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Abstract
In this paper, we study a connected non-parabolic, or eahsinetwork com-
pactified with the Kuramochi boundary, and show that the oamdvalk converges
almost surely to a random variable valued in the harmonimbary, and a function
of finite Dirichlet energy converges along the random wallateandom variable al-
most surely and irL2. We also give integral representations of solutions of fwis
equations on the Kuramochi compactification.

1. Introduction

Ancona, Lyons and Peres [1] showed that a function of finitdcBliet energy on
a transient network converges along the random walk almasiysand inL?. In this
paper, we concern the Kuramochi boundary of the network andep that the random
walk converges almost surely to a random variable valuechénharmonic boundary,
and a function of finite Dirichlet energy converges along tiedom walk to a random
variable almost surely and ih?.

Let G = (V, E) be a graph with the set of verticds and the set of edgeB that
consists of pairs of vertices. In this paper, a graph adnutsoops and multiple edges,
and the set of vertices is finite or countably infinite. We dagt ta vertexx is adjacent
to anothery if {x, y} belongs toE and writex ~ y to indicate it. We also writéxy|
for {x, y}. By a path inG, we mean a sequence of vertioes= (Xg, X1, . .., Xn) Such
thatx; ~ %41 (i =0,1,...,n—1), and we say that connectsxy to x,. G is called a
connected graph if for any pair of verticesand y, there exist paths connecting them.

We are now given an admissible weighbn the set of edgeg, that is a positive
function on E with the property that

1
= Y V.
) ; fiyy ~ T XE

An admissible weight gives rise to a distancd, on V, called the geodesic dis-
tance ofI", by takingr(e) as the length of an edge and by assigning to each pair
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32 A. KASUE

of verticesx andy the infimum of the length of paths connecting them. In thisgoap
we call such a couple of a graph and an admissible weight aonketw

Given a connected network = (V, E,r), a nonnegative quadratic forrdr(, D[Er])
on the spacé(V) of functions onV can be defined as follows:

D[&r] = {u e (V) ZM < +oo};
X~y

r(Ixyl)
_ 1 Ux) —u) () — v(y))
&r(u, v) = > XZN; FY) , u,ve D[]

The domainD[&r] endowed with an inner produdr(u, v) + u(o)v(o), whereo is a
fixed point of V, becomes a Hilbert space.

Let Do[&r] be the closure of the set of finitely supported functions\oim D[Er].
We say thatl" is non-parabolic if

lu(x)|?
S”p{ep(u, m

u € Dolér], ér(u, u) > 0} < 400

for somex € V. We recall here the fact that the following conditions aretumally
equivalent:
(i) T is non-parabolic,
(i) Do[&r] contains no constant functions,
(iii) Do[&r] # D[&r] (see [14]).
If these are the case®)[Er] is decomposed into the direct sum 8f[Er] and the
spaceHg,. of harmonic functions of finite Dirichlet sums ov that is the orthogonal
complement ofDg[&r] relative to the form; a functiorh on V belongs toHg, if and
only if h € D[&r] and L°h(x) := -, _,(h(x) — h(y))/r(xy]) = 0 for all x € V.

Let {p(x, y) | X,y € V} be transition probabilities oW defined by

p(x, y) = Cﬂz;};'), X,

yeV,

where ¢(|xy|) = r(|xy)~* and c(x) = Zywx c(|xy|). It is well known thatI" is non-
parabolic if and only if the (reversible) Markov chain is ts&@nt.
Ancona, Lyons and Peres [1] proved the following

Theorem 1. LetT = (V, E, r) be a connected non-parabolic network af,}
the Markov chain. Then for any @ D[&r], the sequencédu(Xy)} converges almost
surely and in . If u = h + g, where he He. and ge Do[&r], is the Royden decom-
position of y thenlimp_., u(X,) = limy_ h(X;) almost surely.

To state our main results, we introduce the Kuramochi cotiffation of a con-
nected infinite network™ = (V, E,r).
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A compactification of any (discrete) sét is a compact Hausdorff space which
contains X as a dense subset and which induces the discrete topologX. oft is
known that given a family® of bounded functions orX, there exists an (up to ca-
nonical homeomorphisms) unique compactificati®fX, ®) of X with the following
properties (see e.g. [2]):

(i) every function of® extends to a continuous function @i{X, ®), and

(i) the extended functions separate the points of the bayn@C(X, ®) = C(X, D)\ V.
We remark that if¥ is a subfamily of®, then the identity map extends to a continuous
map fromC(X, ®) onto C(X, V), and if &g is a subfamily of® and each function of
@ is a finite linear combination of functions i@, then C(X, ®) and C(X, &) are
canonically homeomorphic; in particular, if in additioX, and ®¢ is countable, then
C(X, @) is metrizable.

The compactification relative to the space of bounded fonstin D[Er], BD[Er],
is called the Royden compactification of the netwdrkand denoted byR(Er). The
boundarydR(&r) is called the Royden boundary &f. There is an important part of
the Royden boundary refered to as the harmonic boundary which is defined by
A(&r) = {x € OR(&r) | 9(x) = O for all g € BDg[&r]}. It is known (see [15], [6],
[11, Chapter VI]) thatl" is non-parabolic if and only if the harmonic boundary is not
empty, and also that iBR(Er) \ A(Er) is not empty, then any set of a single point
there is not aGs set and for a nonempty closed subgetin 9R(Er) \ A(Er), there
exists a functiong € Dg[&r] such thatg(x) tends to infinity asx e V — F.

We recall a basic fact concerning Dirichlet problems on theyden boundary
OR(Er) (see [11, Chapter VI]): for any continuous functidnon 9R(Er), there exists
a unique harmonic functiotd; on I' such that for any € A(Er), limyev—e Hi(X) =
f(¢), and sug|H¢| < maxy,)| f|. Given a pointa € V, letting vy(f) = H¢(a) for
f € C(0R(&r)), we have a Radon measurg on 0R(Er), called the harmonic measure
with respect to the poina. In view of Harnack’s inequalityp, and i, are mutually
absolutely continuous for any pair of poingsb € V, and the harmonic measures are
supported on the harmonic boundary.

Now we consider a subspa€&r) of BD[Er] which consists of functionsl such
that &r(u, v) = 0 for all v € D[&r] vanishing on a finite subset of. The com-
pactification relative toQ(&r) is called the Kuramochi compactification of the network
' and denoted byC(&r) (see [9]). The identity map oV extends to a continuous
map from R(&r) onto K(&r). We denote bypr the induced map from the Royden
boundarydR(Er) onto the Kuramochi boundag/iC(Er). Let AX(Er) = pr(A(Er)) and
va = pr«va (@ € V). Here and after, we fix a poird € V and writev for vg.

We will prove that the Kuramochi compactificatioG(Er) of a connected, non-
parabolic network™ admits a compatible metrid®r such that for each Lipschitz func-
tion f: (K(&r), d°7) — R, the sequencd f(X,)} is almost surely convergent. This
shows that the Markov chaifiX,,} converges to a random variabk,, in K(&r). In
fact, a result by Ancona, Lyons and Peres [1] states itha¥l is a complete separa-
ble metric space andY,} is a process such that for each bounded Lipschitz function
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f: M — R, the sequencé f(Y,)} is almost surely convergenthen the processY,}
in M is already almost surely convergent
We will now take an appropriate measure ¥n Given two verticesx and y of
I', we define a nonnegative numbBg,. (X, y), called the effective resistance between
x andy, by

u(x) — u(y)l?

Re, (X, y) = su )

ue D[&r), ér(u,u) > O}.

It is known thatRg (X, y) < d:(x, y) for all X, y € V and Rg. induces a distance on
V (see e.g., [5]). Choose a measweon V in such a way thap(V) = >, ., n(X) =
1 and

/V Re, (0, X) dp(x) <= > Rr(o, X)ZM(X)) < +oo.

xeV

Under the condition, it is proved in [5] thd[£r] C L?(V, 1), the embedding is com-
pact, €r, D[&r]) is a regular Dirichlet form inL?(K(&r), 1), and the Royden decom-
position is stated in such a way that a functiore D[Er] is expressed as

u(x) = / o(u)dvy +g(x), X €V, ge Dolér],
AC(Er)

wheret(u) is a function inL2(d/C(Er),v) (= L2(AX(Er),v)). We define a Radon meas-
ure £ on the Kuramochi compactificatiok(Er) by

,L_L(f)Z/fd/L-i-/ f dv
\% K(Er)

for f € C(K(&r)). Then any functioru of D[&Er] coupled withz(u) can be considered
as a function inL2(K(Er), ).
Our main results are stated in the following

Theorem 2. LetT = (V, E, r) be a connected non-parabolic network. Then the
following assertions hotd
() (&r, D[&r]) is a regular Dirichlet form on B(K(Er), ).
(i) There exists aAK (&r)-valued random variable X such that in theC(Er)-topology
the Markov chain X almost surely converges to.Xas n— oo, the measurerx, con-
verges weakly to the delta measuig_ almost surely as n— oo, and for any ue
D[Er], u(Xn) converges tar(u)(Xs) almost surely and in £as n— oo.
(iii) Let (L®r, D[L?r]) be the self-adjoint operator associated with the regularidilet
form (&r, D[&r]). For a function fe L2(K(&r), ji), there exists a solution,wnique
up to additive constant®f equation LETu = f if and only if 2(f) = 0; in particular,
the solution is harmonic on V if f vanishes there.
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We briefly explain the contents of the paper. In section 1, mduce a resistance
form of a connected non-parabolic network and its Kuramamtpactification, and
prove Theorem 2 (i) for a resistance form. In Section 2, TéeoP (ii) for a resistance
form is discussed. The last section is devoted to invegtigd?oisson equations on the
Kuramochi compactification of a resistance form.

2. Resistance forms

In this section, we introduce the Kuramochi compactificatad a resistance form
of a connected non-parabolic network and prove Theorem f(ip resistance form.
LetI" = (V, E,r) be a connected non-parabolic network. A nonnegative atiadr
form £ on a subspac®[£] of D[&r] is called a resistance form of the networkif
it satisfies the following properties:
(1) Dolér] + R c DI[E] € D[&r],

(i) £(1,1)=0,
(iii) £(u, u) < &(u, u) for all u € D[E] and £(u, v) = &-(u, v) for all u e D[] and
v € Do[&r],

(iv) for u € D[&], 0 = max0, min{1, u}} belongs toD[£] and (T, T) < &(u, u),
(v) DI[&] becomes a Hilbert space with inner produgfu) = £(u,v)+u(o)v(o), where
o0 is a fixed vertex ofV. When we restricttr to Dg[ér] + R, we have the minimal
resistance form denoted b¥Y, Do[r] + R).

For any pair of vertexesg, y, we have a nonnegative numbBg(x, y), called the
effective resistance relative ® betweenx andy, defined by

Ju(x) —uy)?
E(u, u)

Re(X, y) = sup{ ue D[€], £(u,u) > 0}.

Then it follows from the definitions above that

Rg[Q(X, y) = Rg(X, y) = RSF(XY y)i X,y € V.

We remark thatRe.(x, y) < di(x, y) for x, y € V, and Re induces a distance oW
(see e.g., [5, Theorem 1.12, Proposition 2.6]). We wHie for the space of functions
u in D[] which are harmonic oV, i.e.,

e ron . N U(X) —uly)
Leu(x) := ) BT 0, VxeV.

y~X

Given x, z € V, there exist functiong) ; € D[] and hy ; € Hg respectively sat-
isfying €(0x.z, U) = u(x) — u(z) for all u e D[E] and E(hy.,, h) = h(x) — h(z) for all
h € He. We write g¢ (x, y) and hé(x, y) respectively forgy ,(y) and hy ,(y). It is easy
to see thatgs (x, y) = gf(y, X) and h{(x, y) = h{(y, x). We notice thatRe(X, y) =

gz (v,y) = 65 (¥,2) +97(x,2) and g5 (x,y) = (1/2){Re(X,2) + Re (2, y) — Re(x, y)} for all
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X, ¥,z€V, and also thahl (x, x) = sug|h(x) — h(2)[?/E(h, h) | h € He, £(h, h) > 0}
(see [5, 7.2]). Sincd" is assumed to be non-parabolic, given a vertex V, there
exists uniquely a functiomy € Do[&r] such that&r(gx, v) = v(x) for all v € Do[Er].
We write g(x, y) for gy(y). It holds also thag®(x, y) = g2(y, x). These functions are
related as follows:

(1) g (xy) =hi(x y) + (G V) =g (X, 2 =Ry, D) + (2 D), Xy, zeV

(see [5, 7.2)).

Now as in the case of the forifi-, we consider a subspad@(£) of D[£] which
consists of functionas such that€(u, v) = 0 for all v € D[£] vanishing on a finite
subset ofV. The compactification relative t®(€) is called the Kuramochi compact-
ification of the network" relative to the resistance forréi, and denoted byC(E).
The identity map ofV extends to a continuous map from the Royden compactification
R(Er) of T onto IC(E). We denote bype the induced map from the Royden boundary
OR(Er) onto the Kuramochi bounda@iC(€). Let AX(E) = pg(A(Er)) and va = pg.ia
(a € V). Here and after, we fix a poird € V and writev for vg.

We take a positive functionrn on V and consider it as a measure d u =
> ey H(X)8x. In what follows, i is chosen in such a way that(V) = 1,

@) /V Re(0, X)2 du(x) < +oo.

The measureu extends to a Radon measure, denoted by the same letter, dfuthe
ramochi compactification. Here we recall some results in7[3]:

() DIE] C LA(K(E), w).

(i) Any function u € D[£] can be written in the Royden decomposition as

u(x) = / t(u)dvy + g(x), x €V, ge Dg&],
IK(E)

where z(u) is a function inL2(3KC(£), v).
(iiiy (&, D[€)) is a regular Dirichlet form onL?(K(£), w).
(iv) The domainD[L?] of the self-adjoint operatot¢ associated to the Dirichlet form
£ is embedded in the space of continuous functions(¢f), and D[L¢] is dense both
in the Banach spac€(/(£)) of continuous functions oriC(E) and the Hilbert space
(D[E), € + 82).
(v) The domainD[£] is compactly embedded intb?(KC(E), ).

Now we define a Radon measufieon the Kuramochi compactificatiok(€) by

w(f) = fd fdv, f e C((E)).
u()/v u+[m) b feCKE)

Then any functionu of D[£] coupled with t(u) can be considered as a function in
L2(KC(E), ).
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Givenu € D[£], if we write h for the harmonic parya,c(g) T(u)dvk of u, then we
have the following basic identity:

20 (h(y) — h(2))?
3 /;K(g)T(U) dvs (/mg)r(u)dvx) yezvgr(x y); r(lyz) xev,

from which we can deduce that
4) / T(u)? dvy < 298(x, X)E(U, u) + 2u(x)?, x eV
AK(E)

(see [5, Lemma 7.8]). Using this inequality, we get

2 L 2
/BIC(S) 7(u)” dvy SZ(gF(x X) + (X ))(E(U,u)+[/u du),

since u(X)u(x)> < [, u?du. This shows in particular that the nord(u, u)/2 +
(fy uzdu)1/2+ (fixee r(u)zdu)l/2 is equivalent to the norng'(u, u)*?+ (,, uzdu)l/z.
Since €, D[£)]) is a regular Dirichlet form onL?(}C(£), 1), we can thus deduce the
following

Theorem 3. LetI' = (V, E, r) be a connected non-parabolic network a&ida
resistance form of’. Then the Dirichlet form(&, D[E]) on L2(KC(E), ) is regular.

Let (L¢, D[L?]) be the self-adjoint operator associated with the reg@iichlet
form &£ in L?(KC(€), it). Foru € D[L?], we note that

o1 u) - u(y)
LU0 = 690 = g 2 e+ SV

The restriction ofL®u to the Kuramochi boundary is denoted Bifu. Then we have

5(u,v)=/ vLCu d,f+[ t()Nfudv, ve D[E]
Y, AIK(E)

It is a consequence from the definitions lof and L¢ that
D[L?] = {u e D[L*] | N°u =0 in L2AK(E), v)} (C CK(E))).

We remark thatQ(&) is a subspace oD[L¢]. In fact, letu be a function inQ(E).
Then there exists a finite subsatof V such that€(u, v) = 0 for all v € D[] which
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vanishes onA. Let xa be the characteristic function 0. Then for anyv € D[£],
we have

E@u, v) = E(U, xav) = Y v(X)L°u(x)

XeA

and hence we get

1/2 1/2
|E(u, v)| < (/A(qu)zdu) (/V vzdu) .

This shows thau € D[L€].
Here, referring to [5, Proposition 4.1, Theorem 7.11], wentiom the following
propositions:
() The following conditions are mutually equivalent:
() sup.y 92(x, x) is finite.
(i) Any g € Dg[ér] is bounded.
(iii) OR(Er) = A(&r), that is, for any bounded € Do[&r], 9(X) tends to zero as
X eV — oo.
(iv) For any g € Do[&r], g(x) tends to zero ag € V — oc.
(1) sup, yev Re(x,y) is bounded if and only if everyf € D[£] is bounded.
(Il The following conditions are mutually equivalent:
(i) supyey hZ(y,y) is finite.
(i) Any h e He¢ is bounded.
(iii)y For any u € D[£], t(u) is continuous onAK(&).
(iv) A nonnegative subharmonic functianin D[] is bounded.
Now we prove the following

Theorem 4. LetT" = (V,E,r) be a connected non-parabolic network afich re-
sistance form of". Then €] is compactly embedded in?(C(€), iv) if sup.cy 92(X,X)
is finite.

Proof. Let{u,} be a sequence iD[£] such that&(up, u,) + un(0)? is bounded
asn — oo. Let h, be the harmonic part afi,. Then we have

un(0) — hy(0) = Er(gIQ(o, %), Up — hp)
= SF(QIQ(O, *), Un)
and hence

hn(0)2 = 2Un(0)2 + 2919(0' 0)&(Un, Up).

Thus we see thaf(hy, hy)) + hy(0)? are bounded as — co. Since D[£] is compactly
embedded inL?(K(€), 1), passing to a subsequence, we may assumeuthaind h,,
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respectively converge to functions and h in L2(XC(€), ), whereh is the harmonic
part ofu. Let v, = u, —u andk, = h, —h. Then in view of (3), we have

f 7(vn)® dvo = kn(0)’ + ) 92(0,) ) (a0 = kaly))"
AK(E)

2 2 (xy))

Givene > 0, let V. = {x € V | g2(0, X) > ¢}. Sinceg(o, x) tends to 0 ax € V
goes to infinity by the assumption: sup g2(x, X) < +oo, V: is a finite subset ok/.
Therefore for sufficiently large,

2
(0)2 + Z g[‘(o X) Z (kn( kn(y)) <&

vl o rlxyh

Since

k —k 2
S o0y B KON o

XeV\V. y~X r(lxy|)
we get

/ T(vn)? dv < 8(1 + sup&r(vn, vn))
IK(E) n

for n large enough. This shows th;@,qg) 7(vn)? dv tends to 0 a1 — oo. Thus we
can deduce thab[£] is compactly embedded ib?(K(E), i1). []

REMARK. LetI = (V, E,r) be a connected infinite network aidda resistance
form of T'.
(i) Let D[E*] = {r(u) | ue D[E]} (C L?(BK(E),v)) andE*(z(u), (v)) = E(hy,h,) for
u, v € D[£], where h, denotes the harmonic part of in the Royden decomposition.
Then €*, D[E*]) is a regular Dirichlet form onL?(dk(E), v).
(i) Let (F, D[F]) be a Dirichlet form on a closed subspace Iof(3/C(£), v) with
F(1,1)= 0, and define a form&, D[EF£]) by

Ex(u,v) = E(U, v) + F(r(u), t(v)); D[Ex] = {u e D[&] | t(u) € D[F]}.

Then&x is a resistance form df. Moreover for a positive number we set€x,(u,v) =
E(u,v) +tF(z(u), (v)). Then the limit of the forms as— o0 also gives a resistance
form of T".

(iii) Given a finite subsetK of V, we can define a Dirichlet form on the spald&)

of functions onK by letting &g (u, u) = Inf{&(0, G) | G € D[], G = u on K} for

u € I(K). Then we get a finite connected netwadrk = (K, Ek, rg) such that the
effective resistance of ; between two points oK is equal to the effective resistance
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relative to £ (cf. [7, Theorem 2.1.12, Corollary 2.1.13], [5, Theorem3l)1 Thus if
we take an increasing sequenioé,} of finite subsets oV such thatV =, V,, then

I' endowed with the resistance foréhcan be considered as a limit of finite networks
{I'y,} (see [5]). Conversely if we have a sequeri€g} of finite networks such that the
set of vertices ofl';, includes the vertex boundary of,, namely the set of vertexes
of V, which are adjacent to those outside 4, we get a sequencfl™;} of finite
networks obtained by joining the subnetwdrk of I' generated by, with T, through
the vertex boundary o¥/,. Since the effective resistance Bf between two points of
V, is bounded by the effective resistance &f between them, by taking subsequence
if necessarily, we have a resistance fofimof I' such that for any pair of points of
V, the effective resistance df, between them (for large) converges to the effective
resistance relative t6 asn — oo (see [5, 7.4]).

3. Random walks

We consider a connected non-parabolic netwbrk= (V, E, r) endowed with a
measureu: V — (0, +00) satisfying (2) and the random walkX,} of I'.

Let (M,dn ) be a complete separable metric space. Define &t 1] of maps
of V to M and a functionar xq on D[Er ] by

2
D[Er 0] = {WHM 3~ G609, ) <+oo};

oy r(Ixyl)
1 dr(@(x), p(y))?
Erom(P) = > XXN; Ty ¢ € D[Er ml.

A map¢: V — M in D[&r n] is called a Dirichlet finite map. The compositioho
¢ of a Lipschitz functionf on M and a Dirichlet finite mapp: V — M belongs
to D[&r]. Thus applying the result of [1] mentioned in the introdont we see that
the sequencéf(¢(X,))} is almost surely convergent, and the procgéX,) is already
almost surely convergent inm.

Now we consider a resistance foréhof I". For anyx, y € V, let

1/2
e (x, y) = ( / (G, 2) — & (Y, 2)° du(Z)) ,
Vv

where we selgﬁ(x, y) = [y gé(x, y)du(2). Then it is proved in [5, Theorem 3.10]
that d° gives a compatible metric of€(£). In what follows, K(£) is equipped with
the distanced®.

Now we prove the following

Lemma 5. The inclusion map | of V into the metric spa¢k(&), df) is a
Dirichlet finite map andér k(1) = [y Re(z, w) du(2) du(w).
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Proof. We have

_ 3 Ay
Ere(l) = XZ; r(Ixyl)

- (5%, 2) — G (Y, 2)°
‘%L r(Ixy)

£ _NE 2
_ /Vz(gﬂ(x,z) G0
X~y

du(2)

F(xy)
- /V E(GE (2 ), 85z, ) du(2)
- [ g2
Vv
- / Re(z w) dj2(2) dpe(w)
VxV
- /V Re(z, 0) du(2) + /V Re(0, w) du(w) = 2 fv Re(z, 0) du(2).
This completes the proof of the lemma. []

Theorem 6. LetI" = (V, E, r) be a connected non-parabolic network aéida
resistance form of*. Then there exists a K (£)-valued random variable ¥ such that
the process X almost surely converges to£Xin K(€), the measurevy, converges
weakly to the delta measusgs almost surelyand for any ue D[£], u(X,) converges
to 7(u)(X%) almost surely and in £as n— oc.

Proof. Lemma 5 and the result in [1] stated above imply that phocess X}
is Cauchy inC(€) almost surely. LetX$, = lim,_.., Xn. We recall here thaD[L¢] is
densely embedded in both(/C(£)) and D[E]. Then together with Theorem 1, we see
that for u € D[L?],

lim u(Xp) = lim / T(u) dvy, = t(U)(X%).
n—o0 n—oo SK(S)
Moreover it follows thatvy, weakly converges téxs almost surely, and since the sup-
port of the measurey coincides withAX (&), it follows that X&, is a AK(€)-valued
random variable, and further it is easy to see that the imagiense inAX (€).
Now we want to show that fou € D[], u(X,) converges tor (U)(X%) in L2 We
fix a pointa € V. For any positive number, we take a functioru, € D[L¢] such that
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Eu—u)+ (Uu—u,)@?<e. Leth,(x) = Joxey TU—U) dvx andge =u—u. —h; €
Do[&o]. Then we have

Eal(u — U.)?(Xn)] < 2Ea[nZ(Xn)] + 2Ea[g?(Xn)]

< 2/ 7(he)? dva + 2Ea[g?(Xn)],
IK(E)
where we have used the fact tHa#t is subharmonic, so that

Ealh2(Xn)] < [B g T e

In view of (4), we observe that
/ t(h.)? dva < 2g2(a, @)E(U — U,, U — U,) + 2(u — u,)(@)?
(&)
<2(g(a, @) + 1)e.
Thus we obtain
Eal(U — U.)*(Xn)] < 4(0R(a, @) + 1)e + 2Ea[g7(Xn)].
Using this, we have
Eal(u(Xn) — T(U)(X))’]
< 4Ea[hZ(Xn)] + 4Ea[r (U — u)2(XE)] + 2Ea[(u:(Xn) — 7(u:)(XE))]
= 16(G0(a. a) + L + BE[G0K)] +4 [ c(h) v
IK(E)
+ 2Ea[(us(Xn) — T(U)(XE))]
< 24@@0(a, @) + 1)e + 8Ea[g2(Xn)] + 2Ea[(U:(Xn) — 7(U:)(Xoe)¥)?].
Thus we get

lim supEa[(u(Xn) — (U)(X))?] < 24@2(a, ) + L)e.

Letting e go to zero, we see that lim ., Ea[(u(Xn) —t(u)(X£))?] = 0. This completes
the proof of the theorem. O

Now we consider a map from the networkI" to a simply connected, complete
separable geodesic spac&1(dy) of nonpositive curvature (cf. [4], [13]). For any
x € V, there exists uniquely a point 081, denoted byP¢(x), such that

du(Po(x), ¢(¥))* _ du(@, o))
> - LT

T (xy) 2 (xyD



RANDOM WALKS AND KURAMOCHI BOUNDARIES 43

P¢(x) is the center of mass of the meaSlEQ/NXr(|xy|)‘18¢(y) on M. Amap¢: V —
M is said to be harmonic iP¢(x) = ¢(x) at anyx € V. A harmonic mapp: V — M
pulls convex functiong) on an open subsek C M back to subharmonic functiong ¢
on ¢~Y(A) (see [4, Proposition 12.3 (Jensen’s inequality)]).

Now we prove the following

Theorem 7. Let ¢ be a map from a connected non-parabolic netwdrk=
(V, E,r) to a simply connecteccomplete separable geodesic spa€a1,d,,) of non-
positive curvature. Letp: V — M be a Dirichlet finite harmonic map. Then the im-
age ¢(V) is contained in the convex hull(L) of the set L of points to whick(X,)
converges almost surely.

Moreover ¢(V) is bounded if any he Hg. is bounded. In particular¢ must
be constant if |d. = R, that is T" admits no non-constant Dirichlet finite harmonic
functions.

Proof. Letn be a distance function to the convex hdl{L) of L, that is the
smallest closed convex subset containingn M. Thenn? is convex and hencg? o ¢
is subharmonic orV. Thus we have

%0 (X) < Ex[n? o ¢(Xn)]

foranyx e V and alln =1, 2,.... Since lim_s n%(#(Xn)) = 0 almost surely, we
get n? o ¢(x) = 0, that is,¢(x) € C(L).

Now we suppose that anly € He,. is bounded. Since this condition is equivalent
to the condition that any nonnegative subharmonic functioof D[&r] is bounded,
for the distance functiom to a point of M, n o ¢ is bounded. Thug(V) must be
bounded. Moreover we suppose tliaadmits no non-constant Dirichlet finite harmonic
functions. ThenA(&r) consists of a single point, and hence so daesThus ¢ must
be a constant map. This completes the proof of the theorem. []

Let 2 be the set of one-sided infinite paths in a connected norbplcanetwork

I'. Given a pathw € @, the set of limit points ofw in the Royden boundaryR(Er)
of I is defined as

L(w) = {Xn(®)} N OR(ET).
Then we can deduce from Theorem 6 the following

Lemma 8. For any null family & of one-sided infinite path®ne has

L) | w € @\ =) D AEr).

Now we prove the following
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Theorem 9. Let¢: ' — (M, dp) be a Dirichlet finite map from a connected
non-parabolic network™ = (V,E,r) to a proper metric spacéM,d,), that is a metric
space such that any bounded closed subset is compactM_et M U {oc .} be the
one-point compactification oM. Then¢ extends to a continuous map: R(Er) —
M from the Royden compactificatioR(Er) of I' to M. Moreover there exists a null
family ¥ in € such that¢(X,(w)) converges inM for all w € 2\ £ and

H(AER) = {lim ¢(Xn(@) € M | @ € @\ (5 U D)} U (oo
for any null family =’ in .

Proof. For a poinx € M, we denote by, the distance function ta in M. Let
Ay = (£ € IR(Er) | 1x 0 B(§) = +00}, whereny, o ¢ stands for the continuous exten-
sion of nx o ¢ to R(Er) with values inR U {£oo}. This closed subset is independent
of the choice of a reference point Now we take a countably infinite dense subset
{x} of M. Let& and{v,} be, respectively, a point dfR(£r) \ A, and a sequence in
V converging to. Theng(v,) stays in a compact subspaceArt. Sincedx (X, ¢(vn))
tends tony o ¢(£) asn — oo for all x; which are densely distributed iM, we can
deduce that as tends to infinity,¢(v,) converges to a point(£), in M. By setting
#(&) = oo for £ € Ay, we obtain a continuous map from R(Er) to M.

Let ©, be the set of one-sided infinite paths along whjalX,) converges inM.
Foranyj =1,2,..., let ¢(A(Er)); = {x € M | dm(X, (A(Er))) < 1/j} and A} =
P(OR(Er)) \ ¢(A(Er))j. Sinceg™(A)) is disjoint from A(Er), we have by Lemma 5.3
in [15] a functiong; € Do[€r] such thatg; = +oo on ¢ 1(A;)NIR(Er). On the other
hand, it follows from Theorem 1 that lim. g;(Xn) = O almost surely. This shows
that {w € Q4 | iMoo d(Xn(@)) € A;j}) is a null family of paths, and hence, letting
2 = {o € Q| lIMn_o ¢(Xn(w)) € U; Aj}, we see that lim. ¢(Xn(@)) € #(A(Er))
for all w € Q4 \ . Moreover by Lemma 8, the assertion holds true. O

REMARK. Relevantly to Theorem 7, we refer to [8] in which a Liouviltgpe
theorem for harmonic maps to convex spaces via Markov chaimiscussed. For an
existence result of Dirichlet finite harmonic maps, see .[R]Jconnected parabolic net-
work admits no non-constant Dirichlet finite harmonic mapsat simply connected,
complete, geodesic space of nonpositive curvature. In faloeorem (3.34) in [11]
states that a Dirichlet finite subharmonic function on suatetwork must be constant.
We also refer to [3], where it is proved that if on a completer®annian manifolaM,
every harmonic function with finite Dirichlet energy is bal&d, then every harmonic
map with finite total energy fronM into a Cartan—Hadamard manifold must also have
bounded image.
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4. Poisson equations

Let ' = (V,E,r) be a connected non-parabolic network &hd resistance form of
I'. In this section, we derive integral representations otittmhs of Poisson equations
on the Kuramochi compactification &f.

To begin with, we show the following

Lemma 10 (Harnack’s inequality). Let h be a positive harmonic function on V.
Then

a2(x, X)
g (y, x)

h(x) = h(y)

for all x,y e V.

Proof. Let{V,} be an increasing sequence of finite subset¥ ofuch thatV =
U, Va. Let Dy be the space of functions oWt which vanish outside o¥,. Then for
any x € V,, there exists uniquely a functiogy € D, satisfying

Er(gx, u) = u(x)

for all u € D,. We write gnh(X, y) for g«(y). Fix pointsx,y € V and consideV, for n
large enough. Then there exists uniquely a functmne Dy, such thatp,(x) = h(x),
pn(y) = h(y), andL®pn(z) = 0 for anyz € V,\ {X,y}. The maximum principle ensures
that p, < h in V and henceL®py(x) > 0 and L p,(y) = 0. Then we have

h(x) = pn(x)
= 5F(gn(xv *)! pn)
=Y Gn(x, IL°pn(2)

zeV,
= gn(X, X)LEpn(X) + gn(X, Y)L pn(y)
_ On(X, %) c On(X, y)

gn(y! X)
{an(Y, X)L pn(X) + gn(y, V)L pn(y)}

an(Ys YL pa(y)

gn(xl X)
On (Y, X)

_ (X, X)
= a0 X)ér(gn(y. *), Pn)

_ gn(x! X)
= 0y, %) Pn(y)

Gn(x. X)
= h(y).
a5, Y

IA
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Thus we get
gn(xv X)
gn(Y- X)

for all largen. As n — oo, gn(z, w) converges tay’(z, w) for any @ w) € V xV, and
thus we obtain the required inequality. ]

h(x) = h(y)

In what follows, we take a probability measureon V satisfying (2) and

gR(x, X)
v ng(X! 0)

5) du(x) < +oo.

Proposition 11. (i) For any fixed xe V, g2(x, *) € D[L] N Do[&r] and the
harmonic measure, with respect to x V is given by

v = —NEge(x, *)v.
(i) Let
Go(x) = /V a2(x, 2 du(2), xeV.

Then G belongs to DL®] and N°GY = [, N®g2(x, %) du(x). Moreover NG
satisfies

gR(x, X)
v g2(x, 0)

0 < u(0) < —Nng < du(x).

Proof. For a functioru € D[£], we have

/ 7(u) dvy 5/ |z (u)| dvy
AK(E) IK(E)

_ %)
B g?(x, 0) Jaxe)

|z (u)| dv.

This implies that

E(Gr(x, %), )| =

u(x) — [ax(g) 7(u) dvy

is bounded byu(x)™ [, |ul du + g2(x, x)/g2(x, 0) Joxe|t W) dv. Thus we see that
g2(x, *) belongs toD[L®]. Moreover sinceL g2 (x, *) = &x, we get

u(x) — / PRIOLTE /V U(y)LE G, y) dpa(y) + [ o PN v

= u(x) +/ T(U)N€g2(x, *) dv.
IK(E)
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In this way, we obtain

/ T(u) dvy = —/ r(u)NggIQ(x, x) dv.
AK(E) IK(E)

This shows the first assertion.
Givenu € D[£], let g(x) = u(x) —famg) 7(u) dvx. Then we have

|5F(Goa U)| = |ET‘(GOI g)|

- ‘ / 909 dpu(x)
Vv

- ‘ /V u(x) dpu(x) — /V /3 ROLPELTE

< /V ()| due(x) + /V /a ] A

g2 (x, X)
< /V w61 a0 + | e auc [ frwi v

This shows thaGﬂ belongs toD[Lf]. It is easy to see the remaining assertions. This
completes the proof of the proposition. O

As in Section 3, we now introduce a kernel functigﬁ on & by
g ) = [ gx @, xyeV.

Then we have

5(95(X, ), U) = u(x)—/ udu, ue D[]
\Y
In particular, the functiorgi(x, x) for a fixed x € V belongs toD[L¢]. Similarly, let

he(x,y) = /V hE(x, y) du(@), X yeV.

Then we have

EMEx =) 1) =heo - [ hdu, he He.
v
In view of (1), we see that

(6) g (x, y) = hi(x, ¥) + g2 (X, ¥) = GL.(X) = GL(Y) + Cr,
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where we putCr,, = [, 9°(z, 2) du(2).
Given a functionu € D[L?], we have

u(x):/\/udu+€(g§(x, %), U)
- / U dpe + / o (x, Y)LEU(Y) dua(y) + / of (x, ENCU(E) dv(e)
Vv Vv AK(E)

- / Ui+ / o (x, Y)LEU(Y) dua(y) + / he (x, E)NEU(E) dv &)
Vv \Y; &)

aK(

~(G%(x)~ Cr,) / NEU(E) dv(e).
IK(E)

Since
/ Léu du+/ N€udv = &(u, 1) = 0,
\% AK(E)

by letting
g_,i(xi y) = gi(xa y) + Gg(X) - CF,/u

we obtain an integral representation of a functiof D[L?] as follows:

u(x) = /V udu + /V 6 (x, YLEU(Y) duu(y) + / | MO ONUO e

aK(

Let f be a function inL3(}C(£), ). Suppose thaf(f) = I fdu+fa,c(£) fdv=
0. Then for anyh € He, we have

/hfdu—l—/ t(h) f dv
% AC(E)

- V(h_h(o))f du +/ z(h —h(0))f dv
\Y (&)

< (/V(h — h(0))%d 1 + /m(g) (h — h(0))? dv) (/V f2du + /mg) f2 dv)

< (/V Re(0, X) du(x) + 202(0, o)) (/V f2du+/8’q5) fzdv)E(h, h),

where we have used

2

2

f(h(X)—h(O))2 dp(x) S/ hg (x, ) du(x)E(h, h) S/ Re (0, x) du(x)€(h, h)
\ \% \%

and
[ r(h — h(0))? dv < 2g°(0, 0)&(h, h)
(&)
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by (4). Forg € Dg[&r], we have

2
[gfdu S/QZdM/ f2du
\% \% \%

< /V Er(g2(x, #), 9)? du(x) [V £2dp

=/ g (x, X) d,u(x)/ f2du &r(g, 9)

\VJ \Y

< (/ Re(0, ) dpe(x) + 29 (o, o))/ f2du &r(g, 9)-
v \%

In this way, we see that for any € D[£],

2
/ufdu—f—/ (u) f dv
v IK(E)

5(/ Re (0, x) due(x) + 29°(o, o))(/ fzd,u+/ fzdv)é‘(u, u).
\VJ \% (&)

This shows that there exists a functignin D[£], unique up to additive constants,
such that

E(u, @) = /v uf du +f3]c(£) (u)f dv, u e D[],

so thate belongs toD[L?], Lf¢ = f in K2(KC(E),j1), and¢ is expressed in the follow-
ing way:

@ 6 = f ¢ du+ / GE (%, y) T (y) du(y) + / he (x, £) 1 (&) dv(e).
Y] \Y; IK(E)

In the case whergi(f) # 0, the functiong defined in (7) satisfied€¢ = f on
V and N¢¢ = f +;1(f)N562 in L2(3KC(E), v).
In fact, we have

009 [ o au
— [ g T duy)

\%

+ /a ey X = (D) dv(®) + (1) /8 o M)
szG,f(x, ) f(y) du(y)+f . he(x, £)(f (€) — () dv(&) + a(f)he(x, 0)

AK(

and
N€hi(&, 0) = 1+ N°GI(#).
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Thus we have the following

Theorem 12. LetI" = (V, E, r) be a connected non-parabolic network afida
resistance form of*. A probability measurg:. on V satisfying(2) and (5) is given.
() For ue D[L?], one has

w6 = [ udnt [ Gootumonm + [ i ONu© we, xev.

AK(

(i) For f e L3(K(E), i) and a constant cthe function

ux) = ¢+ /V G (x, y) F(y) duly) + / MO dE. xev.

AK(

belongs to DL®] and satisfiesL®u = f on V and L°u = f + (f)NGY in
L2(3/C(E), v). In particular if a(f) =0, then Lfu = f in L2(K(E), ji).

Let D[E*] = {z(u) | u € D[E]} (C L2(DK(E), v)) and E*(t(u), T(v)) = E(hy, hy)
for u, v € D[£], where h, denotes the harmonic part of in the Royden decompos-
ition. Let (L*, D[L*]) be the self-adjoint operator associated to the regulaicBlet
form (£*, D[E*]) on L2(3K(E), v). The restriction ofr to He gives rise to a bijec-
tion betweenHg and D[£*] such thatt(Hg N D[L?]) = D[L*] and N€h = L*z(h)
for h € He N D[L?].
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