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The main objective of this thesis is to characterize the chondrocyte fate and nutrition 

property during cartilage culture towards generating clinically applicable cultured construct. 

The changes in cell fate with age, the availability and transport of nutrients, as well as the 

application of strategy to regulate the architecture of cultured cartilage are discussed. The 

author hopes that the findings obtained in this work would offer the engineering 

fundamentals for future developments of cultured tissues. 
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Abstract 

Characterization of the chondrocyte fate and nutrition property during cartilage 

culture is important towards generating cultured construct with a desired quality for clinical 

uses. In Chapter 1, the relationship between the morphology of young chondrocytes 

(population doubling, PD = 0) and the structure of high density collagen type I coated 

substrate (CL substrate) was clarified. It was found that the decay of collagen fibril formation 

due to preservation caused the spreading of cells, indicating that the non-preserved CL 

substrate is most suitable for evaluation purpose. Chapter 2 emphasizes comprehension of the 

influence of PD levels on chondrocyte fate with age in the cultured cartilage. At the middle 

age of cell population (PD = 5.1 and 6.6), the high frequency of cells with ALP activity and 

single hypertrophic cells with collagen type 11 formation was recognized on the CL substrate 

and in CL gel, respectively, supporting the consideration that the elevated gene expression of 

collagen type 11 was attributed to terminal differentiation rather than redifferentiation. In 

Chapter 3, a direct measurement system was constructed to estimate the dissolved oxygen 

(DO) concentration in the CL gel culture with seeding density of 2.0 x 106 cells/cm3. In the 

static culture of CL gel, chondrocytes grew predominantly at the peripheral of the gel and 

formed barrier to the diffusion of oxygen, subsequently causing the gradient of DO 

concentration. The insufficient supply of nutrient caused low proliferation in the deeper 

region of the construct, which leads to the heterogeneity of cell distribution. The 

improvement of oxygen supply to the culture by shaking condition and with a gas-permeable 

bottom did not significantly enhance the cell growth at the bottom region, suggesting the 

limitation of alternative nutrient such as protein. Chapter 4 deals with the diffusion of oxygen 

and protein at the periphery of cultured cartilage. Using a system mimicking the periphery of 

CL gel, it was revealed that the transport of large-molecular-weight nutrient was highly 

influenced by the formation of the extracellular matrix (ECM) in cell aggregates, probably 

arising from the changes in cell-cell distances and matrix structure. In the last chapter, 

Chapter 5, a low seeding density culture of 2.0 x 105 cells/cm3 was used to limit the cell 

growth and ECM production at the periphery of the cultured cartilage. The addition of 

insulin-like growth factor-l (IGF-l) to this low seeding density culture enabled the regulation 

of cell behavior and the formation of desired chondrocyte aggregates. 

The results of this research can be applicable for controlling the quality of cultured 

cartilage as well as generating cultured tissues with specific functions. 
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General Introduction 

Articular cartilage 

Articular cartilage is the whitish layer found on the diarthrodial joints of bones. The 

articular cartilage primarily comprises extracellular matrix (ECM) and lacks blood vessels, 

lymphatic vessels, and nerves. The ECM is produced and maintained by the chondrocyte, the 

only cell type present in the articular cartilage. In turn, the ECM provides the chondrocytes 

with a protective environment in the face of high mechanical stress, thus helping to maintain 

their phenotype. Furthermore, the ECM offers storage of cytokines and growth factors 

required by the chondrocyte and acts as a barrier to nutrients that have reached the cells 

(Buckwalter and Makin, 1997a, 1997b). 

The ECM of the articular cartilage predominantly comprises water, collagen, and 

proteoglycans. Water is the most abundant component of the ECM, accounting for 

approximately 60% to 80% of the wet weight. It provides nutrition and a medium for 

lubrication, creating a low-friction gliding surface (Bhosale and Richardson, 2008). Collagen 

is the second largest component of the articular cartilage. Collagen type 11 forms the principal 

component of the framework and provides tensile strength to the articular cartilage. The other 

collagen types provide functions such as helping chondrocytes to attach to the matrix, 

forming nucleate fibrils, and aiding in cartilage mineralization (Bhosale and Richardson, 

2008). The third largest components are the proteoglycans. These protein polysaccharide 

molecules provide compressive strength to the articular cartilage and maintain the fluid and 

electrolyte balance in the articular cartilage (Buckwalter and Makin, 1997a). Deformation of 

the ECM produces signals that may affect the proper functioning of chondrocytes. 
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Treatment of articular cartilage defects by autologous chondrocyte transplantation 

In general, there are three main types of cartilage injury: matrix disruption, 

partial-thickness defects, and full-thickness defects. Matrix disruption occurs from blunt 

trauma in which, the damage to ECM is not extreme. If this occurs, the remaining viable 

chondrocytes will increase their synthetic activity to repair the damage. Partial-thickness 

defects demonstrate disruption of the cartilage surface that does not extend to the subchondral. 

bone, whereas full-thickness defects arise from damage that transverses the entire cartilage 

thickness and penetrates the subchondral bone (Temenoff and Mikos, 2000). Unlike skin, in 

which both the vasculature and adjacent tissues provide cells to mediate the wound healing 

process, the avascularity of the articular cartilage and the dense ECM surrounding the 

chondrocytes give the articular cartilage limited self-repairing ability (Kinner et aI., 2005; 

McPherson and Tubo, 2000). Thus, treatment of the defected area is necessary. 

Based on the promising results of autologous chondrocyte transplantation (ACT) in 

animal models of articular cartilage injury (Grande et al., 1989), chondrocyte transplantation 

in human patients was initiated by Brittberg et al. (1994). In this technique, viable 

chondrocytes were obtained from the un-involved area of the injured cartilage and propagated 

by monolayer culture. The propagated cells released from the culture vessel were then 

injected into the area of the defect, and the defect was covered with a sutured periosteal flap. 

In spite of the satisfactory clinical outcomes, concerns have been raised regarding the 

reexpression of the chondrocyte phenotype after the dedifferentiation of cells in a prolonged 

monolayer culture, the possibility of leakage of chondrocytes from the graft site, and the 

uneven distribution of the injected chondrocytes inside the defect (Ochi et al., 2001); One 

attempt to resolve these concerns involves employing tissue engineering technology to create 

cartilage-like tissues in a three-dimensional (3-D) culture system. 
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Development of cultured cartilage 

The ACT technique has evolved over the years with improvement in the efficiency of 

tissue regeneration and surgical outcome. Its fundamental design comprises the three 

elements of tissue engineering, namely the cells, the scaffolds that bear these cells, and a 

suitable cultivation environment. In general, autologous chondrogenic cells are inserted into a 

biodegradable scaffold that supports their growth and chondrogenesis. The cell-laden scaffold 

is then cultivated with environmental factors appropriate for enhancing cell performance. 

Although various natural and synthetic materials are available for the scaffold, few of 

these materials have been proven safe for human use.· Ochi et al. (2001) applied 

Atelocollagen gel as a scaffold because the antigenic determinants have been removed from 

the peptide chain of this collagen material. Thus, a tissue transplanted with Atelocollagen gel 

has a low inflammatory reaction (Kusaka et al., 1987) and satisfactory clinical results 

(Ochi et al., 2002). A schematic representation of the employment of collagen as a scaffold 

for the ACT technique in cartilage repair is shown in Fig. 1. 

Necessity of studying chondrocyte fate and nutrition property during cartilage culture 

process 

An ideal cultured cartilage for ACT should contain the appropriate amount of ECM 

components with a uniform spatial distribution within the construct, and resemble the native 

cartilage in terms of structural and functional properties (Blunk et al., 2002). In general, two 

of the main factors influencing the properties of the cultured cartilage with a collagen gel 

scaffold are the state of chondrocytes when embedded in the scaffold and the availability of 

nutrients to cells during culture. Therefore, knowledge regarding the fate of 
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chondrocytes before being embedded in the scaffold and the property of nutrition in the 

cultured cartilage are important for the design and generation of high quality cultured 

cartilage for clinical use. Table 1 lists examples of studies reporting cell fates caused by 

several elements and the properties of nutrients in cultured cartilage. 

In vivo I 

Biopsy of cells @@ 
@)®@ 

Chondrocytes 

lin vitro I 

+ 

~ .. ---
Cultured cartilage 

Scaffold 
(Atelocollagen gel) 

Th ree-d i mensional 
culture 

Fig. 1 Autologous chondrocyte transplantation with cultured cartilage using a collagen 

scaffold 

Chondrocyte fate with age 

Chondrocyte fate can be roughly classified into two categories: fate associated with 

behavior (such as cell migration and division) and fate with age. Chondrocyte fate with age is 

typically affected by the process of serial monolayer culturing for chondrocyte expansion. 

Benya and Shaffer (1982) reported that once articular chondrocytes were cultured on tissue 
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culture plastic, they exhibited a more fibroblastic morphology and a switch in production 

from collagen type 11 to collagen type I. These cells reportedly underwent a 

redifferentiation process with the production of collagen type 11 when released from the 

culture vessel and placed in suspension culture. However, studies showed that after several 

passages, the chondrocytes started to lose their ability to redifferentiate (Darling and 

Athanasiou, 2005; Kino-oka et al., 2009). In addition, cell growth declined with increasing 

passage number (Munirah et al., 2008). This decline in proliferative capacity could be 

interpreted as an expression of aging at the cellular level. The intrinsic measure of the "age" 

of a cell in culture is the population doubling (PD) level, which is the total number of times 

the cells in the population have doubled since the primary isolation. Changes in chondrocytes 

secondary to an increasing PD level (ageing) could lead to tissue heterogeneity and 

spontaneous development of cultured cartilage with poor practical value. 

Nutrition properties in the cultured cartilage 

In a conventional static culture of tissue-engineered cartilage with high cell seeding 

density (~1.6 x 106 cells/cm3
), the maintenance of cartilage homeostasis depends mainly on 

passive diffusion of essential nutrients. Cells typically grow predominantly at the 

scaffold/medium boundary, reducing tissue porosity and forming a physical barrier owing to 

the accumulation of ECM (Kino-oka et al., 2005a). This physical barrier combined with 

nutrient consumption by chondrocytes at the scaffold periphery severely limit the diffusion of 

nutrients, causing nutrient gradients that subsequently result in a lack of cell growth at the 

inner part of the construct (Kino-oka et al., 2005a, 2008; Malda et al., 2004a). In addition, the 

different environmental conditions at the construct's periphery and inner region result in 

different levels of phenotype debilitation and cell maturation (Park et al., 2007), further 

complicating tissue heterogeneity. 
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Outline of the present study 

Characterization of chondrocyte fate and identification of the nutrition property 

during cartilage culture process are two important steps (Fig. 2) in improvement of the 

quality of tissue-engineered cartilage. Figure 3 shows the scope of this study, which 

cOlnprises two parts and five chapters. The first part addresses the importance of the PD level 

to the fate of chondrocytes in collagen gels (Chapters 1 and 2), and the second part focuses on 

the availability of nutrients in collagen gels during culture (Chapters 3, 4, and 5). A general 

overview of the present study is briefly described in the following paragraphs. 

Development of nutrition heterogeneity t a-t\1 
r------------------------~ Cartilage quality 

Development of 
cell heterogeneity 
(cell fate with age) 

C~J 
Cartilage quality 

CD M OO 

I 
Paracrine 

Mass transfer 

Agg reg ation 
Morphological 

Gel 
... Osman size nutrient 

,'J,. ~ medium size 
nutrient 

.... 0 large size nutrient 

Fig.2 Schematic representation of factors influencing the quality of cultured caItilage 

8 



In Chapter 1, to clarify the relationship between the morphology of young 

chondrocytes and the structure of high density collagen type I coated substrate (CL substrate), 

morphological evaluation of cells was conducted after 1 day of incubation on preserved CL 

substrates. Scanning electron microscope (SEM) was used to observe changes in collagen 

coating, focusing on the structure of collagen fibrils. 

Framework of this study 

Part I: 
Importance of population 

doubling level to the fate of 
chondrocytes in collagen gels 

Chapter 1 
Effect of altered fibril formation of 
collagen substrate on rabbit chondrocyte 
morphology 

Chapter 2 
Comprehension of the influence of 
population doubling levels to the 
chondrocyte fate with age in collagen gel 

Part 11: 
Availability of nutrients in 

collagen gels during 
culture 

Chapter 3 
Dissolved oxygen concentration in 
collagen gels 

Chapter 4 
Effect of chondrocytes and extracellular 
matrix on nutrient permeation and 
diffusivity 

ChapterS 
Potential of low seeding density culture 
with supplementation of insulin-like 
growth factor-1 in modulation of 
chondrocyte behavior at initial culture 
phase 

Fig.3 Outline of this study in terms of characterization of chondrocyte fate and nutrition 

property during cartilage culture process 

Chapter 2 emphasizes comprehension of the influence of PD levels on chondrocyte 

fate with age in the cultured cartilage. Because of technical restrictions in evaluation of cell 

fate in the collagen gel (CL gel), the CL substrate was used for cell evaluation. The cell 
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phenotype on the CL substrate was distinguished by morphological assessment and alkaline 

phosphatase staining and correlated with the cell population in the CL gel. 

In Chapter 3, a direct measurement system was constructed to estimate the dissolved 

oxygen (DO) level in cultured cartilage of a conventional static culture. The DO level was 

also estimated in cultures under shaking conditions and with a gas-permeable bottom. The 

spatial distribution of cells in the cultured cartilage is discussed in terms of nutrient 

availability. 

Chapter 4 deals with the diffusion of oxygen and protein at the periphery of cultured 

cartilage. A system mimicking the periphery of CL gel was used to clarify the influence of 

ECM and cell cytoplasm on nutrient diffusion. 

In the last chapter, Chapter 5, a low seeding density culture was used to limit cell 

growth and ECM production at the periphery of the cultured cartilage. In addition, the effect 

of insulin-like growth factor-l (IGF-l) on the formation of cell aggregates in the culture in 

the initial culture phase was examined. 
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Part 1 

Importance of population doubling level to the fate of chondrocytes 

in collagen gels 

One of the important factors which govern the quality of cultured cartilage is the state 

of chondrocytes prior to embedding in a scaffold. In the development of the cultured cartilage, 

the state of chondrocytes typically depends on the age of the donors and the "age" of cells. 

Indeed, chondrocytes from articular cartilage exhibit a number of age-related changes in their 

phenotype. Among these changes are decreased responses to growth factors, increased 

apoptosis and decreased extracellular matrix production (Guerne et ai., 1995; Adam and 

Horton, 1998). In the serial passage culture employed for cell expansion, chondrocytes age 

increased with the number of passages. This is evident from the declined cell growth 

(Munirah et al., 2008) which could be interpreted as the ageing of cells. The population 

doubling (PD) accurately assessed cell growth (Greenwood et al., 2004) and is an intrinsic 

measure of the age of cells in vitro. It was reported that dedifferentiated chondrocytes lose its 

ability to redifferentiate with increasing PD (Kino-oka et ai., 2009). Furthermore, 

Mukaida et al. (2005) reported that the dedifferentiated chondrocytes from passaged culture 

resulted in hypertrophic differentiation in a 3-D culture. Therefore the information of 

chondrocyte fate with age at various PD levels could be applied for controlling the quality of 

cultured cartilage. 

From the viewpoint mentioned above, the evaluation of chondrocytes was conducted 

on the high density collagen type I coated substrate (CL substrate). Initially, the relationship 

between the structure of the substrate and the morphology of young chondrocyte (PD = 0) 

was clarified in Chapter 1, and subsequent evaluations was conducted for cells of higher PD 

in Chapter 2 for understanding the chondrocyte fate with age. 
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Chapter 1 

Effect of altered fibril formation of collagen substrate on rabbit 

chondrocyte morphology 

1.1 Introduction 

Collagen is a popular ECM used as the substrate on culture surface as well as in 

scaffold of sponge or gel. The self-assembling nature in collagen polymerization leads to the 

specific structure of collagen fibrils. The collagen fibrils, which consist of abundant binding 

sites to integrins on cytoplasmic membrane, play an important role in the control of cell 

behaviors such as attachment, spreading and migration, thereby in close relation to cellular 

fate of proliferation and differentiation. 

The typical process of collagen coating consists of pouring acidic collagen solution 

onto culture surface, followed by soaking and drying for adsorption of collagen on the 

surface, and neutralizing for polymerization with fibril formation. Some researchers have 

reported the influences of collagen treatment conditions (Yunoki et al., 2004; 

Rada et al., 1993), and duration of soaking and drying (Jacquemart et al., 2004; Dupont

Gillain et aI., 2004) on the structure of collagen fibrils. In the previous study, the procedure 

of CL substrate was established by vacuum drying after loading acidic collagen, which led to 

fully developed fibril formation on a culture surface (Kino-oka et aI., 2005b). In the culture 

of chondrocytes, it has been revealed that the round-shaped cells maintained in a 

differentiated state with producing collagen type 11 (Kino-oka et al., 2009; Shakibaei et aI., 

1997). The CL substrate was reported to sustain the round shape of differentiated 

chondrocytes, although dedifferentiated cells exhibit the spindle shape, suggesting that the 

CL substrate was a useful tool for understanding the cellular state of chondrocytes 

(Kino-oka et aI., 2009). 
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In the present study, the preparation of CL substrate was conducted under various 

preservation conditions that were set as operational variables to alter the degree of collagen 

fibril formation. The structural alterations of the preserved collagen substrates were observed 

and examined in relation to the morphological behaviors of rabbit chondrocytes. 

1.2 Materials and Methods 

1.2.1 Preparation of CL substrates 

For preparing the substrate, 5.25 ml of acidic solution of bovine collagen type I 

(0.5% collagen I-AC; Koken Co., Ltd., Tokyo) was poured into a 25 cm2 T-flask (Coming 

Inc., Coming, NY, USA) aseptically, giving 1.05 mg of collagen per cm2 of flask bottom 

surface. The water in the flask was then evaporated in a vacuum chamber for 3 days at room 

temperature to coat the bottom with acidic collagen. The preservation process of the surface 

coated with collagen was conducted at room temperature. The preservation conditions were 

varied by atmosphere and period as follows; under nitrogen gas for 4 days (Condition I) and 

7 days (Condition 11), and under air for 4 days (Condition Ill) and 7 days (Condition IV). 

After the preservation, the surface was rinsed with sterile phosphate buffered saline 

(PBS; Sigma, St. Louis, MO, USA) for the neutralization of collagen and the CL substrates 

experiencing the preservation process were subjected to analyses. 

Here, the CL substrate without the preservation process was prepared as a reference 

substrate by the neutralization just after the evaporation in the vacuum chamber. 

1.2.2 Scanning electron microscopic observation 

For observing the fine structure of coated collagen, the specimens were prepared for 

scanning electron microscopy as described previously (Kino-oka et ai., 2005b). In brief, the 
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substrates were fixed with 2.5% glutaraldehyde for 2 h, followed by dehydration with serial 

gradients of aqueous ethanol solution. After freeze-drying with t-butyl alcohol and sputter 

coating with platinum (approximately 3 nm thick), the specimens were examined under SEM 

(S-5000L; Hitachi, Tokyo). 

1.2.3 Chondrocyte preparation and incubation on substrates 

Chondrocytes were prepared by excising articular cartilage slices from humeri, 

femora and tibiae of Japanese white rabbits (approximately one month old) as described 

elsewhere (Yamamoto et al., 2002). The isolated chondrocytes were sub cultured using a 

75 cm2 T-flask (Coming Inc.) at an inoculums size of 1.0 x 104 cellslcm2 as described 

previously (Kino-oka et al., 2005b). The chondrocytes were harvested 3 days after seeding in 

the primary culture, during which the living cells could attach on the flask without 

mUltiplying and were defined as a cell popUlation with PD = O. The cells were then incubated 

on the prepared substrates for 1 day in a similar manner as the subculture. 

1.2.4 Evaluation of chondrocyte morphology, adhesion and cytoskeletal formation 

Quantitative morphological analysis of adherent cells on the substrates was conducted 

by capturing the surface image of each flask bottom through a charge-coupled device camera 

attached to an optical microscope as described previously (Kino-oka et al., 2005b). More than 

80 cells were randomly selected for determining cell roundness Re, calculated by employing 

image processing software (Image-Pro Plus version 6.2, Media Cybernetics, Sliver Spring, 

MD, USA) using the following equation: 

2(1tA )'12 
R = c 

C l 
C 

(1.1) 

where Ae and le denote the area and peripheral length of a single cell, respectively. The 
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frequency of round-shaped cells JR was then estimated from the distribution of Rc using the 

following equation: 

i = number of cells giving Rc > 0.9 
R total number of cells examined 

(1.2) 

In the present study, the cell with 0.9 < Rc "5; 1 was defined to be a round morphology. 

The adhesion and cytoskeletal formation of cells on the substrates were analyzed by 

SEM, and confocallaser scanning microscopy for F-actin and vinculin, respectively. Staining 

of intracellular F-actin and vinculin was conducted as described elsewhere (Kino-oka et al., 

2007). 

1.3 Results 

Figure 1.1 shows the fine structures of the CL substrates prepared under various 

conditions in the preservation process. The CL substrate under atmosphere of nitrogen gas for 

4 days (Condition I) exhibited three dimensional single fibrils with a well-developed network 

(Fig. LIB), which suggests to possess a well-defined D-periodic banding pattern on the fibril 

(Kino-oka et aI., 2005b), similarly to the reference CL substrate without the preservation 

process (Fig. 1.1A). However, further prolongation of preservation period (Condition 11) led 

to the flat network with immature-fibril foundation (Fig. 1.1C and D). In addition, the 

exposure to air in the preservation process (Condition Ill) caused the inhibition of the fibril 

formation and the granule structure of collagen appeared (Fig. LIE and F). The prolongation 

of exposure to air (Condition IV) diminished the fibril formation (Fig. 1.1G and H). 

For evaluating the prepared substrates in a physiological aspect of cellular response, 

the morphology of rabbit chondrocytes was examined on these substrates. As shown in 

Fig. 1.2, the!R value on the CL substrate of Condition I was 0.62, the value of which was 
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Fig. 1.1 SEM images showing surface structures of CL substrate without preservation (A), 

and CL substrates with preservation under Conditions I (B), II (C, D), III (E, F) and 

IV (G, H). 
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Fig. 1.2 Frequency of round shape cells, fR' of chondrocytes attached to CL substrates 

prepared under various conditions. The broken line shows the data using the CL 

substrate without preservation. The data were obtained from more than 80 cells 

examined in three independent experiments. The bars show the standard deviations 

(SDs) (n = 3). 

slightly lower than that on the reference CL substrate. However, fR of cells on the substrates 

of the other conditions exhibited the lower levels thanfR = 0.4 with no significant dependency 

on the conditions. These results indicated that the prolongation and air exposure in the 

preservation process caused the spreading of chondrocytes in accordance with the decay of 

fibril formation. 
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Figure 1.3 shows the representative SEM images of chondrocytes on the CL 

substrates. The cell on the CL substrate without preservation exhibited a mound-round shape 

with the development of many fine fibrils binding the cell to the substrate with less fillopodia 

(Fig. 1.3A and 1.4). 

Fig. 1.3 SEM images showing chondrocytes on CL substrate without preservation (A), and 

CL substrates with preservation under Conditions I (8), II (C), III CD) and IV CE). 
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The cell on the CL substrate of Condition I developed small filopodia while still 

keeping a mound shape (Fig. 1.3B and 1.5A). The cells on the other substrates (Conditions II 

to IV) developed broader filopoclia, making flat-stretched shapes (Fig. 1.3C to E and 

L5B to D). 

Fig. 1.4 Immunostaining of actin cytoskeleton (green) and vinculin (red) of chondrocytes 

cultured for 1 day on CL substrates without preservation. The scale bars show 

10 Ilm. 
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Fig. 1.5 Immunostaining of actin cytoskeleton (green) and vinculin (red) of chondrocytes 

cultured for 1 day on CL substrates preserved under Conditions I (A), TT (B), III (C) 

and IV (D). The scale bars show 10 Jlm. 
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1.4 Discussion 

The assembly of collagen molecules into fibrils has been shown to be an entropy

driven process, likewise in the cases of other protein self-assembly systems (Kadler et aI., 

1987). These processes are promoted by the loss of solvent molecules from the surface of 

protein molecules resulting in assemblies with circular cross section, as reviewed in a 

literature (Kadler et al., 1996). The fibril formation can be governed by some factors 

influencing the crosslinking of collagen. Yunoki and Matsuda (2008) reported crosslinking of 

collagen gel using l-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) during collagen 

fibril formation and they found a poor formation of collagen fibrils with non-distinguishable 

D-periodic pattern at a high concentration of EDC. Furthermore, they mentioned that the 

spaces between the collagen fibrils were occupied with non-fibrous collagen. While the 

formation of collagen fibrils was suggested to occur through the aggregation of soluble 

collagen particles followed by the fibril growth (Wood, 1960), the simultaneous crosslinking 

process during the collagen fibril formation could cause the lost or reduced potential to form 

fibril due to random and non-fibrous aggregation of t~e collagen particles (Yunoki and 

Matsuda, 2008). In the current work, the CL substrate without preservation consisted of well

developed collagen fibrils. However, this type of fibrils was not observed on the CL 

substrates with preservation process accompanied by exposure to air. The oxidation by air 

was reported to facilitate the intramolecular crosslinking (Krishna and Kiick, 2009). 

Therefore, the exposure to air in the current study was considered to cause the lack of well

developed fibrils in the substrates due to crosslinking of collagen by oxidation during the 

fibril formation. In addition, the degree of collagen crosslinking is expected to be suppressed 

by the replacement of oxygen with nitrogen gas in atmosphere during the preservation 

process. 
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Adhesion between cells and ECM is known to modulate numerous critical cellular 

events through interactions of cell's adhesion receptors with ECM binding sites. The similar 

distribution and amount of vinculin spots in the cells attached to the reference substrate 

(Fig. 1.4) and substrates of Conditions I, Il, III and N (Fig. 1.SA to D) suggested that the 

spreading of cells on the substrates with preservation were not attributed to the changes in the 

binding sites on the substrates but to other factors, such as the changes in substrate stiffness. 

It is documented that ligand density and matrix compliance are highly coupled variables that 

determine the cell responses such as cell spreading, cell shape and molecular organization 

(Engler et al., 2004). For example, smooth muscle cells cultured on soft polyacrylamide gel 

and rigid glass with collagen type I coating were found to respond strongly to increasing 

collagen density on the glass but to be less responsive to the collagen density on the soft gel 

(Engler et aI., 2004). Cells are considered to sense their physical environment and apply 

traction strength to the adhesion site. This leads to the deformation of the cell morphology 

which depends on the substrate stiffness. Thus, on a softer substrate where the deformation is 

significant, the actin stress fiber/focal adhesion would be more relaxed than on the stiffer 

substrates (Kobayashi and Sokabe, 2010). The cell on the substrate of Condition I exhibited a 

cortical F-actin network (Fig. 1.SA), similarly to that on the substrate without preservation 

(Fig. 1.4) which is normally observed on a soft substrate (Solon et al., 2007). On the other 

hand, the cytoskeletal formation of Conditions III and IV exhibited more organized and well

developed stress fibers indicating that these conditions produce stiffer substrates, compared to 

Condition Il. These results suggested that the exposure to air caused the oxidization which 

facilitated the crosslinking of collagen, leading to poor fibril formation of collagen, and the 

substrate stiffness was enhanced, being responsible for the stretched shape of cells with well

developed stress fibers. 
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In conclusion, this chapter clarified the maintenance of the round morphology of 

chondrocytes on the substrates with single collagen fibrils and well-developed networks. The 

formation of the collagen fibrils could be inhibited by exposing the collagen coated substrate 

to air. The poor development of collagen fibrils caused the spreading of cells on the 

substrates, possibly due to an increase in stiffness of the substrates. 

1.5 Summary 

The degree of collagen fibril formation was altered by varying the preservation 

conditions. The collagen substrate under atmosphere of nitrogen gas for 4 days exhibited 

well-developed collagen fibril network accompanied with the frequency of round-shaped 

chondrocyte cells (h) of 0.62, the value of which was slightly lower than that on the 

reference substrate. The exposure to air and prolongation of preservation led to further 

degradation of collagen fibril networks accompanied with JR of less than 0.4. This indicated 

that the decay of collagen fibril formation was responsible for the spreading of cells. 
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Chapter 2 

Comprehension of the influence of population doubling levels to the 

chondrocyte fate with age in collagen gel 

2.1 Introduction 

In reconstructive surgery for repairing articular cartilage defects, serial monolayer 

cultures of isolated chondrocytes are performed for expanding cells so as to be sufficient for 

subsequent tissue cultures. One of the drawbacks in this approach is the partial or complete 

loss of proliferative ability with increasing passage number of subculture 

(Dominice et aI., 1986), which leads to hindering spatial growth in a scaffold typically 

employed for tissue reconstruction. 

The decrease in proliferating vitality of chondrocytes in vitro has been associated with 

cellular senescence due to aging toward terminal differentiation. The progression of 

chondrocytes toward terminal differentiation is characterized by prolonged state of cell cycle 

arrest with significant increase in apparent cellular volume as well as with enhancement of 

collagen type X synthesis and alkaline phosphatase activity (Buttitta and Edgar, 2007; 

Hunziker et al., 1987; Kronenberg, 2003). However, the transition toward terminal 

differentiation in serial monolayer cultures for cell expansion of chondrocytes is still unclear 

and the effort to study its progression in 3-D cultures has been hampered by lack of a suitable 

in vitro model. 

An alternative is to use a two-dimensional (2-D) culture system for the evaluation of 

cell behavior. However, it is well-known that chondrocytes dedifferentiate when grown in 

vitro on a traditional tissue culture polystyrene (PS) surface in a way of monolayer manner, 

acquiring a fibroblastic-like morphology, and that instead of the cartilage-specific collagen 
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(collagen type 11), they synthesize the collagen type I (von der Mark et aI., 1977; 

Chacko et aI., 1969). Despite the fact that chondrocytes in suspension and pellet cultures 

have potential to undergo terminal differentiation (Stephens et al., 1992; Ballock and Reddi, 

1994; Kato et al., 1988), the limitation for single cell analysis in these systems prevent 

thorough understanding of the cell phenotypes and the heterogeneity in the cell population. 

The previous findings have resolved this dilemma by modifying a conventional PS 

surface by coating with high-density collagen type I (CL substrate). The CL substrate 

provides a 3-D mimicking environment to chondrocytes, and enabled to evaluate the cell 

states for dedifferentiation in a quantitative manner (Kino-oka et al., 2005b). Recent studies 

have demonstrated that the cell morphology indicates the states of rabbit chondrocytes, and 

on the CL substrate the morphological change from round to stretch shape was observed 

during serial subcultures with higher mRNA expression of collagen type I, suggesting that the 

cell morphology can offer an indicator for chondrogenic potency during dedifferentiation 

process (Kino-oka et al., 2009). 

The time-lapse observation of each single cell yields a wealth of quantifiable data on 

cellular properties such as changes in cell morphology, adhesion, migration and cell division 

pattern. Another feature for time-lapse experiment allows the movie to be rewound, thus one 

can survey the morphological and behavioral properties of the cells which were targeted at 

the end of culture, in a backward manner. As mentioned in Chapter 1, chondrocytes 

maintained its round morphology on the substrates with single collagen fibrils and well

developed networks. Thus, in the current study, the CL substrate without preservation process 

was employed for the evaluation of chondrocyte phenotypes by morphological analysis of 

time-lapse images of individual cells. Furthermore, the cells passaged at various population 

doubling levels were used to understand the progression of chondrocytes towards terminal 
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differentiation as well as dedifferentiation in the heterogeneous population on the CL 

substrate and in the CL gel. 

2.2 Materials and Methods 

2.2.1 Preparation of cells with varied population doubling levels 

The chondrocyte isolation and the primary culture were conducted as described in 

Section 1.2.3. When about 80% confluence of cells was achieved on the flask bottom, the 

cells were detached for subsequent passage by using 2.0 ml of 0.25% trypsin solution. 

The number of viable cells (ne) in the flask was determined by the trypan blue 

exclusion test through direct counting of the detached cells on a hemocytometer under an 

optical microscope. The differential value of population doubling (MD) was calculated as 

follows: 

(2.1) 

where !1ne is the differential in the number of viable cells in each passage. As mentioned in 

Section 1.2.3, PD= 0 was defined as the freshly isolated chondrocytes at 3 days after seeding 

in the primary culture, during which the living cells could attached on the PS surface without 

multiplying. The subsequent value of PD was obtained by summation of MD with respect to 

each passage conducted. In this work, three groups of the cell populations, namely PD = 0, 

PD = 5.1, 6.6, 7.2 and 8.5, and PD = 12.5 and 14.5, were prepared as young, middle and old 

age states, respectively. 
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2.2.2 Analysis of cell behaviors on collagen type I coated substrate and on tissue culture 

polystyrene surface 

CL substrate without preservation process was prepared as described in Section 1.2.1, 

giving a collagen coating with approximately 70 !lm thickness. Cell population at a given PD 

value was incubated on the CL substrate and PS surface for 12,24,48, 72, and 96 h. The cells 

were subjected to the detection of alkaline phosphatase (ALP) activity using Fast Red 

Substrate System® (Dako, Carpinteria, CA, USA) at the end of each culture and the 

frequency of ALP-positive cells were estimated as a ratio of them to the total cells. 

To investigate the cell behaviors, the time-lapse observation of cells incubated on the 

CL substrate and PS surface was carried out for 72 h, as described previously (Kino-oka et al., 

2004), and images were captured every 10 min at 6 random positions or more. The cells on 

the CL substrate and PS surface were subjected at 72 h of culture time (t) to the detection of 

ALP activity and the backtracking of more than 100 cells was then conducted to evaluate cell 

behaviors. The time course of morphology was obtained to estimate the Rc by Equation 1.1 in 

Section 1.2.4. 

2.2.3 Incubation of cells embedded in collagen gel and observation of cell behaviors 

The chondrocytes at a prescribed PD value were suspended in the culture medium and 

then mixed with a 4-fold volume of 3% Atelocollagen solution (Koken Co., Ltd.) as 

described elsewhere (Kino-oka et al., 2005a, 2005b). The mixture (0.1 cm3
) was transferred 

to a 6-well plate (Nunc; Nalge Nunc International, Rochester, NY, USA) and subjected to 

gelation at 37°C for 1.5 h, yielding a dome-shaped gel of approximately 0.8 cm diameter and 

0.2 cm top height. To examine the cell growth and ECM formation, the triplicate CL gels 

incubated for 14 days were subjected to the staining of cytoplasm and 
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collagen type II respectively, according to procedures described in the previous study 

(Khoshfetrat et al., 2009), and the specimen of CL gel was mounted on a glass-bottomed dish 

(Asahi Glass Co., Ltd., Tokyo) for 3-D observation of cell morphology and ECM parameter 

using a confocallaser scanning microscope (CLSM; model FV-300, Olympus, Tokyo). Here, 

more than 60 cells were provided for the semi-quantitative analysis. 

2.2.4 Total RNA extraction and real-time RT -PCR analysis 

Total RNA was extracted from the cells using an RNeasy mini kit (Qiagen, Hilden, 

Germany), and RNA sample was subjected to DNase-I (Qiagen) treatment according to the 

manufacturer's protocol. Reverse transcription from RNA was carried out as indicated 

previously (Khoshfetrat et al., 2009). Gene expressions were examined by means of 

quantitative real time PCR with a Chrom04™ detector and furnished program (Bio-Rad 

Laboratories, Hercules, CA, USA) according to procedures indicated in the previous report 

(Khoshfetrat et aI., 2009). Specific primers for the glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) as a reference gene and the target genes (collagen types I, II and X) 

were designed as indicated in Table 2.1. PCR was performed using 0.2 flM of selected 

primers and SYBR Premix ExTaqTM (Takara Bio Inc., Shiga) under the conditions of 10 s at 

95°C, followed by 40 cycles of 5 s at 9YC and 30 s at 60°C. The cycle threshold value (Ct) 

for each gene was determined as cycle time when fluorescence of given sample became 

distinct from a base signal. The Ct value of GAPDH was subtracted from, that of target gene 

to obtain the ~Ct value, and the expression level was calculated in terms of T~~Ct. 
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Table 2.1 Sequences of primers used for real-time PCR analysis 

Gene Forward primer (5'073') 

GAPDH GGTGAAGGTCGGAGTGAACG 

Collagen type I TCTGGAGAGGCTGGTACTGC 

Collagen type 11 CCACGCTCAAGTCCCTCAA 

Collagen type X CCAGGAAAACCAGGCTATGG 

2.3 Results 

Reverse primer (5'073') 

TGGCGACAACATCCACTTTG 

GGAGACCACGTTCACCTCTG 

TCCAGTAGTCACCGCTCTTC 

TTCGGTCCACTTGGTCCTCT 

2.3.1 Morphological and proliferative characteristics of cells 

To investigate the influence of culture surfaces on terminal differentiation of the 

chondrocytes, the time profiles of cells density, frequency of ALP-positive cells and gene 

expression of collagen type X were estimated in the cultures of passaged cells (middle age 

state at PD = 8.5) on the CL substrate and PS surface. Appreciable growth of the cells was 

not observed on the CL substrate, suggesting that the cells are in a prolonged cell cycle arrest 

(Fig. 2.1A). In addition, the frequency of ALP-positive cells and the gene expression of 

collagen type X increased only in the culture on the CL substrate, in contrast with the 

negligible expressions of ALP activity and collagen type X gene on the PS surface 

(Fig. 2.1B and C). These cellular behaviors on the CL substrate indicated the chondrocyte 

terminal differentiation, which supports an idea that the assessment of ALP activity of the 

cells on the CL substrate digs out a possible population in a terminal differentiation state. 

To classify chondrocyte population in the culture on the CL substrate, the time-lapse 

images of cells with or without ALP activity detected at t = 72 h were traced backward from 

t = 72 to 0 h and the time of cell division was recorded in cell population at PD = 6.6. 
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Fig. 2.1 Time profiles of cells density (A), frequency of ALP-positive cells (B) and gene 

expression of collagen type X (C) in cultures of chondrocytes at PD = 8.5 on PS 

surface and CL substrate. The data represent the average values with SDs 

determined from triplicate independent experiments. Symbol: Triangle; PS surface, 

and circle; CL substrate. 
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As typically shown in Fig. 2.2, ALP-negative chondrocyte population comprised of dividing 

and non-dividing cells for 72 h. The dividing cell for 72 h either had a round shape with 

Rc> 0.9 while maintaining this Rc level until t = 25 h (Fig. 2.2A) or had a spindle shape with 

periodical fluctuation below Rc = 0.9 (Fig. 2.2B). Each dividing cell maintain the cell area of 

about Ac = 1000 flm2 throughout the culture. In addition, non-dividing cell showed a spindle 

shape accompanied with gradual increase in Ac to reach more than 2000 flm2 after t = 19 h 

(Fig. 2.2C). On the other hand, as typically seen in Fig. 2.3, the population of cells exhibiting 

ALP activity consisted of dividing and non-dividing cells which exhibited Rc < 0.9 around 

t = 24 h. The Ac of dividing cell was maintained in the vicinity of Ac = 1000 Jlm2 (Fig. 2.3A) 

until t = 25 h whereas the Ac of non-dividing cell increased and was in the range of 2000 to 

3000 Jlm2 from t = 4 h, giving a polygonal shape (Fig. 2.3B). 

2.3.2 Variation in cell population on CL substrate with increasing population doubling 

To investigate the change in phenotypes of chondrocytes, the cell populations at 

various PD values, corresponding to young, middle and old ages (PD = 0, 6.6 and 14.5, 

respectively), were estimated based on the variations in cell morphologies (Rc and Ac) at 

t = 24 h and ALP activity at t = 72 h. The cells in population at PD = 0 were predominantly 

negative in ALP activity with a round and non-stretched shape, namely Rc > 0.9 and 

Ac < 1000 flm2 respectively (Fig. 2.4A). The frequency of cells exhibiting ALP activity 

increased by 1.3 times at PD = 6.6 (Fig. 2.4B) with a majority having Rc < 0.9 and 

1000 flm2 < Ac, being in a spindle or polygonal shape. A further increase to PD = 14.5 

(Fig. 2.4C) caused the decrease in the frequency of cells exhibiting ALP activity and the 

increase in the frequency of round-shaped cells. 
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Fig. 2.3 Representative time-lapse variations of Rc and Ac of ALP-positive chondrocytes at 

PD = 6.6. The morphological evaluation was conducted for the dividing polygonal 

shaped cell (A), and non-dividing polygonal shaped cell (B). The time of cell 

division is indicated by the asterisk. 

From the evaluation concerning occurrence of cell division during 72 h, it was revealed that 

the frequency of dividing cells without ALP activity was predominant at PD = 0 

(Fig. 2.5). With an increase in PD, the frequencies of dividing cells with and without ALP 

activity gradually decreased, followed by an increase in the frequency of non-dividing cells 

without ALP activity. On the other hand, the frequency of non-dividing cells which possessed 

ALP activity was the highest at PD = 6.6. 

33 



w
 

+:
-

A
 

>.
.,.

...
...

, 
(
.)

 
I 

c 
.....

.... 
ID

 
C

l)
 

5-
ID

 
0.

51
 

ID
 

(.)
 

~
-

u.
0 :!
: 
~
~
H
 I 

I 
I 

I 
I 
I
t
 

rf
 

C
l)

 
C

l)
 

ID
 

c "0
 

c :::
J 

0 a:
 

I-
rm

fb
. ...

 
• 

-1-1
 

. 
0 

0 
•
•
 ~
o
 

0
5

 t .~
 
0

0
 

-.
. 

! 
0

' 
, 

, 
, 

, 
, 

I 
, 

, 
I 

, 

o 
20

00
 

40
00

 
0 

0.
5 

C
el

l 
ar

ea
, 

A
c 

[lJ
m

2 ]
 

F
re

qu
en

cy
 

of
 c

el
ls

 [-
] 

B
 0.

5 
r 

O
~
-
F
H
 

H
 
I~
 

1 
• 

~ 
'{

X~
::

li
i"

~~
!J

(·
 
o

!:
· 

.'
)
 

0.
5 
t -.;

,~
 ..
. ~-:

.r
 ...

 -
--u

· 

r 
iJ!.

, .. ~
,.

1 ••
 "
..

 
0 

c
-
.
J
~
 .. <.

. 
• 

0 
o.

 ~
f.

 
• 

20
00

 
40

00
 

0 
0.

5 

C
el

l a
re

a,
 A

c 
[lJ

m
2]

 
F

re
qu

en
cy

 
of

 c
el

ls
 [

-] 

C
 0.

5 0 1 

0.
5 

~ 
~
~
t
r
o
 

0 
0 

20
00

 
40

00
 

0 
0.

5 
1 

C
el

l a
re

a,
 A

c 
[lJ

m
2 ]

 F
re

qu
en

cy
 

o
f c

el
ls

 [-
] 

F
ig

. 
2.

4 
C

or
re

la
ti

on
 b

et
w

ee
n 

R
c 

an
d 

A
c 

va
lu

es
 o

f 
ch

on
dr

oc
yt

es
 a

t 
P

D
 =

 0 
(A

), 
P

D
 =

 6.6
 (

B
), 

an
d 

P
D

 =
 14

.5
 (

C
). 

T
he

 d
at

a 
re

pr
es

en
t 

th
e 

an
al

yt
ic

al
 r

es
ul

ts
 o

bt
ai

ne
d 

fr
om

 m
or

e 
th

an
 1

00
 c

el
ls

. 
Sy

m
bo

ls
: 

C
lo

se
d 

ba
r 

an
d 

ci
rc

le
; 

A
L

P
-p

os
it

iv
e 

ce
lls

, 
an

d 
op

en
 b

ar
 a

nd
 

ci
rc

le
; 

A
L

P
-n

eg
at

iv
e 

ce
lls

. 



1 
......... 

I .......... 
en 
0> u -0 

0.5 >. u 
c 
0> 
~ 
C-
O> 
~ 

U. 

0 
0 6.6 14.5 

Population doubling, PO [-] 

Cell division + + + + - + + 

ALP activity - + - + - + - + - + - + 

Fig. 2.5 Change in cell population types with increasing population doubling. The data 

represent the analytical results obtained from more than 100 cells. Symbols: 

Closed bar; cells with Rc> 0.9, and open bar; cells with Rc < 0.9. 

To understand the phenotypes in cell population, the analyses of differentiation, 

dedifferentiation and terminal differentiation for passaged chondrocytes were conducted by 

gene expressions of collagen types I, 11 and X, respectively, at t = 24 h. As shown in Fig. 2.6, 

with increasing in PD, the collagen type I expression increased. On the other hand, both 

expressions of collagen types 11 and X were enhanced at PD = 5.1. The gene expression 

analyses were in fair agreement with the observation of cell morphology as well as 

cell-dividing and ALP activity patterns, indicating the progression of differentiated cells 

toward dedifferentiated and terminal differentiated states along with senescence. 
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Fig. 2.6 Gene expressions of collagen types I (A), 11 (B), and X (C) in chondrocytes at various 

PD levels on CL substrate. The data represent the average values with the SDs 

determined from triplicate independent experiments. 
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2.3.3 Variation in cell population of chondrocytes embedded in collagen gel 

The populations of chondrocytes passaged at various P D levels were embedded in the 

collagen gels. At 14 days, cell morphology in the populations which corresponded young, 

middle and old ages (PD = 0, 7.2 and 12.5, respectively) was estimated in a semi-quantitative 

manner by confocal laser scanning microscopy. As seen in Fig. 2.7, it was found that almost 
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Q) 
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c
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a 
o 7.2 12.5 

Population doubling, PO [-] 

Fig. 2.7 Fluorescent images showing cytoplasm (green) and collagen type II (red) production 

of chondrocytes, and semi-quantitative estimation of cell population types of 

chondrocytes embedded in CL gels at various PD levels. The data represent the 

analytical results obtained from more than 60 cells examined in triplicate 

independent experiments. Symbols: Vertically striped bar; aggregated cells with 

collagen type II formation, open bar; spindle-shaped ceiIs without collagen type II 

formation, and closed bar; single hypertrophic cells with collagen type II formation. 

The scale bar shows 200 11m. 
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Fig. 2.8 Gene expressions of collagen types I (A), 11 (B), and X (C) in chondrocytes 

embedded in CL gels at various PD levels. The data represent the average values 

with the SDs determined from triplicate independent experiments. 
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all cells at PD = 0 were either aggregated or single hypertrophic cells producing collagen 

type II. On the other hand, the cells at PD = 7.2 were predominantly single hypertrophic cells 

with collagen type II production. An increase in PD led to the increased frequency of spindle

shaped cells without the expression of collagen type II whereas the frequencies of aggregated 

and single hypertrophic cells decreased. 

Figure 2.8 shows the gene expressions of cells in the CL gels at various PD levels. 

With an increase in PD, the gene expression of collagen type I increased. On the other hand, 

the expressions of collagen types II and X were maximized at PD = 5.1, similarly to those 

trends on the CL substrate. These results mentioned above support the thought that the cell 

population composed of three phenotypes, namely differentiated, terminal differentiated and 

dedifferentiated cells. 

2.4 Discussion 

The current study was conducted to understand in detail the relation between cellular 

behaviors and cell phenotypes, which seems to be difficult to obtain by conventional 

techniques. It is well-known that cell phenotypes are regulated by interactions between cells 

and their surroundings, which are mediated by cell surface receptors such as integrins that 

bind to various molecules of the ECMs (Hirsch et al., 1997). Cell morphologies on a collagen 

substrate, as described by the "receptor saturation model" (Gaudet et al., 2003), are the 

effects of the interactions between cells and substrate through the quantitative balance of 

cell's integrin receptors and ligand-binding sites. In the case of substrate with high ligand 

density, strong inhibition of cell spreading takes place because the integrin receptors become 

saturated by the ligands and the bound receptors become clustered into a smaller area on the 

substrate. It has been reported that the blocking of integrin Bl inhibited cell stretching in 
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culture of dermal fibroblast cells in collagen gels (Fujimura et al., 2007), suggesting that the 

cell morphology in collagen gel relies on the exhibited balance between cell's integrin 

receptors and binding sites on collagen fibers in the gel, likewise in the case of cell 

morphology on the CL substrate. 

In the previous study (Kino-oka et al., 2009), the frequencies of round-shaped cells on 

the CL substrate and spherical-shaped cells in the CL gel were estimated and a convex 

relationship between these two parameters was observed. Furthermore, it was demonstrated 

that the analyses of collagen types I and 11 genes, which are typically expressed in 

differentiated and dedifferentiated chondrocytes, respectively, helped to understand the cell 

phenotypes in the CL gel by using the CL substrate. In the current study, the CL substrate 

was found to draw out the potential of chondrocyte's terminal differentiation, which was 

unattainable by using the PS surface (Fig. 2.1). Thus, the CL substrate was utilized as an 

evaluation tool to grasp the cell heterogeneity, being focused on terminal differentiated cells. 

It is generally recognized that during passages in vitro a main fraction of the cell 

population consists of cells with lower replicative properties (Cristofalo and Sharf, 1973). In 

the previous study (Kino-oka et aI., 2005b), the time profiles of chondrocyte propagation in 

serial subcultures on the PS surface were valuated in terms of PD value. A linear increase in 

PD with elapsed culture time was observed up to PD = 6, keeping almost a constant of 

specific growth rate. However, a further increment of PD close to PD = 7 led to lowering in 

specific growth rate, which was considered to result from terminal differentiation of the cells. 

This relation between PD value and cell propagation is supported by the report that cell 

aggregates raised by division were observed evidently in the CL gel seeded with 

chondrocytes at PD = 0, but in the case of seeding at PD = 7.2, the singly existing cells 

emerged without division (Kino-oka et al., 2009). 
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A distinctive feature of chondrocytes on 2-D culture is that they display a rounded or 

polygonal morphology and this morphology has been correlated with the synthesis of 

cartilage protein (Enomoto et aI., 2004; Horton and Hassel, 1986). Thus, the frequency of 

round-shaped cells on the CL substrate was considered to be an appropriate parameter to 

estimate the extent of differentiation in cell population during monolayer growth 

(Kino-oka et aI., 2009). In the present study, a decrease in the frequency of round-shaped 

cells at PD = 6.6 (Fig. 2.4B) was accompanied with an increase in gene expressions of 

collagen types I, 11 and X (Fig. 2.6). Since the expression of collagen type X is paralleled 

with that of collagen type 11 (Habuchi et al., 1985; Solurch et al., 1986; Adams and Shapiro, 

2002), a majority of the collagen type 11 expression was considered to be attributed from 

terminal differentiated chondrocytes. These suggest that with increasing PD, chondrocytes 

undergo either terminal differentiation or dedifferentiation. Figure 2.9 illustrates the possible 

change of chondrocytes toward terminal differentiated and dedifferentiated cells. Although 

terminal differentiation is associated with hypertrophy, in the current study, ALP-positive 

cells were found to be in polygonal shape on the CL substrate. In addition, an increase in cell 

area occurred at the initial stage of chondrocyte progression to terminal differentiation. A 

further increase was observed in the frequency of non-dividing chondrocytes with ALP 

activity, which implies the maturing of terminal differentiation. Another finding showed the 

progression of chondrocytes toward dedifferentiation. The spindle-shaped cells without ALP 

activity could proliferate, being a typical feature of dedifferentiated chondrocytes 

(Dominice et al., 1986). In addition, the repetition of cell division led to cellular senescence, 

which can be explained from the enlargement of cell size (Fig. 2.2C), being a typical pattern 

of cell senescence (Cristofalo and Kritchevsky, 1969), and from the increased frequency of 

non-dividing cells without ALP activity (Fig. 2.5), together with the gene expression of 

collagen type I (Fig. 2.6A) with increasing PD. The increased frequency of cells with 
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Rc > 0.9 found at PD = 14.5 (Fig. 2.4 C) can be attributed to the temporal stretching of 

senescence cells. 

The dedifferentiated chondrocytes are known to redifferentiate and up-regulate the 

synthesis of cartilage matrix proteins when placed in 3-D cultures. Mukaida et al. (2005) 

reported that the dedifferentiated chondrocytes, which was passaged on the PS surface, 

resulted in hypertrophic differentiation in a 3-D culture. In the present study using various 

populations of passaged chondrocytes, the fluorescence images of cells cultured at 14 days 

(Fig. 2.7) revealed three phenotypes, i.e., aggregated cells or singly occurring large cells with 

collagen type IT formation, or spindle-shaped cells without collagen type IT formation. 

Moreover, Fig. 2.6 and 2.8 co incidently indicate that the gene expression of collagen type X 

was enhanced in the cell population at the middle age of PD not only on the CL substrate but 

also in the CL gel (PD = 5.1), compared with those at young and old ages of PD levels 

(PD = 0 and 12.5, respectively), and that this enhancement of collagen type X expression was 

particularly evident in the CL gel. This fact was in accordance with the observation that 

hypertrophic differentiated cells appeared in the population at middle age of PD level 

(Fig. 2.7). These findings suggest that the apparent redifferentiation in the CL gel is possibly 

caused by the hypertrophic differentiation. 

In conclusion, this chapter revealed the cell potential of terminal differentiation 

accompanied by ALP activity at various PD levels, resulting in the characterization of 

terminal differentiated cells which exhibited the polygonal and relatively large shape 

(Rc < 0.9 and 1000 ~m2 < Ac < 2000 ~m2, respectively). In the cell population at middle age, 

the frequency of the terminal differentiated cells increased compared with those in cell 

populations of young and old ages. The gene analysis suggested that the up-regulation of 

collagen type IT expression in cell population at middle age was attributed not to 

42 



r-----------------------------------

On CL substrate 
(2-D culture) 

Differentiated cells 

Division 

Negative 

-, ALP activity 

Positive 

Mound and round 

Large 

Small 

In CL gel 

Spherical aggregation with semilunar cells 
Formation of collagen type II 

(3-D culture) 

P ral iferati on 

--------------:1 

Flat and stretched 

Roundness Small 

Cell area large 

Dedifferentiated cells 

Spindle elongation of single cells 
Non-formation of collagen type II 
No n-p ro life ratio n 

I Spherical hypertrophy of single cells 
I Formation of collagen type II 
I Non-proliferation 
I 

~--------------------------------------------~ - - - - - - - - - - - --
Fig. 2.9 Comprehensive illustration showing development of heterogeneous chondrocyte 

population on CL substrate (2-D culture) in relation to cell behavior in CL gel 

(3-D culture). 

redifferentiation but to terminal differentiation. In addition, the dedifferentiated cells which 

made cell division and exhibited spindle shape without ALP activity increased with 

increasing PD. Further increment in PD caused the higher frequency of non-dividing and 

relatively small cells without A_LP activity, suggesting the senescence of dedifferentiated 

cells. 

43 



2.5 Summary 

The CL substrate was used to draw out the potential of terminal differentiation in 

chondrocytes in passaged cultures, which is unattainable by a PS surface, and was used as a 

tool to evaluate cell quality in three-dimensional culture with the collagen gel. With 

increasing age of cell population (PD = 0 to 14.5), the frequency of non-dividing spindle

shaped cells without ALP activity increased, accompanied with an increase in gene 

expression of collagen type I, meaning the senescence of dedifferentiated cells. At the middle 

age of cell population (PD = 5.1 and 6.6), the high frequency of polygonal shaped cells with 

ALP activity existed on the CL substrate together with up-regulated expressions of collagen 

types II and X, indicating the terminal differentiation of chondrocytes. When the 

chondrocytes passaged up to the middle age were embedded in collagen gel, the high 

frequency of single hypertrophic cells with collagen type II formation was recognized, which 

supports the consideration that the high gene expression of collagen type II was attributed to 

terminal differentiation rather than redifferentiation. 
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Part 2 

Availability of nutrients in collagen gels during culture 

The implantation of tissue-engineered construct is a potential treatment for articular 

cartilage defects. However, the creation of clinically relevant construct with spatially uniform 

cell distribution and sufficient quantities of ECM components still poses a challenge. One of 

the extremely important issues in the development of tissue-engineered cartilage is the 

nutrient transport. It is typical for viable tissue to form in the peripheral region of scaffold 

whereas the interior unable to support the growth of tissue due to lack of adequate diffusion 

(Ishaug-Riley, 1997). It has been reported that in a static culture, the concentrations of gases 

(02 and C02) were depleted in the culture media (Gooch et al., 2001). In addition, the static 

culture condition caused the decreased growth rates of chondrocytes and low ECM 

(glycosaminoglycans (GAG) and collagen) production (Freed et al., 1994; Pazzano et al., 

2000). Since transport within the scaffold in a static culture is mainly a function of passive 

diffusion, thorough understanding of the diffusion characteristics is critical for improving the 

quality of cultured construct. 

From the viewpoint mentioned above, a direct measurement system was constructed 

to estimate the dissolved oxygen (DO) level in a cultured cartilage of a static culture in 

Chapter 3. In addition, enhancement of oxygen supply to the culture was conducted by 

introducing a shaking operation and a gas-permeable bottom. In Chapter 4, a system 

mimicking the peripheral of the CL gel was utilized to clarify the influence of ECM and cell 

cytoplasm on nutrient diffusion. In the last chapter, Chapter 5, a strategy was proposed to 

improve the inner region of scaffold for the formation of high quality chondrocyte aggregates. 
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Chapter 3 

Dissolved oxygen concentration in collagen gels 

3.1 Introduction 

Brittberg et al. (1994) have established the autologous transplantation procedure using 

chondrocyte suspension through in vitro expansion, and made notable contribution to 

repairing defective parts. In this procedure, however, the chondrocyte expansion was 

conducted by a 2-D culture, causing low productivity of ECM. Ochi et al. (2004) proposed 

the use of tissue-engineered construct prepared by culturing chondrocytes in collagen gel. 

The construct through the 3-D culture led to higher production of ECM (Uchio et al., 2000). 

However, the 3-D environment is expected to be under the insufficient supply of nutrients to 

cells inside the construct, which results in the deterioration of cell growth (Heywood et al., 

2004). 

DO is a key nutrient to govern the growth activity. Kellner et al. (2002) indicated the 

distribution of DO in a cylinderal cultured cartilage, concluding that insufficient DO supply 

inside the cultured cartilage yielded an acellular region where the cell growth was severely 

suppressed. In the previous work (Kino-oka et aI., 2008), a static culture of rabbit 

chondrocytes embedded in collagen gel was performed according to the procedure reported 

by Ochi et al. (2004), and the confocallaser scanning microscopy revealed the heterogeneous 

cell distribution with growth deterioration in a deeper region from top surface of gel, 

suggesting the lack of nutrients in this deeper region. In the present study, a direct 

measurement system to estimate DO level in the tissue-engineered construct was constructed 

using an optical fiber sensor, and the spatial distributions of cells and DO were analyzed. In 

addition, the culture condition was modified by use of a shaking vessel with a gas-permeable 
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bottom to examine the effect of improved oxygen supply on the distribution profile of the 

cells in the gel. 

3.2 Materials and Methods 

3.2.1 Cell embedding in collagen gels 

For static culture of rabbit chondrocytes, freshly isolated cells were suspended in 

culture medium and then mixed with a 4-fold volume of 3% Atelocollagen solution (Koken 

Co., Ltd.) at seeding cell density of 2.0 x 106 cells/cm3. The gel placed on a 60 mm culture 

dish (Coming, Inc.) was incubated static ally at 37°C under 5% C02 in air using medium as 

described elsewhere (Kino-oka et al., 2008). Medium changes were conducted every two 

days. For shaking culture, the dish was put on a solid-geometrical rotary shaker (Mini shaker 

SHM-2001; LMS Co., Tokyo) at 20 rpm with an incline of 7°. A modified dish soled with 

gas-permeable film (Lumox™ dish; Greiner Bio-One, Frickenhausen, Germany) was 

employed for improving oxygen supply to the cells in the gel. 

3.2.2 Determination of spatial cell distribution 

For analyzing overall cell density in each gel (X), the triplicate samples were 

harvested, and the cells were suspended by the enzymatic digestion of gel, followed by direct 

cell counting on a hemocytometer (Kino-oka et al., 2008). The local cell density in the gel 

(X) was estimated using an FV300 CLSM (Olympus) with a spatial cell distribution analyzer 

(SCDA) as shown previously (Kino-oka et al., 2008). In brief, a gel specimen was applied to 

the double-staining for living cell cytoplasm by CellTracker™ Green CMFDA (Invitrogen, 

CarIsbad, CA, USA) and for nucleus by TO-PR03 (Invitrogen). The stained specimen was 
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subjected to the analysis of spatial cell distribution, and the custom-made software performed 

the quantitative determination of spatial cell positions in the specimen. The probability (Pc) 

of cell existence in a local region at given depth (Z) from top surface of the specimen was 

defined as follows. 

Regional number of cells existing at given depth, Z 

Pc= Total number of cells on examined stereoscopic image 
(3.1) 

The local cell density at a given region in each gel was obtained from X = PcXVg/Vg, 

where Vg is the total volume and Vg is the volume at the local region. Here, the gel geometry is 

assumed to be a cylinder shape, so that the volume fraction is rearranged on a depth basis. 

3.2.3 Measurement of DO concentration 

Figure 3.1 shows the experimental set-up to measure a DO profile in a gel piece, 

employing an oxygen micro sensor (PreSens Co., Regensburg, Germany) fumituring a needle 

of optical fiber with 3 mm naked sensing tip (50 ~m in diameter) connected to an oxygen 

meter (Microx TX3; PreSens Co.). 

The needle was inserted into cultured gel set on a dish with medium. The dish was 

placed on an electrically-driven stage (MMU-60; Chuo Precision Industrial Co., Tokyo) to 

control the position in vertical and horizontal directions. The DO measurement was 

performed under 5% CO2 atmosphere at 37°C. If necessary, the medium was stirred by a 

magnetic bar for mimicking a shaking culture condition. Prior to the measurement, the top of 

gel was positioned manually at the sensor tip. Precise approach was confirmed using a 

camera (Artcam-300MI; Artray Co., Tokyo) equipped with a macro lens to define a boundary 

position, Z = O. Then, the stage was elevated to introduce the sensor tip to Z = 2.0 mm in gel. 

After achieving a steady state of DO concentration, the sensor was pulled out through gel 
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Fig. 3.1 Experimental set-up for measuring of DO concentration In gel. The dashed lines 

indicate signal flows to regulate the 3-D position of measurement. 

gradually at a 20 ~m step. The DO concentration at a given depth (Co), was determined by 

averaging five measurements. The measurement interval was set to be 5 min. These 

procedures were executed automatically by uSlng a custom-made program on LabVTEW 

software (National Instruments, Austin, TX, USA). Data were recorded as an average of 

triplicate samples, with the statistical-analysis using unpaired (-test. 
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3.3 Results 

3.3.1 Profiles of cell density and DO concentration in static culture 

Figure 3.2A shows the representative cross-sectioned images of cell distribution in 

the gels sampled at culture time, t = 7, 14 and 21 days in the static cultures (Condition 1). 

At t = 7 days, homogenous distribution of cells in the gel appeared with small cell aggregates. 

With elapsed time, the cell division occurred to form cell aggregates and the active 

proliferation was observed at the rim close to the gel surface. At t = 21 days, the overall cell 

density was achieved to be X = 1.0 X 107 cells/cm3, and the gel was covered with cells, 

although the smaller aggregates existed in the deeper part of gel, developing the 

heterogeneity of spatial cell distribution. As seen in Fig. 3.2B, the local cell density (X) was 

found to be constant along gel depth at t = 7 days. With elapsed time, X at the top surface 

(0 < Z:S; 0.13 mm) increased, achieving X = 1.7 x 107 cells/cm3 at t = 14 days, which was 9.5 

times higher than that at the bottom in the gel (1.88 mm < Z:s; 2.0 mm). The active growth 

until t = 21 days formed the dense cell layer with X = 5.7 X 107 cells/cm3 at the top surface in 

~ 6 3 the gel, although the growth at the bottom was found to be low, being X = 5.0 x 10 cells/cm. 

These suggested that the limitation of nutrient supply caused the low activity of cell growth at 

the deeper part of the gel. Concerning DO profile in the gel, as shown in Fig. 3.2C, CO was 

kept almost constant at t = 7 days, giving Co = 0.17 mol/m3 on average, which was slightly 

smaller than the saturation level of DO under the experimental conditions (C~ = 0.21 mol/m\ 

With elapsed time, Coat Z = 0 drastically decreased, achieving Co = 0.07 mol/m3 at 

t = 21 days, which was two-fifth of that at t = 7 days. In addition, Co at t = 21 days gradually 

decreased along with gel depth and reached Co = 0.03 mol/m3 at Z = 2.0 mm, which was one-

sixth of that at t = 7 days. These results suggested that an increase in local cell 
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Fig. 3.2 Vertical profiles of cell density and DO concentration In static culture of 

chondrocytes embedded in gel (Condition 1). Fluorescent images of chondrocytes 

stained for cytoplasm. The scale bars represent: 200 ~m (A). Local cell density 

estimated by SCDA. The bars show the SDs (B). Local DO concentration 

measured by optical sensor system. The solid and broken lines show the mean and 

95% confidence interval, respectively (C). 
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density led to further demand of oxygen, and the limitation of oxygen transfer caused the 

lower level of DO not only inside the gel but also at top surface of the gel. 

3.3.2 Profiles of cell density and DO concentration in culture with enhanced oxygen 

supply 

To examine the influence of enhanced oxygen supply from top and bottom surfaces of 

the gel on the profiles of cell density and DO concentration inside the gel, the shaking 

cultures were performed for t = 21 days using the conventional dish (Condition 2) and the 

modified-bottom dish with gas-permeable film (Condition 3). The X values at t = 21 days 

were 2.1 x 107 and 2.9 x 107cells/cm3 under Conditions 2 and 3, respectively, which were 2.1 

and 2.9 times that in the static culture using the conventional dish (Fig. 3.2). As shown in 

Fig. 3.3A, the thickness of cell aggregates at the top region as well as the aggregate size at 

the bottom region in the gel increased under Condition 2. A further increase in the thickness 

of top region was observed under Condition 3 (Fig. 3.4A), although the aggregate size at the 

bottom region was almost equivalent to that under Condition 2. As shown in Fig. 3.3B and 

3.4B, the packed cells existed in the ranges of 0 < Z :::; 0.25 mm and 0 < Z :::; 0.5 mm under 

Conditions 2 and 3, respectively, and X at the top region (0 < Z:::; 0.13 mm) was at the levels 

of X = 4.3 X 107 (Condition 2) and 3.0 x 107 cells/cm3 (Condition 3), being almost the same as 

that under Condition 1. Although a decrease in X along with Z occurred, X at the bottom 

surface reached 7.2 x 106 and 1.3 x 107 cells/cm3 under Conditions 2 and 3, respectively, 

being 1.4 and 2.6 times higher than that under Condition 1. In addition, as seen in Fig. 3.3C, 

the Co levels at the top region were enhanced, compared to that under Condition 1. Especially, 

Co at Z = 0 reached 0.18 mol/m3 which was close to the saturation DO level of C~ = 0.21 

mol/m3. The Co under Condition 2 decreased drastically along with Z, approaching the value 
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conventional dish (Condition 2). Fluorescent images of chondrocytes stained for 

cytoplasm. The scale bars represent 200 11m (A). Local cell densities estimated by 

SCDA. The bars show the SDs (B). Local DO concentrations measured by optical 

sensor system. The solid and broken lines show the mean and 950/0 confidence 

interval, respectively (C). 
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Fig. 3.4 Vertical profi1es of cell densities and DO concentrations in shaking culture using 

modified dish with gas-permeable film at bottom (Condition 3). Fluorescent images 

of chondrocytes stained for cytoplasm. The scale bars represent 200 11m (A). 

Local cell densities estimated by SCDA. The bars show the SDs (B). Local DO 

concentrations measured by optical sensor system. The solid and broken lines show 

the mean and 95% confidence interval, respectively (C). 

of Co = 0.004 mol/rn3 at level Z = 2.0 mm, which was lower than that under Condition 1. The 

Co profile under Condition 3 showed the different manner, compared to those under 

Conditions 1 and 2 due to oxygen supplement from the bottom sutiace, and Co at Z = 2.0 mm 

was recorded to be 0.05 molfm3
, which was 12.5 times higher than that under Condition 2. 
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3.4 Discussion 

The heterogeneous distribution of chondrocytes has been reported in the 3-D 

constructs of cultured cartilage (Kellner et aI., 2002; Kino-oka et al., 2008; Park et al., 2007; 

Kobayashi et aI., 2008), suggesting that the uneven nutrient concentration inside the construct 

occurred through the balance of nutrient consumption and possible components, which 

become rate-determining substrates for proliferation, are glucose, proteins and/or oxygen. 

In the culture of bovine chondrocytes, Malda et al. (2003) reported that the cell 

proliferation on micro-carriers was not affected in the DO range of 4 x 10-2 to 

2.1 X 10-1 mol/m3
• In has been reported that the low DO level of 3 x 10-2 mol/m3 had a 

suppressive effect on the proliferation of rabbit chondrocytes, giving a saturation constant of 

Ko = 6.3 X 10-2 mol/m3 in a Monod-type equation (Yashiki et al., 2004; Kino-oka et al., 

2005a). The reduction of growth activity caused by the low DO level can be responsible for 

allowing a factor to provide the uneven cell distribution in the cultured tissues. Concerning 

the chondrocyte differentiation, Grimshaw and Mason (2005) demonstrated that the 

expressions of aggrecan genes remained unchanged in the alginate-embedded culture of 

bovine chondrocytes in the DO range of 0 to 2.1 X 10-1 mol/m3
, associated with the 

up-regulation of collagen type 11 as well as the down-regulations of interleukin-1~, 

transforming growth factor-~ and connective tissue growth factor under a hypoxic condition. 

On the other hand, Murphy and Polak (2004) performed the alginate-embedded cultures of 

human chondrocytes at the DO concentrations of 5 x 10-2 and 2.1 x 10-1 mol/m3
, and reported 

that the gene expressions of collagen type 11 as well as aggrecan were up-regulated at the DO 

level of 5 x 10-2 mol/m3
• Malda et al. (2003) suggested that these contrary DO effects on the 

gene expressions in the cultures of chondrocytes may arise from the differences in the cell 

species and culture conditions employed. 
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Radisic et al. (2006) estimated the DO concentration in a disc-shaped construct of 

neonatal rat cardiomyocytes cultured in collagen scaffold for 16 days under a static condition, 

and showed that the DO concentration and cell viability decreased linearly and the living cell 

density decreased exponentially along the distance from the construct surface. In addition, 

they mentioned that medium flow significantly increased the DO concentration within the 

construct, which could be correlated with the improved tissue properties of the constructs 

cultured in a convectively mixed bioreactor. 

Previous work (Kino-oka et al., 2005a) reported the simulation of chondrocyte growth 

in the Atelocollagen gel by developing the kinetic model with DO as a rate-determining 

substrate and predicted heterogenous distributions in cell and DO concentrations in the gel. In 

addition, the predicted cell distribution was confirmed to have good agreement with the 

profile estimated by SDCA. The current work revealed that the cell distribution was related to 

that of DO concentration and the heterogeneities of cell density and DO concentration in the 

construct developed with elapsed time. The above-mentioned evidences suggested that the 

creation of DO gradient in the construct and active cell proliferation could occur dominantly 

in top surface of the construct. Once the gradient of cell concentration emerged along with 

distance from top surface, the cell clustering in the top surface made a barrier to oxygen 

diffusion into a deeper region of the construct, forming the heterogeneous distribution in DO 

concentration. Consequently, the heterogeneity of DO concentration makes insufficient 

supply of oxygen, causing low proliferation in a deeper region of the construct. Thus, the 

inevitable mechanism leads to developing in the heterogeneity of cell distribution. 

In the static culture, the DO concentration at the surface of the gel decreased with 

elapsed time (Fig. 3.2C). The DO concentration in a liquid phase at the vicinity of the gel 

drastically decreased with approaching to the surface, although the DO concentration in a 
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bulk phase was almost equal to the saturation level (data not shown). A profile of DO 

concentration in a liquid phase was calculated by Zhou et al. (2008), indicating that the DO 

concentration at surface depended on the culture conditions including medium depth, volume 

of construct, cell density and so on, although the resistance of oxygen transfer at interface 

between liquid and solid was well known to be negligible in perfusion culture. Thus, the 

shaking culture was conducted in the current study (Fig. 3.3). This improvement of oxygen 

supply led to the increment of cell growth although the DO concentration in the deeper region 

decreased similarly to that in the static culture. 

Further improvement of oxygen supply was carried out in the shaking culture using 

the dish with gas-permeable bottom (Fig. 3.4). In this culture, the DO concentration in deeper 

region was enhanced, compared to that in shaking culture with the conventional dish 

(Fig. 3.3C), and the growth in middle and deeper regions were slightly promoted, enhancing 

the cell density in whole construct. However, the cell density at the bottom was much lower 

than that at top surface, leading to the development of heterogeneous cell distribution 

similarly to those in static and shaking cultures using the conventional dish. In the previous 

study (Yashiki et al., 2004), the culture was performed on a porous filter which can permeate 

the nutrients to supply at both sides of top and bottom of the construct, showing symmetrical 

cell distribution along with construct depth. These results suggest that macromolecules may 

be possible rate-determining substrates even under sufficient oxygen supply. 

In conclusion, this chapter showed that in the static culture of rabbit chondrocytes, the 

heterogeneity of cell distribution in the gel notably developed owing to the limitation of 

oxygen supply into a deeper part of the gel. The shaking operation and use of gas-permeable 

bottom improved oxygen supply from the top and bottom surfaces of gel, respectively, and 

the enhancement of Co at top and bottom regions of the gel. This improvement facilitated the 
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cell proliferation, causing the thick region with packed cells expanded, compared to those in 

static and shaking cultures using conventional dishes. The local cell density at bottom surface 

was enhanced by the operation but the level was still lower than that at top surface, 

suggesting that limitation of alternative nutrients such as proteins caused insufficient growth 

under the improved conditions of oxygen supply. 

3.5 Summary 

In the static culture of rabbit chondrocytes in collagen gel, the direct measurement of 

DO concentration revealed that the DO level at the top surface of gel decreased due to an 

increase in overall cell density with elapsed time. The local cell density at the top surface on 

day 21 was 5.7 x 107 cells/cm3
, being 11 times that at the bottom of gel. This heterogeneity of 

cell distribution in the gel was considered to occur by limitation of oxygen supply into a 

deeper part of the gel. In the shaking culture using a dish with gas-permeable film, the DO 

level was enhanced inside the gel and the overall cell density in the gel was achieved to be 

2.9 times that in the static culture. 
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Chapter 4 

Effect of chondrocytes and extracellular matrix on nutrient permeation 

and diffusivity 

4.1 Introduction 

The typical paradigm for in vitro tissue engineering of articular cartilage involves the 

isolation and culture of donor chondrocytes within 3-D scaffold biomaterials under 

conditions that support tissue growth. However, one major constraint in the use of 3-D 

scaffolds has been tissue ingrowth within the constructs. Because cells located in the interior 

scaffold receive nutrients only through diffusion from the surrounding media in a static 

culture, the high cell density on the peripheral of the scaffold could lead to transport 

limitation and decreased nutrient permeability from the bulk solution into the scaffold 

(Freed et al., 1994), causing a lower nutrient level and cell density inside the scaffold. 

In a study on the supply of nutrients to cells from the nucleus pulposus of 

intervertebral discs, Homer and Urban (2001) demonstrated that glucose rather than oxygen 

was the critical nutrient. Similarly, in Chapter 3, even with the improvement in the oxygen 

supply in the bottom region of the CL gel, the local cell density was still lower than that at 

the top surface, suggesting that the insufficient growth was caused by limitations of 

alternative nutrients such as protein. 

In the present work, nutrient diffusion and related changes in CL gel permeability to 

oxygen and the candidate protein bovine serum albumin (BSA) after long-term culture were 

evaluated using a system mimicking the periphery of the gel construct described in 

Chapter 3. 
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4.2 Materials and Methods 

4.2.1 Preparation of system mimicking the gel periphery 

Freshly isolated chondrocytes were introduced onto the 0.33 cm2 membranes of 

Transwell® Permeable Supports (Transwell) and the 1.12 cm2 membranes of Snapwell™ 

Inserts (Snapwell) placed in 24 and 12-well culture vessels (all purchased from Coming, Inc.), 

respectively, at an initial seeding density (Xo) of 1.0 x 105 cells/cm2. The cells were cultured 

for the indicated time period at 37°C in a 5% CO2 atmosphere using medium as described 

'elsewhere (Kino-oka et al., 2008). Medium changes were conducted every 3 days. 

4.2.2 Determination of the thickness of the celllECM layer and the ratio of ECM to cell 

cytoplasm 

In the current study, collagen type 11 was selected as the candidate ECM for 

understanding the relationship between changes in the ECM to the permeability and diffusion 

of nutrients. The specimens underwent double-staining for living cell cytoplasm (green) and 

collagen type 11 (red) as described in a previous study (Khoshfetrat et aI., 2009). The 

thickness of the celllECM layer (dceu) on the microporous membranes was estimated using 

custom-made software programmed by LabVIEW (National Instruments) as described in 

Appendix A. In brief, at least nine random positions of each specimen were scanned at 

1.0 Ilm intervals to yield slice images for vertical direction determination. The 8-bit images 

(256 x 256 pixels) of both colors in each slice were converted into binary images, allowing 

for distinction between colored and non-colored pixels. The colored pixels, which were 

derived from the green fluorescent original images, denoted the green pixels for cell 
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cytoplasm (Nc). On the other hand, the non-colored pixels derived from the green fluorescent 

original images together with the colored pixels derived from the red fluorescent original 

images denoted the red pixels for collagen type II (NE). The number of Nc and NE in each 

slice was counted and normalized using the maximum Nc and NE values, respectively, found 

in all of the slice images. Slices with> 10% of Nc or NE were regarded to exist inside the 

celllECM layer, from which the vertical positions at the top and bottom of the celllECM layer 

and deeIl were determined. The ratio of NE to the sum of Nc and NE was denoted as RECM. 

4.2.3 Permeation and diffusivity of oxygen and BSA 

The specimens were rinsed twice with PBS (Sigma) and then incubated for 1 h with 

sodium azide solution (PBS containing 0.1 % sodium azide; Wako Pure Chemical Industries, 

Ltd., Osaka) at 37°C in a 5% CO2 atmosphere to stop the metabolism of cells. 

Figure 4.1 shows the experimental set-up for understanding the permeation and 

diffusivity of oxygen. Snapwells containing the celllECM layers were placed in a diffusion 

chamber equipped with an oxygen micro sensor (PreSens Co.) described in Section 3.2.3. The 

oxygen concentration at the bottom chamber was measured in a 5% C02 atmosphere at 37°C. 

Specimens with CL gel (without chondrocytes) on the Snapwell membranes were used as 

reference. The permeability coefficient of oxygen Pi (i = 02) was determined using the 

following equation: 

(4.1) 

where CSal is the concentration of oxygen in the surrounding medium (0.21 mollm\ Cb is the 

nutrient concentration in the bottom chamber, and A is the surface area of the Snapwell 

membrane. The diffusion coefficient (DeeIl) of oxygen was calculated as follows: 
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Deell = P x d (4.2) 

where d indicates the thickness of the gel (dgeD or cell/ECM layer (deell ). 

Immediately prior to petformance of the experiment concerning BSA penneability 

and diffusion, the Transwell chambers containing the celllECM layers were washed with 

BSA solution (PBS containing 0.2% BSA; Wako Pure Chemical Industries, Ltd . and 

Snapwell --------+-~l O2 saturated solution 

Cell/ECM layer--~====-===---... 
or collagen gel 

+--+-- Diffusion chamber 
O

2 
microsen~( .... r----i------' 

~------r--r-------' 

Magnetic 
stirrer 

'--________ Solution flushed 
with N2 

Fig. 4.1 Experimental set-up for understanding the permeation and diffusivity of oxygen. 

0.1 % sodium azide) and placed in a new 24-well culture vessel containing 0.8 ml of sodium 

azide solution. BSA solution (0.2 ml) was inserted into the Transwell chamber containing the 

celllECM layer and incubated for 3 days at 37°C in a 5% CO2 atmosphere. The setup for the 

BSA diffusion experiment is shown in Fig. 4.2. Specimens with CL gel (without 

chondrocytes) on the Transwell membranes were used as reference. Sampling of solutions in 

Transwell chamber and 24-well culture vessels was conducted every day. The concentration 

of BSA was measured at an absorbance of 278 nm (A278) with a spectrophotometer (UV -160; 

Shimadzu Corp., Kyoto) and applied to the following equation for determination of 

Pi (i = BSA) for BSA: 

(4.3) 
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Here, Ca is the nutrient concentration in the Transwell chamber, Cb is the nutrient 

concentration in the well, and A is the surface area of the Transwell membrane. The DceH 

value for BSA was calculated using Equation 4.2. 

Transwell ------+---+1 

Cell/ECM layer 
.-t----t---- With addition of BSA 

or collagen gel-------+----tle14 *d 
~f------ BSA free solution 

24 well culture -------.!I 
~~~~~~~~==~ 

vessel 

Fig. 4.2 Expelimental set-up for understanding the penneability and diffusion of BSA. 

4.3 Results 

4.3.1 Effect of ce1I1ECM layer on nutrient permeation 

To understand the development of the celllECM layer, the fluorescence stained 

specimens were evaluated at 3, 5, 7, and 10 days of culture. At 3 days, a large part of the 

membrane surface was not covered by cells or collagen type II (Fig. 4.3A). Here, the 

majority of chondrocytes had round morphology with poor collagen type II production, 

suggesting that the cells were in a lag phase without division. However, at 5 days, a 

significantly large part of the membrane sUlface was covered by either cells or collagen 

type II (Fig. 4.3B), yielding dCell == 25.9. Active cell growth and collagen type II production 

was observed at 7 days of culture as evident from the dcell value, which was twice that at 

5 days of culture (Fig. 4.3C). In addition, some of the chondrocytes were surrounded by 

collagen type II, creating spaces between neighboring cells. At 10 days, high production of 

collagen type II by chondrocytes resulted in each cell being sep'arated by a significant amount 

of collagen type II-filled space (Fig. 4.3D). Here, a thick celllECM layer of 
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deelI = 80.3 was achieved, which was 3 times higher than that at 5 days' culture. Furthermore, 

based on the quantitative estimation of cell cytoplasm and collagen type IT, it was revealed 

that the celllECM layer was constructed primarily from collagen type IT 

(Fig. 4.4) . 

........... 
E 80 =1.. 
~ 

Q) 
u 

1:) 
.... 

Vl 
Vl 
Q) 40 c 
~ 
u .-

...c 
l-

D 
3 5 7 10 

Time, t [day] 

Fig. 4.4 The changes in the ratio of collagen type IT and cell cytoplasm in the celllECM 

layer. Symbols: Open bar, collagen type IT and closed bar, cell cytoplasm. The 

vertical bars show the SDs. 
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Fig. 4.5 The permeation of oxygen, P02 (A) and BSA, PBSA (B) across the celllECM layers at 

various culture times. In this study, P gel represents the permeability coefficient of 

nutrients through the collagen gel on the membranes of culture inserts. 
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As shown in Fig. 4.4 and 4.5A, the increase in cells and collagen type 11 in the 

celllECM layer did not affect the permeability to oxygen; the mean P02 was 6.6 x 10-6 m1s, 

which was about 10 times lower than the Pgel. On the other hand, the increase in cells and 

collagen type 11 reduced the permeability of the celllECM layer to BSA as shown by the 

decreasing trend of PSSA (Fig. 4.4 and 4.5B), which was about 40 times lower than P gel at 

5 days and nearly 300 times lower at 10 days. 

4.3.2 Influence of ECM and types of nutrients on diffusivity 

Collagen type 11 increased with culture time (Fig. 4.4) and became the major 

component of the celllECM layer at 10 days. To understand the influence of 

I I I I I I I ... - -
+-' 
C - -Q) 

,....-, 
U') 

U .............. - -.- N n E - -
Q) 

0 0 M 5 - -
U I 

0 
C M - -
0 '---I 

- -
U') OJ 
::J u 

n Cl - -

Cl - -

00 
I I ~ ~ L 

0.2 0.4 0.6 0.8 

Ratio of NE to NT' RECM [-] 

Fig. 4.6 Influence of various REcM on the diffusion of oxygen. The vertical bars show 

the SDs. 
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Fig. 4.7 Influence of various RECM on the diffusion of BSA. The vertical bars show the SDs. 

collagen type II in the celllECM layer on nutrient transport, the diffusion of oxygen and BSA 

was evaluated with the changing ratio of collagen type II to cell cytoplasm. As shown in 

Fig. 4.6, the diffusion of oxygen through the celllECM layer was faster with the increase in 

RECM, with a significant increase in Deell occurring in the range of RECM = 0.2 to 0.3. The 

diffusion of BSA (Fig. 4.7) was relatively low in the specimen with little collagen type II 

(RECM = 0.1). The Dee\1 of BSA gradually increased with increasing RECM, reaching a 

maximum in the range of R ECM = 0.2 to 0.4. However, an opposite trend occurred at higher 

RECM, with diffusion of BSA completely inhibited in the vicinity of R ECM = 0.6. 
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4.4 Discussion 

In long-term culture of CL gel with Xo = 2.0 X 106 cells/cm3
, the periphery of the gel 

typically comprises dense chondrocyte aggregate and ECM. The aim of the present study was 

to determine the influence of the components of the gel periphery on permeability and 

nutrient diffusion. Thus, a system using a celllECM layer on a permeable membrane was 

utilized. Oxygen (with molecular weight of 32) and BSA (with molecular weight of 66,500), 

the main nutrients during cell culture were used as candidates in the experiment. The 

celllECM layer had a varied ratio of cells to the main ECM component, collagen type 11, at 

5, 7, and 10 days of culture, with the cells being the main component at 5 and 7 days and, 

collagen type 11 being the primary component at 10 days (Fig. 4.4). Subczynski et al. (1992) 

reported a permeability coefficient of oxygen across the Chinese hamster ovary plasma 

membrane of 4.2 x 10-1 m1s, which was 2 times lower than the permeability coefficient across 

a water layer of the same thickness. The P02 was 6.1 to 7.3 X 10-6 m1s, with the lowest value 

at 7 days (Fig. 4.SA), indicating that the cell membrane was the dominant factor in the 

slightly low permeability of oxygen. As Fig. 4.4 and 4.SB show, the PBSA exhibited a good 

inverse correlation with time and the amount of collagen type 11 in the celllECM layer, with a 

minimum PBSA value of 5.6 x 10-9 m1s. Even with the large amount of collagen type 11 at 

10 days, this value was higher than the permeability coefficient to cultured endothelial cell 

monolayers, which was 8.5 x 10-10 m1s, because of the presence of tight intercellular 

junctions between endothelial cells (Smith et aI., 1989). 

In the current study, the diffusion of oxygen and BSA occurred passively as evident 

from the inverse relationship of the permeability coefficients (P02 and PBSA ) with the 

molecular weight of the nutrients. Figure 4.6 shows that the diffusion of oxygen was faster in 

the celllECM layer with high collagen type 11 content, which was within the vicinity of 
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RECM = 0.6. On the other hand, the diffusion of BSA (Fig. 4.7) showed an opposite trend, 

being completely inhibited at a high R ECM• Interestingly, the diffusion of BSA, which was 

low around the vicinity of RECM = 0.1, increased with an increasing content of collagen 

type 11 before attaining a decreasing trend within an R ECM of 0.5. This changing resistance to 

BSA transport and the increase in oxygen transport at a high R ECM may have been caused by 

the structure and orientation of the collagen network as well as varying matrix porosity 

(Maroudas, 1968; Leddy and Guilak, 2003; Leddy et aI., 2006). Rather widely spaced 

collagen fibrils (Hall and Newman, 1991) have been suggested to obstruct diffusion of large 

molecules (40 to 500 kDa). Large molecules also reportedly result in a higher diffusion 

coefficient along the primary orientation of collagen fibers, compared with being 

perpendicular to the fibers (Leddy et al., 2006). The formation of space between cells 

secondary to increased production of collagen type 11 may have initially caused an increase in 

BSA diffusion, but the subsequent increase in collagen type 11 formed a dense wall around 

each cell and resulted in the inhibition of BSA diffusion. However, it seems that the dense 

collagen type 11 wall only formed a barrier to the diffusion of large molecules, not to small 

molecules, as evident from the rapid diffusion of oxygen. 

In conclusion, this chapter shows that the permeability of oxygen was not 

significantly affected by the changes in the composition of the celllECM layer mimicking the 

periphery of CL gel. On the other hand, permeability of BSA showed an inverse relationship 

to the content of collagen type 11. The low collagen type 11 content was found to hinder the 

diffusion of oxygen and BSA, probably owing to the barrier formed by cell membranes 

situated close to one another. Increased collagen type 11 production led to the formation of 

space between cells, allowing rapid diffusion of oxygen and BSA across the celllECM layer. 

However, the subsequent increase in collagen type 11 content caused the development of 

dense wall surrounding each cell and inhibited the diffusion of BSA without affecting the 
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diffusion of oxygen. These findings indicate that the cell-cell distances, matrix structures, and 

nutrient size are important factors influencing the transport of nutrients at the periphery of the 

CL gel. 

4.5 Appendix A 

Figure 4.8 presents a flowchart of the image analyzing process for determining the 

thickness of the celllECM layer and the pixel density of the cell cytoplasm and collagen 

type 11. 

4.6 Summary 

A system mimicking the periphery of the CL gel seeded at Xo = 2.0 X 106 cellslcm3 

was used to evaluate the nutrient diffusion and related changes in gel permeability to oxygen 

and BSA after long-term culture. The permeability of oxygen was not significantly affected 

by the changes in the composition of the celllECM layer used as the mimic. On the other 

hand, permeability of BSA showed an inverse relationship to the content of collagen type 11. 

In the vicinity of RECM = 0.1, the diffusion of oxygen and BSA were slow, probably owing to 

the barrier formed by cell membranes situated close to one another. However, the diffusion of 

oxygen and BSA became faster with an increasing content of collagen type 11. The 

development of a dense wall surrounding each cell within the vicinity of RECM = 0.6 inhibited 

the diffusion of BSA without affecting the diffusion of oxygen. These findings indicate that 

the cell-cell distances, matrix structures, and nutrient size are important factors influencing 

the transport of nutrients at the periphery of the CL gel. 
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Chapter 5 

Potential of low seeding density culture with supplementation of 

insulin-like growth factor-! in modulation of chondrocyte behavior at 

initial culture phase 

5.1 Introduction 

In Chapter 3, it was shown that chondrocytes seeded at a high density 

of 2.0 x 106 cells/cm3 in CL gel grew predominantly at the periphery of the gel, which 

formed a barrier to the diffusion of oxygen, subsequently causing a DO concentration 

gradient. Furthermore, as demonstrated in Chapter 4, the celllECM layer at the periphery of 

the construct may interfere with the transport of protein. The insufficient supply of nutrients 

resulted in a lack of cell growth in the deeper region of the construct, leading to a 

heterogeneous cell distribution. 

In clinical practice, a cultured cartilage should ideally contain the appropriate amount 

of primary ECM components with a spatially uniform cell distribution within the construct. 

One strategy to obtain these desired traits in tissue-engineered constructs is to prepare the 

CL gel at a low cell density to reduce the cell growth at the periphery of the gel. 

Kino-oka et al. (2008) reported that in a CL gel with a low cell seeding density of 

2.0 x 105 cells/cm3, chondrocytes had an active growth rate throughout 21 days of culture, 

ultimately reaching the same level of cell density as that in a culture with a higher initial cell 

seeding density. Furthermore, cells were found to have a relatively homogenous spatial 

distribution in the top and middle regions of the CL gel after long-term culture. The low 

seeding density culture, however, resulted in the formation of loose aggregates of spindle

shaped cells, none of which produced collagen type 11. This architecture of cell aggregates 
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was caused by the migration and gathering of individual chondrocytes, particularly at an early 

stage of the culture (Khosfetrat et al., 2009). Therefore, regulating the cell behaviors in an 

initial culture phase will enable the manufacturing of cultured cartilage with a desired quality 

for practical use. 

It is well-known that insulin-like growth factor-l (IGF-1) is the main anabolic growth 

factor for articular cartilage. In vitro studies have demonstrated that IGF-1 increases the 

synthesis of proteoglycan by chondrocytes while retarding the degradation of proteog1ycans 

(Luyten et al., 1988). Furthermore, IGF-1 was found to maintain chondrocyte morphology 

and enhance the phenotypic expression of collagen type 11 (Fortier et aI., 1999). In this 

chapter, the effect of IGF-1 on the behavior of individual chondrocytes and cell aggregates in 

CL gel seeded at a low cell density was evaluated. 

5.2 Materials and Methods 

5.2.1 Chondrocyte preparation and incubation of cells embedded in collagen gel 

Chondrocyte isolation was conducted as described in Section 1.2.3. CL gel with 

freshly isolated chondrocytes of Xo = 2.0 X 105 cells/cm3 was prepared as indicated in Section 

2.2.3. The CL gel culture was conducted at 37°C for the prescribed number of days in a 

5% C02 atmosphere using medium as described elsewhere (Kino-oka et aI., 2008). The CL 

gel culture was also conducted using medium supplemented with 100 ng/ml IGF-1 (Human 

Recombinant; PeproTech, Rocky Hill, NJ, USA). Medium changes were conducted every 

3 days. 
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5.2.2 Stereoscopic observation and analysis of chondrocyte morphology 

The specimens were subjected to double-staining for living cell cytoplasm and 

collagen type 11 as described in a previous study (Khoshfetrat et al., 2009). The CL gel 

specimen was mounted on a glass-bottomed dish (Asahi Glass Co., Ltd.) for 3-D observation 

of cell morphology and collagen type 11 using a CLSM (model FV-300; Olympus). Low 

magnifying-power views through an objective lens (lOx) were taken to observe the spatial 

distribution of cell aggregates and formation of collagen type n. To acquire highlighted 

images, observation was conducted at higher magnification with an objective lens 

(20x or 40x). 

Cells stained with CellTracker™ Green CMFDA (Invitrogen) as indicated previously 

(Khoshfetrat et al., 2009) were subjected to time-lapse observation at 5 days of culture. Cells 

were observed at higher magnification with an objective lens (60x) using a CLSM 

(model: Fluoview FVlOi; Olympus) for 8 h. 

Analysis of individual cell morphology at 5 days was conducted by capturing images 

with a resolution of 256 pixels on both the horizontal and vertical lines at a step size of 

0.9 /lm with an objective lens (60x). The 3-D geometry of cytoplasm representing cell 

morphology was reconstructed from the image data with a threshold value for fluorescent 

intensity to evaluate the sphericity of each cell, Se, defined by the following equation: 

6V 
SC=D.S (5.1) 

where V, D, and S denote the volume, equivalent diameter, and surface area of a single cell, 

respectively. The Se value was determined by examining> 50 cells in each gel. As described 

in a previous study (Khoshfetrat et al., 2009), the cytoplasmic images offered a sphericity of 

o < Se ~ 1 for single cells. Here, the spindle-shaped cells were regarded as being capable of 

migrating, and by setting a threshold value of Se = 0.95, the cell morphology 
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was categorized into three types of cell populations: dividing cells (DC), non-migrating cells 

(NMC) (0.95 :S Se :S 1.0), and migrating cells (MC) (Se < 0.95). The frequency, fi (i=DC, 

NMC, and MC), was defined as follows. 

number of cells categorized to each population 

~ = number of all cells examined 
(5.2) 

5.2.3 Total RNA extraction and real-time RT -peR analysis 

Gene expression was examined by means of quantitative real-time PCR with a 

Chrom04™ detector and furnished program (Bio-Rad Laboratories) according to procedures 

explained in Section 2.2.4. Specific primers for GAPDH and collagen types I and 11 were 

designed as indicated in Table 2.1 in Section 2.2.4. The primers for membrane type I-matrix 

metalloproteinase (MTI-MMP) was designed as follows: 5'-TCT CTI CTG GAT GCC CAA 

TG-3' and 5'-GAT GCC TIC CCA CAC TTT GA-3'. 

5.3 Results 

5.3.1 Effect of IGF -1 on behavior of chondrocytes in initial culture phase 

Initially, the behavior of individual chondrocytes in CL gel with 

Xo = 2.0 X 105 cells/cm3 was studied quantitatively in the early culture phase (5 days) in the 

presence and absence of IGF-l. Based on the stereoscopic shapes of cells examined by 

cytoplasm staining, the paired or dividing cells were apparently distinguished from the singly 

occurring cells. As shown in Fig. 5.1, the frequency of MC (fMC) significantly decreased in 

the culture with IGF-l, givingjMc = 0.04, which was more than 2 times lower than that in the 

IGF-l free culture. On the other hand, the frequency of DC (fDc) increased in the presence of 

IGF-l, being 1.5 times higher than that in the IGF-l free culture. The frequency of NMC 

(fNMC) exhibited no change with the addition of IGF-l, depicting a value of jNMC = 0.83. 
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These results suggest that IGF-l suppressed the migration of chondrocytes in the CL gel 

while stimulating chondrocyte propagation at 5 days. 
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Fig. 5.1 Frequencies of dividing cells (DC), non-migrating cells (NMC), and migrating cells 

(MC) in CL gel cultures. The cultures were performed for 5 days. Symbols: Open 

bar, without IGF-l; closed bar, with 100 ng/ml ofIGF-l. The vertical bars show the 

SDs. The statistical significance among the data sets was accessed by Student's t-test 

(*p < 0.05). 
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Fig. 5.2 Gene expressions of collagen types I CA) and II CB), and MTI-MMP CC) in 

chondrocytes in CL gel cultures. Symbols: Open bar, without IGF-l; closed bar, 

with 100 nglrnl of IGF-I. The mRNA expression levels were standardized by 

GAPDH expression. The vertical bars show the SDs. The statistical significance 

among the data sets was accessed by Student's Hest C*p:::; 0.05). 
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5.3.2 Gene expression relating to differentiation and migration 

The gels were picked up from the cultures with and without IGF-I at 5 and 7 days and 

subjected to quantitative analysis for mRNA expression of collagen type I and 11 genes, 

relating to differentiation, and of MTI-MMP, relating to cellular remodeling of the 

surrounding matrix. As shown in Fig. 5.2, the mRNA level of collagen type I at 5 days in the 

culture with IGF-l was down-regulated to more than 2 times lower than that in the IGF-l free 

culture, and this trend was maintained at 7 days of culture. The mRNA levels of collagen 

type 11 showed a similar trend at 5 days. However, when cultured for 7 days, the expression 

level in the culture with IGF-l was up-regulated to a level about similar to that in the IGF-l 

free culture. The expression level of MTI-MMP was significantly down-regulated at 5 days 

in the culture with IGF-l, being about 2 times lower than that in the IGF-l free culture. At 

7 days, the mRNA levels of MTI-MMP showed a slight down-regulation compared with 

those at 5 days whether IGF-l existed or not. 

5.3.3 Morphology of aggregates and ECM formation 

To understand the fate of cell behavior when exposed to IGF-l in the initial culture 

phase, histological observation of aggregate shapes in the CL gels was performed at 

7 days in the cultures with and without this growth factor. The fate of chondrocytes was also 

studied in the late culture phase; observation of aggregate shapes and collagen type 11 

formation in the CL gel was conducted at 14 days. As seen in Fig. 5.3, at 7 days, aggregates 

with spindle-shaped cells emerged in the gel when cultured in the absence of IGF-l 

(Fig. 5.3A and A-I). However, this type of aggregate was not observed in the culture with 

IGF-l (Fig. 5.3B). A magnified image (Fig. 5.3B-I) elucidated that the aggregate in the 

culture with IGF-l comprised chondrocytes with an ellipsoid morphology. 
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At 14 days of culture, the loose aggregates of spindle and spherical-shaped cells were 

observed at the rims of the gels cultured without IGF-l (Fig. 5.4A). Immunodetection of 

collagen type II revealed that the loose aggregates of spindle-shaped cells were accompanied 

Fig. 5.3 Fluorescent images showing spatial distribution and morphology of chondrocytes in 

collagen gels. The cultures were perlormed for 7 days without IGF-l (A) and with 

100 ng/ml of IGF-l (B). The boxed regions on the images, A and B, are highlighted 

by the magnifications, A-l and B-1, respectively. 
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Fig. 5.4 Fluorescent images showing spatial distribution ~f chondrocytes (green) and 

collagen type II (red) in collagen gels. The cultures were performed for 14 days 

without IGF-l (A) and with 100 ng/ml of IGF-l (B). The arrows show the top 

surfaces of the gels. 
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by poor production of collagen type 11, whereas the spherical-shaped cells localized in the 

loose aggregates exhibited territorial production of collagen type 11. In the culture with IGF-l, 

few cells were located at the rims of gels (Fig. 5.4B). Furthermore, a majority of the 

aggregates comprised tightly packed spherical-shaped cells that were abundant in collagen 

type 11 and were larger in size compared with those in the culture without IGF-l. 

5.4 Discussion 

In Chapter 3, rabbit chondrocytes were shown to be predominant in the top region of 

CL gel with Xo = 2.0 X 106 cells/cm3
, subsequently causing a DO concentration gradient. In 

addition, it was revealed in Chapter 4 that the presence of a large number of chondrocytes 

coupled with a high amount of collagen type 11 at the periphery of gel formed a barrier to the 

diffusion of proteins such as BSA. This celllECM barrier at the periphery of the gel resulted 

in a lack of nutrients in the inner region of the CL gel and low cell propagation. To prevent 

the formation of a dense celllECM layer at the periphery of the gel, CL gel was seeded at a 

low density of Xo = 2.0 X 105 cells/cm3
• However, chondrocytes migrated in the low seeding 

density CL gel, resulting in the formation of loose aggregates of spindle-shaped cells without 

the production of collagen type 11 (Khosfetrat et al., 2009). 

In the present study, IGF-l was administered in the CL gel culture seeded at low cell 

density. Based on the evaluation of cell sphericity at 5 days in the CL gels, it was found that 

IGF-l suppressed cell migration. The inhibition of chondrocyte migration was accompanied 

by active cell division in the early culture phase. Cell migration involves coordinated 

adhesion as well as proteolytic interaction with the surrounding matrix, resulting in 

degradation and remodeling of the matrix barrier (Friedl and Wolf, 2009). Upon cell 

progression, multiple classes of ECM-degrading enzymes are up-regulated and activated, 
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including matrix metalloproteinase (MMPs). It is well known that MTI-MMP plays a pivotal 

role in ECM remodeling, cell migration and invasion. MTI-MMP could cleave directly ECM 

proteins such as gelatin, collagen type I and fibronectin (Ohuchi et aI., 1997). In addition, 

Kim et al. (2005) reported the expression of MTI-MMP in migrating chondrocytes from the 

cartilage endplate into the nucleus pulposus in rat intervertebral discs. The results shown in 

Fig. S.3A-l and S.2C indicated the dedifferentiation of chondrocytes with the acquisition of 

spindle morphology and the expression of MTI-MMP, which suggests that the chondrocytes 

in the CL gels adopted protease-dependent migration strategy (Friedl and Wolf, 2003). 

Considering the down-regulation of collagen type I and MTI-MMP expression, and the lack 

of spindle-shaped cells (Fig. S.2A, C and S.3B) in the culture with IGF-l, it seems that the 

protease-dependent migration was suppressed by IGF-l. 

To our knowledge, there is no report describing the suppression of this mode of 

chondrocyte migration by the down-regulations of collagen type I and MTI-MMP by IGF-l. 

The expressions of MTI-MMP in Lewis lung carcinoma subline H-59 cells have been 

reported to be up-regulated in response to 10 ng/ml of IGF-l (Zhang and Brodt, 2003). 

Furthermore, this induction of MTI-MMP by IGF-l has been demonstrated to be related to 

PI 3-kinase/AktlmTOR signaling mechanism. At a high dose of 100 ng/ml of IGF-l, however, 

activation of ERK pathway appears to dominate, exhibiting an inhibitory effect on the 

PI 3-kinase/AktlmTOR signaling (Zhang et al., 2004). Considering these reports, it is thought 

that 100 ng/ml IGF-l has a negative regulatory effect on the synthesis of MTI-MMP. In 

addition, it has been reported that MCF-7 human breast carcinoma cell migration was 

depressed at 100 ng/ml of IGF-l (Mira et al., 1999), which is consistent with our results in 

the current study. 

In 3-D, cell could migrate collectively, as described previously for primary melanoma 

explants (Friedl et al., 1995; Hegerfeldt et aI., 2002). In the current study, some cells in the 

83 



culture without IGF-l migrated in clusters in the initial culture phase, where cell at the 

leading edge generated the migration path whereas cells at the trailing edge remained largely 

non-motile (Fig. 5.5), being compatible with the down-regulation of MTI-MMP expression 

at day 7 (Fig. 5.2e). 

In HT-I080 fibrosarcoma cells, the blocking of MMPs, serine proteases, and 

cathepsins has resulted in a transition of the cell mobility mode from a proteolytic mode to 

protease-independent one (Wolf et at., 2003). This protease-independent mobility mode has 

been widely reported in leukocytes and tumor cells (Condeelis et al., 1992; Devreotes and 

Zigmond, 1988; Friedl et aI., 2001; Wolf et al., 2003). The typical characteristics of cells in 

this mode include a round or ellipsoid shape and the frequent protrusion and retraction of the 

plasma membrane (Friedl and Wolf, 2003; Fackler and Grosse, 2008). In the current study, 

the chondrocytes maintained an ellipsoid shape at 5 days with recurring protrusion and 

Fig. 5.5 Time lapse of chondrocytes at 5 days in culture without IGF-l. Representative 

images show cells that adopted a collective migration strategy. The migration path 

was determined by the lead cell. The leading edge of the lead cell is indicated by 

the asterisk. 

retraction of the plasma membrane (Fig. 5.6). These findings suggest that the down

regulation of MTI-MMP by IGF-I does not thoroughly suppress cell migration, but rather 

lead the chondrocytes to the adoption of a protease-independent migration strategy. 
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The inability to actively degrade the dense matrix surrounding the cells seems to prevent 

them from migrating from their original positions, reSUlting in formation of large aggregates 

with spherical-shaped cells owing to cell division, and a paucity of cells existing at the gel 

periphery at 14 days. 

In conclusion, based on the morphological evaluation of individual cells and the gene 

expression analysis, it was found that in the CL gel culture with the low seeding density, the 

presence of IGF-l caused the suppression of chondrocyte dedifferentiation and protease

dependent migration in the early culture phase. This administration of IOF-l contributed to 

the creation of large aggregates containing spherical-shaped cells with collagen type II 

production in the prolonged culture. 

Fig. 5.6 Time lapse of chondrocyte at 5 days in culture with IGF-l. The cell exhibited 

ellipsoid shape. The protrusion of the cell plasma membrane is indicated by the 

asterisk. 

5.5 Summary 

The effect of IGF-l on cell behavior In the CL gel culture with 

Xo = 2.0 X 105 cells/cm3 was examined. At day 5, the fMc significantly decreased in the 

culture with IOF-l, giving a value of 0.04, which was more than 2 times lower than that in 

the IGF-l free culture. On the other hand, the joe increased in the presence of IOF-I, being 

1.5 times higher than that in the IGF-l free culture. These results suggest that IGF-l 
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suppressed the migration of chondrocytes in the CL gel while stimulating the cell division in 

the initial culture phase. The proteolytic migration of cells was thought to be suppressed 

owing to the down-regulation of MTI-MMP by IGF-l. This contributed to the formation of 

aggregates with spherical-shaped cells that produced collagen type 11. 
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General Conclusion 

Overall, the present study highlights the significance of chondrocyte fate and the 

nutrition property in acquiring clinically applicable cultured cartilage. The chondrocyte fate 

at young, middle and old ages led to various qualities of cultured cartilage. In addition, an 

example of cultured construct with young chondrocytes at seeding density of 

Xo = 2.0 X 106 cells/cm3 demonstrated the importance of nutrition availability in obtaining 

high quality cultured cartilage. The administrations of IGF-l to the chondrocytes in CL gels 

seeded at low density of Xo = 2.0 X 105 cells/cm3 revealed the possibility of regulating the 

chondrocyte fate for obtaining the desired structural and functional properties of cultured 

construct. The major findings obtained throughout this thesis are concluded as follows. 

In the first part, including Chapter 1 and 2, the chondrocyte fate at various cell ages 

was characterized by evaluation of cell morphology on CL substrate. In Chapter 1, to clarify 

the relationship between the morphology of young chondrocytes (PD = 0) to the structure of 

CL substrate, the morphological evaluation of cells was conducted after 1 day incubation on 

substrates preserved under atmosphere of nitrogen gas or air. The varying preservation 

conditions altered the degree of collagen fibril formation. It was found that the decay of 

collagen fibril formation caused the spreading of cells, indicating that the non-preserved CL 

substrate is most suitable for a cell evaluation purpose. 

Chapter 2 emphasizes on the comprehension of the influence of PD levels to the 

chondrocyte fate with age in the cultured cartilage. The cell phenotype was distinguished by 

utilizing the non-preserved CL substrate as an evaluation tool. Morphological assessment and 

ALP staining were conducted and correlated with the cell population in CL gel. With 

increasing age of cell population (PD = 0 to 14.5), the frequency of non-dividing spindle

shaped cells without ALP activity increased, accompanied with an increase in gene 
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expression of collagen type I, meaning the senescence of dedifferentiated cells. At the middle 

age of cell population (PD = 5.1 and 6.6), the high frequency of polygonal shaped cells with 

ALP activity existed on the CL substrate together with up-regulated expressions of collagen 

types 11 and X , indicating the terminal differentiation of chondrocytes. When the 

chondrocytes passaged up to the middle age were embedded in CL gel at the high seeding 

density of Xo = 2.0 X 106 cells/cm3, the high frequency of single hypertrophic cells with 

collagen type 11 formation was recognized, which supports the consideration that the high 

gene expression of collagen type 11 was attributed to terminal differentiation rather than 

redifferentiation. 

In Part 2, which includes Chapters 3, 4 and 5, characterization of the nutrition 

property in CL gel with young chondrocytes at Xo = 2.0 X 106 cells/cm3 was conducted. 

Furthermore, regulation of chondrocytes fate in the cultured construct was carried out by 

seeding the CL gel at a low density of Xo = 2.0 X 105 cells/cm3 and administration of IGF-l. 

In Chapter 3, a direct measurement system was constructed to estimate the DO level in a 

cultured cartilage of conventional static culture, in culture subjected to shaking operation and 

with a gas-permeable bottom. It was revealed that in the static culture, the DO level at the top 

surface of gel decreased due to an increase in overall cell density with elapsed time. The local 

cell density at the top surface on day 21 was 5.7 x 107 cells/cm3, being 11 times that at the 

bottom of gel. This heterogeneity of cell distribution in the gel was considered to occur by 

limitation of oxygen supply into the deeper part of the gel. In the shaking culture using a dish 

with gas-permeable film, the DO level was enhanced inside the gel and the overall cell 

density in the gel was achieved to be 2.9 times that in the static culture. The local cell density 

at the bottom surface was enhanced by the operation but the level was still lower than that at 

the top surface, suggesting that limitation of alternative nutrients such as proteins caused 

insufficient growth under the improved conditions of oxygen supply. 

88 



Chapter 4 deals with the nutrient diffusion and the related changes in gel permeability 

to oxygen and BSA at the periphery of CL gel seeded at Xo = 2.0 X 106 cells/cm3 after long

term culture. The changes in the composition of the celllECM layer used to mimic the 

periphery of the gel construct did not significantly affect the permeability of oxygen. On the 

other hand, permeability of BSA showed an inverse relationship to the content of collagen 

type 11. In the vicinity of RECM = 0.1, the diffusion of oxygen and BSA was slow, probably 

owing to the barrier formed by cell membranes situated close to one another. However, the 

diffusion of oxygen and BSA became faster with increasing content of collagen type 11. The 

development of dense wall surrounding each cell within the vicinity of RECM = 0.6 inhibited 

the diffusion of BSA without affecting the diffusion of oxygen. These indicate that the cell

cell distances, matrix structures and nutrient size are important factors influencing the 

transport of nutrient at the periphery of the CL gel. 

Taking the finding obtained in Chapters 3 and 4 into consideration, in Chapter 5, a 

low seeding density culture of Xo = 2.0 xl 05 cells/cm3 was used to limit the cell growth and 

ECM production at the periphery of the cultured cartilage. In addition, the effect of IGF-l to 

the cell behavior at initial culture phase was examined. It was found that the fMc significantly 

decreased in the culture with IGF-l, giving a value of 0.04, which was more than 2 times 

lower than that in the IGF-l free culture. On the other hand, the fDc increased in the presence 

of IGF-l, being 1.5 times higher than that in the IGF-l free culture. These results suggest that 

IGF-l suppressed the migration of chondrocytes in the CL gel while stimulating the cell 

division in the initial culture phase. The proteolytic migration of cells was thought to be 

suppressed owing to the down-regulation of MTI-MMP by IGF-l. This contributed to the 

formation of aggregates with spherical-shaped cells that produced collagen type H. 

In summary, the present research demonstrates the importance of characterizing the 

chondrocyte fate with relation to cells age and behavior, and also the nutrition property in 
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cultured cartilage. In addition, IGF-l was found to be feasible in regulating chondrocytes 

behavior in CL gel while maintaining the chondrogenic phenotype. It is considered that the 

knowledge in this study could be applied for designing and generating high quality cultured 

cartilage for clinical uses. 
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Proposals for Future Work 

To extend the findings obtained in this study, the following researches are 

recommended with respect to the application of tissue engineering. 

1) Application of CL substrate for screening of anti-rheumatic drugs 

For drug design, it is mandatory to test candidate substances before applying in 

the clinic. To meet this challenge, several established animal models are available. 

However, animal experiments often cause high costs and hardly offer possibility of 

automation. In vitro assay offers the possibility of reducing cost and of automation, e.g., 

anti-rheumatic drug screening. In addition, due to lower complexity, this assay would 

provide more reproducible data. As shown in Part 1, CL substrate enabled evaluation of 

chondrocytes differentiated and terminal differentiated phenotypes, which are native to 

the articular cartilage. In addition, the collagen structure of CL substrate could easily be 

modified by preservation. Therefore, the CL substrate could be subjected to treatment to 

mimic the ECM of an arthritic cartilage and used in the osteoarthritis research. 

2) Application of direct measurement system to estimate DO level of cultured bone 

The transplantation of cultured bone cells is expected to be applicable to patients who 

have lost large segments of bone due to tumors, etc. The amount of bone formation in vitro 

may be influenced by factors such as hormones, sufficient oxygen and nutrient supplies, 

and appropriate mechanical stress on cells. Using the direct measurement system described 

in Chapter 3, the influence of the DO concentration on the quality of engineered bone and 

osteogenesis in vitro could be comprehended. 

91 



Nomenclature 

Co dissolved oxygen concentration [mol/m3] 

Vg volume at the local region [cm3] 

Ae projected area of a single cell [flm2
] 

fR frequency of round-shaped cells [-] 

le peripheral length of a single cell [flm] 

ne number of viable cells [cells] 

Re cell roundness [-] 

Se sphericity of single cell [-] 

Xo initial seeding density [cells/cm2] or [cells/cm3] 

Ca nutrient concentration in the chamber of Transwell [mol/m3] 

Cb nutrient concentration at the bottom chamber or well [mol/m3] 

C* 
0 saturation level of dissolved oxygen concentration [mol/m3] 

Csat concentration of oxygen in the surrounding [mol/m3] 

Dcell diffusion coefficient of oxygen or bovine serum albumin [m2/s] 

Ko saturation constant [mol/m3] 

Nc pixels for cell cytoplasm [pixels] 

NE pixels for collagen type 11 [pixels] 

PBSA permeability coefficient of bovine serum albumin [mls] 

Pc probability of cell existence [-] 

Pge1 permeability coefficient of collagen gel [mls] 

P02 permeability coefficient of oxygen [mls] 

RECM ratio of pixels for collagen type 11 to the total pixels [pixels] 
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Vg total volume [cm3] 

X local cell density [ cells/cm3] 

de ell thickness of celllECM layer [m] 

dgell thickness of gel [m] 

fDc frequency of dividing cells [-] 

fMc frequency of migrating cells [-] 

fNMc frequency of non-migrating cells [-] 

A surface area of membrane [m2] 

Ct cycle threshold value [-] 

D equivalent diameter of single cell [/lm] 

P permeability coefficient [m/s] 

PD population doubling [-] 

S surface area of single cell [/lm2] 

t culture time [h] or [days] 

V volume of single cell [/lm3] 

X overall cell density [ cells/cm3] 

Z depth [mm] 

!1nc differential in the number of viable cells [cells] 

!1Ct differential in cycle threshold value [-] 

!1PD differential value of population doubling [-] 
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Abbreviation 

2-D 

3-D 

ACT 

ALP 

BSA 

CL gel 

CL substrate 

CLSM 

DC 

DO 

ECM 

EDC 

PI 

GAG 

IGF-l 

MC 

MMP 

MTI-MMP 

n 

NMC 

PBS 

two-dimensional 

three-dimensional 

autologous chondrocytes transplantation 

alkaline phosphatase 

bovine serum albumin 

collagen gel 

high density collagen type I coated substrate 

confocallaser scanning microscope 

dividing cells 

dissolved oxygen 

extracellular matrix 

l-ethy 1-3-(3-dimethylaminopropyl )-carbodiimide 

fluorescent intensity 

gl ycosaminogl ycan 

insulin-like growth factor-l 

migrating cells 

matrix metalloproteinase 

membrane type I-matrix metalloproteinase 

sample size 

non-migrating cells 

phosphate buffered saline 
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PS surface 

SCDA 

SEM 

tissue culture polystyrene surface 

spatial cell distribution analyzer 

scanning electron microscope 
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