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Abstract 

First-principles calculations are performed for molecular phases of solid oxygen and 

monatomic phases of solid oxygen and selenium. 

First-principles band calculations are carried out for the first time for molecular phases 

of solid oxygen and quite interesting results have been obtained. At large volumes (low 

pressures) an insulating antiferromagnetic state is the most stable. With decreasing the 

volume (increasing the pressure) the magnetic moment decreases and finally a nonmag

netic metallic state becomes the most stable above about 100 GPa. The metallic state is 

realized by band overlapping. 

For monatomic phases of solid oxygen it is shown that transition from the {3-Po to the 

bcc structures will be hard to occur in the pressure region accessible by experiments in 

contrast with other VI-b elements, S, Se and Te. For monatomic selenium our calculation 

reproduces fairly well the pressure-induced phase transition from {3-Po to bcc observed 

experimentally. The calculated transition pressure is lower by 30 GPa than the observed 

one (150 GPa), but the calculated pressure dependence of the lattice parameters agrees 

well with the observations in a wide range of pressure. 

We also investigate pressure-induced superconductivity in monatomic selenium by 

calculating lattice dynamics and electron-lattice interaction with use of a first-principles 

method based on the linear-response theory. For bcc selenium, with decreasing pressure, 

softening of phonon frequency is observed and in particular the transverse mode along 

the r-N line in the Brillouin zone exhibits a phonon anomaly, i.e., a dip in the middle 

of the line. Finally, we calculate the pressure dependence of the superconducting critical 

temperature (Tc) of both the {3-Po and bcc phases and predict a discontinuous jump of 

Tc going from {3-Po to bcc. 
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Chapter 1 

Introduction 

1.1 Experimental and theoretical background 

Among many homo nuclear diatomic molecules only the oxygen molecule has a spin in its 

ground state, which gives quite interesting properties to assemblies of oxygen molecules. 

In particular it yields a rich variety of phases of solid oxygen in the temperature-vs

pressure plane[l-6] as shown in Fig.l.1.l and 1.1.2. The magnetic moment of an oxygen 

molecule comes from two parallel spins in degenerate antibonding 7r* orbitals, 7r2P:r: and 

7r2py as shown below. 

The a-phase which appears at low pressures and low temperatures has a monoclinic crystal 

structure (space group C2/m) which contains two molecules in the unit cell as shown in 

Fig. 1.1.3. In this a-phase an antiferromagnetic (AF) order is realized and the magnetic 

moment is reported to be 0.6 /-LB/atom [3]. With increasing pressure at low temperatures 

1 



8 
IX) 

g 
co 

8 
N 

o 

o 5 

fluid 

. . . . . ... Jodl .at. a!. .(1985) . .. . . 
• Ven: and Nicol (1987) 
+ YounQ et 01. (1987) 

:(triple pointe) 

.. ... ..... ·.(1) ··;· .... .. ..... ... ... . . 

(to 81 """ at .00 K) 

10 
Pressure (GPa) 

15 20 

Figure 1.1.1: Temperature-pressure phase diagram of solid oxygen [6]. 
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Figure 1.1.2: The phase sequence of VI-b elements as"a function of pressure at room 

temperature. The blue bands represent target materials in this thesis. 
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Figure 1.1.3: The crystal structure of a-02. The arrows at molecules denote the magnetic 

moment. 

successive structural phase transitions occur: from a-phase to orthorhombic a-phase 

(space group Fmmm) at about P c::=3 GPa shown in Fig. 1.1.4(b) , and from a-phase 

to monoclinic e-phase at about P c::=8 GPa [5]. But little is known about the magnetic 

properties of the 0- and the e-phases. 

Recently a couple of experimental observations which might evidence metallization of 

oxygen above ~96 GPa have been reported: measurements of optical absorption spec

tra [7], X-ray diffraction [8] and electrical resistivity [9]. Furthermore, Shimizu et al. have 

discovered superconductivity in solid oxygen under pressures higher than c::= 96 GPa [10]. 

The transition temperature is reported to be Tc = 0.6 K. Interestingly Akahama et. al. 

suggested that the metallization is realized in a molecular phase [8]. As the crystal struc

ture of the metallic molecular state they proposed a monoclinic phase (called (-phase) 

which is an isostructure of the e-phase. Theoretically, Serra et.al. [ll] have performed 

ab initio deformable-cell MD simulations and proposed a new base-centered monoclinic 

structure for the (-phase. Kususe et.al. [12] have also investigated the molecular phase of 

oxygen by using first -principles calculations and supposed the molecular dissociation 

3 
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Figure 1.1.4: The crystal structures of (a) the a-phase, (b) the b"-phase and (c) the c-phase 

(or (-phase) of oxygen. With increasing pressure the monoclinic angle f3 of the a-phase 

decreases toward that of the b"-phase. The (-phase is coqsidered to be an isostructure of 
" 

the c-phase [8]. 
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does not occur at the metallization pressure. They concluded that in the (-phase mag

netic state is collapsed and a nonmagnetic metallic state is realized. 

Another interesting example of oxygen molecular assembly is oxygen in restricted ge

ometry such as oxygen physisorbed in Cu-trans-1,4-cyclohexanedicarboxylic acid (CCHD) 

having one-dimensional (I-D) micropores. Magnetic measurements on this system have 

given quite peculiar results [13]. According to measurements of magnetization process the 

saturation moment is 2p,B per molecule, and the observed susceptibility indicates clearly 

the existence of a gap. However, the temperature dependence of the susceptibility is 

explained neither by 8=1 Heisenberg antiferromagnetic (AF) chain nor by 8=1 dimer 

model. It is rather understood well by 8=1/2 dimer model. These results indicate that 

8=1 state is rather unstable in this oxygen molecular assembly and also suggest that 

degeneracy of 7r* orbitals may be lifted. 

The elements in the same group of the periodic table exhibit a close homology in their 

high pressure behavior. In other VI-b elements, S, Se and Te, molecular dissociation 

to a monatomic phase has been observed. The monatomic phase first realized has a {3-

Polonium ({3-Po) structure [13-18], and with further increasing pressure transition from 

the {3-Po to the bcc structures has been observed in Seand Te [14, 15, 16] or predicted 

for S [20]. Recently, Rudin et. al. predicted the simple-cubic phase is realized between 

the {3-Po and the bcc phases [21]. This suggests that 0 and S have a structural sequence 

different from that of Se and Te in the monatomic phase. Sulfur, selenium and tellurium 

show also superconductivity under high pressures. Their transition temperatures are Tc 

= 10 K at 100 GPa in S [22, 23], 4.5K at 36 GPa in Se [18] and 2.5 K at 5 GPa in 

Te [16]. In case of Te superconductivity has been observed also in monatomic simple 

structures under higher pressures, and its Tc is 2.6 K at 27 GPa in the {3-Po structure 

and 7.4 K at 35 GPa in the bcc structure [16]. In case of Se and S there has been no 

experimental measurements of superconductivity in their monatomic phases. There is 

only a first-principles calculation of Tc for monatomic bcc S, which predicts Tc = 15 Kat 

550 GPa [20]. 

In comparing Tc of molecular solid oxygen with those of S, Se and Te a question arises: 

why Tc of oxygen is so low? It is also an interesting problem to investigate the possibility 
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of superconductivity in monatomic simple structures of selenium and oxygen. In Te a 

jump in Tc from 2.5 K to 7.4 k is observed at 32-35 GPa [16]. Theoretically, Mauri, 

et. al. have suggested that the jump in Tc is related to the phonon softening in the bcc 

phase [24], namely with decreasing pressure the phonon anomaly enhance the electron

phonon coupling. For Se, on the other hand, there is neither experimental observation of 

superconductivity nor ab initio calculation for pressure dependence of phonon frequencies, 

electron-phonon interaction and Tc , in its monatomic phases. 

1.2 Purpose of this thesis 

For solid oxygen, if the insulator-metal (IM) transition occurs truly in the molecular phase, 

several interesting questions arise. What is the driving force of the IM transition? Is the 

mechanism the same as for the IM transition of other diatomic molecular solids such as 

halogens? Does the spin remain even in the metallic phase or does it disappear before the 

IM transition? It will be quite important to seek for the answers to these questions. As the 

first step to understand or predict the above interesting properties of solid oxygen under 

high pressures we carry out first-principles calculations of the electronic band structures 

of the molecular phases of solid oxygen. 

Secondly we study in detail the structural phase transition from {3-Po to bcc phase 

in monatomic Se. Then, for comparison we study also the possibility of transition from 

{3-Po to bcc in monatomic oxygen. 

Finally we investigate pressure-induced superconductivity in monatomic selenium by 

carrying out first-principles calculation for lattice dynamics and electron-phonon inter

action. At first we calculate phonon frequencies and electron-phonon coupling constants 

for both the bcc and {3-Po structures by using the linear-response LMTO method. Then, 

with use of the AlIen-Dynes formula we evaluate the pressure dependence of the super

conducting transition temperature Tc in both the phases. 

In Appendix A we give the results of analysis for ID two-band Hubbard Hamiltonian 

which is relevant to a ID oxygen chain. Appendix B is devoted to detailed theoretical 

description of the calculational methods used in this thesis. 
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Chapter 2 

Theoretical Method 

2.1 Full-potential LMTO method 

In this thesis theoretical investigations for the electronic band structure is done by full

potentiallinearized muffin-tin orbital (FPLMTO) method [25, 26, 27]. In this section we 

outline the essence of FPLMTO method. 

For N -electron systems with N as large as rv 1023
, it is difficult or practically impos

sible to solve exactly the eigenvalue and eigenstate by correctly taking into account the 

electron-electron interaction. Therefore, usually the electron-electron interaction term is 

approximately treated by a self-consistent procedure on the basis of a one-particle picture. 

A typical example of such approximations is the local density functional approximation 

(LDA), in which exchange and correlation energy part are represented by a functional of 

electron density[28, 29]. By using LDA the N-electron problems result in to solving the 

Kohn-Sham equation as follows 

[_~\72 + Veff] rpi(r) = cirpi(r), (2.1.1) 

where Veff is the one-particle effective potential which includes external field, bare Coulomb 

interaction and exchange correlation energy. 

The FPLMTO method is based on the density-functional theory (DFT) with usual 

LDA. The crystal space is partitioned into nonoverlapping MT spheres (MTS) centered 

on each atom (Irl ~ SMT) and the remaining interstitial region (Irl > SMT). Within the 
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Figure 2.1.1: A schematic picture of muffin-tin approximation where the kinetic energy 

in the interstitial region is defined by ",2 = E - VMTZ 

spheres the basis functions are represented in terms of numerical solutions of the radial 

Schr6dinger equation for the spherical part of the potential multiplied by spherical har

monics. In the interstitial region where the potential is essentially fiat, the electronic state 

is described by the Hankel functions, which are taken from the solutions of Helmholtz's 

equation: 

(2.1.2) 

For the solution of the radial part of the equation (2.1.2) we use some fixed kinetic 

energy of interstitial energy ",2. Inside the MTS, the radial part of the electronic state 

is described by the linear combination of cPRL(rR - t, c",m) and it's energy derivative 

~RL(rR - t, c",m) , where cP is the solution of the one-electron Schr6dinger equation inside 

MTS with the spherically symmetric part of the potential for the energy c",m which is 

taken with the center of interest, L denotes the combined index for em and rR = r - R, 

other definition of the vector is shown in figure 2.1.2. The coefficients of the linear 

combination are determined with the condition of smooth augmentation to the Hankel 

function, K",L(rR - t), at the boundary of MTS centered at R+ t. Inside any other MTS 
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Figure 2.1.2: The definition of position vectors used in this section: R denotes the position 

of atoms in the unit cell and t represents transnational vector. 

centered at R + t' the electronic states are also described by the linear combination of cjJ 

and ~, and the coefficients are determined as follows. The tail of the Hankel function is 

expanded in terms of Bessel functions, which are also the solutions of equation (2.1.2). 

(2.1.3) 
L'L" 

where the Gaunt coefficients CLL'L" , augmented Hankel K and Bessel J function are 

defined as follows: 

(2.1.4) 

The phase factor of spherical harmonic YL to· be used is defined after Condon and Short

ley [30], and fL = ilYLfl, where f is K, J, cjJ, ~, and so on. We introduce the structure 

constants in direct space as 

(2.1.5) 
L" 

Thus the expansion of Hankel function Eq.(2.1.3) is rewritten as follows 

K",L(rR - t) = L CLL'L"J",L' (rR' - t)SR'L'RL(t - t', K). (2.1.6) 
L' 
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The last step is to perform lattice summation of LMTO's centered at different sites 

with phase. shift eik.R in order to guarantee that our basis functions would satisfy the 

Bloch theorem, and finally we obtaine the basis functions as in the following form 

<P!fRdr R)8RR, + L <P~R'L'(rR,)S~'L'RL(K) for TR' < SflT' 
L' 

K".L(rR)8RR, + L J"'L'(rR,)S~'L'RL(K) 
L' 

where S~, L' RL (K) is the Fourier transformation of structure constant 

S~'L'RL(K) = L eik
.
r SR'L'RL(t, K). 

t 

(2.1.7) 

The functions <P!fRL(rR) and <P~RL(rR) are the linear combination of CPRL and ~RL' in 

which the functions match smoothly to Hankel and Bessel functions at the MTS boundary, 

respectively, as described above. 

With the LMTO basis set defined in (2.1.7) the wave functions '!f;k>.(r) for valence 

electrons is given by linear combinations of LMTO's: 

'!f;k>.(r) = L A~~LX~RL(r), (2.1.8) 
".RL 

where >. represents the bands, the coefficients A~~L are determined from the variational 

principle. For the one-electron Hamiltonian given by DFT they are found from the eigen

value problem 

L [(X~'R'L'I- V'2 + VMT(r) + VNMT(r)IX~RL) - Ck>'(X~'R'L'lx~RL)] A~RL 
".RL 

- L (H!'R'L',,,.RL - Ck>.O!'R'L',,,.RL) A~RL = 0, (2.1.9) 
".RL 

where VNMT(r) stands for the spherical and VMT(r) for nonspherical parts of the poten

tial. 

Some of other computational techniques which are necessary for actual calculations 

using the LMTO method are described in Appendix A.I. 
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2.2 Linear-response calculations 

For the calculation of the dynamical property of solid and electron-phonon interactions, 

we use the linear-response FPLMTO (LR-LMTO) method [31, 32]. The method is based 

on DFT and it uses LMTO as a basis for representing first-order corrections to the one

electron wave functions 'l/Jk>... First we consider infinitesimal atomic displacement UiJ.L from 

the equilibrium positions within the framework of the adiabatic and harmonic approxi

mations. The equation of motion for UiJ.L is now given by 

(2.2.1) 

where VfJ.Lmv is the force constant. Introducing the Fourier transform as follows 

(2.2.2) 

and assuming the time dependence of u~ as eiwt , then the problem for the motion of atoms 

result in to solve the secular equation given by 

L [D~e(q) - MJ.LW28J.Lv8afJ] ue(q) = 0, (2.2.3) 
p.fJ 

where a, (3 is the Cartesian component and the matrix D(q) is called the dynamical 

matrix and its matrix elements is defined by 

DafJ(q) = ~ V;afJ eiqo(Rl-Rm) J.LV ~ ip.mv . (2.2.4) 
i-m 

To combine the dynamical matrix and the ground state electronic band structure calcu

lations, we adopt the density functional perturbation theory (DFPT) [33]. We can obtain 

the dynamical matrix D(q) as follows. First we solve the Sternheimaer equation [34] 

(2.2.5) 

where 8Veff is the first order change in the effective potential. Next we find the induced 

charge density according to 

8p = L fk>..(8'I/JZ>..'l/Jk>.. + 'l/JZ>..8'I/Jk>..) , (2.2.6) 
k>" 

11 



where fk>' are the occupation numbers. Then we obtain the following expression for 8Veff 

r 2 J 8 p' , d/Lxc 
UVeff = 8Vext + e Ir _ r'l dr + 8p dp , (2.2.7) 

where /Lxc denotes exchange correlation as in usual LDA. Note here, 8A (A = Vext, p, /Lxc, 

and so on) represents the first order change of A with respect to the atomic displacement. 

For example 8Vext is given as 

8Vext = L{u~8+Vext + u~*8-Vext}. (2.2.8) 
JL 

where 

8±Vext = Le±iq.Rl _B_ -ZJLe
2 I 

i BRiJL Ir - RiJLI Rll'=R~1' 
(2.2.9) 

Steps described by the above equations 2.2.5-2.2.7 are repeated until self consistency for 

8p is fulfilled. Finally we obtain the dynamical matrix as follows: 

D( q) = L fk>' (8+ 8-'ljJk>' + 8-8+'ljJk>.I1-l- ck>.I'ljJk>.) 
k>' 

+ L 2fk>' (8+'ljJk>.l1-l - ck>.18-'ljJk>') + J 8+Vexto- pdr 
k>' 

+ J o+o-Vextpdr + J 8+ Veff8-pdr. (2.2.10) 

where 8±8':f'IjJk>' represents the second order change of the basis function 'ljJk>' with respect 

to the atomic displacement. A more detailed description of the LR-LMTO method is 

given in Appendix A.2. 
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Chapter 3 

Electronic Structure and Magnetism 

of Molecular Phase of Oxygen 

3.1 Introduction 

In order to get an insight into pressure-induced insulator-metal transition in solid oxygen 

at low temperature we have carried out band structure calculations for three types of 

crystal structure of molecular phase by changing the volume: monoclinic a-phase, or

thorhombic c5-phase and monoclinic (-phase. The crystal structure parameters of these 

three phases observed experimentally at a particular pressure are given in Table 3.1. 

There is a speculation [8] that in the (-phase the molecular axis may not be parallel to 

Table 3.1: The crystal structure parameters of the a-phase at P=O GPa ( ambient pres

sure [35], the c5-phase at P=9.6 GPa [36] and the (-phase at P=116 GPa [8]. The data 

are taken at T = 22K for the a-phase and at room temperature for the c5- and (-phases. 

P (GPa) a (A) b (A) c (A) f3 (deg.) VM (A3/molecule) 

a [35] 0 5.403 3.429 5.086 132.3 34.85 

c5 [36] 9.6 4.214 2.957 6.689 122.2 20.84 

( [8] 116 3.432 2.218 3.332 116.4 11.36 

13 



the z-axis (direction perpendicular to the ab-plane). For simplicity, however, we assume 

the molecular axis is parallel to the z-axis. The actual crystal structures are presented 

in Fig. 1.1.3 and Fig. 1.1.4. The first Brillouin zone (BZ) of the a-phase is shown in 

Fig. 3.1.1 

In changing the molecular volume VM we have fixed the mutual ratio of the lattice con

stants and the angle (3 of the monoclinic structure to the values determined from Table 1. 

Further the intramolecular atomic distance has been kept to be 1.2 A which corresponds 

to that at ambient pressure. It should be noted here that in order to determine the pres

sure for each phase we have to optimize the lattice constants, the intramolecular atomic 

distance and the monoclinic angle for each volume in calculating the total energy. There

fore in our present calculation for molecular phases of solid oxygen we cannot determine 

precisely the pressure. 

The actual calculations have been done by the FP-LMTO method based on the usual 

local spin-density approximation. The calculational details are given in section 3.2. 

~"""'!';......,=-!2(--. -------

: '~ r A Y b* X l _ ~- G·- · -'----"" "", 
~)A 
~ :V I * , a //',. ____ . ______ . ___ . ______ _ 

/ D Gf----'U'---...c~ E 
/ 

Figure 3.1.1: The fisrt Brillouin zone of the a-phase. 
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3.2 Detailed procedure of FP-LMTO calculations 

Calculations of electronic structures of molecular phases of solid oxygen have been done 

according to the following procedure with use of FPLMTO program version 1.35. . 

For exchange-correlation functional we have adopted the formula proposed by Gun

narsson and Lundqvist [37] without GGA correction. Inside the MT spheres the scalar

relativistic calculations are performed for valence electrons, and the core states are recal

culated at each self-consistent iteration with relativistic effects. The MT radius has been 

taken to be 0.54 Awhich corresponds to 45 % of the intramolecular atomic distance. The 

k-space integration has been performed by the improved tetrahedron method [38] with 

use of 68 sampling k points in the irreducible Brillouin zone (IBZ). We have used 31l:

sp-LMTO basis set (12 LMTO/atom): 1l:2=-0.102, 1l:2=-1.002 and 1l:2=-2.002 Ryd. In the 

interstitial region the basis functions are expanded in plane waves. The charge densities 

and the potentials are expanded inside the MT spheres by spherical harmonics up to £max 

= 6 and in the interstitial region by plane waves with cutoff corresponding to 1,003 plane 

waves. The final convergence is within 10-6 Ryd. 

3.3 Results of calculation 

3.3.1 Electronic band structure at ambient pressure 

First we have performed band structure calculations for the antiferromagnetic (AF) and 

the ferromagnetic (F) states of a-02 at ambient pressure. We have found that the AF 

state is more stable than the F state and the band structure of the AF state is insulating 

with an indirect energy gap rvleV. The obtained band structure and the density of states 

(DOS) of the AF state are depicted in Figs. 3.3.1 (a) and (b), respectively. A schematic 

diagram of electronic state of an O2 molecule is shown in Fig. 3.3.1 (c). Note here that 

since a-02 has two molecule in a unit cell we have drawn each orbital twice. The magnetic 

moment inside the MT sphere is evaluated to be rvO.5J.LB' and as will shown later, character 

of a free oxygen molecule is kept in the a-phase at ambient pressure. 
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Figure 3.3.1: (a) the band structure and (b) the DOS calculated for the AF state of 0'-02 

at ambient pressure. (c) a schematic diagram of electronic state of an oxygen molecule. 

3.3.2 Insulator-metal transition 

Secondly, we have calculated the volume dependence of the electronic band structure, 

the total energy, the magnetic moment inside the MT sphere and the DOS at the Fermi 

energy (c p) for the nonmagnetic (NM) state as well as for the AF and F states . Since the 

results obtained for the 6- and (-phases are essentially the same as those for the a-phase, 

in the following we give only the results obtained for the a-phase. 

Fig. 3.3.2 shows the volume dependence of the total energies of the NM, the F and 

the AF states of the a phase, and the magnetic moments within the MT sphere in both 

the F and the AF states are given as a function of the molecular volume in Fig. 3.3.3. 

Figure. 3.3.4 shows the volume dependence of DOS at Cp . As seen from Figs. 3.3.2, 3.3.3 

and 3.3.4, the AF state is the most stable for a wide range of volume. For volumes larger 

than 25.98 A 3 an insulating states are realized in the AF states, and the full magnetic 

moments are induced. With decreasing the volume the magnetic moments decrease and 

both the AF and the F states merge into the NM state. '-, 
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Figure 3.3.2: The volume dependence of the total energy of the AF and the F states of 

the a-phase. All the energies are referenced to the NM state. 

Figure 3.3.3: The volume dependence of the magnetic moments within the MT sphere in 

the AF and the F states of the a-phase. 
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Figure 3.3.4: The volume dependence of the DOS at the Fermi energy of the a-phase. 

Figure. 3.3.5(a) and (b) show the energy dispersion curves of the AF state calculated 

for VM = 34.85 A3 (insulating) and VM = 25 .98 A3 (metallic), respectively. As for the 

F state, we obtain insulating states for VM > 30.67 A 3 and metallic states for VM < 

30.67 Aa For VM < 14.14 A3 we could not obtained self-consistent soilltion also for the 

F state, i.e. we obtain only the NM state for VM < 14.14 As. Figures 3.3.5(c) and (d) 

show the energy dispersion curves of the F state obtained for VM = 34.85 A 3 (insulating) 

and VM = 25.98 A3 (metallic), respectively, and Fig. l(e) depicts the energy dispersion 

of the NM state obtained for VM = 11.36 A 3 corresponding to the molecular volume of 

the (-phase at 116 CPa. It should be emphasized here that the NM state is also metallic. 

Therefore, our present calculational results indicate strongly that solid oxygen would be 

a nonmagnetic metal under high pressures higher than about 100 CPa. 
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Figure 3.3.5: The energy dispersion curves of the a-phase along some symmetry lines in 

the first Brillouin zone: (a) AF state, V'-'! = 34.85 A3; (b) AF state, VM = 25.98 A3; (c) 

F state, VM = 34.85 A3; (d) F state, VM = 25.98 A; (e) NM state, VM = 11.36 A. In (c) 

and (d), the full curves denote the up-spin bands, and the dotted curves the down-spin 

bands. Note that in the AF state the up-spin and down-spin bands are degenerate. 
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Figure 3.3.6: The exchange energy as a function of intermolecular distance. The red line 

shows a curve corresponding to the fitting function J = Joexp{a(R - Ro)}. 

From the total energy difference between the F and AF states we have evaluated the 

exchange coupling between the nearest neighboring oxygen molecules by assuming the 

Heisenberg Hamiltonian for the oxygen spins in the ab--plane. The exchange constant J 

estimated as a function of the molecular distance R is shown in Fig. 3.3.6. For larger R, J 

is well expressed by J = Joexp{a(R - Ro)} with Jo=19.3 K, 0'=1.14 A-I and Ro=4.37 A. 
For R smaller than 2.38 A, metallic state is realized and the assumption of Heisenberg 

Hamiltonian itself loses its meaning. 

3.3.3 Charge and spin density map 

To visualize the insulator-metal transition and the collapse of magnetism we have calcu

lated the charge and spin density map of AF 0'-02 as a function of volume. 
'-, 

Figure. 3.3.7 shows the charge and spin density map of 0'-02 at VM=34.85 A3 and 

29.79 A3. At VM =34.85 A3 the charge is well localized on the molecule, and character of 
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a free molecule is clearly seen. The spin moment is induced on each oxygen atom and the 

shape of the spin density contour well represents the 2p7r* molecular orbital which is the 

highest occupied molecular orbital (HOMO). 

Fig. 3.3.8 shows the charge and spin density map at VM=25.93 A3 and 11.36 A3. At 

VM=25.93 A3 the metallization has occurred by band overlapping. However, we can still 

recognize clearly the spin moment at HOMO. Finally, at VM =11.36 A3, the spin moment 

on a molecule disappears and the nonmagnetic metallic state is realized. 
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Figure 3.3.7: The charge density map [(a) and (b)] and the spin density map [(c)] of AF 

a-02 at VM =34.85 A3 and 29.79 A3. (a) and (b) represent views perpendicular to the 

ac-plane and the ab-plane, respectively. The dotted line ,and circles in (c) illustrate a 

oxygen molecule schematically. 
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Figure 3.3.8: The charge density map [(a) and (b)] and the spin density map [(c)l of AF 

a-02 at VM =25.93 A3 and 11.36 A3. (a) and (b) represent views perpendicular to the 

ac-plane and the ab-plane, respectively. The dotted line and circles in (c) illustrate a 

oxygen molecule schematically. 
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3.4 Discussion 

We first note that our calculations have been done within the framework of the usual 

local spin-density approximation. Therefore, it is expected that the present calculations 

underestimate the energy gap and the magnetic moments. In order to obtain correct 

behaviors of insulator-metal transition and disappearance of magnetic moments it may 

be necessary to take into account the correlation effects. 

In order to see a possibility that the observed metallization is realized in a monatomic 

phase of solid oxygen we have performed band calculations of monatomic phases for the 

volume corresponding to that of the (-phase at 116 GPa (VM =I1.36 A3). As the crystal 

structure we have chosen the /3-Po type because it is the monatomic structure realized first 

under high pressures in other VI-b elements. The /3-Po type structure is rhombohedral 

and can be described as a simple cubic lattice deformed along the [111] direction keeping 

the edge length unchanged. We have calculated the total energy as a function of cl a and 

obtained the minimum energy at cia = 1.04 , and found that it is higher than the total 

energies of the J(orthorhombic) and ((monoclinic) phases obtained for the same volume 

as shown in Fig 3.4.1. Therefore, judging from the results of our present calculations it is 

- strongly suggested that a nonmagnetic metallic state is realized in molecular solid oxygen 

under high pressures higher than about 100 GPa. 

~ -147.69 
• • "" • • &: -147.70 • • 

~ -147.71 • ~-Po 
c. 
~ - 147.72 

orthorhombic 
" -,; -147.73 
~ monoclinic 0 
f- - 147.71 --

0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 

cia 

Figure 3.4.1: The cia dependence of the total energy of the monatomic /3-Po structure 

obtained for VM= 11.36 A. The red and green lines denote. ~he total energy of the J- and 

(-phases, respectively, at the same molecular volume. 
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Chapter 4 

Monatomic Phase of Selenium and 

Oxygen 

4.1 Introduction 

In this chapter we focus our attention on the electronic band structures of monatomic se

lenium and oxygen under high pressures. Monatomic selenium shows a pressure-induced 

structural phase transition from {3-Po to bcc at 150 GPa [19]. The {3-Po structure is 

shown in figure 4.1.1 together with the first Brillouin zone (BZ). The {3-Po structure is 

rhombohedral and can be described as a simple cubic lattice deformed along the [111] 

direction keeping the edge length unchanged. By changing the ratio cl a (or the rhombo

hedral angle {3) of the rhombohedrallattice we obtain the fcc structure, the sc structure 

and the bcc structure as shown in Table 4.1. 

The experimental results show that the transition from {3-Po to bcc causes a small 

Table 4.1: The characteristic value of cia and rhombohedral angle {3. 

cia 
{3 (deg.) 

bcc 

v'6/4 
109.47 

25 

sc 

v'6/2 
90 

fcc 

v'6 
60 



rc; , 
c* 

, , 
, 

y z , 
1\:11 ... 

, , , , :r P 

a* - ">-- ---- i -F----- b* 

Figure 4.1.1: The crystal structure (left) and the first BZ (right) of fJ-Po type. fJ denotes 

the rhombohedral angle. Note that if the fJ-Po type structure transforms to the bcc 

~tructure, the point Land F of the rhombohedral BZ become the equivalent point, i.e., 

the symmetry point N of BZ of bcc, the point Z becomes the symmetry point H of the 

bcc structure, and the contact point of the P and A lines the symmetry point P. 

volume constriction and discontinuity of c/ a with precursor behavior of decrease in c/ a. 

Thus the transition is understood as a first-order transition. Theoretically, a couple of 

calculations have been done for this transition by using the FLAPW method [39] and the 

pseudo-potential method [40]. However, they underestimate the transition pressure(Pc), 

i.e., 90 GPa [39] and 110 GPa [40]. 

In this chapter we first calculate the electronic structures of monatomic selenium 

by adopting FPLMTO method with gradient correction in order to try to improve the 

underestimation of Pc. Further this calculation is the first step to investigate the super-
'" 

conducting properties of monatomic Se in the following chapter. Secondly, we explore 

the monatomic phase of oxygen. Since the monatomic phase has never been observed 
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experimentally yet for solid oxygen, we have chosen the {3-Po structure and all the cubic 

structures (fcc, bcc, sc) because the phase transition from {3-Po to bcc has been observed 

or predicted in other VI-b elements. In Se and Te the bcc structure is the final phase in 

the pressure region accessible experimentally at present. 

4.2 Computational details of calculations 

The calculations of electronic states for the {3-Po and bcc structures of Se and 0 have been 

done according to the following procedure with use of FPLMTO program version 3.12. For 

exchange-correlation functional we have adopted the formula proposed by Gunnarsson and 

Lundqvist [37] and the GGA correction proposed by Perdew et. al. [41] has been taken 

into account. Inside the MT spheres the scalar-relativistic calculations are performed for 

valence electrons, and the core states are recalculated at each self -consistent iteration 

with relativistic effects. The MT radius has been taken to be 1.07 A for Se and 0.89 A for 

O. The k-space integration has been performed by the improved tetrahedron method [38] 

with use of (12, 12, 12) grid of the sampling k-points [189 points in the IBZ ]. We 

have used 3K-spd-LMTO basis set (27 orbitals): K2 = -0.1 ,-1.0 and -2.0 Ryd. In 

the interstitial region the basis functions are expanded in plane waves up to the cutoff 

approximately corresponding to 200, 350 and 650 plane waves per s, p, and d orbitals, 

respectively. The charge densities and the potentials are expanded inside the MT spheres 

by spherical harmonics up to f max=6 and in the interstitial region by plane waves with 

the cutoff corresponding to the (16, 16, 16) fast-Fourier-transform(FFT) grid in the unit 

cell of direct space. The final convergence is within 10-6 Ryd. 

We have checked out the total energy convergence with respect to the some variational 

freedom such as the number of plane waves and the number of sampling k-points. For 

example, the total energy convergence with respect to the number of plane waves is shown 

in Fig 4.2.1. The convergence within 0.2mRyd is obtained over (16, 16, 16) FFT grid. 

Figure 4.2.2 shows the total energy convergence with respect to the number of sampling 

k-points and the convergence within 0.2mRyd is obtained over 189 k-points in the IBZ. 
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Figure 4.2.1: The total energy of monatomic P'-Po Se veFSUS number of plane waves to 

expanded densities. The broken line is just a guide to eyes. The number of plane waves 

is selected with the (16, 16, 16) FFT grid in the unit cell of direct space. 
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Figure 4.2.2: The total energy of monatomic P'-Po Se versus number of sampling k-points 

inside IBZ. The broken line is just a guide to eyes. The nU!Ilber of k-points is selected at 

189 points. 
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4 .3 Results for monatomic selenium 

As the first step to investigate the phase transition from {3-Po to bce we have calculated 

the electronic band structure and the total energy of the {3-Po structure of selenium at 

atomic volume VA = 14.82A. At this volume the {3-Po structure is known to be stable by 

experimental measurements. For comparison we have calculated the electronic band struc

ture and the total energy of the hypothetical bcc structure with the same atomic volume. 

The calculated energy band structures and the DOS for the {3-Po and the bcc structures 

are shown in Fig. 4.3.1. The lowest band is mainly derived from the 48 component and 

the next three bands from the 4p component. Basically, the band structures of both the 

structures are similar to each other on the whole. However, remarkable difference can be 

seen in the band structure and the DOS near the Fermi level. First the band structure 

of the bcc structure along the P and A lines has much larger dispersion than that of the 

{3-Po type structure. Secondly the DOS at the Fermi level of the bcc structure is larger 

than that of the {3-Po structure because in bcc Se the L point is a saddle point of the 

third energy band from the bottom which crosses the Fermi level near the L point. By 

deforming from bcc to {3-Po the L point energy of the third band goes up away from the 

(a) (b) 
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Figure 4.3.1: The band structure and the density of states of Se at atomic volume 

V =14.82 A: (a) {3-Po type structure and (b) bcc structure. The horizontal line denotes 

the Fermi level. 
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Figure 4.3.2: The total energy of j3-Po Se as a function of cia for the fixed atomic volume. 

The inset indicate the results for volumes near the phase transition. All the energies are 

referenced to the bec structure, i. e. b.E=E-Ebcc . 

Fermi level and the states of the fourth band in the middle of the P line comes down under 

the Fermi level. As the results the DOS of j3-Po Se has a relatively large peak at 0.225 

Ryd below the Fermi level. This is the reason why the j3-Po type structure is relatively 

stable compared with the bcc structure. 

To investigate the pressure-induced structural transition we have to calculate the total 

energy of the j3-Po and the bcc structures as a function of volume. For the j3-Po structure 

we have optimized e/ a at each volume, namely, we have calculated the total energy of 

the 13-Po type Se as a function of e/ a with t.he at.omic volume VA being kept constant. 

Figure 4.3.2 shows a total energy vs c/ a for several fixed atomic volume and the inset 

shows results for a volume range near the phase transition" All the energies are referenced 
~ 

to the bec structure, i.e., at the energy of c/a=V6/4. For a large volume such as 16.30 A3 
the energy takes the minimum at c/ a ~ 0.85 and the bcc structure is an inflection point. 
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Figure 4.3.3: The total energy calculated as a function of volume for the fJ-Po and the 

bcc structures of Se. The lines are obtained by using Murnanghan's equation of state. 

With decreasing the volume the value of the c/ a starts to decrease gradually toward the 

bec structure. Finally, the fJ-Po structure is no longer quasistable structure, that is, the 

total energy has single minimum at c/a=V6/4 corresponding to the bcc structure. 

We have calculated also the total energies of the fJ-Po and the bcc structures as a 

flmction of the atomic volume. Figure 4.3.3 shows the total energy of the fJ-Po and the 

bcc structures of Se as a function of volume. As seen from the figure, at larger volumes 

the fJ-Po structure is certainly more stable than the bee structure. At smaller volumes the 

total energies of both the structures take quite close values, but if we enlarge the energy 

scale of Fig. 4.3.3 we can recognize that the bee structure is more stable than the fJ-Po 

structure at volumes smaller than ~ 12 Aa 

In order to estimate the transition pressure from fJ- Po to bee we need to calculate the 

Gibbs free energy (or enthalpy) as a function of pressure. Then, to evaluate the pressure as 

a function of volume we fitted the calculated total energies by the Murnaghan's equation 
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of state (EOS) [42]: 

BoV 1 Vo 0 

[ 
B' 1 

E(V) = Bb Bb _ 1 (V) + 1 + const, 

where Bo and Bb is the isothermal bulk modulus at zero pressure and it's derivative, 

respectively. The pressure is determined from 

Bo [V -Bh 1 
P = Bb In (Vo) - 1 . 

The Gibbs free energy is defined by G(P) = Etot(P) + PV(P) and the transition 

pressure between the two phases is obtained from the relation GfJ(P) = Gb(P), where GfJ 

and Gb are the Gibbs free energies of the {3-Po and the bcc structures, respectively. Fig-:

ure 4.3.4 shows the pressure dependencies of the atomic volume VA , the lattice constants a 

and c, and the bond lengths rl and r2 which are defined as the n.n. and next n.n. atomic 

distances, respectively. Note that in the bcc phase c = .;; a, and rl = r2 = ..;; a. The red 

and blue circles indicate the results of the present calculations and the black triangles and 

green inverse triangles represent the experimental values [19]. The solid and the dashed 

vertical lines indicate the boundary of the phase transitions determined theoretically by 

us and experimentally by Akahama et.al. [19], respectively. 

The transition pressure Pc from {3-Po to bcc has been estimated as 120 GPa by 

our present calculation. This value is higher than other calculated transition pressures, 

90 GPa [39] and 110 GPa [40], but still lower than the experimental value 150 GPa [19]. 

The origin of this discrepancy between theory and experiment may be ascribed to LDA 

itself and/or numerical accuracy of the total energy. With respect to the latter point we 

note here that as seen from Fig. 4.3.3 the volume-energy curves for the two structures are 

almost parallel near the phase transition. Therefore a small change in the total energy 

for one of the phases is expected to cause a large change for the value of Pc. In fact, if 

the total energy of one of the two phases is shifted by 1 mRyd, the value of Pc changes 

by 20 GPa. 

As seen from Fig. 4.3.4 the volume variation as a function of pressure below 120 GPa 

({3-Po) and above 150 GPa (bcc) shows good agreement with the observations [19]. Also 

the obtained pressure dependence of a, c and {3 of the {3-Po phase agrees well with the 
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respectively. 
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experimental results [19]. Furthermore, the volume reduction at the transition from {3-Po 

to bee is estimated to be 0.06 A 3 , which is in good agreement with the experimental one 

(about 0.08 A3 [19]). 

4.4 Results for monatomic oxygen 

In Te, Se and S the {3-Po structure is realized experimentally under high pressures and 

further the transition from {3-Po to bee has been observed at 27 CPa cite33 in Te and at 

150 CPa [19] in Se. In S the transition pressure from {3-Po to bcc is predicted to be 545 

CPa [20]. However quit recently Rudin et.al. predict existence of simple cubic structure 

between the {3-Po and bcc structures for S [21]. 

As for solid oxygen, however, the transition to a monatomic phase has never been 

observed yet. By expecting the {3-Po structure being realized first in monatomic oxygen 

we have performed band structure calculations for {3-Po oxygen and also for bcc oxygen. 

Figure 4.4.1 shows the total energy of {3-Po type oxygen calculated as a function of cl a for 
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Figure 4.4.1: The total energy of {3_·Po type oxygen as a function of cia for the atomic 

volume VA =5.32Aa 
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Figure 4.4.2: The total energies of the fJ-Po and the bee structures as a function of the 

atomic volume. 

VA=5.32 Aa which corresponds to 160 GPa in the bcc phase. As seen from the figure there 

are two local minima: fJ-Po I and fJ-Po n, and the bcc, sc and fcc structures correspond 

to local maxima. Basically the shape of the total energy curve as a function of c/ a is the 

same as that of selenium. However, the characteristic feature of oxygen is the existence 

of fJ-Po n. In any way, the fJ-Po structure is more stable than the cubic structures. 

We have performed the calculations for smaller atomic volumes up to VA = 2.5 A3 which 

corresponds to more than 2 TPa in the bcc phase. We have plotted in Fig. 4.4.2 the total 

energies of the fJ-Po and the bcc structures as a function of volume. At larger volumes 

the total energies of bcc, fJ-Po I and fJ-Po n are in the order of fJ-Po I < fJ-Po n < bcc. 

With decreasing volume (increasing pressure) the energy difference between fJ-Po I and 

fJ-Po n becomes smaller , and then at VA =2.5 A3 we obatin fJ-Po I ~ fJ-Po n < bcc. This 

may suggest that isostructural transition from fJ-Po I to fJ-Po n would occur. In any way 

the fJ-Po structure is always more stable than the bec structure in the volume range of 

the present calculations. Therefore it is expected that transition from fJ-Po to bcc will be 

hard to occur in oxygen for the pressure region accessible by experiments. 
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Figure 4.4.3: The partial DOS of (a) iJ-Po 0 and (b) iJ-Po Se. The upper window show 

the 2s, 2p and 3d components for 0 and the lower ones the 4s, 4p and 4d components for 

Se. 

For comparison between the electronic structures of oxygen and selenium we show 

in Fig. 4.4.3 the partial density of states (DOS) obtained for 0 and Se with the iJ-Po 

structure, and in Fig. 4.4.4 the dispersion curves obtained for 0 and Se with the bcc 

structure. A quite important difference between 0 and Se is seen from Fig. 4.4.3, i. e. in 

Se the d-component is significantly included in the DOS at the Fermi level CF whereas in 0 

the d-component is scarcely recognized near CF. The same difference is also seen between 

o and S or Te. In general, the more d-component is included, the stronger electron-lattice 

interaction is obtained. T herefore the electron-lattice interaction in monatomic phase of 

o is expected to be weak compared with that in other VI-b elements. 

As seen from Figs. 4.4.4(a) and (b), t he band structures ofbcc Se and 0 are similar on 
'-, 

the whole between (a) and (b). The lowest band is mainly derived from the s component, 

and the next three bands from the p component. In Figs. 4.4.4(c) and (d), on the other 
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hand, the s-p hybridization occurs considerably, and a remarkable difference is recognized 

in the band structures between 0 and Se. Namely, the locations of the s state and the 

three-fold degenerate p states are reversed at the symmetry point, Z. We consider the 

origin of this reversement as follows. In Se there exist the core 3s and 3p states which 

are orthogonal to the valence 4s and 4p states. In case of 0, on the other hand, there 

exists certainly the core Is state which is orthogonal to the valence 2s states whereas 

there is no core p state. As the result , with increasing pressure the 2p state of 0 can 

goes down beyond the 28 state because there is no repulsion from the core 'p' state. We 

are supposing that this peculiarity of oxygen may give rise to a structural sequence of 

monatomic phases different from other VI-b elements. 
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Figure 4.4.4: The energy dispersion curves of (a) bee Se at V= 16.3 A3 and (b) bcc 0 at 

V= 5.2 A3, (c) bee Se at V=12.6 A3 and (d) bee 0 at V= 3.0 A3. 

37 



Chapter 5 

Lattice Dynamics and 

Superconductivity of Monatomic 

Selenium 

Among VI-b elements, for monatomic bcc S the superconducting transition temperature 

Tc is predicted to be 15 K by Zakharov et al. [20], and for Te a jump in Tc from 2.5 K to 

7.4 k has been observed at the phase transition from j3-Po to bcc [16]. Mauri et al. have 

performed ab initio linear-response calculations for lattice dynamics of j3-Po and bcc Te 

under pressures [24]. They reported that phonon anomaly for the transverse mode of bce 

Te along the rN . line in the first BZ. They have found that with decreasing pressure the 

phonon frequencies in the middle of the rN line become imaginary in a pressure region 

where the j3-Po structure is stable. And they also succeeded in reproducing a jump in Tc 

at the phase transition from j3-Po to bcc. As for Se there has been neither experimental 

nor theoretical study on superconductivity in its monatomic phases. 

In this chapter we investigate lattice dynamics and superconductivity of monatomic 

j3-Po and bcc selenium under high pressures. For calculation of lattice dynamics and 

electron-phonon interaction we use the linear-response LMTO method [31, 32], and the 

superconducting transition temperature Tc is calculated in the frame work of Allen-Dynes 

formalism [43]. 

38 



c* 

Figure 5.1.1: The first BZ of bcc structure. 

5.1 Calculational Procedure of lattice dynamics 

Our calculations of phonon dispersion and electron-phonon interaction for t3-Po and bcc 

Se are performed in the framework of the LR-LMTO method which is described in detail 

in Appendix A.2. 

Actual calculational procedures are as follows . We find the dynamical matrix as a 

function of wave vector for a set of irreducible q points at the (8, 8, 8) reciprocal lattice 

grid [ 29 points in the IBZ 1 for the bcc structure and (6, 6, 6) reciprocal lattice grid 

[ 32 points in the IBZ 1 for the t3-Po structure. The (I ,J ,K) reciprocal lattice grid is 

defined in a usual manner: q ijk = (i/I)G1 + (j / J)G 2 + (k/K)G3 , where G }, G 2,G3 are 

the primitive translations in the reciprocal space. The BZ of the t3-Po structure has been 

shown already in Fig 4.1.1 and that of the bcc structure is depicted in Fig 5.1.1. 

The self-consistent calculations are performed for every wave vector with use of the 

following basis set and criteria. We use 3/"i:- spd- LMTO basis set (27 orbitals) with the 

one-center expansions performed inside the MT spheres up to emax = 6. In the interstitial 

region the basis functions are expanded in plane waves up to the cutoff corresponding 

to 134 (110), 176 (170), and 320 (320) plane waves per s, p, and d orbitals for bcc (13-

Po) structure, respectively. The induced charge densities and the screened potentials are 

represented inside the MT spheres by spherical harmonics up to emax = 6 and in the 
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interstitial region by plane waves with the cutoff corresponding to the (16, 16, 16) fast

Fourier-transform grid in the unit cell of direct space. The k-space integration needed 

for constructing the induced charge density and the dynamical matrix is performed over 

the (16, 16, 16) grid [ 145 points in the IBZ ] for the bcc structure and (12, 12, 12) grid [ 

185 points in the IBZ ] for the {3-Po structure, which is twice denser than the grid of the 

phonon wave vectors q. The integration is performed also by the improved tetrahedron 

method. However, the integration weights for the k points at these grid have been found 

to take precisely into account the effects arising from the Fermi surface and the energy 

bands. This is done with help of the band energies generated by the original FPLMTO 

method at the (32, 32, 32) grid [ 897 points in the IBZ ] for the bcc structure and (24, 

24, 24) grid [ 1313 points in the IBZ] for the {3-Po structure. This procedure allows us to 

obtain more convergent results with respect to the number of k points. 

For calculation of the electron-phonon coupling the corresponding k-space integrations 

are more sensitive than dynamical matrices to the number of sampling k-points. It has 

been performed with the help of the (32, 32, 32) grid for bcc and (24, 24, 24) for (3-Po in 

the IBZ by means of the tetrahedron method. 

The superconducting transition temperature Tc is calculated by using AlIen-Dynes 

formula which is derived on the basis of the strong coupling theory of phonon mechanism. 

Instead of describing the details of the strong coupling theory, here we give only the 

necessary equations to calcuate Tc. In the following we completely obey the description 

of the refference [32]. 

For the electron-phonon spectral distribution functions 0'.2 F(w), we employ the ex

pression [44] in terms of the phonon linewidths "(qv 

(5.1.1) 

where N(cF) is the electronic density of states per atom and per spin at the Fermi level. 

When the energy bands around the Fermi level are linear in the range of phonon energies, 

the linewidth is given by the Fermi "golden rule" and is written as follows: 

"(qv = 27rwqv L 19k~qj"kjI28(ckj - cF)8(ck+qj' - cF). 
kjj' 
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where gZ~qjl.kj is the electron-phonon matrix element, and conventionally written in the 

form 

(5.1.3) 

wherekj denotes the one-electron basis W kj and 8qvVeff is the change in the effective 

potential induced from a particular qv phonon mode. Precisely speaking, the electron-

phonon matrix element must be corrected for the incompleteness of the basis functions, 

but we do not discuss it here. The expression of Tc derived by AlIen-Dynes [43] by 

modifying the McMillan formula [45] is given as 

Wlog ( 1.04(1 + .\) ) 
Tc = 1.2 exp -.\ _ J.t*(1 + 0.62.\) , (5.1.4) 

where 

.\ = 2 t>O dwa2F(w) , 
10 W 

(5.1.5) 

1 (DO dw 
Wlog = exp~ 10 ~a2F(w)logw. (5.1.6) 

Usually .\ is called the dimensionless electron-phonon coupling constant, Wlog the logarith

mic -averaged phonon frequency and J.t* the effective screened Coulomb repulsion constant 

whose value is usually taken to be between 0.1 and 0.15. 

In case of monatomic metals .\ can be expressed also in the following form: 

.\ = N(CF )(12) = TJ· 
M (w2 ) M (w2 ) , 

(5.1.7) 

where M is the mass of the atoms and (w2 ) denotes the average of squared phonon 

frequencies which is given as 

J W2 a
2
F(w) dw 

(w
2
) = J a2F(w) 

-----'--dw 
W 

(5.1.8) 

Further (12) represents the Fermi surface average of squared electron-phonon coupling 

interaction which is defined by 

2: 2: IgZ~qjl.kjI28(Ckj - cF)8(ck+qjl - cF) 
(12)=_q_V_k~jJ=·'=-______________________ ___ 

2: 2: 8(ckj - CF )8(Ck+qjl - CF) 
(5.1.9) 

qv kjj' 

and TJ = N(cF )(12) is called the Hopfield parameter. 
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5.2 Lattice dynamics and superconductivity 

in bcc Se 

5.2.1 Phonon dispersion and phonon anomaly 

We first calculated the phonon dispersion curve along the high symmetry line (rN) for 

bce Se at different 4 volumes (pressures), 10.37 A3 (214.2 GPa), 11.11 A3 (165.6 GPa), 

11.85 A3 (128.6 GPa) and 12.59 A3 (102.59 GPa). The results are shown in Fig. 5.2.1. As 

the pressure decreases, the overall tendency of decrease of phonon frequency is seen. In 

particular, the frequency softening is remarkable for one of the transverse modes (shown 

by the red curve), and this mode exhibits a notable phonon anomaly, L e., a dip in the 

middle of the line. The same phonon anomaly is obtained also in S [201. This softening 

of the transverse mode does not cause directly the bcc --+ {3-Po transition with decreasing 

pressure because both of the {3-Po and bce phases have one atom per unit cell. However 

Zakharov and Cohen [201 have pointed out that it plays an important role in changing 
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Figure 5.2.1: The phonon dispersion for bec Se. The blueJl.ne denotes longitudinal mode, . 

and the red and green lines the transverse modes. 
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the coordination number from eight to six during the bcc --+ ,6-Po transition. 

F. Mauri et al. have performed ab initio linear-response calculation for lattice dynam-, 
ics of bce Te under pressures [24J. They reported the same anomaly for the transverse 

mode along the fN line and found that with decreasing pressure the phonon frequencies 

in the middle of the fN line become imaginary in a pressure region where the ,6-Po struc

ture is stable. In our calculation complete softening of the transverse mode has not been 

observed even at 100 GPa where the ,6-Po structure is stable. Complete softening may 

be realized at further lower pressures. 

Figure 5.2.2 shows the pressure dependence of the phonon dispersion along several 

symmetry lines and the phonon density of state (DOS) calculated at three volumes (or 

pressures) 11.85 A3 (128.6 GPa) , 11.41 A3 (149.6 GPa) and 11.11 A3 (165.6 GPa). It 

is noted that except along the fN line all the phonon frequencies soften linearly with 

decreasing pressure (or increasing volume). 
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Figure 5.2.2: The phonon dispersion and phonon density of state (DOS) for bec Se. The 

blue line denotes longitudinal modes. The red and green lines denote transverse modes. 
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5.2.2 Pressure dependence of superconducting transition 

temperature 

By using the Allen-Dynes formula we have estimated the superconducting transition tem

perature Tc of bcc Se at three pressures: 128 GPa, 150 GPa and 166 GPa. In Table 5.1 

we give the values of calculated Tc together with DOS at the Fermi level N(cF), the Hop

field parameter TJ, the logarithmic average frequency Wlog , the average of squared phonon 

frequencies (w2) and the electron phonon coupling constant A. With decreasing pressure 

the value of Wlog decreases while the value of A increases, but the rate of change of A 

exceeds that of Wlog • As the results the value of Tc increases considerably with decreasing 

pressure. Since A can be expressed by 

A = N(CF )(/2) = TJ 
M (w2 ) M (w2) , 

the frequency softening (decrease of (w2 )) is considered to contribute to the increase of A 

with decreasing pressure. 

In order to obtain a more physical insight into the characteristic pressure dependence 

of Tc we first look into mode and wave-vector dependencies of the phonon linewidths ,qv 

which are shown in Fig. 5.2.3 along the symmetry lines. From the figure it is clearly 

recognized that ,qv is almost independent of pressure except for the longitudinal mode 

Table 5.1: The electronic DOS at the Fermi level N(cF), the Hopfield parameter TJ, the 

logarithmic average frequencies Wlog , the average of squared phonon frequencies (w2), the 

electron phonon coupling constant A and the superconducting transition temperatures Tc 

calculated as a function of pressure for bcc Se. The two values for Tc correspond to two 

different values of Jl* (0.10 and 0.12). The units of N(cF) and TJ are state/Ryd./atom/spin 

and Ryd./a2, respectively. 

P (GPa) N(cF) TJ Wlog (K) (w2 ) (K2) A Tc (K) 

128.6 5.45 0.20 224.73 291.952 0.83 11.29,9.90 

149.6 5.24 0.21 248.03 316.412 0.73 9.53,8.11 

165.6 5.10 0.21 264.62 335.112 0.66 8.03,6.64 
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Figure 5.2.3: The phonon line width 'Yqv calculated for three different pressures. The blue 

line denotes the results for the longitudinal mode, and the red and green ones those for 

the transverse modes. Note that the transverse modes are degenerate along the f-H-P-f 

line. 

along the fH line and one of the transverse modes along the fN line represented by red 

curve. 

With decreasing pressure, 'Yqv of the longitudinal mode along the fH decreases whereas 

that of the transverse mode along the fN line increases considerably. Generally speaking, 

large phonon linewidth contributes to increase the dimensionless electron-phonon coupling 

A. Therefore, it is expected that the transverse mode along the fN line plays an important 

role in giving rise to such a characteristic pressure dependence of Te . 

To clarify the role of the transverse mode along the fN line in more detail we have 

calculated a quantity a 2 (w) which is defined by 

2( ) _ a2
F(w) 

a w - D(w) , 
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Figure 5.2.4: The frequency dependence of a(wJ2 obtained for three pressures. 

where a 2 F(w) is the spectral funct ion and D(w) denotes the phonon density of states. 

We consider that by inspecting the frequency dependence of a 2 (w) we can know wruch 

phonons make dominant contribution to the dimensionless electron-phonon coupling A. 

In Fig 5.2.4 the calculated a 2 (w) is shown as a function of frequency for three pressures. 

It may be reasonably regarded that the peak around 2 THz originates from transverse 

phonons along the fN line and the peak around 7~lO THz from longitudinal phonons 

along the fH line. As seen from the figure, both the peaks move towards the lower 

frequency side with decreasing pressure owing to the frequency softening. It should be 

noted, however, that the magnitude of a2 (w) around 2 THz increases remarkably with 

decreasing pressure whereas the magnitude of a 2 (w) around 7 ~ 10 THz is less dependent 

on pressure. Therefore, we can say again that transverse phonons in the middle of the 

fN line make a dominant contribution to A. 

Combining all of the above results we conclude that the origin of remarkable increase of 
'--, 

Tc of bcc Se with decreasing pressure is mainly attributed to phonon anomaly (remarkable 

frequem;y softening) in the middle of the fN line. 
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5.3 Superconductivity in ,6-Po 

In this section we calculate the superconducting transition temperature of {J-Po Se. To see , , 
the pressure dependence of Tc in {J-Po Se we have calculated Tc at pressures 103.1 GPa 

and 118.2 GPa with use of two kinds of lattice constants: one is the lattice constants 

evaluated by calculation and the other is those determined by experiments which are 

given in Table 5.2. Figure 5.3.1 shows the electronic dispersion curves and the density of 

states calculated for 103.1 GPa. 

Table 5.2: Two sets of lattice constants cia and a of {J-Po Se determined by calculation 

and experiments. 

103.1 GPa calc. 

cia 0.71 

a (A) 7.471 

103.1 GPa Exp. 118.2 GPa calc. 

0.75 0.67 

7.314 7.504 

118.2 GPa Exp. 

0.74 

7.255 
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Figure 5.3.1: The band structure and the DOS of {3-Po Se at atomic volume V=12 .59 A 
(103.1 GPa). The red curves denote the results obtained with use of lattice constants 

estimated by calculation and the blue ones those with use of lattice constants determined 

by experiments. [19]. The horizontal line denotes the Fermi level. 
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The values of calculated Tc are given in Table 5.3 together with the electronic DOS 

at the Fermi level N(cp), the Hopfield parameter T}, the logarithmic average frequency 

Wlog , the average of squared phonon frequencies (w2
) and the electron phonon coupling 

constants A. Comparing Tc obtained for different sets of lattice constants there is a large 

difference. For the lattice constants estimated by calculation the magnitude of Tc is larger 

and it increases considerably with decreasing pressure. For lattice constants determined 

by measurements, on the other hand, the magnitude of Tc is smaller and it depends little 

on pressure. 

As to the logarithmic average frequencies Wlog we obtain larger values for the exper

imental lattice constants. As to the electron-phonon coupling A, on the other hand, for 

the theoretical lattice constants we have much larger values and furthermore A depends 

considerably on pressure, which gives higher and pressure-sensitive transition temperature 

Tc in case of the theoretical lattice constants. 

In order to clarify the origin of the different magnitude and the different pressure 

dependence of Tc for different sets of lattice constants we have calculated the phonon 

Table 5.3: The electronic DOS at the Fermi level N(cF), the Hopfield parameter T}, the 

logarithmic average frequencies Wlog , the average of squared phonon frequencies (w2), the 

electron phonon coupling constant A and the superconducting transition temperatures Tc 

of {3-Po Se calculated for 103.1 GPa and 118.2 GPa. The upper two lines show the results 

obtained with use of the lattice constants estimated by calculation and the lower two lines 

those with use of the lattice constants determined by experiments. The two values for Tc 

correspond to two different values of p* (0.10 and 0.12). The units of N(cp) and T} are 

state/Ryd./atom/spin and Ryd./a2
, respectively. 

P (GPa) N(cF) T} Wlog (K) (w2) (K2) A Tc (K) 

103.1 5.23 0.19 192.98 264.722 0.92 11.74, 10.49 

118.2 5.50 0.19 204.84 279.762 0.82 10.10,8.84 

103.1 4.89 0.16 250.11 311.712 0.58 5.14,4.04 

118.2 4.85 0.17 255.88 324.582 0.57 5.01,3.91 
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density of states D(w), the spectral function Q2 F(w) and Q2(W) defined by Eq. 5.2 .1. The 

results are shown in Fig. 5.3.2. All of the three quantities behave differently for different 

sets of lattice constants. The magnitude of Q2(W) for the theoretical lattice constants 

is larger than that for the experimental lattice constants almost on the whole frequency 

103. 1 GPa 118.2 GPa 
0 2 , 6 8 10 12 0 2 , 6 8 10 12 
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Figure 5.3.2: The phonon density of states D(w), the spectral function Q2 F(w) and Q2(w) 

defined by Eq. 5.2.1 calculated for pressures 103.1 GPa (left hand side) and 118.2 GPa 

(right hand side) with use of the theoretical and experimental lattice constants. The red 

curves represent the results for the theoretical lattice constants and the blue curves for 

the experimental lattice constants . 
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range. In particular the magnitude of a peak in a 2 (w) around 2 THz obtained for the 

calculational lattice constants is remarkably enhanced compared with that obtained for the 

experimental ones, thus the magnitude of ,\ and Tc take large values. For the experimental 

lattice constants a 2 (w) depends little on pressure and hence the magnitude of A and Tc 

are also less dependent on pressure. In any we recognize that electron-phonon coupling 

A and the superconducting transition temperature To depend sensitively on the values of 

lattice constants. 

In summary we show in Fig. 5.3.3 the values of Tc calculated for /3-Po and bcc Se as 

a function of pressure. In conclusion, if we adopt the experimental lattice constants for 

/3-Po Se, the superconducting transition temperature Tc is almost pressure independent 

in /3-Po phase and there is a large jump in Tc at the transition from /3-Po to bcc. 

14 

- e-- J.l* = 0.12 
12 0 e - e - J.l' = 0.10 '. 

0 . ~e 10 '0 

" 
~ 0 e , ~ 
'-' 8 ~ e u I)-Po f- e 

6 bcc~e e e 
4 e e 

2 
100 120 140 160 180 

Pressure [ CPa] 

Figure 5.3.3: The superconducting transition temperature Tc of Se as a function of pres

sure. The blue and red circles denote the computed values of Tc with {L'=0.12 and 

{L*=0 .10, respectively. For the /3-Po structure the open circles represent the results for 

the lattice constants estimated by calculation and the closed circles those for the lattice 
" 

constants determined by experiments. 
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Chapter 6 

Summary 

In this thesis we have made first-principles study on solid oxygen and selenium under high 

pressures. Here we summarize the main results obtained by the present study. 

Electronic structure and magnetism of molecular phase of oxygen 

We have performed electronic band structure calculations using FPLMTO for molec

ular phases of oxygen by changing the volume. 

• Electronic band structure at ambient pressure 

We have found that the most stable state is the AF state at ambient pressure. 

The spin polarization is due to the split between HOMO and LUMO by exchange 

interaction. We have also found that character of a free oxygen molecule is still kept 

in a-02 . 

• Insulator-metal transition 

Our present work show that the pressure-induced insulator-metal transition occurs 

by band overlapping which closes the indirect energy gap. At the transition volume 

VM=25.98 A3, the magnetic moment still remains in each molecule. With farther de

creasing the volume the magnetic moment disappear and the nonmagnetic metallic 

phase is realized at VM =11.36 A3 which corresponds to the (-phase at 116 GPa. 

Our present calculational results indicate strongly that solid oxygen would be a nonmag

netic metal under high pressures higher than about 100 GPa. 
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Monatomic phase of selenium and oxygen 

In order to find out pressure-induced phase transition in monatomic selenium and 

oxygen we have performed FPLMTO calculation for the {3-Po and the bcc structures. 

• Pressure induced phase transition in monatomic selenium 

We have succeeded in reproducing the phase transition from {3-Po to bcc as ob

served from experiment. The obtained pressure dependencies of lattice parameters 

agree fairly well with the experimental results. The estimated transition pressure is 

120 GPa. It improves the previous theoretical calculations, but still lower than the 

experimental value 150 GPa. 

• Investigation of monatomic oxygen 

We have calculated the total energy of monatomic oxygen by adopting the {3-Po 

structure which includes the bcc, fcc and sc structures. We have found that the 

results for oxygen are quite different from those for selenium. As the results we 

suppose that oxygen may give rise to a structural sequence of monatomic phase 

different from other VI-b elements. 

Lattice dynamics and superconductivity of monatomic selenium 

We have investigated the lattice dynamics and electron-phonon interaction of {3-Po 

and bcc structure Se by using linear-response FPLMTO method. The superconducting 

transition temperature Tc is calculated in the frame work of AlIen-Dynes formalism. 

• Phonon dispersion and phonon anomaly in bcc structure 

We observed overall tendency of decrease of phonon frequency with decreasing pres

sure. In particular, the frequency softening is remarkable for one of the trans

verse modes in the middle of the rN-line, and this mode exhibits a notable phonon 

anomaly. In our calculation for Se complete softening of this phonon mode has not 

been observed, in contrast with the same phonon mode in Te [24]. 

• Pressure dependence of Tc in bcc structure 

The pressure dependence of Tc has benn estimated. With decreasing pressure the 
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value of Te increases considerably. The origin of remarkable increase of Te is mainly 

attributed to phonon anomaly in the middle of the fN line. 

• Superconductivity in {3-Po structure 

We have calculated Te of {3-Po Se for two kinds of lattice constant: the lattice con

stants evaluated by calculation and those determined by experiments. The obtained 

Te is quite different between the theoretical and the experimental lattice constants. 

For the former 're is larger and it increases considerably with decreasing pressure. 

For the latter, on the other hand, Te is smaller and it depend little on pressure. 

The origin of this discrepancy is due to the magnitude of density of state at the 

Fermi energy and the enhancement of a 2 (w) at low frequencies of theoretical lattice 

constants. 

Finally we predict the pressure dependence of realistic monatomic Se as follows: in {3-Po 

phase Te is almost pressure independent and there is a large jump in Te at the transition 

from {3-Po to bcc, and then in bcc phase Te decreases rapidly with increasing pressure. 
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Appendix A 

ID Chain of Oxygen molecules 

As mentioned in Introduction magnetic properties of the ID system of oxygen molecules 

physisorbed in Cu-trans-I,4-cyc1ohexanedicarboxylic acid (CCHD) are unusual and quite 

interesting. In order to seek for the origin of such peculiar magnetic properties we inves

tigate in this Appendix A the magnetism of ID chain of oxygen molecules on the basis of 

a model Hamiltonian. Since the degenerate antibonding 7r* orbitals, 7r2px and 7r2py ' of a 

single oxygen molecule play an important and essential role for the magnetic properties, 

a relevant model Hamiltonian will be a two-band Hubbard Hamiltonian. Therefore we 

first construct a model Hamiltonian appropriate to ID chain of oxygen molecules, and 

then analyze it in detail. We pay particular attention to how the magnetic properties 

are affected by change of inter-molecular transfer energies which may be controlled by 

pressure. We also focus our attention on the effect of removing degeneracy of 7r2px and 

7r2py orbitals. 

A.I Construction of model Hamiltonian 

We adopt the following form of I-D two-band Hubbard Hamiltonian: 

1£ L Vl-'nilUT + L L 7i1-',i+c5vC!IUTCi+t5vO" 
ilUT 0" il-'V 

+ L U nil-'tnilL-I- + L L U nilUTl niV0"2 
ill 0"10"2 ilL=;fv 
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+ L L J CJp.u1 clv02 Cip.u2 CiV01 (A.l.l) 
0102 ip.=pv 

where clp.u(Cip.o) represents creation (annihilation) operator of JL-orbital with a-spin at i th 

O2 molecule and nip.u is the number operator. Here we are considering two orbitals JL=l 

or 2, keeping in mind two molecular orbitals 7r~px and 7r~py as shown in Fig. A.O.l. The 

first term denotes the orbital energies and the second term the inter-molecular transfer 

energies. The third, the fourth and the fifth terms represent, respectively, the intra-orbital 

Coulomb energy, the inter-orbital Coulomb energy and the exchange interaction. For 

simplicity we assume that the intra- and the inter-orbital Coulomb energies are the same. 

Further we consider transfer energies only between nearest neighboring (n.n.) molecules, 

that is, 8 = ±l in the second term. 

In order to estimate the intra-molecular exchange interaction J we applied ab initio 

Molecular Orbital (CASSCF /6-3lGd) calculations for single O2 molecule and obtained 

J=0.95 eV. As for the Coulomb energy U we adopt the value estimated by Bhandari 

et al [46]: U=11.6 eV. These values of J and U are expected to be less dependent on 

the inter-molecular distance. The orbital energy Vp. and the transfer energy 1ip.,iHv are 

expected to depend strongly on materials, and hence we investigate the ground state 

properties of Hamiltonian A.l.l for a wide range of Vp. and 1ip.,i+5v. 

Before proceeding to actual calculations, however, we have made rough estimation of 

Vp. and 1ip.,iHv for the orthorhombic 8-phase of solid oxygen. The orbital energy difference 

and transfer energy configuration is defined as Fig A.1.2. First, we have carried out 

FPLMTO band calculations for the paramagnetic state of the 8-phase with the lattice 

&+1 

Figure A.O.l: A schematic view of molecular arrangement in our two-band Hubbard 

model. 
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constant observed at 9.6 GPo., a=4.22 A, b=2.95 A and c=6.69 A. Then, by a fitting 

procedure with use of tight-binding (TB) method we have estimated VI' and Til', i+Jv' 

Figure A.1.1 shows the comparison of the energy dispersions and the density of states 

(DOS) calculated by the FPLMTO and TB method. As seenfrom the figure the DOS 

we can consider the main component of the wave function near the EF is 7l'2p, and 7r2py 

orbitals. It is seen that band structures near Ep are reproduced fairly well by the TB 

method. The estimated values of nearest neighboring (n.n.) transfer energies and the 

orbital energy difference are given in Table A.1. The transfer energies between farther 

neighboring molecules are smaller by one order of magnitude or more compared with 

those between n.n. molecules. In this sense, the a-phase may be regarded as a pseudo

two-dimensional (2-D) system. 

-0.2 

- 0.4 t--t----I--

- 0.6 

r z y x r LO 5 10 15 20 

Figure A.1.1: The energy dispersion and the DOS of, the a-phase calculated by the 
~ 

FPLMTO method (blackO curve) and by the TB method (red curves). 
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Table A.I: The estimated values of the n.n. intermolecular transfer energies and the 

orbital energy difference in the TB calculation which can reproduce the band structures 

obtained by the FPLMTO method (in unit of eV). 

0.29 0.28 0.096 0.49 

A.2 Analysis by exact diagonalization 

In order to clarify the nature of the ground state we have adopted the exact diagonal

ization method with use of Lanczos transformation, and calculated the following physical 

quantities, electron number of each orbital np" fluctuation of electron number (8np.)2, local 

spin moment at each molecule S;, and spin-spin correlation function < Sip. . SHov >, 

which are defined as 

(A.2.I) 

(8np.)2 = 2~ < ~)L nip.o - L < nip.o »2 >, 
t a a 

(A.2.2) 

S~ = ~ < ?={stp.Stv + ~(SitS~ + S4tst)} >, 
tp.v 

(A.2.3) 

1 
< Sip. . SHov >= 2N ~ {< Sip. . SHov + Siv . SHov >}. 

t 

(A.2.4) 

T 
~-------~-------x. r~ -------...... ~ . . ..... 
---- • ~ xy III ~ ----

1'x 

Figure A.1.2: Illustration of the n.n. intermolecular transfer energies (Tx, Txy , Ty) and 

the orbital energy difference in the model Hamiltonian. 

57 



In performing actual calculations we renormalized the energies by the exchange energy J, 

and throughout this paper we fixed the Coulomb repulsion energy to U / J=lD. Further 

the electron number per molecule is fixed to two, that is, half-filling is assumed. We define 

v = (V2 - Vi)/J (> 0), and by assuming Tu=T12 and T22=0 for simplicity we also define 

T = Tu/ J. Finally exact diagonalizations have been performed for the chain size N=6 

with use of the periodic boundary condition. 

Figure A.2.1(a), (b) and (c) shows the contour maps of the calculated nJl' (8nJ.L)2 and 

S;, respectively, in the v - T plane. We here note that qualitatively the same results 

as shown in Fig. A.2.1 have been obtained from calculations by assuming Tu =T22=0, 

T12 =1= 0 or Tu =T12=T22 . It should be also noted that AF behavior of spin correlation has 

been recognized, although spin correlation itself diminishes with increasing T. 

For small T, as seen from Fig. A.2.1(b), fluctuation of electron number (8nJl)2 at each site 

is quite small, which indicates that electrons are localized, i. e. the system is an insulator 

(AF insulator). For large T, on the other hand, (8nJl)2 have significant values, which 

indicates itinerant character of electrons. Our calculations are for finite size systems, and 

therefore it is rather difficult to give rigorous discussion on insulator-metal transition. 

However, from the present results we may expect transition from AF-insulator to AF

metal with increasing the transfer energy. Since solid oxygen is rather a 2-D system, we 

are extending our calculations to 2-D two-band Hubbard Hamiltonian in order to get 

insight into the magnetic properties of solid oxygen under high pressures. 

Now we pay attention to the effects of v (orbital energy difference) on the magnetic 

properties, confining ourselves in the small T region. Then, as recognized clearly from 

Figs. A.2.1(a), (b) and (c) oxygen molecule has certainly well-defined spin 8=1 in case 

of small v, whereas with increasing v local spin moment of oxygen molecule diminishes 

toward spin singlet state. On the basis of this result we suggest that peculiar magnetic 

properties of oxygen physisorbed in CCHD may be explained by taking account of the 

effect of orbital energy difference. We reasonably expect that the orbital energy difference 

may be large in oxygen in restricted geometry. 
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Figure A.2.l: The contour map of (a) n[ (electron number in lower orbital), (b) (onl) 

(fluctuation of n l ) and (c) S; (local spin moment) in the v - T plane, which are obtained 

for the chain size N =6 with use of U / J = 10. 
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Appendix B 

Theoretical Methods 

B.l Full Potential LMTO 

In this section we give some computational techniques which are necessary for actual 

calculations using the FPLMTO method. 

B.l.l Fourier transform of pseudo-LMTO's 

In this method, lattice Fourier transformation is performed to get the numerical values 

of the Hankel functions in the interstitial region[31]. To improve the convergence with 

respect to the number of reciprocal lattice vectors, we define "pseudo" -LMTO. Namely, 

the Bloch orbitals are split into a smooth pseudo-LMTO part KKL which extends over 

the entire space, and a local and strongly varying part which is nonzero only inside the 

MTS and approaches zero continuously and difIerentiably on the boundaries. Thus KKL 
is the solution of the equation 

(B.I.1) 

The function on the right-hand side of the Helmholz equation is a decaying Gaussian 

toward MTS boundaries with multiplied spherical harmonics: 

3 

gL(r) = g~ (;)"2 rte-1]r\tYL(r) , 
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where gy is a normalization constant which defines later. The most important parameter 

is TJ. It is chosen such that the Gaussian is approximately zero when r > SMT and TJ 

must depend on f as well as the sphere radius SMT. The solution KKL is thus the Hankel 

function for large r, it is a regular function for small r and it is smooth together with its 

radial derivatives at any r. 

The Bloch sums and Fourier transform ofpseudo-LMTO and gL(r) is given as: 

Leik.rKKL(rR - t) = LXKRL(k + G)ei(k+G).r 
t G 

Leik.rgL(r) = LURL(k + G)ei(k+G).r, 
t G 

(B.L2) 

(B.L3) 

where G is the reciprocal lattice vector. And the Helmholtz equation (B.L1) in the 

reciprocal space is represented as 

(-\72 _1i2) LXKRL(k + G)ei(k+G).r = LURL(k + G)ei(k+G).r. (B.1A) 
G G 

The Fourier coefficients XKRL is given by solving equation (B.L4) 

(B.L5) 

For the Fourier coefficients URL(k + G), we obtain the following relation by performing 

inverse Fourier transformation for equation (B.1.3) 

(B.L6) 

where ncelJ is volume of the unit cell. The normalization constant gy is defined as 

(B.L7) 

under condition that smooth connection to the real Hankel function at MTS. 

Finally, we obtain the Fourier coefficients XKRL by substituting (B.L6) and (B.L 7) for 

(B.L5) 

47r sftJ. Ik + Gli e(K2-Ik+GI2)/41] 

ncelJ (2£ - 1)!! Ik + GI2 - 1i2 

xYr(k +G)e-i(k+G).R, (B.1.8) 
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where the Gaussian damping parameter is defined by the following relation 

(B.1.9) 

The right hand side is set as 0.5 in the present work and Gc:ut is the absolute value of maxi

mum reciprocal lattice vector to be used, which is defined by numerical and computational 

conditions. 

B.1.2 Representation of density 

The valence density is given by the sum of the squares of the wave functions. Using 

equation (2.1.8) we obtain the valence density 

(B.1.1O) 

where A>. is occupation number of each orbitals. We split the valence density (B.1.1O) 

into two part 

nV(r) = L L nR(r - t) + n(r) (B.1.11) 
t R 

with 

nR(r) = LnRL(r)i£YL(r), (B.1.12) 
L 

and 

n(r) = Ln(G)eiG
.
r

. (B.1.13) 
G 

The density nV given in Eq. (B.1.11) thus consists of a localized part nil and a pseudo-part 

n. nilL is nonzero only inside the sphere at site R and goes continuously and differentiably 

to zero at the MTS boundary, whereas n is smooth and nonzero everywhere. 

The Hartree potential is calculated by solving Poisson's equation for the total charge 

density p. In order that the localize part of the charge density gives rise to localized po

tential auxiliary charges ~, which are localized inside, the MTS are added and subtracted 
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to the total charge density[25] 

p(r) = [~~{ni'z(r-t)+n~t(r-t)-~RL(r-t)}] 

+ [n(r) + ~~~RL(r - t)] 

p(r) + p(r) 

(B. l. 14) 

(B.l.15) 

where nit is the core electron and the nuclear point charges. The ~'s are introduced in 

order to compensate the multipole moments of the local charge density nR + nit, i.e. 

r nR(e) + nit (e) - ~RL(e) de = o. 
inR Ir -el (B. l. 16) 

Thus the auxiliary charge ~ have to satisfy the condition 

foSMT 

[ni'z(r) + J41rn~t (r)8£,o - ~RL(r)] rl+2dr = O. (B. l. 17) 

If Eq. (B.l.17) is fulfilled, p does not produce an electrostatic field outside its own sphere. 

The influence of the charge in a given sphere on the rest of the crystal is completely 

described by the field produced by the ~ which is added to the pseudo-density. Poisson's 

equation for p is solved by Fourier transformation. The auxiliary density ~ must be 

localize inside MTS and be smooth enough to ensure a fast convergence of the Fourier 

series. The Gaussian type auxiliary density is used in the present calculations [47] 

(B.l.18) 

where the damping constant TJ is also defined by Eq.(B.l.9) with the following condition: 

Gorbit. < Gdens. 
eut - eut, 

and the coefficient dRL is defined by the condition Eq. (B.l.17). 
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B.2 Linear-response calculations 

For the calculation of the lattice vibrational property and electron-phonon interactions, we 

use the linear-response FPLMTO (LR-LMTO) method [31, 32]. In this section we briefly 

review the lattice dynamics, density-functional perturbation theory and representation of 

dynamical matrices in the framework of linear-response theory. 

B.2.1 Lattice Dynamics 

The Hamiltonian for the entire system is given by 

(B.2.1) 

where 1iee, 1iL, 1iei- L denotes electron-electron, phonon-phonon and electron-phonon 

part, respectively. Each part of the Hamiltonian is expressed as follows: 

~ P; 1 ~ e2 

~-+-~ 
"2m 2 ""I Iri - ri'1 t tt 

~ P;J.t 1 ~ ZJ.tZJ.t1e2 

~-+-~ 
iJ.t 2MJ.t 2 iJ.tiIJ.t' IRiJ.t - RilJ.t/1 

(B.2.2) 

1iee-L = LL -ZJ.te
2 

, 

i iJ.t Iri - RiJ.t1 

where M is the mass of J,lth ion in the fth unit cell and RiJ.t denotes its position, m is the 

mass of ith electron and Ti represents its position, and Pi denotes the momentum of ith 

atom. Let W({Ti}, {RiJ.t}) be the eigen function of the Hamiltonian (B.2.1), so that 

(B.2.3) 

where E is the total energy of the entire system. In the crystal, we couldn't solve the eigen 

state of the system which includes about 1023 electron and ion. To solve the Schrodinger 

equation (B.2.3) we applied two kind of approximations, i.e., adiabatic and harmonic 

approximations. 

The essential idea of the adiabatic approximation is that the ions being about 2 x 103 to 105 

times heavier, move much more slowly than the electrons. At any given instant, therefore, 

the electrons "see" the ions fixed in some configuration. In the adiabatic approximation, 
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we separate electronic and ionic motion. So that we define the wave function of the entire 

system as follows: 

(B.2.4) 

where X({RiJL }) represent ionic wave function, and 'ljJ({ri}) is a wave function for the 

entire system of electrons. We imagine the ions to be fixed in some configuration and for 

this particular {RiJL} we can construct the Schrodinger equation for the electrons 

(B.2.5) 

here Etot denote energy of electronic systems plus ion-ion interactions, RiJL means static 

ion position and ri denotes an operator. Substituting (B.2.4) in (B.2.3) and making use 

of (B.2.5), we can define the Hamiltonian for the ions. 

(B.2.6) 

here we rewrite Etot ( {RiJL}) to V( {RiJL}) which is adiabatic potentiaL 

In general, the adiabatic potential V( {RiJL}) depends on all the individual coordinates 

RiJL of the ions. If the displacements of the ions from their equilibrium positions R~JL are 

small, V( {RiJL}) can be written as a power series in the displacements UiJL = RiJL - R~JL: 

V({RiJL}) = V({R~JL}) + LLu~v a:a V({RiJL})i 
mv a mJL {Rt/L}={R~/L} 

+~LLLU~vU~>. a
2 

(3V({RiJL })i + ... , (B.2.7) 
mv n>. a{3 aR~vaRn>. . {Rl/L}={R~/L} 

where et, (3 is the Cartesian component. In harmonic approximation, the series is termi

nated at second derivatives. Further corrections toV( {RiJL }) , especially those of third 

and forth term, are known as unharmonic terms. Since V( {R~JL}) is just the static po

tential energy of the crystal (i.e., independent of the displacement coordinates), it can be 
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ignored for the time being. The expansion coefficients are defined as follows: 

B;et V( {RfJJ) I 
mv {Rll'}={R~I'} 

(B.2.8) 

__ B_2 -{3;;-V ( { RfJJ ) I . 
BR~vBRnA {Rel'}={R~I'} 

(B.2.9) 

The force acting on the ff-£ atom in the a-direction due to the displacements of all atoms 

mv is given by 

(B.2.1O) 

If all atoms are in their equilibrium positions this force must be zero, that is, in the 

harmonic approximation we obtain the expression of force 

(B.2.11) 

from equation (B.2.1O). 

The equation of motion for u~v is given by 

(B.2.12) 

The Hamiltonian for the atom is given by 

(B.2.13) 

where momentum P~ is conjugate to u£J.L" We note here that Pi;L and U£IL satisfy the 

following commutation relation: 

(B.2.14) 

Introducing the Fourier transforms for the infinitesimal displacement and moment 

(B.2.15) 
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and assuming the time dependence of u! as eiwt , we obtain the secular equation given by 

substitute (B.2.15) for (B.2.12) as 

L [D~e(q) - MlLw
28/Lv80/3] ue(q) = 0, 

1L/3 
(B.2.16) 

where the matrix D(q) is called the dynamical matrix and its matrix elements is defined 

by 

DO/3(q) = ~ v,0/3 eiq.(Re-Rm) ILV ~ ilLmv . (B.2.17) 
i-m 

And we can obtain the Hamiltonian in reciprocal space given by substitute (B.2.15) for 

(B.2.13) as 

1£ - ~ [~P;:2 + 1 ~~ DO/3( ) qo q/3] 
L - ~ ~ 2M 2 ~ ~ ILV q UIL Uv , 

q ILO IL ILV 0/3 
(B.2.18) 

By solving the secular equation (B.2.16), we obtain the frequency and the polarization 

vector of phonons. Therefore, our interest move to diagonalize the matrix 

1 D O /3() 1 JMIL ILV q JMv' 
(B.2.19) 

If we express the infinitesimal displacement u!Ot in terms of the phonon normal coordinate 

Q-y(q) as 

qOt_ 1 ~q Q() 
ulL - J MIL ~ cILOt,-y -y q , (B.2.20) 

where 'Y is expressed the vibrational mode index. Then the Hamiltonian of lattice part 

(B.2.13) is expressed in the following form: 

1£L = L [~S-y(q)S-y( -q) + ~Q-y(q)Q-y( -q)w~] 
q-y 

(B.2.21) 

where S-y(q) represents the momentum operator conjugate to Q-y(q), and then S-y(q) and 

Q-y(q) satisfy the relation 

(B.2.22) 
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Finaly we introduce the annihilation and the creation operators defined by 

S,(q) = -i~ 2~", (a_", - a~) 

Q,(q) = ~ 2~", (a", + a~",), (B.2.23) 

with the bosonic commutation relations 

Then the Hamiltonian (B.2.21) is rewritten as 

(B.2.24) 

B.2.2 Density Functional Perturbation Theory 

We discuss the density functional perturbation theory (DFPT) [33] in this section. The 

study of response coefficients of solids or derivatives of total energy has often performed, 

in the framework of DFT. The aim of this section we obtain the second derivative of the 

total energy with respect to atomic infinitesimal distortion to prepare for the LR-LMTO 

method. The adiabatic potential in solids expressed as the second derivative of the total 

energy for electronic system. 

Let us consider one perturbation, associated with a small parameter A, i.e. in this case 

atomic displacement. For a generic observable of the system X(A), we write the pertur

bation series as follows: 

X(A) = X(O) + AX(1) + A2 X(2) + A3 X(3) + .... (B.2.25) 

The expansion coefficients are no the derivatives of X(A) with respect to A, but are related 

to them by a simple numerical coefficient: 

x(n) = ~ rrxl 
n! dA2 '\=0 

(B.2.26) 

The applied potential V ( r ), external to the electronic system, is supposed known through 

all orders, while it is our aim to calculate the perturbation expansion of other quantities, 

such as the energy E or the density p( r). 
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Perturbation expansion of Kohn-Sham equation 

In the LMTO method, the wave function is given by linear combinations of LMTO's as 

described above equation (2.1.8). For simplicity, in this section, we represent that wave 

function as follows: 

(B.2.27) 

where i denotes k-points and bands A, and et includes K, R, L explained in 2.1. Note 

here, we omit k which on the shoulder of XO:. Since we can make an Bloch state at an 

certain wave vector k, we define Ixo:} is an Bloch wave which has same k at the shoulder 

of expansion coefficients A~. The total energy is then considered as a functional of only 

the expansion coefficients A~, which are found by applying the Rayleigh-Ritz variational 

principle. We rewrite the Kohn-Sham type eigenvalue problem at (2.1.9) as 

L(xo:l1-£KS - ciIXJ3)A~ = 0, 
J3 

with the normalization condition 

(B.2.28) 

(B.2.29) 

Now we perform the perturbative development by using equation (B.2.25) for those quan

tities. The equation (B.2.29) become, at order i 

m 

L(1/Jij )l1/Jim -
j
)) = 0, (B.2.30) 

j=O 

and premultiplying equation (B.2.28) by L A~ 
m m 

L L (1/Ji j ) 1(1-£- Ci)(m-j-k) l1/Jik )} = 0, (B.2.31) 
j=Ok=O 

here the Hamiltonian is expanded as 

(B.2.32) 

where Veff is the effective potential. At Oth order, it given as 

J per') , 
Veff = Vext + Ir _ r'l dr + /-Lxc, (B.2.33) 
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To shorten the notations, we will sometimes omit (0) at X(O). From this expansion, the 

first-order and second-order derivative in the eigenvalues are given by 

(2) 
c· ~ 

{('l/Ji]1iKS - cil'I/J~l») + c.c.} + ('l/JilV~~)I'l/Ji) 

{('l/Jil1iKS - cil'I/J~2») + c.c.} + {('l/JilV:~)I1/J~l») + c.c.} 

+(1/J?)I1iKS - cil1/J?») + (1/JilV:~) l1/Ji). 

Perturbation expansion of total energy 

The LDA total energy is given by the standard expression 

f f 1 f pp' , 
E = ~ Jici - Veffpdr + Vextpdr + 2 Ir _ r'l drdr + Exc 

(B.2.34) 

(B.2.35) 

(B.2.36) 

where Ji is the occupation number of ith band and Exc is the exchange-correlation func-

tional as given by LDA. The expansion of Exc can obtain easily as 

f cxcpdr 

f J.lxcp(l)dr 

f J.lxcp(2)dr + ~ f J.li~)p(l)dr, 
where J.lxc and J.l~~) is given by 

(B.2.37) 

dcxcl J.lxc = Cxc + p cl and 
p p=p(r) 

J.li~) = p(l) (2 d;xc I + P d~c;c I ) .(B.2.38) 
p p=p(r) p p=p(r) 

To obtain first-order derivative of the total energy with respect to atomic displacement, 

we apply the expansion of (B.2.25). 

E(l) = ~ {JiC~l) + JP)Ci} - f (VeffP(l) + v:~) p)dr 
~ 

f f (1)' f + (VextP(l) + Ve~2 p)dr + I: _ ~'I drdr' + J.lxcp(l)dr (B.2.39) 

According to the electron number conservation condition the term containing the first-

order derivative in the occupation numbers vanishes, i.e. 

'" j(l) _ '" ~( )( (1) (1») _ (1) _ ~ i Ci - ~CiU CF - ci cF - ci - cFNvalence - O. (B.2.40) 
i i 
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Insert the first-order derivative in the eigenvalues (B.2.34) to equation (B.2.39). We obtain 

the following expression for the first-order derivative in the total energy 

E(l) = ~ Ji{ ('1hl1-lKS - cil'IjJ~l») + c.c.} + j lfe~V pdr 
, 

+ j {Vext + j Ir ~ r'l dr' + f.-Lxc - Veff} p(l)dr. (B.2.41) 

If the electron density is self-consistent, the expression in curly brackets of the integral 

with p(l) is equal to zero, and the obtained result is known as the Hellmann-Feynman 

force plus the incomplete-basis-set ( or Pulay ) correction [ first contribution in (B.2.41)]. 

If the lattice in the equilibrium position, E(l) is equal to zero. 

The second-order derivative, E(2), which is expressed via the dynamical matrix of a solid, 

is found by performing one more expansion of Eq.(B.2.25) 

E(2) = ~ {JiC~2) + JP) cP) + J?) Ci} - j (VeffP(2) + v:~) p(l) + v:~) p )dr 
t 

(2) , 

+ j(v.: p(2) + v.:(l)p(l) "+ v.:(2)p)dr + j p p drdr' ext ext ext I 'I r-r 

1 (1) '(1) j 1 j 
+- j p p drdr' + H p(2)dr + - ,/(l)p(l)dr 

2 I r - r'l r'xc 2 r'xc . (B.2.42) 

Since we have proved that c(l) = 0, then JP) = 8(cF - Ci)(C~) - cP») is also equal to 

zero. The contribution in in (B.2.42) from the second-order derivative in the occupation 

numbers reads 

(B.2.43) 

Since c~) = cP) = 0, the whole expression is equal to cFN~;lence = 0. Thus we can 

omit the contributions from the derivative in the occupation numbers. Insert the second

order derivative in the eigenvalues (B.2.35) to equation (B.2.42). We obtain the following 

expression for the second-order derivative in the total energy 

+! j v.:(1)p(l)dr + j v.:(2)pdr + ! j V(l)p(l)dr 2 ext ext 2 eff (B.2.44) 
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+ J { Vext + J Ir ~ r'l dr' + f.-Lxc - Veff} p(2)dr (B.2.45) 

where the last integral with p(2) can be dropped since the expression in curly brackets is 

equal to zero if the unperturbed charge density is self-consistent. 

The final expression for the second-order derivative in the total energy is given by 

(B.2.46) 

B.2.3 Density-functional linear response 

Within DFT, the problem of calculating the lattice dynamics essentially amounts to find

ing the change in the electronic charge density induced by the presence of a phonon with 

wave vector q. We use the same notation as previous section for positions of atom ReIL' 

the translation vectors t and the small atomic displacement ueJL' We suppose that the 

atoms are displaced from their equilibrium positions by a small amount: 

(B.2.47) 

where u~ is a complex polarization vector and q is the phonon wave vector. Now we 

extend small parameter ..\ in equation (B.2.25) to three-dimension small displacement 

of atom, i. e. ueJL' Thus we can define the first and second-order change of the certain 

quantities as follows: 

8X = L ueILX(l) , 82 X = L L UeILUmvX(2). 
elL elL mv 

The external fields after displacement is represented as 

-Zve2 
Vext (r) = L I _ R O _ I ' mv r mv u mv 

(B.2.48) 

(B.2.49) 

where ZIL are the nuclei charges. By expanding this expression to first order in the 

displacements, we obtain that the static external field perturbs the crystal 

~ (1) _ '" a ~ -Zve2 I 
8Vext = L., ueIL ~xt - L., ueIL oR L., Ir - Rm I 

elL elL elL mv v RIJ.'=R~J.' 

L {u~8+Vext + u~*8-Vext}. (B.2.50) 
IL 
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where 

.. ±u _ '"' ±iq-Rt _8_ -Zp'e
2 I 

U Vext - ~e 
£ 8 R£p. I r - R£p.1 Rtf.' =R~f.' 

(B.2.51) 

~Vext is represented as a superposition of two traveling waves with wave vectors ±q. 

The first-order changes in the charge density, effective potential (B.2.33) and the first

order correction of the wave function (B.2.27) induced by the perturbation (B.2.50) is 

represented in the same way by using first-order derivative 

p(l) Lfi{1jJ~l)*1jJi + 1jJ;1jJ~1)} 

V(l) 
eff 

(1) J p/(l) , (1) 

~xt + Ir _ r'l dr + f.lxc 

1jJ~1) -1jJ-8 I 
8 R£p. ~ Rtf.' =R~f.' . 

Then 

~p L U£p.p(l) = L {u~~+ p + u~* ~-p} (B.2.52) 
£p. p. 

~Veff L u£p. ~~) = L { U~~+Veff + u~~-Veff} (B.2.53) 
£p. £ 

~1jJi L U£p.1jJ(l) = L{U~~+1jJi + U~*~-1jJi}' (B.2.54) 
£p. p. 

where 

~±p L fi(~±1jJ;1jJi + 1jJ;~±1jJi) (B.2.55) 

~±Veff ± J ~±p' , ± df.lxc I (B.2.56) ~ Vext + Ir _ r'l dr + ~ p cl 
p p=p(r) 

~±1jJi - L e±iq-Rt ~1jJi I . (B.2.57) 
£ 8 R£p. Rtf.' =R~f.' 

The exchange-correlation effects are taken into account in the LDA. The first-order cor

rection of wave function ~±1jJi = 1~±1jJi) is a Bloch wave with vector k + q (will define 

appropriate in Section B.2.5) and it is the solution of the Sternheimer equation[34], which 

is the Schr6dinger equation to linear order in the reciprocal space 

(B.2.58) 
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We have dropped the term with the first-order corrections to the one electron energies 

which are equal to zero if q =1= O. Now we have to solve the induced charge density at 

self-consistently. A brief view as follows: (i) Solve the equation (B.2.58) with the external 

perturbation <>±Veff, (ii) define the induced charge density according to (B.2.55) and (iii) 

find a new <>±Veff after (B.2.56). Steps (i)-(iii) are repeated until input and output 8±p 

coincide within a required accuracy. 

B.2.4 Dynamical Matrix 

To see the equation (B.2.46), there is two undefined quantities, i.e. second-order change 

in "Vext and wave function 'l/Ji. Changes in the second-order are easy to find by using 

Eq.(B.2.48) 

where 

8 L 2iq·Rt 8
2 

-Ze
2 

I 
p,v e e 8Rep,8Rev Ir - Revl R=Ro 

(B.2.60) 

8
2 

-Ze
2 I 

<>p,vL 1 1 . e 8Rep,8Rev r - Rev R=RO 
(B.2.61) 

It is directly seen that the variation 8+ <>-Vext is a periodical function at the original lattice 

while the function <>+8+Vext translates like a wave of wave vector 2q. For the wave function 

we can same expansion as 

1<>2'I/Ji) = L {u~ u~ 1<>+ <>+ 'l/Ji) + u~ u~* 1<>+ <>- 'l/Ji)} + c.c .. (B.2.62) 
p,v 

Using above relation and the equation (B.2.46) we can obtain the second-order change of 

total energy 

<>2 E = L u~u~* [~fi(<>+8-'l/Ji + 8-8+'l/Jil1i - cil'I/Ji) + ~ fi (8+'l/Ji 11i - ciI8-'l/Ji) 
p,v t· t 

+ ~ J 8+ Vext<>- pdr + J 8+ 8-Vextpdr + ~ J 8+ Veff<>- pdr] + c.c.. (B.2.63) 
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We see that this expression does not contain the second-order contributions with wave 

vectors ±2q. 8±8'F'l/Ji are the functions of wave vector k and only they contribute to the 

matrix elements with 'l/Ji. 8±8'FVext is periodical and only this gives a nonzero contribution 

to the integral with p. Finally, we arrive at the expression for the dynamical matrix defined 

in (B.2.43). 

D~~(q) 

+ J 8+ Vext8- pdr + J 8+ 8-Vextpdr + J 8+ Veff8- pdr. (B.2.64) 

Note here, the difference of the coefficient 2nd, 3rd and 5th in Eqs.(B.2.63) (B.2.64) caused 

by different definition of perturbational expansions. 

B.2.5 First-order corrections 

This section we construct the basis functions which represent the first-order perturbations. 

The unperturbed wave function given in Eq.(B.2.27) is expanded in terms of the MT basis 

set Ixo:}. We perform the same perturbational expansion for Eqs.(B.2.57) (B.2.62) 

18±'l/Jk.\} 

18±8'F'l/Jk.\} 

(B.2.65) 

(B.2.66) 

Note here, we recover the omitted wave vector for X in Eq.(B.2.27). In equation (B.2.65) 

the first term is the change in the MT orbital due to the movements of atoms and the 

second one is the original linear MT orbital of wave vector k ± q. By inserting (B.2.66) in 

the first term of (B.2.63) and (B.2.64) we see that the second-order changes 8±8'F A~.\ do 

not contribute because they enter as coefficients to due the unperturbed basis functions 

and 

(B.2.67) 

The absence of the coefficients 8±8'F A~ has an important consequence. Since 18±8'F'l/Ji} has 

only the unknown contribution from the first-order changes in A~ and since the Hilbert 
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space {/Xa), /8Xa)} of the basis functions is fixed, we see that the variational freedom of 

the functional (B.2.63) is provided only by the coefficients 8± A~. The variation of the 

Eq.(B.2.63) with respect to 8±A~ leads Sternheimaer equation plus the incomplete-basis

set correction 

L(X~±q/llKS - €k>./X~±q)8± A~>' + L {(X~±q/8±Veff/X~) 
a a 

(B.2.68) 

This equation involves only the occupied states of the unperturbed system, which are 

necessary for constructing the induced charge density according to (B.2.55). It may 

be solved using an iterative algorithm with the number of operations proportional to 

N band X N~asis' where N band is a number of filled bands and N basis is a number of the 

basis functions used for representing the unperturbed wave functions and their first-order 

corrections. Because of the minimal size of the basis in the LMTO method, it is not 

a time-consuming step to find eigenvalue Ck>' and eigenvectors Ak>' for all energy bands 

(= Nbasis) at some grid of wave vectors k. The expression of the coefficient is given by 

solving Eq.(B.2.68) as 

L a X L A~±q>.' (8±X~'fq/llKS - ck>./1Pk>') 
Ak±q>.' { 

N Ck>' - Ck±qN {3 

+ ~{1Pk±q'11LKs - e""W~)A~' + (,pk±q"WV"" l,p",,) } . (B.2.69) 

Finally we obtain the expression for /1Pk>') by substituting (B.2.69) into (B.2.65) 

+ L /1Pk±qN) x {L A~±q>.' (8±X~'fq/llKS - ck>./1Pk>') 
N Ck>' - Ck±qN er 

+ ~(1Pk±q>./llKS - ck>./8±X~)A~>' + (1Pk±qN/8±Veff/1Pk>')}. (B.2.70) 

The first three terms containing /8X) appear because of the use of incomplete-basis-set. 

If we use a complete basis set, then the fist and third terms in (B.2.70) cancel, the second 

term vanishes, and arises standard perturbative formula 

/8±1Pk>.) = L (1Pk±qN/8±Veff/1Pk>') /1Pk±qN) 
N Ck>' - Ck±qN 

(B.2.71) 
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