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Abstract

The importance of automated visual surveillance in public space has been increased in response
to the recent rising concerns about safe and security, and computer vision-based person iden-
tification techniques play a key role in it. Gait as a biometric cue has received much attention
in recent years due to the ability of identifying individuals at a distance, and gait-based person
identification technique could contribute much to crime investigation and safety confirmation
through wide-area surveillance. Although gait-based person identification has such a promising
ability, several critical issues need to be sufficiently considered when applying it to real visual
surveillance tasks. Among them, this thesis addresses following three issues, each of which
is corresponded to a primal step in gait-based person identification: i) accuracy of foreground
segmentation in preprocessing step, ii) robustness to intra-subject variations in identification
step, and iii) statistical reliability in performance evaluation step.

First, a research for the first issue is described. We propose a method for accurate fore-
ground segmentation in the presence of strong shadow. For the separation of foreground and
shadow, the homography constraint in binocular system is used. In addition, while existing
homography-based methods often suffer from the occlusion relationship, the proposed method
takes such relationship into account explicitly by using a homography correspondence pair-
based symmetric labeling scheme. The scheme is formulated in the form of energy minimiza-
tion problem and optimized by an a—f swap algorithm. The experimental results demonstrate
that the proposed method realizes more accurate segmentation than the existing methods in the
presence of strong shadow and occlusion.

Next, we propose a novel person identification framework where the identification perfor-
mance could be enhanced against intra-subject variations. We pay attention to the fact that
people often act in groups such as friends, family, and co-workers in social living and we uti-
lize this as a cue for identifying individuals to improve the identification performance. The
individual cues and the group cue are integrated in the form of conditional random field model,
and the identities of individuals are optimized via belief propagation algorithm. The compar-
ison experiments with the straightforward identification scheme show the effectiveness of the

proposed method.



Finally, we construct the world’s largest gait database. The database includes 4,007 subjects
(2,135 males and 1,872 females) with ages ranging from 1 to 94 years. The database enables
the statistically reliable performance comparison among state-of-the-art gait features for per-
son identification. Also, we investigate the dependences of the identification performance on
gender and age group, and several novel insights are provided such as the gradual change in
identification performance with human growth.

Together with the considering of these issues, this thesis could make a large contribution to

the development of more accurate and practical gait-based visual surveillance.
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Chapter 1

Introduction

Realization of the safe and secure life is always social demand, and the visual surveillance has
been contributed to it. Together with the increase in fears of violent crimes and terrors such
as the events of September 11, 2001, USA and the bomb attacks in London on the July 2005,
today the importance of visual surveillance, especially the surveillance from a distance, has
been definitely increased worldwide to observe the broad area activities of people and vehicles
with minimum blind area. In fact, an enormous number of surveillance cameras are deployed
in a wide range of public places (e.g., airport, underground station, street, school, shopping
mall, parking lot, and sports arena) for crime reduction and risk management !. On the other
hand, massive surveillance cameras have posed expensive cost for manual operation required
to manage them. As a result, the video from the cameras cannot be always monitored and is
often used only as a record for post investigation of an incident. For crime prevention and
investigation and safety confirmation, however, real-time event detection from lots of video
data is still needed and also, comprehensive analysis for widely distributed cameras is desired
for such purposes. To meet such needs, computer-assisted surveillance technology has been
developed in recent years [1] with the great advance of computer processing power.

Computer vision technology takes the central role in automated surveillance [2, 3, 4, 5,
6]. For example, the techniques of person detection, tracking, and action recognition from
videos ensure the automatic alert ability for intruders and suspicious individuals with abnormal
behavior. In addition, the techniques of character recognition realize the timely detection and
online tracking of the wanted vehicles based on their number plates. Finally, biometric-based
person identification techniques make the surveillance system to be more intelligent, that is, the
system acquires the ability to know that “who exists or dose not exist in the area”. This enables

the automatic detection of suspected persons, unwelcome strangers, and protected persons (e.g.,

1More than 4.2 million cameras are deployed in UK.



children and seniors). Consequently, this significantly contributes to realization of the safety
and security in our society.

There are two major biometric cues for person identification in visual surveillance, face and
gait?. As for the face-based person identification from the videos or still images, a considerable
number of techniques have been developed [7, 8, 9, 10, 11]. As a result, the techniques are
now used commonly not only for visual surveillance [12, 13, 14], but also for access control
[15, 16, 17], image searching [18, 19], and consumer photo management [20, 21]. Also, many
commercial softwares of face recognition are available (e.g., Facelt-SDK [22], FaceVACS-
SDK [23], OKAO Vision [24], and NeoFace [25]). Automatic face recognition mainly uses 2D
front-face pattern and texture information and it essentially requires the high-resolution image,
though there exists some techniques of obtaining high resolution image from low resolution
images. This restricts its range of application in visual surveillance in terms of not only the
observation view, but also the distance to the subjects. Thus, face-based identification is not
suitable for many of the videos from surveillance cameras deployed in public space, in which
the subjects are captured from a distance. In addition, the individual face can easily be altered
or concealed by dark glasses and mask.

On the other hand, gait-based biometrics is a relatively new area of study within the com-
munity of computer vision research [26]. The gait has attractive advantages including the
difficuity to disguise and the ability of identifying individuals at a distance without their coop-
eration. Therefore, it is expected to be applied to the long-distance surveillance in public space.
In fact, gait-based verification from public CCTV images has been admitted as evidence in UK
[27], and gait evidence has been used as a cue for criminal investigations in Japan.

In the last decade, various gait-based person identification techniques have been stud-
ied, and there are two different approaches: model-based approach and model-free approach.
Model-based approaches fit a model to input images and represent gait features such as shape
and motion by the parameters of the model. Some methods [28, 29] extracted periodical fea-
tures of leg motion by Fourier analysis. Bobick et al. [30] extracted parameters of shape and
stride. Wagg et al. [31] extracted static shape parametefs and gait period with an articulated
body model, and Urtasun et al. [32] extracted joint angles with an articulated body model.
Although model-based approaches are generally view-invariant and scale-invariant and these
advantages are important for practical applications, the approaches tend to be more complex

and computationally more expensive than model-free approaches. In addition, model-based

2Manner of walking.
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Figure 1.1: A general processing [low of model-free gait identification (the GEI [36] is illus-
trated as gait feature).

approachcs often require good quality images to calculate the model parameters with high ac-
curacy from a gait sequence, which may be difficult to obtain in a real surveillance system.

Recent trends in gait-based person identification are model-free approaches due to the low
computational cost and robustness to the noise. Model-free approaches represent gait features
by directly analyzing the subject’s binary silhouettes without the use of a model. A general
framework of model-free approach is shown in Fig. 1.1, which consists of silhouette extraction
including subject segmentation, feature extraction, and classification procedures. To date, a
variety of mode-free methods have been proposed ranging from a method of direct matching of
silhouette images, which is called as a baseline algorithm [33], to hidden Markov model-based
method [34]. Among them, a periodic template-based methods seem to be the mainstream due
to its simplicity and high performance, as typified by a method based on averaged silhouette
[35] (which is also known as Gait Energy Image (GEI) [36]). In recent works, it is reported
that, when there is no subject’s condition change, nearly 100 % identification performance is
achieved by state-of-the-art methods [37, 38] for public gait databases [39, 40] which provide
relatively clear silhouette sequences of over 100 subjects.

Although such successful performance has been achieved by model-free approaches, there
are still some significant issues posed to the practical use of gait-based person identification for
visual surveillance?. Of these, we address the following major three issues in this thesis, each

of which corresponds to a primal step in gait-based person identification.

1. Accuracy of foreground segmentation in preprocessing step: Many of the existing

works use the public gait databases such as [39, 33, 40] which provide normalized or

To the best of our knowledge, there is no study which evaluates the gait-based person identification perfor-
mance with real surveillance videos automatically.



original silhouette image sequences, and they avoid the need for foreground segmenta-
tion (subject’s silhouette extraction) process. On the other hand, almost all other works
use original gait dataset captured in rather controlled environment only for their evalua-
tion. Typically, each sequence contains only one subject without strong shadow. There-
fore, the foreground segmentation task is not so serious and it can be easily achieved by
straightforward background subtraction technique. In the real surveillance videos, how-
ever, the task is not always easy, especially in outdoor scene due to strong shadow. The
failure in shadow removal causes not only the distortion of a silhouette’s shape, but also
the mergence of silhouettes of two or more subjects, and consequently, the performance
could be significantly decreased. Although shadow removal is major problem in com-
puter vision and many color-based techniques have been proposed, it is still difficult to

separate shadow from the foreground accurately in the presence of strong shadow.

. 2. Robustness to intra-subject variations in identification step: Gait is behavioral char-
acteristic and tends to be more fluctuated for each attempt (walking) than physiological
characteristic such as face. The fluctuation often arises in arm swing and head pose,
and especially, it might be notably appeared in children’s walk due to the immaturity
of their walking. Generally, identification performance is decreased by such fluctua-
tion. In addition, various condition changes such as observation view, clothing, and
carrying condition changes cause the identification performance decrement as reported
in [33]. Although, there are some works which aim to construct robust scheme for such
intra-variations (e.g., [41] addresses the view-invariant scheme and clothing change is

considered in [42]), the performance cannot be fully recovered.

3. Statistical reliability of performance in performance evaluation step: For the statisti-
cally reliable evaluation of gait identification approaches, the construction of a common
gait database is essential. Though several gait databases have been constructed to date
[43, 44, 39, 45, 46, 47, 33, 40, 48, 49, 50, 42, 51, 52], these databases include at most
185 subjects [51] and the subjects’ genders and ages are biased in many of the databases.
Therefore, these are insufficient for the performance evaluation especially in terms of the

number and diversity of the subjects.

The thesis is organized as follow. Chapter 2 presents a novel framework of foreground
and shadow segmentation with a static binocular system is described for the first issue. Ho-

mography constraint is one of geometric constraints in a multi-camera system, and it is often
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used for foreground separation from shadow. Though existing homography constraint-based
segmentation approaches can work well in the presence of strong shadow, it often suffer from
occlusion problems between foreground and shadow. In our approach, to explicitly take the oc-
clusion relationship into account, we treat a homography-correspondence pair symmetrically.
Also, we regard the segmentation problem as a multi-labeling problem for each homography-
correspondence pair. We then formulate the problem as an energy minimization problem, and
get the pair-wise labeling results by minimizing it via an o—f8 swap algorithm. Experimental
results show that accurate segmentation is obtained in the presence of the occlusion region in
each side image.

Next, we describe a framework of group context-aware person identification for the sec-
ond issue in Chapter 3. In social living scenarios, people often act in groups composed of
friends, family, and co-workers. We utilize this as a cue for person identification to improve
identification performance in the presence of the attenuation of gait-based identity caused by
intra-subject variations. The relationships between the people in an input sequence are modeled
using a graphical model. The identity of each person is then propagated to their neighbors in
the form of message passing in the graph via belief propagation, depending on each person’s
group affiliation information and their characteristics, such as spatial distance and velocity vec-
tor difference, so that the members of the same group with similar characteristics enhance each
other’s identities as group members. The proposed method is evaluated through gait-based per-
son identification experiments using both simulated and real input sequences. Experimental
results show that the identification performance is considerably improved when compared with
that of the straightforward method based on the gait feature alone.

Then, we describe the construction of the world’s largest gait database—the “OU-ISIR Gait
Database, Large Population Datasef”—and its application to a statistically reliable perfor-
mance evaluation of gait-based person identification for the third issue in Chapter 4. Whereas
existing gait databases include at most 185 subjects, we construct a larger gait database that
includes 4,007 subjects (2,135 males and 1,872 females) with ages ranging from 1 to 94 years.
The dataset allows us to determine statistically significant performance differences between
currently proposed gait features. In addition, the dependences of identification performance on
gender and age group are investigated and the results provide 'several novel insights, such as the
gradual change in identification performance with human growth.

Finally, conclusions are drawn and future work is discussed in Chapter 5.






Chapter 2

Foreground and Shadow Segmentation
based on Homography-correspondence
Pair

2.1 Introduction

Foreground segmentation is crucial preprocessing for gait-based person identification. For ex-
tracting foreground, background subtraction has been widely used [53] for surveillance. The
methods, however, often extract not only the objects but also their shadows, which can be
problematic. The false detection of shadow as foreground causes the distortion of foreground
appearance and mergence of the areas of foreground, and this impairs the original feature of
foreground. As a result, the performance of gait-based person identification is significantly
decreased. Therefore, shadow segmentation, detection, or removal is also important problem,
and many techniques have been proposed for the purpose. Although, color-based method is the
most popular [54], the method tends to be unstable in real environment.

On the other hand, multiple cameras-based surveillance with overlapped fields of view has
attracted increasing interest in recent years, due to the demands of accurate detection [55] and
tracking [56, 57, 58, 59, 60] of multiple people occluded by other people and analysis of their
activities [61, 62] in a complex environment.

In such a multi-view framework, several geometric approaches have been applied to the
foreground/shadow segmentation [63][64] taking advantage of the framework. One well known
approach is foreground separation from shadow based on disparities [63]. However, it often
suffers from mis-correspondence probléms and cannot be applied to scenes with no texture.

Alternatively, a homography constraint is also popular as a geometric constraint between

multiple viewpoints. Approaches based on homography aim mainly to distinguish standing
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objects from ground plane objects including shadow [64]. Existing homography-based ap-
proaches, however, do not consider the occlusion relationship between foreground and shadow,
and they tend to fail at the region of occlusion.

In the field of stereo correspondence problems, symmetric correspondence based approaches
have been proposed to handle the occlusion appropriately [65]. These approaches explicitly
take the occlusion relationship into account by treating a stereo correspondence pair in a sym-
metric way. |

Inspired by the symmetric approaches, we propose a symmetric segmentation framework
based on a homography constraint with occlusion handling between foreground and shadow.
Our goal is “how fo segment foreground, shadow, and background”, and we regard this seg-
mentation problem as a homography-correspondence pair labeling problem. Then, we solve
this in an energy minimization framework together with a graph-cut algorithm [66]. Consid-
ering the homography-correspondence symmetrically, we cannot only segment the occluded
region correctly, but also acquire additional information about the occluded region, such as,
what label is assigned to the occluded region, shadow or background. This kind of information
is valuable for many multi-view applications.

The remainder of this paper is organized as follows. Section 2.2 describes related work.
Section 2.3 introduces our segmentation framework. Section 2.4 describes the detailed imple-
mentation of the proposed method. Section 2.5 demonstrates the effectiveness of the proposed
method using experiments and the limitation and our discussions are presented in Section 2.6.

Finally, Section 2.7 concludes our work.

2.2 Related Work

Color-based approach: Most of color-based approaches are based mainly on the following
two properties of shadow color: (a) The shadow region is darker than the original background
region, (b) The'color vector direction of the shadow region is similar to that of the original
background region. These properties are considered in various color spaces such as RGB color
space [54, 67] and HSV color space [68, 69]. Color-invariant feature is also used for shadow
removal [70, 71]. The performance comparison result among these methods is reported in [72].

Recently, many learning-based approaches are actively investigated [73, 74, 75]. In these
methods, first, the shadow candidate pixels are detected by weak shadow detector based on
shadow color properties as described above, and then, a statistical shadow color model is con-

structed from the candidate pixels. Finally, each pixel is determined whether it belongs to
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shadow, based on the goodness of fit of its color on the learned shadow color model. Any
state-of-the-art color-based approach, however, could fail at the region with the same color
with shadow color (e.g., head region of black haired person), and this is an essential problem
of color-based approach.

Texture-based approach: Texture-based approach distinguishes shadow based on the fol-
lowing property: the texture of shadow region is the same with that of corresponding back-
ground region, while the texture of foreground region is different from that of corresponding
background region. In the methods of Javed et al. [76] and Sanin et al. [77], first, shadow can-
didate regions are decided via color-based segmentation and blob analysis, and then, the sim-
ilarities of gradient feature between shadow candidate regions and corresponding background
region are calculated. Finally, shadow fegions are determined by thresholding the similarities.
Besides, some methods use both color and texture. A step-wise shadow detection and removal
scheme based on color and texture features is proposed in [78]. In addition, learning-based
methods are proposed in [79, 80], where both color and texture features are statistically mod-
eled by learning. Texture-based approaches tend to be unstable for the region of weak texture
and the scene with strong shadow such as outdoor scene in daylight.

Disparity-based approach: Disparity is often used for accurate foreground extraction
rather than shadow detection. In [63], disparity-based background subtraction scheme is pro-
posed for accurate and stable foreground extraction in the presence of rapid illumination change.
In addition, some works integrate color and disparity [81, 82]. In [83], the foreground extrac-
tion problem is regarded as a graph-based energy minimization problem and disparity is used
for the robust estimation of foreground Seed. Disparity-based approaches, however, often suffer
from mis-correspondence problems and cannot be applied to scenes with no texture.

Homography-based approach: In the problem of trajectory estimation of soccer player
via a static binocular system, Késuya et al. [84] utilize the homography constraint for the sepa-
ration of player and shadow region. In the method, first, foreground (player) candidate regions
are extracted by background subtraction in each side image, and next, each candidate region is
projected onto the field plane by homography transformation. Then, shadow regions are dis-
tinguished as the logical product regions in the plane between projected foreground candidate
regions of each side camera. Hamid et al. [85] further consider the color similarity in such
logical product regions in the plane to extract shadow. In the same manner, the homography
constraint is used for objects detection (including shadow detection) in the ground plane [86]
and the obstacle detection problem of mobile robot system [87]. In [64], both shadow color

property and homography constraint are used for shadow detection. The method is composed
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of learning phase and shadow detection phase. In learning phase, first, the foreground candidate
pixels determined by background subtraction are divided into foreground and shadow classes
based on homography constraint, and then, a shadow color model is constructed as mixture
Gaussian distribution from the color information of pixels of the shadow class. In shadow
detection phase, the shadow pixels are decided based on both homography constraint and the
goodness of fit on the shadow color model.

In this way, homography constraint is often used for filtering the false-positives of shadow.
Existing homography-based approaches, however, do not consider the occlusion relationship
between two cameras explicitly, and therefore, they fail in separating foreground and shadow
at the region of occlusion relationship. The detailed mechanism and the issue are presented in

the next section.

2.3 Homography-Correspondence Pair-based Segmentation

2.3.1 Problem setting

In this paper, the following conditions are assumed in our segmentation problem.
e A scene is captured by a static calibrated binocular camera system.
o The background of the scene is modeled as a pixel-wise Gaussian distribution.

e An object in the foreground stands on the ground plane and its shadow appears on the

ground plane.

Our goal is to segment the target region as foreground (“F”) or shadow (“S”) or background
(“B”), that is to say, to assign one of the three labels “F”, “S”, or “B” to each pixel in both
side images in a conformal manner. Note that “S” and “B” lie on the ground plane while “F”
stands on the ground plane. Note that shadowed foreground is regarded as foreground because

a primal aim of this work is foreground extraction.

2.3.2 Asymmetric treatment of homography constraint

Let us consider the homography-correspondence pair on the ground plane in the binocular cam-
era. According to the homography constraint, if a pixel belongs to the ground plane on one side
image, the color of the pixel is strictly consistent with that of the homography-correspondence

pixel in the other side image under the condition that ideally any standing object does not exist
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Figure 2.1: Homography-correspondence pair

Figure 2.2: Labeling examples

on the ground plane. This is a very useful property to distinguish the standing objects on the
ground plane from the ground plane objects.

In segmentation problems, this property is also useful when assigning a label to each pixel.
Some examples of the homography-correspondence pairs are shown in Fig. 2.1. First, suppose
that the left side image is a base image to be segmented. Because v; and v4 have similar colors
between each correspondence pixel, p{,l and pf,4 are labeled as “S” or “B” in the left side
image. On the other hand, because the pixel pairs v, and v3 have different colors between each
pair of correspondence pixels, piz and p’v3 are labeled as “F” in the left side image. Next,
supposed that the right side image is a base image to be segmented in turn, pixel pairs py, and
py, are labeled as “S” or “B”, and the pixel pairs py, and py, are labeled as “F” in the right
side image in the same way. The true labels of Pv, and pj, are, however, not “F” but “B” and

((Su
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This mislabeling often arises in cases where a pixel belongs to the ground plane in one
side image and where the corresponding pixel’s ground plane point in the other side image is
occluded by a foreground object as shown in this example. Therefore, the existing asymmetric

homography-based approaches suffer from the mislabeling due to occlusion.

2.3.3 Symmetric approach based homography-correspondence pair

In our framework, the homography-correspondence is treated symmetrically to cope with the
occluded regions and to segment them correctly.

Taking the occlusion relationship into consideration, the labeling strategy is as follows. If
the pixels are labeled “S” or “B” in one side image, their homography-correspondence pixels in
the other side image are given either the same label (not the occluded case) or “F” (the occluded
case). If the pixels in one side image are labeled “F”, their homography-correspondence pixels
in the other side image are possibly labeled “F”, “S”, or “B”, because the standing object
is not constrained by homography. From this observation, the possible pair-wise label for the
homography-correspondence pair are defined in Tab. 2.1. In this label set, for example, the
pair-wise label “FS” (e.g., the homography-correspondence pair v, in Fig. 2.2) represents that
the left side pixel of the pair is regarded as the shadow-occluding foreground and the right side
pixel is regarded as the shadow occluded by foreground.

Note that the label set is not mere the combination of possible labels in each side image,
we introduce the homography constraint in the form of prohibiting the-pair-wise labels, “SB”
and “BS”. These labels are never occurred because it is not possible for a ground plane object
to occlude another ground plane object. |

Let us consider the advantage of the prohibition by taking for example the homography-
correspondence pair v in Fig. 2.2. This pair is composed of p{,b and pj,, and the color of
p{,b is very similar with that of shadow, and the color of py, is almost the same with that of
background. Therefore, the label “S” is possibly assigned to PIv,, and the label “B” might be
assigned to p§, when color-based labeling is applied for each side image, though the correct
label of p{,b is “F”. On the other hand, due to the prohibition of the label “SB”, the proposed
labeling scheme could assign the correct label “FB” to v,.

Thus our segmentation problem is regarded as a multi-labeling problem for homography-
correspondence pair pixels, and the multi-labeling results provide all the relationships between
homography-correspondence pair of pixels. For example, the label “FS” means the foreground
occludes the shadow in the left side image, and also means the shadow in the right side image
is occluded by the foreground in the left side image. Example of pair-wise labeling are shown
in Fig. 2.2.
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Table 2.1: The pair-wise label sets for a homography-correspondence pair

Right-side label
Left-side label F S B
F FF FS FB
S SF SS —(prohibited)
B BF —(prohibited) BB

G A o )
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|
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|
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Leftside image Right side image

Figure 2.3: Homography-correspondence detail

2.3.4 Problem formulation

We formulate the pair-wise multi-labeling problem in a framework that minimizes energy. Let
us define the site v= (p’v, p{,) which represents a homography-correspondence pair as described

in the previous subsection. Then, the label set is defined as,
L = {FF,FS,FB,SF,SS,BF,BB}, 2.1

and the label assigned to a site v as Xy € L. Then our goal is to assign each site v a label xy
from the set L. Generally, this problem is formulated in an energy minimization framework as

follows,

E(x) =wg§vg(xv)+wh( Z)Eh(xu,xv) (2.2)
v wv)e

where the first and the second terms are data and smoothness terms, w, and wy, are the weights
of each term, x is a configuration (label combination), V is a set of all sites, and E is all
the combinations of the neighborhood sites. This energy function is minimized via graph-cut
algorithms such as the a-expansion or a-f8 swap algorithms [66].

Note that, the homography-correspondence positions are calculated using sub-pixel order

and the color of the sub-pixel position is spatially interpolated by their 4-neighborhood pixels
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as shown in Fig. 2.3. In addition, as shown in Fig. 2.4, we consider 10-neighborhood sites in a
spatio-temporal 3D domain composed of spatial 8-neighborhood, and temporal 2-neighborhood

sites.

2.4 Implementation

2.4.1 Seed generation

Given background subtraction regions as potential regions of shadow and foreground, the fore-
ground seed is provided as the union of the following two regions; one is the intersection of the
potential region and background region projected by homography from the other image, and
the other is the region which has a largely different color direction from the background one.
Then, the shadow seed is decided based on homography consistency and color-based shadow
likelihood (see Chapter 2.4.2 for detail).

2.4.2 Data term

The data term is defined by the log of the likelihood as,

_ _ P(e(v) [xv)P(xy)
Blxv) == log(P(xvlc (V))> o 10g(2[,-€L P(c (V) |xy= li)P(Xv = li)) ’ @3)

where P() is probability and ¢ (v) is a six dimensional color vector at site v composed of a pair

of RGB vectors in each image as where P() is probability and ¢ (v) is a six dimensional color
vector at site v composed of a pair of RGB vectors in each image as ¢ (v) = [c (p}) ,¢ (p})]7,
and ¢ (p) is color vector at pixel p. Then the pair-wise color observation model P(c(v) [xy) is
decomposed into [T;P(c (p}) |x}), where X/, is the one side label and i (i = /,r) is the camera

identifier.

Foreground model

The foreground color is approximated by a pixel-wise GMM which is trained by k-means

clustering from foreground seed pixels, and the foreground observation model is expressed as,
P(c(pl) X, =F) =4(c%,3X) (2.4)

N . S T _, 1 ,
= argmin( (coh)- &) 557" (ctob-b) ). 2.5)

where cf, and 2’} are a mean vector and a covariance matrix of the kth cluster, and .4 is the

Gaussian distribution.
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Shadow-Background model

First, a linear color transformation matrix from the background color to the shadow color is
estimated from the shadow seed colors and their modeled background colors. This matrix is

modeled as following a finite-dimensional linear model [88],

¢s (P) = A (P), (2.6)

where ¢ is a color vector of a shadow seed, €, is an extended color vector of a modeled
background, &, = [cpe”, 1], and A is a 3 by 4 shadow transformation matrix. Then, the color

transformation matrix A is obtained by minimizing the following objective function S,

e(p) = Al (p) —¢s(p) (2.7
S=Y e (Zse () " e(p), 2.8)

pEPs

where e and 3, are the color transformation error vector and covariance matrix of the modeled
background color, and P; is a set of shadow seed pixels.

Next we define the vector ¢, which is the nearest color to an input color ¢ on the line segment
between the modeled background color ¢5g and the estimated shadow color & = A€y, in RGB

color space as shown in Fig. 2.5. Then, the vector ¢, is expressed as

cr(p}) = 1& (py) + (1 =) e (V) 2.9)
_(&(pl)—cag(pi) T (c(ph) — cog(pl) 2 10
= e () —cag o) | 210)
f=min{1,max{z,0}}, _ (2.11)

Finally the background and shadow observation models are introduced based on the interpola-

tion on the line segment as,

P(cE=5) =i (o 6).5) .12)
P(clpl) =)= (1) A (oo} ) 13)
%, (ph) = Z,(ph) + Ze(p}), (2.14)

where Y, and Y. are covariance matrices of the reference color ¢, and color transformation

CITor €.
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Figure 2.5: Shadow-background model

2.4.3 Smoothness term

The smoothness term considering intensity value normalization is defined as,
4

exp| —xd- (xy, Xy Left side label is different
e

—Kkdy, (Xy, Right side label is different
h(xy, x,) = ¢ exp 7 (XysXu) ght side label is differen , 2.15)

exp| —1/d! (xy, xy)d; (xv,xu)) Both side labels are different

L0 Otherwise

where d. is an edge intensity criteria given by,

i 1 mmu—amw2>
Al (Xy, %) = ' : , 2.16
e (X %) Dp;pg<||c(p'v)+c(p:.)||2+e =19

where Dy i is the pixel distance between p, and p!, (as for the temporal distance, all the

distances are set to 1). Also, k and € are coefficients for this term.

2.5 Experiments

2.5.1 Data set and parameters

We carried out experiments using sequences of people walking outdoors. Tab. 2.2 shows the
details of the data set. Every sequence contains some men or women with strong shadows. Of
these, Seq 4 (Fig. 2.6 (a) and (b)) is captured at our university as test data, and Seq B (Fig.
2.7 (a) and (b)) and Seq C (Fig. 2.8 (a) and (b)) are extracted from the videos of surveillance
cameras deployed at an elementary school in Japan. The background data for each dataset
is generated from the other sequences captured at a different time. A total of 3 images were

provided for graph-cut segmentation in a block. Note that in some figures in this section, the
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(c) Right side input  (d) Right side result

Figure 2.6: Input and segmentation results of SegA4

(c) Right side input (d) Right side result
ults of SeqB

Figure 2.7: Input and segmentation res
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(c) Right side input (d) Right side result

Figure 2.8: Input and segmentation results of SegC
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Table 2.2: Data set for experiments

Sequence set | Image size | Image number | Frame rate
SegA 640x480 32 30 fps
SeqB 620280 12 9 fps
SeqC 620%280 24 9 fps

results of the experimental images are trimmed around the segmentation target region because
page space is limited.

In these experiments, the data terms were spatially smoothed in response to the magnitude
of the edge pixels. Because the pixel color is quite variable, and it is unstable near the edge,
the reliability of the data terms is very low for such pixels. The segmentation process was
done iteratively, and there were 2 iterations. The parameters of the proposed method were
experimentally set at we = 3.0, w;, = 0.2, x =4.0,and € = 10~7. Initially the prior of each label
is set as follows: P(FB)=P (BF)=P(SS)=0.16,P(FS)=P(SF)=P(FF)=0.14,P(BB)=0.1.
In addition, the distribution number of GMM was set at 6 for Seq4 and at 10 for SeqB and SeqC.
We adopted the a-f3 swap algorithm [66] to minimize our energy function Eq. (2.2).

2.5.2 Benchmark

We compared the segmentation performance of the proposed method with eight approaches:
three existing approaches [54], [69] (color-based method), and [64] (homography-based method),
five energy minimization-based approaches (as described later). While a labeling problem for
each homdgraphy-correspondence pair is considered in the proposed method, other methods
take a labeling problem for each pixel in each side image in consideration, and therefore, the
labeling was independently-executed in each side image in them. Besides, there are two kinds
of methods in comparative methods: one considers three labels of foreground, shadow, and
background, and the other considers two labels of foreground and shadow. As for the for-
mer, first, we dilated the regions extracted via background subtraction and set the regions as
potential region. Then, we regarded the segmentation problem as the multi-labeling problem
of foreground, shadow, and background labels for the potential region. As for the latter, we
considered the problem as the binary labeling problem where either of foreground and shadow
labels is assigned to a pixel in the regions extracted by background subtraction. For fair com-
parison, we tuned the parameters of each comparative method so that the method achieved best

performance in total.
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Each of the following five comparative approaches is the ehergy minimization-based frame-
work where an energy function composed of a data term and a smoothness term based on edge
magnitude (Eq. (2.16)) is minimized via graph-cut.

Color: the color-based method where the labels of “F”, “S”, and “B” are considered. The
foreground seed and shadow seed are generated based on the shadow color properties [73, 75].
Then, a foreground color model (see Section 2.4.2) and the shadow-background models (see
2.4.2) are constructed from the foreground seed and shadow seed, respectively. Finally, we
label each pixel in one side image as “F”, “S”, or “B”.

Disparity: the disparity-based method where the labels of “F”” and “S” are considered. The
Joreground seed and shadow seed are generated by thresholding disparity. Also, the data term
is defined based on disparity. The method in [89] is used for disparity calculation.

Color + Disparity: the integrated method of Disparity with Color, where the labels of “F”,

“S”, and “B” are considered. The data term is defined as a weighted sum of the data term of
Color and that of Disparity. _
Homography (asymmetric). the homography-based method where the labels of “F” and “S”

are considered. The foreground seed and shadow seed are generated by homography con-
straint, and also, the data term is defined by the color similarity between each homography-
correspondence pair.

Color + Homography (asymmetric): the integrated method of Homography (asymmetric) with

Color, where the labels of “F”, “S”, and “B” are considered. The data term is defined as a

weighted sum of the data term of Color and that of Homography (asymmetric).

2.5.3 Results

First, the multi-labeling results of the proposed method for each data set are shown in Fig. 2.6,
Fig. 2.7, and Fig. 2.8. In each result, the labeling results are good even for the occlusions.
Second, the quantitative performance comparisons are shown in Tab. 2.3. The performance

of each method is evaluated by F-measure, which is defined as,

2PR

F = —/— 2.1
P+R @.17)
N
p = —* 2.18
th
= —= 2.
R N, (2.19)

where F is F-measure, P and R are precision and recall, Ny, and Ny, are the number of true

positive pixels and that of false positive pixels, and & is the number of ground truth pixels.
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Table 2.3: Quantitative evaluation results

SegA SeqB SeqC

Method F S F S F B

Horprasert et al. [54] 0.870 | 0.837 | 0.816 | 0.516 | 0.627 | 0.653
Sun et al. [69] 0.927 | 0.851 | 0.817 | 0.696 | 0.659 | 0.523
Jeong et al. [64] 0.897 | 0.897 | 0.878 | 0.791 | 0.868 | 0.764
Color ‘ 0.890 | 0.863 | 0.896 | 0.833 | 0.817 | 0.776
Disparity 0.889 | 0.856 | 0.758 | 0.643 | 0.822 | 0.708
Color + Disparity 0.932 | 0.923 | 0.906 | 0.843 | 0.897 | 0.857
Homography (asymmetric) 0.893 | 0.872 | 0.872 { 0.779 | 0.877 | 0.770
Color + Homography (asymmetric) | 0.938 | 0.923 | 0.921 | 0.854 | 0.874 | 0.824
Proposed method 0.940 | 0.902 | 0.920 | 0.874 | 0.900 | 0.865

F: Foreground, S: Shadow

In the tables, we see that the Color + Disparity, Color + Homography (asymmetric) and
the proposed method show better results than other methods, especially, the proposed method
achieves the best performance of all in total.

The results of these three methods for the left side inputs shown in Fig. 2.7 and 2.8 are
shown in Fig. 2.9. As for the results for Seq B, the mis-labeled foreground region as shadow
near the head of right side person in the result of Color + Disparity is relatively larger than
those of the other two methods. This may be because that the disparity is not calculated cor-
rectly (calculated disparity is too small) and the region has color like shadow. As for the results
for Seq C, we can see the occlusion problem in the result of Color + Homography (asymmetric)
as described in Section 2.3. Although this mis-labeled region can be recovered to some extent
when the weight of a data term about Homography (asymmetric) is set much smaller than that
about Color, the problem of color-based method is no longer ignore in such weight setting.
This trade-off problem is inevitable as long as a simple combination scheme of color and ho-
mography is used. Note that the trade-off is considered and the weight setting is optimized in
this experiment as mentioned earlier. On the other hand, the results of the proposed method are

relatively better than the other two methods for both datasets.

2.6 Discussions
Effective use of extracted shadow

By making effective use of extracted shadow, our approach can obtain consistent labeling as

well as information as to whether the occluded region belongs to the shadow or background.
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Figure 2.10: Extracted foreground and a whole shadow including occluded shadow for SegA4

This means that we can get additional scene information. For example, because a whole shadow
silhouette including the occluded shadow, can be seen as another projection from the viewpoint
of a light source, we can say that one more different-view of the whole silhouette of the target
foreground objects is extracted as shown in Fig. 2.10. This is quite valuable not only for gait-
based person identification, but also for many other computer vision applications, especially
silhouette based applications, Jike gesture recognition-and 3D reconstruction by shape from
silhouettes and so on. As for gait-based person identification, it is reported in [90] that the
different views of silhouettes improve identification performance, and more, shadow gait-based
person identification scheme is proposed in [91].

In addition, homography-based object localization techniques have been proposed [84],
where the position of the object is localized by estimating the intersection point of the object
region and the shadow region. Hence, 1f the occluded shadow region is also extracted by the

proposed method, the object localization accuracy is improved.

Extension to more complex scene or moving platform

Although the assumption that the shadow appears on the ground plane may seem to be a heavy
constraint, our method can be extended to more complex scenes by modeling scenes as piece-
wise facets and by calibrating the homography for each facet.

Furthermore, our method can be applied to a mobile platform such as a vehicle binocular

video system, and an intelligent robot with a combination of state of the art dynamic back-
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ground modeling, ego-motion, and image stabilizing techniques. For example, we can acquire
a background model for each frame of the image sequence by using dynamic background mod-
eling, and we can calibrate the geometric relationship between the binocular camera system

and the target plane by using ego-motion and image stabilizing techniques.

2.7 Conclusions

In this chapter, we propose a homography-correspondence pair based segmentation framework.
We treat homography-correspondence pairs symmetrically, and formulate the segmentation
problem as a multi-labeling problem for a homography-correspondence pair to explicitly take
the occlusion relationship into account. Then we obtain the segmentation result by minimizing
the energy function via the o-f8 swap algorithm. In our experiments, it turns out that the seg-
mentation results of the proposed method outperform the existing color-based and asymmetric

homography-based methods.
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Chapter 3

Group Context-aware Person
Identification in Video Sequences

3.1 Introduction

Many gait-based person identification techniques have been developed to date, mostly from the
viewpoints of discrimination capability and stability [3, 26]. In all of these techniques, how-
ever, the identification performance often decreases due to changes in the walking condition of
individuals (e.g., clothing and carrying conditions) and their surroundings (e.g., surface and ob-
servation view of camera), and the identification performance may consequently decrease [33],
particularly in real environments. Also, as the number of individuals increases, the misidentifi-
cation rate generally increases due to the growth in ambiguity.

An example of misidentification in a straightforward gait-based person identification frame-
work is shown in Fig. 3.1. Because the gait feature of probe #1 has changed slightly from that
in gallery #a (the same subject), particularly in the arm swing, the feature similarities between
probe #1 and gallery #a are smaller than those between the probe and other galleries (e.g., #x
and #y).

However, it is useful to take into account the characteristics of human activities to provide
context for person identification. In social living situations, people often act in groups, as
shown in Fig. 3.2, which are composed using social relationships in most cases, such as family,
friends, and co-workers. It is assumed, therefore, that a person is likely to be observed close to
other persons of the same group in a video sequence. This observation serves as a contextual
cue to improve the identification performance for individuals, i.e., the identity of each person
can be inferred not only from their biometric cues alone, but also from the identities of other
people in their neighborhood and their group affiliations.

This kind of group context can be used in many places, such as amusement or theme parks,

airports, factories, and schools, where many tasks based on person identification techniques are
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Figure 3.1: Biometric cues and belief.

performed. Examples of these tasks include the detection of a lost child in an amusement park,
the detection of intruders who cnter the amusement park, airport, or factory without passing
regular entrance procedures, and the safety confirmation (or attendance checking) of children at
the entrance to the school (in particular, there is a rule for going to school in a group composed
of community children for almost all Japanese elementary schools). The group context is also
useful for person re-identification across multiple non-overlapping network cameras.

Recently, some works have integrated such kind of group context with face-based person
identification in photo collection to improve the identification performance [92, 93, 94]. In
these methods, the person-to-person relations are modeled in terms of co-occurrence among
persons in photos as group prior. Differently from the photo collection, however, a group
is often observed with non-group members at a time in the video sequences of surveillance
camera and the spatial relations among them are dynamically changed with time. Therefore, the
identity of individual should be inferred not only from the viewpoint of co-occurrence among
persons, but also from that of behavioral differences among persons through the sequence.

In this research, we propose a group context-aware framework for person identification in
video sequences that unifies the group context with the individual biometric cues. In terms of
the group (inter-person) context for person identification, the proposed method take the behav-
joral diffcrences such as spatial distance and the differences of walking speed and direction
among persons through the sequence into account, and this is a primal contribution of this
work.

Our key observation is as follows. We assume the group walking situation in a video se-

quence which includes two different groups and an unregistered person as shown in Fig. 3.2
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Figure 3.2: An example of group walking in video sequence.

Gallery ID

Group ID A AT

xh

Absentees inaninput
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and consider the identity of the probe #1 within the group context. We assume that the gallery
subjects #a, #b, #c, #d, and #e belong to the group A and the #v, #w, and #x belong to the other
group X, as shown in Fig. 3.3. Also, we assume that the identity of probe #6 is not matched
with any of gallery subjects and probe #2, probe #3, probc #4, and probe #5 are confidently
inferred to be #b, #c, #v, and #w, respectively, while the identity of probe #1 is mis-inferred
to be #x (a member of group X) as shown in Fig. 3.1. If only co-occurrence is used as group
context, the identity of probe #1 can be inferred from not only the identities of probes #2 and
#3 as #a, but also those of probes #4 and #5 as #x based on their-group affiliation information.
Consequently, the identity of probe #1 possibly remains to be mis-inferred as #x in this case.

In addition, the identity of probe #6 (unregistered person) which appears in the scene from the
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middle of the sequence is possibly mis-inferred from the identities of other subjects.

On the other hand, focusing on the behavioral relations among probe subjects through a
sequence, we see that probe #6 obviously walks at a distant from all the other subjects, and
thus probe #6 can be regarded as an independent subject from all the other subjects. At the
same time, we also see that there exists an apparent difference of walking speed between the
group of #1, #2 and #3 and the group of #4 and #5. Accordingly, the weights of the inference
cues from the probes #2 and #3 come to be able to be distinguished from those of the inference
cues from the probes #4 and #5. The identity of probe #1 as #a is then definitely enhanced and
the mis-identification of #1 can be recovered as a result.

We realize this idea in the form of a message passing in a graph, where each node cor-
responds to each probe subject and each edge corresponds to the relationship between each
pair of probé subjects. In the iteration of the message passing process, the identity confidence
for each probe subject is propagated to the identities of the surrounding probe subjects based
on their biometric cues and group information, so that the same group members with similar
characteristics (spatial proximity and similar velocity vector) enhance each other’s identities.

The remainder of this paper is organized as follows. Section 3.2 introduces related work.
Section 3.3 describes our problem formulation, and the detailed implementation is described
in Section 3.4. Section 3.5 presents experimental testing of the effectiveness of the proposed
method and our discussions are presented in Section 3.6. Finally, conclusions are drawn and

future work is proposed in Section 3.7.

3.2 Related Work

In recent years, many researchers have paid considerable attention to the use of context in tra-
ditional computer vision problems, such as object detection and categorization, action recog-
nition, and person identification, to improve performance. In this section, we review such
context-based approaches briefly.

Object detection/recognition: In the task of object detection, context is mainly used to limit
the area in which objects are likely to appear, to reduce false positives. Torralba et al. [95]
exploited a global image feature called gist, which was a low level representation of an im-
age. Hoiem et al. [96] used the 3D geometrical information of the scene, such as the surfaces,
the camera viewpoint, and object positions and sizes as context. While these approaches fo-
cused on global scene information, some works instead_ focused on local information [97, 98].

In [97], the spatial relations between an object of interest and its surroundings are modeled as
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a visual context feature composed of géometrical and textural features, and are used to extract
prior instances of the object’s presence from a scene. In this method, object co-occurrence and
bottom-up saliency were also used for context. Heitz and Koller [99] modeled the spatial re-
lationships between an object (“thing”) and the surrounding regions (“stuff’’), which were the
results of unsupervised image clustering, as the 7AS model (“thing” and “stuff” model). The
effect of the use of context in object detection is empirically evaluated in [100].

In recent works in object recognition [101, 102, 103], inter-object relationships, such as
co-occurrence, relative location, and scale, are used as context to resolve object appearance
ambiguities. Besides those given above, a number of context-based techniques have been dis-
cussed and summarized in [104], [105], and [106].

Action/Interaction recognition: Many of these works have indicated that modeling of human-
object relationships is useful for the understanding of human actions/interactions [107, 108,
109, 110, 111]. Wu et al. [107] proposed an object-use based action recognition framework,
in which the relationships between an action and the object-use events data during that action
were used as context, and the relationships were learned automatically using RFID sensors
and a common-sense knowledge database. Yao and Fei-Fei [110, 111] proposed two types
of approach; one is based on a model of the spatial relationships between human poses (po-
sitions of body parts) and objects [110], while the other is based on a structured appearance
feature called “Groupler” [111], for recognition of human-object interactions. Marszalek et
al. [112] used action-scene relationships as context, which were derived automatically from
training videos using video scripts, and in [113], both scene and object features are integrated
with the action features. In [114], human-human interactions are the focus, and it was shown
that spatio-temporal observations of the surrounding people which represent the actions of the
surroundings helped with action recognition. In a similar manner, Choi et al. [115] used the
spatio-temporal distribution of multiple people, which included their relative motion and loca-
tions, to classify collective activities, such as “queueing” and “talking”.

Person identification: The automatic annotation, organization, and retrieval of still images,
in particular in personal digital photo collections, have been active research topics in recent
years. In these tasks, face-based person identification is crucially important and many context-
aware methods have been developed. As mentioned in [116], there are three types of context
information: appearance-based, metadata-based, and logic-based context information. In [117]
and [116], appearance-based context, such as body parts and clothes, are combined with fa-
cial features. Stone et al. [118] used metadata-based context derived from the social net-
work Facebook. Gallagher and Chen [93] used co-occurrence between each person as a logic-

based context, which indicated how often a pair of faces appeared together in images. In some
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works [92, 94], such co-occurrence of persons is also integrated together with other types of
contexts such as events (time stamp) and locations which are rather peculiar to the field of photo
collection.

In a scenario of person re-identification across muitiple non-overlapping cameras, Zheng
et al. [119] and Cai et al. [120] proposed a solution to the problem of associating groups of
people between the different camera views and demonstrated that group information helped
to resolve the ambiguities in individual appearances. For person identification, they simply
combined group cues with individual cues in the form of a weighted sum of each score. They
considered a group as a small number of people walkiﬂg in close proximity in spatial domain,
and quantified the group cue by measurement of the spatial appearance features. In these meth-
ods, although their group representations are designed to be invariant to positional changes
of the group members between the different camera views, the fluctuations in the numbers of
observed members, which are caused by absentees, isolation of group members, or the proxim-
ities of non-group members, lead to significant changes in the spatial appearance of the group.
Accordingly, the effectiveness of the group cue is degraded. For instance, if a certain group is
composed of 5 members in the gallery image and only 3 members of the group are observed in
a probe image, the observed group tends to be matched with other groups composed of 3 mem-
bers by mistake. Furthermore, these methods do not consider the behavioral relations among
persons such as velocity vector difference through the walking.

Our work is inspired by the related work described above and we propose a unified frame-
work for the person identification problem in video sequences, in which group context is inte-
grated with individual biometric observations by using CRF model. Though, the CRF-based
framework is similar to the existing context-assisted person identification schemes formulated
by MRF/CRF model such as [93], the major difference of this work is that we use the be-
havioral relations as group context including spatial distance and velocity vector difference
among persons through the video sequences, while existing frameworks used co-occurrences
among persons as group context. This also differentiate the proposed method from other group
context-based person re-identification methods such as [119] and [120]. Though, similar kinds
of behavioral relations are utilized for the problem oftrajectory prediction of pedestrians in
some works [121, 122] and these are also related to our work, we apply such kind of context to

person identification problem, and this is a primal contribution of this paper.
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3.3 Group Context-aware Person Identification in Video Se-
quences |

We regard the person identification problem as a many-to-many matching problem for a given
image sequence. The task we consider is assignment of a registered person’s label to each
person that is observed in an input sequence. In this work, group is not only explicitly-defined
as a unit of people that is composed on the basis of social relations, such as family, friends, and
co-workers, but is also implicitly-deﬁnéd as the result of manual or automatic clustering. Then,

the following prerequisites are assumed.

Each registered person belongs to one of the predefined groups.

Group affiliation and biometric cues of each registered person are given as gallery data

in advance.

Segmentation and tracking of each subject in an input sequence are obtained in advance.

Each registered person appears at most once and is likely to appear with group members,

in detail, in close vicinity and with similar velocity in an input sequence.
Also, the following conditions are considered:
e Unregistered persons also appear in an input sequence randomly.
e Absence and isolation of a registered person in an input sequence are allowed.

Note that for a registered person who does not belong to any group, an expedient group whose
only member is that person is defined, while the “unregistered” label is only assigned to actual

unregistered persons.

3.3.1 Problem formulation

In the labeling task, we must take account of the relationship between the observed character-
istics of each probe, such as spatial position and velocity, and the group affiliation of each label
in addition to the biometric cue for each probe. The preferred label assignment, therefore, is
one where the same group members are likely to appear in a group, and the biometric cues of
each probe are given substantial consideration.

We use a pair-wise CRF (conditional random field) model in a manner similar to [123,

124] for our labeling problem. Let each node in a graph represent a person who appears in
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Figure 3.4: Our graphical representation: An example of the input sequence (left) and the
corresponding graph (right).

an input sequence, and the label for the i-th node x; represents the index of the registered
person or “unregistered’ label. The label set is defined as L= {l1,%, - Ay Llun}, where i
(k=1,2,--- ,n) is the label of the k-th registered person and 1, is the label for an unregistered
person. A mapping from an individual label to a groﬁp is then defined as g(lx) € G, where
G=1{G1,G2, - ,Gng,Gun} is a group identifier set, Gi (k=1,2, -+ ,ng) is a group identifier
for each registered person, and G,y is a identifier for an expedient group for any unregistered
person.

The graphical representation is shown in Fig. 3.4. In this example, there are seven probe
subjects in an input sequence, and each node is connected to neighbor nodes which correspond
to the persons within a set spatial distance dpax, which is set to 3 [m] in this work, in the input
sequence. Also, as described later in detail, all of the nodes are connected by a factor node,
which controls the exclusion of each label.

We then let x be the label assignment for all the nodes and y be the set of biometric cues for

all the nodes, and then the conditional probability of an assignment X is formulated as,

P(x]y) e {H(Pi(xi) IT Wi,j(xiaxj)}E(X)a (3.1
! JEN(D)

where ¢;(x;) is the local evidence term for node i, ¥ ; (x;,x;) is the compatibility term between
node i and nodc j, and N(i) represents a neighbor node set around the node i. E(x) is a label
exclusion term, which becomes zero if any registered person label is used more than once and
is otherwise one (the label for unregistered persons /,, can be used more than once).

The local evidence ¢; is defined based on the observed biometric cues for each person.
The compatibility y; ; corresponds to the group context. The magnitude of the compatibility,

therefore, depends on a pair of group identifiers for the Jabel that is assigned to the i-th person
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and the j-th person and their spatial distance and velocity vector difference, which are defined

in Section 3.4.2 in detail.

3.3.2 Approximate solution via loopy belief propagation

LBP (Loopy belief propagation) [125] is used as an approximate solver to find the assignment
x that maximizes the probability P(x]y). Ignoring the exclusion term E(x) at this stage, the

message m;;(x;) from node i to node j for each label is defined as,
mij(x;) oo Y Wi (xx)¢ilxr) [T mwa(xs). (3.2)
xi keN()\/
The belief b;(x;) at the node i for each label is found as a marginal probability by gathering

~ messages from its neighbor nodes and from the local evidence,
bi(xi) = kgi(x;) [T mji(x), (3.3)
: JEN()
where £ is a normalization constant (summation of belief is normalized to 1). The label assign-

ment of the node i is,

xj= argmlaxb,-(x,- =]). 3.9

Note that each message is initialized to 1, normalized local evidence is given as the initial belief

value, and that the upper limit of iteration of LBP was set to 10 in this work.

3.3.3 Handling the exclusion term

The label exclusion term E(x) is defined such that it forbids the use of a registered person’s
label more than once, i.e., to suppress the use of the label J; if another node already has high
belief about /;. Since the label exclusion term is a global function, we can represent it using a
factor node that is connected to all of the nodes. In terms of the message passing scheme, the

message from a factor node f to a node i is,

mpi(xi=1)~ [] (1=mp(a =1)), (3.5)
teS\i

- where §'is the set of all nodes and m, ¢ is defined as,

mef(xe=1) = (be(xe =1))%, (3.6)
where « is the message attenuation parameter, and is set to 2 in this work.
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Actually, label exclusion via the above message does not completely control the one-time
use of the label of a registered person, because the belief of each node for a certain label does
not always become 1.0 after message passing. To complete the exclusion control, we therefore
execute the Greedy Algorithm in terms of the belief score for finalization of the label assignment

after the convergence of LBP.

3.4 Implementation

3.4.1 Local evidence

Label of registered person

An observed biometric feature of each person, such as their face or gait, is a crucial clue in
itself for person identification, as numerous previous works have demonstrated. We therefore

use such a feature as the local evidence for the label of a registered person and it define as,

¢i(xi=1t) o< p(xi=1lyi), (3.7

where y; is the observed feature vector of the i-th person and /; is the label of the k-th registered
person. Actually, we regard the prior p(x; =1Ix) as constant for all &, then Eq. (3.7) can be
described as, _

i(xi=1x) o< p(yilxi=1I). - (3.8)
The probabilistic observation models of the feature vector for each label of each registered
person are constructed from gallery feature vectors such as the Gaussian distribution model in
advance.

However, since the gallery feature vector of each registered person cannot be captured a
number of times, but at most once or twice in most cases, such as real surveillance scenarios,
it is difficult to construct the probabilistic model properly in practice. For instance, in the
case where only one gallery feature vector is given, it makes no sense to construct a Gaussian
distribution as it is. In such a case, therefore, we regard the variation of each feature vector

element to be common for all elements and for all persons, and we set the probability model to
be,

o
p(yilxi=1) o< exp (— T") (3.9)
Dy =iwd, (3.10)

where y; is the average vector of the gallery of the k-th registered person and o is standard

deviation of the feature vector element, which is given as a hyper-parameter.
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Label of unregistered person

For the label of an unregistered person, the model cannot be constructed, because the feature
vector which represents the “unregistered person” can be never captured as gallery data. We

thus give a constant value C,, as the local evidence for the label /,, instead,
9i(xi=lun) = Cun- (3.11)

3.4.2 Compatibility

The compatibility score for a pair of labels is required to be high only if the group affiliations of
the two labels are the same and the cofresponding persons appear in close proximity and with
similar velocities in an input sequence.

We quantify this using two terms: the distance term E; and the velocity term E,. One is
based on the spatial distance between the two persons and the other is based on the velocity
vector difference between them in the world coordinates. Compatibility for a pair of labels, /s

and /;, is then defined as,

(Is=lun O li=1,,)

C
Vi =l xj =1r) { (1-6,4) (Ed (dij) Ev (vij) 6g(ls),g(l;)+c> (otherwise) , 312)

where 6 is the Kronecker delta, d; j and v; ; are the spatial distance and the velocity vector
" difference between the i-th person and the j-th person in the world coordinates, and C is a

constant value. The distance term E;(d; ;) and the velocity term E,(v; ;) are designed as,

di =)
Baldsy) = ~i—rm) 613
E,(vij) = _ (V= Vmar) (3.14)

Vimax—Vmin
where dpqr and dp;y, are the upper and lower limits of the spatial distance (dmax is equal to the
one described in Section 3.3.1), and vm;,x and v,,,;, are these limits for the velocity difference. In
all of our experiments, the parameters are set as C=0.1, dyze =3 [m], dpin=0.5 [m], Vipar =1
[km/h], and v,;, =0 [km/h].

To use the spatial distance and the velocity information in the world coordinates, we need
to estimate them from an input video sequence. One of the most reasonable ways to do this
is a method based on ground constraints. If the homography correspondences between the
ground plane in the world coordinates and the image plane are calibrated in advance, the foot’s

position trajectory on the ground plane can be estimated from the bottom coordinate of the
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Figure 3.5: Spatial distance and velocity vector difference between a pair of probe subjects (#i
and #)) at the k-th frame.

corresponding person in the images. Subsequently, we can derive the spatial distance d; ; and

the velocity vector difference v; ; between the i-th and the j-th person as follows,

d;; = max |pix—P;j 3.15

ij 15§k$19|p1’k p},kl ( )

vij = max [Vig— Vil (3.16)
st >te

where p; . is the smoothed 2D position in world coordinates of the i-th person at the k-th frame,
v; x is the smoothed 2D velocity vector of the i-th person at the k-th frame (both are illustrated
in Fig. 3.5), and ¢ and ¢, are the first and last frame identifiers for the frames where the i-th
person and the j-th person appear together in an input video. Note that, in this case, if a pair
of persons does not appear together in any frame, they are not considered to be in the same

neighborhood as each other.

3.4.3 Seed node selection

While the ambiguity of a biometric-based identity is solved by messages, it is desirable that a
node with confident local evidence for a certain label is then unchanged by messages, to avoid
unreasonable belief variation.

For this purpose, we fix the labels of the nodes to such persons with confident local evi-
dence at the first stage. We denote this label-fixed node and the fixed label as the seed node and
seed label, respectively. The seed node is decided using the thresholding mahalanobis distance
(Eq. (3.10)) with threshold 7;. More specifically, when only the k-th node has a lower maha-
lanobis distance than 7; about a certain label /, the k-th node and the label / are regarded as the
seed node and the seed label. We then set the belief of the other nodes about the label / to 0 and

set the messages to the k-th node from the other nodes and the belief of the k-th node as

mig(xx = 1;) = ba(xe = 1j) = 81,1, (3.17)
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where 0 is the Kronecker delta. Also, we set the message from the seed node (the -th node) to

the other node as, ‘

myi(xi = 1) o< Wi(cp = 1,x;i = I). (3.18)
Noté that the local evidence for the seed label / is regarded as 1 (@x(xx =It) = &;4,) in this
equation. In addition, in the message passing process, if the belief of a node about a certain

label reaches a predefined criterion, which is set to 0.9 in this work, we set the node to be the

seed node at that stage.

3.4.4 Relaxation of a biased message caused by an imbalance in the num-
ber of group members

In the presence of an imbalance in the number of group members, the message magnitude is
biased by this imbalance. We illustrate this with examples of the gallery set and the situation
in an input video as shown in Fig. 3.6. .

Consider the messages from probe #2 (the true label is /) to probe #1 (the true label is /1) at
the first iteration. As long as the local evidence of probe #2 about the label /; is higher than the
local evidence about the other labels, the message to enhance the belief for the label /; at probe
#1 is preferred, because probe #1 and probe #2 belong to the same group G in this situation.
For simplicity, suppose that the compatibility between probes #1 and #2 is approximated to
vt =lx =)= (1-§,,) Oq(1,)g(lr)» Where 8 is the Kronecker delta. The message about
the label /; is then described as,

mu(xi=lh)= 3, ®x=I), (3.19)
IeLg(,k)\I,c

where Lg is a label set of group G members, defined as Lg = {/|g(!) = G}. Consequently,
the magnitude of the message depends not only on the local evidence ¢, (x2=1/), but also on
the number of group members |Lg(1k)|' This may cause an undesired reversal of the message
magnitude when the local evidence of probe #2 is given as shown in Fig. 3.7(a). In this case,
because the number of group G, members is higher than that of the group G; members, the
summation of the local evidence for the labels of group G, becomes higher than that for the
labels of group G, despite the fact that the local evidence for the label /; is the highest, and
that the evidence about each label of gfoup G, is low. As a result, the message about the label

I3 becomes higher than that about the label /;, as illustrated in Fig. 3.7(a).
To avoid such undesirable message effects, we propose an alternative message form based

on the exclusion of within-group labels via a max selection scheme in message formula (Eq. (3.2))
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Figure 3.6: An example of the gallery and the input situation.
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Figure 3.7: An example of the reversal effect of the message magnitude caused by the bias for
the number of group members in the standard message form, and the concept of exclusion of
within-group labels via the max selection as a solution to the problem.

as,
I (xj=1I)ec >, maxys (xi=Lx;=1) pi(xi=1) myi(xi=1) (3.20)
4 lel,
gcG 4 . kEN(iNj

In this form, the number of group members no longer influences the message magnitude, be-
cause we exclude all of the labels of the group Gy other than the within-group maximum in
marginalization of the message, as illustrated in Fig. 3.7(b). The intuitive interpretation of this
form is that we model a person-to-group relationship in this message form, rather than a person-
to-person relationship, i.e., from the standpoint of probe #1, the magnitude of the message from

probe #2 is based not on “who is the probe #2”, but “to ‘what group does the probe #2 belong”.

3.5 Experiment

In this experiment, the effectiveness of the proposed method was examined first using real video
sequences, and the performance for a massive data set was then explored using simulation data
sets. We chose gait as the biometric cue and used GEI [36] (22 pixels x 32 pixels) as the

gait feature, because it achieved the best performance in [126]. The group affiliation of each
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gallery is manually assigned in these experiments. The performance of the proposed method
was compared with straightforward local evidence-based labeling via the Greedy Algorithm.
We evaluated the labeling accuracy R; as R;= ]J\VTI’), where N, and N; were the probe number and

the correctly labeled probe number, respectively.

3.5.1 Experiment with real image data

We conducted the experiments for two types of real image sequences, one is captured at our
campus for preliminary performance evaluation, and the other is obtained from the surveillance

cameras installed in a Japanese elementary school.

Preprocessing

We obtained the blob information of each subject in image sequences as follows. First, the
foreground regions are extracted via graph-cut-based segmentation [127] in conjunction with
background subtraction. Second, each blob is extracted from the foreground regions based on
connectivity and the blob statistics, such as area, gravity position, and bounding box are then
obtained for each blob. In this process, blobs of different persons may be merged in case where
a person is closely-attached to the other person. To avoid such merge, we set the upper limits
for the height and width of bounding box respectively, and we split the blob based on the limits
if necessary. For example, if the blob hés larger height than its upper limit, we count the number
of foreground pixels for each height and split the blob at the height with the minimum pixel
count within a certain height range.

As for tracking, each bounding box in the current frame is corresponded to the nearest
bounding box in the next frame, and the foot’s position trajectory of each individual is obtained
as a result!. Finally, the gait feature of each individual is extracted from the corresponding
blob sequence. The bounding box and trajectory contain errors in some degree, and these also
decrease the quality of gait feature.

Note that we omitted the occlusion situation among persons in this experiment, because we

focus on the evaluation of the effectiveness of the proposed inference algorithm.

Preliminary evaluation

Gallery and probe data set: We used an input sequence (640 pixels x 480 pixels/ 15 fps/bmp

format) which includes 18 probe subjects, as shown in Fig. 3.8. In this sequence, the walking

1'We calculated the foot’s position on the ground plane from the bottom center coordinate of the bounding box.
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Figure 3.9: Gallery set for the input shown in Fig. 3.8.

directions of all subjects are almost the same. Then, we arranged the gallery set, which includes
20 subjects, as shown in Fig. 3.9. In this setting, the clothes of gallery members #c, #h, and #k
are changed at the time of the input sequence to make the person identification problem setting
more difficult, which is intentional so that biometric cues alone cannot perfectly identify the
subjects. Three absentees (#x, #y, and #z) and one unregistered person (probe #18) are arranged
to demonstrate that the proposed method can handle such situations.

In this experiment, the label for cach gallery is denoted by a corresponding gallery ID for

convenience as L= {#a,#b, - #un}, where #un is the label for an unregistered person.
Parameters: The standard deviation of the feature vector element was set at ¢ = 394.5, which
is determined from the other preliminary experiment. Local evidence for the label of the un-
registered person was set at Cy, = %’, where N, is the number of gallery labels.
Results: Table 3.3 shows the initial label correspondence via straightforward labeling. In this
table, seven probe subjects (#3, #6, #7, #12, #13, #15, and #18) are initially mislabeled because
of the within-class variation of the gait features caused by walking manner variations, clothes
changes, and silhouette noise.

We illustrate the message effect on improving the belief from the initial state by taking
probe #3 as an example. As shown in Fig. 3.10, probe #3 is connected to probes #1 and #2,
which truly belong to group A (the same group as probe #3), and probe #4, which truly belongs
to group E. Initially, probe #3 is mislabeled as #z and probes #1, #2, and #4 are correctly
Jabeled, as shown in Table. 3.3. The received message and the belief of probe #3 after the first

message passing is then shown in Fig. 3.11. In this figure, we see that the messages from probe
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Figure 3.10: Node connection between the probe subjects in Fig. 3.8.

Table 3.1: Compatibility for a pair of labels in the Table 3.2: Labeling accuracy for the in-
same group between probe subjects in Fig. 3.8. put shown in Fig, 3.8.

Probe pair | (=1, xj=1) Labeling
#,#) | k£l and g(ly)=g(l)) Method accuracy
(#1, #3) 042 . Straightforward 0.61
(#2,#3) 0.73 Proposed 1.0
(#4, #3) 0.16

#1 and probe #2 contribute much to boost the belief for the label #c. This is because probes #1
and #2 have high initial beliefs (local evidence) for their true labels, and high compatibilities
for a pair of labels which belong to the same group as probe #3, as shown in Table. 3.1.

On another note, in the message shown in Fig. 3.11, the message about the label #x (absen-
tee) is relatively high because #x is also a member of group A. The belief of probe #3 for the
label #x, however, does not exceed that for the true label #c because local evidence for the true
label #c is essentially higher than that for the label #x, even though the message magnitude for
label #x is nearly equal to that for the label #c.

In this way, the initial mislabel assignments gradually improve with iteration of the message
passing. Note that probe #18, which is an unregistered person and is initially mislabeled as #k,
is not connected to any probe subject, as shown in Fig. 3.10, but is only connected to the factor
node in this case. The assigned label to probe #18 is therefore changed only by exclusive force
with an increase in the beliefs of the other labels.

The labeling accuracy of the proposed method under no seed node and of the straightfor-
ward method are shown in Table. 3.2 (in this experiment, the result of proposed method is
unchanged with or without seed nodes). In this table, we can see that the proposed method

significantly improves the labeling accuracy.

Evaluation for the dataset from the real surveillance camera

Gallery and probe data set: We arranged the real image sequences (320 pixels x 240 pixels

/9 fps / jpeg format) which are obtained from the surveillance cameras installed in a Japanese
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Table 3.3: Initial label correspondence for an input shown in Fig. 3.8. The numerical value in
the table represents the belief.
Probe _ Gallery ID
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Figure 3.11: Received messages and belief of probe #3 at the first message passing.

elementary school. In this experiment, a scenario of person re-identification across two non-
overlapping cameras is assumed and we collected gallery and probe subsequences from the two
different cameras. The numbers of gallery and probe subjects are shown in Table. 3.4, and the
examples are shown in Fig. 3.12. |

In this dataset, the observation angle of each subject is different to some extent between
gallery and probe sequences and the trajectory and walking manner of each subject are more
fluctuated than those in the dataset used in previous section.
Parameters: The standard deviation of the feature vector element was set at 0 = 1071.1 and
the seed decision threshold was set at 7, = 0.7. Both of these values were determined based

on the training dataset composed of 40 subjects which are also extracted from the same cam-
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Figure 3.12: Examples of gallery and probc subjccts in the dataset from the real surveillance
camera.

Table 3.4: Gallery and probe settings in the dataset from the real surveillance camera.

Gallery setting Probe setting
Nur::er Nur:fber Subject number Number : Rogist Suhuﬂ_numhgrl

Group Stand Absentee of | Group belonging | Stand orar Total

gioup; mamben balongin alone

group 1y, a group | In isolation | alone |

14 2to b 39 1 0 16 37 2 1 7 47

eras. Local evidence for the label of the unregistered person was set in the same way as the
preliminary experiment.
Result: Table 3.5 shows the labeling accuracy. In this table, we can see that the proposed

method improves the labeling accuracy even for the real situation.

3.5.2 Experiment with simulation data

Settings

Observed space and trajectory: We assumed an input video sequence in which each walking
person 1s captured by a surveillance camera in a virtually constructed space. We set the whole

space to be 10 [m] x 2000 [m] and rthe observed space to be 10 [m] x 20 [m] as shown

in Fig. 3.13. In such a space, we arranged the initial position for each person, gave them

Table 3.5: Labeling accuracy for the dataset from the real surveillance camera.

Method Labeling accu:racy'
Straightforward 0.70
Proposed 0.87
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Figure 3.13: Assumed environ- Figure 3.14: Results for simulation data set.

ment in simulation experiments.

Table 3.6: Gallery and probe settings in simulation experiments.

Gallery setting Probe setting
Data | Number [ Number Subject number Number | =
Ak ey e .M‘.u] ’d - %
set ;: me:‘fmr Group | Stand [,/ % :’L ___Gmn_hyﬂ.lnnmnl_ Stand |Unregistered | Total
SO0 belonging | alone : BrOUP 11 a group. In isolation | alone
; 125 §to 10 1000 0 100 125 1;80;) ]00 0 0 1000
A 1000 10 i
J
° 100 21010 500 500 500 50 . 200 50 250 500 1000

velocities, and then moved them. For simplicity, we assumed that each person walked with
constant velocity and that the walking djrection was only the Y-direction, as shown in Fig. 3.13.
Gallery and probe data set: Tn all the simulation experiments, the number of gallery subjects
(registered persons) is set to 1000, and gait features for all of the gallery and probe subjects are
randomly chosen from the gait database proposed in [126]. Note that the gait database [126]
has expanded and includes 1,580 subjects at time of writing. We used two side-view sequences
as the probe and gallery sequences.

We then considered the following three scenarios, and we defined the gallery and probe
settings for each scenario as shown in Table. 3.6.

Set A: Person identification when going to elementary school in a group: All of the gallery sub-

jects are grouped. The registered person and the unregistered person correspond to a school
student and an intruder, respectively. Absentees and isolated persons correspond to absent stu-
dents and early or late arrival students. There can be a small number of unregistered persons,
absentees, and isolated persons.

Set B: Person identification in amusement theme parks: Substantial numbers of the gallery sub-

jects are assumed to be standalone (persons who belong to groups of only one member). The
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registered person and the unregistered person correspond to a fee-paying fair visitor and an un-
fair visitor who enters the park without the due entrance procedure. The absentee corresponds
to a registered person who is in the park but is not captured by surveillance camera. The iso-
lated person corresponds to a registered person who is lost or separated from their group with
another objective. There can be a small number of unregistered persons and isolated persons in
addition to some absentees.

Set C: Person re-identification in network cameras: We assume that there are two cameras which

have different fields of view, and regard one side camera as the gallery-side camera and the
other as the probe-side camera. Some of the gallery subjects are assumed to be standalone. A
registered person corresponds to a person who is captured by the gallery-side camera, and an
unregistered person corresponds to a person who is captured only by the probe-side camera.
An absentee corresponds to a registered person who is not captured by the probe-side camera.
An isolated person corresponds to a registered person who is separated from their group with
another objective. There can be some unregistered persons and absentees, and a small number
of isolated persons.

We also arranged the ideal scenario, where all gallery subjects are grouped and there are
no absentees, isolated persons, or unregistered persons (denoted as set / in Table. 3.6). We
arranged 10 different sets randomly fér each scenario. The performance for each data set is
evaluated by averaging their results.

Parameters: The standard deviation of the feature vector element was set at ¢ = 366.2 and the
seed decision threshold was set at T; = 0.8. Both of these values were determined based on the
gait database used. The local evidence for the label of an unregistered person C,, significantly
influences the performance of the many-to-many labeling scheme in the presence of an unregis-
tered person, particularly in the presence of a relatively large number of unregistered persons in
an input sequence such as set C. Thus, we set the parameter at C,,, =0 for set 7, C,,,=0.002 for
sets A and B, and C,,=0.005 for set C, so that the performance of the straightforward method
for each data set becomes the best. Note that we also conducted the same experiments under

no seed node (7; = 0.0) to verify the effectiveness of seed node.

Results

Figure 3.14 shows the labeling accuracy. In this figure, we see that the proposed method dis-
cernibly improves the labeling accuracy for each data set and the introduction of seed node
contributes the performance improvement. In particular, when the ratio of the number of per-

sons in a group is high, the effectiveness of the proposed method is greatest, as shown in the
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results for sets / and 4, while the performance improvements for sets B and C are relatively
low.

Basically, the belief values for isolated persons, standalone persons, and unregistered per-
sons for their own true labels are not expected to be directly boosted by the messages. Thus, in
the case where such a person has the highest belief for a wrong label about another person at
the first stage, it is difficult to recover the true label, except in the case where the wrong label is
a label about a person in a group in an input sequence; that is, the exclusive force for the wrong
label is expected (as the label change of probe #18 shows in the experiment in Section 3.5.1).
This is one of the major reasons why the performances of the proposed method for sets B and

C are lower than those of sets I and A.

3.6 Discussion

3.6.1 Limitation

While the proposed method significantly improves the labeling performance, there are still
some subjects who are mislabeled, and subjects whose labels are negatively changed via mes-
sage passing, even for the ideal set / in the simulation experiments. We list the typical cases of

failure for the proposed method as follows.

Mislabel within the same group members

When a person in a group is mislabeled as another person in the same group at first, it is difficult
to recover the true label because the belief for the true label and the wrongly assigned label are
boosted to the same degree. Mislabeling within the same group members is, however, relatively
rare compared with mislabeling between different groups. The rate of this kind of mislabel is

relatively low.

Negative label change in the presence of an absentee or an isolated person in a group

As shown in Fig. 3.15, when the following three incidents occur simultaneously, where i) an
absentee or an isolated person exists in a group (the gallery subject with the label /4 in group
G1), ii) another person® (probe #4) comes close to the group members (probe #1, #2, and
#3) with similar velocity vector in an input sequence, and iii) another person is not set as a
seed. Then, another person may possibly be mislabeled as an absentee or an isolated person

by messages from the group members. At the same time, if another person is mislabeled as

2Not only a standalone person or an unregistered person, but also a person from another group.

46



- [Gallery setting] ———— r [Input situation]
Group D - Gl . True label
Gallery label : li 12 13 l4 ‘ot

v
Absentee or L I'E
ﬁl

Non-member of groupG,

Assigned label comes to
be changed to ]4

isolated person True label

Z # : probe fD\
~>» : Message from the members of group Gl

Figure 3.15: Example situation of negative label change.

an isolated person in such a case, the initial correct label assignment for the identical isolated
person is excluded by another person and changed to the other incorrect label. Note that this
often occurs in the presence of a number of standalone persons, unregistered persons, and
isolated persons, such as our simulation sets B and C, because the event probability of the
above incident increases.

Though the initial mislabel assignment and negative label changes as listed above possibly
cause other negative label changes through the propagation of an undesirable message using
the proposed method, the impact of such a negative effect is basically smaller than that of the

positive effects in total, as shown in the results of the proposed method (Fig. 3.14).

3.6.2 Effect of the seed node on performance

The contribution of seed node to the performance improvement of the proposed method is
demonstrated in the simulation results (Fig. 3.14). The advantages of introducing seed node in

graph are considered as followings.

o The avoidance of negative label change: As discussed in Section 3.6.1, the negative label
change 1s not occurred if another person (which is described in Section 3.6.1) is set as a

seed.

¢ The enhancement of message effect: According to the Eq. (3.18), a seed node can send
more discriminative messages for the labels which belong to the same group of the as-
signed seed label as following example. We consider again the situation shown in Sec-
tion 3.4.4 (Fig. 3.6 and Fig. 3.7 (b)), and let assume that the-probe #2 is set as a seed with
seed label /;, that is, the local evidence for the label /; is set to 1 and that for each of all

the other label is set to 0 in Fig. 3.7 (b). In this case, the messages from probe #2 to probe
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Figure 3.16: Messages from a seed node (probe #2) to the other node (probe #1) under the
setting shown in Fig. 6 (Section 4.4).

#1 for the labels 7; and 3 become as, my (x; = 1) = 1.0 and my; (x; = i) = 0.0, respec-
tively® as shown in Fig. 3.16. Therefore, the messages from a seed nodc promote the
belief updates of its neighbor nodes, and positive label changes of them are also expected
to be promoted as a result. Though, the negative label changes are possibly promoted, in
particular, in the case that a seed node is assigned false label as seed label, such negative

case is assumed to be occurred less often than positive case.

3.6.3 Effect of the absence of homography calibration on performance

We assume the homography calibration for the calculation of the position of each subject as
described in Section 3.4.2. The cost of calibration is, however, expensive in some practical
systems. One of the alternative ways is a direct use of the image pixel coordinate system
instead of the world coordinate system to represent the trajectory of each individual. In many
of practical surveillance systems, the camera captures the scene from near the top view or
oblique view just like the scene used in our experiments. Tn such views, it is assumed that the
dircct use of image pixel coordinate does not have a serious impact on the performance of the
proposed method.

To examine this, we conducted an additional experiment for the dataset used in Section 3.5.1
and we used the image pixel coordinate directly for the calculation of the positions of individu-
als. The parameters are set in pixel units, and we decided the parameters dyq; =160 [pixel] and

dyin =130 [pixel] based on the road width (approx. 320 pixels) and human width (approx. 30

3This is an extreme case and the degree of magnitude relation between these messages are biased by constant
value C in actual.
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Figure 3.17: The relationships of iteration count in LBP with the labeling accuracy and pro-
cessing time for the dataset 7 and A.

Table 3.7: Processing times [sec] for the dataset J and 4.

Method Dataset /  Dataset 4
Straightforward 2.5 2.5
Proposed  after the first iteration 88.5 86.9

after the last iteration 3638.7 4248.1

pixels), and the vy, = 15 [pixel/sec] and v,,;, =0 [pixel/sec] based on the average velocity 60
[pixel/sec] which roughly estimated from the dataset. As a result, we get the same result with
that shown in Table 3.2, though the neighbor relationships among probe subjects are slightly
changed.

3.6.4 Relationship between labeling accuracy and computational cost

The computational cost of the proposed method is largely dependent on the calculation of mes-
sages (message update procedure) and the iteration count of the message passing in LBP. The
time complexity of a message update procedure is roughly estimated as, O(N,(Np — Ns) (N —
N;)?) at the first message update, and O(NZ?(N, — Ny )(Ng — N;)?) at the second and subsequent
message update, where Ny, Ny, Ny, and N; are the number of probe subject, that of gallery
subjects, average number of neighbor nodes, and that of seed nodes.

First, the resultant processing times in simulation experiments are investigated, and the
relationships of iteration count in LBP with the labeling accuracy and processing time for the
dataset / and 4 are shown in Fig. 3.17. Note that the experiments are done on a 2.20 GHz AMD
Opteron(tm) Processor 6174 PC running Microsoft Windows Server 2008 operation system,
and the message passing scheme is parallelized via multi-thread processing of 24 threads. In

this figure, we can see that the labeling accuracy is almost saturated after the first iteration,
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though the processing time is gradually and largely increased. These results indicate that only
one-time iteration of message passing is enough in terms of labeling accuracy. Then, detailed
processing times for these datasets are shown in Tab. 3.7. As for the proposed method, both of
the processing time at the end of the first iteration (indicated as affer the first iteration) and that
at the end of the last iteration (indicated as after the last iteration) are shown in this table. From
these results, we can see that all the processing times of the proposed method after the first
iteration are less than 90 [sec], which seems to be reasonable to some extent for practical use,
though they are still far from real-time even with the use of high-performance PC as described

above.

3.6.5 Issues toward the practical system

The proposed method is based on some assumptions as described in Section 3.3. In terms of
the total system (practical surveillance system), however, the following challenging issues are

required to be addressed in future work.

Obtaining the group affiliation

In practice, we need some kinds of registration procedures to associate the group affiliations
with the individuals in advance. This is not such a serious problem in surveillance systems at
factories and schools, where the potential observed persons are well-known in advance, i.e. the
school children and the factory workers. Also, the registration can be achieved relatively easily
with a system constructed at a place where the entrance and exit are controlled, i.e., where the
group affiliation of each person can be easily checked and registered at the entrance gate, as
in amusement or theme parks, stadiums, theaters, and airports. Alternatively, group affiliations
can be derived by manual annotation (by user interaction) of the video sequence, and also
inferred automatically by means of grouping techniques, such as data mining and clustering.
In particular, social behavior-based group finding techniques have been developed in recent
years [128][129]. In these methods, the group is estimated based on trajectory, distance, and
velocity of pedestrians. Thus, these methods bear affinity with the proposed method in terms
of focusing such kinds of social behaviors, and the integration with these techniques is future

work for the practical use of the proposed method.

Handling of more detailed relationship among individuals

As shown in Eq. (3.12), we formulate the compatibility uniformly for each pair of persons in

the same group, and also do that for each pair of persons in different groups. This means that
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we assume the uniform strength of intra-group relationship and that of inter-group relationship.
In practice, however, such strengths might not be equivalent, and rather more complex in some
cases. For example, in the case of a group of friends, a person in the group might be especially
friendly with a certain member of the group compared with other members, and the person
might also be friendly with persons in different groups. Ideally, in such case, the difference in
relational strength among pairs of persons is desired to be reflected in the compatibility. In the
proposed method, this is possibly realized by introducing layered representation of the group
affiliation, corresponding layered conditional branching of the compatibility function, and cor-
responding parameter settings of diax, dmin> Vimaxs Vmin, and C. Besides, to put it in an extreme
way, these parameters could be tuned for each pair of persons without deterministic group af-
filiation, when the strength of each pair-wise relation is well known. Of course, such design
of compatibility leads to explosion of the number of parameters and it is almost impossible to
tune the parameters by manual. Therefore, automatic tuning or learning of the parameters in
conjunction with automatic obtaining of group affiliation as above mentioned is required when

we introduce such extended compatibility.

Obtaining the trajectory and biometric cue

Segmentation and tracking of each person are essential for the acquisitions of the trajectory
and biometric cue, and these are not easy tasks when the scene is crowed, in particular, in the
presence of occlusion among persons. To evaluate the proposed method for more practical
scenes including such occlusion relationships, state-of-the-art techniques of segmentation and
tracking, such as [130], [131], and [132] are required to be applied for this problem. Moreover,
cross-view matching of biometric cue is also essential and in the case of gait-based identifica-
tion, the view transformation model [41] can be applied for this issue. The integration of these

techniques with the proposed method also remains in future work.

3.7 Conclusion

In this chapter, we proposed the behavior-based group context for person identification in video
sequences and integrated it in the framework of CRF. In the proposed method, by means of
message passing, the belief of individual identity is propagated to neighborhoods based on their
group affiliation information and their behavioral differences, such as the spatial distance and
the velocity vector difference in an input sequence, so that the same group members enhance

one member’s belief as those group members enhance each others’ beliefs. In our experiments,
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we showed that the proposed method significantly improves the performance compared with
the straightforward method based on biometric cues alone.

Our future work includes construction of the model for optimal selection of local evidence
for the label of an unregistered person C,;,. This is a rather general issue for many-to-many

matching problems when considering an unregistered person.
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Chapter 4

The OU-ISIR Gait Database Comprising
the Large Population Dataset and
Performance Evaluation of Gait-based
Person Identification

4.1 Introduction

For the development and statistically reliable evaluation of gait-based person identification ap-
proaches, the construction of a common gait database is essential. There are two considera-
tions in constructing a gait database: (1) the variation in walking conditions (e.g., view, speed,
clothing, and carrying conditions), and (2) the number and diversity of the subjects. The first
consideration is important in evaluating the robustness of the gait-based person identification,
because walking conditions depend on the time and circumstances and often differ between
gallery and probe. For instance, the clothing and carrying conditions when walking along a
street in a suit with a bag while on business can differ from those when strolling empty-handed
in casual clothes during leisure time. The second consideration is important to ensure statistical
reliability of the performance evaluation. Moreover, if the database is used for soft biometric
applications such as gait-based gender and age classification [133, 134], the diversity of sub-
jects in terms of gender and age plays a significant role in the performance evaluation.
Although several gait databases have been constructed [43, 44, 39, 45, 46, 47, 33, 40, 48,
49, 50, 42, 51, 52], with most of these taking good account of the first consideration, the
second consideration is still insufficiently addressed since these databases include at most 185
subjects [51] and the subjects’ genders and ages are biased in many of the databases. The
exceptions are the large-scale datasets introduced in [126] and [135], which do address the

second consideration and include respectively, 1,035 and 1,728 subjects with ages ranging
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Table 4.1: Existing major gait databases
Database | #Subjects | Data covariates
Soton database 12 [45] | 4 views, 5 shoes, 3 clothes,
5 bags (including w/o), 3 speeds
115 [39] | 3 scenarios (outdoor, indoor track, treadmill),
2 views per scenario
25[136] | Time (0, 1, 3, 4, 5, 8, 9, and 12 months), 12 views

USF dataset 122 [33] | 2 views, 2 shoes, 2 surfaces,
baggage (w/ and w/0), time (6 months)
CASIA dataset 20 [46] | 3 views
124 [40] | 11 views, clothing (w/ and w/o coat),
baggage (w/ and w/0)

153 [48] | 3 speeds, baggage (w/ and w/o),

OU-ISIR Gait Database, 34 [50] | 9 speeds (2, 3,4, 5,6,7,8,9, and 10 km/h)
Treadmill dataset 68 [42] | 32 clothes combination at most

185 [51] | Gait fluctuation among periods

168 [52] | 25 views

from 2 to 94 years. In these datasets, however, the gait images are captured using cameras
with varying poses (e.g., a camera’s pose on one day differs slightly from that on another day,
or some subjects are captured using first one camera and then another with a slightly different
pose) and this could introduce bias into the evaluation results.

In this study, we focus on the second consideration and introduce a large population dataset
that is a major upgrade to previously reported large-scale datasets in [126] and [135]. The

extensions of this dataset are as follows.

1. The number of subjects is considerably greater in the dataset; i.e., there are more than
thrice the number of subjects in the dataset in [126] and more than twice the number in
the dataset in [135].

2. All silhouette images are normalized with respect to the image plane to remove the bias

of camera rotation for more equitable performance evaluation.

3. The observation angle of subjects in each frame is specifically defined for the sake of fair
analysis in terms of the observation angle, whereas previous works merely defined the

angle as a side view.

Our dataset is the largest gait dataset in the world, comprising over 4,000 subjects of both gen-

ders and including a wide range of ages. Although the dataset does not include any variations
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in walking conditions, it allows us to investigate the upper limit of identification performance
in a more statistically reliable way and to reveal how gait-based person identification perfor-
mance differs between genders and age groups. Thus, our dataset can contribute much to the
development of gait-based applications, and we demonstrate its validity through experiments
with state-of-the-art gait representations.

The outline of the paper is as follows. Section 4.2 introduces existing gait databases, while
Section 4.3 addresses the construction of the dataset. The gait-based person identification ap-
proach for performance evaluation is described in Section 4.4, and various performance evalu-
ations using our dataset are presented in Section 4.5. Section 4.6 presents our conclusions and

discusses future work.

4.2 Related Work

Existing major gait databases are summarized in Table 4.1. Here, we briefly describe these
databases. \

The Soton database is composed of a small population dataset [45] and a large population
dataset [39]. The small dataset contains subjects walking around an indoor track, with each
subject filmed wearing a variety of footwear and clothing, carrying various bags, and walking
at different speeds. Hence, the database is used for exploratory factor analysis of gait-based
person identification [137]. The large dataset was the first gait database to contain over 100
subjects and has contributed to the study of gait-based person identification mainly in terms
of inter-subject variation. The recently published Soton Temporal database [49] contains the
largest time variations; up to 12 months to date [136]. It enables the investigation of the effect
of time on the performance of gait biometrics, allowing the use of 3D volumetric data.

The USF dataset [33] is one of the most widely used gait datasets and is composed of a
gallery and 12 probe sequences captured outdoors under different walking conditions includ-
ing factors such as view, shoes, surface, baggage, and time. As the number of factors is the
largest of all existing databases, despite there being only two variations for each factor, the
USF database is suitable for the evaluation of the inter-factor effect, as opposed to the intra-
factor effect, on identification performance.

The CASIA database, Dataset A [46] contains image sequences from three views and can
be used for the analysis of the effect of the view angle on identification performance. The
CASIA database, Dataset B [40] consists of multi-view (11 views) walking sequences and

includes variations in the view angle, clothing, and carrying conditions. Since it contains the
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finest azimuth view variations, it is useful for the analysis and modeling of the effect of view

on gait-based identification [138]. The CASIA database, Dataset C [48] was the first database

to include infrared gait images captured at night, thus enabling the study of gait-based person
“identification at night.

The OU-ISIR Gait Database, Treadmill Dataset [50, 42, 51, 52] contains gait images of
subjects on a treadmill with the largest range of view variations (25 views: 12 azimuth views
times 2 tilt angles, plus 1 top view), speed variations (9 speeds: 1 km/h intervals between 2
and 10 km/h), and clothing variations (up to 32 combinations), and as such, it can be used to
evaluate view-invariant [41], speed-invariant [50] and clothing-invariant [42] gait-based person
identification. In addition, it is used to analyze gait features in gender and/or age-group clas-
sification [52], since the diversities of gender and age of the subjects are greater than those in
currently available gait databases.

Next, we review the number and diversity of subjects. Table 4.1 shows that existing major
databases include more than 100 subjects. Although these databases are statistically reliable
to some extent, the number of subjects is insufficient when compared with databases of other
biometrics such as fingerprints and faces. In addition, the populations of genders and ages are
biased in many of these databases; e.g., there are no children in the USF dataset with most
of the subjects in their twenties and thirties, while the ratio of males to females is 3 to 1 in
the CASIA dataset (Dataset B). Such biases are undesirable in performance evaluation of gait-
based gender and age-group estimation and in performance comparison of gait-based person

identification between genders and age groups.

4.3 The OU-ISIR Gait Database, Large Population Dataset

4.3.1 Capture System

An overview of our capture system is illustrated in Fig. 4.1. Each subject was asked to walk at
his or her own preferred speed through a straight course (red arrows) at most twice under the
same conditions. The length of the course was approximately 10 m, with approximately 3 m (at
least 2 m) sections at the beginning and end regarded as acceleration and deceleration zones,
respectively. Two cameras were set approximately 4 m from the walking course to observe
(1) the transition from a front-oblique view to a side view (camera 1), and (2) the transition
from a side view to a rear-oblique view (camera 2). We used Flea2 cameras manufactured by
Point Gray Research Inc. with HF3.5M-2 lenses manufactured by SPACE Inc. The image size

and frame rate were, respectively, 640 x 480 pixels and 30 fps. The recorded image format
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Figure 4.1: Overview of capture system and céptured images.
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Table 4.2: Visitors at events

Event Term #Visitors (approx.)
DIM2009 3 days in March 2009 1,600
RDCPE2010 2 days in June 2010 280
OU-0C2010 1 day in August 2010 70
OU-0C2011 1 day in August 2011 90
CREST2011 5 days in August 2011 2,000

was uncompressed bitmap. Moreover, green background panels and carpet (if available) were

arranged along the walking course for the purpose of clear silhouette extraction.

4.3.2 Data Collection

The dataset was collected during entertainment-oriented demonstrations of an online gait per-
sonality measurement [139] at outreach activity events in Japan, including the Dive Into the
Movie project (DIM2009) [140], the 5th Regional Disaster and Crime Prevention Expo (RD-
CPE2010), Open Campus at Osaka University (OU-OC2010/2011), and the Core Research for
Evolutional Science and Technology project (http://www.jst.go.jp/kisoken/crest/en/index.html,
CREST2011). All the events were held at indoor halls and the numbers of visitors at each event
are summarized in Table 4.2.

Each subject was requested to give their informed consent permitting the use of the collected
data for research purposes. Also, the age and gender of each subject were collected as metadata.
All the subjects walked empty-handed, wearing their own clothing (some subjects wore a hat)

and footwear. Examples of images captured at each event are shown in Fig. 4.1.

4.3.3 Statistics

From the data collected by camera 1 (images were taken with two cameras at the events),
the world’s largest gait dataset of 4,007 subjects (2,135 males and 1,872 females) with ages
ranging from 1 to 94 years was constructed. We call this dataset the “OU-ISIR Gait Database,
Large Population Dataset C1 VersionI”!, which we abbreviate to OULP-C1V12, Detailed
distributions of the subjects’ gender and age are shown in Fig. 4.2, while example images of

the subjects are shown in Fig. 4.3. Almost all the subjects are of Asian descent.

'To be prepared for publication. The data will be published in the form of normalized silhouette image se-
quences in PNG format, with a total data size of about 1.5 GB.
2The naming format is OULP-[camera ID][version ID]-[headerl]-[header2]-....
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Figure 4.2: Distributions of the subjects’ gender and age in OULP-C1V1.

Table 4.3: Breakdown of the number of subjects in OULP-C1V1

Observation angle
Dataset 55 [deg] 65 [deg] 75[deg] 85[deg] All | Total

LP-C1V1-A | 3,706 3,770 3,751 3,249 3,141 | 3,835
LP-C1V1-B | 3,998 4,005 4,002 3,923 3,904 | 4,007

The dataset comprises two subsets, which we call OULP-C1V1-A and OULP-C1V1-B.
OULP-C1V1-A is a sct of two sequences (gallery and probe sequences) per subject and is
intended for use in evaluating identification performance under almost constant walking condi-
tions. OULP-C1V1-B is a set of one sequence per subject and is intended for use in investigat-
ing gait-based gender classification ana age estimation. OULP-C1V1-A and OULP-C1V1-B
are major upgrades to the datasets introduced in [126] and [135], respectively. For brevity, we
omit the description of the dataset header “OULP-C1V1-".

Each of the main subsets is further divided into five subsets based on the observation angle
(55 [deg], 65 [deg], 75 [deg], 85 [deg], and including all four angles) of each subject. We call
these subsets A/B-55, A/B-65, A/B-75; A/B-85, and A/B-ALL, respectively, with each subject
belonging to at least one of these subsets. The observation angle 6; of each subject in each

frame is defined by the y-axis of the world coordinate system (which is parallel to the walking
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Figure 4.3: Examples of subjects in OULP-C1V1.

direction) and the line of sight of the camera as illustrated in Fi g 4.4,

A subject is included in a bin of a subset if one gait period occurs in the range of angles (as
illustrated in Fig. 4.4) corresponding to that subset. For example, if a subject is recorded twice
(both gallery and probe sequences) with a complete gait period in the range of 55 [deg], the
subject is included in a bin of A-55 and one of B-55. Moreover, if a subject is recorded twice
with a complete gait period covering all the angle ranges, the subject is included in a bin of all
the subsets. A gait period is calculated from the whole sequence (see Section 4.4.2 for details
on the calculation of the gait period).

An example image for each observation angle is shown in Fig. 4.4, while a breakdown of
the number of subjects is given in Table 4.3. In this table, the values in the “Total” column
represent the number of subjects included in at least one of the subsets of 55 [deg], 65 [deg], 75
[deg], and 85 [deg]. As mentioned above, the numbers of subjects for dataset A represent those
that have been recorded twice. Also, the differences between datasets A and B for each subset
represent the numbers of subjects recorded only once. Take for example, the subset of 55 [deg]
in Table 4.3 (A-55 and B-55) where 3,706 subjects are recorded twice and 292 subjects are
recorded only once. Note that there are also differences in the numbers of subjects between
subsets, because the sequence length and observation ﬁngles for each subject are not exactly

the same.

4.3.4 Advantages

Compared with existing gait databases, our dataset has the following strengths.
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Figure 4.4: Definitions of the world coordinate system and the observation angle of a subject,
and an example image at each observation angle. The Y-Z plane corresponds to the background
wall behind the walking subjects, while the X—Y plane corresponds to the ground plane.

1. Large population: The number of subjects is more than 20 times that in publicly avajl-
able large-scale gait databases. This improves the statistical reliability of various perfor-

mance evaluations such as the comparison of gait-based person identification.

2. Gender balance: The ratio of males to females is close to 1. This is a desirable prop-
erty for more reliable performance evaluation of gait-based gender classification and for

comparison of identification performance between genders.

3. Whole generation: The age range is from 1 to 94 years with each 10-year interval up to
49 years of age containing more than 400 subjects (even in the smallest subset A-ALL).
In addition, it is noteworthy that our dataset includes a sufficient number of children
at all stages of growth, whereas other large-scale gait databases are mainly composed
of adult subjects. This provides more statistically reliable results for gait-based age-
group classification and comparisons of the difficulties in gait-based person identification

among age groups.

4. Silhouette quality: The quality of each silhouette imagé 1s relatively high because we
visually checked each silhouette more than twice and made manual modifications if nec-

essary. This enables the elimination of silhouette quality problems from gait analysis.
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On the contrary, the silhouette images in most of the existing public databases are au-
tomatically extracted and often include significant over/under-segmentation. Although
manually modified silhouettes were created in the investigation of the effect of silhou-
ette quality on gait-based person identification in [141] and [142], these have not been
published. 4

4.3.5 Preprocessing

This section briefly describes the method used for size-normalized silhouette extraction.

Silhouette extraction

The first step involved extraction of gait silhouette images via graph-cut-based segmentation
[127] in conjunction with background subtraction. Of course, over/under-segmentation errors
appeared in some extracted silhouette images. Hence, as described above, we visually checked
all silhouette images at least twice and then manually modified under/over-segmentation if
necessary. In more detail, a silhouette was shown to the observer in the form of a composite
image in which the silhouette contour was overlaid on the corresponding original image. The
observer checked whether the silhouette contour fitted the visually perceived human contour

and if not, modified it using a GUI tool specially developed for this purpose.

Correction of camera rotation

In the second step, image normalization, including the correction of distortion and camera
rotation, was carried out. Because the camera pose in the world coordinate system for each
day/event was not strictly the same, we normalized the camera rotations in all silhouette images
such that the image plane in each is parallel with the Y-Z plane in the world coordinate system
as shown in Fig. 4.5. First, the intrinsic parameters of the camera and coefficients of lens
distortion were estimated [143]° and distortion corrected. An example of an undistorted image
is shown in Fig. 4.5(a). The transformation matrix of camera rotation from the original pose
(shown in Fig. 4.5(a)) to the target pose (shown in Fig. 4.5(b)) was then estimated for cach
day/event from the undistorted image using a pair of vanishing points [144] (i.e., horizontal
and vertical vanishing points), estimated from the sets of parallel lines in the scene [145].
Finally, all the image pixels in the original image plane were reprojected onto the normalized
image plane. An example of a camera rotation corrected image is shown in Fig. 4.5(b). Also,

examples of a subject in each dataset after rotation correction are shown in Fig. 4.6.

3Calibration procedures were implemented using OpenCV version 1.1 functions.
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Figure 4.5: Examples of the original and normalized camera pose, image plane, and images.
In the rotation-correcied image in (b), the set of cyan lines and set of magenta lines represent
the sets of parallel lines in the scene used to determine the vanishing points, while the white
dashed line represents the vertical center line of the image. The observation angle is 90 [deg]
at this line.

Registration and size normalization

The third step involved registration and size normalization of the silhouette images [41]. First,
- the top, bottom, and horizontal center of the silhouette regions were obtained for each frame.
The horizontal center was chosen as the median ot the horizontal positions belonging to the
region. Second, a moving-average ﬁltér was applied to these positions. Third, we normalized
the size of the silhouette images such that the height was just 128 pixels according to the average
positions, and the aspect ratio of each region was maintained. Finally, we produced an 83 x
128 pixel image in which the average horizontal median corresponds to the horizontal center

of the image. Examples of size-normalized silhouettes are shown in Fig. 4.7.
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Figure 4.6: Composite images showing examples of a subject in each dataset after rotation cor-
rection. Each composite image includes the subject at the start (“Start”), the middle (“Middle™),
and the end (“End”) of the section. The vertical red line represents the center of the section.
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Figure 4.7: Examples of size-normalized gait silhouettes (every four frames).

4.4 Gait-based Person ldentification

This section describes a framework for performance evaluation of gait-based person identifica-

tion.

4.4.1 Gait Features

The current trend in gait representation is appearance and period-based representation, such as
the averaged silhouette [35], also known as the Gait Energy Image (GEI) [36]. In this paper, we
deal with six such state-of-the-art gait features: GEI, Frequency-Domain Feature [41] (referred
to as FDF in this paper), Gait Entropy Image (GEnlI) [146], Masked GEI based on GEnl [37]
(referred to as MGEI in this paper), Chrono-Gait Image (CGI) [147], and Gait Flow Image
(GFT) [148].

The GEI is obtained by averaging silhouettes over a gait cycle, while the FDF is generated
by applying a Discrete Fourier Transform of the temporal axis to the silhouette images in a gait
cycle. In this work, 0, 1, and 2 times frequency elements are used. The GEnl is computed by
calculating Shannon entropy for every pixel over a gait cycle, where the value of the GEI is
regarded as the probability that the pixel takes the binary value. The MGEI is computed by
masking the GEI with a pair-wise mask generated by each pair of probe and gallery GEnlIs.
The GEnl and MGEI aim to select the dynamic area from the GEL The CGI is a temporal
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Figure 4.8: Examples of gait features.

template in which the temporal information among gait frames is encoded by a color mapping
function, and 1s obtained by compositing the color encoded gait contour images in a gait cycle.
The GFI is based on an optical flow field from silhouettes representing motion information and
is created by averaging the binarized flow images over a gait cycle. An example of each feature

1s shown in Fig. 4.8.

4.4.2 Gait Period Detection

For the quantification of periodic gait motion, we adopted the Normalized Auto Correlation

(NAC) of the size-normalized silhouette images for the temporal axis:

B Sy Ty 8Ly +N)
C(N)= = — (4.1)
\/ Yoy S ey \/ Yoy Xmg gleymtNP
T(N)=Njpra —N—1, (4.2)

where g(x,y,n) is the silhouette value at position (x,y) of the n-th frame, C(N) is the autocor-
relation for the N-frame shift, and N,y 1s the total number of frames in the sequence. Because
gait 1s a symmetrical motion to some extent, peaks of the NAC were assumed to appear for all
half periods on the temporal axis. Thus, we determined the géit period Ny,jr as the frame shift
corresponding to the second peak of the NAC. An example of the relation between NAC and

frame shift is shown in Fig. 4.9.
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Rigure 4.9: Example of the relation between NAC and frame shift. In this figure, the frame
shift corresponding to the second peak of the NAC is 32.

4.4.3 Distance Matching

Tn the evaluation of datasets A-55, A-65, A-75, and A-85*, a gait feature for a subject was
created from a section of a dataset (as illustrated in Fig. 4.6) that includes one gait period. Note
that there is some area of overlap for some subjects between sections as shown in Fig. 4.4. All
pairs of features (gallery and probe features) were then directly matched”.

The distance D;; x between the i-th probe subject and the j-th gallery subject in dataset K €
{A-55, A-65, A-75, A-85} was measured as,

Dijx =|Pix — G |2, (4.3)

where P; x and G x are feature vectors of the i-th probe and j-th gallery in dataset K, respec-
tively, and || - || is the Euclidean distance. In addition, we exploited z-normalization [149]
of the distance among galleries for each probe to improve the performance in a one-to-one

matching scenario.
For dataset A-ALL, we first calculated z-normalized distances for each section of the four

abovementioned datasets and then averaged them as a total distance. Note that this averaging

is equivalent to combining the normalized scores via the sum rule [150].

“4Because two sequences (gallery and probe sequences) are required for person identification, dataset A is used
hereafter.

$Since only a single gait feature was obtained for each dataset, statistical discriminant analysis considering
within-class variance such as linear discriminant analysis could not be appfied.
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4.5 Performance Evaluation of Gait-based Person Identifica-
tion

Despite the recent welcome developrrient in gait-based person identification in the research

community, the following open issues still remain.

1. An evaluation of gait-based person identification with statistical reliability has not been

carried out owing to the lack of a large population dataset.

2. Also, to the best of our knowledge, the effects of gender and age on identification per-
formance have not been explored because of the lack of a dataset with sufficient subject

diversity.

Therefore, we address the above issues using our dataset. In this section, we first show the
statistical reliability of the evaluation using our database. The upper limits of identification
performance of state-of-the-art gait representations introduced in the previous section are then

demonstrated. Finally, we reveal the effects of age and gender on identification performance.

4.5.1 Effect of the Number of Subjects

First, the effect of the number of subjects is demonstrated by means of a Receiver Operating
Characteristic (ROC) curve. The ROC curve is a common tool for performance evaluation
in biometrics and denotes the trade-off between the False Rejection Rate (FRR) and False
Acceptance Rate (FAR) when the acceptance threshold is changed by a receiver in a one-to-
one matching scenario.

From statistical analysis of ROC curves [151], the standard deviation of the FRR with a
single probe for each subject is estimated as

o(p)= /212, (4.4)
where p is the observed FRR and » is the number of subjects. This indicates that the obtained
FRR becomes more reliable as the number of subjects increases.

To validate the estimation, we repeated the experiments with randomly chosen subsets with
fewer subjects and compared the actual standard deviation of the performance and that esti-
mated from Eq. (4.4) using the GEI aé the gait feature. First, we prepared 100 subsets com-
prising 100 subjects randomly chosen from dataset A-65 (which comprises 3,770 subjects) and

obtained 100 ROC curves from the experimental results. We then calculated the average and
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Figure 4.10: ROC curves of gait-based person identification using GEI with a varying number
of subjects. Black and red indicate, respectively, smaller subsets and the whole set of A-65.
The bold line and two bounding dashed lines indicate, respectively, the average i and standard
deviation range u + ¢ derived from Eq. (4.4). Gray bars denote the standard deviation ranges
{1 £ o obtained in the experiments.

standard deviation of the FRR for each FAR, depicted as an averaged ROC curve (bold black
line) and standard deviation range bar (gray bar) in Fig. 4.10. Additionally, the estimated stan-
dard deviation range is depicted as two dashed black lines. From the graph, we see that the
standard deviation ranges derived from the experimental results correspond well with those
estimated from Eq. (4.4).

In addition, the results for the whole set are superimposed as the bold red line, while
the standard deviation range estimated from Eq. (4.4) is depicted as two dashed red lines in
Fig. 4.10. We sec that the standard deviation range is significantly narrower than that of subsets

with fewer subjects.

4.5.2 Comparison of the Gait Feature

Performance comparison

This section compares the identification performance of the six gait features described in Sec-
tion 4.4.1. The identification performance was evaluated using two metrics: (1) the ROC curve,
and (2) the rank-1 and rank-5 identification rates. The rank-1 and rank-5 identification rates,
which are common evaluation measures in a one-to-N matching scenario, denote the percent-
ages of correct subjects out of all the subjects appearing within the first and fifth ranks, respec-
tively. Note that the rank-1 and rank-5 identification rates depend on the gallery size, whereas

the ROC curve is essentially independent of the gallery size.
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Figure 4.11: Performance comparison of six gait features in terms of the ROC curve and EER.
Each bar represents a standard deviation range derived from Eq. (4.4).
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Table 4.4: Performance comparison of six gait features in terms of the rank-1 identification
rate.

Dataset | GEI FDF GEnl CGI GFI MGEI

A-55 84.70 83.89 7642 7558 75.15 68.35
A-65 86.63 85.49 78.65 7897 77.11 6891
A-75 86.91 86.59 79.95 81.58 76.54 67.10
A-85 85.72 85.90 80.95 8335 7492 61.19
A-All | 94.24 94.17 9093 91.60 87.46 84.18

Table 4.5: Performance comparison of six gait features in terms of the rank-5 identification
rate.

Dataset | GEI_FDF_GEnl CGI _GFI _MOGEI

A-55 92.39 91.53 86.67 86.02 85.83 80.09
A-65 92.84 92.81 88.14 88.06 87.32 79.71
A-75 92.78 92.88 89.23 89.28 85.84 78.4l
A-85 93.01 92.83 89.60 90.80 84.73 73.19
A-All | 97.13 97.10 9535 9532 92.84 90.58

First, the performance is compared for each observation angle using datasets A-55, A-65,
A-75, and A-85, since the gait feature property is dependent on the observation angleS. The
ROC curves with standard deviation range bars for each dataset are shown in Figs. 4.11(a),
(b), (c), and (d), while the Equal Error Rate (EER) is summarized in Fig. 4.11(f). In addition,
rank-1 and rank-5 identification rates are given in Table 4.4 and Table 4.5. From the results,
although the performances of the GEI and FDF are neérly equal and the performances of the
GEnl and CGI are nearly équal, we see that there is a statistically significant performance
difference between the GEI (or FDF), GEnl (or CGI), GFI, and MGEI, and the performance
order of these techniques is almost independent of the observation angle.

Next, we compare the total performance using dataset A-ALL, with the results shown in
Fig. 4.11(e), Table 4.4, and Table 4.5 (bottom row). As for the results for A-ALL, the following
reasons are suggested for the improvement in identification performance: a) the effect of gait
fluctuations, which notably appears on the arm swing and head pose, was decreased by com-
bining the scores of each observation angle, and b) the variations in the gait feature property
caused by the observation angle improved the identification performance, as reported in [90].

From these results, it can be seen that the GEI and FDF achieve the best performance overall.

For example, static features such as body shape are clearly seen in front-view gait images, wh11e dynamic
features such as the step and arm swing are clearly seen in side-view gait images.
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Probe Gallery

Difference Probe Gallery Difference

GEI GEI

GFl

(a) A subject with large head pose fluctuation (b) A subject with large arm swing fluctuation

Figure 4.12: Examples of subjects in A-85. Note that the value of the GFI is inverted for
visibility. All feature differences between gallery and probe features are visualized by colors
(green and red) in the corresponding difference image. Green indicates that the probe feature
appears more strongly, while red depicts the opposite. Regarding the subject in (a), the rank
score using the GFI is 216, while that using the GFI is 1 (also, the rank scores are 79, 239, 7,
and 19 using the FDF, CGI, GEnl, and MGEI, respectively). On the other hand, for the subject
in (b), the rank score using the GEI is 1, while that using the GFI is 567 (also, the rank scores
are all 1 using the other features).

Note that these comparison results are partly inconsistent with the results in previous works,
for example, [147] (GEI vs. CGI) and [148] (GEI vs. GFI). The differences between the
databases used for the evaluations (e.g., subject diversity, silhouette quality, sequence length,
and intra-subject variations) are considered to be the cause of the inconsistencies. For exam-
ple, according to the latest evaluation results of the CGI reported in [38], GEI performance is
superior to that of CGI only if there is no intra-subject variation and only a single gait period

occurs in a sequence. Both these conditions are true in our dataset.

Correlation among features

Although some kind of upper limit on identification performance using state-of-the-art gait fea-
tures has been shown in the previous section, investigating the correlation among gait features
is still meaningful for the design of a feature fusion scheme [152] to further improve identifica-
tion performance. Each gait feature has a unique property and is considered to be independent
of other features to some extent. For example, Fig. 4.12(a) shows.a subject in A-85 whose rank
score is 216 using the GEI and 1 using the GFL On the other hand, Fig. 4.12(b) shows a subject
in A-85 whose rank score is 1 using the GEI and 567 using the GFI. These typical examples
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Figure 4.13: Examples of the rank score correlations between pairs of gait features.

indicate that the GEI is relatively sensitive to static pose fluctuations and robust to motional
fluctuation, while the GFT is the exact opposite.

To reveal which pair of features has a weak correlation, that is, is suitable for fusion, the
rank score relations among gait features for each subject were analyzed. The results show that
the GFI has relatively weak correlation with all the other features except the GEnl, and the CGI
has the same with the GEnl, MGEL, and GFL In addition, the GEnl has the same with the GEI,
CGl, and MGEL Some notable relations of rank scores for dataset A-85 among these features
are shown in Fig. 4.13, while the relations of distances of the same subjects and different
subjects are shown in Fig. 4.14. In the distance distributions shown in Fig. 4.14, though we can
see that each distance relation between each pair of features is correlated as a whole, dispersal
exists at a certain level. Therefore, these figures indicate that there is room for improvement
in the identification performance by fusing these gait features. Demonstration of this through

fusion is one of our future works.

72



10

10

[ Same - Diff|

[=]

GFl distance {Z-normalized)
(=]
GFl distance (Z-normalized)

|
|

—_
(=1
{
{
y
iy
=]

0 10 -10 0 10

-10
GEl distance (Z-normalized) - CGl distance (Z-normalized)
(a) GEI and GFI (b) CGI and GFI
10

W
a3}
3
1]

: 10 . ‘
| - Same - Diff ‘ - Di

o
!

MGE] distance (Z-normalized)
GEnl distance (Z-normalized)

=
<
)
sy
(=)

10 0 10 10 0 10
GFl distance (2-normalized) CGl distance {Z-normalized)
(¢) GFI and MGEI (d) CGI and GEnl

Figure 4.14: Examples of the distance correlations between pairs of gait features.

4.5.3 Effects of Gender and Age

This section investigates the difference in gait-based person identification performance between
genders and age groups. Our gait database is suited to this purpose because the age distribution
of each gender is much wider than that in existing gait databases as mentioned in Section 4.3.3.
In this experiment, we adopted the GEI as the gait feature and carried out the evaluation on
subset A-65, since it has the largest number of subjects in dataset A”. 7
Ages were grouped in 5-year intervals up to 20 years of age and in 10-year intervals from 20
to 60 years of age for each gender®. Ages over 60 years were treated as one age group because

of the shortage of subjects. The numbers of subjects in each gender/age group are given in

"We also carried out this experiment using all the other gait features described in Section 4.4.1 on another
subset A-RS, but the results showed similar trends.

8Taking the rapid physical growth rate into consideration, we used 5 year intervals up to 20 years to reveal
more detailed changes in identification performance during the growing process.
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Table 4.6: Numbers of subjects of each gender and age group in A-65

Age
Gender | 04 5-9 10-14 15-19 20-29 30-39 40-49 50-59 Over 60
Male 32 312 323 150 267 288 412 134 89

Female | 29 213 226 90 285 369 403 73 75
0.24 :
0.20 [ W Male -
0.16 ™ Female
& 012
w
0.08
0.04 u L
0.00 i Eﬁﬁ_ I *"I - | i T ﬁm.}:;.w
0-4 5-9 10-14 15-19 ZR—g%9 30-39 40-49 50-59 Over60

Figure 4.15: EERs among genders and age groups. The black bars represent the standard
deviation ranges derived from Eq. (4.4).

Table 4.6.

The EER for each gender/age group is depicted in Fig. 4.15, while the distance distributions
of the same subjects (true attempts) for each group are shown in Fig. 4.16. A comparison of the
distance distributions of the same subjects and different subjects (imposters) for four typical
age groups—under 10s (5 to 9 years old), early 10s, 20s, and 40s—are depicted in Fig. 4.17.
Note that the original L2 norm (Eq. (4.3)) is shown in these distributions.

Effect of gender

First, we focus on the difference in gait-based person identification performance between males
and females. According to the results in Fig. 4.15, identification performance for females tends
to be better than that for males in almost all the age groups. Additionally, Fig. 4.17 implies that
the inter-subject variation in females’ gait is greater than that in males” gait, while intra-subject
variations are not that different between males and females in each age group. The difference
in intra-subject variation is assumed to be due to the fact that the range of appearance variation
in females, which mainly comes from variations in hair style, clothes, and shoes, is greater than

that in males.

74



" Over60 Over60
| 50-59 50-59
40-45 40-49
3039 g 30-39 @
i 20-29 < " 20-29
> B 15-19 > : 15-19
c { 1014 g2 ¢ 10-14
@ 0 02 &
3 i 59 3 5-9
] ot @ 0.1 {
= B &, e e 0o
S I A
Distance (L2 norm)
(a) Male (b) Female
Figure 4.16: Distance distributions of the same subjects in each gender/age group.
Effect of age

Next, we focus on the difference in gaijt-based person identification performance between age
groups. From the results in Fig. 4.15, we see that identification performance for the group
of very young children (0 to 4 years old) is worse than that for the other age groups, and
this gradually improves with the slightly older groups up to the group of late 10s. This result
is intuitively understandable because the intra-subject gait fluctuation for children is greater
owing to the immaturity of their walking, as illustrated in Fig. 4.16. On the other hand, the
fluctuation in gait for adults is small as shown in Fig. 4.16. This indicates that adults have
established their own walking style; in other words, they have a fixed gait pattern. In this
regard, however, the intra-subject variation in the over-60 female group is slightly larger than
that in other adult age groups, and this is assumed to be due to a decline in physical strength
with aging. Further study of elderly groups (over 60 years old), together with the additional
data collection required, is considered as future work. In addition, a more detailed analysis of
gait properties among age groups, such as investigation of the differences in the effects of body
parts among age groups, is one of our future works.

The above observations indicate that the dependence of gait fluctuation on the age group
implies that gait fluctuation can be a useful cue for age classification according to gait. In
addition, the age group can be regardéd as a so-called quality measure [153] for gait-based

identification, which is one of the interesting future directions of this study.

75



.50

0.50 ! :
0.45 5.9 Male: Same 0.45 ——10-14 Male:Same |
0.40 weeea5-8 Female: Same 0.40 e 10-14 Female: Same |
035 - = 5.9 Male: DIff 035 - = 10-14 Male: Diff H
Z 030 ~ - 5-9 Female: DIff g 030 A -~ 10-14 Female: Diff [~
$ 028 S 035 -\
g Y g / 3
£ 020 , \ Lg 0.20 ) r oY
0.15 = 0.15 4 £
) / 7 7 N g 1 \ 7% N
0.10 y : A S 0.10 ] ‘\(' TR
0.05 £ S 0.05 % .
0.00 I 27 Nl Y —_— 0.00 [_...._-_.' PEASN o S
0 0 :
1000 2000 3000 4000 ) 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
(a) Group of 5 to 9 years olds (b) Group of carly 10s
0.50 I ; 0.50 - :
0.45 —20-29 Male:Same || 0.45 o A40-49 Male: Same |
0.40 - s )0-20 Femnale: Same H 0.40 = e 40-49 Female: Same |4
0.35 /,A‘ = 2020 Male: Diff [ 0.35 r." Y = 40-49 Male: Diff
g 030 - e = 20-29 Fernale: DIFf [ g 030 |— ’_‘ \\ — - 40-49 Female: Oiff |
S 025 - A S 025 |
T [ \ T i \:
® 0.20 { - & 0.20 A -
s f \ [ [ f \\ 7'\
0.15 \ £ 3 015 f B Vol - N
0.0 y “s 1/ A - 0.0 / \'/ = N
0.08 /- e e = 0.05 —f-- A
oo —Z 1 LT ] ) S 000 Landlod et bl | i
1000 2 3000 6000 2000 000
0 000 L3000 080 ) 5000 7000 0 1000 DI, (100 SO0 6 7000
(c) Group of 20s (d) Group of 40s

Figure 4.17: Comparison of distance distributions of the same subjects and different subjects
in four typical age groups.

4.6 Conclusions

This paper described the construction of 4 gait database comprising a large population dataset
and presented a statistically reliable performance evaluation of gait-based person identifica-
tion. This dataset has the following advantages over existing gait databases: (1) the number
of subjects is 4,007, which is more than 20 times greater than the number in existing public
large-scale databases, (2) the male-to-female ratio is close to 1, (3) the age distribution is wide,
ranging from 1 to 94 years, and (4) the quality of all silhouettes is guaranteed by visual con-
firmation. Using our dataset, we carried out a statistically reliable performance comparison of
gait-based person identification using state-of-the-art gait features. Moreover, the dependence
of identification performance on gender and age group was analyzed with the results providing
several new insights, including the petrformance difference between males and females, and the
gradual change in identification performance with human growth.

Although our dataset has the largest population of all databases till now, there is still an in-
sufficient number of very young children and elderly persons when compared with the numbers
of other gencrations. Therefore, we need to collect the required gait datasets by taking advan-
tage of various events, such as outreach activities, in the future. Additionally, the construction

of another dataset using images taken with camera 2 is a future work.
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Moreover, further analysis of gait-based person identification performance using our dataset
is still needed. For example, our dataset enables the evaluation of cross-view recognition and
this will show the robustness of each gait feature with respect to view variations. Finally, our
database is suitable for the development of gait-based gender and age classification algorithms,
which are quite meaningful for many vision applications such as intelligent surveillance, and

these remain as future works.
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Chapter 5

Conclusion

This thesis describes the techniques for visual surveillance using gait-based person identifi-
cation. Gait as a biometric cue has the ability of identifying individuals at a distance and is
difficult to disguise. Due to such advantages, gait-based person identification could enhance
the value of surveillance in public space, furthermore, it could contribute a lot to the realization
of safe and secure society. In this research, we tackled the three major issues of gait-based
person identification toward the practical use in visual surveillance.

First, we addressed an issue of accurate foreground segmentation which is primal prepro-
cessing of gait-based person identiﬁcation, and we proposed a novel framework of foreground
and shadow segmentation with a static binocular system. We aimed more accurate segmenta-
tion in the presence of strong shadow and occlusion relationship between two cameras. The ho-
mography constraint was utilized to distinguish the foreground and shadow. In addition, while
existing homography-based approaches did not consider the occlusion relationship between
foreground and shadow and often failed at such regions, it was taken into account by treating
homography-correspondence pairs symmetrically in the proposed method, and the segmenta-
tion problem was regarded as a multi-labeling problem for a homography-correspondence pair.
In the labeling strategy, the labels which represent the correspondence of shadow and back-
ground were prohibited by homography constraint. The multi-labeling problem was formulated
in the framework of energy minimization in which the energy function was composed of a data
term and a smoothness term. The data term contributed to the label assignment in terms of the
color of each pair of homography-corréspondence pair, and the smoothness term did in terms of
spatio-temporal label continuity, and the energy minimization problem was optimized by o—f3
swap algorithm. The performance of the proposed method was examined through the compar-
ison experiments with color-based approach, disparity-based approach, existing homography-

based approach, and their integration approaches. Three different real image sequences with
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strong shadow and occlusion relationship were used as the evaluation data. The results showed
that the proposed method overall outperformed the existing methods.

Second, an issue of identification performance decrement caused by intra-subject variations
such as gait fluctuation and condition changes (e.g., view, clothing, and carrying conditions) is
addressed. We focu.sed on the social context that we often act in groups (e.g., friends, family,
and co-workers). Such group context was used as a cue for identifying individuals to enhance
the identification performance in the presence of the degradation of individual cue caused by
intra-subject variations. In surveillance videos, a group often observed with non-group mem-
bers at a time and the spatial relations among them are dynamically changed with time. To
consider such dynamic relations among persons, we used the behavioral relations as group
context including spatial distance and velocity vector difference among persons through the
video sequences, while existing group context-assisted person identification approaches just
used co-occurrences among persons as group context. The group context was integrated with
individual cue in the form of a pair-wise CRF model. In the model, the person-to-person rela-
tionships were represented as a graph, where each node corresponds to each person and each
edge corresponds to the relationship between each pair of persons. A person identification
problem was then formulated as a maximization problem of the conditional probability of the
label assignment for all the nodes, and the problem was approximately solved by LBP algo-
rithm. In the iteration of the message passing process of LBP, the identity confidence for each
person was propagated to the identities of the surrounding persons based on their individual
cues and group information, so that the same group members with similar characteristics (spa-
tial proximity and similar velocity vector) enhanced each other’s identities. We conducted the
experiments to confirm the effectiveness of the proposed method by using both a real image
dataset composed of 47 subjects and the simulation datasets composed of a thousand subjects.
In the experiments, gait is used as a biometric cue, and the significant improvement in iden-
tification performance was demonstrated by the proposed method through all the experiments
compared with the straightforward method based on individual cues alone.

Third, we addressed an issue of the performance evaluation of gait-based person identifi-
cation with statistical reliability. To solve the issue, we constructed the world’s largest gait
database composed of 4,007 subjects (2,135 males and 1,872 females) with ages ranging from
1 to 94 years, while existing major databases included at most 185 subjects with biased gen-
der and age distributions. In addition, the quality of each silhouette was ensured by visual

check and manual modification, and the observation angle of each subject in each frame was
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specifically defined in our database to enable the fair performance evaluation in terms of sil-
houette quality and observation angle. By using the database, first, we demonstrated that the
dataset ensured the statistical reliability of an performance evaluation result, comparing with
that from the dataset comprising 100 subjects. Then, we carried out the performance com-
parison of state-of-the-art model-free gait representations: GEI, FDF, GEnl, MGEI, CGI, and
GFI. The results showed a kind of their upper limits of identification performance and the sig-
nificant performance differences among them. The results also showed that the GEI and FDF
achieved the best performance of all in total. Finally, we analyzed the dependence of iden-
tification performance on gender and age group. As the results, several new insights such as
the performance difference between males and females and the gradual change in performance
with human growth were provided.

In the future, the construction of a total scheme of gait-based person identification for visual
surveillance is required for the practical use, by integrating each of the techniques proposed in
this thesis and other state-of-the-art techniques of segmentation, tracking, and gait representa-
tion. Although we focused on the three issues, there are some remained critical issues to be
solved. Of these, the occlusion among persons, which often arises in the surveillance videos,
especially in crowded scenes, is one of the most challenging problems not only from the view
point of preprocessing, but also from that of identification.

Segmentation and tracking of persons as preprocessing in such occlusion relationship is
inevitable to obtain each gait of them. Some recent works [130, 131, 154] address the is-
sue, and it is considered that the use of behavioral context among persons as described in
this thesis can enhance their performance of segmentation and tracking, as demonstrated in
the studies of context-based tracking [121, 122]. On the other hand, even if the segmentation
and tracking are done well by such state-of-the-art techniques, an issue of identification via
incomplete gait features created from the partial silhouettes of the occluded persons is still re-
mained. For the issue, gait-based person identification approaches using partial gait representa-
tions [155, 156, 42, 157] could ensure the identification performance to some extent. Moreover,
the incorporation of these methods into the group context-aware framework proposed in this
thesis will much improve the identification performance in such case.

As for the performance evaluation, though the world’s largest gait database in terms of the
number and diversity of subjects is constructed in this thesis, it includes no walking variation.
Therefore, the other challenging issue is the construction of more expansive gait database which
includes both a number of walking variations (e.g., views, clothing, shoes, speeds, surfaces, and

carrying conditions) and a number of subjects with wide ranging ages like that in our database.
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Such database will encourage the development of the walking condition-invariant gait-based
person identification scheme with statistical reliable robustness toward practical use.
Only after gathering these techniques, gait-based person identification can be applied for

various practical scenes in visual surveillance and will be able to contribute to the safe and

secure life in a real sense.
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