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Abstract

We determine the moduli space of the surfaces of general sipdied by
Catanese, Ciliberto and Hirotaka Ishida by using the farofljHesse cubic curves.

Introduction

A minimal surfaceS of general type oveC is called Catanese—Ciliberto surface
if it satisfies pg(S) = q(S) = 1 and K3 = 3. Then the Albanese map: S — E is
a surjection to an elliptic curv& = E(S). The general fiber of the morphismis a
smooth irreducible curve, and the gengiss known to be two or three [1].

In [3], Hirotaka Ishida studied the cage= 3. In this caseV = a,Ks ®o, K¢t
is a locally free sheaf of rank three, and the natural ratiomap ¢: S — Pg(V) is a
morphism [1, Theorem 3.1]. In [3], the surface is defined toobélypel if ¢ is an
embedding andh has only one singular fiber. Ishida studied precisely thea@zde—
Ciliberto surfaces of Type I. In this paper, we call this typlesurface a CCI surface
by taking the initials of Catanese, Ciliberto and Hirotakhitla. He got the following
theorem [3, Theorem 0.2].

Theorem 0.1. Let E be an elliptic curve defined ov€r If E has an automorphism
of complex multiplication typehen there exist exactly two isomorphism classes of CCI
surfaces S with E= E(S). Otherwise there exist exactly four isomorphism classes of
such CCI surfaces.

If we take an isogeny: E' — E of degree three, there exists a natural coordinate
system of theP?-bundle P(q*V). In [3], he fixed one of such coverings and showed
that there exist exactly four equations which define thebaaks of CCI surfaces. Of
course, the CCI surfaces ovér are recovered by descending the surfaces defined by
these equations. Only one of these equations is of Fermatwyyereas the others are
not. However, by the elementary theory of abelian varieties know that there exist
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116 M. ISHIDA

exactly four isogenies of degree three for a gilgnand each covering has an equation
of Fermat type defining the pullback of a CCIl surface. We shbat the four CCI
surfaces obtained by the Fermat type equations of differzemerings are distinct from
each other. Namely, the Fermat type equations are enougfefting all CCl surfaces
over an elliptic curvek, if we consider all isogenies of degree three.

In this paper, we construct a CCI surfap) for eachp € C\ {1} by using this
Fermat type equation, and we show ti&x {1} is the coarse moduli space of the CCI
surfaces. For each € C\ {1}, the j-invariant of the elliptic curveE(S(p)) is given by

L 2Tp(p +8)3
i(p) = “o-1F

(cf. [2, p.456] and [6]). Furthermore, we construct a glokahily of CCI surfaces
with the parametey: in the threefold coveringl = C \ {1, w, w?} of C\ {1} defined
by p = u® by using the family of Hesse cubic curves @n

1. The coordinate transformation on an elliptic curve

We use the following lemma which follows from the Riemann€Rdheorem.

Lemma 1.1. Let E be an elliptic curve defined ov€rand P a point on it. Then
we haveH°(E, Og(P)) = C.

Let E be an elliptic curve defined ovef with a fixed additive group structure.
Let 3g: E — E be the morphism defined b = E and 3(x) = [3x], where [ ]
indicates the calculation by the group law. Since Ker3(Z/3Z)?, there exist exactly
four unramified coverings of degree three Bfwhich correspond to the four subgroups
of index three of Z/32)2.

Take a set of generatofdio, Po1} of Ker 3g, and defineR; = [iPio + jPos] in
5 Aoz A1z a2 ) )
E for 0 <i, j <2. We denote by{ Q1 an aZl] the divisor 7 > {_o a&j Pj with

doo Q10 a0 _

the support contained in Keg3 Since [Pig + Pl = [Por + Po2] in E, there exists a
nonzero rational functiorfog on E whose divisor foo) is equal toP1g+ Pyo— Po1— Po2
by Abel’s theorem.

Let o and t be the translations oE defined byo: X — [X + Pig] and 7: X
[x 4+ Po1], respectively. Setfj; = (o0~'t7!)* foo for 0<1i, j < 2. Then

-1 0 O 0O -1 0 0 0 -1
(fo)=1|-1 0 0|, (fg=]0 -1 0|, (f)=|0 0 -1 |,
0 1 1, 1 0 1 11 0

=1 0 07 0 =1 07 0 0 —17]
(fo)=| 0 1 1|, (fi=|1 0 1|, (fag=|21 1 O |,
1 0 0] 0 -1 0] 0 0 -1
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0 1 1 1 0 1 1 1 O
(fo)=| -1 0 0|, (fix)=|0 -1 0|, (fx)=|0 0O -1
-1 0 O 0 -1 O 0 0 -1

Lemma 1.2. The rational function d‘ofllffol fgll is equal to the constanb or
ot = w?, wherew = (-1 + /3i)/2.

Proof. Since
-1 1 0
(foo) = (f10) = (for) = (fa)=| -1 1 0 |,
-1 1 0

we have qoofllffol fgll) = 0. Hence, this function is a nonzero constantSince

od = foof11 1 *( foo fll) (2 *( foo fll) _ foofir forfio foafio _ 1

"~ fiofor f10fo1 fiofor)  fiofor fiafex fiafoo

ais 1, w or 2 If « =1, then

foo fOl _1 *( 1:OO)
— ===z — .
fio T ) f10

Hence foo/ f10 is r-invariant and descends to a rational functionEy{(r) with a single
pole of order one at the image &%o. This contradicts Lemma 1.1 sind&/(z) is an
elliptic curve. Hencex is w or w?. []

If foof11figt fot = o, then we can make ib~* by exchangingPyo and Po; and by re-
defining fj;’s for the new P10, Po1). Actually, this value is equal to the inverse of the Weil
pairing es(Pio, Po1) (cf. [8], [7, IIl, §8]). From now on, we assumty f11 f ! fo;t = 072

It is easy to check that

-1 00
(fiof2oforfor) = | =1 0 0| = (foo).
0 1 1
Hence, there exists a nonzero constamt C* with fgg = € f19 oo fo1 fo2.

Lemma 1.3. § = foo + for + fo2 iS @ nonzero constant function da.

Proof. Sincefgy, for and fgp are in H(E, Og(Poo+ Por+ Po2)), § is also in this
vector space. Sincg is t-invariant, it descends to a rational functiéron the quotient
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E/(r). This function may have at most a single pole of order onéatimage ofPy.
Since E/(z) is an elliptic curve, this implies that is a constant by Lemma 1.1. Hence
8 is also a constant. We have to prove that it is nonzero.

Let foo(P11) = @ and foo(P1r2) = B. For the involution: of E fixing the unit Py,
we get the equality* foo = foo Since (* fog) = (foo) and they have same nonzero value
at Pyo. Hence we havefgo(P22) = o and fpo(P21) = . Since the value of at Py is
fOO(Pj_O) + foo(P]_z) + fOO(Pj_]_) =0+ B+ a =a+ 8, it suffices to show thatt + g is
not zero. Since the value ofo f11 ;! fo;* at Ps; is equal to

foo(P22) foo(P11) foo(Pi2) ™ foo(P21) ™ = &2872,

we havew™ = o?B72 by Lemma 1.2 and our assumption. Hene® # 2, and in
particulara + 8 # 0. ]

Let Fo = E/(z) and F; = E/(0). We denote byp; the natural surjectiore — F
for i =0, 1. Then there exists an unramified morphigm F; — E of degree three
with 3g = q; - p; for eachi =0, 1.

E—2,F
pol l%
Fo L> E
There exist pointsPy, Py, P, on Fy such thatpy*({P}) = {Po, P1, Rz} fori =
0, 1, 2. o induces an automorphisi of order three ofFy, and we haves (Pp) =
P1, 6(P1) = P, and 6(P,) = P,. Similarly, there existQg, Q1, Q2 on F; such that

p;l({Qi 1) = {Poi, Py, Py} fori =0,1,2.7 induces an automorphism of order three

of Fy with 7(Qo) = Q1, 7(Q1) = Q2 and 7(Q2) = Qo.

DEFINITION 1.4. Let X be an algebraic variety an# a coherent sheaf on it.
We say a grou acts on the pai(X,F) if G acts onX, an isomorphismpy: g*F —
F is given for eachg € G and the diagram

(gh)*F b F

commutes forg,h € G (cf. [4, Definition 1.6]). For a sectios € F(U) on an open set
U C X and for an elemeng € G, we denote simply byg*(s) the elemenipgy(g*(s))
of F(g~1(V)).
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Let V be an indecomposable vector bundle of rank thre&amith detV ~ Og(0g)
where @ is the unit of E. Then there exists an isomorphism

a5V 2 Op,(Po) ® Or,(P1) ® Op,(P2)

of vector bundles orF, (cf. [3, 1.1]). We take a sectioZ, of H°(Fo, g3V) which
corresponds to a nonzero section of the componét{Fdi O, (Po)). Since E is a
quotient of Fo by (7), this group acts on the pailF, g;V). Let Z, = 5%(Zo) and
Z3 = 6*(Z,). Then Z; corresponds to a nonzero section dt(Fy, Or,(R)) for each
i =0,1, 2. Namely, we can write

(1.1) AoV = Or,(Po)Zo & Or,(P1)Z1 & Or,(P2) Z2.
Similarly, we write

(1.2) 4V = O, (Qo)Wo & O, (Q1)W1 @ OF,(Q2)W.,

by sectionsWo, Wy, W, € HO(Fy, g} V) satisfyingWp = 7*(W;) and Wy = 7% (Wa).

Note thatZy is determined up to multiplications of nonzero constantstuAlly,
HO(F, ggV) is three dimensional and elements outsitig, are not zero aP,. If we
replaceZy by aZ, for a nonzero constarg, then Z; and Z, are replaced byZ; and
aZ,, respectively. These relations are similar T, Wy, Ws.

The pullback of the sheaj*V to E is equal to 3V fori =0, 1. We denote the
pullbacks ofZi’s and Wi’s to 3tV on E by the same symbols.

Lemma 1.5. Assume that we fixed a choice &y, Z,, Z,}. The sections Z
and W’s of 3tV satisfy the relations

Wo = fooZo + f10Z1 + f20Z5,
Wy = fo1Zo + 1121 + 2120,
W, = fooZo + 12721 + T2025

for a suitable choice of Wy, Wy, W5},

Proof. By (1.1) and (1.2), we have equalities

3tV = Og(Poo+ Por+ Po2) Zo® Og(Pro+ P11+ P12) Z1 ® Og(Pao+ Por+ Pa2) Z
= Og(Poo+ Pro+ Pao)Wo @ O¢(Por+ P11+ Por) Wi @ Og(Poz+ Pra+ Pog) W

Hence we can expres&/; = >, gij Zi by rational functions

gj € HO(E, Og(Po+ P11+ P2)).
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Since Wy has zeros aPy, Pig and Py in the vector bundle 8V, eachgo must has
zeros of order at least one at these points as a secti@:0P,o + P1 + P2). Namely,
we have inequalities of divisors

(900) + Poo + Po1 + Poz > Poo + Pio + P,

(910) + Pio+ Pi1+ P12 > Poo + Pio + Pao,
(920) + P20+ P21+ Poy > Pog + Piog + Pao.

Since the first inequality implies
(9oo) = P10 + P20 — Po1 — Po2 = (foo),

Joo IS zero or a nonzero constant multiple &, i.e., goo = ago foo for an elementy €
C. Similarly, we havegio = aiofi1p and gzo = azo f2o for some elementsyg, ax € C.
Furthermore, by considering/; and W, similarly, we have an expressiap; = & i
with an elementa;j € C for every pair {, j).

SinceE is the quotient ofE by the action of the group Keg3= (o, 1), this group
acts also on the pairg 3tV). We havet*W; = W,_; for j = 1,2 andt*Z; = Z
fori =0, 1, 2. Hence we have

2 2 2
Zai,jfl fijo1Zi = Wj_1 =1t"W; =" (Z aj fij Zi) = Zaij fij—1Zi
i=0 i=0

i=0

for j = 1, 2. This impliesaj, = a1 = ao for i = 0, 1, 2. On the other hand, since
c*Wo =W, 0*Z; = Zi_, fori =1, 2 ando*Zg = Z,, we have

aoo fooZo + auo f10Z1 + 820 f20Z2 = Wo = 0™ Wo = ago f20Z2 + a10 fooZo + azo f10Z1.

Henceagg = a10 = ax. Thus we know that all;’s are equal to a nonzero constant
a. If we chooseW, such thata = 1, then we have the equalities in the lemma.[]

Recall thate is the nonzero constant with the equalifyy = € f1o 2 for foo. Set
fo = € foo for foo. Clearly, fq is invariant byz*. Hence we have equalities

(1 3) fo =€ foo foj_ f02 = f020 = fOl — I:022
. fiofao  fuafar  fiafaeo

Set f; = (671)* fo and f, = (672)* fo. By applying ¢~1)* and ¢~2)* to (1.3), we get
the equalities
f i 1

1.4 f1 =€fpfi1fio= = —
(14 1T ot foofoo  farfor  faofo2
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and

2 2 2
f20 _ f21 _ f22

foofio  forfir  foafiz’

(1.5) fo=efafafn=
By these equalities, we have

6 B
fiofoo  faofoo  foofio .

(1.6) fofifo =

Similarly, set f; = (e foofi0f20)" 2, f] = (z71)*f; and f; = (z72)* f;. These are
invariant byo*, and we have equalities

forfor  fuafio  forfo

(1.7) fo = (e foofrofen) ' = —5— = —5— = —5—,
foo fio f30

_ foofoo  fiofio  faofog

1.8 f/ = (eforfiafor)™ = = = ,
(1.8) 1 (€ for f11f21) f021 f121 f221

_ foofor  fiofia  faofon

1.9 f) = (e fopfiafar)™t = = = .
(1.9 2 (€ foa f12T22) f022 f122 f222

The equality f; f; f; = 1 follows from these equalities.
By applying ¢~1)* and ¢—2)* to the equality of Lemma 1.3, we get the equalities

(1.10) 8 = foo+ for+ fo2 = fio+ fi1+ fi2 = foo+ fo1 + fou
Proposition 1.6. The equality
e8THfIWG + fW + fW5)
= (foZg + 127 + 1223)
+ A(foZY(Z1 + Z2) + F1Z3(Zo + Z2) + 1223(Z0 + Z4))
+ 6(fg1z223 + 712323 + 1,12322)
+ 122021 Z5(Zo + Z1 + Z2)
holds in Syn{,_ (3£ V).
Proof. By the equalities (1.7), (1.8) and (1.9), we have
wiooowe o w
foofiofoo  forfiafor  foofiafon

(1.12) e(fgWy + FIW) + foWy) =

By substituting foj Zo + f1; Z1 + f2; Z, for W; of the right-hand side of (1.11) foy =
0,1, 2, we get a polynomial iZo, Z; and Z,. It suffices to check that this polynomial
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is § times the right-hand side of the equality of the propositidie will check the
coefficient of each monomial.
The coefficient ofZg is

4 4 4
fOO f01 f02

= foof forf foo fo = fod
foofiofao = forfiifor = foofiafor O o+ Toafo+ TozTo = To

by (1.3) and (1.10). Similarly, the coefficients Zif and Z;‘ are 16 and f,4, respectively.
Since 4)(3! 1! 11) = 4, the coefficient ofZ3Z; is

4131 A3 fn  AfS T,

foofiofoo  foafizfor  foafinfon

=4fofg +4f11fg+4f1ofg =416

by (1.3) and (1.10). That 0Z3Z; is also 4fos. Similarly, the coefficients 0Z3Z, and
Z3Z, are both 4,8 and those 0fZ3Z, and Z3Z; are both 4,5.
Since 4¥(2!2!) = 6, the coefficient 0fz2Z3 is

6fifn | 6fAfh 61515

foofiofoo  forfiafor  foafiafa

= 6foofy® + 6forfgt + 6forfyt = 6f5"5

by (1.3) and (1.10). Similarly, the coefficients 8§22 and Z3Z? are 6f; 15 and 6f, s,
respectively.
Since 4y(2! 1! 1! 11) = 12, the coefficient 0Z3Z,Z; is

12f020 f10 f20 12 f021 f11f21 12f022 f1ofoo
foo f10f20 for f11fo1 foa f1of2n

= 12fgp + 12fp; + 12fg, = 125

by (1.10). Similarly, those 0Z0Z2Z, and ZyZ,1Z3 are also 12. O

2. Defining equations of CCI surfaces

In [3], Ishida considered CCI surface&swith E(S) = E for an elliptic curveE.
In this case,V = a.Ks ®o, Kgl is an indecomposable vector bundle of rank three.
Since deg(deV¥) = 1, we may assume det >~ Og(0g). Since such vector bundle is
unique up to isomorphisms, any CCI surface wWH{S) = E is embedded inP(V)
for a commonV. He takes a triple covering: E' — E of the elliptic curveE, and
describes the defining equations of the surfaces pullbabkedtis covering map, where
E’ is denoted byE in [3, 1.1].

Let E' be Fo = E/(z) in Section 1. Themo: Fy — E is an isogeny of degree
three. We definghe relative canonical coordinate, : Z; : Z») of P(q5V) by (1.1).
One of the four equations defining the pullbacks of CCl swdais

v, = fz3+ 92} +hz3 =0,
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where f is an explicitly given rational function orfrg with (f) = —2Py + Py + P,
andg = (6 1)*f andh = (672)* f (cf. [3, Proposition 2.8]). We denote ki the CClI
surface whose pullback tB(q;V) is defined by this Fermat type equation. Since we

consider similar equations on the elliptic cure = E/(¢) and others, we denote by
\l!&o) this ¥, in order to avoid the confusion.

Proposition 2.1. There exists a nonzero constant with
O = co(fozg + 1123 + £223)
for fg, f; and % defined inSection 1

Proof. Sincef; = € fjofi1 fi, these rational functions descend to thoseFgf=
E/(z). Since

-2 11

(f=| -2 1 1],
-2 1 1

we have (o) = —2Py + P; + P, as a rational function of. Hence f = ¢y fy for a
nonzero constanty. We get the lemma sincé;, = (6 1)* fo and f, = (62)* fo. O

Now, we consider the case’ = F;, we should replac&y, Z;, Z, in [3, 1.2] by
Wo, Wi, W, in Section 1. Then the Fermat type equation of [3, Propasid@] is

v = 1OWS + gOw; + hOwy =0

for the relative canonical coordinate®Vg : Wi : W) of P(g;V), where f@® is a ra-
tional function onFy with (f®) = —2Qg + Q1 + Qz, andg® = (z71)* f® and h® =
(F2) O,

Similarly to Proposition 2.1, we get the following in view tfe equality

1 1 1
(fy=11 1 1
2 -2 -2

Proposition 2.2. There exists a nonzero constant with
fOWS + gOW; + hOwWy = oy (fWg + Wy 4+ W)

for fy, f; and f, defined inSection 1
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For nonzero rational functionsg, uy, u, of Fo, we set
W (U, Uy, Up) = (UoZg + U1 Z3 + UpZ5)
+ 4UoZ3(Z1 + Zo) + U1 Z3(Zo + Z2) + UaZ3(Zo + Z1))
+6(ugtz2zZ + urtz3z2 + uytz272)
+12202,Z5(Zo + Z1 + Z2).

Note thatWw(fy, f1, f) is the right-hand side of the equality of Proposition 1.6.

Lemma 2.3. Let § C P(V) be the CCI surface whose pullback R{q;V) is

defined by the equatioﬂ/f) = 0. Then the pullback of ;Sto P(q;V) is defined by
W(fo, f1, f2) =0.

Proof. Recall that 8= qp- po = q1- p1 for 3g: E — E. The pullback ofS to
P(a;V) is defined by f{Wg + f;W; + f,W; = 0 by Proposition 2.2. Hence Propos-
itions 1.6 implies that the pullback & to P(3;V) is equal to the pullback of the sur-
faceY C P(q5V) defined byW(fo, f1, f) = 0. Since the morphisr®(3tV) — P(q3V)
is an etale surjectiony is equal to the pullback of; to P(qgV). ]

In [3], a global section¥, of Syn@FO(qS‘V) is defined by

W, = (fZ5+92f +hZ))
+ 4(f Z3(Z1 + Z2) + 9Z3(Zo + Z2) + W Z3(Zo + Z1))
—6¢7%(ghZ8z5 + thz5z5 + f9Z32%)
—1227021Z5(Zo + Z1 + Z>)

for ¢ € C\ {0}. He showed [3, Proposition 2.8] that the equatidp = 0 defines

the pullback of a CCl surface if® = —28, where 8 is an explicitly given constant
satisfying fgh = —482 in [3, 1.2].

Proposition 2.4. The three equationg, = 0 with ¢ = —28 in [3, Proposition 2.8]
are equivalent tol( fo, f1, f2) = 0, ¥(w fo,  f1, w o) = 0 and W(w? fg, w? f1, w? fo) = 0.

Proof. Sincef, g, h are rational functions ofy with (f)=-2Py+ P14+ P,, g=
(7 Y* f andh=(6"2)* f, there exists a nonzero constanvith c= f/ fo=g/f1=h/ 5.
Since fo f1 f, =1 by (1.6), we havee® = —482. Then we havel, = c¥(fo, fi, fo) for
¢ =2B/c, since—6¢ 2gh=6¢/ fo, —6¢ 2fh=6¢/f,, —6: 2fg=6¢/f, and—12;% =
12c3/¢? = 12c. Since¢® =8p3/c® = -2, the equation¥( fo, f1, f2) =0 is equivalent
to W, =0 in [3, Proposition 2.8] for thig.

Others are checked similarly. Namely, we habg = wcW¥ (w fo, w f1, w f2) for ¢ =
20°B/c and ¥, = w’cW¥(w? fo, 0?1, w?f,) for ¢ = 2wp/c. O
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There are two unramified coverings Bfof degree three besidég andF;. Namely,
these areF, = E/(ot) and F3 = E/(ot™Y). If we take (Pjo, Pj) = (Pu1, Po1) as the
basis of Ker 3 at the beginning of Section 1, thd® plays the role off; while Fy and
the automorphisna of it are not changed.

Let P; = [iP, + jPy] for 0 =i, j =2. We take a rational functiogoo with
the divisor

-1 0 1
0 0O

and definegj = (7)™ t7/)*goo for 0 <i, j < 2.

Lemma 2.5. The assumptionof 11 f* fo;! = @~ in Section limplies the equal-
ity 900011079 9o = @™
Proof. Since
-1

(%) = (doo) — (d10) = {—i % 5} N (%)

there exists a nonzero constantwith goo/g10 = afeo/ f10. By applying ¢~%)* to this
equality, we haveyp;/g11 = afor/ f11. Hence we have

900911=@‘%=m‘£= foof11=w,1 .
010901 Y10 Qo1 fio afn  fiofox '

Let gqz: F, — E be the covering map. For the similar Fermat type equation
v = fOTS 4 g@TH + hOT) =0

defined forE’ = F,, we can apply Lemma 2.3. Namely, I8t ¢ P?(V) be the CCI sur-
face whose pullback irPZ(q§V) is defined by\llf) = 0 for the relative canonical coor-
dinates (o : Ty : T,). Then the pullback of5, to Pz(ng) is defined byWw(go, 91,092) =
0, wherego = 955/910920, &1 = (671)*do and gz = (7%)*o.

Lemma 2.6. In above notationwe have g = wfg, g1 = wf; and @ = wf,.
Hence the pullback of ;S0 P2(q§V) is defined by (w fg, @ f1, @ f;) = 0.

Proof. It suffices to show the first one since others are itsstadions onF,. We
have ¢'7)*(910/900) = Joo/Yz0, While

(212) @_’:)* (E) — E — f02f20 . @ _ (O"L’)*( flOfOl) . fOO — w_foo
foo  faoofoo  foo

foo foofin) fao f20
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Since we have the equality of divisorso§/ fi0) = (Qoo/d10), We have an equality
Ooo/ 010 = Cfoo/ f10 fOor a nonzero constart. By using (2.12), we have

%o Joo . (910) cfoo 4, . ( flo) wfé
— — == .(oT — ]| = —C oT — | = = wfo.
% 010020 10 (o7) Joo f10 (07) foo f10f20 0

]

The calculation forF; = E/(or™1) is similar. Lethgy be the rational function with

-1 0
(hoo) = | -1 1],
0
and lethij = (0t %)t 1)*hgo for 0 <1, j < 2.

0
Let g3: F3 — E be the covering map, and consider the similar Fermat typat&ugu

o O -

vl = tOU¢ 4 g®OUf + hOUS =0

for the relative canonical coordinatedg(: Us : Uy) of P(q3V). Let S C P2(V) be the
CCl surface whose pullback #©%(q;V) is defined byw® = 0.

Lemma 2.7. For hg = h3,/h1ohz0, h1 = (671)*ho and b = (672)*ho, we have
ho = w?fo, h1 = w?f; and h = w?f,. Hence the pullback of ;S0 P?(q;V) is defined
by W(w? fg, w? f1, w? fo) = 0.

Proof. It suffices to show the first equality. We hawer (1)* (h10/hoo) = hoo/h2o,
while

_ flO) for  faofor foo ( foo fll) foo  @?foo
213 rl*(_ _ Jou _ (oo _ . oo _ ‘
(2.13) 6T ) foo for  foofar foo fiofo1/) fao f20

Since (foo/ f10) = (hoo/h10) a@s divisors, there exists a nonzero constantth hgo/h1p=
cfoo/ f10. By using (2.13), we have

h3 hoo h1o cfoo fi0 w?fZ
he = oo _ Y O‘Tﬁl *(—)Z—-Cl O"L'71 *(_) — 00 =a)2f )
®~ hyohyo  hio ( ) hoo fi0 ( ) foo f10f20 0

We get the lemma by Lemma 2.3. O

Theorem 2.8. Let S be a CCI surface with (8) = E. Then S is isomorphic to

the surface Sin P(V) whose pullback td(p*V) is defined by the equatiomff) =0
forani withO<i <3. If j #1, then the pullback of {Sto P(pj'V) is not defined by
a Fermat type equation for the relative canonical coordesat
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Proof. By [3, Proposition 2.8], for any CCIl surfac® with E(S) = E, there
exists an embedding C P(V) such that the pullback o6 to P(q;V) is defined by
qz§°> =0 or ¥, =0 for a¢ with ¢ = —28. The last three equations are equivalent
to W(o' fo, o' f1, @' f,) =0 fori =0, 1, 2 by Proposition 2.4. Hence we get the first
part of the theorem by Lemmas 2.3, 2.6 and 2.7. The last patieotheorem follows
from Lemma 2.3 by retaking the basis of Ker 30 thatF; and F; play the roles of
Fo and Fy, respectively. O

3. The moduli space of CCI surfaces

Every elliptic curveE in this section is assumed to have a fixed null element O
For an elemenk € E, the translation ofE defined byy — [x 4 V] is denoted byTy,
while the involution defined by — —y is denoted byt.

Let « = (F, A) be a pair consisting of an elliptic curdé and a subgroup\ C F
of order three. Then the CCI surfa& is constructed as follows.

Let A = {0 = Py, P1, P;}. Since [P1 + P;] = Py, there exists a nonzero rational
function fo with (fo) = —2Py + P1 + P, by Abel's theorem. Then* fo = fo for the
involution ¢ of F since (* fg) = (fp) and these functions have same valuePat

Let f; = T, fo and fy, = Tp, fo. Then (f1) = Po—2P; + P, and (fy) = Po+ Py —
2P,. The groupA generated byTp, and: is a group isomorphic to the symmetric
group of degree three whose action Bninduces the permutations ¢y, P, P,} as
well as those off fo, f1, f5}.

We consider the locally free she&f, = Og(Py)Zo & Op(P1)Zy & Op(P,)Z, of
rank three onF and theP?-bundle Pe(V,), where Zy, Z, and Z, are indeterminates.
For a pointx in F \ {Py, P1, P,}, the fiber Pe(V,)x is a projective plane with the
homogeneous coordinate&q(: Z; : Z»). The action ofA on the pair E,V,) is defined
so that it induces permutations ¢Zo, Z1, Z»} (cf. Definition 1.4). NamelyTs (Zo) =
Zo, T,;"l(Zl) = Zo, T;1(22) =27 and L*(Zo) = Zo, [*(Zj_) = Zy, L*(Zg) = Z.

This action of A on (F, V,) induces that orPg(V,). Namely, we have

Tr((X, (0 :a1:&))) = ([X+ Pi], (a2 : a0 : &)),
TPz((X! (aO g aZ))) = ([X + PZ]! (al tap aO))! and
U(x, (@0 a1 @) = ([—X], (a0 : & : &)

for (x, (a0 : a1 : @)) € (F \ {Po, Py, P2}) x P2,

SetE = F/A and define 3: E — E as in Section 1. Sinc& ~ Z/3Z, 3¢ fac-
tors through the natural magp: F — E. For a suitable choice of the badi®ig, Po1}
of Ker3g, F is equal toFy in Section 1 andP,, P;, P, are equal to those in Sec-
tion 1. Then the functiond, f; and f, in Section 1 play the roles ofy, f; and f,
above, respectively.
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Since the rational functiondy, f;, f, have no zeros or poles oR \ {Py, P1, P>},
the equation

(3.14) foZg + f1Z7 + 225 =0

defines a family of Fermat quartics i (\ {Po, P1, P»}) x P2. Let S, be the closure
of this family in Pe(V,). Since the equality (3.14) is invariant by the action/of the
subgroupA acts freely on the fiber spac® — F and: induces an involution of,.
In particular, the definition o, does not depend on the numbering Rf P..

Let t be a rational function ofF which has a simple zero @,. For Yo = t=1Z,,
the P?-bundle Pe(V,) has coordinatesYf : Z; : Zy) in a neighborhood ofP; since
(Yo, Z1, Z) is a frame ofV, at Py. The equation (3.14) is

t4foYy + 127 + 225 =t(t3foYy +t 1127 +t711,23) =0

for these coordinates. Sinck has a pole of order two and,, f, have simple zeros
at Py, we know the surface, is defined by

t3foYy +t 1 HZf +t 125 =0

in a neighborhood ofy. The fiber atPy is defined byag Z4 +ag,Z5 = 0 in P? for the
coordinates Yo : Z1 : Z»), whereag: and ag, are the value aPy of t~1f; andt=1f,,
respectively. Sincey; and ap,; are nonzero constants, the fiber R is the union of
four distinct lines intersecting at (10 : 0).

We defineS, to be the quotient surfac§,/A. By [3, Proposition 2.8] and Prop-
osition 2.1, this is a CCI surface witB(S,) = E = F/A. Let Py € F/A be the image
of Py. Then the surfac&, has a reduced fiber consisting of four linesRat and other
fibers are nonsingular quartics.

Since A is a normal subgroup of\, the involution: of §, induces that ofS,
which we denote also by

Let X be the set of isomorphism classes of pairs- (F, A) of an elliptic curve
F and a subgroup\ of order three.

Theorem 3.1. The correspondence — S, defines a bijection from’ to to the
set of isomorphism classes of CCI surfaces.

Proof. LetS be a CCI surface. By [3, Proposition 2.8], there exists aneziding
Sc P(V) for E = E(S) andV = a.Ks® Kg'. By Theorem 2.8, there exists a unique
unramified coveringq(S): F(S) — E of degree three such that the pullback $fto
P(Q(9)*V) is defined by the Fermat type equation. Define= (F(S), Kerq(S)). Then
we haveV, >~ q(S*V and S, ~ S by the construction of,.

Conversely, Letr = (F,A) be a pair inX. Then§, is a CCI surface withe(S,) =
F/A. Since the canonical mag: F — F/A is unramified of degree three and the
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surface§, is defined by the Fermat type equation, we can iderfiifwith F(S,) in the
first part of this proof by Theorem 2.8. Then, cleagly= q(S,) and A = Kerq(S,). [l

For o = (F, A), we definea* = (F/A, Ker 3¢ /A) where 3: F — F is the mor-
phism defined by g(x) = [3x]. Thena™ = « for every« and the mapy — o* is a
bijection from X to itself. SinceF ~ F/Ker3g, S,- is a CCl surface withE(S,+) = F.

For eachu € C\ {1, w, »?}, the Hesse cubic curvE(u) is defined by

X34+ X3+ X3 - 3uXoX1 X, =0
in P2, It is known that thej-invariant of this elliptic curve is given by

o 27uB(uB + 8)°

(3.15) =1y

(cf. [2, p.456] and [6, 7.6]).
The point (1: —1:0) € E(u) is defined to be the unit. Then the set of points of
order three and the unit is

(1:=1:0), 1: —w:0), (1: —w?:0),
{(—1:0:1), (~w:0:1), (—~?:0: 1),},
(0:1:-1), (0:1: —-w), (0:1: —?

which is equal to the set of inflection points &(u). If we setPyp = (1: —w : 0)
and Ppy = (=1:0: 1), then we havePg = (1: —w' :0), Py = (—w' :0:1) and P, =
(0:1:—') fori =0,1,2, and the conditiorfoo f11 f5 fo;t = @?, i.e., &3(Pio, Po1) = @
is satisfied.

Let T = C\ {1, », ®?}. It is known thatT is the fine moduli space of the el-
liptic curves with level three structuresy( e;) with the Weil pairing es(er, &) =
and {E(u); u € T} is the global family, where the level three structure is defirby
(e1, &) = (P10, Pog) for all u (cf. [4, Definition 7.1]).

For eachp € C\ {1}, let F(p) be the elliptic curve defined by the equatipiXs +
PpX3 + X3 —3pXoX1 X, =0if p# 0 and X3 + X3+ X3 =0if p =0, and leto =
(1:-1:0),0 =(1:—-w:0), 0" =(1:—w?:0). Then{o, 0, 0"} is a subgroup of
F(p). We denote byS(p) the CCI surfaceS,- for the paira = (F(p), {0, o', 0"}). For
a Hesse cubic curv&(w), the isomorphismy,, : E(x) — F(u?) is defined bywv, ((Xo :
X1 1 X2)) = (Xo : X1 : uxp) if w # 0 while it is defined to be the identity map if = 0.
The pointso, 0, 0” are fixed byv, in P2, and hencev,(0) = Poo, v,(0") = Pip and
Uy (O//) = Py

Lemma 3.2. For any pair(F, A) of an elliptic curve F and a subgroup of order
three there exists a unique € C\ {1} with an isomorphisntF, A) ~ (F(p),{0,0,0"}).
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Proof. Lete; be an element oA \ {Og}. Since A C Ker 3¢ =~ (Z/3Z)?, we can
choosee, € Ker 3¢ \ A so that €, &) is a level three structure df. Since the Hesse
family is the fine moduli, there exists @€ T and an isomorphism: F — E(u) with
u(e;) = Pio andu(ez) = Pos. Hence the composite, - u is an isomorphism satisfying
the condition forp = 8.

Let us prove the uniqueness pf Assume that there exists another isomorphism
w: (F, A) >~ (F(n), {0, 0/, 0"}) for an element; € C \ {1}. By replacingw with the
composite with the involution oF, if necessary, we may assumge;) = 0. Letv be a
cubic root ofy. If v, 1-w(ey) = Poy, then we have an isomorphism?-w: (F, (e, €)) =~
(E(v), (P10, Po1)), and we gev = u andn = p sinceT is the moduli. Since, ! w(e;) =
P10, there are two other possibilities m(jl - w(e2). Namely, these ard®;; and Py;.
We define an automorphism of P2 by 7((Xo : X1 : X2)) = (X0 : X1 : wXz). Then we
haven(E(v)) = E(a)zv), 7T(P10) = Py and 7T(P11) = Py1. Hence E(V), (P101 Pll)) x~
(E(@?), (P10, Po1)). Similarly, we have E(v), (P, P1)) ~ (E(wv), (P1o, Po1)) by 72
Hencey is equal towv or w?v. In all cases, we have = 13 = % = p. O

Theorem 3.3. The correspondences — S(p) define a bijection fronC \ {1} to
the set of isomorphism classes of CCI surfaces.

Proof. SinceS(p) = S« for @ = (F(p), {0,0’,0"}), this is a consequence of The-
orem 3.1 and Lemma 3.2. O

By this theorem, we can say thate C\ {1} is the moduli parameter of CCI surfaces.

Theorem 3.4. The j-invariant of the base elliptic curve(B) of the CCI surface
S = Y(p) is given by the rational function

_ 27p(p +8)°
 (p—1p

This function has ramifications of degree threepat —8 and p = 1. We have (p) =0
for p = —8 and p = 0. It has ramifications of degree two at = 10 — 64/3 and

p = 10+ 64/3, and j(p) = 1728 for thesep. This function defines a finite map from
C\ {1} to C.

i(o)

Proof. The first part follows from (3.15) and the relatipn= u°. Set f(p) =
j(p). Then
27(0 + 8)%(p? — 20p — 8)

(o) = (1

Hence f'(p) = 0 for p = —8 andp = 10+ 64/3 = (1 + +/3)%. Since f(p) = oo only
for p =1 andp = oo, we get the last assertion. ]
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Lemma 3.5. Letp be anelementd®\{1}. Then a group automorphism F(p) —
F(p) with ({0, 0"}) = {0, 0"} is the identity map or the involution if # 0. If p =0,
then there exists @ of order three withp(0') = o/, and the automorphism group is of
order six.

Proof. F(0) is the Fermat cubic curve and the automorphignof P% defined
by 7m((Xo : X1 : X2)) = (X0 : X1 : @wXp) inducese = ¢g of order three withgy(0') = 0.
The group of automorphisms df(0) is generated by thigy, and the involution since
the order of the automorphism group of an elliptic curve isratst six. Clearly, all
members satisfy({0,0”}) = {0/,0"}. Supposep # 0 andg satisfiesp(0’) = 0’. Take a
w with 3 = p. ThenP = (vt @-v,)(Pog) is Poy, Piy or Pyy since ¢, ¢-v,)(Pio) =
P1o and (P, P) is a level three structure dE(u). If it is Ppy, theng is the identity
since the elliptic curve with level three structurg(ft), (P10, Po1)) has no automorphism
other than the identity. As we saw in the proof of Lemma 3R(i{), (P10, P11)) ~
(E(@?), (P10, Po1)) and E(u), (Pio, P21)) =~ (E(wp), (P10, Po1)). Hence, the other two
cases do not occur since is the moduli. []

Proposition 3.6. The order of the automorphism group ofe% is six for p =0
and two forp # 0.

Proof. We will show that an automorphism 8{p) induces that of E(p), A) for
A = {0, 0, 0"} and that this correspondence is bijective. Then the prtiposfollows
from Lemma 3.5.

Let W: S(p) — S(p) be an automorphism. By the universality of the Albanese map
a: S(p) — F(p), there exists an automorphisin of F(p) with -a=a-W¥. Here,y is
a group automorphism sinc®(p) has the unique singular fiber over the unit o).
Set F(p)* = F(p)/A. We defineq: F(p)* — F(p) by q(x mod A) = [3x]. Then,
S(p) = SF(p) . kerg)- Theorem 2.8 implies thag is the unique unramified covering of
degree three such that the fiber prod$tp) xr(,) F(0)* is defined by a Fermat type

equation. SinceS(p) xr(y (F(p), ¥) =~ S(p), we have
S(p) <k (o) (F(0)*, ¥-a) 2= (S(p) Xr(p) (F(0), ¥)) XF(p) F(0)* 2= S(p) xr(p) F(0)",

i.e., the left-hand side is also defined by a Fermat type emquatHenceq and the com-
posite ¢ - q are equivalent coverings df(p). Namely, there exists an automorphism
¥ of F(p)* with q-y = v -q. Since A = q(Ker 3r(,)-), we have

¥(A) = y(aKer 3e())) = A (Ker 3x())) = A.

Let ¢ be an automorphism ofF(p), A). Since we know that the involution of
F(p) has a lifting toS(p), we may assume that(0") = o’ and¢(0”) = 0" in order to
find a lifting of ¥ to S(p) and to show the uniqueness. Sing€A) = A, ¥ induces
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an isomorphismy: F(p)* — F(p)*. Since the determinant of the restriction ¥f to
Ker3g(,) ~ (Z2/32)? is 1€ Z/3Z (cf. [5, IV, Theorem 4]) and sincg fixes each elem-
ent of A, ¥ fixes each element oh* = Ker 3r(p)/A. Let A* = {Og(y)- = Po, P1, P2}
and o™ = (F(p)*, A*). For the locally free sheaf

V = Oy (Po)Zo ® Ok () (P1) Z1 ® Ok () (P2) Za,
we define an isomorphisn¥: V — y*V by
W(aZo +bZi + cZp) = ay*(Zo) + by (Z1) + ¢y (Zo).

Since (* fo) = (fo) = —2Py + PL + P», there exists a nonzero constanwith * fo =
cfo. Then we have (SyfW)(foZ8 + f12% + .23) = c(foZ8 + f1Z% + 2Z3). Hence
the automorphism oP(V) induced byWw maps S, to itself. By taking the quotient
of §- by A*, we get an automorphism d¥p) = S,- which is a lifting of . The
lifting of v is unique sinceZy, Z1,Z, are determined up to multiplication by a common
nonzero constant. 0J

Theorem 3.7. There exists a proper smooth family S — T of algebraic sur-
faces with the following properties.
(1) For eachu € T, the fiberS, = ¢~Y(u) is the CCI surface which corresponds to
the pair (E(u), { Poo, P1o, P20})-
(2) For any CCI surface Sthere existsu € T with S, >~ S.
() S, =S, if and only if u3 = v3.

Proof. Letf C P(Z: x T be the the family of cubic curves defined by the equation
X34+ X3 + X3 —3tXoX1 X2 =0,

and |etD0 = {Poo} xT, D1 = {P]_o} x T and D, = {on} xT.

Let p: £ — T be the projection. Sinc€ is a smooth family of elliptic curves and
the natural isomorphism: T — Dg is a section£ has a structure of an abelian scheme
with the identity e (cf. [4, Theorem 6.14]). Since the invertible she@f(—2Dq +
D; + Dy) is trivial on each fiber,p,Og¢(—2Dg + D; + D) is an invertible sheaf on
T = SpecC[X][( X3 — 1)71]. Since C[X][(X®—1)"1] is a PID, this sheaf is generated
by a sectionug on T. Let fo = p*up and f; and f, the pullbacks offy by translations
by D; and D,, respectively, on the abelian scheifie

Let V = Og(Do)Zo ® Os(D1)Z1 ® O (D2)Z2. Then theP2-bundlePg(V) contains
U = (£\ (Do U D1 U Dy)) x P(Z: as an open subscheme. We deffhas the closure of
the subvariety olU defined by

foZg + f127 + f2Z5 = 0.
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Similarly to the construction o&,, S has an action of a cyclic group of order three

induced by the translations by, and D;. The quotientS = S/G is a family of CClI

surfaces ovefl such that the fiber op is equal toS, for @ = (E(w), {Poo, P10, P20}).
O
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