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SYNOPSIS 

The 'precursor phenomena' associated with the martensitic 

phase transformation or more general first order phase 

are discussed based on the idea that the transitions in solids 

key mechansism of the phenomena is attributable to the locally 

excited long-lived triply stable fluctuations, which consist of 

'embryos' of low temperature phase structure. We refer to those 

heterophase fluctuations as 'embryonic fluctuations'. 

A new prescription to describe a general mechanism of the 

martensitic 

context 

state' 

of 

transformation in bcc-based alloys in the phase 

the embryonic fluctuation is presented. A 'three­

variable which specifies local creation and 

the embryo is defined, and the coupling of the 

lateral displacements of embryos is taken into 

spin 

annihilation of 

spins to the 

account. An effective hamiltonian can be obtained in terms of the 

embryo creation energy and the interembryo interaction energy via 

phonons. Overall characteristics of the transformations including 

the precusor state are successfully explained by a semi­

microscopic treatment based on the hamiltonian. Applications to 

real materials, in particular to the 7R-type martensite in NiAI, 

are discussed. 

A Ginzburg-Landau free energy functional is then derived 

from the hamiltonian so as to discuss the precursor phenomena on 

a thermodynamic basis. Spatially modulated solutions of the order 

parameter as well as of strain field are obtained, which are 

identified as the macroscopic version of the embryonic 

2 



fluctuations. By utilizing the solutions diffraction patterns are 

calculated, which turn out to reproduce the observed anomalous 

diffraction effects at martensite transformation. Lastly an 

underlying significance of the physical meaning of the precursor 

phenomena will be emphasized. 
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§ 1. INTRODUCTION 

Structural phase transitions, occurring when a material 

changes its crystallographic structure, has long been one of the 

subjects for material scientists as well as for physicists. The 

earlier studies of these transitions were measurements of 

macroscopic properties such as specific heat, dielectric 

susceptibility, thermal expansion, etc., and were accelerated by 

the practical purpose of various applications of these materials; 

for example, the use of ferroelectrics as piezoelectric 

components and as pyroelectric detectors. There has also been a 

great deal of effort devoted to elucidating the nature of 

structural phase transitions at a more microscopic level and have 

succeeded to bring much understanding of structural phase 

transitions during late 50's and 70's - in a large part owing to 

the development of experimental techniques which enabled the 

microscopic properties to be probed with improved accuracy. 

One of the outstanding findings was obtained from the 

investigations on materials having the distorted perovskite 

structure,1) which showed that at least at some structural phase 

transitons the atoms in the distorted phase are slightly 

displaced away from the equilibrium positions of the high 

temperature phase, leading to the suggestions by Cochran2) and 

Anderson3) that these phase transitions might be the result of an 

instability of the crystal against a particular phonon mode of 

the high temperature phase. Since that suggestion, exhaustive 

investigations have been devoted to the so-called 'soft modes,4) 
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associated with structural phase transitions and at least for 

these 'displacive' phase transitions their existence seemed to be 

well established in 70's. 

There are other structural phase transitons where the phase 

transition is associated with an ordering of some variable which 

is disordered in the high temperature phase. A well known example 

of this behavior of 'order-disorder' type is the ferroelectric 

transition in NaNo
2

5), in which above the transition temperature 

the N atoms of the triangular N02 groups are oriented either in 

the positive or the negative b axis with equal probability 

whereas below the transition temperature their orientations are 

aligned in either one of the two directions. Since the 

reorientational process of the N02 involves very large 

displacements (whic~ far exceed the phonon amplitude), these 

motions cannot be described in terms of small displacements about 

the high temperature phase positions; In these order-disorder 

systems, 'soft mode' idea is less effective than in the 

displacive materials. 

Nevertheless, the order parameters which characterize the 

phase transition can be described either by some of the phonon 

modes for the displacive type and by classical pseudospin modes 

to the order-disorder type. Just at the transition temperature 

the amplitude of the fluctuations of these modes diverge and 

frequency of particular phonon modes will soften in the former 

while in the latter critical slowing down toward equilibrium will 

be observed. These phenomena have attracted considerable 
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attention as 'critical phenomena' 6) at the second order phase 

transitons. 

On the other hand, in some metals or alloys similar 

displacive transformations which we call in general 'martensite 

f 
. *1,7) trans ormatlons have long been known to exist. Early 

developments of the theory to this displacive transformations 

were the geometric description of the crystallographic 

orientation relationships7) between martensite phases and the 

parent phase. Later, application of soft mode concept has been 

attempted, which has turned out to be quite ineffective. The 

origins and mechanisims of displacive behavior in these metals 

and alloys are still an area of considerable controversy. 

However, recent experimental investigations have revealed 

various kinds of 

transformation. The 

transiton temperature 

anomalous behavior above martensite 

unusual properties observed above the 

are called 'precursor phenomena' .8-22) As 

will be mentioned in some detail in the following section, the 

precursor phenomena have some similarity to the 'critical 

phenomena', but there seems to be an essential difference. The 

principal concern of this thesis is these precursor phenomena, 

*1 The definition of martensitic transformation is somewhat 

ambiguous. In this thesis the term 'martensitic transformation' 

referes to all types of cooperative displacive transformations 

from single phase to single phase without accompanying any atomic 

diffusion. 
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because to clarify what happens just above the transition 

temperature is considered to be the key to open the door locked 

over fifty years. 

The purpose of the present thesis is to elucidate the 

underlying microscopic (or semimicroscopic at least) mechanism 

leading to the martensite transformation, by which overall phase 

transformation scheme can be described in consistency with the 

experimental results in particular with the precursor phenomena. 

This thesis is organized as follows; In §2, as the 

microscopic origin of the transformation, we introduce the idea 

of 'embryonic fluctuations'. The embryonic fluctuation is the 

coherent thermal fluctuations which simulate the low temperature 

structure locally and temporally. Various kinds of precursor 

phenomena are briefly discussed, in order to suggest 

qualitatively that the existence of the 'embryonic fluctuations' 

gives a consistent picture of the overall process of the 

martensite transformation. 

Based on the idea of embryonic fluctuation, a new 

prescription to describe microscopic mechanism of the martensite 

transformation in bcc alloys is presented in §3. We define a 

'three-state spin' variable which specifies local creation and 

annihilation of the 'embryo' of the low temperature phase, and 

take into account of the coupling of the spins to the lateral 

displacements of the embryo, thus greatly reducing the degrees of 

freedom of the whole system. We obtain an effective hamiltonian 

of the system given in terms of the embryo creation energy and 

the embryo-embryo interaction energy via' phonons. The phase 
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transition scheme is investigated based upon the model 

hamiltonian. Applications to 9R martensite, which often appears 

as the low temperature structure of bcc-based alloys, and to so­

called 7R martensite particulary observed in Ni-AI are presented. 

Precursor phenomena in Au-Cd are also analyzed on this model. 

Contained in the last subsection in §3 is the summary of our
l 

results and a comparison is made with another theory recently 

presented concerning the formation of 7R martensite. Possibility 

to include some finite temperature effect on our predicted ground 

state configuration for the martensite structure is discussed so 

as to explain the experimentally observed diffraction line shape. 

A task which has remained in our treatment to the complete 

understanding of the microscopic mechanism of the martensite 

transformation is also discussed. 

In contrast to the semimicroscopic theory in §3, we develop 

in §4 the Ginzburg-Landau theory for the martensite 

transformation (or more generally for the first order phase 

transition in solids) to elucidate the relationship between the 

existence of the embryonic fluctuations and the precursor 

phenomena from a thermodynamic standpoint. We derive the coarse­

grained free energy functional from the semimacroscopic spin 

hamiltonian used in §3. The coupling of the order parameter to a 

strain is then taken into account. The solution of the order 

parameter which minimizes the free energy above the transition 

temperature is given under suitable boundary conditions, which 

leads to the embryonic fluctuation. These results are utilized to 

calculate the diffraction pattern, which reproduces the 
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characteristics of observed diffraction effects discussed in §2. 

In summary and discussion we will present a comparison of the 

obtained results with recent experimental data. Also we will 

discuss the points beyond which our theory has proved to be 

inadequate, and the possible extension of our theory. 

The last section is devoted to the conclusion, in which the 

significance of the physical meaning of-the 'precursor phenomena' 

is addressed in contrast to the 'critical phenomena' at the 

second order phase transition. 
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§ 2. A SURVEY OF RECENT DEVELOPMENTS 

2.1 An Introductory Remarks on Embryonic Fluctuations 

of 

on 

Recent significant progress in understanding of the nature 

martensite transformation in bee-based metals has been based 

the lattice instability against {110}<110> shear strains,23) 

which was pointed out forty years ago. Precursor phenomena, that 

often seem uniquely related to the ensuing symmetry changes, 

suggest that parent phases are effectively 'preparing themselves' 

for the transformations. 

From investigations on the effective path to transformation, 

together with the consideration on the above lattice instability, 

Krumhansl24 ) has claimed that, in contrast to the soft mode 

mechanisms based on charge density waves due to Fermi surface 

effects put forth by many authors, intrinsic bistable slow 

thermal fluctuations of the {110} planes in <110> directions due 

to the extreme phonon anisotropy can just be the microscopic 

origin of the transformation. 

Clapp, Guenin and Gobin25 ) discussed the presence of 

stresses and strains around the impurities of the lattice which 

can enhance a local mechanical instability against {110} <110> 

shear strains which gives rise to growth of 'locally soften 

microdomains' . Their treatment gives a possibility of the 

existence of microdomains of the low temperature phase induced 

around defects such as vacancies, interstitials above the 

transition temperature. A complete description along their lines' 
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which is comparable with experimental data is still lacking 

however. 

On the 
. 11) 

other hand, Mendelson has proposed the soft mode 

lattice-variant-shear-theory which is based on the partialized 

dislocation model; The separation r of the partial dislocations, 

b1 and b2, is given in terms of the stacking fault energy Y
f 

as 26 ) 

(2.1) 

where K is the elastic energy factor for the faulting partial. As 

T comes close to Tc' Y
f 

decreased with the microdomain growing, 

and eventually at Tc' Y
f 

= 0 and the transformation d~slocations 

will spread across the crystal and the transformation will be 

completed. Although the idea is clear, his explanation is still 

in a qualitative frame. 

Yamada and co-workers27 ) presented somewhat different 

picture which is called 'modulated lattice relaxation (MLR)' or 

'dressed embryo' model. The MLR or the 'dressed embryo' is 

essentially a microdomain which simulates locally and temporally 

the low temperature structure. It is quite similar to the 'local 

soft mode' picture described above, but the difference is that 

they considered the dressed embryos are intrinsic fluctuations 

which will be thermally' created without impurities. 

In this thesis we refer to those microdomains as 'embryonic 

fluctuations'. We note, at this stage, that we consider those 

fluctuations are essentially triply stable (hereafter, 
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abbreviated as tristable) rather than bistable as claimed by 

Krumhans124 ) and others25 ,28,29); that is, the ~otential to which 

the order parameter is subjected should have triple minima having 

degenerate metastable states above Tc. 

Based on the embryonic fluctuation picture, the process of 

transformation can be visualized generally as follows: At 

temperatures far above the transition temperature, embryos are 

frequently created by thermal excitation, but wUI soon be 

annihilated with a relaxation time T bAle 
ll/kBT 

where 6. is , an em 

energy barrier height to form an embryo. Moreover, embryos will 

stay 'bare' because Temb is too short to induce the strain field 

around the embryos. As the temperature is lowered, so that the 

embryos become long lived in comparison with the propagation time 

Of the elastic wave, they can be 'dressed', i.e., they can 

accompany the strain field around themselves. In the temperature 

range where embryo density is not still very high, the embryos 

are oriented randomly within equivalent directions satisfying 

cubic symmetry on average. This state may be identified to be the 

*2 precursor state . As the temperature is further decreased. the 

creation energy of a embryo will be decreased. At the same time, 

a long-range indirect interaction between embryos via strain 

field around them develops which tends to orient the neighboring 

embryonic fluctuations ('dressed embryos') into the same 

direction, and eventually the whole lattice is cboperatively 

*2 This state is often referred to as premartensite phase in 

metallurgical literature. 
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covered with the ordered embryos, which is nothing but the low 

temperatur~ phase. The transition temperature is well-defined in 

view of cooperative nature of the process. 

If this picture is correct, the martensitic transformation 

can be described by the 'key words' such as embryo creation 

energy, embryo-embryo interaction, equilibrium embryo density 

etc .. 

2.2 Precursor Phenomena 

2.2.1 Diffraction Studies 

Precursor phenomena which signal the transformation have 

been detected in various studies9,10,12-20); Scattering 

techniques including X-ray, electron and neutron scattering show; 

phonon dispersion curves with a dip at q = ~ (a wave number 

characteristic to the low temperature structure, see Table I), 

satellite diffraction spots near but not exactly at ~, anomalous 

broadening of diffraction lines, the central peaks and tweed 

structures. Let us consider these anomalies in connection with 

the embryonic fluctuations. 

a) Superlattice reflections appearing above T c 

Various kinds of diffraction experiments17 ) have revealed 

that the diffraction patterns of bcc alloys exhibit superlattice 

(satellite) reflections even above the transformation 
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temperature. These reflections should appear in the martensite 

phase but should be absent in high temperature phase. One of the 

possible interpretations is that the symmetry of the system has 

already broken lacally while the overall lattice symmetry still 

maintains the original cubic symmetry on average. These results, 

therefore, strongly suggest that the embryos of the low 

temperature structure exist above Tc' 

b) Anomalous incommensurability 

As is mentioned in (a), the superlattice (satellite) 

reflections are already present above Tc as the precursor. In 

some cases, the position of superlattice reflections is not 

located exactly at commensurate positions q=~ but are slightly 

shifted from those positions. 18 ) Detailed X-ray diffraction 

studies19 ,20) have revealed surprising peculiarities in this 

incommensurability. The anomaly is characterized by that the 

incommensurability changes depending on the reference Brillouin 

zone. This Brillouin zone-dependence of the shifts cannot be 

explained by any simple incommensurate structures consist of 

discommensurations with constant amplitude. Yamada et.al. 27 ) have 

shown by using lattice dynamical models that the possible 

microscopic origin to this anomalous incommensurability is due to 

the existence of the 'dressed embryos'. We will return to this 

phenomena in §4 and clarify from a different standpoint the close 

relationship between the anomalous incommensurability and the 

existence of the embryonic fluctuations. 
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c) The central peak in neutron spectra 

According to the MLR picture the embryonic fluctuations can 

enlarge their correlations as T approaches to T with negligible c 

activation. Following Mendelson,ll) let us estimate the lifetime 

T b of a embryonic fluctuation just above T , where the dominant em c 

mechanism of the relaxation of the embryonic fluctuations may be 

due to the annihilation of domain boundaries separating the 

embryonic fluctuations from the matrix. Let us consider that at 

domain boundaries the transformation dislocations, whose density 

is 7 -2 typically Nd = 10 cm for annealed crystals, are localized. 

Assuming that the speed of travelling boundary Vd is about one­

tenth of the speed of sound Vs = 3 x 105 cm/sec; Vd = 3 x 

104cm/sec, then the average size of an embryonic fluctuation is ~ 

Nd-1/ 2 = 3 x 10-4 cm and the Temb = ~/Vd ~ 10-8 sec. This 

yields the lower limit for the value of Temb for given Vd' 

(because the assumption that all the dislocations are localized 

at the domain boundaries results in the lowest value for ~,) and 

is in fact in the range of the central peak scattering. 15 ) The 

intensity of the central peak increases rapidly as T approaches 

to Tc and, because of the cooperative nature of the domain 

growth, the energy for growth of the embryonic fluctuations will 

diminish rapidly, giving rise to a narrow energy width (small 

energy transfer) and slowing down, which is consistent with the 

late stage dynamics of transformation based on the MLR picture. 

d) Tweed structures in TEM 
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A characteristic microstructure is often observed with TEM 

in the precursor state of many materials, which is referred to as 

'tweed structure' .10) Recently, Clapp et.al. 29 ) have obtained 

'tweed' diffraction pattern by model calculations using molecular 

dynamics method. The tweed structure is considered to be the 

strain fringe due to the existence of the embryos of low 

temperature phase embedded· in the matrix of high temperature 

phase. 

2.2.2 Other Experimental Results 

Since the exisitence of the quasistatic embryonic 

fluctuations modifies elastic, electric, and magnetic fields of 

the crystal, they can interact with applied fields to give rise 

to various anomalies of the physical properties. Other 

measurements8) make use of the increased susceptibility of the 

crystal to applied fields which interact with the above 

correlated fluctuating fields associated with the embryonic 

fluctuations. Effects due to elastic softening consist of changes 

in the elastic constants, internal friction, pseudoelasticity, 

etc. Additional observations are made to show anomalies in 

specific heat and electric resistivity. 

a) Pseudoelasticity and shape memory effect; Ferroelasticity 

B2 type and some other alloys are highly susceptible to an 

elastic field, showing significant pseudoelasticity and shape 
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30) *3 memory due to the low energy structure (§2.2.1 (c)) of phase 

boundaries separating embryonic fluctuations from the matrix 

above T and of self-accommodating phase boundaries separating c 

different variants below T .31) The presence of embryonic 
c 

fluctuations above T determines its pseudoelasticity behavior c 

for the applied stress while the degree of self-accommodation 

between variants defines the shape memory behavior for the 

temperature below T . These behaviors can easily be imagined from c 

the cooperative MLR picture in connection with a simple 

(pseudo)spin system in a field conjugate to the spin. 

b) Specific heat anomaly 

Anomaly in specific heat 21 ,22) implies an increase in the 

number of degrees of freedom due to large scale embryonic 

fluctuations. These additional degrees of freedom include (i) 

fluctuating ionic shifts due to fluctuations of order parameter 

(i.e., embryonic fluctuations), (ii) increased fluctuations of 

the embryos as T approaches to Tc and their increased 

correlations, (iil) the onset of the habit plane shear on any of 

the four equivalent systems (plane group) in each of the six 

equivalnet variants (thus 24 possible variants arise), and (iv) 

divergence in the range of correlation between embryonic 

fluctuations and self-accommodation among the fluctuating 

variants. 

*3 In fact these phase boundaries are given as 'solitons' which 

cost no energy with repect to the translation (see §4.3): 
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c) The anomaly in electric resistivity 

A k ' 1 t ' , t' 't 21,22), l' , , pea In e ec rlC reSlS IVI y Imp les an Increase In 

the number of degrees of freedom by which electrons are 

scattered, which is consistent with specific heat anomaly, 

These anomalies (specific heat and electric resistivity 

anomalies) are often observed above Tc as if there is a new 

transition point to so-called premartensite phase,22) However, 

the point at which these anomalies are found is largely dependent 

on crystallization condition, The exact mechanism which explain 

these anomalies satisfactorily is still not completely 

elucidated, 
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§ 3. A SEMI-MICROSCOPIC MODEL FOR MARTENSITIC PHASE 

TRANSFORMATION 

In this section we will first introduce a general 

microscopic (or semimicroscopic) model which can describe the 

phase transformation with embryonic fluctuations in the precursor 

state. Two principal approximation schemes currently employed in 

microscopic theories are then presented; One is the independent 

site approximation and the other the independent mode 

approximation. We will suitably modify the general model to 

obtain a more reduced model for the description of the martensite 

transformation in question. The modification will be done in a 

sense of the independent site approximation that we shall retain 

explicitly the local variable. To obtain physical quantities we 

develop a mean field treatment to our model hamiltonian, because 

it is sufficient to qualitatively explain the currently available 

experimental results. The advantage of our approach is stressed 

by the comparison of the resultant low temperature structure of 

Ni-AI with that obtained by the different way based on, as one 

might say, rather the independent mode approximation scheme. 

3.1 Definition of The Model 

The simple model of which physical properties will be taken 

out is depicted in Fig.l, and is defined formally by the 

classical hamiltonian 
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H T{p} + V{u} (3.1) 

with 

T (3.2) 

v LVI (u(j)) + K L (u(j)-u(j,))2 
j oc 2 <j,j'> 

(3.3) 

Here the coordinate u(j) and p(j) denote, respectively, the 

displacements and momenta of a set of atoms, of unit mass, whose 

high temperature phase equilibrium positions (which lie in the 

central most stable minima of VI's) with respect to which the oc 

displacements are defined consist of N sites of ad-dimensional 

hypercubic lattice of period aO' The atoms are supposed to 

interact through a harmonic nearest neighbor coupling (the second 

term of eq.(3.3)) and to reside in a single particle potential 

Vloc with triply stable states. As 1s emphasized in §2.1, the 

fluctuations we shall treat are not, so to speak, inter-domain 

fluctuations associated with the widely used bistable (double-

well) potentia132 ) but the heterophase fluctuations, in 

particular, in those temperature ranges where the high 

temperature phase is still stable. Moreover fluctuations with 

opposite displacement amplitude will allow to appear, reflecting 

the microtwin structure of the low temperature phase. In 

addition, the potential may be thought of as having a uniaxial 

anisotropy, which effectively restricts displacements to a single 

direction hence the scalar character of the coordinates u(j) 
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and p(j). Keeping in mind these characteristics, we shall take 

this potential Vloc to have the simple form 

a 2 b 4 c 6 VI (u) - u + - U + - U oc 2 4 6 
(a>O, b<O, c>O) . (3.4 ) 

Here we allow for the coefficents a, band c to be temperature-

dependent, and in this sense our model is still semimicroscopic. 

Finally note that we consider a situation where an external field 

is absent. Including this effect is straightforward and we shall 

omit that influence for simplicity. 

We will often find it more convenient to consider a Fourier 

representation of our system. The real space hamiltonian (3.1) 

through (3.4) is readily Fourier transformed into in the form 

H T{P} + V{Q} (3.5) 

through 

P( q) 
-1 

2: p(j) i q. R(j ) 
(3.6) = N e 

j 

Q( q) N-l 2:U(j) i q. R(j) 
(3.7) e 

j 

with 

(3.8) 
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v ~l:[ 
2 a + 4dK J (q) ] IQ(q) 12 

q 

+ Nb l: 
4 4 

[ IT l: ] IT Q (qj ) 6(q1 +q2+ q3+q4- T ) 4 
T j=1 qj j=1 

+ Nc l: 
6 6 

[ IT l: ] j~1 Q(qj) 6(q1 + ... +q -T) (3.9) 
6 j=1 q. 6 

T 
J 

Here the summations are carried out over wave vectors in the 

first Brillouin zone and T denotes a reciprocal lattice vector. 

The Kronecker 6 symbol reflects wave vector conservation and J(q) 

is defined by 

J (q) 
1 d 

1 - -d l: cos(q.ao) 
.1 1 
1= 

(3.10) 

We will encounter such an expression in §4.1 on the way to a 

derivaiton of the coarse-grained free energy functional. 

For the completeness of the general discussion we next 

outline briefly the two simplest schemes, by which theoretical 

treatments to the hamiltonian (3.1) or (3.5) can be developed, 

commonly referred to as 'mean field theory' and 'self-consistent 

phonon theory'. In fact each of the theories employs a 'mean 

field' character to reduce the many-body problem to a tractable 

single-body problem which is then solved 'self-consistently'. In 

the first of these schemes the intersite interaction is treated 

approximately while in the second of the schemes, it is the 

inter-mode interaction that is treated approximately. We shall, 

therefore, refer to the schemes as, respectively, the independent 

. t d· d d t d . t . 32 ) SI e an In epen en mo e approxlma Ions. 
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3.2 The Independent-Site Approximation and The Independent-Mode 

Approximation 

The essential· character of the independent-site 

approximation is best revealed by considering the equation of 

motion, readily obtained from eq.s(3.1)-(3.4) as 

- u = 
n n 

( a + 4dK )u(j) + bu3(j) + cu4 (j) - 2K ~ u(j') 
j , 

(3.11) 

The independent-site approximation replaces the last term in 

eq.(3.11) by 

n n 
-2K ~ u(j') 

j , 

n n IS IS = -2K ~ <u(j '» - -4dKQO 
j , 

(3.12) 

the implicit assumption being that the evolution of each local 

coordinate is influenced only by the average of its interactions 

with the other coordinates. This scheme hence yields rather a 

good approximation to the system in which the interatomic 

interaction is long-ranged, for example, to a ferroelectrics 33 ) 

in which atomic displacements in a local potential produce 

dipoles. The superscript on the average indicates that it is to 

be calculated self-consistently in the indepedent-site ensemble 

implied by the approximation (3.12). The simultaneous set of 

equations (3.11) then decouple to give (hence we drop the 

subscript j) a set of N identical equations 
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- u = ( a + 4dK )u(j) + bu3(j) + CU
4(j) - 4dKQ~S (3.13) 

describing a single particle moving in the effective potential 

N 2 
V = V +2dKu under the influence of a mean field loc loc 

(3.14) 

The thermal average of the displacement of such a particle may be 

written as 

QIS <u>IS 
o 

-B(V -E u) -B(V -EMFU) I du U e loc MF / I du e loc 1'1 (3.15) 

We have thus obtained self consistent-set of eq.s(3.13)-(3.15). 

We next note the second major decoupling scheme - the 

independent-mode approximation. The assumption underlying the 

independent-mode ('self-consistent phonon,34)) approximation, and 

their relationship to those of the independent-site 

approximation, are presented most clearly in terms of the 

equation of motion of the Fourier components, which follows from 

eq.s(3.5),(3.8) and (3.9) as 

- Q( q) a + 4dK J(q) ) Q(q) 

3 
+b2:[IT 2:1 

T j=l qj 

3 
IT Q(qj) 6(q1+q2+q3-q-T) 

j=l 

21 



S 
+c2:[IT 2:] 

T j =1 qj 

S 
IT Q(qj) 6(q1+" ·+qs-q-r) . 

j=l 
(3.16) 

The independent-mode approximation replaces terms which are 

higher order than the quadratic term by quadratic-order terms 

using Wick's theorem;3S) 

3 3 
b 2: [ IT 2:] IT Q(qj) 6(q1+q2+ q3-q- r ) 

T j=l qj j=l 

3 3 
= b < 2: [ IT 2:] IT Q(qj) 6(q1+ q2+ q3-q- T) >IM 

r j=l qj j=l 

. IM IM 
- 3bN [Q(q)-<Q(Q» ] < 2: Q(q1)Q(-q1) > 

q1 
(3.17) 

etc. In effect the crucial approximation here also has a 'mean 

field' character, the simplifying assumption being that the 

evolution of each Fourier component is influenced only by the 

average of its interactions with the other coordinates. The 

superscripts indicate that the averages are to be evaluated, 

self-consistently, in the independent-mode ensemble implied by 

the approximation. In performing these averages one must allow 

explicitly for the nonvanishing expectation value of the 

coordinate Q(O) in the ordered phase. Thus we write 

Q(q) _ Q(q) + <Q(q»IM (3.18) 

and equating 
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<Q(q»IM = Q(0)6(q) , (3.19) 

we have again closed set of equations for the Fourier components. 

Although these schemes may offer someinsights into the critical 

dynamics of the model system, such as critical exponents and 

amplitudes, we shall not go too far in these subjects here. 

3.3 A Model for Martensitic Transformation 

We now try to adopt the general model (eq.s(3.1)-(3.4)), 

with a suitable modification, to the case of bcc(B)-martensite 

phase transformation. To begin with, let us consider a 

microscopic process of the martensite transformation. To this 

end, first remember that the local lattice instability (or local 

lattice softening), which is mentioned in §2.1, can occur prior 

to the transformation. In a bcc(B) lattice this instability 

arises along the <110> axes (see Table I). With the aid of this 

concept of local softening of TA ph on on modes we can develop 

quite a new view to construct the martensite structure from a 

bcc(B) lattice as follows; 

(i) Start from the small amplitude phonon condensed state 

with q = qo (see Fig.2(a)) along one of <110>-directions, for 

example, in the [110]-direction, ~ being the dip position in the 

phonon dispersion. 

(ii) Produce local fcc structure composed of several 

successive layers by increasing the amplitude of the condensed 
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phonon and/or distoring the shape of the wave (or introducing 

higher order harmonic waves) (Fig.2 (b)). The parent lattice thus 

simulates or prepares locally the low temperature structure. We 

often refer to this local fcc structure as a 'cluster', which is 

nothing but an 'embryo' of the low temperature phase. 

(iii) Introducing an appropriate amount of slip at the 

cluster boundaries between the local fcc structures along [liO]-

direction in order to relax the local stress (Fig.2(b)). Notice 

the relative atomic configuration at the cluster boundaries in 

Fig.2(b) is definitely unstable. 

These procedures (i) through (iii) result in the martensite 

structure (Fig.2(c)). In fact the above prescription will be 

applied to real systems in §3.5. 

Note that, besides the local lattice instability, this view 

is based on the assumption that the system has the tendency to 

form locally the fcc type (ABC-type) stacking along the [110]-

direction, composed of at least three successive basal (110) 

*4 planes ,which acts as the embryo. 

With this view we then formulate the model hamiltonian, 

which will turn out to belong to the class expressed by 

eq.s(3.1)-(3.4). If we consider, in general, that the 'cluster' 

is the smallest unit with physical meaning associated with the 

*4 At the same time, elongation and contraction along the other 

two axes normal to the [110]-direction occur, which construct the 

hexagonal basal plane. Since this deformation is irrelevant for 

the later discussion, we just neglect this deformation hereafter. 
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phase transition mechanism, the degree of the freedom of motion 

of the whole system under consideration can be simply reduced to 

the degree of freedom concerning the clusters; the translation of 

the center of mass of the cluster along [110] and the shear 

deformation or the 'tilt' of the cluster. 

The first point to make is that there are two equivalent 

tilted states (see Fig.3). Thus, together with the undeformed 

state, the state of the cluster can be represented by a 'spin' 

variable with three eigenstates; 0 = (1,0,-1), among which 0=±1 

are energetically degenerate by the symmetry of the parent bcc 

*5 phase . 

In order to describe appropriately the strain energy stored 

at the cluster boundaries, both ends facing each other of the two 

consecutive clusters are connected by harmonic springs with 

spring constant K (see Fig.4(a)). The local potential-spring 

picture which corresponds to the microscopic state shown in 

Fig.4(a) is depicted in Fig.4(b) in order to stress the physical 

equivalence of our specific model for the martensite 

transformation to the general model (eq.s(3.1)-(3.4)). However, 

we make up, to our end, a more tractable hamiltonian than that 

exressed by eq.s(3.1)-(3.4). A modification is made such that, as 

was introduced the discretized variable 0, there is the 

*5 The degeneracy refers to that for the states with a fixed 

qo' Since there are six equivalent <110> orientations, the total 

degeneracy of the tilted cluster should be twelve in the real 

cubic system. 
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contribution of creation energy ~ associated with the local 

formation of the tilted cluster state, which is originated from 

the local potential energy VI of the cluster. As is shown in oc 

Fig.4(b), we are considering that the each minimum of the local 

potential corresponds to the states d = 1, 0, or -1; 

VI (u) oc (3.20) 

The creation energy ~ corresponds to the energy difference 

between d = 0 and d ±1. To include the strain energy 

contribution, let u. be the lateral displacement (slip) of the j­
J 

th cluster relative to (j-1)-th cluster. Furthermore, let uj be 

equal to zero when two consecutive clusters are in high 

temperature structure position. The energy associated with the 

cluster configuration can then be written as 

K 2 
~ -2 u. - ~ U.(d. 1 + d.) , ~ > 0 
j J J J- J 

(3.21) 

where the first term is simply an elastic energy. Note that in 

the second term the coefficient ~ represents the effect of 

coupling between {dj } and {uj }. The ground state configuration 

for this interaction energy is readily seen to be d.=-l, u.=-2~/K 
J J 

or dj =l, Uj=2~/K for all j. Together with (3.20), our microscopic 

hamiltonian is of the form; 

+ (3.22) 
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Thus the cluster system is now expressed effectively by a (three-

state) spin-phonon coupled system. The effects of the 

displacement field. are readily renormalized through 

-13 H{a.} 
e J f 

-BH{a.,u.} 
d{u.} e J J 

J 
(3.23) 

to give an effective hamiltonian H{Oj} of the spin system. H{Oj} 

thus obtained is, apart from a trivial part, 

H{O.} 
J 

'" ~ .... 2. N 
L... Co u - J 0J. 0J. -1 ' 
j . J 

(3.24) 

where E and J are the renormalized creation energy and the 

renormalized nearest neighbor interaction between spins (embryos) 

respectively, and are given by 

2 
G - ex /K , (3.25) 

2 ex /1< (3.26) 

It should be noted that we are actually treating the 

ordering problem in three-dimensional space. In the final 

expression (3.24) 0j means not a state of particular cluster in 

1-D cluster chain but an averaged quantity with respect to all 

spins in a plane which contains j-th cluster and is normal to the 

wave vector Thus the parameters such as G, ex and I< are not 

strictly of microscopic origin, but are semimicroscopic in the 

27 



sense that they are associated with statistical average within 

the layer. 

3.4 Phase Transition Scheme 

In . order to discuss the phase transition from the high 

temperature bcc(B) phase, passing through premaretensitic state, 

to the low temperature martensite phase, we utilize the 

hamiltonian obtained in the previous subsection. The relevant 

quantities which we are concerned are the cluster order parameter 

<0>, and the average amount of slip of a cluster <u>. In 

addition, the quantity <02> is of special interest here, because 

this quantity corresponds to the equilibrium embryo density which 

can be experimentally detected by quasielastic neutron scattering 

or diffuse X-ray scattering. In fact Noda et.al. 20 ) have observed 

stong X-ray diffuse scattering in premartensitic region in Au-Cd, 

and inferred that the low temperature embryos may exist with high 

density even above the transition temperature. 

Before calculating the above quantities some attention must 

be paid to the temperature dependences of the parameters in the 

hamiltonian. As is mentioned in §2.2, phonons belonging to 

[110]TA branch are weakly softened so that the spring constant K 

may have a temperature dependence as K = Ko(T-TO) where To is a 

fictitious critical temperature of intrinsic stability limit of 

the cubic phase which is considered to be far lower than the 

transition temperature. The creation energy G of a single cluster 
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can also be temperature dependent since we interprete E as a 

semimicroscopic quantity. Going back to the local potential as 

depicted in Fig.4(b), it would be quite reasonable to consider 

that E· is increasing with increasing temperature in order to be 

consistent with T-dependence of K, because K is associated with 

the curvature of VI at 0 = 0, while E is the energy difference oc 

of the minima of the same potential function. If this temperature 

dependence is given in a form of )'T 6 , one can readily see that, 

from the eq.(3.29) below, 2 6 > 1 will be required because <0 > 

must vanish at temperatures far above the transition temperature. 

The precise choice of 6 is, however, inessential for the 

equilibrium behaviors of <0>, <u> and also 2 <0 > in the 

temperature region of interest. In fact, qualitatively the same 

results follow in our mean field treatment for 6 > 1. Here we 

have put 6 = 2 rather arbitrarily. 

To proceed, we use the mean field approximation. Following 

the standard procedure, we have 

< 0 > 
2 sinh BzJ<o> 

2 cosh BzJ<o> 
N 

+ exp(BE) 
(3.27) 

< u > (3.28) 

and 

2 2 cosh BzJ<o> 
< 0 > = (3.29) 

2 cosh BzJ<o> + exp(BE) 
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where z is the coordination number which is equal to 2 in our 

(pseudo) l-D system. We introduce a dimensionless temperature T = 

223 AT/kB and a dimensionless parameter Y = A a /KOkB' One of typical 

results, together with the corresponding experimental result for 

Au-Cd,20) are shown in Fig.5 for the case of Y = 20. Here we have 

= o for simplicity. For this value of Y the first order 

transition occurrs at T = 3.389. Below T the system exhibits c c 

cooperative ordering characterized by a non-zero value of <d> and 

<u>, which means that the martensite phase with the appropriate 

structure is stabilized below T
C

' 

As is seen from eq.(3.28), <u> will tend to diverge as the 

temperature approaches to TO' This has resulted by the assumption 

of complete harmonicity of the springs which link spins 

(clusters) together. In real systems this intercluster 

interaction must have strong nonlineari ty for such a large 

displacement that exceeds the amplitude of phonons, and at 

temperatures below T this nonlinearity is considered to be c 

responsible for the lock-in of <u> to some value Uo 
In Fig.5, it is noticeable that even above T , where the c 

system retains cubic symmetry, <d2> remains finite and slowly 

decays with increasing temperature as 

This feature is particulary important, because 

(3.30) 

2 <d > is 

proportional to the embryo density. The above feature justifies 

that under proper circumstances, there exists the equilibrium 
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state where the low temperature microstructures are distributed 

randomly with considerably high density before the phase 

transition takes place. This temperature region, therefore, just 

corresponds to the precursor (premartensitic) state. The 

hamiltonian (3.24) thus satisfactorily describe the transition 

nature between bcc phase and the martensite phase including the 

presence of precursor phenomena. 

3.5 Application to Real Materials 

We look into how our prescription for the transformation 

process mentioned in §3.3 works well to the real materials; The 

shape of the cluster (embryo) and the amount of slip of the 

cluster will actually be considered. We take up as examples two 

important cases; one is the formation of 9R martensite structure 

often observed and the other that of 7R-type martensite sturcture 

as a practically important case. 

3.5.1 Application to 9R Martensite 

To begin with, we apply our view to the bcc(B)-9R 

transition, since most of bcc-martensite transformations belong 

to this class and the situation is simple enough to elucidate our 

idea. 
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The 9R structure is well established and considered to be 

deduced from the following two successive processes;36) 

(i) The symmetry change takes place due to small lattice 

distortion caused by a TA phonon mode condensation with the wave 

vector ~ 1/3[110]. 

(ii) The distorted lattice is then deformed into the 9R type 

by introducing a macroscopic deformation, which is composed of 

the inclination of [110] axis (Bain strain) and the elongation 

and contraction along the other two axes perpendicular to [110] 

axis to construct (pseudo)hexagonal basal plane (see footnote 4). 

An alternative view to construct 9R structure can be 

developed as follows (the general prescription mentioned in §3.3 

should also be referred to.); 

(i) TA phonon with ~=1/3[110] is locally softened 

(Fig.6(a)). 

(ii) Local fcc structure (Cluster) of three succssesive 

layers is then produced bfurther increasing the amplitude of 

the condensed phonon (Fig.6(b)). This cluster is just the embryo 

of the 9R martensite. 

(iii) The boundary slips along [liO]-direction are finally 

introduced in order to relax the local stress (Fig.6(b)), which 

in fact result in the 9R structure (Fig.6(c)). Notice that the 

(110) basal planes are now stacked as ABABCBCAC···. 

Apart from the specific case of 9R, when the system is 

unstable against a phonon mode with q=qo along [110j-direction, 

the same view holds if the size of the embryo is taken 

appropriately. For later convenience, we describe the postulated 
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shape of the embryo of the case for ~=1/7[110] in Fig.7. The 

embryo shown in Fig.7(b) comes into play in the bcc(B)-7R type 

martensite transformation, which will be mentioned in the 

following. 

3.5.2 Application to 7R Martensite 

The low temperature phase of Ni-AI is of special interest, 

because Ni-AI undergoes martensitic transformation37 ) from high 

temperature B phase to a particular 7R type structure. Extensive 

experimental studies show that this alloy has also the common 

features of martensitic transformations mentioned in §2.2. In 

fact phonon dispersion curves for the [110] <110> TA2 branch in 

14) Ni All reveal a pronounced minimum at q ~ 0.13 ( x=0.63 ), x -x 
whose position in the q-space has concentration dependence, and 

substantial quasielastic scattering appears above the transition 

temperature. The intensity of the satellite reflections increases 

with decreasing temperature, and around T N 253K the crystal 

transforms to a martensite phase with a monoclinic unit cell. 

Martynov et.al. 38 ) studied the structure of martensite phase 

by X-ray diffraction and proposed a specific structure model 

characterized by so-called (5 2) stacking of successive 

hexagonal layers(7R structure). Recently Shapiro et.al. 39) 

performed detailed neutron diffraction measurements. They studied 

intensity profiles of the satellite peaks and reconfirmed 

presence of superlattice reflections which are consistent with 
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the 7R structure, except that the peak positions shift slightly 

from the commensurate positions of exact 7R periodicity. 

Schryvers et.al. 40 ) also observed directly (5 - 2) type stacking 

by electron microscopy. It would be an interesting challenge to 

apply our model to this particular system. 

Following our prescription, one can construct the structrue 

of the low temperature (ordered) phase as follows; (i) Consider 

the small amplitude TA phonon condensed state with ~=1/7[110]. 

(ii) Simulate locally the fcc structure by increasing the 

amplitude and deforming the shape of the wave (Fig.8(a)). In this 

case the embryo or the tilted cluster should be composed of 6 

layers as has been postulated in Fig.7(b). (iii) Introduce the 

boundary slips between the neighboring clusters (Fig.8(b),(c)). 

As is'illustrated in Fig.8(c'), this procedure in fact construct 

qualitatively the (5-2) structure. Notice that the resultant 

structure may be viewed as composed of alternating stacking of 6-

layer fcc slab and 3-layer distorted bcc slab. 

To be more quantitative, we allow the tilt angle e of the 

fcc cluster to deviate slightly from the exact value to form the 

ideal fcc stacking (8 = 71.57 '). This is related to the fact 

that in Ni-AI, the basal plane does not show complete 

hexagonality in the martensite phase*6. An alternative reason for 

this incomplete fcc stacking may be ascribed to the 

incommensurability between the wave length of the soft phonon 

Qo=1/7[110] and the period of fcc stacking. Note that in the 9R 

martensite both periods are commensurate and complete fcc cluster 

is then formed. In this context, our model structure may be 
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expressed more exactly by the alternative stacking of (6-layer 

distorted fcc) (3-layer distorted bcc). In the following 

analysis, we leave both the amount of slip Uo and the tilt angle 

e as parameters. 

We now try to adjust the parameters so as to obtain 

agreements with the experimental data. From the observed 

monoclinic angle, the value of Uo is determined to be Uo 0.250. 

The tilt angle is then determined within a relevant range of e ( 

71.57"~ e ~ 90") so that the relative intensity of superlattice 

reflections is fitted to the observed profiles by neutron 

diffraction measurement. By taking 8 = 81.34" , we obtained fairly 

od agreement along [2+~ 2+~ 0] line. The profile is given in 

Fig.9. The obtained angle e = 81.34" is nearly equal to the 

corresponding angle 8 = 80.54" of the (5-2) structure. The embryo 

of 7R martensite is thus considered to be freezed-in on the way 

to the complete fcc stacking. 

As far as the relative intensity is concerned the results 

seem to be satisfactory. However, as stated above, the peak 

positions of experimental data are shifted from the commensurate 

position. This deviation apparently has no regularity both in 

*6 According to the paper by Shapiro et.al. (Ref.39), the ratio 

Y of the principal axes a /b in the monoclinic a-b plane m m 

(pseudohexagonal basal plane) is given by Y=1.54. This value is 

just in between the ideal value for bcc lattice (y=j2) and for 

fcc lattice (Y=j3). The observed monoclinic angle B is given as m 

94.31' . 
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magnitude and in direction, At the present stage, we are not able 

to give strict theoretical basis of the shift pattern, 

However, notice that we have considered the fully ordered 

ground state configuration by taking <0>=1. It would be quite 

possible that, at finite temperatures, the positions of embryos, 

and whence the positions of slips are more or less randomly 

distributed along the [110]-direction. This random configuration 

of embryos and slips may be the origin of Hendricks-Teller type 

. l't 41) f th d'ff t' tt h' h '11 b b . fl lrregura 1 y 0 e 1 rac lon pa ern, w lC Wl e rle y 

touched upon in §3.6.2. 

3.6 Summary and Discussion 

3.6.1 Summary of Results and Comparison wi Other Theories 

We summarize the results obtained in this section as 

follows; 

(i) We focus our attention upon the thermally induced 

embryos, which are considered to play an essential role in the 

martensitic transformation, and retain the degrees of freedom 

concerning the embryo motion by introducing a three-state spin 

variable o. This leads to an effective hamiltonian composed of 

two parts; the one stands for the creation energy of embryos and 

the other the interaction energy between embryos via phonons. 

(ii) Using the hamiltonian, the phase transition scheme is 

investigated with the mean field approximation to obtain the 
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embryo order parameter <0>, the average amount of slip <u>, and 

the equilibrium embryo density <0
2

>. With a suitable choice of 

the parameters, a first order transition takes place. Below the 

transition temperature, <0> as well as <u> shows cooperative 

ordering, which correctly gives the martensite structre. On the 

other hand, <0
2

> is found to remain finite even above the 

transition temperature. This feature justifies the existence of 

the equilibrium state where the microstructures (embryos) of the 

low temperature phase are distributed randomly within the parent 

phase, which is noting but the so-called premartemsitic phase. 

(iii) We applied our model to interprete the low temperature 

structure of Ni-Al. The so-called (5-2) structure is reproduced 

as the 'ordered state' with respect to 0 and u. Qualitative 

agreements of the calculated intensity profile based on this 

model structure and the experimentally observ neutron intensity 

spectra are obtained. 

In spite of the simplicity, our model seems to be able to 

explain primary features of the martensite transformation 

including premartensitic behavior. Other theories mentioned in 

§2.1 have not, although the importance of the concept of 'embryo' 

or 'embryonic fluctuation' is recognized, yet been reached to the 

stage of a comparison with experimental results. 

On the other hand, Gooding and Krumhansl42 ) have treated the 

bcc-9R transition in Li from a different standpoint, in which the 

discussion is based upon the phenomenological Landau theory. The 

difference between theirs and ours is quite clear in the 

following sense; We take up independent-site scheme to retain 
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local variable o. while they prefer the independent-mode scheme 
J 

to the order parameter ~. In their free energy expansion, the 

uniform strain field e couples to the primary order parameter ~ = 
i 

A e 
(~. r + ~) 

(~ 1/3[110], e 11 [110] ) in the form e~3. 

Much attention is paid to the ground state solutions which 

minimize the free energy and to the dain-wall structure when 

the Ginzburg-like term for the order parameter is included. 

Recently, they43) have further extended the above theory to 

Ni-AI case. They specify the two independent order parameters; 

i (~. r + ~1) i (2q . r + ~2) 
~1 A1 and ~2 = A e 0 e 2 , among 

which ~2 is not associated with any soft mode. The coupling to 

the uniform strain can then be described by the term 2 * 
e~1~2· They 

have obtained parameters to be fitted to the observed macroscopic 

strains. However, the values of A1 and A2 which should determine 

the relative displacement of each layer are left undetermined. 

As far as the low temperature structure is concerned, there 

would be no essential difference between the results obtained by 

Gooding-Krumhansl's treatments and the present 'embryo ordering' 

picture. The difference is primarily seen in the premartensite 

phase. In the present treatment, the local variable 

explicitly introduced. Hence, it seems to have the advantage to 

describe more naturally the pretransitional state in which the 

local symmetry has been already broken while the overall cubic 

symmetry is still retained. 
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3.6.2 Finite Temperature Effect: Hendricks-Teller Type Satellite 

Line Shape 

We give some remarks on the low temperature structure of 

Ni-Al. As is mentioned in §3.5.2 we regard the amount of slip Uo 
and the tilt angle e as parameters, the former is determined by 

the observed monoclinic angle while the latter by comparing the 

calculated intensities with the experimental results in such a 

parameter range that 71.57' ~ e ~ 90' . The (5-2) structure is 

then almost uniquely determined in this parameter range. However 

it is necessary for the complete understanding of the structure 

to investiga satellite peak intesity profile in many Brillouin 

zones. Once again we emphasize that we refer just to the ground 

state configuration. Notice our standpoint is that the ground 

state configuration results from the cooperating effect between 

embryos formed by local deformation or distortion. Hence it is 

rather likely that the system includes stacking faults 

(deformation and growth faults) at finite temperatures. The 

analyses performed by Berliner and werner44 ) will therefore be 

needed to explain precisely the experimentally observed 

diffraction patterns. 

3.6.3 Open Questions 

Returning to our model hamiltonian, let us make some 

comments on our treatment. We have considered the ordering 
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problem in one-dimensional space along a particular [110] axis by 

averaging out all fluctuations normal to this axis. As is pointed 

out in footnote 5, there are six equivalent <110> orientations, 

and there is no particular reason to regard a single [110] 

direction as a special one. In real materials, embryos should be 

oriented randomly in all equivalent directions. In fact, 

anomalous shift pattern of satellite peaks observed in Ni-Ti-Fe 

and Au-Cd (see §2.2.1) are successfully explained27 } by 

introducing embryos having two different orientations. Allowing 

the six possible <110> orientations, the pseudospins should have 

the 12-fold degenerate excited states. We conjecture however that 

this will not cause any qualitative difference in the phase 

transition scheme described in §3.4. 

Our hamiltonian is still semimicroscopic in the sense that 

ad hoc temperature-dependence of the embryo creation energy has 

been assumed. More microscopic basis is needed to understand the 

properties of the local potential Vloc ' In addition, 

anharmonicity for e displacement field must be taken into 

consideration to suppress the unphysical divergence as has been 

mentioned in §3.4. 
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§ 4. THERMODYNAMICAL TREATMENTS FOR EMBRYONIC FLUCTUATIONS 

In the preceeding section, we have developed a semi-

microscopic theory based on the spin hamiltonian. One of the 

important results of the treatment is that the embryo density 

above the first order transition point have been calculated. 

Since <0>=0 in this temperature region, the system still 

maintains the symmetry of the high temperature phase on average. 

The situation 2 <0 >~O, while <0>=0, would mean that the symmetry 

of the system has been locally broken. The local symmetry 

breaking above the transition point should be one of the most 

important features of the embryonic fluctuation picture. 

There is in fact clear experimental evidence of local 

symmetry breaking above the transition point: As was discussed in 

§2, the X-ray diffraction patterns often exhibit extra(satellite) 

reflections while the fundamental Bragg reflections still keeping 

the (high temperature) cubic symmetry. Moreover, the satellite 

reflections sometimes show anomalous incommensurability, that is 

the amount of incommensurability 6q is dependent on the reference 

Brillouin zone. It is challenging to apply the embryonic 

fluctuation model to understand these anomalous diffraction 

phenomena. 

In order to achieve this end, we proceed as follows; instead 

of utilizing the microscopic hamiltonian directly, we first 

derive Ginzburg-Landau free energy density from the hamiltonian 

(3.24). Then a free energy functional which describes the first 

order phase transition including the coupling between the order 
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parameter and a macroscopic strain is established. An embryonic 

fluctuation naturally appears as a solution which minimizes the 

free energy above the transition temperature. It is 

straightforward to use the obtained solution of embryonic 

fluctuation to calculate the diffraction patterns. 

The reason we first establish the free energy functional is 

that once the explicit expression of the free energy is given, 

the arguments can be based on purely phenomenologial standpoint. 

Hence the obtained results can give general perspective view of 

the origin of the local symmetry breaking. 

4.1 Derivation of A Coarse Grained Free Energy 

The order parameter associated with a displacive phase 

transition is the amplitude ~ of the particular ph on on mode which 

freezes in the ordered phase. That is, the displacement in the 

low temperature (ordered) phase at the j-th site is given by 

~ e(~ ) exp(i q . r j ) + C.C. , (4.1) 

where qo and e(qo ) denote the wave vector and the poralization 

vector of the freezing (soft) mode respectively. For simplicity, 

let us assume that qo is at the zone boundary along the direct,ion 

of one of the principal axes, a, of the crystal; 

~ 1/2 a* , ( I a*1 2n: / a ) (4.2) 
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* and e(qo) is perpendicular to a (transverse mode). That is, the 

ordered structure is of antiferro-type. 

As the starting point, let us calculate from the spin 

hamil tonian (3.24) the mean field free energy F[<o.>] near the 
I 

transition point T to generate a Ginzburg-Landau functiona145 ) c 

as a function of the order parameter ~. When an external field 

hex is involved in the hamiltonian (3.24), the mean field 

equation for <0.>, the average spin at site i, is given by (cf. 
I 

(3.27) ) 

where 

< 0.> 
I 

h. is 
I 

n n 
l: h. = 

I 
j 

2 sinh 

(4.3) 

e + 2 cosh 

the mean field 

N 

J < 0j > (4.4) 

The free energy F[<Oi>] should be related to hex by the following 

equilibrium condition 

6 F 
6<0.> 

I 

+ h «0.» ex I 
o . 

Solving eq.(4.3) explicitly with respect to h , ex 

h «0.» ex I 

n n 
- l: 

j 
J <0.> 

J 
+ 
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(4.6) 



with 

g( d ) 

BE 2 BE 2 o e + 0 J ( 0 e + 4 ( 1 -d) 

d2eBE 
+ J( d2eBE 

+ 4( 1-d2 
(4.7) 

From eq.(4.S) the free energy becomes (apart from a constant) 

F[<O.>] 
1 

1 N 1 f<O'> '1 - 2 L J <0.><0.> + B L
1
. odb tanh- g(O) .(4.8) 

<ij> 1 J 

In fact minimization of eq.(4.8) with respect to <0.> yields the 
1 

mean field equation (3.27), as it should. Since we are 

considering a situation near Tc ' we can expand tanh-1g(d) in 

power series of d. Note here that since tanh-1g(0) is an odd 

function of 0, only odd powers appear upon expanded; 

-1 tanh g(o) (4.9) 

When the expansion coefficients are actually calculated, one can 

see that the leading term in g3 is negative while gs is positve 

definite on T > O. We must, therefore, keep up to S-th order in 0 

in the expansion so as to avoid the unphysical instability. Then 

introducing the Fourier transform 0 through (cf. (3.7)) 
q 

N-1" < 0 > eiqj 
... j 
j 

we find (cf. (3.9)) 
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N 

F[ ]IN 1 2J(1 - 1 2) g1 
) 1 12 0q - - L ( -q 

B ° 2 2 q q 
N 

4 4 g3 
+ 

4B [ IT L ] [ IT 0q ] 6(q1+q2+q3+q4) 
j=1 q. j=1 j 

J 
N 

g5 6 6 
+ 

6B [ IT L ] [ IT ° ] 6(q1+ ... +q ) . (4.11) 
j=1 q. j=1 qj 6 

J 

Here we keep only long wave length fluctuations in 0q and, hence, 

in 

n n 
Jq _ ~ J eiqj 

j 
2J cos q (4.12) 

terms up to O(q2) have been kept. Through such a coarse graining 

procedure the continuous order parameter ~ is defined from 

eq. (4.10) as 

~(x) ~ J dq ° e
iqx 

2 it q 
(4.13) 

where L is the system size. (Note that ~(x) inherits a pseudo 1-D 

character of the spatial modulation of 0i') By using eq.(4.13). 

eq.(4.11) can be retransformed into 

(4.14) 

where the coefficients are given by 
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N N 

gl IV 

kBT( 
eE/kBT + 2 ) IV 

(4.15) a = 
B 

- 2J 2 2J 

N 

kBT E/kBT E/kBT" 
b 

g3 
- 4) + 2)2 (4.16) = (e (e " 

B 48 

c = 
5E/kBT 3E/kBT E/kBT 

(3e -40e +240e +256). (4.17) 

When the temperature dependences are taken into account for E and 

J, which were introduced in §3.3, the transition point obtained 

from eq.s(4.14)-(4.17) is, as it should, consistent with that 

given by the direct calculation of the mean field equation 

(3.27). This is, together with some additional features of the 

system expressed by (4.15)-(4.17), given in Appendix A. 

In the temperature range near the first order transition 

point, which we are just interested in, the coefficients J, band 

c are considered to be temperature-independent and hereafter we 

regard them as constants. Retaining the temperature dependence 

only in the coefficient a, we may write the free energy density 

in eq. (4.14) as 

(4.18) 

(4.19) 

( K1 > 0 , ~ > 0 , b < 0 , C > 0 ). 
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Here J is replaced by the positive constant K1 . The first term in 

eq.(4.18) stands for the energy due to spatial modulation of the 

order parameter. The reader should not confuse the free energy 

density (4.19) with the local potential (3.4). The former is a 

macroscopic quantity obtained by the coarse graining procedure 

while the latter is of microscopic. Note that f~ satisfies the 

symmetry property f~(-~)=f~(~). This two-fold symmetry is 

essential to the low temperature structure with two variants of 

ordered phase. The characteristic feature of f~ is depicted in 

Fig.10. 

We assume that in the temperature range of T > T , there are 
N c 

chances that the order parameter ~ is locally (and temporally) 

'locked' in the metastable state with ~ = ~. Since ~ gives the 

order parameter in the low temperature phase, the locally locked-

in state with ~ = ~ may be called an embryonic fluctuation. The 

overall spatial variation of the order parameter ~(r) is obtained 

by the standard procedure to minimize the free energy functional 

under such boundary condition that embryonic fluctuations are 

excited randomly within the system. 

4.2 Coupling to Strain 

The structural transformation in solids is usually. 

accompanied by a volume and/or shape change. In order to include 

this effect, strain energy contribution to the free energy should 
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be taken into account. The strain free energy density fe 

associated with the longitudinal strain component ell is given by 

(4.20 

'X 2 2 ell ( K2 > 0 , 'X > 0 ), (4.21) 

in which the energy increase due to the spatial variation of ell 

is given by the first term in eq.(4.20). 

In addition, we assume that there exists strong coupling 

between the order parameter ~ and the longitudinal strain 

component ell' Taking into acount the translational invariance of 

each energy term, the lowest order coupling energy is given by 

(4.22) 

where A is a coupling coefficient. 

Thus, combining all energy terms, the total energy 

functional is expressed by 

(4.23) 

(4.24) 
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where the potential function U(~,e11) represents a homogeneous 

part of the free energy. 

The feature of the transition of the system is most easily 

understood by drawing the potential surface within two-

dimensional (~-e11) space at various temperatures. We have 

chosen the coefficients in eq.(4.24) appropriately such that b=-

140, c=4900, ~=1, and A=-1 and have plotted the potential surface 

in Fig.ll(a). 

For later convenience, let us divide the temperature region 

into the following subregions depending on the characteristic of 

the potential function: 

potential has single minimum at 

(?,2 
~=(~,e11)=O,T1= TO+ 4ac' 

triple minima at ~=O, 

and at {=±(~,e11)=±~' 

the latter two are energetically 

degenerate, ( U(O) < U(±t) ), 

(Ill) To <T< Tc triple minima at the same positions as 

those in (II), ( U(O) > U(±~) ), 

3(?,2 
Tc = TO + 16o:c' 

(IV ) T < TO double minima at ~=±~. 

As is seen in Fig.11(a), at 'temperature' T = a(T-TO) = 

1.020 (= 1.322 T
C
)' relatively well defined minimum is at 

(~,e11)=(0,0). As T is decreased there appears minimum at 

(~,e11)=(~,e11) in addition to the minimum at the origin. The 

former is metastable when = 0.7717, but becomes the 
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absolute minimum for T < TC' The uniform ordered phase which is 

characterized by spatially uniform ~ and ell with 

and 

8 + J 82 -4TC 

2 c 

A -2 - ~ 
~ 

( 8 (4.25) 

(4.26) 

is stabilized below the transition temperature. 

We are particularly interested in the temperature region of 

TC < T < Tl ( region (11) ), because this region just corresponds 

to the precursor state. In this temperature regime, the stable 

state is of course given by (~,ell)=(O,O). However, there may be 

finite possibility that the system locally surmount the potential 

barrier and is locked into the state (~,ell) simply by thermal 

fluctuation. This locally ordered state should fluctuate back to 

the stable state (0,0) within finite lifetime. We may expect the 

lifetime would be substantially longer than the period of lattice 

vibration. That is, the local ordered state (embryonic 

fluctuation) is quasi-static in the scale of phonon frequency. 

4.3 Solution for Embryonic Fluctuation 

Let us consider that embryo is static and is sitting at a 

particular position x xO' and we investigate on the spatial 

variation of the order parameter ~(x) and strain el1 (x) under the 
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particular boundary condition appropriate for the existence of 

the embryo: 

} as x ..,·±oa . (4.27) 

We solve the following coupled Euler equations: 

- K 
a2~ 

+ 
av 

= 0 
1 ax2 a~ 

{ (4.28) 

2 
a ell av 

0 - K -- + 
aell 2ax2 

under the above boudary condition. From eq.(4.28), the first 

integral is readily obtained as 

Kl (d~)2 
{2 dx + } 

where Vo is an integral constant. 

(4.29) 

When K = 
2 

0, eq. (4.29) can be analytically solved for all 

temperature regions with appropriate boundary conditions. To get 

a feeling for the discussion below, it is worthwhile looking in a 

situation with K = 
2 

o. In region (II) , the second boundary 

condition in eq.(4.27) requires VO= o. Eq.(4.29) then becomes 

51 



(4.30) 

This can be easily solved to give 

~(x)= 

-- B 4 4jT7K~(X-XO) R2 2jT7K~(X-XO) c- B 1/2 
[(2~-----)Y e +=Y e -(2j--+--)] 3T 2T T 3T 2T 

(4.31) 

where the constant Y is determined by the first boundary 

condition in eq.(4.27) as 

_(~ ~2 _ 2) + 2(~ ~4 _ ~ ~2 + 1)1/2 
2 2T 3T 2T Y = ~~----------~~----~----------- (4.32) 

The solution (4.31) just above TC (T =0.772 N TC) is shown in 

Fig.12(a). In this case of K2= 0, ell (x) is given in terms of 

~(x) as 

A 2 
-~ ~ (x). (4.33) 

As T approaches to TC' the spatial variations of ~(x) become 

kink-like, and eventually at T = TC' ~(x) represents a kink 

(soliton) boundary solution (eq.(B.2)) which separates a low 

temperature embryo from the matrix phase. 

It should be noted that the solution obtained in eq.(4.31) 

has somewhat unsatisfactory aspect in that d~/dX ~ 0 at x=xO. 
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Since we are assuming that ~(x)=~(-x), the above situation 

d~/dxlx=x is 
o 

implies that the spatial derivative at 

discontinuous, which is not physically plausible. This point will 

be discussed in §4.5.2 

For the completeness of the discussion on the 

transformation, solutions to eq. (4.29) with K = 2 
o for other 

temperature regions, that are not concerned directly with the 

following discussion, are shown in the Appendix B, in which brief 

account of the transformation scheme using those solutions is 

also given. (See also Fig.12.) 

In case when is included, it is impossible to solve 

eq. (4.29) 

K2 

analytically. We have obtained numerically the 

solutions ~(x) and ell (x) following the iteration method 
.; 

developed by Ishibashi et. al. 46 ) with a little improvements for 

effective convergence. The eq.s (4.31) and (4.33) were taken as 

initial configurations and the eq.(4.29) was used to check 

whether the solutions were convergent or not. The calculated 

values of ~(x) and ell (x) are plotted in Fig.11(b). 

The most interesting point of the numerical solutions is 

that, as T is decreased, the functional forms of ~(x) and ell (x) 

bear different characteristics; ~(x) becomes more 'kink 

(soliton) '-like, having interface region between the embryo and 

the mother matrix. (Previously, Yamada et.al. 27 ) call the entity 

including the interface region a 'dressed embryo'.) On the other 

hand. ell (x) simply shows gradual decay around x=xO. 

It is instructive to draw the 'trajectory' within 2-D (~-

ell) space by eliminating the spatial coordinate x from the 
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solutions ~(x) and ell (x). This gives the lowest energy path from 

(~,e11) to (0,0) to be followed by the representative point of 

the system as x is varied. The trajectories at various 

temperatures are plotted on the equienergy contour maps 

(Fig.11(c)). Notice that the representative points in the figure 

are plotted at equal interval 6x of the coordinate x. Therefore. 

the density of the points along the trajectory directly reflects 

the length of persistence of the state in the real space. The 

high density region around (~,e11) corresponds to the embryonic 

fluctuation or the dressed embryo. In region (11), the total 

system should be expressed by random distribution of these 

embryonic fluctuations throughout the mother lattice. 

4.4 Anomalous Incommensurability 

As is discussed briefly in §2, X-ray scattering at the 

precursor state sometimes shows remarkable peculiarity as 

summarized in the following; Ni-Ti-Fe alloy, a well known shape 

memory alloy, undergoes phase transition with decreasing 

temperature from 81 structure to a martensite phase through 

softening of TA phonon mode with q=1/3[110]19) (see Table I). 

Salamon18 ) first reported that there appears an intermediate 

state where q-values of the superlattice reflections are 

incommensurate before they 'lock' into the exact commensurate 

value of 1/3 in the low temperature phase. By the high-resolution 

X-ray study Shapiro et.al. 19 ) found anomalous behavior associated 
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with the incommensurability of the satellite peaks: Not only they 

are incommensurate in position, but the incommensurability 6q 

changes from Brillouin zone to Brillouin zone. Moreover, the pair 

. of peaks within a Brillouin zone does not satisfy cent er of 

symmetry around the Brillouin zone center, as usually does, but 

only maintain symmetry around the origin of the reciprocal 

'lattice. These unusual symmetry properties of 6q definitely rule 

out the ordinary incommensurate structure with CDW's or LDW's, in 

which case satellites should satisfy the center of symmetry 

around each Brillouin zone cent er as well as the translational 

symmetry with respect to translation of Brillouin zones. 

Salamon 22) et.al. pointed out very interesting feature on 

this anomalous incommensurability of the satellites in Ni-Ti-Fe; 

As is illustrated in Fig.l3, the observed diffraction pattern can 

be systematically reproduced if we assume that only satellite 

peaks have shifted to the positions expected in the rhombohedral 

martensite phase, while the Bragg peaks still maintaining the 

original cubic positions. They referred to this peculiar 

reciprocal lattice 

behavior was also 

as 'ghost 

found in 

lattice'. This 'ghost lattice' 

20) the precursor state of Au-Cd. 

Following Salamon et.al. when the relevant soft mode under 

consideration is the zone boundary mode (4.2), the 'ghost 

lattice' can be sketched as in Fig.l4. 

Yamada et.al. 27 ) constructed a possible microscopic model to 

explain the physical origin of the 'ghost lattice'. The basic 

idea of their model was that (i) the bcc matrix has a particular 

elastic property presented by a dip in TA phonon mode or the 
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presence of the 'soft mode' (§2.2.l(a)) and (ii) in the precursor 

state many 'embryos' or locally transformed microregion of low 

temperature structures are distributed in the matrix. They set up 

model system of l-D and 2-D lattices of atoms whose phonon 

dispersion has soft phonon modes. The displacement field was then 

calculated when the lattice is strained by a specific type of 

Kanzaki 47) force which stands for the existence of embryos and 

found that the lattice relaxation around the embryo gives 

modulation corresponding to the soft mode. They showed that the 

diffraction pattern of this spontaneously strained lattice indeed 

reproduces the characteristics of the 'ghost lattice', i.e., that 

the modulated lattice relaxation (MLR) around each embryo are 

essential to produce anomalous incommensurability ~f the 

satellite shifts in the diffraction pattern. 

Although their treatment elucidated possible origin of the 

'ghost' behavior, the discussion based on such specific lattice 

dynamical model left the point of generality and overall 

applicability of the idea unclear. In this subsection we will 

discuss the same problem utilizing the phenomenological argument 

developed in the preceding subsections. 

It is straightforward to obtain the diffraction pattern 

using the calculated values of ~(x) and ell (x) in the preceding 

subsection. Using eq.(4.l), displacement of the n-th atom 

associated with ~(x) is given by 

i q . na o 
e(qo) ~(na) e + c.c. (4.34) 
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In addition. we have the longitudinal component due to the 

strain field ell (x). 

(4.35) 

The diffraction spectrum S(K) is obtained by 

(4.36) 

i K . ( na + u 
F( K) ~ e n (4.37) 

n 

(4.38) 

In the calculation of the spectrum we neglect, for simplicity, 

the atomic scattering factor as well as the Debye-Waller factor. 

The calculated profiles of S(hkO) (k=l) are given in Fig.15. 

There are several important characteristics in the 

calculated spectra: 

(1) Throughout temperature range 1 < TIT < 1.322, the 
N c 

satellite peaks shift toward the origin of the reciprocal 

lattice. increasing the amount of shift as IKI is increased. 

while the fundamental Bragg peaks stay at the original regular 

positions. (See Fig.16.) 

(2) As the temperature is lowered below T < 1 (TIT < 1.3), c N 

the profile of the higher order satellite peaks starts to show 

complicated structure. Particulary it tends to split into two 
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peaks where the second peak seems to restore the commensurate 

positions. 

(3) The Bragg peaks show appreciable tailing which is 

convensionally called Huang scattering47 ) due to defects of 

various kinds. 

The characteristics (1) of course gives that of the 'ghost 

lattice' or anomalous incommensurability. It is noticeable, 

however, that the satellite peak positions are approximately half 

way between the commensurate positions of the high temperature 

and the low temperature lattices which are on the two straight 

lines given in Fig.16. 

The physical origin of the 'ghost lattice' is now clear; The 

strain field ell (x) around x=xO is essentially same as those of a 

'defect' such as impurity, vacancy, etc. The resultant 

diffraction effect is Huang scattering around the Bragg peak 

which gives tailing but not shift of the peak positions. The 

embryonic fluctuation ~(x), on the other hand, gives rise to 

superlattice reflections. If there were no strain, the peak 

positions should be at the commensurate positions associated with 

the Bragg peaks. However, in the spatial region where ~(x) ~ 0, 

the strain field has also appreciable values, which means that 

the embryonic fluctuations are preferentially embedded on the 

lattice with larger lattice constant; aO(1+1/2 ell) on average. 

- * Thus the satellite peak positions are at 1/2 h(1-1/2 ell)aO 
* rather that at 1/2 haO' 
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4.5 Summary and Discussion 

4.5.1 Summary of Results and Comparison with Experimental Results 

We have 'materialized', so to speak, the 'ghost' by 

identifying that the origin of the anomalous incommensurability 

is due to embryonic fluctuation which is coupled strongly to the 

strain. The discussion is based on the general expression of free 

energy functional characterizing first order phase transition. 

Therefore the results are not restricted by microscopic lattice 

dynamical model as previously assumed in the case of B-based 

alloys.27) In principle, any crystal system undergoing first 

order phase transition and satisfying the above condition 

(existence of strong coupling of order parameter to strain) would 

show 'ghost lattice' behavior. More precise experimental 

investigations on various substances are certainly necessary. 

As is described in the previous subsection, one of the 

important characteristics of the calculated pattern is that the 

profile of higher order satellites starts to split into two peaks 

as the tempertarue is lowered below T < 1 (TIT < 1.3). The c N 

secondary peaks are approximately on the commensurate positions. 

In the previous investigations on bcc metals Ni-Ti-Fe19 ) and Au­

Cd,20) the satellite did show anomalous broadening but not 

splitting. Recently, however, Kiat *7 et.al. observed definite 

*7 Private communication. 
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splitting of satellites while fundamental Bragg peaks remain 

single peaks above the ferroelastic transition of Pb2 (P04 )3 

crystal. This might be understood in terms of the characteristic 

feature described above. 

Next we discuss the relation between our results for the i-D 

system and experimentally observed shift pattern of satellite 

reflections in 2-D reciprocal space. Notice the results presented 

in §4.4 was calculated for the case in which A<O. If we take A>O, 

from the analogy to K2= 0 case (eq.(4.26)), then the longitudinal 

strain will be a contraction toward the embryo center, which 

results in a similar diffraction profile to those shown in Fig.15 

except that the direction of the shift is reversed. That is, all 

of the superlattice reflections shift away from the origin of the 

reciprocal lattice. If we extend the model to two-dimensional 

system in which A is allowed to be orientation-dependent in such 

a way that A is negative in one direction and is positive in the 

other which is perpendicular to the former. This spatial 

dependence of the sign of A may be expected to exist due to the 

intrinsic unisotropy of the parent structure. We can thus 

reproduce overall 'swirl' shift pattern of superlattice 

reflections observed in Ni-Ti-Fe19 ) and AU-Cd. 20 ) 

4.5.2 Limit of Our Approach 

Let us now discuss some problems still remaining in our 

treatment; The present treatment is based on the assumption that 
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the system will be locally locked-in at ~=(~,ell) by thermal 

. activation. Let us consider the 'creation energy' E(~O) of an 

embryonic fluctuation with an arbitrary amplitude ~O at x=xO' 

This ·was already discussed by Falk48 ) in a simpler case (no 

coupling between the order parameter to some other physical 

quantities). Following similar procedure given by Falk, it is 

easy to show that the creation energy is monotonically increasing 

with increasing ~O. Therefore, against our assumption, there 

seems to be no particular reason for the system to lock-in to the 

value of ~ even locally as far as the energy given in eq.(4.23) 

is concerned. 

This point seems to be closely related to the inadequacy of 

the solution ~(x) in the region (11). As has been pointed out in 

§4.3, d~/dx is discontinuous at =x 0 which is certainly 

unphysical. The most probable modification of the theoretical 

scheme to get rid of this inadequacy would be obtained by 

including higher order derivatives such as (a2~/ax2)2 in the free 

energy density. That is, it will be necessary for describing 

correctly the immediate neighborhood of the embryo cent er to keep 

shorter wave length fluctuations upon evaluating the free enegy. 

We expect that when this singularity is removed by including 

higher order derivative terms, E(~O) would have a local minimum 

at ~O~~. 

The careful reinvestigation of the validity of the boundary 

conditions to be imposed is certainly necessary. In connection 

with this point, we refer to Falk's treatment. In region (11), he 

has' given a solution which is quite different from our dressed 
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embryo picture. His solution is characterized by: ~~~, d~/dx~O, 

as x~±oo. The major reason of the difference resides in the choice 

of DO' In our treatment, we have chosen DO = 0 + E ( with E an 

infinitesimal positive value), while it was to taken to be a 

finite positive value in Falk's treatment. 

4.5.3 Future Problems 

We have considered in this section that the embryonic 

fluctuation is a static entity. However, the lifetime of the 

embryonic fluctuation should be finite as has been stated in §2 

and, hence, it is certainly necessary for the correct description 

of the system above the transition temperature to deal with the 

dynamics of the system. The dynamical problem associated with 

this particular system having long-lived embryonic fluctuation 

may be divided into two parts; the dispersive and the dissipative 

problems. 

The former put the lattice dynamical property in question. 

As was mentioned in §2.2.1 there is already the anomaly in the 

lattice dynamical property of the parent lattice; a dip in phonon 

dipersion curve. The existence of the embryonic fluctuations may 

also affect the lattice dynamical property of the system. Besides 

the above anomaly in phonon dispersion curve, extra excitation 

forming subsidiary branches in addition to ordinary phonon 

branches have been observed in diffuse w-phase in Zr-Nb 

11 16,49) a oy. Although this phenomena may be closely related to 
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the lattice instability against TA2 phonon mode with q=1/3[211] 

and e//[111] (see Tabel I) and the existence of the embryonic 

fluctuations, a satisfactory explanation has not yet been given. 

We speculate, however, that this new excitation may be ascribed 

to the lattice dynamical property within the embryonic 

fluctuation, which depends on the curvare of metastable minimum 

of the local potential Vloc ' To check this it is effective to 

start with the hamiltonian in the form of eq.s(3.1)-(3.3), with 

suitable form for VI to have triple minimum as eq.(3.4). oc 

The latter, on the other hand, deals with the relaxation of 

embryonic fluctuations, in which nucleation, annihilation and 

coagulation processes of embryonic fluctuations are involved. A 

time-dependent-Ginzburg-Landau approach50 ) with the GL free 

energy (4.14) will be useful to this problem, by which a 

quantitaive discussion can be made on, for example, the central 

peak problem (§2.2.1).15,51) 
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§ 5. CONCLUSION 

We have discussed on the precursor phenomena and ensuing 

martensite phase transformation ( or similar general first order 

phase transformations in solids) based throughout on the idea 

that the key mechansism of these phenomena is attributable to the 

motion of locally excited long-lived tristable fluctuations, 

which we called 'embryonic fluctuations'. Precursor phenomena 

which appear as various anomalies in the physical properties 

above the transition temperature are reviewed in this context. 

Based on this idea we have developed a semimicroscopic treatment. 

Various features of the martensite transformation are 

successfully explained including precursors in terms of embryonic 

fluctuations. In particular, application to Ni-AI 7R structure 

has proven that the present approach is quite effective to 

elucidate the ground state structure in the martensite phase. 

A thermodynamical viewpoint has been also establised by 

deducing the expression of free energy functional. Embryonic 

fluctuations are obtained as the thermodynamcially metastable 

state just above the first order transition point, if we assume 

particular boundary conditions to determine the space variation 

of the order parameter. 

Finally let us emphasize an underlying significance of the 

physical meaning of the precursor state associated with the first 

order phase transitions. As has been mentioned in introduction 

order parameters describing the second order phase transitions 

can be specified either by some soft phonon modes or by classical 
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bistable pseudo spin modes, and the associated critical phenomena 

are characterized by the critical divergence of the correlated 

fluctuations of these modes. 

The precursor phenomena are quite different from those 

critical phenomena, because· the former are associated with the 

metastable state of tristable fluctuations, which inevitably 

introduce strong nonlinearity in the system. Our macroscopic 

treatment presented in §4 may be viewed as one of the challenges 

to these difficulties, though incomplete in that we have treated 

the embryonic fluctuations as completely static. The concept of 

the embryonic fluctuations may provide a wholly new aspect of the 

understanding of first order phase transition, whose formulation 

of the framework has just begun. 
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APPENDIX A 

Transion Points Obtained fro. The Free Energy (4.14) 

Before calculating the transition points let us evaluate the 
N 

sign of each 
c/kBT 

coefficient. Since e > 0 irrespective of the 

temperature-dependence of ~, the coefficient c is easily proved 

to be positive definite from eq.(4.17). On the contrary, as is 

seen from eq.(4.16), the coefficient b can change its sign as 

follows; 

if 4 , < then b 
> 

o . (A.l) 

The condition a = 0 yields a transition point Tc when the 

transition is of second order. This can be read from eq.(4.15) as 

+ 2 (A.2) 

Note that eq.(A.2) agrees, as it should, with the condition of 

the second order phase transition point directly obtainable from 

the mean field eq.(3.27) through the equation 

d 
d<O) r.h.s. of (3.27) ] '<0>=0 = 1 (A. 3) 

with z=2. 
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On the other hand, the transition point when the transition 

is of first order is obtained from the situation in which both 

heights of absolute minimum and metastable minimum of the free 

energy density are equal. This situation can be expressed in 

terms of those coefficients as 

16ac 3b2 . (A.4) 

The system described by the free enegy (4.14) thus has a 
N 

possibility that, depending on the temperature-dependences of E 

and J, first or second order phase transitions may take place. To 

inquire this possibility more quantitaively, the same 

temperature-dependences for E and K appear in the coefficients 

are assumed here as were used in §3.4. Using the same notation as 

that was used in §3.4, 

J B 

2 
= eT - Y/T ( Y > 0 ) (A.5) 

(A.6) 

2 
One can soon notice that from eq.(A.5) eT - Y/T diverges as T ~ 

00 and tends to zero as T ~ O. From this fact, together with 

(A.l), one can show the following; 

st on b > 0 
< 

(A.7) 
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In addition, the unique existence of Tl (>0) such that 

on (A.8) 

is also shown. Noting that the necessary and sufficient condition 

for the homogeneous part of the free energy density in eq.(4.14) 

to have triple minima is b < 0 and b2-4ac > 0, the first order 

transition can take place in the case where TO(~T (!)<T (I). 

Conversely speaking, if the transition occurrs in such a case 

that TO(Y»T1 (Y), then the transition should be of second order. 

Therefore, the condition 

(A.9) 

yields implicit determination of the parameter Y corresponds to a 

crossover region between first and second order phase 

transitions. The value of Ym is numerically estimated as Ym~12.5. 

The transition points are then calculated either from eq.(A.2) or 

eq.(A.4) for two values of y, between which Y is to be m 

interposed, and the results are tabulated in Table 11. together 

with the results obtained by the direct calculation from the mean 

field eq.(3.27). 
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APPENDIX B 

Exact Solutions of Eq.(4.27) for TeIperature regions Ill. IV When 

K =0 
2 

We give here exact solutions to eq.(4.27) when K2 = 0 for 

other temperature regions. 

2 At Tc' 16 TC = 3 B holds. U(~,ell) then becomes 

J ]: ~ - J .Q. ~3 ) 2 
2 6 

(B.l ) 

which is now inserted to eq.(4.27). Using the boundary condition 

Uo= 0, eq.(4.27) is readily integrated to give 

~(x) ±[ e 
±2JT7j(~ (x-xo) 

]1/2 . (B. 2) 

If we take plus sign in front of the brackets, then ~(x) 

represents a phase boundary which separates from the matrix an 

embryo with the amplitude ~ at the embryo center, and if we take 

minus sign, ~(x) is a boundary separating an embryo of the other 

variant whose amplitude at the embryo cent er is equal to -~. In 

the former if we take plus(minus) sign in the brackets, then the 

boundary is a (an anti-) kink (shown in Fig.12(b) is the latter) 

while in the latter the results would be interchanged. 

Below Tc (region (III),(IV)) the situation will change; we 

have to replace physically plausible boundary conditions as 
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~ ~ -~ as x ~ -00. ~ ~ ~ as x ~ 00 

or (B. 3) 

~ ~ ~ as x ~ -00. ~ ~ -~ as x ~ 00. 

The corresponding Uo to (B.3) is Uo -U = -u(~.ell (~)). Since 

(B.4 ) 

where 
,.., 
~ = ~2 • M 

.:. = 
-2 
~ . eq.(4.27) becomes 

(B. 5) 

Using the elliptic integral of the first kind, eq.(B.5) is 

integrated to give 

3~ _ 3/3 
sin-1 J ... 2c 

~ ... 

Taking the inverse function. 

(B. 6) 
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tan- l sinh ( ±S J(l - ~B)~ (x-xo) ) 
2~ ~ 

(B.7) 

Upon solving for = and then taking a root, ~(x) can be obtained 

as 

~(x) 

3B [3----- + 

2~ 

(B.8) 

where ~(x) is a (an anti-) kink if the plus (minus) sign is 

chosen. In eq.(B.8) only the solution representing an antikink is 

shown in Fig.l2(c). 

Note that from eq.s(4.3l), (B.2) and (B.8), one can easily 

imagine the phase transfomation process (see Fig.B.l); Above T c 

there appear embryonic fluctuations by thermal activation, but 

the density of embryos is so dilute that the form of a single 

embryo is well expressed by eq.(4.3l) (Fig.B.1(a»). The boundary 

between an embryo and the matrix becomes clearer as T ~ T . Since c 

due to the symmetric property of the system the exisitence of an 

embryo of the other variant is also allowable. At TC the boundary 

of the former becomes a kink-antikink pair (eq.(B.2» of one kind 

of variants whereas the boundary of the latter will be that of 

the other kind (Fig.B.l.(b». The kinks with the opposite signs 

will annihilate to form a large domain of the one kind while the 

kinks with the same signs will collapse to form an antiphase 

boundary which separates two variants (eq.(B.8), Fig.B.l(c». 
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Then 

is 

in 

an effective interaction between those antiphase boundaries 

expected to come into play, as that between discommesurations 

45) the incommesurate structure, by which an alternative 

arrangement of different variants realizes below This 

arrangement of variants is one of characteristic features usually 

observed in martensite structure (Fig.B.l(d)). 

In this way, the tentative explanation of the transfomation 

process according to the MLR picture presented in §2.2.1 can be 

confirmed by using these solutions. 
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Table I 

Soft phonon modes and resultant low temperature hexagonal 

based structures. Note that the so-called w-phase structure can 

be included in a category of martensitic transformation in view 

of the displacive nature upon the transformation. 

soft mode low temp. exmaple 

e structure 

============================================== 

1/2<110> 

1/3<110> 

"'1/7<110> 

6<110> 6",0 

1/3<211> 

a Ref.12. 

b Ref.13. 

c Ref.14. 

d Ref.15. 

e Ref.16. 

<110> 

<110> 

<110> 

<110> 

<110> 

2H martensite Cu-Al-Nia 

9R martensite Au-Cu-Zn b 

'7R'martensite Ni-Alc 

B19 Nb3Sn d 

w-phase Zr-Nbe 
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Table 11 

Transition points obtained from the criteria (A.2) and 

(A.4). Those calculated directly by eq.(3.27) are also shown for 

comparison. 

'Y TC 

from from eq.(3.27) 

======================================== 

0.4 

20 

.7320 eq. (A.2) 

3.380 eq. (A.4) 
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FIGURE CAPTIONS 

Figure 1. Schematic illustration of the micro(semimicro)scopic 

model. The atoms interact through a harmonic nearest neighbor 

coupling with a coupling constant K and also reside in a single 

particle potential VI having triple minimum. The displacement u oc 

of an atom is defined with repect to the high temperature phase 

equilibrium position represented by the central minimum of Vloc . 

An I-D lattice with period aO is shown. 

Figure 2. Schematic illustration of the construction process of 

martensite structure from a bcc(B) or a CsCI(B') lattice. In the 

following simar figures, the large open circles denote the A 

type atoms on the plane of z=o and small full circles the B type 

atoms on the plane of z=1/2. (a) Atomic arrangement in the 

condensed state of a TA phonon with q=qo (qo//[llO],e//{lIo]), 

which then forms locally the fcc structure caused by the further 

displacements of atoms indicated by the arrows. (b) The chain of 

fcc 'clusters' (enclosed by the thick lines). One of the 

'cluster' is indicated by hatched region. Note that strains at 

the cluster boundaries reslut from the process (a) can be removed 

by the relative slips of the cluster with appropriate amounts in 

the directions shown by the arrows. (c) The resultant martensite 

structure. The same cluster chain as indicated in (b) is shown by 

the dashed lines. 
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Figure 3. Assignment of a spin variable to 3 types of cluster 

states; d=O stands for the undeformed cluster state and d=±l for 

the tilted cluster states. 

Figure 4. (a) Schematic illustration of the model composed of 

clusters (hatched region) connected by harmonic springs with 

sping constant K. Only two consecutive clusters .with states, for 

example, d=O and d=l are shown. (b) The corresponding local 

potential-spring model. (See also the caption of Fig.1.) 

Figure 5. The calculated variation of the order parameter <d> 

(solid line) and of the embryo density <d
2

> (dashed line) with 

temperature. The abscissa is normalized by TC' Notice ~d > 

remains finite even above TC and gradually decreases as the 

temperature is increased. In the inset, the experimental result 

by the X-ray diffraction in AuCd (Ref. ) is shown for comparison. 

Figure 6. Schematic illustration of the construction process of 

9R martensite. (a) Atomic arrangement in the condensed state of a 

TA phonon with Qo=1/3[110]. Arrows indicate the further 

displacements of atoms introduced to form locally the fcc 

structure. (b) The chain of fcc 'clusters' embedded in the 

resultant structure. Arrows indicate the relative slips of the 

cluster to take place at the cluster boundaries in the [110] 

direction. The amount of the relative displacement of the cluster 

due to the slip is 1/6. (c) The resultant 9R structure. The 
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rectangle enclosed by the solid line is the unit cell of the 9R 

structure. 

Figure 7. Schematic illustration for the formation of the cluster 

(embryo) when QO=1/7[110]. (a) Dashed lines represent the small 

amplitude phonon condensed state with QO=1/7[110]. Further 

displacements of atoms to form local fcc clusters are indicated 

by the arrows, which result in (b) a postulated cluster composed 

of six (110) layers (shown by the shaded area). 

Figure 8. Schematic illustration of the costruction process of 

the martensite structure of Ni-Al. (a) See captions of Fig.7. (b) 

Clusteres are shown by the thick lines. Slips are troduced at 

the cluster boundaries in the directions indicated by the arrows. 

In this case the amount of the relative displacement due to the 

slip is 1/4. (c) The resultant martensite structure, which is 

essentially identical to the sao-called (5-2) structure as is 

demonstrated in (c'). The rhomboid enclosed by the thick line in 

(c') is the monoclinic unit cell. Note that resultant structure 

is viewed as alternative stacking of a distorted fcc and a 

distorted bcc slab. (See also the text.) 

Figure 9. Comparison between the calculated (below) and the 

experimental intensity profile (Fig.2 of Ref. ). 

Figure 10. Schematic illustration of potential function f~ 

describing the first order phase transition The abscissa 
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represents the order parameter ~. Note that the states 

corresponding to ~=±~ (at which the potential have local minima) 

are energetically degenerate, which is essential to the low 

temperature (T<T ) structure with two variants of ordered phase. c 

Figure 11(a). Potential surfaces within (~,e11) space at various 

temperatures; from above, T = 1.020 (= 1.322 T ), T = 1.000 (= c 

1.296 TC T = 0.780 (= 1.011 T )~ and T = 0.772 (N T )6 

Figure 11(b). Spatial variations of ~ and ell which are the 

solutions to eq.(4.28) under the boundary condition (4.27) at the 

same temperatures as those in Fig.12(a). Both ~ and ell are 

normalized by ~ and 811 , respectively. The embryo cent er Xo is 

taken to be at origin. 

Figure 11(c). Trajectories at the temperatures shown in Fig.12(a) 

are plotted on the contour maps of the potential surfaces. Those 

shown by open circles are representative points plotted at equal 

interval nx of the coordinate x. Note that these trajectories 

pass through the saddle point on the potential surface. 

Figure 12. Exact solutions to eq.(4.29) for various temperatures 

when K2=0. Xo is taken to be at origin. (a) An embryonic 

fluctuation (eq.(4.31)) just above TC (T=0.772N T ). (b) Antikink . c 

solution (eq.(B.2)) at the transition temperature. (c) Antikink 

solution (eq.(B.8)) below T (T=0.5=0.6479T) representing the c c 

antiphase boundary separating two martensite variants. The 
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transformation scheme can easily be seen from these solutions 

(see also the Appendix B). 

Figure 13. Relation between satellite reflections observed by 

Shapiro et.al.(Ref. ) and the rhombohedral 'ghost lattice'. The 

arrows represent the directions of displacements from the exact 

commensurate cubic positions, whose relative magnitudes are 

expressed by the length of the arrows. Note that the satellites, 

with few exceptions, shift generally toward rhombohedral 

satellite positions (shown by open circles) while the fundamental 

Bragg reflections are centered on cubic reciprocal lattice 

points. (See also Fig.15.) 

Figure 14. Rhombohedral 'ghost' reciprocal lattice when t soft 

mode is the zone boundary mode. Open and solid circles indicate 

superlattice and fundamental Bragg reflections, respectively. 

Note that only superlattice reflections have shifted while Bragg 

peaks do not shift, retaining the original cubic symmetry. The 

amount of the shifts of the satellite, shown by the arrows, are 

generally toward the rhombohedral commensurate satellite 

positions, i.e., the Bragg positions of the 'ghost lattice'. 

Figure .15. Calculated diffraction patterns for h~4, k=l at the 

same temperatures as those 

tailing (Huang scattering) 

in Fig.12. Notice the appreciable 

of the fundamental Bragg peaks. The 

profiles of the satellites are shown in the insets with enlarged 

scales. The lines indicate the commensurate positions. It is 
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apparent that superlattice reflections are shifted, with their 

amount of shift increasing as IKI is increased, toward the origin 

of the reciprocal lattice while the Bragg peaks centered on the 

original reciprocal lattice points. Note that below T<l 

satellites split into two peaks where the second peak seems to 

restore the commensurate positions. 

Figure 16. Calculated 'ghost' behavior of the superlattice 

reflections at T > Large solid circles represent the 

fundamental Bragg reflections and small solid circles represent 

the superlattice reflections. The fundamental reflections always 

stay at the original regular positions (on the holizontal line), 

while superlattice reflections tend to shift to the commensurate 

positions of the low temperature lattice (shown by the open 

circles) as the temperature is lowered. Their actual positions 

are approximately half way between the commesurate positions of 

the high and the low temperature lattices. 

Figure B.1. Schematic illustration of the ase transformation 

process. (a) Above T embryonic fluctuations with different kind c 

of variants are created randomly within the system. (b) The 

boundaries separating embryonic fluctuations from the matrix 

become kink-antikink pair. At the same time indirect interaction 

between these kinks develop br which the kinks can migrate. The 

kink-antikink pair of the same variant annihilate to form a large 

domain while an antiphase domain boundary is formed by a collapse 

of the kinks of the different variant. (c) Antiphase domain 
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boundaries would rearrange their positions due to the interaction 

between them. (d) Below T martensite phase with a regular array c 

of antiphase domains is formed. 
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