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Abstract

In this thesis I show the results of study of the non-Fermi liquid (NFL) behavior in
Ce(Ru;—.Rh;)sSi; system from the viewpoint of the quantum phase transition (QPT),
which occurs at the quantum critical point (QCP) at T = 0 due to the instability of
the quantum critical fluctuation. - Ce(Ru;_ Rh;),Si; system has three magnetic QCP
r. ~ 0.04, 0.4 and 0.5. First I investigate the FL behavior for x = 0.03, where the
concentration is close to the QCP and the chemical disorder is expected to be small.
In the low Rh-concentration region z < 0.03, the self consistent renomalization (SCR)
theory for the antiferromagnetic case works well. On the other hand, in a wide region of
the intermediate Rh-concentration 0.35 < z < 0.5, the NFL behavior was observed. In
this region, it has been revealed that the zero field properties originate from the quantum
Griffiths singularity at T = H = 0 from the detailed study of the resistivity and the
susceptibility as a function of a temperature and magnetic field. This singularity is caused
by the interplay between the quantum critical phenomena and the disorder effect due to
the alloying. In the high field region the resistivity at each magnetic field can be scaled
onto one universal curve. It means that the quantum critical description is applicable in
the high field region. On the other hand, in the low field region we discovered the scaling
form of the susceptibility, which is considered to be in a different regime from that in the
high field region. It should be driven by the 1nterplaV between the ‘chemical’ disorder and
the quantum critical fluctuation.



Chapter 1

Introduction

1.1 Heavy Fermion System

Since K. Andres et al. discovered the anomalous large electronic coecfficient v (~ 1620
mJ/mollk?) in CeAls in 1975 [1], such “heavy fermion” properties observed in many
Ce and U-based intermetallic compounds have been studied by many theoreticians and
experimentalists as a central issue in strongly correlated electron systems. The ~v-value
of metal is proportional to the effective mass of conduction electrons m*, therefore these
materials are called “heavy fermion (HF) system™. These heavy mass also given an
enhanced Pauli paramagnetic susceptibility and a huge coefficient A of T?-term of the
resistivity. The ratio between the square of v and A4 has a universal value, A/y% ~
1 x 1073 (Kadowaki-Woods relation) [2]. These thermodynamic and transport properties
of HF system can be understood in term of Landau’s Fermi Liquid (FL) theory. In the
FL theory the correlation between conduction electrons is renormalized to the effective .
mass of quasi-particles which can be handled in the free electron approximation. In the
HF systems the enhancedment of m* reaches around 100 or 1000. This anomalous mass-
enhancedment is due to the Kondo effect which is the hybridization between conduction
electrons and localized f-electrons.

Kondo cffect was originally discovered in-the nonmagneic metal with magnetic impu-
rity, which is described with the sd hamiltonian,

H=—JsS | (1.1)

where s and S is the spin of the conduction clectron and the magnetic impurity respec-
tively and J is a exchange coupling constant between the both spins. According to this
single impurity Kondo model, the clectorn of the magnetic impurity (d or f-electron)
localized on the magnetic atom at high temperature, and the conduction electrons arc
scattered by the localized moment of this d or f-electron through the sd interaction. J.
Kondo calculated the resistivity with this sd model within the second order Born approx-
imation and obtained the —logT dependence [3]. At low temperature such a localized
moment strongly couples with the spin of conduction electrons antiferromagnetically, then,
forms the singlet state (Kondo singlet). At present exact solution for the Kondo effect
is obtained, which tells us that at low temperature the resistivity and the susceptibility
continuously approaching to the finite value at 7 = 0 (unitarity limit) with the tempera-
ture dependence, 1 — AT? and (1+- BT?)™! respectively. The physical properties of single
impurity Kondo system can be sc}aied by Kondo temperature Tk which is the coupling
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encrgy of éhc Kondo singlet state given by,

N
| 7| pler)
where AV is the number of the conduction electron, W is the half width of the conduction

electron band and p(er) is the density of state (DOS) at Fermi cnergy. The coupling
constant J in the sd hamiltonian can be derived from the impurity Anderson hamiltonian

kaTk = W exp(— ) (12)

H = Z ekc,i;’-‘,ck,, + Z Eff;fa' + Unf,nf_, -+ Z("L,fc];’o,f, + thff;ck:d) ‘ (13)
o i ks

where €, is the energy of the conduction electron with the wave vector k, E; is the
cnergy level of the impurity f-clectron, U is the intra-atomic Coulomb repulsion between
the f-clectron and Vi, f is the matrix element for the hybridization between the impurity
f- and conduction electron. cg, . c;cd, f> and f} denote the annihilation and creation

operators for the conduction and f-electron respectively. When the fourth term is treated
perturbatively and only the freedom of the spin is considered, .J is given by,

1 1

J=Ny |V 2((,,.-+Ef-I-E'—f

) <0 (1.4)

The negative J can be derived from the Anderson hamiltonian naturally.

However such a single impurity Iondo model cannot explain the physical properties of
HF systems perfectly because Ce or U-atom construct the regular lattice (Kondo lattice),
which should be described by the periodic Anderson hamiltonian,

; ; 4 i t
H = kz ekCTk.rrcke" + kz Ek:ff;c.cfka" + T{: Zq: Z fk - Qtrfk’ + q.—dfk’,—"fk=”
T ' o ' ) kk' o

+ 2 (Vi sk Tl + Vi T o Cles) | (1.5)
ko | A

As reflect to the periodicity of the magnetic ion, quite different behavior is observed at low
temperature, especially in the resistivity. At high temperature Kondo effect is realized
at cach Ce or Us-site and the resistivity shows —logT dependence, then shows a broad
maximum around Ti and decreases as decreasing a temperature. It can be considered
as the adearancc of the coherent state; far below Ty f-electrons form not the Kondo-
singlet on cach Ce or U-site, but the quasi-particle band which has a large DOS at Fermi
cnergy ep. In Fig. 1.1 the schematics of the DOS of the HF system is shown. These
quasi-particles behave as heavy fermions, and show FL properties. Tk is the width of the
heavy quasi-particles bands. In Fig. 1.2 [4] the magnctic resistivity of Ce,La;_,Cug is
~ shown. In this figure we can sce the drastic change from single impurity Kondo system
to IKondo lattice system as increasing the Ce-concentration. Kondo effect is the key to
understand the physical properties of the HF system.

On the other hand the magnetic interaction, RKKY interaction, between the localized
moments of f-clectrons also due to the hybridization between conduction electrons and -
f-electrons tends to develop the long range magnetic order in Kondo lattice systems. It
causes the competition between magnetic interaction and Kondo effect. Because of this
competition HF systems show rich variety in their ground state. They can be roughly
divided into three groups :

[S™)
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1. non-magnetic state : CeRuySis , CeCug , CeNipGe, etc.
2. .magnctic state : CeRh3Siy , CeRuyGe,y , CePd;,Si; ete.
3. superconducting state : CeCu,Siy (S-phase), URu,Siz . UPt; etc.

The energy of the RKKY interaction can be given by using .J as,
Trixy ~ J2/W (1.6)

and Ty is given by Eq. 1.2. Both Tk and Triky are the functions of the dimensionless
parameter J/W with different, dependences. S. Doniach obtained the schematic phase
diagram of the Kondo lattice shown in Fig. 1.3 [65]. In the low .J/W region where Tryry
> Ty ., magnetic ground state, usually antiferromagnetic ground state, is realized. As
increasing J/W Ty increases more rapidly and Ty decreases because the development of
magnetic order is suppressed by Kondo effect more and more strongly. Then at certain
value (J/W).. magnetic instability point, magnetic ground state is collapsed and above
(J/W)e where Thrry € Tk non-magnetic ground state is realized. In the magnetic
region near the magnetic instability point magnetic order has a itinerant character with
a partly reduced magnetic moment (~ 107! pp ), for example UPdyAlz(~ 0.85 pp ) [5],
CePd;Siy (~ 0.66 pp ) [6], or ultra small moment (1072 ~ 1073 pp ), for example UPt;
(~ 0.02 pug ) [7]. CRuySis (~ 0.02 pg ) [8]. The problem of the ultra small moment
has been studied from the point of view of the time-dependent order parameter which
should fluctuate slowly. Even in the nonmagnetic region where FL with heavy quasi-
particle is realized, strong antiferromagnetic fluctuation exist and can dominate their
low temperature properties. In this region, the ground state can be changed by tuning
an external parameter such as a pressure or composition very casily. Many intercsting
propertics of heavy fermion systems, like exisotic superconductivity or non-Fermi liquid
(NFL) behavior ete. , come from this magnetic instability.
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Figure 1.1: The schematic of the DOS of HF system is shown. By the hybridization the
energy level of f-electron is broadened and the quasi-particle band with a half width ~
kgTx is formed near the Fermi level.
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Figure 1.2: The resistivity of Ce;La;_.Cug is shown [4].
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Figure 1.3: The schematic phase diagram of HF 'system (Doniéch phasc diagram) [65]
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1.2 Non-Fermi Liquid Behavior

FL is a keyword to describe the low temperature properties of the HF systems which show
no magnctic or superconducting phase transition down to 0 KX, which is characterized by,

e specific heat is proportional to the temperature (C(T) = 4T)
e magnctic susceptibility shows no temperature dependence (x(7') ~ const.)
e electrical resistivity shows a T2-dependence (p(T) = AT?)

These FL behavior are led from the one particle excitation at low energy region.

Recently so called non-Fermi liquid (NFL) behavior has been observed in some HF
compounds which locate very close to the magnetic instability point, for example CeCug_pAu,
. U.Y1_.Pd;s [9, 10]. Characteristic feature of NFL is a weak divergent or much stronger
temperature dependence of the physical quantities than that expected from conventional
FL theory;

o C/T ~ —logT
e p~T"(n<2) |

The temperature dependences of some physical quantities in ty plcal compounds which
show NFL bchavior are shown in Tab. 1.1.

As I mentioned in the last section, the ground state of the HF system can be changed
from magnetic to nonmagnetic on the 77 = 0 line caused by the enhancedment of the
Kondo effect. The Kondo effect quenches the degree of freedom of the localized spin
dynamically, which plays a role of quantum fluctuation to suppress and collapse the long
range magnetic order at 7 = 0. It means that the magnetic-nonmagnetic transition in
HF system by changing the parameter J/W is a quantum phase transition (QPT), and
we can call (J/W). magnetic quantum critical point (QCP). Some theoreticians cxpect
the anomalous temperature dependences of the physical quantities considered as NFL
behavior in HF system near the QCP caused by the anomalous low cnergy cxcitation
due to the quantum critical fluctuation [11, 12, 13, 14]. For example, T. Moriya et al.
predicts the temperature dependence of the specific heat and the resistivity near the
antiferromagnetic GQCP, which is C(T)/T ~ 1 — VT and p(T) ~ T'3 respectively [13].
These predictions are quite same to that based on the renormalization group theory
developed by A. J. Millis {11]. In Fig. 1.4 the schematics of the NFL ncar the QCP is
shown. The Neel line in Fig. 1.4 is the static phase transition temperature caused by the
RIKKY interaction, while the coherent line is the crossover line to FL state caused by the
quantum fluctuation (INondo fluctuation). These theory tell me that the NFL behavior
in HF system can be the evidence for the QPT in itinerant magnetic system. It is the
reason why the study on NFL behavior is one of the central issues in HE physics.

Experimentally it is not obvious whether the NFL behavior is caused by the QPT,
yet. One of the reasons the NFL is considered to be associated with the QPT is it has
been observed in the system near the QCP, however there is two doubts. One of them is
a disorder cffect for the system. There are several ways for tuning the parameter (J/W).,
for example alloying or applying a pressure. In alloying system we must consider some
kind of disorder effect, crystallographic or magnetic disorder, which is caused by the
random substitution of the constituent atoms for the different atoms. A crystallographic

6
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disorder pr'{oduccs the distribution of the local unit cell volume randomly, and it distributes °
the Kondo temperature Tk. The distribution of the Kondo temperature is also possible
senario for the NFL in alloying system as well as the QPT. In this senario the NFL
behaviors, anomalous strong temperature dependences of physical quantitics, are caused
by the remaining local spins which has the low Kondo temperature. When the distribution
is sufficiently wide as whose tail extends down to T = 0, FL is unstable and the singularity
which causes the NFL behavior is given rise to at 0 K. E. Miranda et al. predict the weak
divergent behavior of thermodynamic quantities, and anomalous low energy excitation
based on this ‘Kondo Disorder’ model [15]. UCus-—.Pd, system is considered to be a typical
example for the Kondo Disorder model, whose thermodynamic and transport properties
can be explained very well by assuming the distribution of the Kondo temperature [16].
In alloying system the frustration or randomness of the magnetic interaction can be also
occurred, which produces random magnetic order, especially spin glass order. S. Sachdev
predict the NFL behavior near the QCP in the metallic spin glass case, which is very
similar to that in the antiferromagnetic case [14]. The origins of the randomness of the
magnetic order and the distribution of the INondo temperature are same, which is the
random distribution of the coupling constant .J between conduction electrons and f-
clectron, because the magnetic interaction in Kondo lattice system is RKKY interaction.
Therefore there can be the combination the distribution of the Kondo temperature with
the random magnetic interaction. In a recent paper, A. H. Castro-Ncto et al. has proposed
the possibility of the ‘Quantum Griffiths Phase™ near the QCP in a disordered system,
where the NFL behavior is expected [17]. In 3.3.2 T will discuss on this model again and
in detail.

Another doubt is the existence of the case the NFL behavior is not observed in spite
of the system can be considered to be near the QCP. CeRh,Si, is an antiferromagnetic
compound with Ty = 35 I, whose Ty decreases as applying a pressure and vanishes around
11 kbar, however very ncar the critical pressure, even at 11.5 kbar, the NFL behavior has
not been observed in a resistivity measurement [18]. There arc at least three possible
interpretation for the FL near or at the QCP, like CeRh,Si; , as,

1. The region where the NFL behavior is observed is very narrow, only just on or
extremely close to the QCP.

[3V)

. The magncetic-nonmagnetic transition is not sccond order but first order phase tran-
sition, in which casc Ty jumps from finite value to 0 discontinuously thercfore there
can be no quantum critical region.

3. For the NFL the disorder cffect is necessary in substance. Most of compounds
which show NFL behavior are the alloying system. However the difficulty of this
interpretation is the cxperimental fact of the appearance of the NFL behavior in
pure system, for example CePd;,Siy at p. (~ 28 kbar) [18].

It is very important step to clarify the difference between the case which the NFL behavior -
is shown and is not to know the physical origin of the NFL.

Above mentioned, there is no consensus for the origin of the NFL bcehavior in HF
system although many cxperimental works have been concentrated to clarify it. Both
QPT and disorder are possible origins for the NFL. In this thesis I will introduce our
experimental result for the NFL and FL behavior in Ce(Ru;—,.Rh,)2Si; system which has
three QCP (will be introduced in more detail in next section) , and discuss the important
role of the disorder and the combination it with quantum critical phenomena for the NFL.



Table 1.1: Typical compounds which show NFL behavior

C(T)]T x(T) Ap(T) Ref

. CeCusgAug; | —logT 1-TY? T [9]

C.Y,_.Pd; | —logT T°93 1-=T [10]

CeNiy Gey 1=TYV2 1TV 732 19

UCus_.Pd, —logT ~logT 1-T%* [16]
Temperature

Classical critical region
Phase transition line

Coherent line

Ordered ’
State .
FL
' >
QCP _ non-thermal
parameter

Quantum critical region - - -

Figure 1.4: The schematics for the QPT. On the T = 0 line QPT is occurred at QCP -
with varying non-thermal parameter. In the uantum critical region NFL beahvior is
expected. :
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Figure 1.7: NFL behavior in CeCusgAuy; in the resistivity. At zero field the resistivity
shows a T-linear dependence. Under a finite magnetic field FL behavior (p(T) ~ T7?) is
recovered.
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1.3 The mixed compound system Ce(RU]_'_;I;RhJ;)‘_’)SiQ

1.3.1 Physical properties of CeRusSi,

CcRu,Si; is known to be a moderate heavy fermion compound with a body-centered
tetragonal ThCr,Si, -type crystal structure, which is shown in Fig. 1.8. This compound
shows no long-range magnetic order or superconductivity at least down to 20 mK [20],
whose physical propertics behave as a typical nonmagnetic heavy fermion system, which
shows the FL properties at low temperature and behaves as a localized spin system at
high temperature. In Fig. 1.9, 1.10 and 1.11 the specific heat, the susceptibility and the
resistivity of CeRusSi; are shown respectively [20, 21, 22]. ,

The clectronic specific heat coefficient v is almost independent of temperature below
5 I\, whose valuc is about 360 mJ/moli2. Around 10 K the specific heat shows a broad
peak which is considered to be related with the Kondo effect. They obtained Ty ~ 24
K baced on a phenomenological theory for the INondo effect ‘resonant-level model” [24].
Another peak around 110K is ascribed to be as the Schottkey peak by the crystal clectric
ficld (CEF) cxcitation, from which the energy splitting between the ground state and the
first excited state has been estimated ~ 220 K. The susceptibility shows the Curie-Weiss
behavior at high temperature, and shows a broad maximum around 10 K. Below this
maximum susceptibility goes to the constant down to 0 Ik, as the Pauli paramagnetic.
The constant v and the Pauli paramagnetic susceptibility is a characteristic feature of FL,
which indicate that the heavy quasi-particle band is formed in CeRu3Si; . The resistivity
shows also FL behavior, a T? dependence, below 0.4 K. Around 25 K the resistivity
along the c-axis shows a shoulder, which can correspond to the crossover from a localized
spin regime to HF regime. Any thermodynamic or transport propertics indicate that the
ground state of CeRu,Si; is a nonmagnetic FL. :

On the other hand from the neutron scattering experiment the development of the
antiferromagnetic correlation has been found. In the left figure in Fig. 1.12 the constant
E-scans with cnergy transfer iw = 1.6 meV around (11 0) (= G) in rlu. at 4.2 K
is shown [26]. The magnetic scattering peaks at G + q; or G + g, with q; = (0.3
0 0) and g, = (0.3 0.3 0) respectively, indicate that the corrclation with the magnetic
wave vector g, and g, is developed. The right one in Fig. 1.12 shows the temperature
dependence of the half width T of the energy spectrum of the magnetic excitation at g,
which has a finite value at 0 K. According to this result the magnetic correlation docs
not developed to the long-range order down to 0 K. It is consistent with the result of the
thermodynamic or transport measurements. Recently Sato et al. has discovered the new
magnetic correlation with g; = (0 0 0.35) [27], which is also fluctuating in the time and
space. These inelastic neutron scattering experiments strongly indicate that CeRusSi,
locate near the magnetic instability point. In fact the long-range magnetic order is easily
appearcd by substitution of small amount of other clement for the constituent one. By
substitution of La for Ce the correlation with g, [28] and by substitution of Rh for Ru
the one with gy [29] are stabilized respectively. In the next section I will investigate on
the latter system, Ce(Ru;—.Rh,);Si> system in more detail.

One of the most peculiar properties of CeRu,Si; is a magnetization process at low
temperature. In spite of the ground state of CeRu,Si; is a nonmagnetic FL, as men-
tioned above, the magnetization process shows a metamagnetic behavior around 7.8 T. In
Fig. 1.14 the magnetizations at 4.2 and 1.35 K arc shown. Only along the c-axis, which is
a magnctic casy axis, the metamagnetic behavior is found, which become sharper as tem-
perature decrcasing. This metamagnetic behavior can be considered to be correspond to

11
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the crossover from HF state to localized spin state by applying a magnetic ficld from the
experimental result of dHvA effect [30]. The origin of this metamagnetism is on discuss
now by several experimentalists and theoreticians {31, 32].

Ru or Rh

O Si

Figure 1.8: The cryatalr structure of CeRuQSiz .
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1.3.2 Physical properties of Ce(Ru;_,Rh,)2Siz

The mixed compound Ce(Ru;_.Rh,)»Sis is a very interesting system because we can
tune the hybridization between the 4 f-electrons of Ce atom and the conduction electrons
without destroying the periodicity of the Ce-site. By several authors the magnetic plase
diagram of this system was obtained, which is shown in Fig. 1.15 {33, 34, 35]. As mentioned
in the last subsection, the pure compound CeRu,Si; is a typical HF system, and this
nonmagnetic ground state can easily change to the magnetic ordered one by substitution
of Rh for Ru. For z > 0.03, the antiferromagnetic ordered state is developed. This
ordered phase vanishes around z ~ 0.4. On the other hand the other pure compound
in this mixed system CeRh,Si; is an antiferromagnetic compound with Ty = 35 IX. This
magnetic ordered phase vanishes around z ~ 0.5. According to this phase diagram. we
can divide this system into four regions.

I. £ < 0.03 nonmagnetic FL state
I1. 0.03 < z < 0.4 spin density wave (SDW) state
III. 0.4 < z < 0.5 nonmagnetic state

IV. 0.5 < z antiferromagnetic state

40 — —
35 F 0_9( U!-thx)ZSiz : :l
30 | o Tk /

5 25 jz < Q TN / ]

2 20 29 o 2 -

F s /

10 /'—""/
- /'/ AF2
S5E
2 {- AF1 i { ]
~ 02 04 06 038 1
CeRuSi concentration of Rh, X CeRhzSiz

Figure 1.15: Phase diagram of Ce(Ru;—;Rh;)2Si; system obtained from some previous
works. This figure is refered from Ref.[33]

16



H
i
In this system we can see two different magnetic ordered phase in region II and IV,
In the region II, the antiferromagnetic order developed from the antiferromagnetic cor-
relation with the magnetic wave vector g; in CeRusSi; , and has a itinerant character.
S. Kawarazaki et al. performed the neutron scattering experiment in this region. for x
= 0.15, and observed an incommensurate sinusoidal modulation of c-oriented magnetic
moments with magnetic wave vector (0 0 0.42) [36]. The magnetic wave vector (0 0 k)
changes as a function of the Rh-concentration. The pure sinusoidal modulation indicates
that the magnetic order belongs to the same category of SDW in Cr. In the macroscopic
properties the SDW character has been observed. The resistivity along the c-axis shows
a hump at Ty , while that along a-axis shows no anomaly (37, 38], which indicates the
anisotropic gap opening at Fermi surface is occurred. It can be explained by the nesting of
the hole band which causes the SDW transition. The temperature dependence of specific
heat below Ty also indicates such a gap opening (39].
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Figure 1.16: The temperature dependence of the intensity of the third-higher harmonic
diffraction of the ordered state in z = 0.15 is shown in the left figure. The right one
shows the intensity of the primary one. The development of the intensity of third-higher
harmonic one is much weaker than that of primary one. [36]

The ordered phase in region IV has a quite different character from that in region
II. CeRh,Si; shows two magnetic phase transition; one occurs at 36 K (Ty;) and the
- other does at 26 K (Ty2) [40]. In the high temperature ordered phase the moments
align along the c-axis with the commensurate magnetic wave vector gz = (1/2 1/2 0). in
which the two equivalent magnetic domain with g = (1/2 1/2 0) and gz = (-1/2 1/2
0) respectively coexist. On the other hand in the low temperature one the homogeneous
multiple-¢ structure with gf, qg. gr = (1/2 1/2 1/2) and g with 7/2 phase-shifted is
realized [41]. As Ru-concentration increasing Ty, rapidly decreases and disappears around
30 %, which is equivalent for r = 0.7. At r ='0.7 Ty; remains around 6 Ix. and for v <
0.6 any magnetic order was not observed.
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Figure 1.17: The resistivity of z = 0.15 is shown in left figure, in which the resistivity
along the c-axis jumps at Ty although that along a-xis does not show any anomaly [38].
The right one shows the specific heat of z = 0.1 in the form C/T vs T [39]. The large
v-value below Ty can be contributed from the remaining Fermi surface.
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Figure 1.18: The temperature dependences of the intensities of the three magnetic Bragg
peaks of single crystalline CeRh,Si; , with magnetic wave vector ¢ff. g5 and g respec-
tively [41]. The details is mentioned in the text.
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1.3.3 The purpose of this study

The main purpose of this study is to clarify the physical origin of the NFL behavior
in some HF system ncar the magnetic QCP, and to discuss on the role of the disorder
effect for the quantum critical phenomena. As mentioned in Sec. 1.2 there are many
experimental results to show the NFL behavior near the QCP, however most of case is
found in the alloying system. Therefore we cannot neglect the effect of the disorder by
alloying for the physical properties. There are some ways to study and understand the
NFEL behavior and its physical background from the experiments; one of them is to study
the NFL behavior in the stoichiometric magnetic compound as applying a pressure, for
example, to exclude the effect of the disorder. At a critical pressure P, the NFL behavior
is expected to be observed. The study in the non-disordered system is very important
to prove the NFL behavior is the appearance of the quantum critical phenomena. On
the other hand it is also important to understand what kind of roles the disorder plays
necar the QCP, for which we must compare the strong disordered system and non- or weak
disordered system. A

In Fig 1.15 we can sce three QCP, at concentration 2 ~ 0.03, 0.4 and 0.5 in Ce(Ruy_,-
Rh,)2Si; system. It means that this system is appropriate to study the NFL bcehavior
by comparing with the character at or ncar cach QCPs. At x = 0.03 the amount of
disorder can be expected to be much less than that at z = 0.4 or 0.5. Therefore we can
discuss on the effect of the disorder to the quantum critical phenomena by comparing the
low temperature thermodynamic or transport properties at three concentrations. And
in the region III the frustration of magnetic interactions can exist, probably in random,
because this nonmagnetic region locates between two different antiferromagnetic region
II, IV. Such a frustration of magnetic interactions reduces the Neel temperature and can
lead a spin glass like random ordered state, however in this region the ground state is
nonmagnetic. In the previous there are few works about this region, and ncarly nothing
is known on the physical propertics. Therefore we are interested in the physical feature
of the nonmagnetic state in this region furthermore.

In this thesis I write the experintental results of the thermodynamic and the transport
properties, specific heat, DC and AC susceptibility, Magnetization and resistivity, at the
concentrations near the three QCPs in Ce(Ruy—.Rh,),Si; system, at z = 0.03, 0.4, 0.5
and some other concentrations. And in order to answer the questions above mentioned, I
have compared the experimental results with several theories to explain the NFL or the

— - QPT in HF system. In the following the main contents of this study is grouped.

1. The study on the physical properties at x = 0.03.
Near the critical concentration in the Rh-poor side of the SDW phase the NFL be-
havior has not been observed. In order to see how the system develops the antiferro-
magnetic fluctuation as approaching to the QCP, I have compared the experimental
results with the sclf consistent renomalization (SCR) theory, and discussed on the
reason of the lack of the NFL bcehavior,

(S

. The study on the physical properties at + = 0.4 and 0.5.
Near the two critical concentrations in the intermediate Rh-concentration region the
characteristic feature of the NFL behavior has been observed. For comparing with
the result at x = 0.03, I try to analyze the experimental data based on the SCR
theory and the Kondo-disorder model.

3. Field effect on the NFL behavior of Ce(Ru;_.Rh,),Si; in the intermediate
Rh-concentration region.
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I hmf‘c studied the recovery of the FL by applying an external magnetic field, in
the intermediate Rh-concentration region, especially at * = 0.5 and 0.6. From
experimental results the NFL like tendency is strongly enhanced as approaching to
zero field and the QCP of the antiferromagnetic phase in region IV. This is not the
casc when approaching to the QCP of the SDW phase in region II on the Rh-rich
side. I present that two mechanisms usually considered to explain the NFL behavior
cocexist for this concentration region; one is due to the quantum critical fluctuation
and the others due to the INondo disorder. The quantum critical description is valid
for the high ficld region, above 1 T, and can cxplain the recovery of the FL very
well. On the other hand the zero or low field properties can be described by the
unified description of the quantum critical phenomena and the disorder, quantum
Griffiths description.



Chapter 2

Experimental Procedures

2.1 Sample preparation

All samples used for measurements are single crystalline samples, which are grown from
the botton of the polycrytalline ones. At the starting point, the polycrystalline sample
were prepared by arc-melting with nominal stoichiometric amounts of the constituent
clements which are listed in Table 2.1 in argon atmosphere. In the melting process no
significant loss of clements was found. (The over all weight loss was at most about 0.3
% .) Then the single crystalline samples were grown by the Czochralski method using a
tri-arc furnance in an argon atmosphere. ’

The crystallographic axes were determined by X-ray back Laue method. Some as
grown samples were anncaled with wrapped by Ta foil loosely in a evacuated silica tube
at 1000 °C for 1 week. In a macroscopic measurement of single crystalline samples we
did not found any significant diffcrences between as grown and anncaled samples. We
checked the chemical homogencity of samples by the microprobe technique like Electron
Probe Micro Analyzer (EPMA). The details of the characterization of samples was written
in Ref.[42].

2.2 Specific heat measurement
The general and simplest method for measuring the specific heat is an adiabatic method.
In this method the sample is isolated thermally from-the surroundings. and its temperature

is controlled at a certain temperature Ty. Then it is heated during the heating period At,
and the temperature of the sample raises up to Ty + AT. Finally the heat capacity of the

Table 2.1: The list of the starting materials for making samples.

Element Electronic configuration Purity  Shape

Ce (Xe)dfl5d 6s* 3N, 4N ingot
Ru (Ixr)dd™5s? 3N5  powder
Rh (Kr)4d35st 3N5  powder

Si (Ne)3s23p? 5N ingot



Table 2.2: The list of samples used for measurement

Rh-concentration x DC-x DC-M AC-x »p
0 -
0.03
0.05
0.10
0.15
0.30
0.35
0.40
0.50
0.60
0.70

OOO0OOOOOO0OO
COO0O0O0O0OOO0OO
I
NORNOGIOION
OC1O0O0 1 000000

HOION
O

sample is obtained as following,

C(Ty + £) = ég

= 2.
2 AT (2.1)

where AQ is a heat value supplied to the sample. This technique is a fundamental method
to obtain the absolute value of the heat capacity thermodynamically, whose accuracy is
very high in general. However it is difficult to keep the thermal isolation of the sample
in practice because the heat leaks through the electrical line of the thermometer or the
heater must exist, which cause the systematic error in the measured value of the heat
capacity. In such a casc the heat capacity can be obtained with the correction of the heat
leaks. For a low temperature measurement it is more difficult, because some degree of
heat leaks should be necessary for cooling the sample.

A thermal relaxation method is a technique to measure the low temperature specific
heat rather casily. This method has the advantage of that it is not necessary to isolate
the sample thermally from the surroundings. In this method, sample is connected to the
heat bath which is eontrolled at a certain temperature Ty with a weak thermal link which
has a thermal conductance %. In Fig. 2.1 the schematics of this method is shown. Because
of this weak thermal link the sample reaches to an another thermal equivalent state with
the temperature T = T + AT when the heater supplies a power P to the sample. AT
satisfies the relation, kAT = P. After the heater is off at ¢ = 0. the temperature of the
sample T,(t) is decayed to the initial value T exponentially with a relaxation time 7 as

following equation.
Ty(t) = Ty + AT exp(—t/7) (2.2)

T is given as, 7 = C/k, where C is the heat capacity of the sample at T = Ty + AT/2.
We can obtain the value of AT and 7 at cach Tj as fitting parameters from the relaxation
curve. And C is obtained from these parameters. In Fig. 2.2 I shows the schematic
heating or relaxation curves in an adiabatic and a thermal relaxation technique.
Another advantage of a thermal relaxation method is to be possible to measure a very
small sample. about a few mg, while a few g of sample is needed for an adiabatic method.
Sometimes we cannot obtain a large amount of sample because of the difficulty for growing
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Figure 2.1: Schematics of the thermal relaxation method.

it, when we try to grow a new compound. A thermal relaxation method is very efficient
for measuring a very small picce of sample in such a case. On the other hand this method
also has some disadvantages, one of which is the less accuracy of measurement than that
in an adiabatic method. It comes from the complexity of getting the heat capacity in
a thermal relaxation method. In a rcal measurement, we must take special care that
the thermal connection between the sample and the sample holder is so good as we can
consider the both temperature is always same. Otherwise we must consider the thermal
impedance between both, which makes the relaxation curve deviates from the exponential
one.

In Fig. 2.4 the schematic view of the measurement system of (a) 4He-cryostat and (b)
3He/*He dilution refrigerater, which were used for the measurement in the temperature
range 1.6 K ~ 20 X and 0.1 I\ ~ 2.0 K, are shown respectively . In both system we used
the copper block as a heat sink whose temperature was controlled by a PID technique and
the gold wire(0.05¢ mm) as a weak thermal link. In general a copper plate is used for a
sample holder in the specific heat measurement, however we used a sapphire plate (10 x
10 x 4t mm). Sapphire has so high thermal conductivity as that of copper between 1 and
10 IX and the less heat capacity because sapphire does not have a clectronic heat capacity.
In order to measure the small heat capacity of sample precisely the heat capacity of the
sample holder is nccessary to be very small. For the reason above mentioned the sapphire
plate is very appropriate to the sample holder. In Fig. 2.3 the view of sample holder is
shown. We used the Cernox-thermometer (Lakeshore Inc.) in the temperature range 1.6
K ~ 20 K and the RuO-thermometer in 0.1 K ~ 2.0 . A strain gauge (350 Q) was used
as a heater. Both the thermometer and the heater were mounted on the sapphire plate by
GE varnish. A sample was mounted by thermal compound (Oxford Inc.). For the good
thermal connection between the sample and the sapphire plate we utilized the cleavage
c-plane of the Ce(Ru;-.Rh,),Si; samples. The weights of all the sample we measured
were about 10 mg.

For the precise measurement we considered the small drift of the base temperature
and used the following function for fitting the relaxation curve,

t—t
T(t) = Ty +at + AT {1 - [1 —oxp (— ")] o(t — to)} (2.3)
- v
where the second term represent the drift of the base temperature and ¢ is time when
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Figurc 2.2: Schematic heating and relaxation curves in both method; (a) an adiabatic
method (b) a thermal relaxation method

the heater is off. Ty, a, AT, #y and 7 arc the fitting parameters. We obtained the heat
capacity of the sample after subtracting that of the sample holder measured previously.
Finally we succeeded to develop the measuring system which can measure such a small
heat capacity as 1 pJ/IX with a noise less than 10 %.

heat link (gold wirey

holder (sapphire plate)

// // heater (strain gauge)

thermometer
(Cernox or Ruo)

Figure 2.3: The view of sample holder.
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Figure 2.4: The schemaic view of the measuring system of (a) *He-cryostat and (b)
$He/*He dilution refrigerator. 25
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2.3 DC magnetization and DC susceptibility mea- -
surement ‘

DC magnetization and susceptibility measurements were performed by using a superconducting
quantum interference device (SQUID)-magnetometer (MPMS-7, Quantum Design), in the
temperature range from 1.8 K to 300 K and the magnetic ficld range up to 7 T. The prin-
ciple of the measurement by the SQUID system is schematically shown in Fig. 2.5. The
sample is magnctized in the uniform magnetic field H gencrated by a superconducting
magnet. When the sample is moving in the pick-up coil (the second-order differential
gradiometer) from the top to bottom. the variation of the flux, which is caused by the
movement of the sample, generates the screening current in the pick-up coil. The screen-
ing current is detected finally as the output voltage of the rf-SQUID system through the
signal coil. The magnetic moment is calibrated by measuring the paradium standard over
the magnetic ficld range and adjusting the system calibration factors to obtain the correct
moment value for the standard. The magnetization of the sample is calculated from the
signal antomatically.

A
Magnetic Field H
A
Superconducting Wire I Sample
Signal Coil |
\ —
g /—

SQUID

@)
\

Pick-up Coil

Superconducting Magnet

SQUID Output

Figure 2.5: The schematic view of the SQUID system.

2.4 AC susceptibility measurement

In the low temperature range (40 mK ~ 3.0 K) the AC susceptibility was measured with
the Corson’s type mutual inductance bridge by using a dilution refrigerator. The principle
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of the AC §115ccptibility measurement is simple. Figure 2.6 shows the schematics of the AC -
susceptibility measurement. The mutual inductance between the primary and secondary
coil is compensated without the sample. With the sample inside the secondary coil, the
mutual inductance is proportional to the susceptibility of the sample. When we supply a

AC-current into the primary coil, we can obtain the susceptibility as a induced voltage in
the secondary coil.

Sample
'S
o
Constant
AC Current
Induced
Voltage
2
Primary Coil

Secondary Coil

Figure 2.6: The schematics of the AC susceptibility mecasurement

The magnetization M has an inversion time symmetry, therefore M is written as a
function of an external magnetic field H as,

M = xoH + x2H® + x4 H> + - - - (2.4)

~where xp is a lincar susceptibility and x3, x4, - - - arc non-lincar susceptibility. When
we apply an AC magnetic ficld Hac = kg coswt, the AC magnetic response m(t), which
consists of the in-phase and the out-of-phase components with various frequencies as my,
= m!, — im,, is given by,

m(t) =) oo[m}, cos(2n + L)wt — m}, sin(2n + 1)wt] ‘ (2.5)
n=0(}" .
where mj = xjho + 33+ -, my = xgho + %xfz'hﬁ + .-, my = 1xphE + %xghg 4o

my = 1x5h3 + Zxihi + -, -+~ And an induced voltage in a secondary coil by the
sample is given by, - '

dm(t)
E - 2.6
dt (2.6)
= why [,\-’f]' sinwt + x4 coswt + %hg(;(.tz' sin 3wt + x4 cosdwt) +---|  (2.7)
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where xb = mo/hg, x4 = ma/hy, - - -. If kg is very small, we can consider as x5 ~ o, x5 -
& X2, - -+ Therefore we can measure the lincar (xj, xg) and the non-lincar (x5, x5, - )
susceptibilitics simultancously by detecting w. 3w, - - - components of the induced volatge
using a two phasc lock-in amplificr. When we apply the DC magnetic field Hy, the above
equations arc modified. And we obtain following, x} & o + 3x2HZ if ko is much smaller
than Hj, which is the differential susceptibility.

Figure 2.8 shows the circuit diagram of the mutual inductance bridge. An AC voltage
is supplied by the inner oscillator of the lock-in amplifier (EG&G, Model 7260), which
is put into the primary coil as an AC current driven by the current buffer. The induced
voltage in the secondary coil is detected by the lock-in amplifier with the reference voltage,
which has the same frequency and the same phase of the input AC current. Through the
pre-amplifier the signal enlarges 50 times larger. By using the two phase lock-in amplifier
we can detect both the in-phase (6 = 0) and the out-of-phase (6§ = 7/2) components
respectively, where 8 is the phase delay from the reference voltage.

In Fig. 2.7 the schematic view of the present measurement system is shown. The
measuring coils were carcfully designed and wound onto the bobbin made of an eppoxi
resin (stycast 1266) using a superconducting wire (0.1 ¢) for the primary coil and a copper
wire (0.1 ¢) for the secondary coil respectively. The sample is wrapped by a copper sleeve
strictly, which is connected on the copper cold-stage whose temperature is controlled by a
PID technique. The amplitude of the AC field driven by the primary coil was in the range
0 ~ 5 Oc with the frequency w = 130 Hz. The measurement process is as following. First
we made a balance with the variable resister A and B (sce in Fig. 2.8) to compensate the
both components of the signal at 2.0 IN. Then we measured the variation of the signal
voltage as a function of the temperature, which is proportional to xo(T)-x0(2.0K). The
absolute value of the susceptibilitics were obtained by comparing the variation of the
susceptibility measured by the SQUID magnetometer in the temperature range 1.8 K ~
3.0 K.

2.5 Resistivity measurement

The resistivity measurements were carried in the low temperature range (20 mK ~ 2.5
K) and the high temperature range (1.5 K ~ 300 K) by using a dilution refrigerator
and a standard *He-cryostat respectively. In the high temperature range a standard
DC technique was employed for the measurements, while in the low temperature range
we measured by an AC technique to avoid the sclf-heating of the sample due to the
excitation current. For the measurecment we put the low excitation current, ~ 0.1 mA,
into the sample with the frequency w = 17 Hz.

The samples for the resistivity measurements were cut to an appropriate size (~ 0.5
x 0.5 x 10 mm?®) using a spark cutter to avoid the crack due to a mechanical tension.
The clectric contacts were made by the spot-welding aluminium wire (0.025 ¢ mm). The
measurements were performed with the excitation current parallel to the both crystal-
lographic a and c-axes. The error of the absolute value of the resistivity is about 20 %
becausue of rather poor precision in the absolute value of the sample dimension, however
the relative error was less than 0.5 % .
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Figure 2.7: The schematic view of the present AC susceptibility measurement system.
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Figure 2.8: The circit diagram of the Corson’s type mutual inductance bridge.
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Chapter 3

Experimental results and discussions

3.1 Magnetic properties of Ce(Rul_mRhJ;)zSig

In this section I will show the experimental results of the thermodynamic and the trans-
port propertics of Ce(Ru;_.Rh,),Si; in the low Rh-concentration region (2 < 0.15) and
in the intermediate Rh-concentration region (0.3 < 2 < 0.5). As I mentioned in Sec 1.3.2
Ce{Ru;—.Rh,),Si; system has a rich variety of the ground state and three different QCPs
in their magnetic phase diagram. First I will survey the magnetic properties of the
Ce(Ru;—.Rh,),Siz system with taking a special notice of the magnetic instability proper-
tics near the critical concentrations, x = 0.03, 0.4 and 0.5.

3.1.1 Specific heat

Figure 3.1 shows the magnetic specific heats in the temperature range 0.1 ~ 10 K in the
low Rh-concentration region. I considered that the phonon parts for all Rh-concentrations
are same as that of LaRu,Siy . The specific heat for 2 = 0 does not show any anomaly
duc to the magnetic phase transition down to the lowest temperature, whose electronic
specific heat cocfficient v is almost constant (~ 380 mJ/mol/i%) below 5 K. For z =
0.05, 0.1 and 0.15 the SDW phasc transitions were found at Ty = 2.0, 4.4 K and 4.8 KK,
respectively. The anomaly for x = 0.05 is very small which may be correspond to the
small ordered moment. In a recent neutron diffraction measurement the ordered moment
for & = 0.05 was obscrved about 0.2 pp [43]. For cach concentrations C/T are almost
constant far below Ty , whose values are about 460, 342 and 374 mJ/mol X 2 respectively.
These large y-values in the SDW state can be considered to come from the remaining
Fermi surface after the anisotropic gap opening. Below Ty the specific heats of 2 = 0.05,
0.1 and 0.15 show the cxponential-type behavior, yT + Aexp(—A/T). The solid lines
in Fig. 3.1 (b) represent the fitting results with this function for thesc concentrations.
The parameters A/Ty are 2.2, 1.7 and 1.6 for = 0.05, 0.1 and 0.15 respectively, which
arc not so different from that of Cr (A/T\ ~ 2.3), which is the typical compound shows
a SDW transition. The specific heat anomalies after subtracting the eclectronic part v7T
have the quite similar shape for cach concentrations, cven for » = 0.05. It means that the
character of the phase transition does not change as increasing Rh-concentration.

x = 0.03 is the very close concentration to hte QCP of SDW phase on the Rh-poor
side, however the specific heat does not show the NFL behavior, logarithmic divergent
behaviorin C/T, like CeCusgAugy . C/T for x = 0.03 is nearly constant below 3 KX, whose
value is about 500 mJ/mol/2, which is enhanced from that of 2 = 0. This enhancedment
of C/T can be thought to be caused by the enhancedment of the antiferromagnteic spin
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fluctuations or the reducement of the Kondo temperature. I will discuss on the effect of °
the spin fluctuation for the low temperature properties for this concentration later.

Figure 3.3 shows the specific heats in the intermediate Rh-concentration region. For
z = 0.4, which is ncar another critical concentration of the SDW phase, C'/T' diverges
logarithmically down to the lowest temperature in contrast with that for 2 = 0.03. This
is the characteristic feature of the NFL behavior in the specific heat. For z = 0.5, where
the concentration is closc to the QCP of the different antiferromagnetic ordered phase in:
the Rh-rich region, C/T also shows the logarithmic divergent behavior. Because we did
not mecasure the specific heat for other concentration in the intermediate non-magnetic
region III (sce in Sec. 1.3.2), it’s not clear the —log T dependence of C/T for z = 0.4 and
0.5 is attributed to the QCP. For x = 0.3 the —logT dependence is found down to 2 K as
well as for x = 0.4, however at 2.0 K the SDW phase transition is occured. Below Ty (=
2.0 IN), which is determined from the extremely small anomaly in the C/T vs log T plot,
C/T is almost constant. It means x = 0.3 is the FL in the SDW state, below 2.0 K, on
the other hand in the paramagnetic state, above 2.0 I\, is the NFL. It indicates that the
NFL behavior may be caused by the spin fluctuation in the paramagnetic state, which is
suppressed in the ordered phase and the FL is recovered.

3.1.2 Susceptibility and magnetization

Figurc 3.4 shows the susceptibilities in the whole temperature range, between 1.8 K and
300 IX. In both the low and the intermediate Rh-concentration region, no z-dependence is
observed in the susceptibilitics at high temperature, 7 > 100 K. For cach concentrations
a strong magnctic anisotropy is shown; the ratio of x./xa recaches about 20 at 2 IX. Above
100 IX the susceptibility shows the Curie-Weiss behavior, whose cffective Bohr magnetron
is about 2.91upg , along the c-axis. As I will discuss in Scc. 3.2.2, the strong magnetic
anisptropy can be cxplained by a tetragonal crystalline clectric field (CEF) model. It
indicates that magnetic moments of Ce-atom are localized at cach Ce-atom and fluctuate
thermally in the high temperature region.

On the other hand, in the low temperature region there is a strong z-dependence. In
Fig.3.5 the low temperature susceptibilities (T' < 20 KX) are shown. For x = 0 and 0.03 the
susceptibilitics do not show any anomaly down to 1.8 IX due to the phasc transition. For
both concentrations the susceptibilitics show the broad maximum around 10.5 K and 7.0
KX respectively, and slightly decrease. Below 4 IX the susceptibilities are almost constant,
which are correspond to form the FL state. In the susceptibility the NFL behavior is not
observed for x = 0.03 as well as in the specific heat. For x = 0.05, 0.10 and 0.15 the
sharp drops are found at 2.2 KX, 4.7 X and 5.5 X respectively, which are correspond to the
SDW phasc transition. These temperatures are slightly different, a little high, from Ty
determined from the specific heat measurements. It is the general tendency in the case of
the antiferromagnetic phase transition. The ‘true’ phasc transition temperature should
be determined from the specific heat. The temperature where the broad maximum is
found, Tymay. decrease as increasing x, which can be associated with the reduction of the
Kondo temperature.

Figure 3.6 shows low temperature susceptibilitics in the intermediate Rh-concentration
region. From the susceptibility measurements above 1.8 K the critical concentration of
the SDW phasc on the Rh-rich side is rather z = 0.35 than 0.4. Similarly, the QCP of
antiferromagnetic phase in high Rh-concentration region is rather = 0.6 than 0.5. For
x = 0.3 the cusp due to the SDW transition is found around 2 K as well as in the specific
heat. Above Ty the susceptibility has a 1 — T dependence. In the nonmagnetic ground
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state regio{n, for x = 0.35, 0.4 and 0.5, 1 — T behaviors arc obscrved down to 1.8 K, -
which is the characteristic behavior in the susceptibility of NFL as well as the logarithmic
divergent behavior in C'/T. In contrast with C/T the NFL behavior in the susceptibility
is not universal, but varies with compounds. The value of a varies as a function of z,
which is 3/4,1/2,1/3 and 1/2 for = 0.35, 0.4, 0.5 and 0.6, respectively. As well as in the
specific heat, the NFL behavior is observed in the intermediate Rh-concentration region
in the susceptibility, and the deviation from the FL becomes stronger as & increasing.

The magnetization processes and the differential magnetizations at 1.8 K along c-axis
are shown in Fig. 3.7 (a) and.(b) respectively. For z = 0.03, 0.05 and 0.15 the metam-
agnetic transition was found at 6.85, 6.50 and 5.35 T respectively, which are denoted as
Hy in Fig. 3.7 (b). This metamagnetic transition is considered to be not the phase tran-
sition but the crossover from the HF regime to the localized moment regime. Therefore
the field where the metamagnetic transition is shown Hy; can be related with the Kondo
temperature T . And the sharpness of the metamagnetic transition is very sensitive to
x, which is broaden as x increasing. It might be the effect of the disorder by alloying.
For # = 0.15 much sharper metamagnetic transition is found at 3.35 T, which is denoted
as H. in Fig. 3.7 (b). At H. the phasc transition from the SDW state to the HF state
is occurred. Near the critical concentration, x = 0.03, the magnetization process is quite
similar to that far from the critical concentration, x = 0. It is consistent with the FL
behavior in the specific heat and the susceptibility at 2 = 0.03.

In Fig. 3.8 the magnetization in the intermediate Rh-concentration region are shown.
In contrast with that in the low Rh-concentration region, the metamagnetic transition
does not appear at least up to 7 T. From the fact the metamagnetic transition is broaden
as x increasing from 0 to 0.15. the disappearance of it can be thought to be the result of the
broadening, not the drop of Hy down to 0. Instead of the metamagnetic transition, there
is a negative non-lincarity in the magnetization process, which becomes more evident as
2 increasing. I will discuss on this non lincarity in the magnetization in Sec.3.3.2.

In the low Rh-concentration region there is the crossover temperature Ty, in the
susceptibility and the crossover ficld Hy in the magnetization. In the region T < Typax
and H < H,g, the system can be considered to be a itinerant clectron regime, and out
of this region, a localized moment regime. On the other hand in the intermediate Rh-
concentration region such a evident crossover temperature or ficld can not be found in
the magnetic response. )

3.1.3 Resistivily

Figure 3.9 shows the resistivities in the whole temperature range along a- and c-axis.
Thers is not a big variation of the resistivity with the Rh-concentration. Along c-axis
we can find the maximum around 20 K, which is associated with the crossover from
the single-site Nondo regime to the coherent regime, as I mentioned in Sec. 1.1. This
crossover behavior can be found even in the intermediate Rh-concentration region, x =
0.3 and 0.5, very clearly, in contrast with the susceptibility and the magnetization. This
temperature, Tp.,. shows a little variation in x. T, is rclated with the single-site
 Kondo temperature T in the system, whose variation in x is very similar to that of T
estimated from the specific heat [34].

The low temperature resistivities (T < 2.5 K) are shown in Fig. 3.10 and 3.11. For z
= 0.05, 0.10 and 0.30 there is the humps of the resistivitics along the c-axis caused by the
anisotropic gap opening on the Fermi surface at Ty , while along the a-axis there are not
evident anomaly at T\ , which arc not shown in the figure. Below a certain temperature,
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Teon. a T? behavior can be found for each Rh-concentrations, except for z = 0.5. For = ~
= 0.5, a T% dependence is found along both axes, instcad of a T2 one. It means that
the ground state for < 0.3 is FL, even for 2 = 0.03. On the other hand for z = 0.5 the
NFL behavior is kept at least down to the lowest temperature, 20 mK. These results of
the resistivity measurements are consistent with that of other experiments.
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Figure 3.1: The specific heat of Ce(Ru;—-Rh;)2Si; in the low Rh-concentration region,
whose ground state is (a) non-magnetic FL (b) SDW. The arrows in (b) indicate Ty
for cach concentrations. The solid linc represent the gap type of behavior, C(T) =
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Figure 3.3: The specific heats in the intermediate Rh-concentration region are shown.
The arrow in the figure indicates Ty for x = 0.3. For 2 = 0.4 and 0.5 the logarithmic
divergent behavior is observed down to the lowest temperature.
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where the susceptibilities show sharp drops.
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represent the temperature dependence of the susceptibility below 10 K.
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text.
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3.2 Discussions

3.2.1 Phase diagram of Ce(Rul_thw)gSig

In this subsection I discuss on the phasc diagram of Ce(Ru;—.Rh,),Si; obtained from our
present results. In Fig. 3.12 I show the whole of the phase diagram. The solid lines in
‘the figure represent the phase transition line and the broken lines represent the a kind of
crossover line. Because the variation of T}, is very simlar to that of Tk , as I mentioned
in the previous scction, hercafter I use 7)., as T . As Rh-concentration 2 increasing
from CeRuySiy , Tk drops rather steeply in small x region and reaches to the lowest value
around x = 0.15, where Ty of SDW transition is maximum. then rises slightly and keep
the value as large as that for 2 < 0.05 in the intermediate Rh-concentration region, about
20 k. For z < 0.5 the variation of Tk is rather small, comparing with the variation of
their ground states. On the other hand in CeRhySiy the resistivity did not show the
maximum in the temperature range between 1.5 K and 300 IX [44]. It means that the Ty
of CeRh,Siz is much higher than 300 X or lower than its T\ (= 36 K). According to the
large magnitude of its ordered moment., which is about 1.4 pg-at 1.5 IX [41], we expect
the low value of T} , however Y. Kawasaki et al. obtained much higher Ty , about 100
K, from NMR measurement [45]. It has been an open question where CeRh,Si; locate in
the Doniach phase diagram, in the region for Tix > Trrny » Tk € Thrry or T ~ Trirky
. and how to join to the Rh-intermediate concentration region, where the crossover from
the single-site Kondo regime to the coherent regime can be found evidently.

40 . - x l
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30 r
. 25 <S>’e TK Ty
i 20 %eoq* ................ Kormie
= Ko
-. . 15+
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Figure 3.12: The phasc diagram of Ce(Ru;—.Rh;)»Si; . The solid and broken lines are
guides to cyes. Tk in the figure are sited from Ref. [34].

Figure 3.13 shows an enlarge-scaled phase diagram in the low Rh-concentration region.
The most striking results of the study for low Rh-concentration region in Ce(Ruj_,-
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Rh,)2Si; is an absence of the NFL behavior near the QCP of the SDW phase, z = 0.03.
The Neel line of SDW transition can be extrapolated to 0 around z = 0.03. It means
that the QPT is occurred at x ~ 0.03 on the zero-temperature line. According to the
inclastic ncutron scattering experiment performed by Sato et al. [29], for 2 = 0.03 the
antiferromagnetic correlation is strongly enhanced from x = 0, where the characteristic
cnergy is reduced by the factor of 2. It is the microscopic ev ldcncc of the approaching to
the QCP as z increasing from 0 to 0.03.

On the zero-temperature line it is a quantum fluctuation that collapses the magnetic
order. In nonmagnetic region the magnetic moments does not fluctuate thermally but
form a ‘quantum’ coherent state in which the ‘up’-spin state and ‘down’-spin state arc
combined. In the casc of the HF systems the ‘quantum’ state is a coherent FL state which
is formed through the hybridization between the conduction clectrons and ‘magnetic’ f-
clectrons. In general description of the QPT, the coherent state should be unstable down
to 7 = 0 as well as the magnetic ordered state at the QCP. Therefore the coherent line,
which is the crossover line between the thermal fluctuating state and the coherent FL
state, should vanish and the NFL behavior is expected to be observed down to 0 I¥ at
the QCP (Sce Fig.1.4). However in Fig. 3.13 the coherent line scems to conncct from
nonmagnetic side (z < 0.03) to magnetic side (z > 0.03) continuously. The coherent
temperature T, is defined as the temperature where the resistivity starts to deviate
from a T2 behavior (Sce Fig. 3.10). We can cxpect two reasons why the NFL behavior
did not observed near this QCP, which are

1. The region where the NFL behavior can be observed is very narrow. We has never
rcached that region in the experiment.

2. There is no region the NFL behavior is kept down to T = 0. In this case the phase
transition occurs from the coherent FL state to the SDW state, like a superconduct-
ing phasc transition, necar the QCP.

In the first senario, the coherence line vanished at the QCP between @ = 0.03 and 0.05,
although we did not observe in the experiment. On the other hand, because the magnetic
ordered state for x > 0.03 is the SDW state, the second scenario can be applicable. The
SDW phasc transition can be occurred from the coherent FL state because it caused by
the nesting of the Fermi surface. It is very interesting what leads the QPT at this QCP.
It may be the first order phasc transition. Hot\ ever it has been a qulto open question. It
is a future subject. -
In Fig. 3.14 I shows the enlarge scaled phase diagram in the intermediate Rh-concent-
ration region. As I mentioned in Scc 3.1, the NFL behavior in the specific heat and the
susceptibility was observed in a very wide range of this concentration region, for 0.3 < <
0.5. In the region of the SDW ground state, below Ty , a finite Teop, cxists. The coherent
line secems to vanish in the intermediate region of the nonmagnetic ground state. Because
we did not perfome the resistivity measurement for either x = 0.35 or 0.4, we cannot
say about either how or where the coherent line vanishes. However the fact of that the
specific heat keep the NFL behavior, logarithmic divergent behavior in C/T, down to 0.1
K indicates Trop in the resistivity is also 0, not finite, over the intermediate nonmagnetic
region. If it is true, there should be other origin besides the QPT of the NFL behavior.
The coherent line should rise up as leaving from the QCP in the nonmagnetic region in
the case of the QPT. The situation in this region is very complicated. This nonmagnetic: .
region locate between two different QCP, therefore it is not so casy how the coherent line
lics. Furthermore the cffect of disorder cannot be negligible because of high substitution
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Figure 3.13: The cnlarge-scaled phase diagram of Ce(Ruj—;Rh;)Si; (x < 0.1). The-
definition of Ty, is described in the text. Teop for 2 = 0 is cited from Ref. [23].

of Ru for Rh. I will mention the further experimental stud’x of the NFL in this region in

Sec. 3.3.

3.2.2 CEF level of Ce(Ru;_,Rh,)sSi,

As I showed in Scc. 3.1, the magnetic susceptibilitics of Ce(Ru;—.Rh,),Si; have almost
no x-dependence in the high temperature, above 100 KX, which show the Curie-Weiss
law. T analyze the high temperature susceptibilities by the CEF model in the low and
intermediate Rh-concentration region respectively. Ce(Ru;— Rh;)2Si; has a tetragonal
crystal structure and the valence of Ce-ion is +3, whose total angular momentum J =
5/2. therefore whose CEF level can be drawn as Fig.3.15. Considering to the interaction
between the Ce moment, we calculate the susceptibility with 4 parameter, Ay, A, @
and the molecular field parameter A. When the CEF paramecters are determined, the
magnetization within the first order of H is given by,

M_AMB_Z Z [<m[Jaln>f > 3 |<m|] [n>P| et

0 0
Z n [m(f) kg T m(hf) - E3
' (3.1)
where
ZO — e—E‘,‘,/kB T
2
E' = E! in the summation of »

m(lf)
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E® +£ E° in the summation of Z .
m(hf)
(3.2)

| » > is a wave function of an cigen state under the certain CEF and E9 is its cigen
energy. A; = EY — EJ is a splitting energy between the excitation and ground level.
Considering the molecular filed, H in Eqn. 3.1 is replaced with H + A3/, and we obtain
the susceptibility x = A//H. ’

In Fig. 3.16 I show the results of the calculations and the comparison it with the
experimental results and the parameters used for the caleulation in Table 3.1. Above 50
K the both results has a good agreement, however below 50 K the experimental results
are reduced from the calculation ones in both Rh-concentration regions. It is the result
by the reduction of the freedom of the magnetic moments due to the Kondo effect.
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Table 3.1: The CEF and the molecular ficld parameters of Ce(Ru;_,Rh,);Si; system.

Al Az a )\

CC(_RAul_Ith)-zSig (;17 S 015) 180 1000 0.96 -10
Ce(Ruy—-Rh,)2Si; (0.30 < z < 0.50) 170 1500 0.945 —14
CeRu,Si; [22] 220 1000 - @ —
CeRu,Si; [46] 280 1000 0.96 —
CeRh,Si, [44] 680 310 0.975. —40

ITe> = bl+5/2>+alF3/2>

Ad

ITo> = [£1/2>

A2

ITo> = al+5/2>—plF3/2>

Figure 3.15: The energy level under the tetragonal CEF for J = 5/2.
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Figure 3.16: The calculation result of the susceptibilities by the CEF model in the (a) low
Rh-concentration region and (b) intermediate Rh-concentration region. The solid lines
are the calculation results. The CEF paramecters used for the calculation are shown in
Table 3.1.
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3.2.3 The application of the SCR theory for the low and inter- -
mediate Rh-concentration region -

As I discussed in the previous subsection, in the low Rh-concentration region the ground
state is FL and the coherent temperature Ty, seems to not vanish at the QCP of the SDW
phase. in spite of that the NFL behavior is expected to appear near the QCP. Recently
S. Kambe et al. succeeded to explain the FL behavior of Cey_.La,RuySiy and the NFL
behavior of CeCug_,Au, near the each QCP by analyzing them based on the SCR theory
[23]. Here, I also try to analyze the experimental results of Ce(Ru;—,.Rh,)sSiy based on
this theory.

The SCR theory has established to describe the effect of the spin fluctuation of the
itinerant electrons in narrow bands for the thermodynamic and transport properties in
3d-transition metal compounds. Moriya and Takimoto recently predicted that the SCR
theory can be applied also to describe the low temperature propertics in HF systems
[13]. The difference between 3d-systems and HE systems is only their energy scale, which
arc correspond to their band width, ~ 10® K for 3d-systems and ~ 10 K for HF systems,
respectively. The theory describe their properties both in nonmagnetic, in magnetic region
and ncar the QCP between both region because it treats not only the thermal but also
the quantum spin fluctuations. According to the theory, the dynamical susceptibility
x(Q + q.w) is parameterized as following,

1

\(Q + q'-""") X n+ qu _ icw/q:—-z

(3.3)

where 7 is the reduced inverse staggered susceptibility, A and C are dimensionful constants
reflecting the band structure of heavy cquasi-particles and = is a dynamical exponent
which represent the class of the spin fluctuation, which is 2 in a 3-dimensonal (d =
3) antiferrmomagnetic case. The third term in the numerator in Eq. 3.3 contains a
contribution from the mode-mode coupling of the antiferromagnetic spin fluctuations.
The theory neglect the higher order term of the coupling and determine the couping
constant of the sccond term in a self-consistent fashion.

In the theory all thermodynamic and transport properties are driven from the di-
menssionless inverse staggered susceptibility y (= 1/ (QTA,\Q)), which is calculated in
self-consistent from the sum-rule; the sum of the square local amplitude of the zero point
and thermal spin fluctuation is constant. The sclf-consistent equation of y is given by,

Y-y = 31/1 /xc daez® [ln(u) - % — P(u) (3. 4)
2u
with 5 T
5 _..5_'2.;{/.._-'2_ —-—— -‘=£ ' <
U=z Pt t i T - (3.5)

where ¢p is the cut-off wave number representing the effective zone boundary and z. is the
cut-off scaled wave number of the mode-mode coupling. Ty and T4 arc the energy scale of
spin fluctuations characterizing the excitation of the frequency and wave number space,
- respectively. y; represent the mode-mode coupling constant for small ¢ and yy represent
the distance from the QCP at T' = 0. The specific heat and the resistivity are given by the
following cquations from the value of y calculated by Eqn. 3.4 in the antiferromagnetic

casc.
dy . dy,, [ 1 1
C = — = = =
QR/ dz? {[1 ”dt+(dt) u ‘7112+\Il(”)]



P, 1 | '
—t%lt;;/ [ln(u) —5, \Il(u)]} | (3.6)
p = rR(t)
R(t) = 3/0Jrc daa? [—1 - % + u\If'(u)] (3.7)

where r is the rescaled factor of the resistivity, which is related with the coupling the
conduction clectrons and the localized moments of f-clectrons. These expression is cited
from Ref. [13]. M. Hatatani et al. obtained the uniform susceptibility at the QCP by
considering the magnetic ficld dependence of y at low field [47]. I show the temperature
dependences of some thermodynamic and transport quantities at the QCP in various
- classes of spin fluctuations in Table 3.2.

Table 3.2: Critical behavior at the QCP in various classcs of spin fluctuations in the SCR
theory

1 CO/T AT o0
Ferro (d =3, z = 3) T3 _InT T-33 73703
Antiferro (d =3.:=3) T3 1-TY2 1-TUY+ T312

0.1
&
=
Q
0.0t
0.001 . - :
0.1 1

t=T/T0

Figure 3.17: Calculated »(T) by SCR theory using Eq. 3.4.



C/N gkt

Figure 3.18: Calculated specific heat by SCR theory using Eq. 3.4.
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Figure 3.19: Calculated R(T') by SCR theory using Eq. 3.4.
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As leaving from the QCP, the FL-like temperature dependences recover in any phys-
ical quantitics below T, which vanishes at the QCP. They can be calculated with 5
parameters e, Yo. Y1, Lo and T4. For the simplicity of the analysis, the value of x. is
fixed to 1. I show the calculating y(T). C(T)/T and p(T') in the antiferromagnetic case in
Fig. 3.17, 3.18 and 3.19, respectively. In Fig. 3.18 we can find the logarithmic divergent
behavior of C/T in the intermediate temperature range 0.275 < T < 2.0 with yy =
0, however at lower temperature C'/T deviate from the —log T-line and saturate to.the
finite value at T = 0. These results reproduce the NFL behavior in experiments well,
C/T ~ —logT, p~T" withn < 2 and x ~ 1 —T° with @ ~ 1/2. In this framework the
typical NFL behavior, C/T ~ —logT, is the intermediate behavior. When Ty, which is
roughly Tk . is very small, — log T dependence of C/T may continue down to the lowest
temperature in experiment, as in CeCusgAugy -

I show the calculation and experimental results of C/T of = 0 and 0.03 in Fig. 3.20.
There is a good agreement between both results. The parameters used in the calculations
are listed in Table 3.3. Figure 3.21 shows the calculation and experimental results of the
rescaled resistivity R of @ = 0.03 along both axes with the same parameters used in the
calculation of C'/T. The poorer agreement is found in the resistivity at high temperature
as compared with that of C'/T". The susceptibility at T = 0 is given in the SCR description
by,

0 2(1 + y0)Ta (3.8)
T, obtained from the cxperimental value of \(0) for each concentration arc listed in
Table 3.3. In the table I also show the the parameters obtained from the spin-lattice
relaxation rate 1/7 in the NMR mcasurement [48], which agree with the parameters
obtained from the specific heat.

The dynamical susceptibility \(Q+4g.w) is a complex number and their imaginary part
Imy (Q + q.w) is related with the magnetic excitation spectrum, which can be obtained
from the inclastic neutron scattering experiment. In the framework of the SCR. theory,
Im\ (Q + q.w) is paramcterized as,

| = XQ+q@/TQ.q) _
In].\(Q +Qu.) - 1+ (w/I‘.Q-*-q)z (39)
where - )
LQiq=27To(y +2"). -\Q+§ = 2T\ (y +2%) (3.10)

[ show the calculation results of FQ +q and l/_\Q +q with @ = (0 0 0.35) comparing
with the experimental results, which were obtained by Sato et al. [29], in Fig. 3.22.
The paramecters are also listed in Table 3.3. Comparing with the parameters obtained
~ from other experiments, they have a good agreement with cach other except for Thy.
The value of T obtained from 1/ XQ+q is much larger than that obtained from the
uniform susceptibility or the NMR, measurements. T is the parameter which represents
the strength of the dispersion of spin fluctuations and is linked to the dispersion relation
around the antiferrmagnetic wave vector Q. FQ -—FQ +q & Aq? by Ty = Aqk/2. However,
far from Q. this approximation of the dispersion relation is not valid because of an effect
of the higher-order terms of g which are neglected near Q. (Sce Fig. 3.23). We may
estimate the small value of Ty from the uniform susceptibility on account of this.
Next I discuss on the 2-dependence of the parameters obtained from the experiments.
Yo. is the value represent the distance from the QCP at T = 0. decreases as  increasing.
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Figure 3.20: The calculation results of the specific heats of 2 = 0 and 0.03 by SCR. theory
using the parameters listed in Table 3.3 with comparing with the experimental results.
The solid lines represent the calculation results.

It is consistent with the experimental fact that the system approaches to the QCP as
2 increasing. On the other hand Ty slightly increases as x increasing in contrast with
the decreasing of T estimated from the experiment, for example Th,.x of the resistivity.
Assuming Ty = Ty , we estimate the almost z-independent value of yy. The calculation
has too much parameters to determine them without ambiguity from one expeiment. We
try to analyze some experiments and obtain the same tendency of the variation of the
paramecters with 2. Therefore I conclude that the low temperature properties in the low
Rh-concentration region can be explained by the SCR theory well. However there still
remains the problem of the variation of Tion. As I stress in Scc. 3.2.1, Tion seems not
to vanishes at the QCP but to slightly increase. In the framework of the SCR theory
the crossover temperature T, from the classical regime to the quantum regime in the
paramagnetic state, which is related with ooy, 1s given by Ter ~ y9Ty. T calculated from
the parameters listed in Table 3.3 decreases to 0 approaching to the QCP in contrast with
Teon. Further experiment for much closer concentration to the QCP is nceded.

In the intermediate Rh-concentration region the NFL behavior is observed for x =
0.4 and 0.5. I show the calculation results of C/T in Fig. 3.24. In the calculation I
fixed the value of yp at 0 because of their wide temperature range where the —logT
dependence of C'/T were obscrved. The parameters used for the calculation is also listed
in Table 3.3. The agreement between the calculation and experimental results is not so
bad. And other physical quantitics, the resistivity and the susceptibility, for z = 0.5 has
very similar temperature dependence predicted at the QCP by the SCR theory. However
it is unrcasonable that g is 0 in the wide z-region, which should be 0 only at the QCP. I
will discuss on the NFL behavior in the intermediate Rh-concentration region, especially
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Figure 3.21: The calculation results of the rescaled resistivities of x = 0.03 by SCR theory
using the paramecters listed in Table 3.3 with comparing with the experimental results
along a- (open circle) and c-axis (filled circle). The solid lines represent the calculation
results.

for x = 0.5 and 0.6, in Scc. 3.3, including the crossover from the NFL to the FL by
applying a magnetic field. There scems to be the interplay between the disorder effect
caused by alloying and the quantum critical fluctuation.
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Table 3.3: The paramcters of the SCR theory obtained from the experiments in Ce(Ruy .-
Rh,)2Si; . Cej—.La.RuySiy and CeCug_ Au, system. The parameters for Ce(Ruy_,-
Rh,)»Si; with 2 = 0.03 obtained from 1/7; arc referred from Ref. [48] and the parameters
for Cey—.La,Ru,Siy and CeCug_. Au, are referred from Ref. [23].

Yo n Ty Ta
Ce(Ruy_ Rh,)2Si; '
x=0(C, xo) 0.30 0.50 14.0 16.5
z = 0.03 (C, xo) 0.08 0.70 17.0 14.6
t=0(g.xg) 015 10 100 340
r = 0.03 (FQ, \Q) 0.03 1.0 17.0 62.0
z = 0.03 (1/T1) 0.025 0.3 15.0 12.0
z=04(C,v) 00 30 130 139
z=10.5(C, xo) 0.0 5.5 10.0 10.3
Cel_zLa.rR.u-ZSi2 .
r=0(C. xo) 031 1.6 141 16
z = 0.05 (C. xo) 0.10 133 147 14
=007 (C,x) 0.05. 057 142 11
CeCug_ Au,
z=0(C) 0.40 100 3.0 —
z=0.1(C) 0.003 16.7 3.4 -
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Figure 3.22: The staggered susceptibility (a) and the encrgy line width of spin fluctuation
with @ = (0 0 0.35) of z = 0 and 0.03. The solid line represent the calculating results for
cach concentrations by SCR theory. using the parameters listed in Table. 3.3.
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Figure 3.23: The schematics of the dispersion relation of FQ +q O" 1/ XQ+q- The dashed
linc is an extrapolating curve from the small g approximation. The solid line is an expected
curve with higher-order terms of q.
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Figurc 3.24: The calculation results of the specific heats of 2 = 0.4 and 0.5 by SCR theory
using the paramcters listed in Table 3.3 with comparing with the experimental results.
The solid lines represent the calculation results.
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3.2.4 Discussion on the disorder effect in the intermediate Rh- -
concentration region — The distribution of the Kondo
temperature

In this subscction I argue the effect of the disorder due to the substitution Ru for Rh for
the thermodynamic propertics in the intermediate Rh-concentration region. The crystal-
lographic disorder or the frustration of the magnetic interaction, which are expected in this
region, may influence to the physical properties in complex. As a first step to understand
the effect of disorder I try to analyze the specific heat and the susceptibility by considering
the distribution of the Nondo temperature. It is the most simple approximation of the
influence of the disorder. The crystallographic disorder leads the distribution of the local
density of the conduction electron pf or the strength of the local Kondo interaction Ji;,
which cause the distribution of the local Kondo temperature T3. In this model, Kondo
disorder model, the interactions between the remaining local moments at a temperature
arc neglected. Only the competition between the thermal fluctuation of the remaining
local moments and the local Kondo cffect is considered independently at cach Ce-site.
In this sense the Kondo disorder model is the single-site model. The low temperature
anomalous behavior, the NFL bchavior, comes from the ‘living’ local moments which is
uncompensated by the Kondo effect because of their low Ty .

In a recent paper O. O. Bernal et al. have reported the results of the analyzing the
specific heat, the uniform susceptibility and the local susceptibility measured by NMR of
UCu;-.Pd, for z = 0.1 and 0.15 based on the Kondo disorder model [16]. The model
successfully explain the experimental results. Therefore we try to analyze the data by the
same means. For the first time we assume the Gaussian distribution of A = ppJi with
the average value < A > and the rms width w.

1 (A=< A >)?
V2w exp(= 2u? )

Ty is given by using A as T = zpexp(—1/A). where ¢ is the Fermi cnergy of the
conduction electron band. The distribution of Tk is given by,

P(\) = (3.11)

P(Tic) =| | PO(Tic ) (3.12)

When we denote the specific licat and the magnetization with one unique T as C(Tx ;T)
and A[(Ty ;T. H) respectively, we can calculate the specific heat and the susceptibility
as followings.

C(T) = [ dTx P(Tx )C(Tx 5T) (3.13)
M(T,H) = /0 ~ ATy P(Ti )M (T ; T, H) (3.14)

Here we use the expression of the resonant level model (RLM) [24], which is the phe-
nomenological model for the explanation of the temperature dependence of thermody-
namic quantitics in the impurity Kondo system, as C(Tx ;T) and M(Tx ;T. H). Both
expressions are

C(Ti;T) = i{l—.—A_ @’(-1-+ ‘\')} (3.15)



N 3 . 2 A+ig/zBH>
M(Ty ;T.H) = gps Im{ﬂ_\I/(l-i- kBT

1 A+igug H
(14 ) (3.16)

A is the width of the DOS with Lorentzian shape at the Fermi cnergy and is roughly the
size of the Kondo temperature. In Fig. 3.25 and 3.26 I show the calculation results of
the specific heats, the susceptibilities by using the parameters listed in Table 3.4. The
distribution functions with cach parameters are shown in Fig. 3.27. When the distribution
at Tk = 0 is finite, the thermodynamic quantities diverge down to 7' = 0. From the
distribution function we can calculate the mean value and the standard deviation of Ty,
< Tx > and oy, in numerical,

<Ix > = /0 dTx Tx P(Tx ) - (3.17)

ox /0 TdTx (Tx — < Tk >)*P(Tx ) (3.18)

which are also lited in Table 3.4.

Table 3.4: The parameters used for the calculations which are shown in Fig. 3.25 ~ 3.27
are listed.

<A> w oK) <Ik > L) o (K)

(a) 0.2 0.0 10000 20.22 0.505
(b) 02 002 10000 21.71 10.37
() 02 005 10000 28.87 28.67
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Figure 3.25: The calculation of the specific heats by the Kondo disorder model using the
parameters listed in Table 3.4.
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Figure 3.26: The calculation of the susceptibility by the Kondo disorder model using the
parameters listed in Table 3.4.
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Figure 3.27: The distribution function of Ty with parameters listed in Table 3.4.
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Figure 3.28 and 3.29.show the calculation results of the specific heats and the suscep-
tibilitics for x = 0.4 and 0.5 with comparing the cxperimental results, respectively. The
agreements between the calculation and the experimental results of the susceptibilities
are very good in the whole temperature range, while those of the specific heats are much
- poorer. The parameters used for the calculation of the specific heat and the susceptibility
are different (listed in Table 3.5). T used the same parameters in the distribution function
of A and assumed the different Fermi energy, er = 3500 X and 10000 K in the calculation
of the specific heat and the susceptibility respectively. This disagreement may comes
from the problem of the Wilson’s ratio (w2kg 2/3us 2)(x(0)/~(0)) which is 1 in the RLM,
however 2 in the numerical solution by K. Wilson [49] of the impurity Kondo problem. In
the perturbation by U of the Anderson hamiltonian (sce Eq. 1.3) the Wilson’s ratio varies
from 1 to 2 continuously. The RLM assumes the free clectron without considering the
correlation between electrons, therefore the Wiloson’s ratio should be 1. In general the
ratio in the HF system deviate from 1 by corresponding to the strong correlation between
the quasi-particles. The lower Wilson’s ratio leads naturally the lower Tk in the calcula-
tion of the specific heat than that of the susceptibility. In Fig 3.30 I show the distribution
of T obtained from the calculation of the specific heats and the susceptibilities for x =
0.4 and 0.5. In this figure we can find that the distribution at T = 0 is almost 0 for both
" concentrations, which means the thermodynamic quantities must be going to saturate
down to T = 0. C/T diverges logarithmically in the whole experimental temperature
range, while the susceptibility scems to start to saturate. It is worth much while making
sure whether the susceptibility saturate to the finite value or diverge down to T = 0.
The Kondo disorder model scems to explain the physical properties in the intermediate
Rh-concentration region. Especially in this framework we can understand the appearance
of the NFL behavior in the wide x region. However there are still something difficulty.
One of them is the temperature dependence of the resistivity. As I mentioned above this .
model consider only the single-site effect. When the T merge to one unique value, the
resistivity goes to the finite value py with the temperature dependence 1 — AT?, which is
the description of the local FL theory. The distribution of Tk modifics it as 1 — AT, which
is predicted theoretically by Miranda et al. [15] and observed in UCus_,Pd, by R. Chau
et al. [30]. On the other hand the resistivity in our system has a temperature dependence
like pg + AT, which scems to be the modification of the coherent FL state. There is
another difficulty in the magnetization process. I show the comparison the calculation
results with the experimental ones of the magnetization by using the same parameters
" for the susceptibility in Fig. 3.31. The results roughly agree with the experimental ones,
however the non-lincarity in the low ficld cannot explain by this model.

Table 3.5: The parameters used for the calculations of the specific heats and the suscep-
tibilities for z = 0.4 and 0.5 are listed.:

<A> w er (K) <Tx > (K) ok (K)

r=04(C) 018 0.0215 3800 16.7 10.4
r=05(C) 0.18 0.025 3400 15.6 11.0
r=0.4(y) 0.18 0.0215 10000 44.0 27.3
r=05(y) 0.18 0.025 10000 45.8 32.4
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Figure 3.28: The calculation results of the specific heats for 2 = 0.4 and 0.5 based on the
IKondo disorder model with comparing to the experimental results. The parameters used
for the calculation arc listed in Table 3.5.
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Figure 3.29: The calculation results of the susceptibilities for 2 = 0.4 and 0.5 based on
the INondo disorder model with comparing to the experimental results. The parameters
used for the calculation are listed in Table 3.5.
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Figure 3.31: The calculation results of the magnetization for x = 0.4 and 0.5 based on
~ the Kondo disorder model with comparing to the experimental results in the form of (a)

M vs H and (b) M/H vs H? The parameters is the same for the calculation of the
susceptibility. :
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3.3 The detailed study of the NFL behavior' in the -
intermediate Rh-concentration region

In the preceding section I reported the NFL behavior (C/T ~ —logT, y ~1—-T%a =
1/3 ~ 3/4, p ~ T'%) in the intermediate Rh-concentration region of Ce(Ru;_,Rh,),Si,
system. In this section I will discuss on this anomalous behavior in more detail, especially
for £ = 0.5 and 0.6. In order to obtain further information of the NFL behavior, I per-
formed the low temperature susceptibility measurement and the resistivity measurement
under an external magnetic field. Then I obtained the interesting phase diagram near
QCP in this concentration region, where the crossover line between the NFL regime to
the FL regime was found in the resistivity measurement in rather high ficld region (H
> 1 T). Furthermore in the smaller field region we discovered another crossover line, ob-
served in the low temperature susceptibility measurement. which can be correspond to
the interplay between the disorder and the QCP.

3.3.1 Field effect on the NFL behavior in the resistivity
— Crossover from NFL to FL by applying an external mag-
netic field

One of the evidences for which the NFL behavior can be considered as the effect of
the QPT is the experimental fact that the NFL casily collapses by varying the external
paramecter, for example applying a pressure or an external magnetic field. It is naturally
led from the description of the QPT, because the variation of an external parameter cause
the leaving from the QCP. By applying a pressure the strength of the hybridization (J/W)
is enhanced, which leads the enhancedment of the quantum fluctuation and reducement
the critical fluctuation of the order parameters, which is an antiferromagnetic fluctuation
in most of cascs. Therefore the recovery of the FL is observed by applying a pressure [51].
The similar behavior is observed when applying an external magnetic field [9. 19], which is
also considered to be due to the suppression of the antiferromagnetic critical fluctuation.
Therefore it is very useful way to study the ficld effect on the NFL.

Figure 3.32 shows the experimental results of the resistivity under magnetic field,
plotted as a function of T2, in which we can clearly find the T2 behavior in the high field
region (H > 1 T). I also show the recovery of the FL in another way. When the resistivity
varies as pg+ A’T™, we can obtain the value of the power n from the slope of log(T'dp/dT)
vs log T plot without an ambiguity of the residual resistivity, pp.

_log(T((ll_—;,) = log(nA4') + nlogT (3.19)
Figure 3.33 shows the differential resistivity at zero filed in this plot, and Fig. 3.34 shows
the ficld dependence of the power n. In this figure we can also find the recovery of the
FL above 1 T. : .

In Fig. 3.35 I plot the T¢o, obtained from the resistivity measurements as a function
of H. In high ficld and low temperature region, the FL-regime exist. T,on seems to be
extrapolated to the finite value, around 0.2 K, down to zero field from high field region,
however a T2 behavior could not be found at zero field in any temperature range, where
Teon is at most 0.1 IX. The Teop line drops rapidly around 1 T, where the T,y line seems
to be divided into two regime, a "low ficld’ line and a "high field’ line.

The magnetoresistance also shows the existence of two regime for this concentration
region in HT-plain. In Fig. 3.36 we can find the rapid increasing of the magnetoresistance
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below 0.2 ’f, in contrast with that in high field a general quadratic dependence on field due
to the orbital cffects on non-standard band structure was observed. The anomaly in low
field represents only a variation of few percent in the resistivity, but it is clearly observable,
which disappear at high temperature. Such a sharp increasing of the magnetoresistance
cannot be cxplained by the suppression of quantum critical fluctuation. F. J. Ohkawa
pointed out the distribution of Kondo temperature can explain the lincar field dependence
of the resistivity [52]. In our system, Ce(Ru;_Rh,)2Si; for z = 0.5 (intermediate Rh-
concentration region), the low ficld regime may be the ‘disorder’ regime. Here I use the
disorder regime as the meaning including quantum Griffiths phase, not a simple model -
of distribution of T} .For x = 0.03 the magnctoresistance at 60 mIx, which not shown in
Fig. 3.37, shows not a sharp increasing at low field but a quadratic field dependence, in
contrast for x = 0.5, because of less disorder.

The scaling analysis of the resistivity based on the dynamical mean-field theory
for the Kondo alloy system '

In the framework of the QPT, the thermodynamic propertics can be scaled by the pa-
rameter A represent the distance from the QCP, which is indicated y in the SCR theory.
Roughly specaking, when A is smaller than T the system behave as FL. Here I describe
the scaling analysis of the resistivity based on the recent dynamical mean-ficld (DMF)
theory for the Kondo alloy system developed by D. R. Grempel [53] for the explanation
of the crossover from the NFL to FL.

The Kondo alloy model is described as a system of localized spins interacting with
conduction clectrons via a local Nondo coupling. The localized spins interact among
themselves through an exchange coupling that may be approximated by an Ising-like
term that most experimental systems, our system also, exhibit strong uniaxial anisotropy.
The hamiltonian of the model is given by,

H=-— Z t,-jcfr,cjt, + Jx Z S;s; + “]).' Z -],'}jS;Sj (320)
253

i).o i

where S; and s; denote a localized spin operators and a local electronic spin density
at site {, and ci, and ¢;, arc the creation and annihilation operators for the conduction
clectrons in a tight-binding conduction band with ncarest-neighbor hopping integral ¢;;.
Jx and .J;; represent the local Kondo, coupling and the exchange coupling respectively.
The sccond term of the hamiltonian favors the screening of the localized moments below
a characteristic temperature T and the last term favors the appearance of a magnetic
order below a temperature T, = O(] Ji; |). The nonmagnetic-magnetic QPT is occurred
at the QCP at T = 0 around J (= | J;5 |) ~ Tk .

In the Ref [33] they investigated the case of a random exchange interaction with zero
mcan, which describes a QCP of a metallic spin glass. The antiferromagnetic case is
likely to be more relevant for our system, however we cannot cxclude the possibility of
the case of spin galss because of a high degree of disorder and the competition of different
type of antiferromagnetic phase in this concentration region. In the DMF approach,
the hamiltonian 3.20 is reduced to an cffective impurity model by integrating out the
clectronic and spin degrees of freedom of all but one of the lattice sites. The integrated
degrees of freedom provide a bath to which the ‘impurity’ site is coupled. According to
D. R. Grempel [54], in the ‘extended” DMF approach [55] the both antiferromagnetic and
spin glass cases are precisely the same in the paramagnetic region. The DMF theory is
exact when the lattice coordination z is infinite. The reduced hamiltonian is a single
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impurity model in a time-dependent magnetic field, as
H(r) = —[h*(r) £ H|S*(7) — JxS*(7) (3.21)

whérc h*(7) is a dynamic field, which is the result integrating out the degrees of freedom
of clectrons and spins, and H is an applied external magnetic ficld. And 2%(7) is given by

hi (1) = /01— dr'Q(r — 7')S*(r) (3.22)

Q7 — 7') is a retarded interaction. The first term in Eq. 3.23 is a feedback from the spins
and the second term is that from the clectrons. Near the QCP the first term is dominant,
which leads the NFL behavior, while far from the QCP as temperature decreasing finally
the second term becomes dominant and the FL behavior appears.

Monte-Calro simulations of the DMF Kondo alloy model show that its low encrgy
propertics arc very well described by an effective strong-coupling model [53, 56]. Near the
QCP the spectrum of local magnetic excitation is given by,

Qr — 1) =J* < S*(1)S* (7)) > +

3

T\ (w) = VAR(-Z 2
(@) = VES(S5) (3.24)
with the universal function ®(z),
1 2\ 1/5 ~-1/2
d(z) = ﬁm [(l + )2 4 1] / (3.25)

At J = J. the QPT occurs. The distance from the QCP A is obtained from its sclf-

consistent cquation,
T T
A=A+ 2VA- ||/l + ————— —~1 3.26
0TVAR {V 2V3THA } (3:26)

where the scale temperature Ty is roughly the Kondo temperature and Ay is A at T =0,
given by in the presence of a magnetic field,

. J H?
- /! = -—— — 9=
Ay (1 J) + i, (3.27)

Here, Hy = J./(ges )? and we assume T < Tp and H < Hy. The first term r = (1= J/J,)
represent the distance from the QCP at zero field and zero temperature, which can be
tuned by alloying or applying a pressure. The self-consistent equation of A cannot be
solved in closed form but its behavior in limiting cases can be easily found;

Ag+ (HVHEP2 for T/Ty > A

Ao+ 57s(7)°  for T/Th < A '

In the DMF formalism, the temperature dependent term of the resistivity is written

as, dp o« 1/(D(0)7) where D(0) is the DOS of the conduction clectron at Fermi energy
and 7 is the scattering time [57]. In the present case the latter is given by [14],

1 D(0O)JE > Y (w
_ DO /0 dcu——g?nlf 3) (3.29)

T 4
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Combining Eqs. 3.24 and 3.29, the temperature dopondont term is found to obcy the
scaling form, :

T/Ty) .
p(T) = p(0) ox T*/*( ( i" ) (3.30)
with the universal scaling function ¥(z) determined by ®(x).
T(z) = 2712 /x du(I),(u;r) (3.31)
0 sinh u

The asymptotic behavior of physical quantities follows from the above cquation. The
disipative part of the dynamical susceptibility y”(w) behaves as \"(w) & /@ for w > A
and Y"(w) o w/VA otherwise. Inserting these asymptotic results in Eq. 3.29, we obtain
the resistivity 6p oc T%2 for T/Ty > A and §p ox T?/VA for T/Ty < Ay, and also obtain
the asymptotic limits of the scaling function of the resistivity ¥(z) as,

2172 . T sengt
B(2) { x for x—= 0 (FL-regime) (3.32)

const. for x— oc (NFL-regime)

The shape of ¥(x) that interpolates between these asymptotic limits is shown in Fig. 3.38.
The theory also predict the behavior of the uniform susceptibility,

JIX(T)=v1i+A-VA (3.33)

by assuming the similarity to the local susceptibility [53]. The fact of that ferromagnetic
fluctuations do not develop into long-range corrclation ncar an antiferromagnetic or a
spin glass QCP justifies this assumption. At r = 0 has a dependence y(T7) — x(0) oc T%/4,
more generally in the temperature region T/Ty > Ay. This prediction is different from
that by SCR theory, which is y(T) — x(0) & T'/* near the antiferromagnetic QCP (sce in
Scc. 3.2.3). Supposcdly this difference comes from the neglecting the mode-mode coupling
in the DMF theory. Here I follow the guidance of the DMFE theory for the analysis the
experimental data in a magnetic field.

In a rcal analysis we must determine three parameters r, Ty and Hy. At the critical
concentration r must vanish. From the phase diagram of Ce(Ru;_.Rh,),Si; (Fig. 3.12)
and several experimental results we expected 2, = 0.5, however we cannot exclude the
possibility of that r is very small but finite for 2 = 0.5. The scale temperature Ty and
field Hy arc related with the Kondo temperature. In order to determine the value of
Ty we fit the susceptibility at 1kG by using the Eqs. 3.33 and 3.26 with Ag = 0. This
condition is justified in a temperature region r < 7' and in a ficld region H < Hy. I show
the experimental result of the susceptibility at 1 kG down to 100 mKX in Fig. 3.39 with
theoretical result. The best fit of the experimental data is obtained for T = 24 K. Once
Ty is known, r and Hy can be determined from the scaling plot of the T- and H-dependent
resistivity using the scaling form Eq. 3.30. In Fig. 3.40 I show the results of the analysis
for the resistivity along a- and c-axis. The data points represent the values of the scaled
resistance (p(T) — p(0))/t*/? as a function of the reduced variables ¢/A, where t = T'/T,
in the temperature range T < 0.9 K. We can make all the data merge on a single curve
by choosing the values r = 8 x 1073 and Hy = 13 T. The solid curves in Fig. 3.40 are the
theoretical results. Except the data at zero field, represented by the empty squares in the
figure, the scaling works satisfactory for all experimental data.

The characteristic temperature Ty = 24 KX is of the same order of magnitude as the
INondo temperature of this system. The theorctical value of the characteristic field Hy =
J./g*ns can also be expressed in terms of the zero temperature limit of the susceptibility
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per Cc-ato{m (x(0) = (gpB )?/J.). From the experimental value at 1 kG x(0) =~ 5 x 102 .
emu/mol and taking g = 2, we can estimate Hy &~ 11 T, which compares rather well
with the value determined from the scaling analysis of the resistivity. The valuc of r is a
measure of the 'chemical’ distance from the true critical concentration r « (2 — z.)/z..
Alternatively we can write r = §.J/.J,, where §J = J — J,; giving §.J =~ 200 mK. This is
a very small cnergy compared with all other encrgy scale, therefore we can conclude this
concentration is very close to the critical concentration and the NFL behavior, at least in
the field region higher than 1 T, can be considered as the quantum critical phenomena.
And this value is surprisingly consistent with the value of T, oxtrapolated from high
ficld Tiop-line (I had discussed with Fig. 3.35 alrcady).

In conclusion of this subsection, I have shown the scaling mmlyéis of the resistivity
under a magnetic field and found that the experimental results, especially the crossover
from the NFL to FL by applying a magnetic field, are well explained by the description
of the QPT bascd on the DMF theory. However in low field region, below a few kG, we
must scarch for another physics with considering the presence of the disorder and interplay
between the disorder and the quantum critical phenomena, probably. 1 will discuss on
the low field, including a zero field limit, properties with the experimental results of the
susceptibility in a following sections.
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Figure 3.32: The resistivity of 2 = 0.5 under an external magnetic ficld along c-axis up
to 5 T; the cxcitation current along (a) a-xis and (b) c-axis. The dashed lines represent
a T? behavior. The arrows indicates the range of the temperature where a T2 behavior
was observed.
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detail).
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several temperatures are plotted as a function of an applied field along c-axis. In the
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Figure 3.37: The magnetoresistance (p(H) — p(0))/p(0) for x = 0.03 measured along the
c-axis at 60 mIy is shown. The solid line represents the H'® dependence. '
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3.3.2 éusceptibility in a low and high magnetic field

In Sec. 3.3.1, I discuss on the scaling analysis of the resistivity under an external magnetic
ficld and the description of the QPT for the explanation of the NFL behavior. In conclu-
sion the description can be applicable for the high field region. On the other hand in a low
field region there is another physics, which can be seen in a deviation of the experimental
data at zcro field from the scaling function and the magnetic field dependence of Tiop,.
Here, I show the results of the magnetic field dependence of the susceptibility for z =
0.5 and 0.6, and report the discovery of a scaling of the susceptibility in a low field and
temperature region, which has different character from that found in the resistivity under
rather higher field.

High temperature region

First, I discuss on the variation of the temperature dependences of the susceptibilities in
the intermedite Rh-concentration at various magnetic ficld. As I showed in Fig. 3.6 (b),
the susceptibilities at 1 kG below 10 KX in this concentration region have a temperature
dependence like,

x(T) = xo — BT* ' (3.34)

with @ = 3/4,1/2. 1/3 and 1/2 for x = 0.35, 0.4, 0.5 and 0.6 respectively, which indicates
the system approaches to the FL regime. where the value of @ is 2, as leaving from the QCP
of the Rh-rich antiferromagnetic phase. If the susceptibility can be written as Eq. 3.34,
the exponent a is determined from the slope of the log(—T'dy /dT) vs log T plot as I did
for the resistivity data (Sec. 3.3.1).
dy

log <_Tﬁ) = log(aB) +alogT (3.35)
In the resistivity under a magnetic field we found the recovery of the FL behavior for
z = 0.5, therefore I have examined the field dependence of the susceptibility at high
temperature, T > 1.8 X, up to 4 T for » = 0.35. 0.4, 0.5 and 0.6.

I show the susceptibility of # = 0.5 in a various ficld applied along the c-axis in
Fig. 3.41, where we can sce the strong non-lincarity of the magnetization below 10 K.
I will discuss on this non-lincarity just later, and here I focus on only the temperature
dependence of the susceptibility in a magnetic ficld. Figure 3.42 shows the differential
susceptibility in the form of log(T'dx/dT) vs log T'. The figure represents that the exponent
a repidly increascs as increasing a field up to 1 T, then the enhancedment of @ becomes
rather slowly and a reaches to around 3/4 at 4 T. Such a field dependence of ¢ was found
also for x = 0.35, 0.4 and 0.6. I show the ficld dependence of @ in Fig. 3.43. The value
of a at the lowest ficld is different from that predicted by theories, which is 1/4 by the
SCR theory and 3/4 by the DMF theory. In a low ficld, below 1 T, the temperature
dependence of the susceptibility becomes stronger rapidly for cach concentration. And
the variation of the susceptibility becomes steeper as temperature decreasing. Therefore
the measurement in much lower temperature and field region is needed to see the ‘true’
behavior of the susceptibility.
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c-axis arc shown in the form of log(T'dy /dT') vs log T. The dashed line represent the slope
of the curve at low temperature.
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Figure 3.43: The variation of the temperature dependence of the susceptibility +n- Rh-
concentration .
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Non-linear susceptibility

The magnetic ficld dependence of the susceptibility shown in Fig. 3.41 suggests the strong
non-lincar susceptibility y» which is diverging down to T = 0. The magnetization in a
paramagnetic state can be expanded by the odd power of the magnetic ficld H as follows.

M= xoH + x2H*+ - -- (3.36)

Thus the non-lincar susceptibility X2 can be obtained as the slope in the M/H vs H?
plot. '

Figure 3.44 shows the magnetization in the form of AM/H vs H? for various Rh-
concentrations at 1.8 K. In the intermediate concentration region. the 'NFL’ region, x»
is negative and very large in a low field region. The field dependence of M/H for these
concentrations is not monotonic, but changes around 1 T into more gentle slope. On the
other hand in the low concentration region, the FL region, x2 is much smaller than that
for x = 0.4 or 0.5, which can be scen almost zero. In fact vy for = 0 or 0.03 has a
small negative value. The large non-lincarity at higher ficld is due to the metamagnetic
transition. In the SDW state, for x = 0.05 and 0.15 3 is positive and for £ = 0.3 x3 is
negative at first, which is much smaller than that for + = 0.4 or 0.5, and changes to positive
as increasing a field, up to a few kG. A positive y; is expected in an antiferromagnetic
ordered state. For 2 = 0.3 we observed the NFL behavior in the specific heat above Ty
at zero ficld, thus the negative y2 for & = 0.3 in a low ficld can be considered to have
a same origin with the NFL. These results show that the magnetic field dependence of
M/H at 1.8 X of Ce(Ru;_.Rh;),Siy systematically changes. depending on the magnetic
ground state. _

In Fig. 3.45 (a) I show y3 obtained from the fitting the magnetization data by Eq. 3.37
below 1 T for x = 0.4 and 0.5, and 0.03 for the comparison, as a function of a temperature.
X2 for x = 0.03 is much smaller than that for x = 0.4 or 0.5. The temperature dependences
of x» for x = 0.4 and 0.5 arc almost same. I also show the x2 in the form of the log(—x2)
vs log T plot for x = 0.5. Clearly we can sce the divergence of y; down to T = 0 negatively
with the exponent -1.5. For @ = 0.4 the same temperature dependence is observed, which
is not shown in Fig. 3.45 (b). The strong negative non-lincarity of the magnetization was
also observed in the typical NFL system CeCusgAug; by H. v. Lohnevsen et al. at 0.15 K
[9]. However, they did not measure the-temperature dependence of x 2.- We have measured
the magnetization of CeCusgAug; at various temperature and obtained the non-lincar
susceptibility as a function of a temperature by the mean above mentioned. The single-
crystalline and the poly-crystalline sample used for the measurements were grown by A.
A. Menovsky in University of Amsterdam. I show the temperature dependence of x3 of
CeCusgAug, in Fig. 3.46. Surprisingly the temperature dependences of x; for Ce(Ru;—.-
Rh;)5Siy and CeCusgAug; are quite same, in both system y; oc 7713, It suggests the
divergence of x2 is the characteristic behavior of the NFL, which has an universality as
well as the logarithmic divergent behavior of C/T.

How can we interpret about this divergence of x27 It is difficult to understand it in
the description of the antiferromagnetic QPT. In the case of a classical antiferromagnetic
phase transition, Y, never diverge and supposedly neither does in the case of the QPT. In
the case of spin glass, \2 must diverge as approaching to the phase transition temperature
Ty. and in the casc of the QPT the mean-field theory expects xz T-3/2 [14], which is the
same temperature dependence as our experimental results. Thus, is Ce(Ruy—.Rh,)3Sis for
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dependence as ~ 7715,

84



|
107" ,
1072 | .
NA
O}
o) -1.5
E -13. T
> 10 S -
) T
Y + o+
= . CeCusgAug ¢+ : .
1071 _ + 4
10710 ' ‘
1 10 100
T (K)

Figure 3.46: 2 of CeCus9Auy,; is shown in the form of log(—yx2) vs log T'.

x = 0.4 and 0.5 and CeCus gAng; ncar the QCP of spin glass? It can be in the Ce(Ruj_,-
Rh..)»S1; system, because in the intermediate Rh-concentration region there should be a
competition between two different antiferromagnetic correlation with chemical disorder.
It is noted that in the similar system, U(Ru;_,.Rh,)sSiy system, for around x = 0.4 the
spin glass phase was found [58]. However in the CeCuz gAng it is very doubtful the QPT
of spin glass occurs, considering its small substitution of Cu for Au. The Kondo disorder
model also may explain the divergence of \, by assuming the valid distribution of T} .
however this model seems not to be applicable for CeCusgAug; for the same reason.
Recently A. H. Castro-Neto ef al. have tried to treat the both effect of quantum -
critical fluctuations ncar an (antiferro)magnetic QCP and a distribution of the Kondo
temperature introduced by a chemical disorder for the explanation of the NFL behavior
[17]. In this theory they suggested the similarity between the NFL system and-the ‘quan-
tum Griffiths pliase’ can appear near the QCP of the spin glass [59]. Originally, *Griffiths
phase’ was proposed by R. B. Griffiths for a diluted ferromagnet [60]. In a diluted system,
or disordercd system more gencrally, the phase transition temperature T, decreases from
its clean value T2. In the temperature region T, < T < T? the system does not display a
global order, however in an infinite system an arbitrarily large regions show local orders,
with a small but nonzero probability that usually decrcases exponentially with the size
of the region. These “static’ fluctuations, introduced by chemical disorder for example,
are known as 'rarc region’ and the order paramcter fluctuates induced by them. Since
they are weakly coupled, and flipping them requires changing the order parameter in a
whole region, the system shows very slow dynamics. In a static feature, the free energy
is non-analytic everywhere in the region 7. < T < T9. In a classical case this "Griffiths
singularity’ is very weak and there are only a few experimental evidences [61]. In the
case of the QPT, Griffiths phase, or more appropriately Griffiths region, also appears in a
certain region of a non-thermal parameter r at the zero-temperature. In a quantum case,
Griffiths singularity is expected to be stronger than that in a classical case. In Ref. [59] the
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Ising spin élass system in a transverse magnetic field has been studied. When a transverse
ficld T is smaller than the critical value T, a spin glass state is realized, otherwise the -
ground state is paramagnetic. In a certain region ‘quantum’ Griffiths region is realized. I
show the schematic phase diagram of quantum spin glass system in Fig. 3.47. Quantum
Griffiths region must be connected smoothly to the QCP of the spin glass. The non-lincar
susceptibility x» diverges to infinite in the quantum Griffiths region as well as at the QCP.
Thercfore the measurement of 2 is very important for the study on the quantum Griffiths
phasc.

In the disordered Kondo lattice system., local Kondo coupling plays a role of a trans-
verse magnetic field, which is distributed randomly. Magnetic anisotropy is also important
for the similarity between the disordered Kondo lattice system and the quantum spin glass
system. In Ref, [17] several physical quantities are predicted as same in the quantum spin
glass system, for example,

C/T x T+
Yo X T—1+/\

X2 x T (3.38)

Our Ce(Ru;—zRh,)5Sis system satisfy the condition to realize the ‘quantum Griffiths’ de-
scription, however CeCug_,Au, system does not. In a strong disordered system, Griffiths
region should be found. Thus, how about in a weak disordered system? In Griffiths region
there is no universality, the value of A can vary. At the end point of the Griffiths region, A
should be 1, outside here no singularity is found. In a weak disordered system the “spread’
of Griffiths region must be narrow or can vanish. In CeCusgAug; . is much weaker dis-
ordered system than Ce(Ruy—Rh;)3Siy , x2 may saturate in a lower temperature. I will
discuss on it in the following scction again.

I try to apply this model for Ce(Ru;-.Rh,)2Si; system. In this model the temperature
dependences of several physical quantities can be expressed by using one prameter A, which
is related with the power decay of the autocorrelation function of the local moments in the
rare region. Unfortunately, the value of A obtained from the specific heat, susceptibility
and non-linear susceptibility are different cach other, which are 0, -1.5 (for z = 0.4) or
-1.7 (for x = 0.5) and -1.5 respectively. The temperature ranges where these values are
given arc also different, in the specific heat between 0.1 N and 10 Ik, in the susceptibility
between 1.8 K and 10 K and in the non-lincar susceptibility between 1.8 K and 10 K.
Precise measurements of yp and Y2 in a lower temperature should be required. In a
following scction I will discuss on it.
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Figure 3.47: The schematic phase diagram of the transverse-field quantum spin glass is
shown [62]. The thick portion along the horizontal axis (T' = 0) indicates the quantum
Griffiths region. N
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Low temperature susceptibility — the scaling of the susceptibility in a low field
region H < 1 kG .

From the measurcment above 1.8 K the susceptibilities in the intermediate Rh-concentration
region has a form of 1 — T* with ¢ > 0. We found the strong non-lincarity of magne-
tization in a low field as a few kG, which suggest the existence of low scale energy as
a few hundred mIX. Therefore the measurement above 1.8 K may not guarantee a lower
temperature behavior. The scaling analysis of the resistivity as functions of temperature
and ficld also suggest that the low field region below a few kG is a different regime from
the high field region. The logarithmic divergent behavior of C//T and the deviation from
a T? law of the resistivity are found at zero field. These experimental results strongly
requires a low temperature susceptibility measurement in a low ficld.

3.0 — . : ;

(a) x=0.5
w=130Hz
Hac=2.13G

Iny

1.5 | -

Figure 3.48: The AC-susceptibility down to 40 mK for (a) x = 0.5 and (b) 0.6.

Figure 3.48 shows the real part of the AC-susceptibility v down to 40 mK with an
AC-ficld Hyc = 2.13 G and a frequency w = 130 Hz. I tested the dependence of the
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suscept-ibilhy on an amplitude of AC-field between 0.5 and 5 G, and any significant de-
pendence was not observed. It means that the susceptibility above condition is the valuc -
at zcro field limit. In this figure we can find that the susceptibility for each concentration
diverge down to T' = 0 with small exponent, as x(T') & T~7. These divergent behavior of
x(T) cannot be understood by antiferromagnetic or spin glass quantum critical descrip-
tion. However the DC-susceptibility at 1 kG shows a non-divergent behavior as 1 — T3/4
down to 100 mI. (See Fig. 3.39) It is the behavior at spin glass QCP.

In order to examine the crossover from divergent to non-divergent behavior in x(7')
by applying a magnetic ficld more detailed, I have measured the AC-susceptibilities in
a DC-magnetic field for x = 0.5 and 0.6 and show in Fig. 3.49. AC-susceptibility in a
DC-field can be recognized as a differential susceptibility (7. H) = 0M/dH at H = Hpc.
In the figure strong ficld dependences of x (7', H) can be found and the divergence of x(7')
are casily suppressed by applying a magnetic DC-ficld of 100 G for cach concentration.
X(T. H) under a finite field also show the broad maximum at a certain temperature,
T,,. The ficld dependence of \ (T, H) is too strong to be explained by the existence of
fluctuating impurity spins individually. If we assume that, the size of such a flctuating
spin is estimated at about 20 pg from the position of T,.

As I mentioned in Sec. 3.3.1 the resistivity for + = 0.5 under a magnetic field above
1 kG can be understood as a quantum critical phenomena near antiferromagentic or spin
glass QCP. And the susceptibility at 1 kG is also explained by it. It means that the
‘mean ficld’ excitation ncar QCP dominates the physical properties in a low temperature
and an appropriately high ficld (> 1 kG) region even in the intermediate concentration
region. At x = 0.5 the system is a little way from the true critical concentration z., the
‘chemical’ distance is about 200 mIx. x = 0.6 also locate in the non-magnetic region, and
should be much nearer z. than z = 0.5. However the system enters to another regime as
decreasing a magnetic field where the energy scale of fluctuation should be much smaller
than 200 mIx. And the divrgence of x(T') at H = 0 indicate that it may be to vanish as
approaching to zero temperature at zero ficld. Hence we strongly conjecture the existence
of a different singularity from that originated in the QCP over wide Rh-concentration
region in the non-magnetic side. This can be understood by the *Quantum Griffiths”
picturc. Although it is expected from the high temperature (> 1.8 K) susceptibility
and magnetization measurements as I discussed in last subsection, the low temperature
susceptibility measurements have presenred it much more clearly. From our recent pSR
experimental result for x = 0.5 such clustering of spins was expected [42]. The muon
relaxation rate increases sharply below 2 X, and is to saturate below 0.7 Ix. This feature is
taken as an indication of the existence of isolated cluster of unsercened localized moments
of Ce-ions which continue to fluctuate even at very low temperature with very long decay
time. It is estimated about 2 usec. The finite size cluster scems to be the rare region in the
quantum Griffiths phase. The large clusters fluctuating very slowly drive the divergence
of x(T'). Furthermore the relaxation of muon spin can be suppressed easily by a magnetic
ficld of 100 G. which is consistent with the AC-susceptibility results in a finite field. It
can be recognized as the suppression of the slow fluctuation by a ficld because of its small
characteristic cnergy.

Here 1 try to apply the quantum Griffiths model for » = 0.5 by using Eqn. 3.38
again. I show cach A obtained from Yo(T). \2(T) and C(T)/T in Table 3.6. Non-
lincar susceptibility y(7") at low temperature was obtained from the field dependence.
of \(T, H) = xo(T) + x2(T)H? + - - -. (See in Fig. 3.50) Each quantity is plotted in the
single- or double-logarithmic scale in Fig. 3.51. yo(7) and \2(T) can be reproduced by
the divergence with small exponent better than the logarithmic divergence. On the Other
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Figure 3.49: The AC-susceptibilities of Ce(Ruj—.Rh.)2Si; for = 0.5 (a) and 0.6 (b)
measured in condition described in text under a DC-magnetic field up to 1 kGe are
shown. The arrows indicate the temperature, Tr,(H), where the suscoptlblhty shows a
broad maximum.
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hand C(T')/T shows perfectly lincar dependence in the form of C(T) vs —logT. Finally '
the value of A for z = 0.5 obtained from experiment is not unique, which is 0.60 4= 0:04
from xo(7T), 0.80%0.16 from x»(T) and 1.0 from C(T')/T. The rcason of the ununiquencss
of A may be caused by neglecting the other contibution to the physical quantities. Thus
I have tried to reproduce the experimetal results of xo(T) and C(T)/T by a divergent:
component with a mean field contribution, as xur(T) + T~ and Cyr(T)/T +T~". The
mean ficld contribution has been calculated by paramecters obtained in Sec. 3.3.1. The
agreements between the experiments and calculations are good (not shown in any figure),
and the-value of ¥ is unique, 0.8. '

1-2 I H T T T T T
Ce(Rug 5Rhg 5)2Sio T=0.5K
= 08+ \ |
= L e
£ W e 0.1K
= ~ T .
0.6 ™ )
e 0.045K
oal TTTT— .

Figure 3.50: \(H)/x(0) vs H? at cach temperature are shown. The broken lines are
drawn in a guide to eyes. :

Table 3.6: The valucs of A of x = 0.5 obtained from several experiments are listed with
the temperature range in which a power law behavior is valid.

A(C/T) A {xo) A (x2)
0.71 £ 0.08 0.60 £0.04 0.80 +0.16
0JK~10K 004K~02K 004K~10K
1.0(log T") 1.0(log T') 1.0(log T')

0IK~10K 004K~013K 004K~017TK
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Next I!discuss on the scaling analysis of the susceptibility in order to investigate the
excitation in a low ficld region detailed. For cach concentration, x = 0.5 and 0.6, the
energy scale should vanish at T = 0 and H = 0, hence I assume that the scaling form of
X(T. H) as ,

X(T.H) =T f(H/T’) (339)

Figurc 3.52 shows the scaling plots of x(7". H). The experimetal data for each concen-
tration below an appropriate “scaling’ temperature T;(H) collapses on cach scaling curve
respeetively, except for the data at 1038 G. The exponent  for £ = 0.5 and 0.6 are
0.41 4 0.02 and 0.15 4 0.03 respectively, which are same values as the exponent of the di-
vergence of the susceptibility at zero field in margin of errors. It means that the asymptotic
behaviors expected from the scaling analysis in a finite field are same as the experimental
results at zcro field. That is to say, we can define the scaling region up to the appropriate -
ficld, it sould be between 600 Oc and 1 kOe, including zero field. The values of 4 and the
scaling functions f(t) for x = 0.5 and 0.6 .arc quite non-universal, however the exponent
¢ for cach concentration are almost same, which are 1.21 £ 0.02 and 1.29 + 0.04 for z =
0.5 and 0.6 respectively. In the “Quantum Griffiths™ picture the exponent v is related to
the power in the distribution of cluster size [66], in which the spins are coupled strongly,
and it should be composition dependent. On the other hand, the exponent & may be
related to the couple between the ‘quantum’ tunneling energy and the Zeeman energy of
a cluster, which can be universal. In order to verify this scaling can explain the behaviors
of other thermodynamic quantities, we examine that of specific heat, which also diverges
down to 0 X as C(T')/T ~ —logT for x = 0.5. From the scaling form Eq. 3.39 we obtaine
the singular part of C(T")/T at zero field as T~ with a = 24+ —24. For z = 0.5 o is
—0.01 & 0.06, which is consistent with the experimental result. Hence we stress that in
this region ‘non-universal’ equations of state exist for cach concentration.

Figure 3.53 shows the phase diagram for @ = 0.5 and 0.6, in what T(H), Tin(H)
and a crossover temperature 7*(H) are plotted. T*(H) is defined as the temperature
where the susceptibility in a finite ficld separate from that at zero field. As reflecting
the composition independent of §, the curves of three characteristic temperatures for z =
0.5 and 0.6 arc almost same. In the low ficld region (I), T > T*(H), the cluster should
fluctuate in quantum or thermally, hence the susceptibility keeps on diverging. While in
the high field region (III), T < Trm(H), the fluctuation is suppressed and the susceptibility
decreases to a fnite value down to 0 IX. This region may connect to the higher field region,
H > 1 kOe, the mean field (MF) ‘quantum critical”_region. The region (II), T,(H) < T
< T*(H). is the crossover arca. The field dependences of T* and T, are ~ HY/? in the
margin of crrors, hence we represent their position as vertical lines in the scaling plot,
Fig. 3.52.

A short while ago. I described the zero-field susceptibility by the MF result with an
additional diverging contribution. \(T') = xaur(T) + «T~7 with v = 0.8, below 2.5 Ix.

. This expression means that there arc two separate region; one is the MF region where
spins interact weakly and are quenched below a crossover temperature Tpy,. The other
one is Griffiths region where spins coupled strongly and formed clusters. Such a strong
coupled region appears due to the shift of the balance between the RKKY magnetic
interaction and the Kondo cffect to the ordercd phase from the MF value locally in
various places, which is caused by a "chemical” disorder. The distribution of those shifts
should be continuous, hence there is not evident phase separation above mentioned. We
think that it is impossible to disentangle to two different components in susceptibility.
It is indicated by the success of the scaling analysis of ‘total’ susceptibility in low field
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Figure 3.52: The scaling plots of \ (7', H) for £ = 0.5 and 0.6 are shown. The two solid
lines arc the scaling function f(¢) for each concentrations, which are guides to eyes. The

vertical dashed lines represent the position of T*(H) and Ti,(H) in this scaling plot.
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Figure 3.54: Schematic phase diagram of CC(RUI_thx)QSiQ system near QCP

and the asymptotion to the MF behavior as increasing a field. The asymptotion to the
MF can be understood as following. The divergence of the susceptibility is caused by the
fluctuating large cluster, which can be suppressed by a very small magnetic field. Indeed,
while the Zeeman energy of a cluster of size N grows as v/, its tunneling energy vanishes
exponentially with V. The 'small’ cluster still fluctuating in a moderate field gives close
behavior to MF. Therefore we observe the crossover from 'Griffiths’ like divergent behavior
to the MF one. :

Is the singularity at T = 0 and H = 0 near QCP in Ce(Ru;_.Rh,)sSi; system really
quantum Griffiths one? In that case the value of § is expexted to be 1 from the theory[17],
however we have obtained about 1.2 ~ 1.3. In a recent results of the scaling analysis
of the susceptibility for UCus_.Pd. system[67, 68], which is also ‘disordered’ system, ¢
they have obtained were also about 1.3. From these results we cannot assert that the
successful scaling is the properties of a disordered system close to the QCP. Although a
full understanding of this experimental fact is still lacking, we believe that the completion
of the the theory of quantum Griffiths phase under a magnetic field will explain it.

I show the schematic phase diagram of Ce(Ru;—.Rh,)>Si; near the QCP in Fig. 3.54.
The QCP should be between 2 = 0.6 and 0.7. There is MF quatum critical regime com-
paratively far awy from the QCP, which is represented by the shaded portion in the figure.
As approacing to zero temperature and zero field, the system enter to ‘disorder’ regime.
It is represented by gray portion, where a sigularity originated from the QCP is hidden by
a much stronger singularity, quantum Griffiths singularity. In the MF regime the physical
quantities are scaled by the distance from the QCP A(T, H, ), in the ‘disorder’ regime
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they are done by the distance from the quantum Griffiths ‘line’. Thus some questions on
this phase diagram, namely, :

1. Is ‘disorder’ regime found in a weak disordered system?

2. Which singularity, originated from quantum Griffiths and QCP, is stronger just on
the QCP? In the first place, does a QCP exist in such a strong disordered system
as Ce(Ru;_.Rh,),Si; ?

3. Is there such a ‘disorder’ regime near a different type of QCP, for example ferro-
magnetic case?

In order to answer the first question, I show the AC-susceptibility results of CeCusgAug
in Fig. 3.55. As I disccused in Sec. 3.3.2, CeCusgAug; is much weaker disordered system
than Ce(Ru;_.Rh,)sSis , and shows very similar behaviors to that of Ce(Ru;—,Rh,)sSi;
at high temperature, C(T)/T ~ —logT, xo(T) ~ 1 = T2, x3(T) ~ =T~15. Quite
different behavior from that of Ce(Ru;—,Rh,)2Si; is found in the figure. CeCusgAug,
shows a non-divergent behavior even in a low temperature region as at high tempera-
ture (See Fig. 3.56). And the field dependence of x(T, H) is much smaller than that of
Ce(Ru;--Rh;)2Si; . It is consistent with the results at 1 kG reported by H. v. Lohneysen.
These results can be understood by an antiferromagnetic quantum critical description
well. Therefore we can conclude that there is no or very narrow ‘disorder’ regime beside
the QCP in a weak disordered system, which is quite natural.

The second is very interesting questions, but it is open at present. The second connect
to two other questions furthermore: (i) Does a finite temperature (classical) phase tran-
sition disappear as disorder is to be enhanced? (ii) Does a sharp phase transition exist
in a disordered system when shifting from classical to quantum regime. The determina-
tion of the evident phase transition line between z = 0.6 and 0.7 in Ce(Ru;_,.Rh,)2Si;
is required. It is future work. The third question is also very interesting. Following the
“Harris criterrion”[69], in the case of dv —2 < 2 the critical behavior of disordered system
differs from that of its uniform system in the classical case. In the quantum case, this
criterion may be modified to (d + z)v — 2 < 2. Recently R. Narayanan et al. have pre-
dicted that disorder modifies the critical behavior at antiferromagnetic QCP and does not
affect that in the ferromagnetic case on the contrary in an itinerant electron system [70].
Although the situation is unclear in the case of the Kondo lattice system, it is worthy to
compare the ferromagetic system with our Ce(Ru;—.Rh,)2Siz"in experimental.
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Figure 3.56: log(T'dx/dT) vs logT plots of CeCusgAuy; and Ce(Ru;—.Rh.),Si; 0.50.5
at H = 0 are shown. The explanation of this plot is described in Sec. 3.3.2. This

figure presents that xo(T) of CeCusgAug; is non-divergent in contrast with that of
Ce(Rug sRhgs)25i; .
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Chapter 4

Conclusion

1. We have studied the NFL behavior in Ce(Ru;—.Rh;)2Si; system by means of the
specific heat, the susceptibility and the resistivity measurcments. We found the
followings as experimental results.

(a) Near the QCP of the SDW phase on the Rh-poor side, that is at z = 0.03, the
NFL behavior was not observed either in the specific heat, the susceptibility
or the resistivity. Teon. the crossover temperature below which the FL state is

formed, seems to connect smoothly from the nonmagnetic side to the magnetic
SDW side.

(b) In a wide region of the intermediate Rh-concentration the NFL behavior (C/T
~ —logT, x ~1—=T p~ T") was observed. The deviation from the FL is
enhanced as approaching to the QCP of the antiferromagnetic ordered phase

in the high Rh-concentration region. This is not the case when approaching to
the QCP of the SDW phase on the Rh-rich side.

2. We tried to apply the SCR theory for the low temperature properties in the low Rh-
concentration region. The paramecters obtained from the macroscopic quantities, C
and Yy. and the microscopic or the dynamical quantities, XQ: g and 1/T, shows
good agreements with cach other. At least in the concentration region farther from
r = 0.03 with respect to the QCP, the SCR theory can explain the low tempera-
ture properties in the system very well except the z-dependence of T,,,. Further
experiment at.closer concentrations to the QCP is needed in order to clarify how
the QPT occurs between the nonmagnetic FL state and the SDW state.

3. We have studied the effect of a magnetic field on the NFL behavior in the intermedi-
ate Rh-concentration region. Two mechanisms for the NFL behavior coexist in this
region; onc is due to the quantum critical fluctuation originating in the QCP of the
antiferromagnetic phase in the high Rh-concentration region and so is other to the
Kondo disorder. In the high field region, the mean-field quantum critical descrip-
tion can be applicable. At zero field the quantum Griffiths description, which is the
result of the interplay between the quantum critical fluctuation and the disorder,
explains the experimental results appropriately. By a small magnetic field of 1 kG
the Griffiths singularity can be hidden because of its small characteristic energy. In
the low ficld region we found the new scaling region where the susceptibility can be
scaled by H/T? as,

X(T, H) = T~7f(H/T%)
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In a {much weaker disordered system, CeCusgAug; , such a scaling region was not
observed. It is the feature of-a disordered system near a QCP.
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