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Abstract 

In this paper we present a relation among the multiple zeta values which gener­

alizes simultaneously the "Sum formula" and the "duality" theorem. As an applica­

tion, we give a formula for the special values at positive integral points of a certain 

zeta function of Arakawa-Kaneko in terms of multiple harmonic series. 

Introduction 

The multiple zeta values (or Euler-Zagier sums ) seem to be related to many kind of 

mathematical subjects. Recently A. Graville, D. Zagier and others proved a conjecture 

known as the "Sum formula" (or "Sum conjecture") (Theorem 1.3 ) which. gives a re­

markable relation between the multiple zeta values and special values of Riemann zeta 

function. In this note we prove a generalization of the "Sum formula" which. is at the 

same time a generalization of another remarkable identity referred to as the "duality" 

theorem (Theorem 1.2 ). 

The multiple zeta values are defined for integers kI, ... , kn - 1 > 1 and kn 2: 2 by 
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In this paper we shall prove the following theorem. 

For any index set (kb k2 , ••• , kn ) satisfying the condition above and any integer I ~ 0, 

we defin;e-

For any integer s > 1 and ab bI, a2, b2, .•. , as, bs > 1, we define two index sets which are 

"dual" to each other by 

k = (1, ... ,1, bI + 1,1, ... ,1, b2 + 1, ... ,1, ... ,1, bs + 1) 
~ '--v---' '--v---' 
al - 1 a2 - 1 as - 1 

and 

k' = (1, ... , 1, as + 1, 1, ... ,1, as-l + 1, ... ,1, ... , 1, aI + 1). 
'--v---' '--v---' '--v---' 
bs = 1 bs- I = 1 bl = 1 

Our main theorem is then the following. 

Theorem 2.1 

Z(k';l) = Z(k;l). 

Note that, if we put s = al = 1 in above, then ((k) is a Riemann zeta value, and the 

identity above is nothing but the "SUIIl formula". We also note that, if we put I = 0, 

then the above theorem gives ((k') = ((k), the duality theorem (Theorem 1.2). 

On the other hand, poly-Bernoulli numbers were defined by M. Kaneko[9] using the 

polylogarithms. Recently T. Arakawa and M. Kaneko[l] defined a new function ~k(S) 

which has poly-Bernoulli numbers as the special values of non-positive integral points. 

They gave some expressions of the function by using the multiple zeta values. (We shall 

explain some of their results in section 3.) 

As an application of the main theorem, we present another theorem that the special 

values at positive integral points of the zeta function ~k(S) are also the special values of 

a certain multiple harmonic series. Namely, we can state the theorem as follows. 
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Theorem 3.3 

For integers k 2: 1 and n 2: 1 , we have 

In section 1, we shall review the definition and some properties of the multiple har­

monic series (including the multiple zeta values ). We shall prove our main theorem in 

section 2. In section 3, we shall review the zeta function related to poly-Bernoulli numbers 

defined by T. Arakawa and M. Kaneko[l], and show the relation to multiple harmonic 

serIes. 

Acknowledgment . The author would like to express his sincere thanks to his adviser 

Professor Tomoyoshi Ibukiyama, who gave him helpful advice. He would also like to thank 

Professor Masanobu Kaneko who introduced him poly-Bernoulli numbers which motivated 

the present work. The author wishes to express his deep gratitude to his parents for their 

support. 

1 Multiple Harmonic Series 

In this section, we shall review the definition and some properties of the multiple harmonic 

series (including the multiple zeta values ). 

For integers n 2: 1, kl,k2, ... ,kn-lo> 1 and kn 2: 2, we define ((kI,k2, ... ,kn) and 

(*(kb k2"'" kn) as follows. 

Note that 

«(kl , k2, ... , kn) = A(kn' kn- 17 ••• , kl } and (*(kb k2, ... , kn) = S(kn' kn- b ... , k l } 
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in Hoffman's notation[6]. 

It is known that we have relations as 

and 

(*(kl,k2) 

(*(kb k2, k3) 

((kl , k2 ) + ((kl + k2 ), 

((kt, k2, k3) + ((kl + k2, k3) + ((kl, k2 + k3) + ((kl + k2 + k3), 

(*~,k+l) 

m-I 

m 

=L (( bl + 1, b2 + 1, ... , bn- l + 1, bn + k + 1), 

(cf. [6]). 

Hoffman[6] studied these series. Following theorem is one of his results. 

Theorem 1. 1 (Hoffman[6]) For any integers k > 1, it, i2, ••• , i k - 1 ~ 1 and i k ~ 2, 

we have 

2:= ((al + i 1, a2 + i 2,·· . , ak + ik) 
at +a2+···+ak=1 

\fai~O 

i,-2 

= 2:= 2:=((it, ... ,il-t,j+l,i l -j,il+b ..• ,ik). 
l$l$k j=O 
i,~2 

Next, we review two interesting properties of the multiple zeta values. One is called 

"duality" and another is called "Sum formula" of the multiple zeta values. 

First, we review the definition of "Drinfel'd integral" following Zagier[14]. For el = 

1, ek = 0 and e2, ... ,ek-l E {a, I}, we define 
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where we denote Ao(t) = t and Al(t) = I-t. It is known that there is an identity between 

the multiple zeta values and "Drinfel'd integral", namely we have (cf.[14]) 

((k1, ... ,kn ) =1(1,0, ... ,0,1,0, ... ,0, ... ,1,0, ... ,0). 
~~ ~ 
kl - 1 k2 - 1 kn - 1 

We also know 

(cf. [14]). 

For any integer s 2: 1 and ab bb a2, b2, ... , as, bs > 1, we define two index sets which 

are "dual" to each other by 

k = (1, ... ,1, b1 + 1,1, ... , 1, b2 + 1, ... ,1, ... , 1, bs + 1) 
~ ~ ~ 

al - 1 a2 - 1 as - 1 

and 

k' = (1, ... ,1, as + 1, 1, ... ,1, as-l + 1, ... ,1, ... ,1, al + 1). 
~ ~ ~ 

bs - 1 bs- 1 - 1 b1 - 1 

Then the following theorem is known. 

Theorem 1. 2 ( "Duality" cf. [2][14]) For any index set k and its dual index set k' 

we have 

((k') = ((k). 

Next, we state the theorem called" Sum formula" conjectured by C. Moen and M. Hoff­

man, and proved by A. Granville, D. Zagier and others. 

Theorem 1. 3 ( "Sum formula" cf. [2] [6]) For ° < n < k we have 

L ((kl' k2 , ••• , kn ) = ((k). 
kl ,k2, ... ,kn-l ~1,kn~2, 

kl +k2+···+kn =k 
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2 Main Theorem 

In this section we shall give our main theorem. 

For any index set k = (kb k2 , ••• , kn ) and for any integer I >0, we define Z as 

Z(k; I) = 

Now, we state our main theorem. 

Theorem 2. 1 For any index set k and its dual index set k' and for any integer I 2: 0, 

we have 

Z(k'; 1) = Z(k; I). 

Remark Note that, if we put s = al = 1, then «(k) is a Riemann zeta value, and the 

identity above is nothing but the "Sum formula" ( Theorem 1.3 ). We also note that, if 

we put I = 0, then the above theorem gives «(k') = «(k), the duality theorem ( Theorem 

1.2). Theorem 2.1 also contains Theorem 1.1 ( Theorem 5.1 in M. Hoffman[6] ) as a 

special case when I = 1. 

Proof We fix an index set 

k = (1, ... ,1, b1 + 1,1, ... ,1, b2 + 1, ... ,1, ... ,1, bs + 1). --....-- --....-- --....--
al - 1 a2 - 1 as - 1 

Using "Drinfel'd integral" (we reviewed in section 1), for integers Ii 2: ° satisfying 11 + 
... + Is = I, and for integers di satisfying 1 ::; di ::; ai + Ii for i = 1, ... , S , we put Sk as 

follows. 

Then we have 

Ci,2+···+Ci,ai +Ii =di-l 
Ci,2, ... ,Ci,ai+1iE{O,I} for 'Vi 

1,c2,2, ... ,c2,a2+b'~' ...... ' 1,cs,2, ... ,cs,as+ls'~. 

b2 bs 

Z(k; 1) = L Sk(ab .. ·, as; 117 ••• ,Is). 
II +l2+···+ls=l 
li~O for 'Vi 
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We put m = I + 2::=1 Ui + bi. If we fix the values li 2:: 0 for i = 1, ... , s such that 

h + ... + Is = I, and make a generating function of Sk, we have 

'" (1(1, Cl 2, ... ,cl al+l17 0, ... ,0, L...J . ' , ~ 
ci,2, ••• ,Ci,ai+1i E{O,1} for "Jz b 

' 1 

x 1 1 ... ~)dt1 ... dtm. 
tm-b~+l tm-b~+2 tm 

For 0 < t l , t2, ... , tk < 1, we consider the following integral. 

f(--· (1:'(1"(1:' c: + 1 ~t,) (:. + 1 ~tJ C~ + 1 ~tJ 
... (_1 + . X ) dt2) dt3) dt4) .. . )dtk- 1 

tk-l 1 - tk-1 

- ... log-+Xlog-- -+-- -+--it", ( (lt6 (its (lt4 
(t3 1 - t1) (1 X) ( 1 X) 

tt tt tl tl t1 1 - t3 t3 1 - t3 t4 1 - t4 

... (_1 + X ) dt3) dt4) dt5) .. . )dtk- 1 
tk-1 1 - tk-1 

-- ... log-+Xlog-- -+-- -+--1it"'( (1 t7 (itn(lt5
( t4 1-t1)2(1 X) (1 X) 

2 tl tl tl tl t1 1 - t4 t4 1 - t4 t5 1 - t5 
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... (_1 + X ) dt4) dtS) dt6) .. . )dtk- 1 
tk-l 1 - tk-l 

1itk ( (its (l t7 (l t6 
(ts 1 - t1) 3 ( 1 X) (1 X) -- ... log-+Xlog-- -+-- -+--

6 tl tl tl tl tl 1 - t5 ts 1 - t5 t6 1 - t6 

... (_1 + X ) dtS) dt6) dt7) .. . )dtk- 1 
t k - 1 1 - t k - 1 

1 (tk 1-t1)k-2 = ... = log- +Xlog--
(k - 2)! tl 1 - tk 

By similar argument as above, for 0 < tI, t 2 , ••• , tk :::; 1 we have 

1 ( tk)k-2 
= (k - 2)! log t1 . 

We use these arguments and Fubini'stheorem, arrange ti and put t2s+1 = 1, then we 

can write the above generating function as follows. 

1 ( t )b1-1) 
X t2 lo~ t: ..... . 

( 
1 ( (t 1 - t ))as+Zs-l 1 ( 1 )bS-l) 

X 1 log ~+Xs 2s-1 - log- dt1···dt2s 
- t2s-1 t 2s- 1 1 - t2s t2s t 2s 

(IT (log ~ + Xi log 1 - t2i- 1) ai+Zi-1 (log t2i+ 1) bi-1) dt1 dt2 dt3· .. dt2s . 
i=l t2i- 1 1 - t2i t2i (1 - t1)t2(1 - t3) ... t2s 

Now we pick up the coefficient of n:=l Xf i
-

1
, then we have 
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Since we put 

Z(k;l) = L Sk(a}, ... ,as;ll, ... ,ls), 
II +b+··+ls=l 

we can write Z as follows 

= (I! IT ((ai - l)!(bi - 1)!))-1 J ... J (lOg (IT ~))' 
·-1 ·-1 t2l- 1 
l- O<h<t2< ... <f2s<1 t-

x IT ((lOg 1 - t 2i_1 )ai
-l (log t 2i+1 )b

i
-l) dt 1 dt2 dt3 ••• dt2s . 

i=1 1 - t2i t2i (1 - t 1)t2(1 - t3)··· t2s 

Next, we prepare for change of the variables. We denote t 2s+1 = 1, and put 

1 - t2i-l t2i+1 
X2i-l = log and X2i = log -- (for i = 1,2, ... , s). 

1 - t2i t2i 

Note that for i = 1,2, ... , s we have 

and 

9 



We also have 
(ft2i-l ( ) a = t 2i- l - 1 , 
X2i-l 

and for i < j we have 

So we have 
dt l dt2 dt3 ... dt2s d d d d 

-;---"-7---::---~-- = Xl X2 X3··· X2s· 
(1 - tdt2(1 - t3) ... t2s 

Next, we can calculate as follows. 

~ IT t2i = ~ IT e-X2i 

tl i==l t2i+l tl i==l 
exp ( - 2::==1 X2i) 

1 + 2:j;l (( -l)i exp (2:~==1 (-l)r-lxr )) 

(
exp ( t Xi) + t ((-l)j exp (t Xr + t xr)))-l 

.l==2 3==1 r==l 1"==3+1 
l:even r:odd r:even 

(t (( -l)i exp ( t Xr + t xr)))-l 
3=0 r==1 r==3+1 

r:odd r:even 

Hereafter we denote by f(xt, X2, ... , X2s) the inverse of the right-hand side of above equal­

ity, namely we can write 

For i = 1,2, ... , s, we also note that 

and tl > 0 means 

1- t2i-l 
X2i-l = log > 0, 

1 - t2i 
t2i+l 

X2· = log-- > 0 tt' 2i 

s 

f(xt, X2, ... ,X2s) = tl IT eX2i > O. 
i==l 

Now, we change the variables and rewrite Z(k; I) as 
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Z(k; /) = (l! II «a, - I)!(b, - I)!) r r·· ! (log (J(Xh X2,···, X2,t1))' 
Xi>O, l~t~2S, 
f(Xl,X2, ... ,X2s»0 

S 

x IT (x~r=ix~~-l) dXI dX2···dx2s. 
i=l 

Note that, f(XI,X2, .•• ,X2s) has the following property. 

f(X2s,X2s-I, ..• ,xd = t((-l)iexp(t X2s-r+l+ t X2s-r+I)) 
J=O r=l r=J+I 

r:odd r:even 

t ((-l)i exp ( I:. Xr + 2f! xr)) 
J=O r=2s-J+I r=l 

r:even r:odd 

t ((-l)i exp ( t Xr + t xr)) 
J=O r=J+I r=l 

r:even r:odd 

f(xI, X2,···, X2s). 

So we complete this proof with the following calculation. 

Z(k'; l) = (l! II «a, - I)!(b, - I)!) r r·· J (log (J(Xh X2,···, X2,)-1))' 
Xi>O, l~t~2s, 

f(Xl,X2, ... ,X2s»0 
s 

IT ( bs-Hl-I as-H1-I) d d d 
X X2i-1 X2i Xl X2··· X2s 

i=l 

(l! II «a, - I )!(b, - I)!) r r . . J (log (i(X,-, , x,,_ h ... ,Xl)-l))' 
Xi>O, l~t~2s, 
f(X2s,X2s-1, ... ,Xl»O 

s 

IT ( bs-i+l-l as-i+1-1) d d d x_ X2s-2i+2 X2s-2i+1 Xl X2··· X2s 
i=l 

(l! II «a, - I)!(b, - I)!) r r .. J (log (f(Xh X2, ... , X,,)-l)), 
Xi>O, l~t~2s, 

f(Xl,X2, ... ,X2s»0 

Z(k; I). 
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3 Application 

In this section, we shall give an application of main theorem. First, we review poly­

Bernoulli numbers and related zeta functions following the paper of T. Arakawa and 

M. Kaneko[I] p.g. 

Poly-Bernoulli numbers B~k) are a generalization of the classical Bernoulli numbers. 

They were defined by M. Kaneko as 

where, for any integer k, Lik(Z) denotes the formal power series (for the k-th polylogarithm 

if k > 1 and a rational function if k ~ 0) 'L~=o :n:. When k = 1, B~l) is the usual Bernoulli 

number, and when k 2: 1, the left hand side of the equation of above definition can be 

written in the form of "iterated integrals" as follows. 

-- ... -- --dt dt 1 lox 1 lot 1 lot t 
eX - 1 0 et - 1 0 et - 1 0 et - 1 , ' ... 

(k - I)-times 

M. Kaneko studied these values, gave an explicit formula of B~k) and also gave a 

theorem about its "duality". 

Recently T. Arakawa and M. Kaneko[I] defined the following zeta function ~k(S) for 

k~l. 

1 looo t s
-

1 

~k(S) = r( ) -t-Lik(I- e-t)dt. 
S 0 e-I 

They proved the integral converges for Re(s) > 0 and when k = 1, ~l(S) is equal to 

s(s + 1). They also gave the following theorems. 

Theorem 3. 1 (T. Arakawa and M. Kaneko[l]) (i) The function ~k(S) continues to 

an entire function of s, and the special values at non-positive integers are given by 

(m=0,I,2, ... ). 
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(ii) The function ~k(S) can be written in terms of the zeta functions (kI, k2' ... , kn- 1; s) 

as 

~k(S) = (_1)k-l{(2, 1, ... ,1; s) + (1,2,1, ... ,1; s) + ... + (1, ... ,1,2; s) ________ '---v----' ________ 

k-1 k-1 k-1 

k-2 
+s· (1, 1, ... ,1; s + 1)} + I)-l)i(k - j). ({1, 1, ... ,1; s), 

-------- . 0 ~ k-1 . J= j 

where we define the single variable function by 

For the special values of the zeta function at positive integral points, they got the 

following theorem. 

Theorem 3.2 (T. Arakawa and M. Kaneko[l]) (i) For k;::: 1 and m > 0, 

(ak + l)(al + 1, a2 + 1, ... , ak-l + 1, ak + 2). 
a1 +a2+···+ak=m 

'v'aj~O 

(ii) If k is even and k ;::: 2, then 

1 k-2 . 
~k(2) = 2 L:(-1)'(i+2)(k-i). 

i=O 

Applying our main theorem ( Theorem 2.1 ) to (i) of Theorem 3.2, we get a relation 

between the special values of ~k(S) and of (*(kl, ... , kn ) as follows. 

Theorem 3.3 For integers k > 1 and m;::: 1 , we have 

~k(m) = (*(1,1, ... ,1, k + 1). 

-------­m-1 

Proof By using Theorem 3.2, for positive integers k and m we have 

a1+a2+···+ok=m-l 
'v'aj~O 

(ak + l)(al + 1, a2 + 1, ... , ak-l + 1, ak + 2). 
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We can write 

n=l al +a2+···+ak=m-n 
'v'ai~O 

((al + 1, a2 + 1, ... , ak-l + 1, ak + n + 1). 

Now we use Theorem 2.1, then we have 

so we get 

(( b1 + 1, b2 + 1, ... , bn - 1 + 1, bn + k + 1), 

~k(m) = (*(1,1, ... ,1, k + 1). 
~ 

m-I 

If we use the known result 

k -1 1 k-2 
((1, k - 1) = -2-((k) - 2,2: ((r)((k - r) 

r=2 

(cf. [7][14]), we can get 

~k(2) (*(1, k + 1) = ((1, k + 1) + ((k + 2) 
'k+ 3 1 k 
-2-((k + 2) - - 2: ((r)((k - r + 2) 

2 r=2 

by Theorem 3.3. In case of k:even, we can check that it matchs Theorem 3.2 (ii). 
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