

Title	Characterization of Chondrocyte Fate and Nutrition Property during Cartilage Culture Process
Author(s)	Masima, Binti Mohd Nadzir
Citation	大阪大学, 2012, 博士論文
Version Type	VoR
URL	https://hdl.handle.net/11094/24545
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

【35】

氏名	マスリナ ビンティ モハマド ナジール MASRINA BINTI MOHD NADZIR
博士の専攻分野の名称	博士 (工学)
学位記番号	第 25683 号
学位授与年月日	平成 24 年 9 月 25 日
学位授与の要件	学位規則第 4 条第 1 項該当
基礎工学研究科物質創成専攻	
学位論文名	Characterization of Chondrocyte Fate and Nutrition Property during Cartilage Culture Process (軟骨組織培養プロセスにおける細胞形質および栄養源分布の時間的・空間的特性)
論文審査委員	(主査) 教授 田谷 正仁 (副査) 教授 馬越 大 教授 紀ノ岡 正博

論文内容の要旨

Characterization of the chondrocyte fate and nutrition property during cartilage culture is important towards generating cultured construct with a desired quality for clinical uses. In Chapter 1, the relationship between the morphology of young chondrocytes (population doubling, $PD = 0$) and the structure of high density collagen type I coated substrate (CL substrate) was clarified. It was found that the decay of collagen fibril formation due to preservation caused the spreading of cells, indicating that the non-preserved CL substrate is most suitable for evaluation purpose. Chapter 2 emphasizes comprehension of the influence of PD levels on chondrocyte fate with age in the cultured cartilage. At the middle age of cell population ($PD = 5.1$ and 6.6), the high frequency of cells with ALP activity and single hypertrophic cells with collagen type II formation was recognized on the CL substrate and in CL gel, respectively, supporting the consideration that the elevated gene expression of collagen type II was attributed to terminal differentiation rather than redifferentiation. In Chapter 3, a direct measurement system was constructed to estimate the dissolved oxygen (DO) concentration

in the CL gel culture with seeding density of 2.0×10^6 cells/cm³. In the static culture of CL gel, chondrocytes grew predominantly at the peripheral of the gel and formed barrier to the diffusion of oxygen, subsequently causing the gradient of DO concentration. The insufficient supply of nutrient caused low proliferation in the deeper region of the construct, which leads to the heterogeneity of cell distribution. The improvement of oxygen supply to the culture by shaking condition and with a gas-permeable bottom did not significantly enhance the cell growth at the bottom region, suggesting the limitation of alternative nutrient such as protein. Chapter 4 deals with the diffusion of oxygen and protein at the periphery of cultured cartilage. Using a system mimicking the periphery of CL gel, it was revealed that the transport of large-molecular-weight nutrient was highly influenced by the formation of the extracellular matrix (ECM) in cell aggregates, probably arising from the changes in cell-cell distances and matrix structure. In the last chapter, Chapter 5, a low seeding density culture of 2.0×10^5 cells/cm³ was used to limit the cell growth and ECM production at the periphery of the cultured cartilage. The addition of insulin-like growth factor-1 (IGF-1) to this low seeding density culture enabled the regulation of cell behavior and the formation of desired chondrocyte aggregates.

The results of this research can be applicable for controlling the quality of cultured cartilage as well as generating cultured tissues with specific functions.

論文審査の結果の要旨

再生医療分野における培養組織の品質評価を目的とし、培養軟骨組織内に存在する細胞の挙動解析を行い、細胞形質および栄養源分布の時間的・空間的特性を評価した。まず、コラーゲンゲル内と類似の細胞挙動を可能とする高密度コラーゲン面の調製ならびに保存法をウサギ軟骨細胞の細胞形態変化にて定量的評価を行ったところ、空気雰囲気下では、コラーゲン繊維の崩壊が見られ、結果、脱分化を引き起こす伸展細胞が増え、コラーゲン培養面は空気雰囲気下での保存が好ましくないことを示した。また、ウサギ関節組織から採取した新鮮な若軟骨細胞と継代を経た老細胞を用い、高密度コラーゲン培養面ならびにゲル内での細胞形態・分化に対して定量的評価を行い、3つのポビュレーション（分化細胞、終末分化細胞、脱分化細胞）の細胞頻度が変化し、細胞形質の変化過程を明確化することができた。さらに、コラーゲンゲル内での栄養源供給においては、細胞増殖に伴い酸素消費により酸素濃度が位置的不均一性を有しながら低下し、細胞の位置的不均一性が発生することが分かった。これは、容器振盪ならびに酸素供給方法の工夫により、細胞増殖の改善を行うことができたが、完全には解消できず、酸素以外の増殖律速因子の存在が示唆された。そこで、重要な栄養源であるウシ血清アルブミンを対象に、培養組織内の透過について検討を行ったところ、軟骨細胞から生成される細胞外マトリックスが多くなると、拡散係数が低下するが、一方、酸素の拡散係数は変化しないことが分かった。これより、培養組織内では、細胞外マトリックスが生じることにより、血清アルブミンのようなタンパク（高分子）の拡散が阻止され、細胞への供給が制限され、増殖の低下が生じることが示された。

以上、本論文は、軟骨組織培養におけるプロセス特性を細胞形質および栄養源分布の観点から明らかにした。培養組織の品質評価と制御に関する新たな知見を与えるものであり、博士（工学）の学位論文として価値のあるものと認める。