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A Generalization of the Duality and the Sum

formula on the Multiple Zeta Values

YASUO OHNO

Department of Mathematics, Graduate school of Science,

Osaka. University

Abstract

In this paper we present a relation among the multiple zeta values which gener-
alizes simultaneously the “Sum formula” and the “duality” theorem. As an applica-
tion, we give a formula for the special values at positive integral points of a certain

zeta function of Arakawa-Kaneko in terms of multiple harmonic series.
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The multiple zeta values (or Euler-Zagier sums ) seem to be related to many kind of
mathematical subjects. Recently A. Graville, D. Zagier and others proved a conjecture
known as the “Sum formula” (or “Sum conjecture”) (Theorem 1.3 ) which gives a re-
markable relation between the multiple zeta values and special values of Riemann zeta
function. In this note we prove a generalization of the “Sum formula” which is at the
same time a generalization of another remarkable identity referred to as the “duality”
theorem (Theorem 1.2 ).

The multiple zeta values are defined for integers &y, ...,k,—1 > 1 and k,, > 2 by



1
m1k1m2k2 PR mnkn ‘

C(k1, ko, - - o kn) =

O<mi<ma<--<mn
In this paper we shall prove the following theorem.
For any index set (k1, k2, - . . , kn) satisfying the condition above and any integer [ > 0,
Awe define

Z(kl,k‘g,...,kn;l)= Z §(k1+c1,k2+c2,...,kn+c.n).
citcgteten=l
Ye¢; 20
For any integer s > 1 and ay, by, a,bs,...,a,, by, > 1, we define two index sets which are

“dual” to each other by

k=(1,...,1,00+1,1,...,1,b0+1,...,1,...,1, b, + 1)
N — S—— N e’
a —1 as— 1 a;—1
and
K=(,...,1,a,+1,1,...,1,a,1+1,...,1,...,1,a, + 1).
— — N — ~——
by =1 bs_1=1 by =1

Our main theorem is then the following.

Theorem 2.1
Z(K;1) = Z(k;1).

Note that, if we put s = a; = 1 in above, then {(k) is a Riemann zeta value, and the
identity above is nothing but the “Sum formula ”. We also note that, if we put [ = 0,
then the above theorem gives {(k') = ((k), the duality theorem (Theorem 1.2).

~ On the other hand, poly-Bernoulli numbers were defined by M. Kaneko[9] using the

polylogarithms. Recently T. Arakawa and M. Kaneko[1] defined a new function &(s)
which has poly-Bernoulli numbers as the special values of non-positive integral points.
They ga?e some expressions of the function by using the multiple zeta values. (We shall
explain some of their results in section 3.)

As an application of the main theorem, we present another theorem that the special
values at positive integral pointsl of the zeta function £;(s) are also the special values of

a certain multiple harmonic series. Namely, we can state the theorem as follows.
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Theorem 3.3

For integers £ > 1 and n > 1, we have

1
mymg--- mn—lmnk+1

&k(n) = >

O0<mi<mz<--<mn

In section 1, we shall review the definition and some properties of the multiple har-
monic series (including the multiple zeta values ). We shall prove our main theorem in
section 2. In section 3, we shall review the zeta function related to poly-Bernoulli numbers
defined by T. Arakawa and M. Kaneko[1], and show the relation to multiple harmonic

series.

Acknowledgment The author would like to express his sincere thanks to his adviser
Professor Tomoyoshi Ibukiyama, who gave him helpful advice. He would also like to thank
Professor Masanobu Kaneko who introduced him poly-Bernoulli numbers which motivated
the present work. The author wishes to express his deep gratitude to his parents for their

support.

1 Multiple Harmonic Series

In this section, we shall review the definition and some properties of the multiple harmonic

series (including the multiple zeta values ).

For integers n > 1, ky, ko,...,kn1 > 1 and k, > 2, we define ((ki, ko, ..., k,) and
C*(k1, k2, . . ., ky) as follows.

1
C(kl, k2’.- . ’kn) frmd Z ,
0<my<ma<---<mMn m1k1m2k2 .o mnk"
1

k. b)) = >

kFimokz .o oqyn kn’
O(mlsmzs...Smn ml m2 mn n

Note that
C(kl, kg, ey k‘n) = A(kn, kn—ly ey kl) and C*(k‘l, kg, ey kn) = S(kn, kn——l, ey kl)
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in Hoffman’s notation[6].

It is known that we have relations as

C*(k1,k2) = (ki ko) + (k1 + Ea),
(k1 ko, ks) = C(k1, ko, k3) + C(kr + ka, k3) + C(k1, ko + k3) + (k1 + k2 + k3),

and

¢r(1,1,...,1,k+1)
m—1

m
22 Z C(bl+1’b2+17-'-1bn—1+1’bn+k+1)7
n=1 b1+b2+"'+>1>6=m—-n :
i =

(ct.[6]).

Hoffman[6] studied these series. Following theorem is one of his results.

Theorem 1.1 (Hoffman([6]) For any integers k > 1, i1,42,...,1k-1 > 1 and %y > 2,

we have

Z C(a1+i1,a2+i2,...,ak+ik)
a1+az-+--+ag=1
Va;>0

31—2 *

= Z z C(ilv' "1il—11j+ l)il _jvil-i—l:""ik)‘

1<I<k j=0
122

Next, we review two interesting properties of the multiple zeta values. One is called
“duality” and another is called “Sum formula” of the multiple zeta values.

First, we review the definition of “Drinfel’d integral ” following Zagier[14]. For ¢; =
1l,ex =0 and ¢9,...,6x-1 € {0,1}, we define

dt, ditx
Aex (tl) Afk (tk) ’

1(617"-7610) =/'-“/
0<t <<t <1
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where we denote Ay(t) = ¢t and A;(¢t) = 1—¢. It is known that there is an identity between
the multiple zeta values and “Drinfel’d integral ”, namely we have (cf.[14])

ki,... k) =1(1,0,...,0,1,0,...,0,...,1,0,...,0).
C( 1, ’ ) (

ky—1 ko —1 k,—1
We also know
I(él,&'g,...,Ek) = I(]. —Ek,l —6k_1,...,1—81),
(cf.[14]).
For any integer s > 1 and ay, by,as,bs,...,as,b; > 1, we define two index sets which

are “dual” to each other by

k=(1L...,0b+1,1,...,,be+1,...,1,...,1,b, +1)
N—— S——— S——
a;—1 as —1 a; —1
and
K=(1,....,0,a5+1,1,...,1,a-1+1,...,1,...,1, a1 + 1).
——r S———’ S———
bs—l bs_l—l bl—]-

Then the following theorem is known. -

Theorem 1.2 ( “Duality” cf. [2][14]) For any indez set k and its dual indez set k’

we have

(k') = ¢(k).

Next, we state the theorem called ” Sum formula” conjectured by C. Moen and M. Hoff-
man, and proved by A. Granville, D. Zagier and others.

Theorem 1.3 ( “Sum formula” cf. [2][6]) For 0 <n < k we have

> C(k1, Koy - - .y k) = C(K).
kl yh,---ykﬂ—lzlykn22y
k1tkz+-+kn=k



2 Main Theorem

In this section we shall give our main theorem.

For any index set k = (ki, ks, - - ., k,) and for any integer ! > 0, we define Z as

Z(k,l)= Z C(k1+cl,k2+cz,...,kn+cn).
Cl+62V+:;-Idcn:l

Now, we state our main theorem.

Theorem 2.1 For any indez set k and its dual indez set k' and for any integer 1 > 0,
we have

Z(K;1) = Z(k; 1).

Remark  Note that, if we put s = a; = 1, then (k) is a Riemann zeta value, and the
identity above is nothing but the “Sum formula ” ( Theorem 1.3 ). We also note that, if
we put [ = 0, then the above theorem gives {(k’) = ((k), the duality theorem ( Theorem
1.2). Theorem 2.1 also contains Theorem 1.1 ( Theorem 5.1 in M. Hoffman[6] ) as a

special case when [ = 1.

Proof  We fix an index set

k=(1,...,,b+1,1,...,1,ba+1,...,1,...,1 b +1).
| ——— ———
ay — 1 ag — 1 ag — 1
Using “Drinfel’d integral” (we reviewed in section 1), for integers [; > 0 satisfying I; +

-+ 1l =1, and for integers d; satisfying 1 < d; < ag;+; fori =1,...,s, we put Sy as

follows.
Sk(dl)---;ds;liy---als): Z 1(1;51,21---,51,a1+11;0;---707
i ot a1, =di—1 . T
E.',Q,...,E.',a....},xie{o,l} for Vi 1
1,82’2, e ,62,a2+12,0, e ,0, ...... y 1,53,2, e ,E_.,’a’+la,0, N ,O .
by bs
Then we have
Zk= Y Silan...,aih..,L).
Lo, =l
1;>0 for Vi



We put m =1+ 37, a; + b;. If we fix the values [; > 0 for 2 = 1,...,s such that
ly +---+ 1, =1, and make a generating function of .S, we have

1<d;<a;+l; for Vi

> (Sk(dl,---,da;ll,...,l,) H X;.’J‘“l)
=1

= Z (1(1,81,2,...,61,014_11,0,...,0,
55'2""’5‘3"1"”]1‘6{0’1} for Vi bl

3
€52+ +€ja5+1;
.,1,63,2,...,63,034_[8,0,...,0’HXj )
J=1
bs

1 1 X1 1 Xi
:/-./ ( + ) .o -+
1 - tl 1 - t2 tal'Hl 1 - tal+ll

0<t1 < <tn<1

1 1 1
tal+11+1 tal+11+2 ta1+11+b1

1 1 X, 1 X,
X + . A B + ,
1 - tm—as—ls—bs+l Lm—as—ls—bs+2 1 - Lm—as—l,g—b3+2 I’TTL‘“bs 1 - Lm'—bs

1 1 1
"'_)dtl"'dtm

tn—bst1tm=b,42  Im

For 0 < ty,%,...,tx < 1, we consider the following integral.
L ) (o ) ()
t1 t1 t1 t1 t2 - 1—- t2 t3 1-— t3 t4 1- t4
1 X
o + dto |dts |dty |-+ |dtx—
(i 7 o)) o
b te ts ta t3 1-¢ 1 X ( 1 X )
—_ e 1 — -— —_—
v/t; < (/t.l </t; (‘/t; (Og tl + Xlog 1 - t3) (t3 + ) t4 + 1 —_ t4
1 X
- + dts |dty )dts | --- |dix—
(i o)) o
1 [t tr [ fie 1—-#\2/1 X 1 X
== — > e » 1 — —
2‘/;1 ( (-/t; </t-1 (‘/tx (og +Xlo 1—t4) (t4 + 1—t4) <t5 + l—ts)
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1 X
. + dts \dts |dtg ) - - dtr_
(tk—l 1—tk—1) 4) 5) 6) ) -
1 ts [tz o 1—t\3/1 X )(1 X )
—6-/t1 ( (/tl (/tl (/tl (log +X1g1—t5) (t5+1—t5 A
1 X |
. + dts \dte |dt; | - |dtr_
(tk—l 1—tk—1) 5) 6) 7) ) -

By similar argument as above, for 0 < y,%,...,1; < 1 we have

i ts 3111
RO B AR B R B el ——dt dts | dt dty_
‘/tl ( (/t; ('/tl (/tl t2 t3 t4 tk"‘ 2) 3) 4) > -

~wm (i)

We use these arguments and Fubini’s theorem, arrange ¢; and put fg,4.; = 1, then we

can write the above generating function as follows.

sz(b —1)!(a; +l — 13</ / (1 —1t1 (1 g( +Xli ::2))014»11—1

t1<ta<<tzs<1

- s+Hla—1 be—1
1 to tzs_l))“ i 1\
x[—= (1o +x,1 —(10 ——> dt, --- dt
(1 — l2s5-1 ( & (t23— S 1ty tas \ © g, ! 2

= (H ((b; — 1)Ya; + 1; — 1)'))

O<t1 <ta<-<tas<1

a;+;—1 i
> — o1 P t2i+1 bi—1 dtl dt2 dt3 LR dt?s
[Tk + X;log — 271 (10 ) .
<':1( ot tai-1 g 11y ) © tog (1—t1)ta(1 —t3) - - to

Now we pick up the coefficient of [J2_; X", then we have

Sk(al,...,as;ll,...,ls)



(o) ] (i)

O<ti<ta<<t2s<1
3 . a;i—-1 . bi—1 eee
y H ( < t21,—1> (log t2z+1) dty dty dtg - - - diy,
=1 1 —tg; to; (1 - tl)t2(1 — t3) RS S

Z(k;1) = > Slar,--.,ash,. L),

Lo+ 4=l

Since we put

we can write Z as follows

L
E t i i
Zkh= > ((H (Ll ai — 1) _1)1)) // (H (logt 2 ) )
lLitla++Hs=l Ottt =1 21
’ 1- t2i—1)“""1 ( t2i+1>b‘“1> dt, dty dts - - - disg, )
X log ————— 1
,;];Il <( & 1 —t2i 8 t2i (1 -tl)t2(1"‘t3)"'t23
8 -1 s ‘o 1
(lvH( a; — 1)!(b; —1)1)) // <log (H 2 ))
! 0<t1<ta< - <t2,<1 =1 tei-1
1 2 2s )

H (10 — l9i1 )a‘_l (lo t2i+1)b‘_1 dty dty dtz-- - dityg
&1t & (L= t0)ta(l—t3) -~ tas

Next, we prepare for change of the variables. We denote t9,,; = 1, and put

1—19 to;
Toi—1 = log T_—-?t—;-—l and To; = log 2itl
2

(for i=1,2,...,s).
2
Note that for: =1,2,...,s we have

fucy = 1= e (1— e ®(1 = ™ (oo (1 - &%) )

= 1+ ._21((—1)]'@@ (_22:— (1) lz; ))

to; = €77%(1 — ™t (l — e F32(c .. (1 — e77%)) - - )

- 3 ((—w‘ exp (z’;(—l)f-lx,))

to;

and

= exp (—zg) -
toit1



We also have

8t2i_1 a7521'
=t i—-1 " 1 ) =-—1 1
O0z9i_1 ( 2t ) 3l'2i %
and for ¢ < j we have
Ot
-3 —0q.
8:1;,-

So we have
dt, dty dts - - dity,

(1—ty)ta(1 —t3)---tos
Next, we can calculate as follows.

= d.’L‘1 d:L'2 diL‘3 o dﬁL‘Qs.

to; _ 12 to; 12

= e T2

=1 t2i—1 t =1 tait 13 iy
exp (= Xish T2)
1+ 32, (-1) exp (T (-1) 12, )

-1

2s 2s . J 2s
= Jexp| > zi |+, ] (-1exp| > z+ D =z
=2 7=1 r=1 r=j+1
) i:even rodd Tieven
2s . J 2s -
= Z (-1)1 exp Z T+ Z Zr
7=0 r=1 r=7+1
r:o0dd rieven

Hereafter we denote by f(z1,zs, ..., Zs;) the inverse of the right-hand side of above equal-
ity, namely we can write
S

tg' _'
H - :f($11x27"'7$23) l.

=1 teim1

Fori=1,2,...,s, we also note that

' 1— 29
to;1 <t9i & I9i—1= log —1——2;—1- > 0,
— L2

loit1

to; < loiy1 & Toi= log >0,

to;

and t; > 0 means

3
f(z1,z2,...,205) = 14 ]:[em2i > 0.

=1

Now, we change the variables and rewrite Z(k;!) as

10



s -1
Z(k;1) = (l!H((ai—l)!(b,-—l)!)) [ [ (og(rnzn..,z) ™))
i=1 ;>0, 1<i<2s, V
F(21,22,00224)>0

X H (zQ,_le, ) dzq dzg - - - dzag.

Note that, f(zy,z2,...,T) has the following property.

2s
f(l'2s’$2s—-11 .. 11'1) = Z ( 1)'7 exXp ( Z Tos—r+1 + Z .’L‘23_1.+1))

=0 rodd :::zré_r}
23 . 2s 23-7
= Z (1) exp Z Zr + Z Ty
j=0 r=23-j+1
Teven rodd
23 . 2s J
= > |Vexp] > z+ ) 2z
7=0 r=j+1 r=1
reven rodd

= f(xlam% s a$2s)-

So we complete this proof with the following calculation.

Z(K50) = (“H a; — 1)!(b; — 1)! ) / / log :1:1,:32,...,1'23)"1))1

>0, 1<i<2s,
f(xm:z, \T20)>0

- 1 -
X H (:L‘g‘; 1T a, 1T 1) diL'l d.’L‘2 .o .dl‘gs

- (“H( —1)'b—1)'>) 1/ o [ (og (s oz ™))

z;>0, 1<i<2s,
f($2ss$2s—1,---,$1)>0

bs—it1—1 _@s—it1—1
X H (x2s—2z+2 Tos—2it+1 dxy dzo---dzog

-1

= (llljl((ai—l)!(bi—l)l)> / /(log (f(xl,xz,...,xzs)_l))l

250, 1<i<2s,
f(zl 732:'--13:23))0

3
1,.a;—1
X H (1’21’ Toi_ 1) dz, dzo .- - dzg,
=1

Z(k;1).

Q.E.D.
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3 Application

In this section, we shall give an application of main theorem. First, we review poly-
Bernoulli numbers and related zeta functions following the paper of T. Arakawa and
M. Kanekol1] p.9.

Poly-Bernoulli numbers B%) are a generalization of the classical Bernoulli numbers.

They were defined by M. Kaneko as

Lik(l — e“”)
et —1

— i B(k)a:_"

n=0 " ol

where, for any integer k, Lix(z) denotes the formal power series (for the k-th polylogarithm
if k£ > 1 and a rational function if k < 0) ¥-22_; Z;. When k = 1, B is the usual Bernoulli
number, and when k& > 1, the left hand side of the equation of above definition can be

written in the form of “iterated integrals” as follows.

1 z 1 t 1 t e z™
dtdt ---dt =35 B®_
E‘”—l/o et—l/o et—l/ojet—l Z " onl

n=0
(k — 1)-times

M. Kaneko studied these values, gave an explicit formula of B{) and also gave a
theorem about its “duality”.

Recently T. Arakawa and M. Kaneko[1] defined the following zeta function &(s) for
kE>1.

lo'e] tS'—l

1 ) —t
€k(s) = P(s)/o o 1sz(l — e ")dt.
They proved the integral converges for Re(s) > 0 and when k& = 1, &(s) is equal to
3¢(s+1). They also gave the following theorems.

Theorem 3.1 (T. Arakawa and M. Kaneko[1]) (i) The function &x(s) continues to

an entire function of s, and the special values at non-positive integers are given by

&(—m) = (-1)™B® (m=0,1,2,...).

12



(ii) The function &(s) can be written in terms of the zeta functions ((ky, ks, ..., kn-1;5)

as

&(s) = (1) 1¢(2,1,...,1;8) +¢(1,2,1,...,1;8) +--- +€(1,...,1,2;8)
k-1 k-1 k-1

+s-¢(1,1,.. 13+1)}+Z( 1)7¢(k — j) - c(11
TRt

where we define the single variable function by -

1
mlklm2k2 coe mn_lkn—lmns ‘

C(kl1k27"'7kn-—l;s) = Z

O<mi<ma< < mn

For the special values of the zeta function at positive integral points, they got the

following theorem.

Theorem 3.2 (T. Arakawa and M. Kaneko[1]) (i) For k>1 and m >0,

Ee(m+1) = > (ar +1)¢(a1 + 1,00+ 1,...,a5_1 + 1,05 + 2).

a1+a2+---t+ag=m
Va; >0

(ii) If k is even and k > 2, then

€x(2) = Z( 1)°¢G + 2)¢(k — ).

Applying our main theorem ( Theorem 2.1 ) to (i) of Theorem 3.2, we get a relation
between the special values of &(s) and of (*(ki,-.., k) as follows.

Theorem 3.3 For integersk > 1 andm > 1, we have

gk(m)ZC‘(1717"'711k+1)'
m—1

Proof By using Theorem 3.2, for positive integers & and m we have

&k(m) = Z (ar + 1)¢(a1+1,a9+1,...,a5_1 + 1,ar + 2).

a1+az+-+ap=m-—1
VajZO

13



We can write

m
&e(m) = > > Clay + 1,a9+1,...,a5-1 + 1,ax +n+1).
n=1 ai1+az+--+ar=m—n

Va;>0

Now we use Theorem 2.1, then we have

m

fk(m)zz Z C(b]+1,b2+1,...,bn_1_+l,bn+k:+1),

n=1 by+bo+--+by=m—n
Wb; >0

so we get

&x(m) =¢*(1,1,...,1,k+ 1).
m—1
Q.E.D.

If we use the known result
k-1 =" Lo - lki ¢k — )
(cf. [7][14]), we can get
&(2) = ¢(L,k+1) = €1, k+ 1)+ ((k+2)

= k;?’c(k+2 ——Zg (r)¢(k — T+ 2)

by Theorem 3.3. In case of k:even, we can check that it matchs Theorem 3.2 (ii).
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