QE, there exists a
nonzero rational functionf00 on QE whose divisor (f00) is equal toP10CP20�P01�P02

by Abel’s theorem.
Let � and � be the translations ofQE defined by� W x 7! [x C P10] and � W x 7!

[x C P01], respectively. Setfi j D (��i
�

� j )� f00 for 0� i , j � 2. Then

( f00) D

2

4

�1 0 0
�1 0 0
0 1 1

3

5, ( f10) D

2

4

0 �1 0
0 �1 0
1 0 1

3

5, ( f20) D

2

4

0 0 �1
0 0 �1
1 1 0

3

5,

( f01) D

2

4

�1 0 0
0 1 1
�1 0 0

3

5, ( f11) D

2

4

0 �1 0
1 0 1
0 �1 0

3

5, ( f21) D

2

4

0 0 �1
1 1 0
0 0 �1

3

5,
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( f02) D

2

4

0 1 1
�1 0 0
�1 0 0

3

5, ( f12) D

2

4

1 0 1
0 �1 0
0 �1 0

3

5, ( f22) D

2

4

1 1 0
0 0 �1
0 0 �1

3

5.

Lemma 1.2. The rational function f00 f11 f �1
10 f �1

01 is equal to the constant! or

!

�1
D !

2, where! D (�1C
p

3i )=2.

Proof. Since

( f00) � ( f10) D ( f01) � ( f11) D

2

4

�1 1 0
�1 1 0
�1 1 0

3

5,

we have (f00 f11 f �1
10 f �1

01 ) D 0. Hence, this function is a nonzero constant�. Since

�

3
D

f00 f11

f10 f01
� (��1)�

�

f00 f11

f10 f01

�

� (��2)�
�

f00 f11

f10 f01

�

D

f00 f11

f10 f01
�

f01 f12

f11 f02
�

f02 f10

f12 f00
D 1,

� is 1, ! or !2. If � D 1, then

f00

f10
D

f01

f11
D (��1)�

�

f00

f10

�

.

Hence f00= f10 is � -invariant and descends to a rational function onQE=(� ) with a single
pole of order one at the image ofP00. This contradicts Lemma 1.1 sinceQE=(� ) is an
elliptic curve. Hence� is ! or !2.

If f00 f11 f �1
10 f �1

01 D !, then we can make it!�1 by exchangingP10 andP01 and by re-
defining fi j ’s for the new (P10, P01). Actually, this value is equal to the inverse of the Weil
pairinge3(P10, P01) (cf. [8], [7, III, §8]). From now on, we assumef00 f11 f �1

10 f �1
01 D !

�1.
It is easy to check that

( f10 f20 f01 f02) D

2

4

�1 0 0
�1 0 0
0 1 1

3

5

D ( f00).

Hence, there exists a nonzero constant� 2 C� with f00 D � f10 f20 f01 f02.

Lemma 1.3. Æ D f00C f01C f02 is a nonzero constant function onQE.

Proof. Since f00, f01 and f02 are in H0( QE,OE(P00C P01C P02)), Æ is also in this
vector space. SinceÆ is � -invariant, it descends to a rational functionNÆ on the quotient
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QE=(� ). This function may have at most a single pole of order one at the image ofP00.
Since QE=(� ) is an elliptic curve, this implies thatNÆ is a constant by Lemma 1.1. Hence
Æ is also a constant. We have to prove that it is nonzero.

Let f00(P11) D � and f00(P12) D �. For the involution� of QE fixing the unit P00,
we get the equality�� f00D f00 since (�� f00)D ( f00) and they have same nonzero value
at P00. Hence we havef00(P22) D � and f00(P21) D �. Since the value ofÆ at P10 is
f00(P10)C f00(P12)C f00(P11) D 0C � C � D �C �, it suffices to show that�C � is
not zero. Since the value off00 f11 f �1

10 f �1
01 at P22 is equal to

f00(P22) f00(P11) f00(P12)
�1 f00(P21)

�1
D �

2
�

�2,

we have!�1
D �

2
�

�2 by Lemma 1.2 and our assumption. Hence�2
¤ �

2, and in
particular� C � ¤ 0.

Let F0 D QE=(� ) and F1 D QE=(� ). We denote bypi the natural surjectionQE ! Fi

for i D 0, 1. Then there exists an unramified morphismqi W Fi ! E of degree three
with 3E D qi � pi for eachi D 0, 1.

QE
p1
K

p0
K

F1

q1
K

F0
q0
K E

There exist pointsP0, P1, P2 on F0 such thatp�1
0 ({Pi }) D {Pi 0, Pi 1, Pi 2} for i D

0, 1, 2. � induces an automorphismN� of order three ofF0, and we haveN� (P0) D
P1, N� (P1) D P2 and N� (P2) D P0. Similarly, there existQ0, Q1, Q2 on F1 such that
p�1

1 ({Qi }) D {P0i , P1i , P2i } for i D 0, 1, 2. � induces an automorphismN� of order three
of F1 with N� (Q0) D Q1, N� (Q1) D Q2 and N� (Q2) D Q0.

DEFINITION 1.4. Let X be an algebraic variety andF a coherent sheaf on it.
We say a groupG acts on the pair(X,F ) if G acts onX, an isomorphism�gW g�F !

F is given for eachg 2 G and the diagram

(gh)�F
�gh

K

h��g
K

F

h�F

�h

K

commutes forg, h 2 G (cf. [4, Definition 1.6]). For a sections 2 F (U ) on an open set
U � X and for an elementg 2 G, we denote simply byg�(s) the element�g(g�(s))
of F (g�1(U )).
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Let V be an indecomposable vector bundle of rank three onE with detV ' OE(0E)
where 0E is the unit of E. Then there exists an isomorphism

q�0 V ' OF0(P0)�OF0(P1)�OF0(P2)

of vector bundles onF0 (cf. [3, 1.1]). We take a sectionZ0 of H0(F0, q�0 V) which
corresponds to a nonzero section of the component H0(F0, OF0(P0)). Since E is a
quotient of F0 by ( N� ), this group acts on the pair (F0, q�0 V). Let Z2 D N�

�(Z0) and
Z1 D N�

�(Z2). Then Zi corresponds to a nonzero section of H0(F0, OF0(Pi )) for each
i D 0, 1, 2. Namely, we can write

(1.1) q�0 V D OF0(P0)Z0 �OF0(P1)Z1 �OF0(P2)Z2.

Similarly, we write

(1.2) q�1 V D OF1(Q0)W0 �OF1(Q1)W1 �OF1(Q2)W2

by sectionsW0, W1, W2 2 H0(F1, q�1 V) satisfying W0 D N�

�(W1) and W1 D N�

�(W2).
Note that Z0 is determined up to multiplications of nonzero constants. Actually,

H0(F0, q�0 V) is three dimensional and elements outsideCZ0 are not zero atP0. If we
replaceZ0 by aZ0 for a nonzero constanta, then Z1 and Z2 are replaced byaZ1 and
aZ2, respectively. These relations are similar forW0, W1, W2.

The pullback of the sheafq�i V to QE is equal to 3�EV for i D 0, 1. We denote the

pullbacks ofZi ’s and Wi ’s to 3�EV on QE by the same symbols.

Lemma 1.5. Assume that we fixed a choice of{Z0, Z1, Z2}. The sections Zi ’s
and Wi ’s of 3�EV satisfy the relations

W0 D f00Z0 C f10Z1 C f20Z2,

W1 D f01Z0 C f11Z1 C f21Z2,

W2 D f02Z0 C f12Z1 C f22Z2

for a suitable choice of{W0, W1, W2}.

Proof. By (1.1) and (1.2), we have equalities

3�EV DO
QE(P00CP01CP02)Z0�O

QE(P10CP11CP12)Z1�O
QE(P20CP21CP22)Z2

DO
QE(P00CP10CP20)W0�O

QE(P01CP11CP21)W1�O
QE(P02CP12CP22)W2.

Hence we can expressWj D
P2

iD0 gi j Zi by rational functions

gi j 2 H0( QE, O
QE(Pi 0 C Pi 1 C Pi 2)).
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Since W0 has zeros atP00, P10 and P20 in the vector bundle 3�EV , eachgi 0 must has
zeros of order at least one at these points as a section ofO

QE(Pi 0C Pi 1C Pi 2). Namely,
we have inequalities of divisors

(g00)C P00C P01C P02 � P00C P10C P20,

(g10)C P10C P11C P12 � P00C P10C P20,

(g20)C P20C P21C P22 � P00C P10C P20.

Since the first inequality implies

(g00) � P10C P20� P01� P02 D ( f00),

g00 is zero or a nonzero constant multiple off00, i.e., g00D a00 f00 for an elementa00 2

C. Similarly, we haveg10 D a10 f10 and g20 D a20 f20 for some elementsa10, a20 2 C.
Furthermore, by consideringW1 and W2 similarly, we have an expressiongi j D ai j fi j
with an elementai j 2 C for every pair (i , j ).

Since E is the quotient of QE by the action of the group Ker3E D (� ,� ), this group
acts also on the pair (QE, 3�EV). We have��Wj D Wj�1 for j D 1, 2 and��Zi D Zi

for i D 0, 1, 2. Hence we have

2
X

iD0

ai , j�1 fi , j�1Zi D Wj�1 D �

�Wj D �

�

 

2
X

iD0

ai j fi j Zi

!

D

2
X

iD0

ai j fi , j�1Zi

for j D 1, 2. This impliesai 2 D ai 1 D ai 0 for i D 0, 1, 2. On the other hand, since
�

�W0 D W0, � �Zi D Zi�1 for i D 1, 2 and� �Z0 D Z2, we have

a00 f00Z0Ca10 f10Z1Ca20 f20Z2DW0D �
�W0D a00 f20Z2Ca10 f00Z0Ca20 f10Z1.

Hencea00 D a10 D a20. Thus we know that allai j ’s are equal to a nonzero constant
a. If we chooseW0 such thata D 1, then we have the equalities in the lemma.

Recall that� is the nonzero constant with the equalityf00 D � f10 f20 f01 f02. Set
f0 D � f00 f01 f02. Clearly, f0 is invariant by��. Hence we have equalities

(1.3) f0 D � f00 f01 f02 D
f 2
00

f10 f20
D

f 2
01

f11 f21
D

f 2
02

f12 f22
.

Set f1 D (��1)� f0 and f2 D (��2)� f0. By applying (��1)� and (��2)� to (1.3), we get
the equalities

(1.4) f1 D � f10 f11 f12 D
f 2
10

f20 f00
D

f 2
11

f21 f01
D

f 2
12

f22 f02
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and

(1.5) f2 D � f20 f21 f22 D
f 2
20

f00 f10
D

f 2
21

f01 f11
D

f 2
22

f02 f12
.

By these equalities, we have

(1.6) f0 f1 f2 D
f 2
00

f10 f20
�

f 2
10

f20 f00
�

f 2
20

f00 f10
D 1.

Similarly, set f 00 D (� f00 f10 f20)�1, f 01 D (��1)� f 00 and f 02 D (��2)� f 00. These are
invariant by� �, and we have equalities

f 00 D (� f00 f10 f20)
�1
D

f01 f02

f 2
00

D

f11 f12

f 2
10

D

f21 f22

f 2
20

,(1.7)

f 01 D (� f01 f11 f21)
�1
D

f02 f00

f 2
01

D

f12 f10

f 2
11

D

f22 f20

f 2
21

,(1.8)

f 02 D (� f02 f12 f22)
�1
D

f00 f01

f 2
02

D

f10 f11

f 2
12

D

f20 f21

f 2
22

.(1.9)

The equality f 00 f 01 f 02 D 1 follows from these equalities.
By applying (��1)� and (��2)� to the equality of Lemma 1.3, we get the equalities

(1.10) Æ D f00C f01C f02 D f10C f11C f12 D f20C f21C f22.

Proposition 1.6. The equality

�Æ

�1( f 00W4
0 C f 01W4

1 C f 02W4
2 )

D ( f0Z4
0 C f1Z4

1 C f2Z4
2)

C 4( f0Z3
0(Z1 C Z2)C f1Z3

1(Z0 C Z2)C f2Z3
2(Z0 C Z1))

C 6( f �1
0 Z2

1 Z2
2 C f �1

1 Z2
0 Z2

2 C f �1
2 Z2

0 Z2
1)

C 12Z0Z1Z2(Z0 C Z1 C Z2)

holds in Sym4
O

QE
(3�EV).

Proof. By the equalities (1.7), (1.8) and (1.9), we have

(1.11) �( f 00W4
0 C f 01W4

1 C f 02W4
2 ) D

W4
0

f00 f10 f20
C

W4
1

f01 f11 f21
C

W4
2

f02 f12 f22
.

By substituting f0 j Z0C f1 j Z1C f2 j Z2 for Wj of the right-hand side of (1.11) forj D
0, 1, 2, we get a polynomial inZ0, Z1 and Z2. It suffices to check that this polynomial
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is Æ times the right-hand side of the equality of the proposition. We will check the
coefficient of each monomial.

The coefficient ofZ4
0 is

f 4
00

f00 f10 f20
C

f 4
01

f01 f11 f21
C

f 4
02

f02 f12 f22
D f00 f0 C f01 f0 C f02 f0 D f0Æ

by (1.3) and (1.10). Similarly, the coefficients ofZ4
1 andZ4

2 are f1Æ and f2Æ, respectively.
Since 4!=(3! 1! 1!) D 4, the coefficient ofZ3

0 Z1 is

4 f 3
00 f10

f00 f10 f20
C

4 f 3
01 f11

f01 f11 f21
C

4 f 3
02 f12

f02 f12 f22
D 4 f10 f0 C 4 f11 f0 C 4 f12 f0 D 4 f0Æ

by (1.3) and (1.10). That ofZ3
0 Z2 is also 4f0Æ. Similarly, the coefficients ofZ3

1 Z0 and
Z3

1 Z2 are both 4f1Æ and those ofZ3
2 Z0 and Z3

2 Z1 are both 4f2Æ.
Since 4!=(2! 2!) D 6, the coefficient ofZ2

1 Z2
2 is

6 f 2
10 f 2

20

f00 f10 f20
C

6 f 2
11 f 2

21

f01 f11 f21
C

6 f 2
12 f 2

22

f02 f12 f22
D 6 f00 f �1

0 C 6 f01 f �1
0 C 6 f02 f �1

0 D 6 f �1
0 Æ

by (1.3) and (1.10). Similarly, the coefficients ofZ2
0 Z2

2 and Z2
0 Z2

1 are 6f �1
1 Æ and 6f �1

2 Æ,
respectively.

Since 4!=(2! 1! 1! 1!) D 12, the coefficient ofZ2
0 Z1Z2 is

12 f 2
00 f10 f20

f00 f10 f20
C

12 f 2
01 f11 f21

f01 f11 f21
C

12 f 2
02 f12 f22

f02 f12 f22
D 12 f00C 12 f01C 12 f02 D 12Æ

by (1.10). Similarly, those ofZ0Z2
1 Z2 and Z0Z1Z2

2 are also 12Æ.

2. Defining equations of CCI surfaces

In [3], Ishida considered CCI surfacesS with E(S) D E for an elliptic curveE.
In this case,V D a

�

KS 
OE K�1
E is an indecomposable vector bundle of rank three.

Since deg(detV) D 1, we may assume detV ' OE(0E). Since such vector bundle is
unique up to isomorphisms, any CCI surface withE(S) D E is embedded inP(V)
for a commonV . He takes a triple covering' W E0

! E of the elliptic curveE, and
describes the defining equations of the surfaces pullbackedby this covering map, where
E0 is denoted by QE in [3, 1.1].

Let E0 be F0 D QE=(� ) in Section 1. Thenq0 W F0 ! E is an isogeny of degree
three. We definethe relative canonical coordinates(Z0 W Z1 W Z2) of P(q�0 V) by (1.1).
One of the four equations defining the pullbacks of CCI surfaces is

91 D f Z4
0 C gZ4

1 C hZ4
2 D 0,
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where f is an explicitly given rational function onF0 with ( f ) D �2P0 C P1 C P2,
and gD ( N��1)� f and h D ( N��2)� f (cf. [3, Proposition 2.8]). We denote byS0 the CCI
surface whose pullback toP(q�0 V) is defined by this Fermat type equation. Since we

consider similar equations on the elliptic curveF1 D QE=(� ) and others, we denote by
9

(0)
1 this 91 in order to avoid the confusion.

Proposition 2.1. There exists a nonzero constant c0 with

9

(0)
1 D c0( f0Z4

0 C f1Z4
1 C f2Z4

2)

for f0, f1 and f2 defined inSection 1.

Proof. Since fi D � fi 0 fi 1 fi 2, these rational functions descend to those ofF0 D

QE=(� ). Since

( f0) D

2

4

�2 1 1
�2 1 1
�2 1 1

3

5,

we have (f0) D �2P0 C P1 C P2 as a rational function ofF0. Hence f D c0 f0 for a
nonzero constantc0. We get the lemma sincef1 D ( N��1)� f0 and f2 D ( N��2)� f0.

Now, we consider the caseE0

D F1, we should replaceZ0, Z1, Z2 in [3, 1.2] by
W0, W1, W2 in Section 1. Then the Fermat type equation of [3, Proposition 2.8] is

9

(1)
1 D f (1)W4

0 C g(1)W4
1 C h(1)W4

2 D 0

for the relative canonical coordinates (W0 W W1 W W2) of P(q�1 V), where f (1) is a ra-
tional function onF1 with ( f (1)) D �2Q0CQ1CQ2, and g(1)

D ( N��1)� f (1) and h(1)
D

( N��2)� f (1).
Similarly to Proposition 2.1, we get the following in view ofthe equality

( f 00) D

2

4

1 1 1
1 1 1
�2 �2 �2

3

5.

Proposition 2.2. There exists a nonzero constant c1 with

f (1)W4
0 C g(1)W4

1 C h(1)W4
2 D c1( f 00W4

0 C f 01W4
1 C f 02W4

2 )

for f 00, f 01 and f02 defined inSection 1.
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For nonzero rational functionsu0, u1, u2 of F0, we set

9(u0, u1, u2) D (u0Z4
0 C u1Z4

1 C u2Z4
2)

C 4(u0Z3
0(Z1 C Z2)C u1Z3

1(Z0 C Z2)C u2Z3
2(Z0 C Z1))

C 6(u�1
0 Z2

1 Z2
2 C u�1

1 Z2
0 Z2

2 C u�1
2 Z2

0 Z2
1)

C 12Z0Z1Z2(Z0 C Z1 C Z2).

Note that9( f0, f1, f2) is the right-hand side of the equality of Proposition 1.6.

Lemma 2.3. Let S1 � P(V) be the CCI surface whose pullback toP(q�1 V) is

defined by the equation9(1)
1 D 0. Then the pullback of S1 to P(q�0 V) is defined by

9( f0, f1, f2) D 0.

Proof. Recall that 3E D q0 � p0 D q1 � p1 for 3E W QE ! E. The pullback ofS1 to
P(q�1 V) is defined by f 00W4

0 C f 01W4
1 C f 02W4

2 D 0 by Proposition 2.2. Hence Propos-
itions 1.6 implies that the pullback ofS1 to P(3�EV) is equal to the pullback of the sur-
faceY � P(q�0 V) defined by9( f0, f1, f2) D 0. Since the morphismP(3�EV) ! P(q�0 V)
is an etale surjection,Y is equal to the pullback ofS1 to P(q�0 V).

In [3], a global section9
�

of Sym4
OF0

(q�0 V) is defined by

9

�

D ( f Z4
0 C gZ4

1 C hZ4
2)

C 4( f Z3
0(Z1 C Z2)C gZ3

1(Z0 C Z2)C hZ3
2(Z0 C Z1))

� 6��2(ghZ2
1 Z2

2 C f hZ2
0 Z2

2 C f gZ2
0 Z2

1)

� 12� 2Z0Z1Z2(Z0 C Z1 C Z2)

for � 2 C n {0}. He showed [3, Proposition 2.8] that the equation9
�

D 0 defines
the pullback of a CCI surface if� 3

D �2�, where� is an explicitly given constant
satisfying f ghD �4�2 in [3, 1.2].

Proposition 2.4. The three equations9
�

D 0 with � 3
D �2� in [3, Proposition 2.8]

are equivalent to9( f0, f1, f2) D 0,9(! f0,! f1,! f2) D 0 and9(!2 f0,!2 f1,!2 f2) D 0.

Proof. Since f, g, h are rational functions ofF0 with ( f )D�2P0C P1C P2, gD
( N��1)� f andhD ( N��2)� f , there exists a nonzero constantc with cD f = f0Dg= f1Dh= f2.
Since f0 f1 f2D 1 by (1.6), we havec3

D�4�2. Then we have9
�

D c9( f0, f1, f2) for
� D 2�=c, since�6��2ghD 6c= f0, �6��2 f hD 6c= f1, �6��2 f gD 6c= f2 and�12� 2

D

12c3
=c2

D 12c. Since� 3
D 8�3

=c3
D�2�, the equation9( f0, f1, f2)D 0 is equivalent

to 9
�

D0 in [3, Proposition 2.8] for this� .
Others are checked similarly. Namely, we have9

�

D !c9(! f0,! f1,! f2) for � D
2!2

�=c and9
�

D !

2c9(!2 f0, !2 f1, !2 f2) for � D 2!�=c.
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There are two unramified coverings ofE of degree three besidesF0 andF1. Namely,
these areF2 D QE=(�� ) and F3 D QE=(���1). If we take (P0

10, P0

01) D (P11, P01) as the
basis of Ker 3E at the beginning of Section 1, thenF2 plays the role ofF1 while F0 and
the automorphismN� of it are not changed.

Let P0

i j D [i P 0

10 C j P 0

01] for 0 � i , j � 2. We take a rational functiong00 with
the divisor

(g00) D P0

10C P0

20� P0

01C P0

02 D

2

4

�1 0 1
�1 1 0
0 0 0

3

5,

and definegi j D ((�� )�i
�

� j )�g00 for 0� i , j � 2.

Lemma 2.5. The assumption f00 f11 f �1
10 f �1

01 D !

�1 in Section 1implies the equal-
ity g00g11g�1

10 g�1
01 D !

�1.

Proof. Since

�

g00

g10

�

D (g00) � (g10) D

2

4

�1 1 0
�1 1 0
�1 1 0

3

5

D

�

f00

f10

�

,

there exists a nonzero constanta with g00=g10 D a f00= f10. By applying (��1)� to this
equality, we haveg01=g11 D a f01= f11. Hence we have

g00g11

g10g01
D

g00

g10
�

g11

g01
D

a f00

f10
�

f11

a f01
D

f00 f11

f10 f01
D !

�1.

Let q2 W F2 ! E be the covering map. For the similar Fermat type equation

9

(2)
1 D f (2)T4

0 C g(2)T4
1 C h(2)T4

2 D 0

defined forE0

D F2, we can apply Lemma 2.3. Namely, letS2 � P2(V) be the CCI sur-
face whose pullback inP2(q�2 V) is defined by9(2)

1 D 0 for the relative canonical coor-
dinates (T0 W T1 W T2). Then the pullback ofS2 to P2(q�0 V) is defined by9(g0, g1, g2) D
0, whereg0 D g2

00=g10g20, g1 D ( N��1)�g0 and g2 D ( N��2)�g0.

Lemma 2.6. In above notation, we have g0 D ! f0, g1 D ! f1 and g2 D ! f2.
Hence the pullback of S2 to P2(q�0 V) is defined by9(! f0, ! f1, ! f2) D 0.

Proof. It suffices to show the first one since others are its translations onF0. We
have (�� )�(g10=g00) D g00=g20, while

(2.12) (�� )�
�

f10

f00

�

D

f02

f22
D

f02 f20

f22 f00
�

f00

f20
D (�� )�

�

f10 f01

f00 f11

�

�

f00

f20
D

! f00

f20
.
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Since we have the equality of divisors (f00= f10) D (g00=g10), we have an equality
g00=g10 D c f00= f10 for a nonzero constantc. By using (2.12), we have

g0 D
g2

00

g10g20
D

g00

g10
� (�� )�

�

g10

g00

�

D

c f00

f10
� c�1(�� )�

�

f10

f00

�

D

! f 2
00

f10 f20
D ! f0.

The calculation forF3 D QE=(���1) is similar. Leth00 be the rational function with

(h00) D

2

4

�1 1 0
�1 0 1
0 0 0

3

5,

and lethi j D ((���1)�i
�

� j )�h00 for 0� i , j � 2.
Let q3W F3 ! E be the covering map, and consider the similar Fermat type equation

9

(3)
1 D f (3)U4

0 C g(3)U4
1 C h(3)U4

2 D 0

for the relative canonical coordinates (U0 W U1 W U2) of P(q�3 V). Let S3 � P2(V) be the

CCI surface whose pullback toP2(q�3 V) is defined by9(3)
1 D 0.

Lemma 2.7. For h0 D h2
00=h10h20, h1 D ( N��1)�h0 and h2 D ( N��2)�h0, we have

h0 D !

2 f0, h1 D !

2 f1 and h2 D !

2 f2. Hence the pullback of S3 to P2(q�0 V) is defined
by 9(!2 f0, !2 f1, !2 f2) D 0.

Proof. It suffices to show the first equality. We have (��

�1)�(h10=h00) D h00=h20,
while

(2.13) (���1)�
�

f10

f00

�

D

f01

f21
D

f20 f01

f00 f21
�

f00

f20
D �

�

�

f00 f11

f10 f01

�

�

f00

f20
D

!

2 f00

f20
.

Since (f00= f10)D (h00=h10) as divisors, there exists a nonzero constantc with h00=h10D

c f00= f10. By using (2.13), we have

h0 D
h2

00

h10h20
D

h00

h10
� (���1)�

�

h10

h00

�

D

c f00

f10
� c�1(���1)�

�

f10

f00

�

D

!

2 f 2
00

f10 f20
D !

2 f0.

We get the lemma by Lemma 2.3.

Theorem 2.8. Let S be a CCI surface with E(S) D E. Then S is isomorphic to

the surface Si in P(V) whose pullback toP(p�i V) is defined by the equation9(i )
1 D 0

for an i with 0� i � 3. If j ¤ i , then the pullback of Si to P(p�j V) is not defined by
a Fermat type equation for the relative canonical coordinates.



THE MODULI SPACE OF CATANESE–CILIBERTO–ISHIDA SURFACES 127

Proof. By [3, Proposition 2.8], for any CCI surfaceS with E(S) D E, there
exists an embeddingS� P(V) such that the pullback ofS to P(q�0 V) is defined by

9

(0)
1 D 0 or 9

�

D 0 for a � with �

3
D �2�. The last three equations are equivalent

to 9(!i f0, !i f1, !i f2) D 0 for i D 0, 1, 2 by Proposition 2.4. Hence we get the first
part of the theorem by Lemmas 2.3, 2.6 and 2.7. The last part ofthe theorem follows
from Lemma 2.3 by retaking the basis of Ker 3E so that F j and Fi play the roles of
F0 and F1, respectively.

3. The moduli space of CCI surfaces

Every elliptic curveE in this section is assumed to have a fixed null element 0E.
For an elementx 2 E, the translation ofE defined byy 7! [x C y] is denoted byTx,
while the involution defined byy 7! �y is denoted by�.

Let � D (F,3) be a pair consisting of an elliptic curveF and a subgroup3 � F
of order three. Then the CCI surfaceS

�

is constructed as follows.
Let 3 D {0F D P0, P1, P2}. Since [P1 C P2] D P0, there exists a nonzero rational

function f0 with ( f0) D �2P0 C P1 C P2 by Abel’s theorem. Then�� f0 D f0 for the
involution � of F since (�� f0) D ( f0) and these functions have same value atP0.

Let f1 D T�

P2
f0 and f2 D T�

P1
f0. Then (f1) D P0� 2P1C P2 and (f2) D P0C P1�

2P2. The group Q3 generated byTP1 and � is a group isomorphic to the symmetric
group of degree three whose action onF induces the permutations of{P0, P1, P2} as
well as those of{ f0, f1, f2}.

We consider the locally free sheafV
�

D OF (P0)Z0 � OF (P1)Z1 � OF (P2)Z2 of
rank three onF and theP2-bundle PF (V

�

), where Z0, Z1 and Z2 are indeterminates.
For a point x in F n {P0, P1, P2}, the fiber PF (V

�

)x is a projective plane with the
homogeneous coordinates (Z0 W Z1 W Z2). The action of Q3 on the pair (F, V

�

) is defined
so that it induces permutations of{Z0, Z1, Z2} (cf. Definition 1.4). Namely,T�

P1
(Z0) D

Z2, T�

P1
(Z1) D Z0, T�

P1
(Z2) D Z1 and ��(Z0) D Z0, ��(Z1) D Z2, ��(Z2) D Z1.

This action of Q3 on (F, V
�

) induces that onPF (V
�

). Namely, we have

TP1((x, (a0 W a1 W a2))) D ([x C P1], (a2 W a0 W a1)),

TP2((x, (a0 W a1 W a2))) D ([x C P2], (a1 W a2 W a0)), and

�((x, (a0 W a1 W a2))) D ([�x], (a0 W a2 W a1))

for (x, (a0 W a1 W a2)) 2 (F n {P0, P1, P2}) � P2.
Set E D F=3 and define 3E W QE ! E as in Section 1. Since3 ' Z=3Z, 3E fac-

tors through the natural mapq W F ! E. For a suitable choice of the basis{P10, P01}

of Ker 3E, F is equal to F0 in Section 1 andP0, P1, P2 are equal to those in Sec-
tion 1. Then the functionsf0, f1 and f2 in Section 1 play the roles off0, f1 and f2

above, respectively.
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Since the rational functionsf0, f1, f2 have no zeros or poles onF n {P0, P1, P2},
the equation

(3.14) f0Z4
0 C f1Z4

1 C f2Z4
2 D 0

defines a family of Fermat quartics in (F n {P0, P1, P2}) � P2. Let QS
�

be the closure
of this family in PF (V

�

). Since the equality (3.14) is invariant by the action ofQ3, the
subgroup3 acts freely on the fiber spaceQS

�

! F and � induces an involution ofQS
�

.
In particular, the definition ofQS

�

does not depend on the numbering ofP1, P2.
Let t be a rational function ofF which has a simple zero atP0. For Y0 D t�1Z0,

the P2-bundle PF (V
�

) has coordinates (Y0 W Z1 W Z2) in a neighborhood ofP0 since
(Y0, Z1, Z2) is a frame ofV

�

at P0. The equation (3.14) is

t4 f0Y4
0 C f1Z4

1 C f2Z4
2 D t(t3 f0Y4

0 C t�1 f1Z4
1 C t�1 f2Z4

2) D 0

for these coordinates. Sincef0 has a pole of order two andf1, f2 have simple zeros
at P0, we know the surfaceQS

�

is defined by

t3 f0Y4
0 C t�1 f1Z4

1 C t�1 f2Z4
2 D 0

in a neighborhood ofP0. The fiber atP0 is defined bya01Z4
1Ca02Z4

2 D 0 in P2 for the
coordinates (Y0 W Z1 W Z2), wherea01 and a02 are the value atP0 of t�1 f1 and t�1 f2,
respectively. Sincea01 and a02 are nonzero constants, the fiber atP0 is the union of
four distinct lines intersecting at (1W 0 W 0).

We defineS
�

to be the quotient surfaceQS
�

=3. By [3, Proposition 2.8] and Prop-
osition 2.1, this is a CCI surface withE(S

�

)D E D F=3. Let NP0 2 F=3 be the image
of P0. Then the surfaceS

�

has a reduced fiber consisting of four lines atNP0, and other
fibers are nonsingular quartics.

Since3 is a normal subgroup ofQ3, the involution � of QS
�

induces that ofS
�

which we denote also by�.
Let X be the set of isomorphism classes of pairs� D (F, 3) of an elliptic curve

F and a subgroup3 of order three.

Theorem 3.1. The correspondence� 7! S
�

defines a bijection fromX to to the
set of isomorphism classes of CCI surfaces.

Proof. LetS be a CCI surface. By [3, Proposition 2.8], there exists an embedding
S� P(V) for E D E(S) and V D a

�

KS
 K�1
E . By Theorem 2.8, there exists a unique

unramified coveringq(S) W F(S) ! E of degree three such that the pullback ofS to
P(q(S)�V) is defined by the Fermat type equation. Define� D (F(S), Kerq(S)). Then
we haveV

�

' q(S)�V and S
�

' S by the construction ofS
�

.
Conversely, Let� D (F,3) be a pair inX . ThenS

�

is a CCI surface withE(S
�

)D
F=3. Since the canonical mapq W F ! F=3 is unramified of degree three and the
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surface QS
�

is defined by the Fermat type equation, we can identifyF with F(S
�

) in the
first part of this proof by Theorem 2.8. Then, clearlyq D q(S

�

) and3D Kerq(S
�

).

For � D (F,3), we define�� D (F=3, Ker 3F=3) where 3F W F ! F is the mor-
phism defined by 3F (x) D [3x]. Then ��� D � for every � and the map� 7! �

� is a
bijection fromX to itself. SinceF ' F=Ker3F , S

�

� is a CCI surface withE(S
�

� )D F .
For each� 2 C n {1,!, !2}, the Hesse cubic curveE(�) is defined by

X3
0 C X3

1 C X3
2 � 3�X0X1X2 D 0

in P2. It is known that thej -invariant of this elliptic curve is given by

(3.15) j D
27�3(�3

C 8)3

(�3
� 1)3

(cf. [2, p. 456] and [6, 7.6]).
The point (1W �1 W 0) 2 E(�) is defined to be the unit. Then the set of points of

order three and the unit is

8

<

:

(1 W �1 W 0), (1 W �! W 0), (1 W �!2
W 0),

(�1 W 0 W 1), (�! W 0 W 1), (�!2
W 0 W 1),

(0 W 1 W �1), (0 W 1 W �!), (0 W 1 W �!2)

9

=

;

,

which is equal to the set of inflection points ofE(�). If we set P10 D (1 W �! W 0)
and P01 D (�1 W 0 W 1), then we havePi 0 D (1 W �!i

W 0), Pi 1 D (�!i
W 0 W 1) and Pi 2 D

(0 W 1 W �!i ) for i D 0, 1, 2, and the conditionf00 f11 f �1
10 f �1

01 D !

2, i.e., e3(P10, P01)D !

is satisfied.
Let T D C n {1, !, !2}. It is known thatT is the fine moduli space of the el-

liptic curves with level three structure (e1, e2) with the Weil pairing e3(e1, e2) D !

and {E(�)I � 2 T} is the global family, where the level three structure is defined by
(e1, e2) D (P10, P01) for all � (cf. [4, Definition 7.1]).

For each� 2 Cn{1}, let F(�) be the elliptic curve defined by the equation�X3
0C

�X3
1 C X3

2 � 3�X0X1X2 D 0 if � ¤ 0 and X3
0 C X3

1 C X3
2 D 0 if � D 0, and leto D

(1 W �1 W 0), o0 D (1 W �! W 0), o00 D (1 W �!2
W 0). Then {o, o0, o00} is a subgroup of

F(�). We denote byS(�) the CCI surfaceS
�

� for the pair� D (F(�), {o, o0, o00}). For
a Hesse cubic curveE(�), the isomorphismv

�

W E(�) ! F(�3) is defined byv
�

((x0 W

x1 W x2)) D (x0 W x1 W �x2) if � ¤ 0 while it is defined to be the identity map if� D 0.
The pointso, o0, o00 are fixed byv

�

in P2
C, and hencev

�

(o) D P00, v�(o0) D P10 and
v

�

(o00) D P20.

Lemma 3.2. For any pair (F,3) of an elliptic curve F and a subgroup3 of order
three, there exists a unique� 2 Cn{1} with an isomorphism(F,3) ' (F(�),{o, o0, o00}).
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Proof. Let e1 be an element of3 n {0F }. Since3 � Ker 3F ' (Z=3Z)2, we can
choosee2 2 Ker 3F n3 so that (e1, e2) is a level three structure ofF . Since the Hesse
family is the fine moduli, there exists a� 2 T and an isomorphismuW F ! E(�) with
u(e1) D P10 and u(e2) D P01. Hence the compositev

�

� u is an isomorphism satisfying
the condition for� D �

3.
Let us prove the uniqueness of�. Assume that there exists another isomorphism

w W (F, 3) ' (F(�), {o, o0, o00}) for an element� 2 C n {1}. By replacingw with the
composite with the involution ofF , if necessary, we may assumew(e1) D o0. Let � be a
cubic root of�. If v�1

�

�w(e2)D P01, then we have an isomorphismv�1
�

�wW (F, (e1,e2))'
(E(�),(P10, P01)), and we get� D � and�D � sinceT is the moduli. Sincev�1

�

�w(e1)D
P10, there are two other possibilities ofv�1

�

� w(e2). Namely, these areP11 and P21.
We define an automorphism� of P2

C by �((x0 W x1 W x2)) D (x0 W x1 W !x2). Then we
have�(E(�)) D E(!2

�), �(P10) D P10 and�(P11) D P01. Hence (E(�), (P10, P11)) '
(E(!2

�), (P10, P01)). Similarly, we have (E(�), (P10, P21)) ' (E(!�), (P10, P01)) by �2.
Hence� is equal to!� or !2

�. In all cases, we have� D �

3
D �

3
D �.

Theorem 3.3. The correspondences� 7! S(�) define a bijection fromC n {1} to
the set of isomorphism classes of CCI surfaces.

Proof. SinceS(�) D S
�

� for � D (F(�), {o, o0, o00}), this is a consequence of The-
orem 3.1 and Lemma 3.2.

By this theorem, we can say that� 2 Cn{1} is the moduli parameter of CCI surfaces.

Theorem 3.4. The j-invariant of the base elliptic curve E(S) of the CCI surface
SD S(�) is given by the rational function

j (�) D
27�(� C 8)3

(� � 1)3
.

This function has ramifications of degree three at� D�8 and� D 1. We have j(�)D 0
for � D �8 and � D 0. It has ramifications of degree two at� D 10� 6

p

3 and
� D 10C 6

p

3, and j(�) D 1728 for these�. This function defines a finite map from
C n {1} to C.

Proof. The first part follows from (3.15) and the relation� D �

3. Set f (�) D
j (�). Then

f 0(�) D
27(� C 8)2(�2

� 20� � 8)

(� � 1)4
.

Hence f 0(�) D 0 for � D �8 and� D 10� 6
p

3D (1�
p

3)3. Since f (�) D1 only
for � D 1 and� D1, we get the last assertion.
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Lemma 3.5. Let� be an element ofCn{1}. Then a group automorphism'W F(�)!
F(�) with '({o0, o00}) D {o0, o00} is the identity map or the involution if� ¤ 0. If � D 0,
then there exists a' of order three with'(o0) D o0, and the automorphism group is of
order six.

Proof. F(0) is the Fermat cubic curve and the automorphism� of P2
C defined

by �((x0 W x1 W x2)) D (x0 W x1 W !x2) induces' D '0 of order three with'0(o0) D o0.
The group of automorphisms ofF(0) is generated by this'0 and the involution since
the order of the automorphism group of an elliptic curve is atmost six. Clearly, all
members satisfy'({o0,o00})D {o0,o00}. Suppose� ¤ 0 and' satisfies'(o0)D o0. Take a
� with �3

D �. Then P D (v�1
�

�' �v

�

)(P01) is P01, P11 or P21 since (v�1
�

�' �v

�

)(P10)D
P10 and (P10, P) is a level three structure ofE(�). If it is P01, then' is the identity
since the elliptic curve with level three structure (E(�),(P10, P01)) has no automorphism
other than the identity. As we saw in the proof of Lemma 3.2, (E(�), (P10, P11)) '
(E(!2

�), (P10, P01)) and (E(�), (P10, P21)) ' (E(!�), (P10, P01)). Hence, the other two
cases do not occur sinceT is the moduli.

Proposition 3.6. The order of the automorphism group of S(�) is six for � D 0
and two for� ¤ 0.

Proof. We will show that an automorphism ofS(�) induces that of (F(�),3) for
3 D {o, o0, o00} and that this correspondence is bijective. Then the proposition follows
from Lemma 3.5.

Let 9W S(�)! S(�) be an automorphism. By the universality of the Albanese map
aW S(�)! F(�), there exists an automorphism of F(�) with  �aD a �9. Here, is
a group automorphism sinceS(�) has the unique singular fiber over the unit ofF(�).
Set F(�)� D F(�)=3. We defineq W F(�)� ! F(�) by q(x mod 3) D [3x]. Then,
S(�) D S(F(�)�,Kerq). Theorem 2.8 implies thatq is the unique unramified covering of
degree three such that the fiber productS(�) �F(�) F(�)� is defined by a Fermat type
equation. SinceS(�) �F(�) (F(�),  ) ' S(�), we have

S(�)�F(�) (F(�)�,  �q)' (S(�)�F(�) (F(�),  ))�F(�) F(�)�' S(�)�F(�) F(�)�,

i.e., the left-hand side is also defined by a Fermat type equation. Henceq and the com-
posite � q are equivalent coverings ofF(�). Namely, there exists an automorphism
N

 of F(�)� with q � N D  � q. Since3 D q(Ker 3F(�)� ), we have

 (3) D  (q(Ker 3F(�)� )) D q( N (Ker 3F(�)� )) D 3.

Let  be an automorphism of (F(�), 3). Since we know that the involution of
F(�) has a lifting toS(�), we may assume that (o0) D o0 and (o00) D o00 in order to
find a lifting of  to S(�) and to show the uniqueness. Since (3) D 3,  induces
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an isomorphism N

 W F(�)� ! F(�)�. Since the determinant of the restriction of to
Ker3F(�) ' (Z=3Z)2 is 12 Z=3Z (cf. [5, IV, Theorem 4]) and since fixes each elem-
ent of3, N

 fixes each element of3�

D Ker 3F(�)=3. Let 3�

D {0F(�)� D P0, P1, P2}

and �� D (F(�)�, 3�). For the locally free sheaf

QV D OF(�)� (P0)Z0 �OF(�)� (P1)Z1 �OF(�)� (P2)Z2,

we define an isomorphism9 W QV !

N

 

�

QV by

9(aZ0 C bZ1 C cZ2) D a N �(Z0)C b N �(Z1)C c N �(Z2).

Since (N � f0) D ( f0) D �2P0C P1C P2, there exists a nonzero constantc with N

 

� f0 D

c f0. Then we have (Sym4 9)( f0Z4
0 C f1Z4

1 C f2Z4
2) D c( f0Z4

0 C f1Z4
1 C f2Z4

2). Hence

the automorphism ofP( QV) induced by9 maps QS
�

� to itself. By taking the quotient
of QS

�

� by 3�, we get an automorphism ofS(�) D S
�

� which is a lifting of  . The
lifting of  is unique sinceZ0,Z1,Z2 are determined up to multiplication by a common
nonzero constant.

Theorem 3.7. There exists a proper smooth family' W S ! T of algebraic sur-
faces with the following properties.
(1) For each� 2 T , the fiberS

�

D '

�1(�) is the CCI surface which corresponds to
the pair (E(�), {P00, P10, P20}).
(2) For any CCI surface S, there exists� 2 T with S

�

' S.
(3) S

�

' S
�

if and only if �3
D �

3.

Proof. LetE � P2
C � T be the the family of cubic curves defined by the equation

X3
0 C X3

1 C X3
2 � 3t X0X1X2 D 0,

and let D0 D {P00} � T , D1 D {P10} � T and D2 D {P20} � T .
Let pW E ! T be the projection. SinceE is a smooth family of elliptic curves and

the natural isomorphism�W T ! D0 is a section,E has a structure of an abelian scheme
with the identity � (cf. [4, Theorem 6.14]). Since the invertible sheafOE (�2D0 C

D1 C D2) is trivial on each fiber,p
�

OE (�2D0 C D1 C D2) is an invertible sheaf on
T D SpecC[X][( X3

� 1)�1]. Since C[X][( X3
� 1)�1] is a PID, this sheaf is generated

by a sectionu0 on T . Let f0 D p�u0 and f1 and f2 the pullbacks off0 by translations
by D1 and D2, respectively, on the abelian schemeE .

Let V D OE (D0)Z0�OE (D1)Z1�OE (D2)Z2. Then theP2
C-bundlePE (V) contains

U D (E n (D0[ D1[ D2))� P2
C as an open subscheme. We defineQS as the closure of

the subvariety ofU defined by

f0Z4
0 C f1Z4

1 C f2Z4
2 D 0.
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Similarly to the construction ofS
�

, QS has an action of a cyclic groupG of order three
induced by the translations byD2 and D1. The quotientS D QS=G is a family of CCI
surfaces overT such that the fiber of� is equal toS

�

for � D (E(�), {P00, P10, P20}).
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