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Abstract 

The importance of automated visual surveillance in public space has been increased in response 

to the recent rising concerns about safe and security, and computer vision-based person iden­

tification techniques play a key role in it. Gait as a biometric cue has received much attention 

in recent years due to the ability of identifying individuals at a distance, and gait-based person 

identification technique could contribute much to crime investigation and safety confirmation 

through wide-area surveillance. Although gait-based person identification has such a promising 

ability, several critical issues need to be sufficiently considered when applying it to real visual 

surveillance tasks. Among them, this thesis addresses following three issues, each of which 

is corresponded to a primal step in gait-based person identification: i) accuracy of foreground 

segmentation in preprocessing step, ii) robustness to intra-subject variations in identification 

step, and iii) statistical reliability in performance evaluation step. 

First, a research for the first issue is described. We propose a method for accurate fore­

ground segmentation in the presence of strong shadow. For the separation of foreground and 

shadow, the homography constraint in binocular system is used. In addition, while existing 

homography-based methods often suffer from the occlusion relationship, the proposed method 

takes such relationship into account explicitly by using a homography correspondence pair­

based symmetric labeling scheme. The scheme is formulated in the form of energy minimiza­

tion problem and optimized by an a-f3 swap algorithm. The experimental results demonstrate 

that the proposed method realizes more accurate segmentation than the existing methods in the 

presence of strong shadow and occlusion. 

Next, we propose a novel person identification framework where the identification perfor­

mance could be enhanced against intra-subject variations. We pay attention to the fact that 

people often act in groups such as friends, family, and co-workers in social living and we uti­

lize this as a cue for identifying individuals to improve the identification performance. The 

individual cues and the group cue are integrated in the form of conditional random field model, 

and the identities of individuals are optimized via belief propagation algorithm. The compar­

ison experiments with the straightforward identification scheme show the effectiveness of the 

proposed method. 



Finally, we construct the world's largest gait database. The database includes 4,007 subjects 

(2,135 males and 1,872 females) with ages ranging from 1 to 94 years. The database enables 

the statistically reliable performance comparison among state-of-the-art gait features for per­

son identification. Also, we investigate the dependences of the identification performance on 

gender and age group, and several novel insights are provided such as the gradual change in 

identification performance with human growth. 

Together with the considering of these issues, this thesis could make a large contribution to 

the development of more accurate and practical gait-based visual surveillance. 
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Chapter 1 

Introduction 

Realization of the safe and secure life is always social demand, and the visual surveillance has 

been contributed to it. Together with the increase in fears of violent crimes and terrors such 

as the events of September 11,2001, USA and the bomb attacks in London on the July 2005, 

today the importance of visual surveillance, especially the surveillance from a distance, has 

been definitely increased worldwide to observe the broad area activities of people and vehicles 

with minimum blind area. In fact, an enormous number of surveillance cameras are deployed 

in a wide range of public places (e.g., airport, underground station, street, school, shopping 

mall, parking lot, and sports arena) for crime reduction and risk management 1. On the other 

hand, massive surveillance cameras have posed expensive cost for manual operation required 

to manage them. As a result, the video from the cameras cannot be always monitored and is 

often used only as a record for post investigation of an incident. For crime prevention and 

investigation and safety confirmation, however, real-time event detection from lots of video 

data is still needed and also, comprehensive analysis for widely distributed cameras is desired 

for such purposes. To meet such needs, computer-assisted surveillance technology has been 

developed in recent years [1] with the great advance of computer processing power. 

Computer vision technology takes the central role in automated surveillance [2, 3, 4, 5, 

6]. For example, the techniques of person detection, tracking, and action recognition from 

videos ensure the automatic alert ability for intruders and suspicious individuals with abnormal 

behavior. In addition, the techniques of character recognition realize the timely detection and 

online tracking ofthe wanted vehicles based on their number plates. Finally, biometric-based 

person identification techniques make the surveillance system to be more intelligent, that is, the 

system acquires the ability to know that "who exists or dose not exist in the area". This enables 

the automatic detection of suspected persons, unwelcome strangers, and protected persons (e.g., 

1 More than 4.2 million cameras are deployed in UK. 
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children and seniors). Consequently, this significantly contributes to realization of the safety 

and security in our society. 

There are two major biometric cues for person identification in visual surveillance, face and 

gait2 . As for the face-based person identification from the videos or still images, a considerable 

number of techniques have been developed [7, 8, 9, 10, 11]. As a result, the techniques are 

now used commonly not only for visual surveillance [12, 13, 14], but also for access control 

[15, 16, 17], image searching [18, 19], and consumer photo management [20, 21]. Also, many 

commercial softwares of face recognition are available (e.g., FaceIt-SDK [22], FaceVACS­

SDK [23], OKAO Vision [24], and NeoFace [25]). Automatic face recognition mainly uses 2D 

front-face pattern and texture information and it essentially requires the high-resolution image, 

though there exists some techniques of obtaining high resolution image from low resolution 

images. This restricts its range of application in visual surveillance in terms of not only the 

observation view, but also the distance to the subjects. Thus, face-based identification is not 

suitable for many of the videos from surveillance cameras deployed in public space, in which 

the subjects are captured from a distance. In addition, the individual face can easily be altered 

or concealed by dark glasses and mask. 

On the other hand, gait-based biometrics is a relatively new area of study within the com­

munity of computer vision research [26]. The gait has attractive advantages including the 

difficulty to disguise and the ability of identifying individuals at a distance without their coop­

eration. Therefore, it is expected to be applied to the long-distance surveillance in public space. 

In fact, gait-based verification from public CCTV images has been admitted as evidence in UK 

[27], and gait evidence has been used as a cue for criminal investigations in Japan. 

In the last decade, various gait-based person identification techniques have been stud­

ied, and there are two different approaches: model-based approach and model-free approach. 

Model-based approaches fit a model to input images and represent gait features such as shape 

and motion by the parameters of the model. Some methods [28, 29] extracted periodical fea­

tures of leg motion by Fourier analysis. Bobick et al. [30] extracted parameters of shape and 

stride. Wagg et al. [31] extracted static shape parameters and gait period with an articulated 

body model, and Urtasun et al. [32] extracted joint angles with an articulated body model. 

Although model-based approaches are generally view-invariant and scale-invariant and these 

advantages are important for practical applications, the approaches tend to be more complex 

and computationally more expensive than model-free ·approaches. In addition, model-based 

2Manner of walking. 
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SlIhouettelmages Gait features 

Figure 1.1: A general processing Dow of model-free gait identification (the GEl [36] is illus­
trated as gait feature). 

approaches often require good quality images to calculate the model parameters with high ac­

curacy from a gait sequence, which may be difficult to obtain in a reaJ survei I lance system. 

Recent trends in gait-based person identification are model-free approaches due to the low 

computational cost and robustness to the noise. Model-free approaches represent gait features 

by directly analyzing the subject's binary silhouettes without the use of a model. A general 

framework of model-free approach is shown in Fig. 1.1, which consists of silhouette extraction 

including subject segmentation, feature extraction, and classification procedures. To date, a 

variety of mode-free methods have been proposed ranging from a method of direct matching of 

silhouette images, which is called as a baseline algorithm [33], to hidden Markov model-based 

method [34]. Among them, a periodic template-based methods seem to be the mainstream due 

to its simplicity and high perfonnance, as typified by a method based on averaged silhouette 

[35] (which is also known as Gait Energy Image (GEl) [36]). In recent works, it is reported 

that, when there is no subject's condition change, nearly 100 % identification performance is 

achieved by state-of-the-art methods [37, 38] for public gait databases [39, 40] which provide 

relatively clear silhouette sequences of over 100 subjects . 

Although such successful perfonnance has been achieved by model-free approaches, there 

are still some significant issues posed to the practical use of gait-based person identification for 

visual surveillance3 . Of these, we address the following maj or three issues in this thesis, each 

of which corresponds to a prilnal step in gait-based person identification. 

1. Accuracy of foreground segmentation in preprocessing step: Many of the existing 

works use the public gait databases such as [39, 33, 40] which provide normalized or 

3To the best of our knowledge, there is no study which evaluates the gait-based person identification perfor­
mance with real surveillance videos automatically. 
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original silhouette image sequences, and they avoid the need for foreground segmenta­

tion (subject's silhouette extraction) process. On the other hand, almost all other works 

use original gait dataset captured in rather controlled environment only for their evalua­

tion. Typically, each sequence contains only one subject without strong shadow. There­

fore, the foreground segmentation task is not so serious and it can be easily achieved by 

straightforward background subtraction technique. In the real surveillance videos, how­

ever, the task is not always easy, especially in outdoor scene due to strong shadow. The 

failure in shadow removal causes not only the distortion of a silhouette's shape, but also 

the mergence of silhouettes of two or more subjects, and consequently, the performance 

could be significantly decreased. Although shadow removal is major problem in com­

puter vision and many color-based techniques have been proposed, it is still difficult to 

separate shadow from the foreground accurately in the presence of strong shadow. 

2. Robustness to intra-subject variations in identification step: Gait is behavioral char­

acteristic and tends to be more fluctuated for each attempt (walking) than physiological 

characteristic such as face. The fluctuation often arises in arm swing and head pose, 

and especially, it might be notably appeared in children's walk due to the immaturity 

of their walking. Generally, identification performance is decreased by such fluctua­

tion. In addition, various condition changes such as observation view, clothing, and 

carrying condition changes cause the identification performance decrement as reported 

in [33]. Although, there are some works which aim to construct robust scheme for such 

intra-variations (e.g., [41] addresses the view-invariant scheme and clothing change is 

considered in [42]), the performance cannot be fully recovered. 

3. Statistical reliability of performance in performance evaluation step: For the statisti­

cally reliable evaluation of gait identification approaches, the construction of a common 

gait database is essential. Though several gait databases have been constructed to date 

[43,44,39,45,46,47,33,40,48,49,50,42,51,52], these databases include at most 

185 subj ects [51] and the subj ects' genders and ages are biased in many of the databases. 

Therefore, these are insufficient for the performance evaluation especially in terms ofthe 

number and diversity ofthe subjects. 

The thesis is organized as follow. Chapter 2 presents a novel framework of foreground 

and shadow segmentation with a static binocular system is described for the first issue. Ho­

mography constraint is one of geometric constraints in a multi-camera system, and it is often 
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used for foreground separation from shadow. Though existing homography constraint-based 

segmentation approaches can work well in the presence of strong shadow, it often suffer from 

occlusion problems between foreground and shadow. In our approach, to explicitly take the oc­

clusion relationship into account, we treat a homography-correspondence pair symmetrically. 

Also, we regard the segmentation problem as a multi-Iabeling problem for each homography­

correspondence pair. We then formulate the problem as an energy minimization problem, and 

get the pair-wise labeling results by minimizing it via an a-/3 swap algorithm. Experimental 

results show that accurate segmentation is obtained in the presence of the occlusion region in 

each side image. 

Next, we describe a framework of group context-aware person identification for the sec­

ond issue in Chapter 3. In social living scenarios, people often act in groups composed of 

friends, family, and co-workers. We utilize this as a cue for person identification to improve 

identification performance in the presence of the attenuation of gait-based identity caused by 

intra-subject variations. The relationships between the people in an input sequence are modeled 

using a graphical model. The identity of each person is then propagated to their neighbors in 

the form of message passing in the graph via belief propagation, depending on each person's 

group affiliation information and their characteristics, such as spatial distance and velocity vec­

tor difference, so that the members of the same group with similar characteristics enhance each 

other's identities as group members. The proposed method is evaluated through gait-based per­

son identification experiments using both simulated and real input sequences. Experimental 

results show that the identification performance is considerably improved when compared with 

that of the straightforward method based on the gait feature alone. 

Then, we describe the construction ofthe world's largest gait database-the "OU-ISIR Gait 

Database, Large Population Datasef'-and its application to a statistically reliable perfor­

mance evaluation of gait-based person identification for the third issue in Chapter 4. Whereas 

existing gait databases include at most 185 subjects, we construct a larger gait database that 

includes 4,007 subjects (2,135 males and 1,872 females) with ages ranging from 1 to 94 years. 

The dataset allows us to determine statistically significant performance differences between 

currently proposed gait features. In addition, the dependences of identification performance on 

gender and age group are investigated and the results provide several novel insights, such as the 

gradual change in identification performance with human growth. 

Finally, conclusions are drawn and future work is discussed in Chapter 5. 

5 





Chapter 2 

Foreground and Shadow Segmentation 
based on Homography-correspondence 
Pair 

2.1 Introduction 

Foreground segmentation is crucial preprocessing for gait-based person identification. For ex­

tracting foreground, background subtraction has been widely used [53] for surveillance. The 

methods, however, often extract not only the objects but also their shadows, which can be 

problematic. The false detection of shadow as foreground causes the distortion of foreground 

appearance and mergence of the areas of foreground, and this impairs the original feature of 

foreground. As a result, the performance of gait-based person identification is significantly 

decreased. Therefore, shadow segmentation, detection, or removal is also important problem, 

and many techniques have been proposed for the purpose. Although, color-based method is the 

most popular [54], the method tends to be unstable in real environment. 

On the other hand, mUltiple cameras-based surveillance with overlapped fields of view has 

attracted increasing interest in recent years, due to the demands of accurate detection [55] and 

tracking [56, 57, 58, 59, 60] of multiple people occluded by other people and analysis of their 

activities [61, 62] in a complex environment. 

In such a multi-view framework, several geometric approaches have been applied to the 

foreground/shadow segmentation [63][64] taking advantage of the framework. One well known 

approach is foreground separation from shadow based on disparities [63]. However, it often 

suffers from mis-correspondence problems and cannot be applied to scenes with no texture. 

Alternatively, a homography constraint is also popular as a geometric constraint between 

multiple viewpoints. Approaches based on homography aim mainly to distinguish standing 
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objects from ground plane objects including shadow [64]. Existing homography-based ap­

proaches, however, do not consider the occlusion relationship between foreground and shadow, 

and they tend to fail at the region of occlusion. 

In the field of stereo correspondence problems, symmetric correspondence based approaches 

have been proposed to handle the occlusion appropriately [65]. These approaches explicitly 

take the occlusion relationship into account by treating a stereo correspondence pair in a sym­

metric way. 

Inspired by the symmetric approaches, we propose a symmetric segmentation framework 

based on a homography constraint with occlusion handling between foreground and shadow. 

Our goal is "how to segment foreground, shadow, and background", and we regard this seg­

mentation problem as a homography-correspondence pair labeling problem. Then, we solve 

this in an energy minimization framework together with a graph-cut algorithm [66]. Consid­

ering the homography-correspondence symmetrically, we cannot only segment the occluded 

region correctly, but also acquire additional information about the occluded region, such as, 

what label is assigned to the occluded region, shadow or background. This kind of information 

is valuable for many multi-view applications. 

The remainder of this paper is organized as follows. Section 2.2 describes related work. 

Section 2.3 introduces our segmentation framework. Section 2.4 describes the detailed imple­

mentation of the proposed method. Section 2.5 demonstrates the effectiveness of the proposed 

method using experiments and the limitation and our discussions are presented in Section 2.6. 

Finally, Section 2.7 concludes our work. 

2.2 Related Work 

Color-based approach: Most of color-based approaches are based mainly on the following 

two properties of shadow color: (a) The shadow region is darker than the original background 

region, (b) The color vector direction of the shadow region is similar to that of the original 

background region. These properties are considered in various color spaces such as RGB color 

space [54,67] and HSV color space [68, 69]. Color-invariant feature is also used for shadow 

removal [70, 71]. The performance comparison result among these methods is reported in [72]. 

Recently, many learning-based approaches are actively investigated [73, 74, 75]. In these 

methods, first, the shadow candidate pixels are detected by weak shadow detector based on 

shadow color properties as described above, and then, a statistical shadow color model is con­

structed from the candidate pixels. Finally, each pixel is determined whether it belongs to 
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shadow, based on the goodness of fit of its color on the learned shadow color model. Any 

state-of-the-art color-based approach, however, could fail at the region with the same color 

with shadow color (e.g., head region of black haired person), and this is an essential problem 

of color-based approach. 

Texture-based approach: Texture:'based approach distinguishes shadow based on the fol­

lowing property: the texture of shadow region is the same with that of corresponding back­

ground region, while the texture of foreground region is different from that of corresponding 

background region. In the methods of Javed et al. [76] and Sanin et al. [77], first, shadow can­

didate regions are decided via color-based segmentation and blob analysis, and then, the sim­

ilarities of gradient feature between shadow candidate regions and corresponding background 

region are calculated. Finally, shadow regions are determined by thresholding the similarities. 

Besides, some methods use both color and texture. A step-wise shadow detection and removal 

scheme based on color and texture features is proposed in [78]. In addition, learning-based 

methods are proposed in [79, 80], where both color and texture features are statistically mod­

eled by learning. Texture-based approaches tend to be unstable for the region of weak texture 

and the scene with strong shadow such as outdoor scene in daylight. 

Disparity-based approach: Disparity is often used for accurate foreground extraction 

rather than shadow detection. In [63], disparity-based background subtraction scheme is pro­

posed for accurate and stable foreground extraction in the presence of rapid illumination change. 

In addition, some works integrate color and disparity [81, 82]. In [83], the foreground extrac­

tion problem is regarded as a graph-based energy minimization problem and disparity is used 

for the robust estimation of foreground Seed. Disparity-based approaches, however, often suffer 

from mis-correspondence problems and cannot be applied to scenes with no texture. 

Homography-based approach: In the problem of trajectory estimation of soccer player 

via a static binocular system, Kasuya et al. [84] utilize the homography constraint for the sepa­

ration of player and shadow region. In the method, first, foreground (player) candidate regions 

are extracted by background subtraction in each side image, and next, each candidate region is 

projected onto the field plane by homography transformation. Then, shadow regions are dis­

tinguished as the logical product regions in the plane between projected foreground candidate 

regions of each side camera. Hamid et al. [85] further consider the color similarity in such 

logical product regions in the plane to extract shadow. In the same manner, the homography 

constraint is used for objects detection (including shadow detection) in the ground plane [86] 

and the obstacle detection problem of mobile robot system [87]. In [64], both shadow color 

property and homography constraint are used for shadow detection. The method is composed 
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oflearning phase and shadow detection phase. In learning phase, first, the foreground candidate 

pixels detennined by background subtraction are divided into foreground and shadow classes 

based on homography constraint, and then, a shadow color model is constructed as mixture 

Gaussian distribution from the color infonnation of pixels of the shadow class. In shadow 

detection phase, the shadow pixels are decided based on both homography constraint and the 

goodness of fit on the shadow color model. 

In this way, homography constraint is often used for filtering the false-positives of shadow. 

Existing homography-based approaches, however, do not consider the occlusion relationship 

between two cameras explicitly, and therefore, they fail in separating foreground and shadow 

at the region of occlusion relationship. The detailed mechanism and the issue are presented in 

the next section. 

2.3 Homography-Correspondence Pair-based Segmentation 

2.3.1 Problem setting 

In this paper, the following conditions are assumed in our segmentation problem. 

• A scene is captured by a static calibrated binocular camera system. 

• The background of the scene is modeled as a pixel-wise Gaussian distribution. 

• An object in the foreground stands on the ground plane and its shadow appears on the 

ground plane. 

Our goal is to segment the target region as foreground ( "F '') or shadow ( "s '') or background 

("E "), that is to say, to assign one of the three labels "F", "S", or "E" to each pixel in both 

side images in a confonnal manner. Note that "S" and "E" lie on the ground plane while "F" 

stands on the ground plane. Note that shadowed foreground is regarded as foreground because 

a primal aim of this work is foreground extraction. 

2.3.2 Asymmetric treatment of homography constraint 

Let us consider the homography-correspondence pair on the ground plane in the binocular cam­

era. According to the homography constraint, if a pixel belongs to the ground plane on one side 

image, the color of the pixel is strictly consistent with that of the homography-correspondence 

pixel in the other side image under the condition that ideally any standing object does not exist 
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Homograpby transfonned right side image 

10 : Foreground pixel 0 : Shadow pixel 0: Background pixel 

Figure 2.1: Homography-correspondence pair 

Figure 2.2: Labeling examples 

on the ground plane. This is a very useful property to distinguish the standing objects on the 

ground plane from the ground plane objects. 

In segmentation problems, this property is also useful when assigning a label to each pixel. 

Some exan1ples of the homography-corresponuence pairs are shown in Fig. 2.1. First, suppose 

that the left side image is a base image to be segmented. Because v I and v 4 have similar colors 

between each correspondence pixel, P~I and P~4 are labeled as "S" or liB" in the left side 

image. On the other hand, because the pixel pairs V2 and V3 have different colors between each 

pair of correspondence pixels, P~2 and P~3 are labeled as "F" in the left side image. Next, 

supposed that the right side image is a base image to be segmented in turn, pixel pairs P~l and 

P~4 are labeled as "S" or liB ", and the pixel pairs P~2 and P~3 'are labeled as "F" in the right 

side image in the same way. The true labels of P~2 and P~3 are, however, not "P" but "B" and 
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This mislabeling often arises in cases where a pixel belongs to the ground plane in one 

side image and where the corresponding pixel's ground plane point in the other side image is 

occluded by a foreground object as shown in this example. Therefore, the existing asymmetric 

homography-based approaches suffer from the mislabeling due to occlusion. 

2.33 Symmetric approach based homography-correspondence pair 

In our framework, the homography-correspondence is treated symmetrically to cope with the 

occluded regions and to segment them correctly. 

Taking the occlusion relationship into consideration, the labeling strategy is as follows. If 

the pixels are labeled "S" or "B" in one side image, their homography-correspondence pixels in 

the other side image are given either the same label (not the occluded case) or "F" (the occluded 

case). Ifthe pixels in one side image are labeled "F", their homography-correspondence pixels 

in the other side image are possibly labeled "F", "S", or "B", because the standing object 

is not constrained by homography. From this observation, the possible pair-wise label for the 

homography-correspondence pair are defined in Tab. 2.1. In this label set, for example, the 

pair-wise label "FS" (e.g., the homography-correspondence pair Va in Fig. 2.2) represents that 

the left side pixel of the pair is regarded as the shadow-occluding foreground and the right side 

pixel is regarded as the shadow occluded by foreground. 

Note that the label set is not mere the combination of possible labels in each side image, 

we introduce the homography constraint in the form of prohibiting the pair-wise labels, "SB" 

and "BS". These labels are never occurred because it is not possible for a ground plane object 

to occlude another ground plane object. 

Let us consider the advantage of the prohibition by taking for example the homography­

correspondence pair Vb in Fig. 2.2. This pair is composed of P~b and P~b' and the color of 

P~b is very similar with that of shadow, and the color of P~b is almost the same with that of 

background. Therefore, the label "S" is possibly assigned to P~b and the label "B" might be 

assigned to P~b when color-based labeling is applied for each side image, though the correct 

label ofp~b is "F". On the other hand, due to the prohibition of the label "SB", the proposed 

labeling scheme could assign the correct label "FB" to Vb. 

Thus our segmentation problem is regarded as a multi-Iabeling problem for homography­

correspondence pair pixels, and the multi-Iabeling results provide all the relationships between 

homography-correspondence pair ofpixels. For example, the label "FS" means the foreground 

occludes the shadow in the left side image, and also means the shadow in the right side image 

is occluded by the foreground in the left side image. Example of pair-wise labeling are shown 

in Fig. 2.2. 
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Table 2.1: The pair-wise label sets for a homography-correspondence pair 

Right-side label -

Left-side label F S B 
F FF FS FB 
S SF SS --{prohibited) 
B BF --{Prohibited) BB 

.>.S -G,. 
u 

\.! pr 
~, v 

1--1 ---

A 
/1 

.' r 
/ PU3 

Left side image Right side image 

Figure 2.3: Homography-correspondence detail 

2.3.4 Problem formulation 

We formulate the pair-wise multi-Iabeling problem in a framework that minimizes energy. Let 

us define the site v = (p~, p~) which represents a homography-correspondence pair as described 

in the previous subsection. Then, the label set is defined as, 

L = {FF,FS,FB,SF,SS,BF,BB}, (2.1) 

and the label assigned to a site v as Xv E L. Then our goal is to assign each site v a label Xv 

from the set L. Generally, this problem is formulated in an energy minimization framework as 

follows, 

E(x) = Wg L g(xv) +Wh L h(xu, xv) (2.2) 
VEV (U,V)EE 

where the first and the second terms are data and smoothness terms, Wg and Wh are the weights 

of each term, X is a configuration (label combination), V is a set of all sites, and E is all 

the combinations of the neighborhood sites. This energy function is minimized via graph-cut 

algorithms such as the a-expansion or a-f3 swap algorithms [66]. 

Note that, the homography-correspondence positions are calculated using sub-pixel order 

and the color of the sub-pixel position is spatially interpolated by their 4-neighborhood pixels 
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Figure 2.4: Spatio-temporal neighborhood sites for smoothness term 
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as shown in Fig. 2.3. In addition, as shown in Fig. 2.4, we consider lO-neighborhood sites in a 

spatio-temporal3D domain composed ofspatiaI8-neighborhood, and temporal2-neighborhood 

sites. 

2.4 Implementation 

2.4.1 Seed generation 

Given background subtraction regions as potential regions of shadow and foreground, the fore­

ground seed is provided as the union of the following two regions; one is the intersection of the 

potential region and background region projected by homography from the other image, and 

the other is the region which has a largely different color direction from the background one. 

Then, the shadow seed is decided based on homography consistency and color-based shadow 

likelihood (see Chapter 2.4.2 for detail). 

2.4.2 Data term 

The data term is defined by the log of the likelihood as, 

( ) ( 
p(c (v) Ixv)p(xv) ) 

g(xv)=-log p(xvlc(v)) =-log LliELP(C(v)lxv=h)p(xv=li) , (2.3) 

where PO is probability and c (v) is a six dimensional color vector at site v composed of a pair 

ofRGB vectors in each image as where PO is probability and c (v) is a six dimensional color 

vector at site v composed of a pair of RGB vectors in each image as c (v) = [c (p~) ,c (p~) V, 
and c (p) is color vector at pixel p. Then the pair-wise color observation model p( c (v) Ixv) is 

decomposed into TIiP(C (p~) Ix~), where x~ is the one side label and i (i = l,r) is the camera 

identifier. 

Foreground model 

The foreground color is approximated by a pixel-wise GMM which is trained by k-means 

clustering fromJoreground seedpixels, and the foreground observation model is expressed as, 

( i)· ) (k* k*) P c(Pv Ix~=F =.A' c/,LI (2.4) 

k* = argmin( (c(p~) - c}) T L}-I (c(p~) - c}) ), (2.5) 

where c} and L} are a mean vector and a covariance matrix of the kth cluster, and .A' is the 

Gaussian distribution. 
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Shadow-Background model 

First, a linear color transformation matrix from the background color to the shadow col or is 

estimated from the shadow seed colors and their modeled background colors. This matrix is 

mode led as following a finite-dimensional linear model [88], 

Cs (p) = ACbg (p) , (2.6) 

where Cs is a color vector of a shadow seed, Cbg is an extended color vector of a modeled 

background, Cbg = [CbgT , 1], and A is a 3 by 4 shadow transformation matrix. Then, the color 

transformation matrix A is obtained by minimizing the following objective function S, 

e (p) = ACbg (p) - Cs (p) 

S = L e (p l (Lbg (p)) -1 e (p) , 
pEPs 

(2.7) 

(2.8) 

where e and Lbg are the color transformation error vector and covariance matrix of the modeled 

background color, and Ps is a set of shadow seed pixels. 

Next we define the vector Cr which is the nearest color to an input color C on the line segment 

between the modeled background color Cbg and the estimated shadow color Cs = ACbg in RGB 

color space as shown in Fig. 2.5. Then, the vector Cr is expressed as 

Cr(P~) = fcs (p~) + (1- f) Cbg (p~) 

t = (cs(p~) -C~g(p.~)) T (c(p~~ - Cbg(P~ )) 
11 cs(p~) - Cbg(p~) 11 

i=min{l,max{t,O} }, 

(2.9) 

(2.10) 

(2.l1 ) 

Finally the background and shadow observation models are introduced based on the interpola­

tion on the line segment as, 

p(C(p~) 1x~=S) =iJV(cr(p~),L/) 

p(c(p~) Ix~ =B) = (1- i) JV( cr(P~), Lr') 

(2.12) 

(2.l3) 

(2.l4) 

where Lr and Le are covariance matrices of the reference color Cr and color transformation 

error e. 
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Figure 2.5: Shadow-background model 

2.4.3 Smoothness term 

The smoothness term considering intensity value normalization is defined as, 

exp -~~(xv,x.~~ Left side label is different 

h(xv,xu) = 
exp -Kc/; (xv,xu) Right side label is different 

-ICy' d~(xv, xu)d~(xv, xu~ exp Both side labels are different 

(2.15) 

0 Otherwise 

where cl! is an edge intensity criteria given by, 

di X X =_1_ 11 c(p~) - c(p~) 11 
( 

0 0 2 ) 

e ( v, u) Dp(,p~ 11 c(pi) + c(p~) 112 +£ ' (2.16) 

where Dp~p~ is the pixel distance between p~ and p~ (as for the temporal distance, all the 

distances are set to 1). Also, K and £ are coefficients for this term. 

2.5 Experiments 

2.5.1 Data set and parameters 

We carried out experiments using sequences of people walking outdoors. Tab. 2.2 shows the 

details of the data set. Every sequence contains some men or women with strong shadows. Of 

these, Seq A (Fig. 2.6 (a) and (b)) is captured at our university as test data, and Seq B (Fig. 

2.7 (a) and (b)) and Seq C (Fig. 2.8 (a) and (b)) are extracted from the videos of surveillance 

cameras deployed at an elementary school in Japan. The background data for each dataset 

is generated from the other sequences captured at a different time. A total of 3 images were 

provided for graph-cut segmentation in a block. Note that in some figures in this section, the 
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(a) Left side input (b) Left side result 

(c) Right side input (d) Right side result 

Figure 2.6: Input and segmentation results of SeqA 

(a) Left side input (b) Left side result 

( c) Right side input (d) Right side result 

Figure 2.7: Input and segmentation results of SeqB 

( c) Right side input (d) Right side result 

Figure 2.8: Input and segmentation results of SeqC 
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Table 2.2: Data set for experiments 

Sequence set Image size Image number Frame rate 
SeqA 640x480 32 30 fps 
SeqB 620x280 12 9 fps 
SeqC 620x280 24 9 fps 

results of the experimental images are trimmed around the segmentation target region because 

page space is limited. 

In these experiments, the data terms were spatially smoothed in response to the magnitude 

of the edge pixels. Because the pixel color is quite variable, and it is unstable near the edge, 

the reliability of the data terms is very low for such pixels. The segmentation process was 

done iteratively, and there were 2 iterations. The parameters of the proposed method were 

experimentally set at wg = 3.0, Wh = 0.2, 1C = 4.0, and c = 10-7. Initially the prior of each label 

is set as follows: P(FB) =P (BF) =P(SS) =0. 16,P(FS) =P(SF) =P(FF) =0. 14,P(BB) =0.1. 

In addition, the distribution number ofGMM was set at 6 for SeqA and at 10 for SeqB and Seqc. 

We adopted the a-f3 swap algorithm [66] to minimize our energy function Eq. (2.2). 

2.5.2 Benchmark 

We compared the segmentation performance of the proposed method with eight approaches: 

three existing approaches [54], [69] (color-basedmethod), and [64] (homography-basedmethod), 

five energy minimization-based approaches (as described later). While a labeling problem for 

each homography-correspondence pair is considered in the proposed method, other methods 

take a labeling problem for each pixel in each side image in consideration, and therefore, the 

labeling was independently-executed in each side image in them. Besides, there are two kinds 

of methods in comparative methods: one considers three labels of foreground, shadow, and 

background, and the other considers two labels of foreground and shadow. As for the for­

mer, first, we dilated the regions extracted via background subtraction and set the regions as 

potential region. Then, we regarded the segmentation problem as the multi-Iabeling problem 

of foreground, shadow, and background labels for the potential region. As for the latter, we 

considered the problem as the binary labeling problem where either of foreground and shadow 

labels is assigned to a pixel in the regions extracted by background subtraction. For fair com­

parison, we tuned the parameters of each comparative method so that the method achieved best 

performance in total. 
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Each ofthe following five comparative approaches is the energy minimization-based frame­

work where an energy function composed of a data term and a smoothness term based on edge 

magnitude (Eq. (2.16)) is minimized via graph-cut. 

Color: the color-based method where the labels of "F", "S", and "B" are considered. The 

foreground seed and shadow seed are generated based on the shadow color properties [73, 75]. 

Then, a foreground color model (see Section 2.4.2) and the shadow-background models (see 

2.4.2) are constructed from the foreground seed and shadow seed, respectively. Finally, we 

label each pixel in one side image as "F", "S", or "B". 

Disparity: the disparity-based method where the labels of "F" and "S" are considered. The 

foreground seed and shadow seed are generated by thresholding disparity. Also, the data term 

is defined based on disparity. The method in [89] is used for disparity calculation. 

Color + Disparity: the integrated method of Disparity with Color, where the labels of "F", 

"S", and "B" are considered. The data term is defined as a weighted sum of the data term of 

Color and that of Disparity. 

Homography (asymmetric): the homography-based method where the labels of "F" and "S" 

are considered. The foreground seed and shadow seed are generated by homography con­

straint, and also, the data term is defined by the color similarity between each homography­

correspondence pair. 

Color + Homography (asymmetric): the integrated method of Homography (asymmetric) with 

Color, where the labels of "F", "S", and "B" are considered. The data term is defined as a 

weighted sum of the data term of Color and that of Homography (asymmetric). 

2.5.3 Results 

First, the multi-Iabeling results ofthe proposed method for each data set are shown in Fig. 2.6, 

Fig. 2.7, and Fig. 2.8. In each result, the labeling results are good even for the occlusions. 

Second, the quantitative performance comparisons are shown in Tab. 2.3. The performance 

of each method is evaluated by F-measure, which is defined as, 

2PR 
(2.17) F -

P+R 

P 
Ntp 

(2.18) -
Mp+Nfp 

R -
Mp 

(2.19) 
M 

where F is F-measure, P and R are precision and recall, Mp and Nfp are the number of true 

positive pixels and that of false positive pixels, and M is the number of ground truth pixels. 
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Table 2.3: Quantitative evaluation results 

SeqA SeqB SeqC 
Method F S F S F B 
Horprasert et al. [54] 0.870 0.837 0.816 0.516 0.627 0.653 
Sun et al. [69] 0.927 0.851 0.817 0.696 0.659 0.523 
Jeong et al. [64] 0.897 0.897 0.878 0.791 0.868 0.764 
Color 0.890 0.863 0.896 0.833 0.817 0.776 
Disparity 0.889 0.856 0.758 0.643 0.822 0.708 
Color + Disparity 0.932 0.923 0.906 0.843 0.897 0.857 
Homography (asymmetric) 0.893 0.872 0.872 0.779 0.877 0.770 
Color + Homography (asymmetric) 0.938 0.923 0.921 0.854 0.874 0.824 
Proposed method 0.940 0.902 0.920 0.874 0.900 0.865 

F: Foreground, S: Shadow 

In the tables, we see that the Color + Disparity, Color + Homography (asymmetric) and 

the proposed method show better results than other methods, especially, the proposed method 

achieves the best performance of all in total. 

The results of these three methods for the left side inputs shown in Fig. 2.7 and 2.8 are 

shown in Fig. 2.9. As for the results for Seq B, the mis-Iabeled foreground region as shadow 

near the head of right side person in the result of Color + Disparity is relatively larger than 

those of the other two methods. This may be because that the disparity is not calculated cor­

rectly (calculated disparity is too small) and the region has color like shadow. As for the results 

for Seq C, we can see the occlusion problem in the result of Color + Homography (asymmetric) 

as described in Section 2.3. Although this mis-Iabeled region can be recovered to some extent 

when the weight of a data term about Homography (asymmetric) is set much smaller than that 

about Color, the problem of color-based method is no longer ignore in such weight setting. 

This trade-off problem is inevitable as long as a simple combination scheme of color and ho­

mography is used. Note that the trade-off is considered and the weight setting is optimized in 

this experiment as mentioned earlier. On the other hand, the results of the proposed method are 

relatively better than the other two methods for both datasets. 

2.6 Discussions 

Effective use of extracted shadow 

By making effective use of extracted shadow, our approach can obtain consistent labeling as 

well as information as to whether the occluded region belongs to the shadow or background. 
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Figure 2.9: Comparison Results 

(a) Left side result (b) Right side result 

Figure 2.10: Extracted foreground and a whole shadow including occluded shadow for SeqA 

This means that we can get additional scene infonnation. For example, because a whole shadow 

silhouette including the occluded shadow, can be seen as another projection from the viewpoint 

of a light source, we can say that one more different-view of the whole silhouette of the target 

foreground objects is extracted as shown in Fig. 2.10. This is quite valuable not only for gait­

based person identification, but also for many other computer vision applications, especially 

silhouette based applications, like gesture recognition-and 3D reconstruction by shape from 

silhouettes and so on. As for gait-based person identification, it is reported in [90] that the 

different views of silhouettes improve identification perfonnance, and lnore, shadow gait-based 

person identification scheme is proposed in [91]. 

In addition, homography-based object localization techniques have been proposed [84], 

where the position of the object is localized by estimating the intersection point of the object 

region and the shadow region. Hence, if the occluded shadow region is also extracted by the 

proposed method, the object localization accuracy is improved. 

Extension to more complex scene or moving platform 

Although the assumption that the shadow appears on the ground plane may seem to be a heavy 

constraint, our method can be extended to more complex scenes by modeling scenes as piece­

wise facets and by calibrating the homography for each facet. 

Furthermore, our method can be applied to a mobile platfonn such as a vehicle binocular 

video system, and an intelligent robot with a combination of state of the art dynamic back-
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ground modeling, ego-motion, and image stabilizing techniques. For example, we can acquire 

a background model for each frame of the image sequence by using dynamic background mod­

eling, and we can calibrate the geometric relationship between the binocular camera system 

and the target plane by using ego-motion and image stabilizing techniques. 

2.7 Conclusions 

In this chapter, we propose a homography-correspondence pair based segmentation framework. 

We treat homography-correspondence pairs symmetrically, and formulate the segmentation 

problem as a multi-labeling problem for a homography-correspondence pair to explicitly take 

the occlusion relationship into account. Then we obtain the segmentation result by minimizing 

the energy function via the a-f3 swap algorithm. In our experiments, it turns out that the seg­

mentation results of the proposed method outperform the existing color-based and asymmetric 

homography-based methods. 
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Chapter 3 

Group Context-aware Person 
Identification in Video Sequences 

3.1 Introduction 

Many gait-based person identification techniques have been developed to date, mostly from the 

viewpoints of discrimination capability and stability [3, 26]. In all of these techniques, how­

ever, the identification performance often decreases due to changes in the walking condition of 

individuals (e.g., clothing and carrying conditions) and their surroundings (e.g., surface and ob­

servation view of camera), and the identification performance may consequently decrease [33], 

particularly in real environments. Also, as the number of individuals increases, the misidentifi­

cation rate generally increases due to the growth in ambiguity. 

An example ofmisidentification in a straightforward gait-based person identification frame­

work is shown in Fig. 3.1. Because the gait feature of probe #1 has changed slightly from that 

in gallery #a (the same subject), particularly in the arm swing, the feature similarities between 

probe #1 and gallery #a are smaller than those between the probe and other galleries (e.g., #X 

and#y). 

However, it is useful to take into account the characteristics of human activities to provide 

context for person identification. In social living situations, people often act in groups, as 

shown in Fig. 3.2, which are composed using social relationships in most cases, such as family, 

friends, and co-workers. It is assumed, therefore, that a person is likely to be observed close to 

other persons of the same group in a video sequence. This observation serves as a contextual 

cue to improve the identification performance for individuals, i.e., the identity of each person 

can be inferred not only from their biometric cues alone, but also from the identities of other 

people in their neighborhood and theirgroup affiliations. 

This kind of group context can be used in many places, such as amusement or theme parks, 

airports, factories, and schools, where many tasks based on person identification techniques are 

25 



Original image 

Biometric cue 
(GEl 11)) 

Belief 
about . 

b 
Biometric and 

pro e #1 group cue based 

Figure 3.1: Biometric cues and belief. 

performed. Examples of these tasks include the detection of a lost child in an amusement park, 

the detection of intruders who cntcr the amusement park, airport, or factory without passing 

regular entrance procedures, and the safety confirmation (or attendance checking) of children at 

the entrance to the school (in particular, there is a rule for going to school in a group composed 

of community children for almost all Japanese elementary schools). The group context is also 

useful for person re-identification across multiple non-overlapping network cameras. 

Recently, some works have integrated such kind of group context with face-based person 

identification in photo collection to improve the identification perfonnance [92, 93, 94]. In 

these methods, the person-to-person relations are modeled in terms of co-occurrence among 

persons in photos as group prior. Differently from the photo collection, however, a group 

is often observed with non-group members at a time in the video sequences of swveillance 

camera and the spatial relations among them are dynamically changed with time. Therefore, the 

identity of individual should be inferred not only from the viewpoint of co-occurrence among 

persons, but also from that of behavioral differences among persons through the sequence. 

In this research, we propose a group context-aware framework for person identification in 

video sequences that unifies the group context with the individual biometric cues. In tenns of 

the group (inter-person) context for person identification, the proposed method take the behav­

ioral differences such as spatial distance and the differences of walking speed and direction 

among persons through the sequence into account, and this is a primal contribution of this 

work. 

Our key observation is as follows. We assume the group walking situation in a video se­

quence which includes two different groups and an unregistered person as shown in Fig. 3.2 
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Figure 3.3: An example of group affiliation. 

and consider the identity of the probe #1 within the group context. We assume that the gallery 

subjects #a, #b, #c, #d, and #e belong to the group A and the #V, #w, and #X belong to the other 

group X, as shown in Fig. 3.3. Also, we assume that the identity of probe #6 is not matched 

with any of gallery subjects and probe #2, probe #3, probe #4, and probe #5 are confidently 

inferred to be #b, #c, #V, and #w, respectively, while the identity of probe #1 is mis-inferred 

to be #X (a member of group X) as shown in Fig. 3.1. If only co-occurrence is used as group 

context, the identity of probe #1 can be inferred from not only the identities of probes #2 and 

#3 as #a, but also those of probes #4 and #5 as #X based on their-group affiliation infonnation. 

Consequently, the identity of probe # 1 possibly rernains to be mis-inferred as #x in this case. 

In addition, the identity of probe #6 (unregistered person) which appears in the scene from the 
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middle of the sequence is possibly mis-inferred from the identities of other subjects. 

On the other hand, focusing on the behavioral relations among probe subjects through a 

sequence, we see that probe #6 obviously walks at a distant from all the other subjects, and 

thus probe #6 can be regarded as an independent subject from all the other subjects. At the 

same time, we also see that there exists an apparent difference of walking speed between the 

group of#l, #2 and #3 and the group of #4 and #5. Accordingly, the weights of the inference 

cues from the probes #2 and #3 come to be able to be distinguished from those of the inference 

cues from the probes #4 and #5. The identity of probe #1 as #a is then definitely enhanced and 

the mis-identification of # 1 can be recovered as a result. 

We realize this idea in the form of a message passing in a graph, where each node cor­

responds to each probe subject and each edge corresponds to the relationship between each 

pair of probe subjects. In the iteration of the message passing process, the identity confidence 

for each probe subject is propagated to the identities of the surrounding probe subjects based 

on their biometric cues and group information, so that the same group members with similar 

characteristics (spatial proximity and similar velocity vector) enhance each other's identities. 

The remainder of this paper is organized as follows. Section 3.2 introduces related work. 

Section 3.3 describes our problem formulation, and the detailed implementation is described 

in Section 3.4. Section 3.5 presents experimental testing of the effectiveness of the proposed 

method and our discussions are presented in Section 3.6. Finally, conclusions are drawn and 

future work is proposed in Section 3.7. 

3.2 Related Work 

In recent years, many researchers have paid considerable attention to the use of context in tra­

ditional computer vision problems, such as object detection and categorization, action recog­

nition, and person identification, to improve performance. In this section, we review such 

context-based approaches briefly. 

Object detection/recognition: In the task of object detection, context is mainly used to limit 

the area in which objects are likely to appear, to reduce false positives. Torralba et al. [95] 

exploited a global image feature called gist, which was a low level representation of an im­

age. Hoiem et al. [96] used the 3D geometrical information of the scene, such as the surfaces, 

the camera viewpoint, and object positions and sizes as context. While these approaches fo­

cused on global scene information, some works instead focused on local information [97, 98]. 

In [97], the spatial relations between an object of interest and its surroundings are modeled as 
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a visual context feature composed of geometrical and textural features, and are used to extract 

prior instances ofthe object's presence from a scene. In this method, object co-occurrence and 

bottom-up saliency were also used for context. Heitz and Koller [99] mode led the spatial re­

lationships between an object ("thing") and the surrounding regions ("stuff"), which were the 

results of unsupervised image clustering, as the TAS model ("thing" and "stuff" model). The 

effect of the use of context in object detection is empirically evaluated in [100]. 

In recent works in object recognition [101, 102, 103], inter-object relationships, such as 

co-occurrence, relative location, and scale, are used as context to resolve object appearance 

ambiguities. Besides those given above, a number of context-based techniques have been dis­

cussed and summarized in [104], [105], and [106]. 

Actionllnteraction recognition: Many ofthese works have indicated that modeling of human­

object relationships is useful for the understanding of human actions/interactions [107, 108, 

109, 110, 111]. Wu et a1. [107] proposed an object-use based action recognition framework, 

in which the relationships between an action and the object-use events data during that action 

were used as context, and the relationships were learned automatically using RFID sensors 

and a common-sense knowledge database. Yao and Fei-Fei [110, 111] proposed two types 

of approach; one is based on a model of the spatial relationships between human poses (po­

sitions of body parts) and objects [110], while the other is based on a structured appearance 

feature called "Grouplet" [111], for recognition of human-object interactions. Marszalek et 

a1. [112] used action-scene relationships as context, which were derived automatically from 

training videos using video scripts, and in [113], both scene and object features are integrated 

with the action features. In [114], human-human interactions are the focus, and it was shown 

that spatio-temporal observations of the surrounding people which represent the actions of the 

surroundings helped with action recognition. In a similar manner, Choi et a1. [115] used the 

spatio-temporal distribution of multiple people, which included their relative motion and loca­

tions, to classify collective activities, such as "queueing" and "talking". 

Person identification: The automatic annotation, organization, and retrieval of still images, 

in particular in personal digital photo collections, have been active research topics in recent 

years. In these tasks, face-based person identification is crucially important and many context­

aware methods have been developed. As mentioned in [116], there are three types of context 

information: appearance-based, metadata-based, and logic-based context information. In [117] 

and [116], appearance-based context, such as body parts and clothes, are combined with fa­

cial features. Stone et a1. [118] used metadata-based context derived from the social net­

work Facebook. Gallagher and Chen [93] used co-occurrence between each person as a logic­

based context, which indicated how often a pair of faces appeared together in images. In some 
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works [92,94], such co-occurrence of persons is also integrated together with other types of 

contexts such as events (time stamp) and locations which are rather peculiar to the field of photo 

collection. 

In a scenario of person re-identification across multiple non-overlapping cameras, Zheng 

et al. [119] and Cai et al. [120] proposed a solution to the problem of associating groups of 

people between the different camera views and demonstrated that group information helped 

to resolve the ambiguities in individual appearances. For person identification, they simply 

combined group cues with individual cues in the form of a weighted sum of each score. They 

considered a group as a small number of people walking in close proximity in spatial domain, 

and quantified the group cue by measurement of the spatial appearance features. In these meth­

ods, although their group representations are designed to be invariant to positional changes 

of the group members between the different camera views, the fluctuations in the numbers of 

observed members, which are caused by absentees, isolation of group members, or the proxim­

ities of non-group members, lead to significant changes in the spatial appearance of the group. 

Accordingly, the effectiveness of the group cue is degraded. For instance, if a certain group is 

composed of 5 members in the gallery image and only 3 members of the group are observed in 

a probe image, the observed group tends to be matched with other groups composed of 3 mem­

bers by mistake. Furthermore, these methods do not consider the behavioral relations among 

persons such as velocity vector difference through the walking. 

Our work is inspired by the related work described above and we propose a unified frame­

work for the person identification problem in video sequences, in which group context is inte­

grated with individual biometric observations by using CRF model. Though, the CRF -based 

framework is similar to the existing context-assisted person identification schemes formulated 

by MRF/CRF model such as [93], the major difference of this work is that we use the be­

havioral relations as group context including spatial distance and velocity vector difference 

among persons through the video sequences, while existing frameworks used co-occurrences 

among persons as group context. This also differentiate the proposed method from other group 

context-based person re-identification methods such as [119] and [120]. Though, similar kinds 

of behavioral relations are utilized for the problem of trajectory prediction of pedestrians in 

some works [121, 122] and these are also related to our work, we apply such kind of context to 

person identification problem, and this is a primal contribution of this paper. 
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3.3 Group Context-aware Person Identification in Video Se­
quences 

We regard the person identification problem as a many-to-many matching problem for a given 

image sequence. The task we consider is assignment of a registered person's label to each 

person that is observed in an input sequence. In this work, group is not only explicitly-defined 

as a unit of people that is composed on the basis of social relations, such as family, friends, and 

co-workers, but is also implicitly-defined as the result of manual or automatic clustering. Then, 

the following prerequisites are assumed. 

• Each registered person belongs to one of the predefined groups. 

• Group affiliation and biometric cues of each registered person are given as gallery data 

in advance. 

• Segmentation and tracking of each subject in an input sequence are obtained in advance. 

• Each registered person appears at most once and is likely to appear with group members, 

in detail, in close vicinity and with similar velocity in an input sequence. 

Also, the following conditions are considered: 

• Unregistered persons also appear in an input sequence randomly. 

• Absence and isolation of a registered person in an input sequence are allowed. 

Note that for a registered person who does not belong to any group, an expedient group whose 

only member is that person is defined, while the "unregistered' label is only assigned to actual 

unregistered persons. 

3.3.1 Problem formulation 

In the labeling task, we must take account of the relationship between the observed character­

istics of each probe, such as spatial position and velocity, and the group affiliation of each label 

in addition to the biometric cue for each probe. The preferred label assignment, therefore, is 

one where the same group members are likely to appear in a group, and the biometric cues of 

each probe are given substantial consideration. 

We use a pair-wise CRF (conditional random field) model in a manner similar to [123, 

124] for our labeling problem. Let each node in a graph represent a person who appears in 
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Figure 3.4: Our graphical representation: An example of the input sequence (left) and the 
corresponding graph (right). 

an input sequence, and the label for the i-th node Xi represents the index of the registered 

person or "unregistered' label. The label set is defined as L = {II) 12 , ' " ,In) fun}, where h 
(k = 1,2, ... ,n) is the label of the k-th registered person and Zun is the label for an unregistered 

person. A mapping from an individual label to a group is then defined as g(h) E G, where 

G = {G] ) G2, ... ,Gnr,) Gun} is a group identifier set, Gk (k = 1,2, .. . ,nG) is a group identifier 

for each registered person, and Gun is a identifier for an expedient group for any unregistered 

person. 

The graphical representation is shown in Fig. 3.4. In this example, there are seven probe 

subjects in an input sequence, and each node is connected to neighbor nodes which correspond 

to the persons within a set spatial distance dmax , which is set to 3 [m] in this work in the input 

sequence. Also, as described later in detail, all of the nodes are connected by a factor node, 

which controls the exclusion of each label. 

We then let x be the label assignment for all the nodes and y be the set of biometric cues for 

a11 the nodes, and then the conditional probability of an assignment x is formulated as, 

(3.1) 

where ¢i(Xi) is the local evidence term for node i, lI'i,j(Xi,Xj) is the compatibility term between 

node i and node j, and N(i) represents a neighbor node set around the node i. E(x) is a label 

exclusion term, which becomes zero if any registered person label is used more than once and 

is otherwise one (the label for unregistered persons fun can be used more than once). 

The local evidence ¢i is defined based on the observed biometric cues for each person. 

The compatibility VIi,} corresponds to the group context. The magnitude of the compatibility, 

therefore, depends on a pair of group identifiers for the label that is assigned to the i-th person 
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and the j-th person and their spatial distance and velocity vector difference, which are defined 

in Section 3.4.2 in detail. 

3.3.2 Approximate solution via loopy belief propagation 

LBP (Loopy belief propagation) [125] is used as an approximate solver to find the assignment 

x that maximizes the probability P(xly). Ignoring the exclusion term E(x) at this stage, the 

message miAxj) from node i to node j for each label is defined as, 

mij(Xj) oc I 'I'i,AXi,Xj)(Pi(xi) IT mki(Xi). (3.2) 
Xi kEN(i) V 

The belief bi(Xi) at the node i for each label is found as a marginal probability by gathering 

messages from its neighbor nodes and from the local evidence, 

bi(Xi) = k(Pi(xi) IT mji(Xi) , 
jEN(i) 

(3.3) 

where k is a normalization constant (summation of belief is normalized to 1). The label assign­

ment of the node i is, 

xi = argmaxbi(xi = I). 
/ 

(3.4) 

Note that each message is initialized to 1, normalized local evidence is given as the initial belief 

value, and that the upper limit of iteration ofLBP was set to 10 in this work. 

3.3.3 Handling the exclusion term 

The label exclusion term E(x) is defined such that it forbids the use of a registered person's 

label more than once, i.e., to suppress the use of the label h if another node already has high 

belief about h. Since the label exclusion term is a global function, we can represent it using a 

factor node that is connected to all of the nodes. In terms of the message passing scheme, the 

message from a factor node f to a node i is, 

mji(Xi = I) ~ IT (1- mtj(xt = I)) , 
tES\i 

where S is the set of all nodes and mtj is defined as, 

where a is the message attenuation parameter, and is set to 2 in this work. 
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Actually, label exclusion via the above message does not completely control the one-time 

use of the label of a registered person, because the belief of each node for a certain label does 

not always become 1.0 after message passing. To complete the exclusion control, we therefore 

execute the Greedy Algorithm in terms of the belief score for finalization of the label assignment 

after the convergence ofLBP. 

3.4 Implementation 

3.4.1 Local evidence 

Label of registered person 

An observed biometric feature of each person, such as their face or gait, is a crucial clue in 

itself for person identification, as numerous previous works have demonstrated. We therefore 

use such a feature as the local evidence for the label of a registered person and it define as, 

(3.7) 

where Yi is the observed feature vector of the i-th person and lk is the label of the k-th registered 

person. Actually, we regard the prior p(Xi = h) as constant for all k, then Eq. (3.7) can be 

described as, 

(3.8) 

The probabilistic observation models of the feature vector for each label of each registered 

person are constructed from gallery feature vectors such as the Gaussian distribution model in 

advance. 

However, since the gallery feature vector of each registered person cannot be captured a 

number of times, but at most once or twice in most cases, such as real surveillance scenarios, 

it is difficult to construct the probabilistic model properly in practice. For instance, in the 

case where only one gallery feature vector is given, it makes no sense to construct a Gaussian 

distribution as it is. In such a case, therefore, we regard the variation of each feature vector 

element to be common for all elements and for all persons, and we set the probability model to 

be, 

(3.9) 

(3.10) 

where Yk is the average vector of the gallery of the k-th registered person and (J is standard 

deviation ofthe feature vector element, which is given as a hyper-parameter. 
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Label of unregistered person 

For the label of an unregistered person, the model cannot be constructed, because the feature 

vector which represents the "unregistered person" can be never captured as gallery data. We 

thus give a constant value Cun as the local evidence for the label/un instead, 

(3.11) 

3.4.2 Compatibility 

The compatibility score for a pair oflabels is required to be high only ifthe group affiliations of 

the two labels are the same and the corresponding persons appear in close proximity and with 

similar velocities in an input sequence. 

We quantify this using two terms: the distance term Ed and the velocity term Ev. One is 

based on the spatial distance between the two persons and the other is based on the velocity 

vector difference between them in the world coordinates. Compatibility for a pair of labels, Is 

and It. is then defined as, 

(ls=lun or It=lun) 

( ) 
, (3.12) 

otherwise 

where 0 is the Kronecker delta, di,j and Vi,j are the spatial distance and the velocity vector 

. difference between the i-th person and the j-th person in the world coordinates, and C is a 

constant value. The distance term Ed( di,j) and the velocity term Ev( Vi,j) are designed as, 

Ed (di,j) 
(di,j-dmax) 

(3.13) -
dmax-dmin 

Ev (Vi,j) 
(Vi,j-Vmax) 

(3.14) -
Vmax-Vmin 

where dmax and dmin are the upper and lower limits of the spatial dista~ce (dmax is equal to the 

one described in Section 3.3.1), and Vmax and Vmin are these limits for the velocity difference. In 

all of our experiments, the parameters are set as C=O.I, dmax=3 [m], dmin =O.5 [m], Vmax = 1 

[km/h], and Vmin=O [kmIh]. 

To use the spatial distance and the velocity information in the world coordinates, we need 

to estimate them from an input video sequence. One of the most reasonable ways to do this 

is a method based on ground constraints. If the homography correspondences between the 

ground plane in the world coordinates and the image plane are calibrated in advance, the foot's 

position trajectory on the ground plane can be estimated from the bottom coordinate of the 
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Figure 3.5: Spatial distance and velocity vector difference between a pair of probe suhjects (#i 
and #j) at the k-th frame. 

corresponding person in the images. Subsequently, we can derive the spatial distance di,} and 

the velocity vector difference Vi ,} between the i-th and the j-th person as follows, 

d· = max IPik-P'kl (3.15) I,) 
t <k<1 ' J, s _ _ e 

V· . l,J - max I Vi .k - V . k I ' 
ts -::;.k,!;te · J, 

(3 .16) 

where Pi,k is the smoothed 2D position in world coordinates of the i-th person at the k-th frame, 

Vi,k is the smoothed 2D velocity vector of the i-th person at the k-th frame (both are illustrated 

in Fig. 3.5), and ts and te are the first and last frame identifiers for the frames where the i-th 

person and the j-th person appear together in an input video. Note that, in this case, if a pair 

of persons does not appear together in any frame, they are not considered to be in the same 

neighborhood as each other. 

3.4.3 Seed node selection 

While the ambiguity of a biometric-based identity is solved by messages, it is desirable that a 

node with confident local evidence for a certain label is then unchanged by messages, to avoid 

WlIeasonable belief variation. 

For this purpose, we fix the labels of the nodes to such persons with confident local evi­

dence at the first stage. We denote this label-fixed node and the fixed label as the seed node and 

seed label, respectively. The seed node is decided using the thresholding mahalanobis distance 

(Eq. (3.10)) with threshold t. More specifically, when only the k-th node has a lower maha­

lanobis distance than Is about a certain labell, the k-th node and the labell are regarded as the 

seed node and the seed label. We then set the belief of the other nodes about the label I to 0 and 

set the messages to the k-th node from the other nodes and the belief of the k-th node as 

(3.17) 
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where D is the Kronecker delta. Also, we set the message from the seed node (the k-th node) to 

the other node as, 

(3.18) 

Note that the local evidence for the seed label I is regarded as 1 (cf>k(Xk = Ik) = DIA) in this 

equation. In addition, in the message passing process, if the belief of a node about a certain 

label reaches a predefined criterion, which is set to 0.9 in this work, we set the node to be the 

seed node at that stage. 

3.4.4 Relaxation of a biased message caused by an imbalance in the num­
ber of group members 

In the presence of an imbalance in the number of group members, the message magnitude is 

biased by this imbalance. We illustrate this with examples of the gallery set and the situation 

in an input video as shown in Fig. 3.6 .. 

Consider the messages from probe #2 (the true label is h) to probe #1 (the true label is /r) at 

the first iteration. As long as the local evidence of probe #2 about the label 12 is higher than the 

local evidence about the other labels, the message to enhance the belief for the label/r at probe 

# 1 is preferred, because probe # 1 and probe #2 belong to the same group Gl in this situation. 

For simplicity, suppose that the compatibility between probes #1 and #2 is approximated to 

0/2,1 (X2 = Is,xl = It) = (1 - Dls,l/) Dg(ls),gU/)' where D is the Kronecker delta. The message about 

the label h is then described as, 

m21(Xl=h)= L l/>2(x2=/), 
IELg(lk)\h 

(3.19) 

where LG is a label set of group G members, defined as LG = {/lg(l) = G}. Consequently, 

the magnitude of the message depends not only on the local evidence l/>2 (X2 = I), but also on 

the number of group members ILg(h) I. This may cause an undesired reversal of the message 

magnitude when the local evidence of probe #2 is given as shown in Fig. 3.7(a). In this case, 

because the number of group G2 members is higher than that of the group Gl members, the 

summation of the local evidence for the labels of group G2 becomes higher than that for the 

labels of group G1, despite the fact that the local evidence for the label h is the highest, and 

that the evidence about each label of group G2 is low. As a result, the message about the label 

13 becomes higher than that about the label/r, as illustrated in Fig. 3.7(a). 

To avoid such undesirable message effects, we propose an alternative message form based 

on the exclusion of within-group labels via a max selection scheme in message formula (Eq. (3.2)) 
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Figure 3.6: An' example of the gallery and the input situation. 
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(b) Exclusion of within-group labels via the max 

selection 

Figure 3.7: An example of the reversal effect of the message magnitude caused by the bias for 
the number of group members in the standard m~ssage form, and the concept of exclusion of 
within-group labels via the max selection as a solution to the problem. 

as, 

(3.20) 

In this form, the number of group members no longer influences the message magnitude, be­

cause we exclude all of the labels of the group Gk other than the within-group maximum in 

marginalization of the message, as illustrated in Fig. 3.7(b). The intuitive interpretation of this 

form is that we model a person-to-group relationship in this message fonn, rather than a person­

to-person relationship, i.e., from the standpoint of probe #1, the magnitude of the message from 

probe #2 is based not on "who is the probe #2", but "to -what group does the probe #2 belong". 

3.5 Experiment 

In this experiment, the effectiveness of the proposed method was examined first using real video 

sequences, and the performance for a massive data set was then explored using simulation data 

sets. We chose gait as the biometric cue and used GEl [36] (22 pixels x 32 pixels) as the 

gait feature, because it achieved the best perfonnance in [126]. The group affiliation of each 
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gallery is manually assigned in these experiments. The perfonnance of the proposed method 

was compared with straightforward local evidence-based labeling via the Greedy Algorithm. 

We evaluated the labeling accuracy RI as RI = fJ ' where Np and Nt were the probe number and 
p 

the correctly labeled probe number, respectively. 

3.5.1 Experiment with real image data 

We conducted the experiments for two types of real image sequences, one is captured at our 

campus for preliminary perfonnance evaluation, and the other is obtained from the surveillance 

cameras installed in a Japanese elementary school. 

Preprocessing 

We obtained the blob infonnation of each subject in image sequences as follows. First, the 

foreground regions are extracted via graph-cut-based segmentation [127] in conjunction with 

background subtraction. Second, each blob is extracted from the foreground regions based on 

connectivity and the blob statistics, such as area, gravity position, and bounding box are then 

obtained for each blob. In this process, blobs of different persons may be merged in case where 

a person is closely-attached to the other person. To avoid such merge, we set the upper limits 

for the height and width of bounding box respectively, and we split the blob based on the limits 

if necessary. For example, ifthe blob has larger height than its upper limit, we count the number 

of foreground pixels for each height and split the blob at the height with the minimum pixel 

count within a certain height range. 

As for tracking, each bounding box in the current frame is corresponded to the nearest 

bounding box in the next frame, and the foot's position trajectory of each individual is obtained 

as a result l . Finally, the gait feature of each individual is extracted from the corresponding 

blob sequence. The bounding box and trajectory contain errors in some degree, and these also 

decrease the quality of gait feature. 

Note that we omitted the occlusion situation among persons in this experiment, because we 

focus on the evaluation ofthe effectiveness of the proposed inference algorithm. 

Preliminary evaluation 

Gallery and probe data set: We used an input sequence (640 pixe1s x 480 pixels / 15 fps / bmp 

fonnat) which includes 18 probe subjects, as shown in Fig. 3.8. In this sequence, the walking 

1 We calculated the foot's position on the ground plane from the bottom center coordinate of the bounding box. 
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Figure 3.8: Snapshots of the input sequence for preliminary experiment. 

Figure 3.9: Gallery set for the input shown in Fig. 3.8. 

directions of all subj ects are almost the same. Then, we arranged the gaUery set, which includes 

20 subjects, as shown in Fig. 3.9. In this setting, the clothes of gallery members #c, #h, and #k 

are changed at the time of thc input sequence to make the person identification problem setting 

more difficult, which is intentional so that biometric cues alone cannot perfectly identify the 

subjects. Three absentees (#X, #y, and #z) and one unregistered person (probe # 18) are arranged 

to demonstrate that the proposed method can handle such situations. 

In this experiment, the label for each gallery is denoted by a corresponding gallery ID for 

convenience as L= {#a,#b,··· ,#un}, where #Un is the label for an unregistered person. 

Parameters: The standard deviation of the feature vector element was set at a = 394.5, which 

is determined from the other preliminary experiment. Local evidence for the label of the un­

registered person was set at Cun = ~/' where M is the number of gallery labels. 

Results: Table 3.3 shows the lnitiallabel correspondence via straightfOlward labeling. In this 

table, seven probe subjects (#3, #6, #7, #12, #13, #15, and #18) are initially mislabeled because 

of the within-class variation of the gait features caused by walking manner variations, clothes 

changes, and silhouette noise. 

We illustrate the message effect on improving the belief from the initial state by taking 

probe #3 as an example. As shown in Fig. 3.l0, probe #3 is connected to probes #1 and #2, 

which truly belong to group A (the same group as probe #3), and probe #4, which truly belongs 

to group E. Initially, probe #3 is mislabeled as #z and probes #1, #2, and #4 are correctly 

labeled, as shown in Table. 3.3. The received message and the belief of probe #3 after the first 

message passing is then shown in Fig. 3.11. In this figure, we see that the messages from probe 
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Figure 3.10: Node connection between the probe subjects in Fig. 3.8. 

Table 3.1: Compatibility for a pair of labels in the Table 3.2: Labeling accuracy for the in-
same group between probe subjects in Fig. 3.8. put shown in Fig. 3.8. 

Probe pair lfIiAxi=h,xj=h~ 
(#i, #j) h=l=h andg(h) =g(h) 

Labeling 
Method accuracy 

(#1, #3) 0.42 Straightforward 0.61 
(#2, #3) 0.73 Proposed 1.0 
(#4, #3) 0.16 

#1 and probe #2 contribute much to boost the belief for the label #c. This is because probes #1 

and #2 have high initial beliefs (local evidence) for their true labels, and high compatibilities 

for a pair oflabels which belong to the same group as probe #3, as shown in Table. 3.1. 

On another note, in the message shown in Fig. 3.11, the message about the label #X (absen­

tee) is relatively high because #X is also a member of group A. The belief of probe #3 for the 

label #x, however, does not exceed that for the true label #c because local evidence for the true 

label #c is essentially higher than that for the label #X, even though the message magnitude for 

label #X is nearly equal to that for the label #c. 

In this way, the initial mislabel assignments gradually improve with iteration ofthe message 

passing. Note that probe #18, which is an unregistered person and is initially mislabeled as #k, 

is not connected to any probe subject, as shown in Fig. 3.10, but is only connected to the factor 

node in this case. The assigned label to probe #18 is therefore changed only by exclusive force 

with an increase in the beliefs ofthe other labels. 

The labeling accuracy of the proposed method under no seed node and of the straightfor­

ward method are shown in Table. 3.2 (in this experiment, the result of proposed method is 

unchanged with or without seed nodes). In this table, we can see that the proposed method 

significantly improves the labeling accuracy. 

Evaluation for the dataset from the real surveillance camera 

Gallery and probe data set: We arranged the real image sequences (320 pixels x 240 pixels 

/9 fps / jpeg format) which are obtained from the surveillance cameras installed in a Japanese 
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Table 3.3: Initial label correspondence for an input shown in Fig. 3.8. The numerical value in 
the table represents the belief. 

Probe 
10 

#1 
#2 
#3 
#5 
#6 
#7 
#8 
#9 
#10 
#11 
#12 I 
#13 
#14 
#15 
#4 

*16 
#1) 
#18 

0 .12 

Q/ 0.1 
::::J 
iii 
>0.08 
Q/ 
l:1.li 

~0.06 
Q/ 

20.04 

0.02 

Gallerv 10 - -
#a #b #c #x #d tie #t #gc .#h #i #j #k #1 #m #n #0 #y #p #Q. til, #un 

0.177 0.023 0.D16 0.011 0.002 0.120._ 0.025 0.03\ 0.027 0.057 0.115 0.077 0.054 0.018 0.058 0.051 0.023 0.044 0.012 0.011 0.048 

0.014 0.171 0.060. 0..032 0..032 0.027 0..0.41 0.OB7 0.041 0.004 0..0.18 0.046 0.029 0.051 0.013 0..037 0.052 0.060 0.096 0.045 0.048 

0.029 0.0.34 0.085 0.058 0.005 0.050 0.029 0.074 0.027 0..0.17 0.017 0.065 0.084 0.082 0..051 0..066 0.02.1 0..043 0.030 0.085 0.048 

0.001 0.077 0.02.8 0.003 0.564 0..005 0.038 0.081 0.017 0..000 0.001 0.007 0.006 0.015 0.00.1 0..005 0.02.4 0.010 0.050 0..021 0.0.48 

0.099 0.001 0.007 0.057 0.000 0.065 0.003 0.009 0.004 0.124 0.040 0..024 0.0.52 0.Q17 0.354 0.075 0.003 D.Q11 0.001 0.009 0.0.48 

0.028 0.047 0.028 0.027 0.005 0.045 0.091 0..053 0..077 0.017 0.011 0.049 0.062 0.098 0.010 0.049 0.131 0.053 0.049 0..0.23 0.048 

O.OOB 0.089 0.0.55 0.032 0.028 0.020. 0..044 0..136 0.0.29 0..003 0.005 0.045 0.038 0..079 0.008 0.029 0.0.79 0.031 0.126 0..066 0..048 

0..043 0..0.48 0.057 0.G18 0. .006 0..097 0.0.37 0..0.44 0.082 0.027 0.033 0.0.84 0.054 0.0.54 0.031 0.058 0.051 0.075 0.032 0.02.1 0.0.48 

0.095 0.005 0.007 0..0.23 0.000 0.117 0.016 0.009 0.038 0.230 0.049 0.088 0.040 0.026 0.071 0..0.79 0.022 0.048 0.0.0.5 0..004 0.048 

0.112 0.017 0.010 0.038 0.001 0..050 0..019 0.014 0.024 0.068 0.238 0..078 0..048 D.D15 0.066 0.053 0..0.25 0.0.54 0.016 0..007 0.048 

0.048 0.015 0.0.36 0.110 0.001 0.053 0..02.4 0.045 0.02.1 0.043 D.D1 8 0.0.67 0.1 16 0.079 0.079 0.076 0.028 0..02.8 0.0.19 0.045 0.048 

0,048 0.0.31 0.053 0..0.2.0. 0.007 0.106 0.0.44 0.065 0..0.57 0..0.2.8 0.039 0.075 . 0.0.87 0.0.45 0.030 0.054 0.036 0.053 0.033 0..038 D,04B 

0.D18 0.046 0..117 0.035 0.007 0.041 0.026 0.054 0.067 0.013 0..0.12 0.042. 0.082 0.139 0.024 0..046 0.044- 0.061 0.034 0.045 0..048 

0.114 0..0.0.7 0.014 0..032 0. .000 0..0.59 0.0.0.7 O.OlD 0..014 0..091 0.089 0.063 0.051 0.020 0..247 0.069 0.010 0..039 0.005 0.010 0..0.48 

0.0.45 0.0.12 0.023 0.099 0.0.00 0.0.65 0.0.18 0.D18 0.027 0.063 0..0.42 0.039 0.054 0.046 0.136 0.157 0..017 0..058 0..00.8 0.025 0.048 

0.031 0.035 0.0.31 0..0.45 0.002 0..0.77 0.044 0.02.7 0.074 0..036 0.031 0..0.62 0.0.37 0. .060 0.034 0.114 0.052 0..112 0.028 0.019 0.0.48 

0..0.14 0.092. 0..033 0.051 0.006 0.028 0.048 0.050 0.032 0.006 0.017 0.063 0.038 0.057 0.010 0.039 0.081 0.056 0.183 0.049 0..048 

0.095 0.026 0.009 0.038 0.001 0.071 0..036 0. .014 0..039 0.0.77 0.0.84 0.0.91 0.033 0..0.32. 0.0.61 0..087 0.044 0.0.85 0..021 0..007 0..0.48 

o : True correspondence : Assigned correspondence 
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Figure 3.11: Received messages and belief of probe #3 at the first message passing. 

elelnentary school. In this experiment, a scenario of person re-identification across two non­

overlapping cameras is assumed and we collected gallery and probe subsequences from the two 

different cameras. The numbers of gallery and probe subjects are shown in Table. 3.4, and the 

examples are shown in Fig. 3.12. 

In this dataset, the observation angle of each subject is different to some extent between 

gallery and probe sequences and the trajectory and walking manner of each subject are more 

fluctuated than those in the dataset used in previous section. 

Parameters: The standard deviation of the feature vector element was set at a = 1071.1 and 

the seed decision threshold was set at 1's = 0.7. Both of these values were determined based 

on the training dataset composed of 40 subjects which are also extracted from the same cam-
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Gallery 

(a) Examples -of gallery subjects and the groups 
,----------.;...;....- Proue 

(b) Examples of probe subjects 

Figure 3.12: Examples of gallery and probe subjects in the dataset from the real surveillance 
camera. 

Table 3.4: Gallery and probe settings in the dataset from the real surveillance camera. 
GaUer setting Probe setting 

Number Number Subjeot number Numbor Subiect numb!r 
n . -

of of Group Stand 
Absentee of 

GrouD )elona:ina: Stand Unregistered Total 
group member 

belonA'inl: alone 
group 

In a arOUD In isolation alone 

14 2 to 5 39 1 0 16 37 2 1 7 47 

eras. Local evidence for the label of the unregistered person was set in the same way as the 

preliminary experiment. 

Result: Table 3.5 shows the labeling accuracy. In this table, we can see that the proposed 

method improves the labeling accuracy even for the real situation. 

3.5.2 Experiment with simulation data 

Settings 

Observed space and trajectory: We assumed an input video sequence in which each walking 

person is captured by a surveillance camera in a virtually constructed space. We set the whole 

space to be 10 Em] x 2000 Em] and the observed space to be 10 Em] x 20 [m] as shown 

in Fig. 3.13. In such a space, we arranged the initial position for each person, gave them 

Table 3.5: Labeling accuracy for the dataset from the real surveillance camera. 

Method Labeling accuracy 
Straightforvvard 0.70 
Proposed 0.87 
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• Straightforward • Proposed (without Seed) • Proposed (with Seed) 

Figure 3.13: Assumed environ­
ment in simulation experiments. 
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Figure 3.14: Results for simulation data set. 

Table 3.6: Gallery and probe settings in simulation experiments. 
Gallery setting - Probe settinl( 

Data Number NumbGr Subject number Number Subiect numb, ~r 
.... 

set of of 
Group Stand 

Absentee of 
nl't'Ulft L Stand Unrealatared 

Sroup memb-er 
belonllrinll: Iione 

Total group In a II:rOUD: In isolation alone 

~ 125 6 to 10 1000 0 
a 

125 
1000 0 

0 
0 

A 
1000 

10 980 10 
10 

r-1L- 100 2 to 10 500 500 500 50 _ 200 50 250 
C 500 

Total 

1000 
~ 

510 

1000 

velocities, and then moved them. For simplicity, we assumed that each person walked with 

constant velocity and that the walking direction was only the V-direction, as shown in Fig. 3.13. 

Gallery and probe data set: Tn all the simulation experiments~ the number of gallery subjects 

(registered persons) is set to 1000, and gait features for all of the gallery and probe subjects are 

randomly chosen from the gait database proposed in [126]. Note that the gait database [126] 

has expanded and includes 1,580 subjects at time of writing. We used two side-view sequences 

as the probe and gallery sequences. 

We then considered the following three scenarios, and we defined the gallery and probe 

settings for each scenario as shown in Table. 3.6. 

Set A: Person identification when going to elementary school in a group: All of the gallery sub­

jects are grouped. The registered person and the unregistered person correspond to a school 

student and an intruder, respectively. Absentees and isolated persons correspond to absent stu­

dents and early or late arrival students. There can be a small number of unregistered persons, 

absentees, and isolated persons. 

Set B: Person identification in amusement theme parks:_ Substantial numbers of the gallery sub­

jects are assumed to be standalone (persons who belong to groups of only one member). The 
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registered person and the unregistered person correspond to a fee-paying fair visitor and an un­

fair visitor who enters the park without the due entrance procedure. The absentee corresponds 

to a registered person who is in the park but is not captured by surveillance camera. The iso­

lated person corresponds to a registered person who is lost or separated from their group with 

another objective. There can be a small number of unregistered persons and isolated persons in 

addition to some absentees. 

Set C: Person re-identification in network cameras: We assume that there are two cameras which 

have different fields of view, and regard one side camera as the gallery-side camera and the 

other as the probe-side camera. Some of the gallery subjects are assumed to be standalone. A 

registered person corresponds to a person who is captured by the gallery-side camera, and an 

unregistered person corresponds to a person who is captured only by the probe-side camera. 

An absentee corresponds to a registered person who is not captured by the probe-side camera. 

An isolated person corresponds to a registered person who is separated from their group with 

another objective. There can be some unregistered persons and absentees, and a small number 

of isolated persons. 

We also arranged the ideal scenario, where all gallery subjects are grouped and there are 

no absentees, isolated persons, or unregistered persons (denoted as set I in Table. 3.6). We 

arranged 10 different sets randomly for each scenario. The performance for each data set is 

evaluated by averaging their results. 

Parameters: The standard deviation ofthe feature vector element was set at a = 366.2 and the 

seed decision threshold was set at Ts = 0.8. Both ofthese values were determined based on the 

gait database used. The local evidence for the label of an unregistered person Cun significantly 

influences the performance of the many-to-many labeling scheme in the presence of an unregis­

tered person, particularly in the presence of a relatively large number of unregistered persons in 

an input sequence such as set C. Thus, we set the parameter at Cun = 0 for set I, Cun = 0.002 for 

sets A andB, and Cun =0.005 for set C, so that the performance of the straightforward method 

for each data set becomes the best. Note that we also conducted the same experiments under 

no seed node (Ts = 0.0) to verify the effectiveness of seed node. 

Results 

Figure 3.14 shows the labeIing accuracy. In this figure, we see that the proposed method dis­

cernibly improves the labeling accuracy for each data set and the introduction of seed node 

contributes the performance improvement. In particular, when the ratio of the number of per­

sons in a group is high, the effectiveness of the proposed method is greatest, as shown in the 
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results for sets I and A, while the performance improvements for sets Band C are relatively 

low. 

Basically, the belief values for isolated persons, standalone persons, and unregistered per­

sons for their own true labels are not expected to be directly boosted by the messages. Thus, in 

the case where such a person has the highest belief for a wrong label about another person at 

the first stage, it is difficult to recover the true label, except in the case where the wrong label is 

a label about a person in a group in an input sequence; that is, the exclusive force for the wrong 

label is expected (as the label change of probe #18 shows in the experiment in Section 3.5.1). 

This is one of the major reasons why the performances of the proposed method for sets Band 

C are lower than those of sets I and A. 

3.6 Discussion 

3.6.1 Limitation 

While the proposed method significantly improves the labeling performance, there are still 

some subjects who are mislabeled, and subjects whose labels are negatively changed via mes­

sage passing, even for the ideal set I in the simulation experiments. We list the typical cases of 

failure for the proposed method as follows. 

Mislabel within the same group members 

When a person in a group is mislabeled as another person in the same group at first, it is difficult 

to recover the true label because the belief for the true label and the wrongly assigned label are 

boosted to the same degree. Mislabeling within the same group members is, however, relatively 

rare compared with mislabeling between different groups. The rate of this kind of mislabel is 

relatively low. 

Negative label change in the presence of an absentee or an isolated person in a group 

As shown in Fig. 3.15, when the following three incidents occur simultaneously, where i) an 

absentee or an isolated person exists in a group (the gallery subject with the label 14 in group 

GI), ii) another person2 (probe #4) comes close to the group members (probe #1, #2, and 

#3) with similar velocity vector in an input sequence,and iii) another person is not set as a 

seed. Then, another person may possibly be mislabeled as an absentee or an isolated person 

by messages from the group members. At the same time, if another person is mislabeled as 

2Not only a standalone person or an unregistered person, but also a person from another group. 
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[Gallery setting] 

Group 10 : G1 ------------------------ ---- -------

Gallery label : 11 12 13 14 

Absentee or 
iso lated person 

+ : Message from the members of group G
1 

Figure 3.15: Example situation of negative label change. 

an isolated person in such a case, the initial corred label assignment for the identical isolated 

person is excluded by another person and changed to the other incorrect label. Note that this 

often occurs in the presence of a number of standalone persons, unregistered persons, and 

isolated persons, such as our simulation sets B and C, because the event probability of the 

above incident increases. 

Though the initial mislabel assignment and negative label changes as listed above possibly 

cause other negative label changes through the propagation of an undesirable message using 

the proposed method, the impact of such a negative effect is basically smaller than that of the 

positive effects in total, as shown in the results of the proposed method (Fig. 3.14). 

3.6.2 Effect of the seed node on performance 

The contribution of seed node to the performance improvement of the proposed method is 

demonstrated in the simulation results (Fig. 3.14). The advantages of introducing seed node in 

graph are considered as followings . 

• The avoidance of negative label change: As discussed in Section 3.6.1, the negative label 

change is not occurred if another person (which is desclibed in Section 3.6.1) is set as a 

seed . 

• The enhancement of message effect: According to the Eq. (3.18), a seed node can send 

more discriminative messages for the labels which belong to the same group of the as­

signed seed label as following example. We consider again the situation shown in Sec­

tion 3.4.4 (Fig. 3.6 and Fig. 3.7 (b)), and let assume that the-probe #2 is set as a seed with 

seed label h, that is, the local evidence for the labe112 is set to 1 and that for each of all 

the other label is set to 0 in Fig. 3. 7 (b). In this case, the messages from probe #2 to probe 

47 



alue selection 
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m21 (Xt = l:J = 0.0 

Figure 3.16: Messages from a seed node (probe #2) to the other node (probe #1) under the 
setting shown in Fig. 6 (Section 4.4). 

#1 for the labels 11 and 13 become as, m21 (Xl = 11) = 1.0 and m21 (Xl = 13) = 0.0, respec­

tively3 as shown in Fig. 3.16. Therefore, the messages from a seed node promote the 

belief updates of its neighbor nodes, and positive label changes of them are also expected 

to be promoted as a result. Though, the negative label changes are possibly promoted, in 

particular, in the case that a seed node is assigned false label as seed label, such negative 

case is assumed to be occurred less often than positive case. 

3.6.3 Effect of the absence of homography calibration on performance 

We assume the homography calibration for the calculation of the position of each subject as 

described in Section 3.4.2. The cost of calibration is, however, expensive in some practical 

systems. One of the alternative ways is a direct use of the image pixel coordinate system 

instead of the world coordinate system to represent the traj ectory of each individual. In many 

of practical surveillance systems, the camera captures the scene fron1 near the top view or 

oblique view just like the scene used in our experiments. In such views, it is assumed that the 

direct use of image pixel coordinate does not have a serious impact on the performance of the 

proposed method. 

To examine this, we conducted an additional experiment for the dataset used in Section 3.5.1 

and we used the image pixel coordinate directly for the calculation of the positions ofindividu­

also The parameters are set in pixel units, and we dedded the parameters dmax = 160 [pixel] and 

dmin = 30 [pixel] based on the road width (approx. 320 pixels) and human width (approx. 30 

3This is an extreme case and the degree of magnitude relation between these messages are biased by constant 
value C in actual. 
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Figure 3.17: The relationships of iteration count in LBP with the labeling accuracy and pro­
cessing time for the dataset 1 and A. 

Table 3.7: Processing times [sec] for the dataset I and A. 

Method 
Straightforvvard 
Proposed after the first iteration 

after the last iteration 

Dataset! 
2.5 

88 .5 
3638.7 

Dataset A 
2.5 

86.9 
4248.1 

pixels), and the Vmm = 15 [pixel/sec] and Vmin =0 [pixel/sec] based on the average veloc.ity 60 

[pixel/sec] which roughly estimated from the dataset. As a result, we get the same result with 

that shown in Table 3.2, though the neighbor relationships among probe subjects are slightly 

changed. 

3.6.4 Relationship between labeling accuracy and computational cost 

The computational cost of the proposed method is largely dependent on the calculation of mes­

sages (message update procedure) and the iteration count of the message passing in LBP. The 

time complexity of a message update procedure is roughly estimated as, O(Nn(Np - Ns)(Ng -

Ns ) 2 ) at the first message update, and 0 (N~ (Np - Ns) (Ng - Ns)2) at the second and subsequent 

message update, where Np , Ng , Nn, and Ns are the number of probe subject, that of gallery 

subjects, average number of neighbor nodes, and that of seed nodes. 

First, the resultant processing times in simulation experiments are investigated, and the 

relationships of iteration count in LBP with the labeling accuracy and processing time for the 

dataset] and A are shown in Fig. 3.17. Note that the experiments are done on a 2.20 GHz AMD 

Opteron(tm) Processor 6174 PC running Microsoft Windows' Server 2008 operation system, 

and the message passing scheme is parallelized via multi-thread processing of 24 threads. In 

this figure, we can see that the labeling accuracy is almost saturated after the first iteration, 
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though the processing time is gradually and largely increased. These results indicate that only 

one-time iteration of message passing is enough in terms of labeling accuracy. Then, detailed 

processing times for these datasets are shown in Tab. 3.7. As for the proposed method, both of 

the processing time at the end of the first iteration (indicated as after the first iteration) and that 

at the end of the last iteration (indicated as after the last iteration) are shown in this table. From 

these results, we can see that all the processing times of the proposed method after the first 

iteration are less than 90 [sec], which seems to be reasonable to some extent for practical use, 

though they are still far from real-time even with the use of high-performance PC as described 

above. 

3.6.5 Issues toward the practical system 

The proposed method is based on some assumptions as described in Section 3.3. In terms of 

the total system (practical surveillance system), however, the following challenging issues are 

required to be addressed in future work. 

Obtaining the group affiliation 

In practice, we need some kinds of registration procedures to associate the group affiliations 

with the individuals in advance. This is not such a serious problem in surveillance systems at 

factories and schools, where the potential observed persons are well-known in advance, i.e. the 

school children and the factory workers. Also, the registration can be achieved relatively easily 

with a system constructed at a place where the entrance and exit are controlled, i.e., where the 

group affiliation of each person can be easily checked and registered at the entrance gate, as 

in amusement or theme parks, stadiums, theaters, and airports. Alternatively, group affiliations 

can be derived by manual annotation (by user interaction) of the video sequence, and also 

inferred automatically by means of grouping techniques, such as data mining and clustering. 

In particular, social behavior-based group finding techniques have been developed in recent 

years [128][129]. In these methods, the group is estimated based on trajectory, distance, and 

velocity of pedestrians. Thus, these methods bear affinity with the proposed method in terms 

of focusing such kinds of social behaviors, and the integration with these techniques is future 

work for the practical use of the proposed method. 

Handling of more detailed relationship among individuals 

As shown in Eq. (3.12), we formulate the compatibility uniformly for each pair of persons in 

the same group, and also do that for each pair of persons in different groups. This means that 
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we assume the unifonn strength of intra-group relationship and that of inter-group relationship. 

In practice, however, such strengths might not be equivalent, and rather more complex in some 

cases. For example, in the case of a group of friends, a person in the group might be especially 

friendly with a certain member of the group compared with other members, and the person 

might also be friendly with persons in different groups. Ideally, in such case, the difference in 

relational strength among pairs of persons is desired to be reflected in the compatibility. In the 

proposed method, this is possibly realized by introducing layered representation of the group 

affiliation, corresponding layered conditional branching of the compatibility function, and cor­

responding parameter settings of dmax, dmin, Vmax, Vmin, and C. Besides, to put it in an extreme 

way, these parameters could be tuned for each pair of persons without detenninistic group af­

filiation, when the strength of each pair-wise relation is well known. Of course, such design 

of compatibility leads to explosion of the number of parameters and it is almost impossible to 

tune the parameters by manual. Therefore, automatic tuning or learning of the parameters in 

conjunction with automatic obtaining of group affiliation as above mentioned is required when 

we introduce such extended compatibility. 

Obtaining the trajectory and biometric cue 

Segmentation and tracking of each person are essential for the acquisitions of the trajectory 

and biometric cue, and these are not easy tasks when the scene is crowed, in particular, in the 

presence of occlusion among persons. To evaluate the proposed method for more practical 

scenes including such occlusion relationships, state-of-the-art techniques of segmentation and 

tracking, such as [130], [131], and [132] are required to be applied for this problem. Moreover, 

cross-view matching of biometric cue is also essential and in the case of gait-based identifica­

tion, the view transfonnation model [41] can be applied for this issue. The integration of these 

techniques with the proposed method also remains in future work. 

3.7 Conclusion 

In this chapter, we proposed the behavior-based group context for person identification in video 

sequences and integrated it in the framework of CRF. In the proposed method, by means of 

message passing, the belief of individual identity is propagated to neighborhoods based on their 

group affiliation infonnation and their behavioral differences, such as the spatial distance and 

the velocity vector difference in an input sequence, so that the same group members enhance 

one member's belief as those group members enhance each others' beliefs .. In our experiments, 
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we showed that the proposed method significantly improves the performance compared with 

the straightforward method based on biometric cues alone. 

Our future work includes construction of the model for optimal selection of local evidence 

for the label of an unregistered person Cun. This is a rather general issue for many-to-many 

matching problems when considering an unregistered person. 

52 



Chapter 4 

The OU-ISIR Gait Database Comprising 
the Large Population Dataset and 
Performance Evaluation of Gait-based 
Person Identification 

4.1 Introduction 

For the development and statistically reliable evaluation of gait-based person identification ap­

proaches, the construction of a common gait database is essential. There are two considera­

tions in constructing a gait database: (1) the variation in walking conditions (e.g., view, speed, 

clothing, and carrying conditions), and (2) the number and diversity of the subjects. The first 

consideration is important in evaluating the robustness of the gait-based person identification, 

because walking conditions depend on the time and circumstances and often differ between 

gallery and probe. For instance, the Clothing and carrying conditions when walking along a 

street in a suit with a bag while on business can differ from those when strolling empty-handed 

in casual clothes during leisure time. The second consideration is important to ensure statistical 

reliability of the performance evaluation. Moreover, if the database is used for soft biometric 

applications such as gait-based gender and age classification [133, 134], the diversity of sub­

jects in terms of gender and age plays a significant role in the performance evaluation. 

Although several gait databases have been constructed [43, 44, 39, 45, 46, 47, 33, 40, 48, 

49, 50, 42, 51, 52], with most of these taking good account of the first consideration, the 

second consideration is still insufficiently addressed since these databases include at most 185 

subjects [51] and the subjects' genders and ages are biased in many of the databases. The 

exceptions are the large-scale datasets introduced in [126] and [135], which do address the 

second consideration and include respectively, 1,035 and 1,728 subjects with ages ranging 
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Table 4.1: Existing major gait databases 
Database I #Subjects I Data covariates 

Soton database 12 [45] 4 views, 5 shoes, 3 clothes, 
5 bags (including w/o), 3 speeds 

115 [39] 3 scenarios (outdoor, indoor track, treadmill), 
2 views per scenario 

25 [136] Time (0, 1,3,4, 5, 8, 9, and 12 months), 12 views 
USF dataset 122 [33] 2 views, 2 shoes, 2 surfaces, 

baggage (w/ and w/o), time (6 months) 
CASIA dataset 20 [46] 3 views 

124 [40] 11 views, clothing (V:I/ and w/o coat), 
baggage (w/ and w/o) 

153 [48] 3 speeds, baggage (w/ and w/o), 
OU-ISIR Gait Database, 34 [50] 9 speeds (2, 3, 4, 5, 6, 7, 8, 9, and 10 km/h) 
Treadmill dataset 68 [42] 32 clothes combination at most 

185 [51] Gait fluctuation among periods 
168 [52] 25 views 

from 2 to 94 years. In these datasets, however, the gait images are captured using cameras 

with varying poses (e.g., a camera's pose on one day differs slightly from that on another day, 

or some subjects are captured using first one camera and then another with a slightly different 

pose) and this could introduce bias into the evaluation results. 

In this study, we focus on the second consideration and introduce a large population dataset 

that is a major upgrade to previously reported large-scale datasets in [126] and [135]. The 

extensions of this dataset are as follows. 

1. The number of subjects is considerably greater in the dataset; i.e., there are more than 

thrice the number of subjects in the dataset in [126] and more than twice the number in 

the dataset in [135]. 

2. All silhouette images are normalized with respect to the image plane to remove the bias 

of camera rotation for more equitable performance evaluation. 

3. The observation angle of subjects in each frame is specifically defined for the sake of fair 

analysis in terms of the observation angle, whereas previous works merely defined the 

angle as a side view. 

Our dataset is the largest gait dataset in the world, comprising over 4,000 subjects of both gen­

ders and including a wide range of ages. Although the dataset does not include any variations 
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in walking conditions, it allows us to investigate the upper limit of identification performance 

in a more statistically reliable way and to reveal how gait-based person identification perfor­

mance differs between genders and age groups. Thus, our dataset can contribute much to the 

development of gait-based applications, and we demonstrate its validity through experiments 

with state-of-the-art gait representations. 

The outline of the paper is as follows. Section 4.2 introduces existing gait databases, while 

Section 4.3 addresses the construction· of the dataset. The gait-based person identification ap­

proach for performance evaluation is described in Section 4.4, and various performance evalu­

ations using our dataset are presented in Section 4.5. Section 4.6 presents our conclusions and 

discusses future work. 

4.2 Related Work 

Existing major gait databases are summarized in Table 4.1. Here, we briefly describe these 

databases. 

The Soton database is composed of a small population dataset [45] and a large population 

dataset [39]. The small dataset contains subjects walking around an indoor track, with each 

subject filmed wearing a variety of footwear and clothing, carrying various bags, and walking 

at different speeds. Hence, the database is used for exploratory factor analysis of gait-based 

person identification [137]. The large dataset was the first gait database to contain over 100 

subjects and has contributed to the study of gait-based person identification mainly in terms 

of inter-subject variation. The recently published Soton Temporal database [49] contains the 

largest time variations; up to 12 months to date [136]. It enables the investigation of the effect 

of time on the performance of gait biometrics, allowing the use of 3D volumetric data. 

The USF dataset [33] is one of the most widely used gait datasets and is composed of a 

gallery and 12 probe sequences captured outdoors under different walking conditions includ­

ing factors such as view, shoes, surface, baggage, and time. As the number of factors is the 

largest of all existing databases, despite there being only two variations for each factor, the 

USF database is suitable for the evaluation of the inter-factor effect, as opposed to the intra­

factor effect, on identification performance. 

The CASIA database, Dataset A [46] contains image sequences from three views and can 

be used for the analysis of the effect of the view angle on identification performance. The 

CASIA database, Dataset B [40] consists of multi-view (11 views) walking sequences and 

includes variations in the view angle, clothing, and carrying conditions. Since it contains the 
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finest azimuth view variations, it is useful for the analysis and mode ling of the effect of view 

on gait-based identification [138]. The CASIA database, Dataset C [48] was the first database 

to include infrared gait images captured at night, thus enabling the study of gait-based person 

identification at night. 

The OU-ISIR Gait Database, Treadmill Dataset [50, 42, 51, 52] contains gait images of 

subjects on a treadmill with the largest range of view variations (25 views: 12 azimuth views 

times 2 tilt angles, plus 1 top view), speed variations (9 speeds: 1 kmIh intervals between 2 

and 10 kmIh), and clothing variations (up to 32 combinations), and as such, it can be used to 

evaluate view-invariant [41], speed-invariant [50] and clothing-invariant [42] gait-based person 

identification. In addition, it is used to analyze gait features in gender and/or age-group clas­

sification [52], since the diversities of gender and age ofthe subjects are greater than those in 

currently available gait databases. 

Next, we review the number and diversity of sUbjects. Table 4.1 shows that existing major 

databases include more than 100 subjects. Although these databases are statistically reliable 

to some extent, the number of subjects is insufficient when compared with databases of other 

biometrics such as fingerprints and faces. In addition, the populations of genders and ages are 

biased in many of these databases; e.g., there are no children in the USF dataset with most 

of the subjects in their twenties and thirties, while the ratio of males to females is 3 to 1 in 

the CASIA dataset (Dataset B). Such biases are undesirable in performance evaluation of gait­

based gender and age-group estimation and in performance comparison of gait-based person 

identification between genders and age groups. 

4.3 The OU-ISIR Gait Database, Large Population Dataset 

4.3.1 Capture System 

An overview of our capture system is illustrated in Fig. 4.1. Each subject was asked to walk at 

his or her own preferred speed through a straight course (red arrows) at most twice under the 

same conditions. The length of the course was approximately 10 m, with approximately 3 m (at 

least 2 m) sections at the beginning and end regarded as acceleration and deceleration zones, 

respectively. Two cameras were set approximately 4 m from the walking course to observe 

(1) the transition from a front-oblique view to a side view (camera 1), and (2) the transition 

from a side view to a rear-oblique view (camera 2). We used Flea2 cameras manufactured by 

Point Gray Research Inc. with HF3.5M-2Ienses manufactured by SPACE Inc. The image size 

and frame rate were, respectively, 640 x 480 pixels and 30 fps. The recorded image format 
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Figure 4.1: Overview of capture system and captured images. 
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Event 

DIM2009 
RDCPE2010 
OU-OC201O 
OU-OC2011 
CREST2011 

Table 4.2: Visitors at events 

Term 

3 days in March 2009 
2 days in June 2010 
1 day in August 2010 
1 day in August 2011 
5 days in August 2011 

#Visitors (approx.) 

1,600 
280 

70 
90 

2,000 

was uncompressed bitmap. Moreover, green background panels and carpet (if available) were 

arranged along the walking course for the purpose of clear silhouette extraction. 

4.3.2 Data Collection 

The dataset was collected during entertainment-oriented demonstrations of an online gait per­

sonality measurement [139] at outreach activity events in Japan, including the Dive Into the 

Movie project (DIM2009) [140], the 5th Regional Disaster and Crime Prevention Expo (RD­

CPE2010), Open Campus at Osaka University (OU-OC201012011), and the Core Research for 

Evolutional Science and Technology project (http://www.jst.go.jplkisokenlcrestlenlindex.html. 

CREST2011). All the events were held at indoor halls and the numbers of visitors at each event 

are summarized in Table 4.2. 

Each subject was requested to give their informed consent permitting the use ofthe collected 

data for research purposes. Also, the age and gender of each subject were collected as metadata. 

All the subjects walked empty-handed, wearing their own clothing (some subjects wore a hat) 

and footwear. Examples of images captured at each event are shown in Fig. 4.1. 

4.3.3 Statistics 

From the data collected by camera 1 (images were taken with two cameras at the events), 

the world's largest gait dataset of 4,007 subjects (2,135 males and 1,872 females) with ages 

ranging from 1 to 94 years was constructed. We call this dataset the "OU-lSlR Gait Database, 

Large Population Dataset Cl Version]"!, which we abbreviate to OULP-CIV12. Detailed 

distributions of the subjects' gender and age are shown in Fig. 4.2, while example images of 

the subjects are shown in Fig. 4.3. Almost all the subjects are of Asian descent. 

ITo be prepared for publication. The data will be published in the form of normalized silhouette image se­
quences in PNG format, with a total data size of about 1.5 GB. 

2The naming format is OULP-[camera ID] [version ID]-[headerI]-[header2]-.... 
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Figure 4.2: Distributions of the subjects' gender and age in OULP-Cl VI. 

Table 4.3: Breakdown of the number of subjects in OULP-CIVI 

Observation angle 
Dataset 55 [deg] 65 [degJ 75 [deg] 85 [degJ All Total 

LP-CIVI-A 3,706 3,770 3,751 3,249 3,141 3,835 
LP-CIVI-B 3,998 4,005 4,002 3,923 3,904 4,007 

The dataset comprises two subsets, which we call OULP-CIVI-A and OULP-CIVI-B. 

OULP-CIVI-A is a set of two sequences (gallery and probe sequences) per subject and is 

intended for use in evaluating identification performance under almost constant walking condi­

tions. OULP-Cl VI-B is a set of one sequence per subject and is intended for use in investigat­

ing gait-based gender classification and age estimation. OULP-CIVI-A-and OULP-CIVI-B 

are major upgrades to the datasets introduced in [126] and [135], respectively. For brevity, we 

omit the description of the dataset header "OULP-eIVI-". 

Each of the main subsets is further divided into five subsets based on the observation angle 

(55 [deg], 65 [deg], 75 [deg], 85 [deg], and including all four angles) of each subject. We call 

these subsets AlB-55, A/B-65, AlB-75; AiB-85, and AlB-ALL," respectively, with each subject 

belonging to at least onc of these subsets. The observation angle es of each subj ect in each 

frame is defined by the y-axis of the world coordinate system (which is parallel to the walking 
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Younger 

Figure 4.3: Examples of subjects in OULP-Cl VI. 

direction) and the line of sight of the camera as illustrated in Fig. 4.4. 

A subject is included in a bin of a subset if one gait period occurs in the range of angles (as 

illustrated in Fig. 4.4) corresponding to that subset. For example) if a subject is recorded twice 

(both gallery and probe sequences) with a complete gait period in the range of 55 [deg], the 

subject is included in a bin of A-55 and one of B-5S. Moreover, if a subject is recorded twice 

with a complete gait period covering all the angle ranges, the subject is included in a bin of all 

the subsets. A gait period is calculated from the whole sequence (see Section 4.4.2 for details 

on the calculation of the gait period). 

An example image for each observation angle is shown in Fig. 4.4, while a breakdown of 

the number of subjects is given in Table 4.3. In this table, the values in the "Total" column 

represent the number of subjects included in at least one of the subsets of 55 [deg], 65 [deg], 75 

[deg], and 85 [deg]. As mentioned above, the numbers of subj ects for dataset A represent those 

that have been recorded twice. Also, the differences between datasets A and B for each subset 

represent the numbers of subjects recorded only once. Take for example, the subset of 55 [degJ 

in Table 4.3 (A-55 and B-55) where 3,706 subjects are recorded twice and 292 subjects are 

recorded only once. Note that there are also differences in the numbers of subjects between 

subsets, because the sequence length and observation angles for each subject are not exactly 

the same. 

4.3.4 Advantages 

Compared with existing gait databases, our dataset has the following strengths. 
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...... ~ Walking direction 

1-----~,~~--~~~-'Il4_~..._~·-'~+A·s~tion of 85 [deg]-centered gait period 

0: Subject 

() : Observation angle s 
.-------- : Line of sight 

IAsection of75 [deg]-centered gaitperiod l 

A section of 65 [deg]-centered gaitperiod 

I Asection of 55 [deg]-centered gaitperiod I 

Figure 4.4: Definitions of the world coordinate system and the observation angle of a subject, 
and an example image at each observation angle. The Y-Z plane corresponds to the background 
wall behind the walking subjects, while the X-Y plane corresponds to the ground plane. 

1. Large population: The number of subjects is more than 20 times that in publicly avail­

able large-scale gait databases. This improves the statistical reliability of various perfor­

mance evaluations such as the comparison of gait-based person identification. 

2. Gender balance: The ratio of males to females is close to 1. This is a desirable prop­

erty for more reliable performan~e evaluation of gait-based gender classification and for 

comparison of identification performance between genders. 

3. Whole generation: The age range is from 1 to 94 years with each lO-year interval up to 

49 years of age containing more than 400 suhjects (even in the smallest subset A-ALL). 

In addition, it is noteworthy that our dataset includes a sufficient number of children 

at all stages of growth, whereas other large-scale gait databases are mainly composed 

of adult subjects. This provides more statistically reliable results for gait-based age­

group classification and comparisons of the difficulties in gait-based person identification 

among age groups. 

4. Silhouette qUality: The quality of each silhouette image 1S relatively high because we 

visually checked each silhouette more than twice and made manual modifications ifnec­

essary. This enables the elimination of silhouette quality problems from gait analysis. 
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On the contrary, the silhouette images in most of the existing public databases are au­

tomatically extracted and often include significant over/under-segmentation. Although 

manually modified silhouettes were created in the investigation of the effect of silhou­

ette quality on gait-based person identification in [141] and [142], these have not been 

published. 

4.3.5 Preprocessing 

This section briefly describes the method used for size-normalized silhouette extraction. 

Silhouette extraction 

The first step involved extraction of gait silhouette images via graph-cut-based segmentation 

[127] in conjunction with background subtraction. Of course, over/under-segmentation errors 

appeared in some extracted silhouette images. Hence, as described above, we visually checked 

all silhouette images at least twice and then manually modified under/over-segmentation if 

necessary. In more detail, a silhouette was shown to the observer in the form of a composite 

image in which the silhouette contour was overlaid on the corresponding original image. The 

observer checked whether the silhouette contour fitted the visually perceived human contour 

and if not, modified it using a OUI tool specially developed for this purpose. 

Correction of camera rotation 

In the second step, image normalization, including the correction of distortion and camera 

rotation, was carried out. Because the camera pose in the world coordinate system for each 

day/event was not strictly the same, we normalized the camera rotations in all silhouette images 

such that the image plane in each is parallel with the Y-Z plane in the world coordinate system 

as shown in Fig. 4.5. First, the intrinsic parameters of the camera and coefficients of lens 

distortion were estimated [143]3 and distortion corrected. An example of an undistorted image 

is shown in Fig. 4.5(a). The transformation matrix of camera rotation from the original pose 

(shown in Fig. 4.5(a)) to the target pose (shown in Fig. 4.5(b)) was then estimated for each 

day/event from the undistorted image using a pair of vanishing points [144] (i.e., horizontal 

and vertical vanishing points), estimated from the sets of parallel lines in the scene [145]. 

Finally, all the image pixels in the original image plane were reprojected onto the normalized 

image plane. An example of a camera rotation corrected image is shown in Fig. 4.5(b). Also, 

examples of a subject in each dataset after rotation correction are shown in Fig. 4.6. 

3 Calibration procedures were implemented using OpenCV version 1.1 functions. 
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Camera coordinate system 

(a) Original image plane 
y 

Subject 

Imageplane 
~--+---

Camera coordinate system 

(b) Nonnalized image plane 

Figure 4.5: Examples of the original and nonnalized camera pose, image plane, and images. 
In the rotation-corrected image in (b), the set of cyan lines and set of magenta lines represent 
the sets of parallel lines in the scene used to detennine the vanishing points, while the white 
dashed line represents the vertical center line of the image. The observation angle is 90 [deg] 
at this line. 

Registration and size normalization 

The third step involved registration and size nonnalization of the silhouette images [41]. First, 

- the top, bottom, and horizontal center of the silhouette regions were obtained for each frame. 

The horizontal center was chosen as the median of the horizontal positions belonging to the 

region. Second~ a moving-average filter was applied to these positions. Third, we nonnalized 

the size of the silhouette images such that the height was just 128 pixels according to the average 

positions, and the aspect ratio of each region was maintained-. _ ~inal1y, we produced an 88 x 

128 pixel image in which the average horizontal median corresponds to the horizontal center 

of the image. Examples of size-normalized silhouettes are shown in Fig. 4.7. 
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(a) A-55 (b) A-65 (c) A-75 (d) A-85 

Figure 4.6: Composite images showing examples ofa subject in each dataset after rotation cor­
rection. Each composite image includes the subject at the start ("Star!"), the middle ("Middle"), 
and the end ("End') of the section. The vertical red line represents the center of the section. 

Figure 4.7: Examples of size-nonnalized gait silhouettes (every four frames). 

4.4 Gait-based Person Identification 

This section describes a framework for perfonnance evaluation of gait-based person identifica­

tion. 

4.4.1 Gait Features 

The current trend in gait representation is appearance and period-based representation, such as 

the averaged silhouette [35], also known as the Gait Energy Image (GEl) [36]. In this paper, we 

deal with six such state-of-the-art gait features: GEl, Frequency-Domain Feature [41] (referred 

to as FDF in this paper), Gait Entropy Image (GEnI) [146J, Masked GEL based on GEnI [37] 

(referred to as MGEI in this paper), Chrono-Gait Image (CGI) [147], and Gait Flow Image 

(GFI) [148]. 

The GEL is obtained by averaging silhouettes over a gait cycle, while the FDF is generated 

by applying a Discrete Fourier Transform of the temporal axis to the silhouette images in a gait 

cycle. In this work, 0, 1, and 2 times frequency elements are used. The GEnI is computed by 

calculating Shannon entropy for every pixel over a gait cycle, where the value of the GEl is 

regarded as the probability that the pixel takes the binary value. The MGEI is computed by 

masking the GEl with a pair-wise mask generated by each pair of probe and gallery GEnIs. 

The GEnI and MGEl aim to select the dynamic area from the GEL The CGr is a temporal 
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(a) GEl (b) FDF (three frequencies) Cc) GEnI 

([) MGEl Cd) CGl (e) GFI 

Figure 4.8: Examples of gait features. 

template in which the temporal information among gait frames is encoded by a color mapping 

function, and is obtained by compositing the color encoded gait contour images in a galt cycle. 

The GFI is based on an optical flow field from silhouettes representing motion information and 

is created by averaging the binarized flow images over a gait cycle. An example of each feature 

is shown in Fig. 4.8. 

4 .. 4.2 Gait Period Detection 

For the quantification of periodic gait motion, we adopted the Normalized Auto Correlation 

(NAC) of the size-normalized silhouette images for the temporal axis: 

T(N) 
C(N)= ~Ln;::() g(x,y,n)g(x,y,n+N) 

J ~L;::; g(x,y,n)2 J ~L;::; g(x,y,n+ NY 
(4.1) 

T(N) =Motal-N - 1, (4.2) 

where g(x,y,n) is the silhouette value at position (x,y) of the n-th frame, C(N) is the autocor­

relation for the N -frame shift, and Ntotal is the total number of frames in the sequence. Because 

gait is a symmetrical motion to some extent, peaks of the NAC were assumed to appear for all 

half periods on the temporal axis. Thus, we determined the gait-period Ngait as the frame shift 

corresponding to the second peak of the NAC. An example of the relation between NAC and 

frame shift is shown in Fig. 4.9. 
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Figure 4.9: Example of the relation between NAC and frame shift. In this figure, the frame 
shift corresponding to the second peak of the NAC is 32. 

4.4.3 Distance Matching 

Tn the eva1uation of datasets A-55, A-65, A-75, and A-854, a gait feature for a subject was 

created from a section of a dataset (as illustrated in Fig. 4.6) that includes one gait period. Note 

that there is some area of overlap for some subjects between sections as shown in Fig. 4.4. All 

pairs of features (gallery and probe features) were then directly matched 5. 

The distance Dij,K between the i-th probe subject and the j-th gallery subject in dataset K E 

{A-55, A-65, A-75, A-85} was measured as, 

(4.3) 

where Pi,K and Gj,K are feature vectors of the i-th probe and j-th gallery in dataset K, respec­

tively, and" . 112 is the Euclidean distance. In addition, we exploited z-nonnalization [149] 

of the distance among galleries for each probe to improve the performance in a one-to-one 

matching scenario. 

For dataset A-ALL, we first calculated z-nonnalized distances for each section of the four 

abovementioned datasets and then averaged them as a total distance. Note that this averaging 

is equivalent to combining the normalized scores via the sum rule [150]. 

4Because two sequences (gallery and probe sequences) are required for person identification, dataset A is used 
hereafter. 

5Since only a single gait feature was obtained for each dataset, statistical discriminant analysis considering 
within-class variance such as linear discriminant analysis could not be applied. 
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4.5 Performance Evaluation of Gait-based Person Identifica­
tion 

Despite the recent welcome development in gait-based person identification in the research 

community, the following open issues still remain. 

1. An evaluation of gait-based person identification with statistical reliability has not been 

carried out owing to the lack of a large population dataset. 

2. Also, to the best of our knowledge, the effects of gender and age on identification per­

formance have not been explored because of the lack of a dataset with sufficient subject 

diversity. 

Therefore, we address the above issues using our dataset. In this section, we first show the 

statistical reliability of the evaluation using our database. The upper limits of identification 

performance of state-of-the-art gait representations introduced in the previous section are then 

demonstrated. Finally, we reveal the effects of age and gender on identification performance. 

4.5.1 Effect of the Number of Subjects 

First, the effect of the number of subjects is demonstrated by means of a Receiver Operating 

Characteristic (ROC) curve. The ROC curve is a common tool for performance evaluation 

in biometrics and denotes the trade-off between the False Rejection Rate (FRR) and False 

Acceptance Rate (FAR) when the acceptance threshold is changed by a receiver in a one-to­

one matching scenario. 

From statistical analysis of ROC curves [151], the standard deviation of the FRR with a 

single probe for each subject is estimated as 

(4.4) 

where ft is the observed FRR and n is the number of subjects. This indicates that the obtained 

FRR becomes more reliable as the number of subjects increases. 

To validate the estimation, we repeated the experiments with randomly chosen subsets with 

fewer subjects and compared the actual standard deviation of the performance and that esti­

mated from Eq. (4.4) using the GEl as the gait feature. First, we prepared 100 subsets com­

prising 100 subjects randomly chosen from dataset A-65 (which comprises 3,770 subjects) and 

obtained 100 ROC curves from the experimental results. We then calculated the average and 
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Figure 4.10: ROC curves of gait-based person identification using GEl with a varying number 
of subjects. Black and red indicate, respectively, smaller subsets and the whole set of A-65. 
The bold line and two bounding dashed lines indicate, respectively, the average /1 and standard 
deviation range J1 ± cr derived from Eq. (4.4). Gray bars denote the standard deviation ranges 
Jl ± (J obtained in the experiments. 

standard deviation oftbe FRR for each FAR, depicted as an averaged ROC curve (hold black 

IIDe) and standard deviation range bar (gray bar) in Fig. 4.10. Additionally, the estimated stan­

dard deviation range is depicted as two dashed black lines. From the graph, we see that the 

standard deviation ranges derived from the experimental results correspond well with those 

estimated from Eq. (4.4). 

In addition, the results for the whole set are superimposed as the bold red line, while 

the standard deviation range estimated from Eq. (4.4) is depicted as two dashed red lines in 

Fig. 4.10. We see that the standard deviation range is significantly narrower than that of subsets 

with fewer subjects. 

4.5.2 Comparison of the Gait Feature 

Performance comparison 

This section compares the identification performance of the six gait features described in Sec­

tion 4.4.1. The identification performance was evaluated using two metrics: (1) the ROC curve, 

and (2) the rank-l and rank-5 identification rates. The rank-l and rank-5 identification rates, 

which are common evaluation measures in a one-to-N matching scenario, denote the percent­

ages of correct subjects out of all the subjects appearing within the first and fifth ranks, respec­

tively. Note that the rank-1 and rank-5 identification rates depend on the gallery size, whereas 

the ROC curve is essentially independent of the gallery size. 
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Figure 4.11 : Performance comparison of six gait features in terms of the ROC curve and EER. 
Each bar represents a standard deviation range derived from Eq. (4.4). 
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Table 4.4: Performance comparison of six gait features in terms of the rank-l identification 
rate. 

Dataset I GEl FDF GEnI CGI GFI MGEI 

A-55 84.70 83.89 76.42 75.58 75.15 68.35 
A-65 86.63 85.49 78.65 78.97 77.11 68.91 
A-75 86.91 86.59 79.95 81.58 76.54 67.10 
A-85 85.72 85.90 80.95 83.35 74.92 61.19 
A-All 94.24 94.17 90.93 91.60 87.46 84.18 

Table 4.5: Performance comparison of six gait features in terms of the rank-5 identification 
rate. 

Dataset I GEl FDF GEnI CGI GFI MGEI 

A-55 92.39 91.53 86.67 86.02 85.83 80.09 
A-65 92.84 92.81 88.14 88.06 87.32 79.71 
A-75 92.78 92.88 89.23 89.28 85.84 78.41 
A-85 93.01 92.83 89.60 90.80 84.73 73.19 
A-All 97.13 97.10 .95.35 95.32 92.84 90.58 

First, the performance is compared for each observation angle using datasets A-55, A-65, 

A-75, and A-85, since the gait feature property is dependent on the observation angle6 . The 

ROC curves with standard deviation range bars for each dataset are shown in Figs. 4.11(a), 

(b), (c), and (d), while the Equal Error Rate (EER) is summarized in Fig. 4.11 (f). In addition, 

rank-l and rank-5 identification rates are given in Table 4.4 and Table 4.5. From the results, 

although the performances of the GEl and FDF are nearly equal and the performances of the 

GEnI and CGI are nearly equal, we see that there is a statistically significant performance 

difference between the GEl (or FDF), GEnI (or CGI), GFI, and MGEI, and the performance 

order of these techniques is almost independent of the observation angle. 

Next, we compare the total performance using dataset A-ALL, with the results shown in 

Fig. 4.11 (e), Table 4.4, and Table 4.5 (bottom row). As for the results for A-ALL, the following 

reasons are suggested for the improvement in identification performance: a) the effect of gait 

fluctuations, which notably appears on the arm swing and head pose, was decreased by com­

bining the scores of each observation angle, and b) the variations in the gait feature property 

caused by the observation angle improved the identification performance, as reported in [90]. 

From these results, it can be seen that the GEl and FDF achieve the best performance overall. 

6For example, static features such as body shape are clearly seen in front-view gait images, while dynamic 
features such as the step and arm swing are clearly seen in side-view gait images. 
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Probe Gallery Difference 

GEl GEl 

GFI GFI 

(a) A subject with large head pose fluctuation (b) A subject with large arm swing fluctuation 

Figure 4.12: Examples of subjects in A-8S. Note that the value of the GFI is inverted for 
visibility. All feature differences between gallery and probe features are visualized by colors 
(green and red) in the corresponding difference image. Green indicates that the probe feature 
appears more strongly, while red depicts the opposite. Regarding the subject in (a)) the rank 
score llSing the GET is 21o, while that using the GF! is 1 (also, the rank scores are 79, 239, 7, 
and 19 using the PDF, COl, OEnI, and MOEI, respectively). On the other hand, for the subject 
in (b), the rank score using the OEI is 1, while that using the OFI is 567 (also, the rank scores 
are all 1 using the other features) . 

Note that these comparison results are partly inconsistent with the results in previous works, 

for exan1ple, [147] (GEl vs. CGI) and [148] (GEl vs. GFD. The differences between the 

databases used for the evaluations (e.g., subject diversity, silhouette quality, sequence length, 

and intra-subject variations) are considered to be the cause of the inconsistencies. For exam­

ple, according to the latest evaluation results of the COl reported in [38], GEl perfonnance is 

superior to that of COl only if there is no intra-subject variation and only a single gait period 

occurs in a sequence. Both these conditions are true in our dataset. 

Correlation among features 

Although some kind of upper limit on identification performance using state-of-the-art gait fea­

tures has been shown in the previous section, investigating the correlation among gait features 

is still meaningful for the design of a feature fusion scheme [152] to further improve identifica­

tion performance. Each gait feature has a unique property and is considered to be independent 

of other features to some extent. For example, Fig. 4.12(a) shows. a subject in A-85 whose rank 

score is 216 using the GEl and 1 using the GFI. On the other hand, Fig. 4.12(b) shows a subj eet 

in A-85 whose rank score is I using the GEl and 567 using the GFI. These typical examples 
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Figure 4.13: Examples of the rank score correlations between pairs of gait features. 

indicate that the GEL is relative1y sensitive to static pose fluctuations and robust to motional 

fluctuation, while the GFI is the exact opposite. 

To reveal which pair of features has a weak correlation, that is, is suitable for fusion, the 

rank score relations among gait features for each subject were analyzed. The results show that 

the GFI has relatively weak correlation with all the other features except the GEnI, and the CGI 

has the same with the GEnI, MGEI, and GFI. In addition, the GEnI has the same with the GEL, 

CGl, and MGEI. Some notable relations of rank scores for dataset A-85 among these features 

are shown in Fig. 4.13, while the relations of distances of the same subjects and different 

subjects are shown in Fig. 4.14. In the distance distributions shown in Fig. 4.14, though we can 

see that each distance relation between each pair of features is corre1ated as a whole, dispersal 

exists at a certain level. Therefore, these figures indicate that there is room for improvement 

in the identification performance by fusing these gait features. Demonstration of this through 

fusion is one of our future works. 
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Figure 4.14: Examples of the distance correlations between pairs of gait features. 

4.5.3 Effects of Gender and Age 

This section investigates the difference in gait-based person identification performance between 

genders and age groups. Our gait database is suited to this purpose because the age distribution 

of each gender is much wider than that in existing gait databases as mentioned in Section 4.3.3. 

In this experiment, we adopted the GEl as the gait feature and carried out the evaluation on 

subset A-65, since it has the largest number of subjects in dataset A 7 . 

Ages were grouped in 5-year intervals up to 20 years of age and in 10-year intervals from 20 

to 60 years of age for each gender8. Ages over 60 years were treated as one age group because 

of the shortage of subjects. The nunlbers of subjects in each gender/age group are given in 

7We also carried out this experiment using all the other gait features described in Section 4.4.1 on another 
subset A-RS, but the results showed similar trends. 

8Taking the rapid physical growth rate into consideration, we used 5 year intervals up to 20 years to reveal 
more detailed changes in identification perfonnance during the growing process. 
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Table 4.6: Numbers of subjects of each gender and age group in A-65 

Gender 

Male 
Female 

0.24 

0.20 

0.16 

ffi 0.12 
w 

0.08 

0.04 

0.00 

0-4 

32 
29 

0-4 

5-9 

312 
213 

5-9 

Age 
10--14 15-19 20-29 30-39 

323 150 267 288 
226 90 285 369 

40-49 50-59 

412 134 
403 73 

Over 60 

89 
75 

. Male 

. Female 

10-14 15-19 20-29 30-39 40-49 50-59 Over 60 
Age 

Figure 4.15: EERs among genders and age groups. The black bars represent the standard 
deviation ranges derived from Eq. (4.4). 

Table 4.6. 

The EER for each gender/age group is depicted in Fig. 4.15, while the distance distributions 

of the same subjects (true attempts) for each group are shown in Fig. 4.16. A comparison of the 

distance distributions of the same subjects and different subjects (imposters) for four typical 

age groups-under lOs (5 to 9 years old), early lOs, 20s, and 40s-are depicted in Fig. 4.17. 

Note that the original L2 nonn (Eq. (4.3)) is shown in these distributions. 

Effect of gender 

First, we focus on the difference in gait-based person identification perfonnance between males 

and femaJes. According to the results in Fig. 4.15, identification performance for females tends 

to be better than that for males in almost all the age groups . Additionally, Fig. 4.17 implies that 

the inter-subject variation in females' gait is greater than that in males' gait, while intra-subject 

variations are not that different between males and females in each age group. The difference 

in intra-subject variation is assumed to be due to the fact that the range of appearance variation 

in females, which mainly comes from variations in hair style, clothes, and shoes, is greater than 

that in males. 
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Figure 4.16: Distance distributions of the same subjects in each gender/age group. 

Effect of age 

Next, we focus on the difference in gait-based person identification perfonnanee between age 

groups. From the results in Fig. 4.15, we see that identification perfonnance for the group 

of very young children (0 to 4 years old) is worse than that for the other age groups, and 

this gradually improves with the slightly older groups up to the group of late lOs. This result 

is intuitively understandable because the intra-subject gait fluctuation for children is greater 

owing to the immaturity of their walking, as illustrated in Fig. 4.16. On the other hand, the 

fluctuation in gait for adults is small as shown in Fig. 4.16. This indicates that adults have 

established their own walking style; in other words, they have a fixed gait pattern. In this 

regard, however, the intra-subject variation in the over-60 female group is slightly larger than 

that in other adult age groups, and this is assumed to be due to a decline in physical strength 

with aging. Further study of elderly groups (over 60 years old), together with the additional 

data collection required, is considered as future work. In addition. a more detailed analysis of 

gait properties among age groups, such as investigation of the differences in the effects of body 

parts among age groups, is one of our future works. 

The above observations indicate that the dependence of gait fluctuation on the age group 

implies that gait fluctuation can be a useful cue for age class'ification according to gait. In 

addition, the age group can be regarded as a so-called quality measure [153] for gait-based 

identification, which is one of the interesting future directions of this study. 
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Figure 4.17: Comparison of distance distributions of the same subjects and different subjects 
in four typical age groups. 

4.6 Conclusions 

This paper described the construction of a gait database cOlnprising a large population dataset 

and presented a statistically reliable performance evaluation of gait-based person identifica­

tion. This dataset has the following advantages over existing gait databases: (1) the number 

of subjects is 4,007, which is more than 20 times greater than the number in existing public 

large-scale databases, (2) the male-to-female ratio is close to 1, (3) the age distribution is wide, 

ranging from 1 to 94 years, and (4) the quality of all silhouettes is guaranteed by visual con­

firmation. Using our dataset, we carried out a statistically reliable performance comparison of 

gait-based person identification using state-of-the-art gait features. Moreover, the dependence 

of identification perfonnance on gender and age group was analyzed with the results providing 

several new insights, including the performance difference between males and females, and the 

gradual change in identification performance with human growth. 

Although our dataset has the largest population of all databases till now, there is still an in­

sufficient number of very young children and elderly persons when compared with the numbers 

of other generations. Therefore, we need to collect the required gait datasets by taking advan­

tage of various events, such as outreach activities, in the future. Additionally, the construction 

of another dataset using images taken with camera 2 is a future work. 
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Moreover, further analysis of gait-based person identification performance using our dataset 

is still needed. For example, our dataset enables the evaluation of cross-view recognition and 

this will show the robustness of each gait feature with respect to view variations. Finally, our 

database is suitable for the development of gait-based gender and age classification algorithms, 

which are quite meaningful for many vision applications such as intelligent surveillance, and 

these remain as future works. 
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Chapter 5 

Conclusion 

This thesis describes the techniques for visual surveillance using gait-based person identifi­

cation. Gait as a biometric cue has the ability of identifying individuals at a distance and is 

difficult to disguise. Due to such advantages, gait-based person identification could enhance 

the value of surveillance in public space, furthermore, it could contribute a lot to the realization 

of safe and secure society. In this research, we tackled the three major issues of gait-based 

person identification toward the practical use in visual surveillance. 

First, we addressed an issue of accurate foreground segmentation which is primal prepro­

cessing of gait-based person identification, and we proposed a novel framework of foreground 

and shadow segmentation with a static binocular system. We aimed more accurate segmenta­

tion in the presence of strong shadow and occlusion relationship between two cameras. The ho­

mography constraint was utilized to distinguish the foreground and shadow. In addition, while 

existing homography-based approaches did not consider the occlusion relationship between 

foreground and shadow and often failed at such regions, it was taken into account by treating 

homography-correspondence pairs symmetrically in the proposed method, and the segmenta­

tion problem was regarded as a multi-labeling problem for a homography-correspondence pair. 

In the labeling strategy, the labels which represent the correspondence of shadow and back­

ground were prohibited by homography constraint. The multi-labeling problem was formulated 

in the framework of energy minimization in which the energy function was composed of a data 

term and a smoothness term. The data term contributed to the label assignment in terms of the 

color of each pair ofhomography-correspondence pair, and the smoothness term did in terms of 

spatio-temporallabel continuity, and the energy minimization problem was optimized by cx-f3 

swap algorithm. The performance of the proposed method was examined through the compar­

ison experiments with color-based approach, disparity-based approach, existing homography­

based approach, and their integration approaches. Three different real image sequences with 
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strong shadow and occlusion relationship were used as the evaluation data. The results showed 

that the proposed method overall outperformed the existing methods. 

Second, an issue of identification performance decrement caused by intra-subject variations 

such as gait fluctuation and condition changes (e.g., view, clothing, and carrying conditions) is 

addressed. We focused on the social context that we often act in groups (e.g., friends, family, 

and co-workers). Such group context was used as a cue for identifying individuals to enhance 

the identification performance in the presence of the degradation of individual cue caused by 

intra-subject variations. In surveillance videos, a group often observed with non-group mem­

bers at a time and the spatial relations among them are dynamically changed with time. To 

consider such dynamic relations among persons, we used the behavioral relations as group 

context including spatial distance and velocity vector difference among persons through the 

video sequences, while existing group context-assisted person identification approaches just 

used co-occurrences among persons as group context. The group context was integrated with 

individual cue in the form of a pair-wise CRF model. In the model, the person-to-person rela­

tionships were represented as a graph, where each node corresponds to each person and each 

edge corresponds to the relationship between each pair of persons. A person identification 

problem was then formulated as a maximization problem of the conditional probability of the 

label assignment for all the nodes, and the problem was approximately solved by LBP algo­

rithm. In the iteration of the message passing process ofLBP, the identity confidence for each 

person was propagated to the identities of the surrounding persons based on their individual 

cues and group information, so that the same group members with similar characteristics (spa­

tial proximity and similar velocity vector) enhanced each other's identities. We conducted the 

experiments to confirm the effectiveness of the proposed method by using both a real image 

dataset composed of 47 subjects and the simulation datasets composed of a thousand subjects. 

In the experiments, gait is used as a biometric cue, and the significant improvement in iden­

tification performance was demonstrated by the proposed method through all the experiments 

compared with the straightforward method based on individual cues alone. 

Third, we addressed an issue of the performance evaluation of gait-based person identifi­

cation with statistical reliability. To solve the issue, we constructed the world's largest gait 

database composed of 4,007 subjects (2,135 males and 1,872 females) with ages ranging from 

1 to 94 years, while existing major databases included at most 185 subjects with biased gen­

der and age distributions. In addition, the quality of each silhouette was ensured by visual 

check and manual modification, and the observation angle of each subject in each frame was 
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specifically defined in our database to enable the fair performance evaluation in terms of sil­

houette quality and observation angle. By using the database, first, we demonstrated that the 

dataset ensured the statistical reliability of an performance evaluation result, comparing with 

that from the dataset comprising 100 subjects. Then, we carried out the performance com­

parison of state-of-the-art model-free gait representations: GEl, FDF, GEn!, MGEI, CGI, and 

GFI. The results showed a kind of their upper limits of identification performance and the sig­

nificant performance differences among them. The results also showed that the GEl and FDF 

achieved the best performance of all in total. Finally, we analyzed the dependence of iden­

tification performance on gender and age group. As the results, several new insights such as 

the performance difference between males and females and the gradual change in performance 

with human growth were provided. 

In the future, the construction of a total scheme of gait-based person identification for visual 

surveillance is required for the practical use, by integrating each of the techniques proposed in 

this thesis and other state-of-the-art techniques of segmentation, tracking, and gait representa­

tion. Although we focused on the three issues, there are some remained critical issues to be 

solved. Of these, the occlusion among persons, which often arises in the surveillance videos, 

especially in crowded scenes, is one of the most challenging problems not only from the view 

point of preprocessing, but also from that of identification. 

Segmentation and tracking of persons as preprocessing in such occlusion relationship is 

inevitable to obtain each gait of them. Some recent works [130, 131, 154] address the is­

sue, and it is considered that the use of behavioral context among persons as described in 

this thesis can enhance their performance of segmentation and tracking, as demonstrated in 

the studies of context-based tracking [121, 122]. On the other hand, even if the segmentation 

and tracking are done well by such state-of-the-art techniques, an issue of identification via 

incomplete gait features created from the partial silhouettes of the occluded persons is still re­

mained. For the issue, gait-based person identification approaches using partial gait representa­

tions [155, 156,42, 157] could ensure the identification performance to some extent. Moreover, 

the incorporation of these methods into the group context-aware framework proposed in this 

thesis will much improve the identification performance in such case. 

As for the performance evaluation, though the world's largest gait database in terms of the 

number and diversity of subjects is constructed in this thesis, it includes no walking variation. 

Therefore, the other challenging issue is the construction of more expansive gait database which 

includes both a number of walking variations (e.g., views, clothing, shoes, speeds, surfaces, and 

carrying conditions) and a number of subjects with wide ranging ages like that in our database. 
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Such database will encourage the development of the walking condition-invariant gait-based 

person identification scheme with statistical reliable robustness toward practical use. 

Only after gathering these techniques, gait-based person identification can be applied for 

various practical scenes in visual surveillance and will be able to contribute to the safe and 

secure life in a real sense. 
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