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mathematical engineering. He first showed methods how to construct a fundamental solution to 

these equations which are at the same time available to a wide class of problems. 

Abstract degenerate equations were first studied by Favini systematically. Tanabe then 

contributed deeply to develop the theory by newly introducing useful methods for constructing a 

fundamental solution to the equations. 

 

Hiroki Tanabe is a world-famous researcher, driven by his powerful will to cast light on the 

difficult problems of mathematics. His accomplishment as a scientist is enormous and his mind 

is both proactive and profound. However, it is not just his performance as a scientist that we 

praise on his 80th birthday; his kindness, his courtesy and his good nature make him an 

invaluable and true leader for all of us. 
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Preface 

 

This volume is the proceedings of a five day seminar on partial differential equations 

held at Osaka University in August, 2012, under the support of Osaka University. Such 

a seminar is annually held and is organized in rotation by Tanabeôs school members. 

Seminar 2012 was specially organized in honor of his 80th birthday. The volume is 

divided into two parts. The first consists of the reports of the speakers of Seminar 2012. 

The second is devoted to the reports of contributors to the annual seminar. 

 

We gratefully acknowledge the support of the Japan Society for the Promotion of 

Science through Grant-in-Aid for Scientific Researches, No. 20340035, on Structural 

Analysis of Exponential Attractors for Dissipative Systems and its Applications. 
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We denote by e1 := (1; 0; � � � ; 0) 2 Rn the �rst row vector of the identity matrix of order

n. We de�ne J : Rn � X ! Rn � Y by

(1.4) J

0B@�

v

w

1CA :=

0B@ lw � e1

g(�; v)

gu(�; v)w

1CA 2 Rn � Y1 � Y2 for (�; v; w) 2 Rn � X1 � X2:

Here, l 2 L(X; Rn) and we assume that lv = 0 for any v 2 X1. We de�ne projections p

and P by

(1.5) p : (r1; r2; � � � ; rn) 2 Rn 7�! r1 2 R;

(1.6) P : (r1; r2; � � � ; rn) 2 Rn 7�! (r2; � � � ; rn) 2 Rn�1 for the case n � 2:

In what follows, we always set formally Rn�1 � Y := Y for the case: n = 1. We de�ne

G : Rn � X ! Rn�1 � Y by

(1.7) G := g (n = 1) and G

 
�

u

!
:=

 
Plu

g(�; u)

!
(n � 2):

We set Z := (pl)�1(0) = fu 2 X ; plu = 0g and R+ := (0; 1). Our main theorem is the

following:

Theorem 1.1. In addition to the assumptions above we assume that (�0; v0; w0)

2 Rn � X1 � X2 satis�es the following (H1) and (H2):

(H1) A point (�; v; w) = (�0; v0; w0) is an isolated solution of the extended system

J(�; v; w) = 0,

(H2) The linear operator gu(�0; v0)jX1 : X1 ! Y1 is bijective.

Then, the point (�0; v0) is a bifurcation point of the equation G(�; v) = 0. Exactly,

there exist an open neighborhood W of (�0; v0) in Rn � X, a 2 R+, � 2 C1((�a; a); Rn),

� 2 C1((�a; a); Z), an open neighborhood V of 0 in Rn and q 2 C2(�0 + V; X1) such that

�(0) = �0, �(0) = 0, q(�0) = v0 and

(1.8) G�1(0)\W = f(�; q(�)) ; (�; q(�)) 2 Wg[f(�(�); �w0+��(�)+q(�(�))) ; j�j < ag:

Roughly speaking, the well-known pitchfork bifurcation theorem [CR, Theorem 1.7] by

Crandall and Rabinowitz is equivalent to our Theorem 1.1 with n = 1, X1 = f0g and

Y1 = f0g (see Section 2). We immediately obtain a Z2-symmetry breaking bifurcation

theorem [K1, Theorem 3.1] by setting n = 1 in our Theorem 1.1 and by choosing the

symmetric subspace of X as X1 and the anti-symmetric subspace as X2. We can apply

our Theorem 1.1 to Hopf bifurcation by setting n = 2 and choosing an appropriate space

2
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of periodic functions as X, the subspace of steady functions as X1 and the complementary

subspace of X1 as X2 (see [K5, Section 4] for the details).

We note that most known bifurcation theorems are not applicable directly to the nu-

merical veri�cation methods. We explain this point by Hopf bifurcation as an example.

We consider the next autonomous ordinary di�erential equation:

(O) _y = f(�; y); y; f(�; y) 2 Rd:

Hopf bifurcation theorem. The point (�; y) = (�0; y0) is a Hopf bifurcation point

of the equation (O), i.e. a branch of periodic solutions of (O) bifurcates at the point

(�; y) = (�0; y0) from a branch of steady solutions of (O) with the initial period 2��0,

provided the following conditions (C1)-(C4) are satis�ed:

(C1) f(�0; y0) = 0,

(C2) � i are the simpleeigenvalues of �0fy(�0; y0) (So, by the implicit function theorem,

the matrix �0fy(�; y(�)) has a pair of complex conjugate of eigenvalues �(�), �(�) with

�(�0) = i),

(C3) (Transversality condition of eigenvalues) Re �0(�0) 6= 0,

(C4) ik is not an eigenvalue of �0fy(�0; y0) for k 2 Z � f�1; 1g.

It is di�cult to check rigorously by numerical methods the simplicity condition (C2) and

the dynamic condition (C3). In Theorem 1.1 these conditions correspond to static condi-

tions, i.e. regularity conditions for linear operators. It is not di�cult to verify them by

some numerical method. See [K5, Section 4.4] for the details.

We omit the proofs of our results described in this article. See [K5] for them. For a

numerical example see [K5, Section 4], where we applied Theorem 1.1 with n = 2 and our

numerical veri�cation method to a parabolic system called Brusslator model to verify that

it has a Hopf bifurcation point.

The author asks the readers interested in this article to contact him by e-mail. He is

willing to send [K5] (a PDF document) to them.

2. Basic bifurcation theorems

Theorem 2.1 in this section is a generalized version of [K1, Theorem 2.1] and can be

regarded as as a re�ned version of Theorem 1.1 with X1 = f0g and Y1 = f0g.

Let X and Y be Banach spaces and U be an open neighborhood of 0 in X. Let n 2 N
and V be an open neighborhood of 0 in Rn. Let f 2 C1(V � U; Y ) be a map such that

(2.1) f(�; 0) = 0 for any � = (�1; � � � ; �n) 2 V

3
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and the partial Fr�echet derivative f�k u exists and is continuous for k = 1; � � � ; n. We

denote f�u = (f�1u; � � � ; f�n u) for simplicity.

We de�ne H : V � X ! Rn � Y by

(2.2) H

 
�

u

!
:=

 
lu � e1

fu(�; 0)u

!
:

Here, l 2 L(X; Rn). In what follows, we often use the same notations as in Section 1. We

de�ne F : V � U ! Rn�1 � Y by

F := f (n = 1) and F

 
�

u

!
:=

 
Plu

f(�; u)

!
(n � 2):

We set Z := (pl)�1(0) = fu 2 X ; plu = 0g.

Theorem 2.1. In addition to the assumptions above we assume

(H) There exists u0 2 U such that (�; u) = (0; u0) is an isolated solution of the extended

system H(�; u) = 0.

Then there exist an open neighborhood W of (0,0) in Rn � X, a 2 R+ and continuous

functions � : (�a; a) ! Rn, � : (�a; a) ! Z such that �(0) = 0, �(0) = 0 such that

(2.3) F �1(0) \ W = f(�; 0) ; (�; 0) 2 Wg [ f(�(�); �u0 + ��(�)) ; j�j < ag:

Moreover, if f 2 Ck+1 (k 2 N) then �; � 2 Ck.

For simplicity, we write DH0 := DH(0; u0), f 0
u := fu(0; 0), F 0

u := Fu(0; 0), F 0
�u :=

F�u(0; 0) and so on. We have

(2.4) DH0

 
�

u

!
=

 
lu

� � f0
�uu0 + f 0

uu

!
=

 
plu

� � F 0
�uu0 + F 0

u u

!
:

In view of the next result, we may consider Theorem 2.1 as a generalized version of [CR,

Theorem 1.7].

Proposition 2.1. The condition (H) in Theorem 2.1 is equivalent to the following (i) and

(ii):

(i) dim N (F 0
u ) = 1 and codim R(F 0

u ) = n.

(ii) 9u0 2 U such that

(2.5) plu0 = 1; N (F 0
u ) = span fu0g;

(2.6) span(F 0
�uu0) � R(F 0

u ) = Rn�1 � Y:

Here, we denote span(F 0
�uu0) := f� � F 0

�uu0 ; � 2 Rng.

4
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ON THE FORMALLY SELF-ADJOINT SCHERÖDINGER OPERATORS

KIYOKO FURUYA

Dedicated to Professor Hiroki Tanabe on his 80th birthday

Abstract. A Schrödinger operator, (not self-adjoint but) formally self-adjoint, generates a
(not unitary but) contraction semigroup. Our class of potentials U in Schrödinger equation
is wide enough : the real measurable potential U should be locally essentially bounded
except a closed set of measure zero.

1. Introduction

We shall construct a family of unique solutions to the Schrödinger equation in RN

h
∂

∂t
u(t, x) =

ih2

2m
�u(t, x) − iU(x)u(t, x), u(0, x) = ϕ(x),(1)

for U ∈ L∞
loc(RN\N , R) where N is a closed set of measure 0. For further information, see

(2), (4) . Here h and m are positive constants.

Remark 1. We define a sequence of functions {Un}n∈N as follows:

Un(x) =


n if n < U(x),

U(x) if −n ≤ U(x) ≤ n for n ∈ N
−n if U(x) < −n

(2)

It is easily checked that Un(x) = min
{
n, max{−n, U(x)}

}
. Then we shall approximate the

potential U by Un. The unique solution obtained by this approximation seems to correspond
to the case no particle comes from infinity in the example above. This solution seems natural
for the theory of path integrals. The physical meaning of the solution by Nelson[11] is unclear
to the author.

Definition 1. Let B be a densely defined operator on Hilbert space H. Then
(i) B is essentially self-adjoint if and only if it has a unique self-adjoint extension, necessarily

its closure B̄,
(ii) B is formally self-adjoint if 〈Bϕ,ψ〉 = 〈ϕ,Bψ〉 for all ϕ and ψ in H.

We consider a closed extension of (not necessarily essentially self-adjoint but) formally
self-adjoint operator iA ≡ −(h2/2m)� + U on C∞

0 (RN\N ). Here C∞
0 (E) denote the set

of all infinitely differentiable functions with compact support in E. The semigroup of our
solution family, which is obtained by the approximation (2), is not necessarily a group of
unitary operators but a semigroup of contractions. Our result improves one of the Nelson
[11]’s, which says the contraction semigroup of his solution family exists (not for all but) for
a. e. m > 0 and for any U ∈ C(RN\N0; R), where N0 is a closed subset of capacity 0. Our
results is closely related to the theory of path integrals (see Furuya [4]).

Date: October 29, 2012.
1
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2 KIYOKO FURUYA

2. Schrödinger equation

For simplicity we consider the following normalized equation :

∂

∂t
u(t, x) = i�u(t, x) − iU(x)u(t, x), u(0, x) = ϕ(x) for ϕ ∈ H(2)(RN ; C),(3)

where H(2)(RN ; C) denote the Sobolev space of L2-functions with first and second distribu-
tional derivatives also in L2 on RN to C.

If � − U is essentially self-adjoint, the operator family {T (t)} defined by T (t)ϕ = u(t) is

uniquely extended to a group of unitary operators from L2(RN ; C
)

to L2(RN ; C). Let N be

a fixed closed subset of RN of measure 0 and D = {D} be the maximum family such that
each element D ⊂ D ⊂ RN\N is a finite union of connected bounded open sets. The family
D = {D} satisfies

⋃
D∈D D = RN\N . We denote the restriction of f to D by f |D. We use

the following notation

L∞
loc(RN\N ; R) =

{
f

∣∣∣∣ f(x) ∈ R, x ∈ RN , f |D ∈ L∞(D; R), ∀D ∈ D
}
.(4)

Let U ∈ L∞
loc(RN\N , R). We assume for any neighbourhood of any point of N , U is not

essentially bounded. By this assumption, U uniquely determines N in the following sense :

N =
⋂
ν

{Nν

∣∣∣∣ U ∈ L∞
loc(RN\Nν ; R)}.(5)

Let

Bn = { x ∈ RN
∣∣∣ − n < U(x) < n } for n ∈ N.(6)

We have Bm ⊃ Bn for m > n and

for any D ∈ D, there exists Bn such that D ⊂ D ⊂ Bn.(7)

We denote Un(x) = min
{
n, max{−n, U(x)}

}
. Thus Un ∈ L∞(RN ; R). For U ∈ L∞

loc(RN\N ; R)

we consider the approximative equation

d

dt
un(t) = Anun(t) where An = i(� − Un).(8)

In this case the operator −iAn is essentially self-adjoint. Hence the semigroup {Tn(t)}
generated by −iAn is the family of solutions to (8) and is a group of unitary operators :
‖Tn(t)ϕ‖ = ‖ϕ‖ for t ∈ R and ϕ ∈ L2(RN ; C).

The main theorem in this paper is the following :

Theorem 1. For any U ∈ L∞
loc(RN\N , R), there exists a closed extension of (i�−iU)|C∞

0 (RN \N )

in L2(RN ; C) to L2(RN ; C) which generates a unique contraction C0-semigroup {T (t)
∣∣∣ t ≥ 0}

such that

T (t)ϕ = w- lim
n→∞

Tn(t)ϕ for all ϕ ∈ L2(RN ; C),(9)

where Tn(t)ϕ is the solution to (8) and w-lim means the weak convergence.

10



ON THE FORMALLY SELF-ADJOINT SCHERÖDINGER OPERATORS 3

3. Preliminaries

In this section we begin by introducing some terminology and notation and present those
aspects of the basic theory which are required in subsequent sections.

3.1. Filter.

Definition 2. Given a set E, a partial ordering ⊂ can be defined on the powerset P(E) by
subset inclusion. Define a filter F on E as a subset of P(E) with the following properties:
(i) ∅ �∈ F .(The empty set is not in F .)
(ii) If A ∈ F and B ∈ F , then A

⋂
B ∈ F . (F is closed under finite meets.)

(iii) If A ∈ F and A ⊂ B, then B ∈ F . (Therefore E ∈ F .)

Definition 3. Let B is a subset of P(E). B is called filter base on E if and only if
(i) The intersection of any two sets of B contains a set of B,
(ii) B is non-empty and the empty set is not in B

Let X be a topological space.

Definition 4. U(x) is called the neighourhood filter at point x for X if and only if U(x) is
the set of all topological neighbourhoods of the point x.

Definition 5. To say that filter base B converges to x, denoted B → x, means that for every
neighourhood U of x, there is a B ∈ B such that B ⊂ U . In this case, x is called a limit of
B and B is called a convergent filter base

Lemma 1. X is a Hausdorff space if and only if every filter base on X has at most one
limit.

Definition 6. A filter F in a topological spacec is called ultra filter if having the property
that no other filter exists in the space having among its subsets all the subsets in the given
filter.

For details concerning the filter, we refer to Bourbak[1].

3.2. Compact open topology.

Definition 7. A linear topological space X is called a locally convex linear topological space,
or, in short, a locally convex space, if and only if its open sets � 0 contains a convex, balanced
and absorbing open set.

Let X and X ′ be two linear spaces over the complex field C and a scalar product 〈x, x′〉 ∈ C
for x ∈ X and x′ ∈ X ′ be defined.

Definition 8. Let X be topological vector space. The weak topology on X, denote by
σ(X,X ′), is the weakest topology such that all elements of X ′ remains continuous.

Definition 9. The strong topology β of X ′ is the topology of uniform convergence on every
σ(X,X ′)-bounded set in X. X ′

β denotes (X ′)β.

Definition 10. τ0 is the locally convex topology on X, defined by the seminorm system

P = {pγ

∣∣∣ pγ(f) = supg∈Cγ
|〈f, g〉|, Cγ ∈ C}, where C = {Cγ} denotes the family of the

compact subsets of X ′
β. τ0 is called the compact open topology.

In the case of Banach space J. Dieudonné has proved the following theorem.

Theorem 2 (Dieudonné[2]). The bounded weak∗ topology in a Banach space is identical
with the compact open tpoplogy

11



4 KIYOKO FURUYA

We denote by X
′∗ the space of linear functionals bounded on every bounded set in X ′

β.

Proposition 1 (Kōmura and Furuya[9] Proposition 1). Let Xτ0 be the completion of the
space Xτ0. Then we have:

(X ′
β)′ ⊂ Xτ0 ⊂ X

′∗.

Lemma 2 (Kōmura and Furuya[9] Lemma 5). Let x′′ ∈ X ′′. x′′ ∈ Xτ0 if and only if x′′ is
σ(X ′, X)-continuous on every τ0-equi-continuous set {U o

p |Up ∈ Uτ0}. Here U o
p is a polar set

of Up.

Corollary 1. If X is a Banach space, we have X ′′ = Xτ0.

4. Existence of weak limit of unitary groups in abstract case

(H, ‖·‖), or simply H , denotes a Hilbert space with norm ‖·‖ . Instead of the convergence
of subsequences we use the convergence of filters. We consider an infinite semi-ordered index
set A = {α}. We assume that there exists an ultra-filter Φ of infinite subsets of A satisfying

∀φ ∈ Φ, ∀α ∈ A, ∃α′ ∈ φ : α′ � α.(10)

In the following {Φ} denotes the family of ultra-filters whose element satisfies (10).

Remark 2. Note that we can use subsequences {αk}∞
k=1 instead of ultra-filters, if H is

separable.

Let a family {Tα(t) | − ∞ < t < ∞}α∈A of groups of unitary operators in H be given.
Aα denotes the generator of {Tα(t)} :

d

dt
Tα(t)ϕ = AαTα(t)ϕ for ϕ ∈ D(Aα).

Definition 11. For an ultra-filter Φ satisfying (10), the operators (I − AΦ)−1 and TΦ(t) are
defined as follows :

(I − AΦ)−1f = w- lim
α∈φ∈Φ

(I − Aα)−1f for ∀f ∈ H,(11)

TΦ(t)ϕ = w- lim
α∈φ∈Φ

Tα(t)ϕ for ∀ϕ ∈ H.(12)

In this section we shall show the existence of a semigroup {TΦ(t)} in (12). As is well known,
iAα is self-adjoint : 〈Aαϕ, ψ〉 = −〈ϕ,Aαψ〉 for ϕ, ψ ∈ D(Aα), and the resolvent (I − Aα)−1

is a contraction : ‖(I − Aα)−1‖ ≤ 1. Since a bounded subset of H is relatively σ(H, H)-
compact, ‖(I − Aα)−1ϕ‖ ≤ ‖ϕ‖ and ‖Tα(t)ϕ‖ = ‖ϕ‖, there exist w- limα∈φ∈Φ(I − Aα)−1ϕ
and w- limα∈φ∈Φ Tα(t)ϕ. Hence (I − AΦ)−1 and TΦ(t) are well defined. Note that AΦ may
be multi-valued. The following condition implies AΦ is single-valued, which will be verified
later (See.Theorem 4).

12



ON THE FORMALLY SELF-ADJOINT SCHERÖDINGER OPERATORS 5

Condition 1. There exist a dense subspace H0 of H satisfying H0 ⊂ ⋂
α∈φ D(Aα) and a

linear operator A0 : H0 −→ H such that

∀ψ ∈ H0, ∃α(ψ) ∈ A : A0ψ = Aαψ for ∀α � α(ψ).(13)

Throughout this paper, we assume Condition 1 holds. By definition, (11) means

∀f ∈ H, ∀ε > 0, ∀Cβ ∈ C, ∃φ ∈ Φ : sup
α∈φ,ϕ∈Cβ

|〈(I − AΦ)−1f − (I − Aα)−1f, ϕ〉| < ε.

Lemma 3. For a fixed f ∈ H, put

ϕα = (I − Aα)−1f and ϕΦ = (I − AΦ)−1f.(14)

Under the condition 1, we have
(a) Let f = (I − A0)ϕ for ϕ ∈ H0 then ϕ = limα∈φ∈Φ(I − Aα)−1f.
(b) Let ϕα = (I − Aα)−1f and ϕΦ = w- limα∈φ∈Φ ϕα, then

w - lim
α∈φ∈Φ

Aαϕα = AΦϕΦ.

Moreover if AΦ is single-valued, it follows that

H0 ⊂ D(AΦ), AΦ|H0 = A0,(15)

〈AΦϕ, ψ〉 = −〈ϕ,A0ψ〉 for ∀ϕ ∈ D(AΦ) and ∀ψ ∈ H0.(16)

Proposition 2. The range of (I − AΦ)−1 : R((I − AΦ)−1) = (I − AΦ)−1H is dense in H.

We cite Theorem 9 in [9] as Theorem 3. Let X be a reflexive Banach space and {Tα(t)}α∈A
be a family of contraction C0-semigroups in X.

Theorem 3 ( Kōmura and Furuya [9] Theorem 9). Suppose for some filter Φ

∀f ∈ X, ∃ϕΦ = w- lim
α∈φ∈Φ

(I − Aα)−1f.(17)

Thus the operator (I − AΦ)−1 is defined. If the range R((I − AΦ)−1) is dense in X, AΦ is a
densely defined closed operator and generates a semigroup {TΦ(t)} :

w- lim
α∈φ∈Φ

Tα(t)x = TΦ(t)x for ∀x ∈ X.(18)

Moreover, we have {TΦ(t)} is a contraction C0-semigroup in X.

Theorem 4. Under condition 1, AΦ is a closed operator and generates a contraction C0-
semigroup {TΦ(t)}.

Proof. Since the range R((I − AΦ)−1) is dense in H by Proposition 2, our Theorm follows
from Theorem 3. �
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6 KIYOKO FURUYA

5. Approximation by bounded domains

Let D = {D} be the maximum family such that each element D ⊂ D ⊂ RN\N is a
finite union of connected bounded open sets. For D ∈ D, L2(D; C) denotes the L2-space
on D to C and H(1)(D; C) denote the Sobolev space of L2-functions with first distributional
derivatives also in L2 on D to C. H(2)(D; C) denote the Sobolev space of L2-functions
with first and second distributional derivatives also in L2 on D to C with norm ‖ · ‖(2).

H
(1)
0 (D; C) is defined as the closure in H(1)(D; C) of C∞

0 (D; C). For U ∈ L∞(D; R), the
functional ΨD(ϕ) ≡ 1

2
‖(−�)−1/2ϕ‖2 + 1

2
‖
√

U + Cϕ‖2 is lower semicontinuous and convex,

where C = max{0, −ess inf U}. The domain of ΨD is H(1)(D; C).

Definition 12. We denote by ΨD
0 if the domain is restricted to the closure of C∞

0 (D; C) :

D(ΨD
0 ) = H

(1)
0 (D; C).

Definition 13. Let Ψ : H →] − ∞, +∞] be a propery convex function. The subdifferential
of Ψ is the (possibly multivalued) operator ∂Ψ : H → H defined by

∂Ψ(x) = {w ∈ H; Ψ(x) − Ψ(v) ≤ (w, x − v), ∀v ∈ H}.

Since

−∂ΨD
0 = � − U − C and D(∂ΨD

0 ) = H
(1)
0 (D; C)

⋂
H(2)(D; C),

the equation in L2(D; C) with Dirichlet condition is written as

d

dt
uD(t) = −i∂ΨD

0 (uD(t))
(
= i(� − U − C)uD(t)

)
and uD(0) = ϕ.(19)

If the boundary ∂D of D is smooth, the normal derivative ∂n is defined on ∂D, and we have

−∂ΨD = � − U − C where D(∂ΨD) = {ϕ ∈ H(2)(D; C)
∣∣∣ ∂nϕ|∂D = 0}.

Hence the equation in L2(D; C) with (generalized) Neumann condition is written as

d

dt
uD(t) = −i∂ΨD(uD(t)) and uD(0) = ϕ.(20)

The semigroup {TD(t)}, TD(t)ϕ = e−iCtuD(t), of solution family to (19) or (20) is a group of
unitary operators, respectively. We define an order in D as follows :

Dα, Dβ ∈ D : Dα ≺ Dβ ⇐⇒ Dα ⊂ Dβ.(21)

We consider an ultra-filter Φ = {φ} whose element φ consists of infinite subsets of D satisfying
(10) for A = D in the next section :

lim
D∈φ∈Φ

D =
⋃

D∈φ∈Φ

D = RN\N .

Proposition 3. We define an operator TΦ(t) for TD(t) associated with (19) or (20) by

TΦ(t)ϕ = w- lim
D∈φ∈Φ

TD(t)ϕ
(
= τ0- lim

D∈φ∈Φ
TD(t)ϕ

)
for ∀ϕ ∈ L2.(22)

Then {TΦ(t)} is a contraction semigroup.
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ON THE FORMALLY SELF-ADJOINT SCHERÖDINGER OPERATORS 7

6. Weak limit of unitary groups

6.1. Existence in L2-case.

Theorem 5. For each approximation {An} or {AD}, the limit TΦ(t) = limΦ exp(tAn) or
limΦ exp(tAD) exists and {TΦ(t)} is a contraction C0-semigroup. Here AD = ∂ΦD

0 in (19)
or ∂ΦD in (20).

Lemma 4. Condition 1 is satisfied for H0 = C∞
0 (RN\N ; C).

We consider an ultra-filter D1 = {δ} by the order (21 ) whose element φ consists of infinite
subsets of D. D1 satisfies (10) and

lim
D∈δ∈D1

D =
⋃

D∈δ∈D1

D = RN\N .(23)

Lemma 5. Let ϕΦ = w- limm∈φ1∈Φ(I − Am)−1f for f ∈ L2(RN ; C). Then on any fixed
D ∈ D, the filter {ϕm; ϕm = (I − Am)−1f,m ∈ φ ∈ Φ} strongly converge to ϕΦ on D, that
is,

∀D ∈ D, ∀ε > 0, ∃φ ∈ Φ :
∥∥∥(ϕΦ − ϕm)

∣∣∣
D

∥∥∥ < ε for all m ∈ φ,(24)

and the filter {ϕΦ|D; D ∈ D1} strongly converge to ϕΦ, that is,

∀ε > 0, ∃D ∈ D such that
∥∥∥ϕΦ − ϕΦ

∣∣∣
D

∥∥∥ < ε.(25)

Hence for m > l, we have∫
D

|(I − Al)ϕm(x)|2dx =
∫

D
|(I − Am)ϕm(x)|2dx ≤

∫
RN

|(I − Am)ϕm(x)|2dx = ‖f‖2.

That is, {ϕm|D,m ∈ φ} is contained in a bounded subset of H(2)(RN ; C)|D ≡ {ϕ|D
∣∣∣ ϕ ∈

H(2)(RN ; C)}, since two norms ‖ · ‖(2) and ‖ · ‖l = ‖(I − Al)
−1 · ‖ are equivalent on

H(2)(RN ; C)|D. A closed bounded subset of H(2)(RN ; C)|D is a compact subset of L2(D; C),
since D is bounded in RN . Since the filter {ϕm|D, m ∈ φ ∈ Φ} is weakly convergent in
L2(D; C), it is strongly convergent in L2(D; C).

Proposition 4. Let A = AΦ with domain D(A) = H
(2)
loc (RN\N ; C). Then A is a closed

operator from L2
loc(RN\N ; C) to L2

loc(RN\N ; C).

Proof. Proof follows from Lemma 5. �
Proof of Theorem 5. From Lemma 4, Proposition 4 and Theorem 4 we obtain Thorem 5.

6.2. Uniqueness. In this subsection we shall show the uniqueness of TΦ(t) in (12) for the
approximative equation (8).

Let Φ =
{
φ = {nk} ; nk ∈ N

}
be an ultra-filter of subsequences of natural numbers.

Theorem 6. TΦ(t) does not depend on Φ.

We assume the following Assumption:
Assumption 1. AΦ1 �= AΦ2 for two ultra-filters Φ1 and Φ2 with Φ1 �=Φ2.

In the following we shall show that Assumption 1 implies a contradiction. We shall begin
with several Lemmas.
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8 KIYOKO FURUYA

Lemma 6. Suppose TΦ1(t) �= TΦ2(t). There exists ϕ0 ∈ C∞
0 (RN\N ; C) satisfies

∃t1 > 0, ∃c0 > 0 such that
d

dt
‖TΦ1(t)ϕ0 − TΦ2(t)ϕ0‖

∣∣∣∣
t=t1

≥ c0.(26)

Put ϕ1 = TΦ1(t1)ϕ0 and ϕ2 = TΦ2(t1)ϕ0. (26) means

d

dt
‖TΦ1(t)ϕ1 − TΦ2(t)ϕ2‖

∣∣∣
t=0

≥ c0 > 0.(27)

Note that ϕ1 ∈ D(AΦ1) and ϕ2 ∈ D(AΦ2)
Case 1. In the case that ϕ2 ∈ D(AΦ1).
We have

d+

dt
‖TΦ1(t)ϕ1 − TΦ1(t)ϕ2‖

∣∣∣∣
t=0

≤ 0,(28)

In fact,

‖TΦ1(h) (TΦ1(t)ϕ1 − TΦ1(t)ϕ2) ‖ ≤ ‖TΦ1(t)ϕ1 − TΦ1(t)ϕ2‖ for ∀h > 0,

implies

1

h

(
‖TΦ1(t + h)ϕ1 − TΦ1(t + h)ϕ2‖ − ‖TΦ1(t)ϕ1 − TΦ1(t)ϕ2‖

)
≤ 0 for ∀h > 0.

From which the relation (28) follows. Note that the left hand of (28) exists since d+

dt
TΦ1(t)ϕ1

∣∣∣
t=0

and d+

dt
TΦ1(t)ϕ2

∣∣∣
t=0

exist for ϕ1, ϕ2 ∈ D(AΦ1). We have

‖TΦ1(h)ϕ2 − TΦ2(h)ϕ2‖ + ‖TΦ1(h)ϕ1 − TΦ1(h)ϕ2‖ − ‖ϕ1 − ϕ2‖
≥ ‖TΦ1(h)ϕ1 − TΦ2(h)ϕ2‖ − ‖ϕ1 − ϕ2‖.

Hence

d+

dt
‖TΦ1(t)ϕ2 − TΦ2(t)ϕ2‖

∣∣∣
t=0

+
d+

dt
‖TΦ1(t)ϕ1 − TΦ1(t)ϕ2‖

∣∣∣
t=0

≥ d+

dt
‖TΦ1(t)ϕ1 − TΦ2(t)ϕ2‖

∣∣∣
t=0

.

We have by (27) and (28)

d+

dt
‖TΦ1(t)ϕ2 − TΦ2(t)ϕ2‖

∣∣∣
t=0

≥ d+

dt
‖TΦ1(t)ϕ1 − TΦ2(t)ϕ2‖

∣∣∣
t=0

− d+

dt
‖TΦ1(t)ϕ1 − TΦ1(t)ϕ2‖

∣∣∣
t=0

> 0.

Hence

Re〈(AΦ2 − AΦ1)ϕ2, ϕ2〉 = Re
d+

dt
〈(TΦ2(t) − TΦ1(t))ϕ2, ϕ2〉

∣∣∣∣
t=0

(29)

=
1

2

d+

dt
‖(TΦ2(t) − TΦ1(t))ϕ2‖2

∣∣∣∣
t=0

> 0,

Thus we have AΦ2ϕ2 �= AΦ1ϕ2. Since C∞
0 (RN\N ; C) is dense in L2(RN ; C), there exists

ψ ∈ C∞
0 (RN\N ; C) such that

〈(AΦ2 − AΦ1)ϕ2, ψ〉 �= 0.

Nevertheless, from (30) of lemma 7 we obtain that

〈(AΦ2 − AΦ1)ϕ2, ψ〉 = 〈ϕ2, (
tAΦ2 − tAΦ1)ψ〉 = −〈ϕ2, (A0 − A0)ψ〉 = 0.
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This is a contradiction.

Lemma 7. Let A0 = A|C∞
0 (RN \N ;C) (see Condition 1). We have

A0 = −tAΦ1 |C∞
0 (RN \N ;C) = −tAΦ2 |C∞

0 (RN \N ;C).(30)

Proof. Proof follows from (16) by Lemma 4. �

Corollary 2. Let f ∈ L2(RN ; C) and ψ ∈ C∞
0 (RN\N ; C). Then 〈TΦ2(t)f, ψ〉 is differentiable

in t ≥ 0 :

d

dt
〈TΦ2(t)f, ψ〉 = 〈TΦ2(t)AΦ2f, ψ〉 = 〈f, t(TΦ2(t)

tAΦ2)ψ〉 = −〈f, tTΦ2(t)A0ψ〉.

Case 2. In the case that ϕ2 /∈ D(AΦ1).
This means

‖AΦ1ϕ2‖2 = lim
D∈δ∈D1

∫
D

|AΦ1ϕ2|2dx = ∞,(31)

since ϕ2 ∈ D(AΦ2) ⊂ H
(2)
loc (RN\N ; C) and AΦ1ϕ2 = A0ϕ2 ∈ L2

loc(RN\N ; C) by
Proposition 4.

Lemma 8. There exists δ > 0 such that

0 < Re
d

dt
〈TΦ2(t)ϕ2 − TΦ1(t)ϕ1, ψ〉

∣∣∣
t=0

,(32)

if ‖ϕ2 − ϕ1 − ψ‖ < δ and ψ ∈ C∞
0 (RN\N ; C).

Proof. Let δ satisfy

0 < δ <
c0‖ϕ2 − ϕ1‖

2‖AΦ2ϕ2 − AΦ1ϕ1‖
.

�

Lemma 9. Let δ be in Lemma 8. Then there exists ψ1 ∈ D(AΦ1) with ‖ϕ2 − ϕ1 − ψ1‖ < δ,
such that

Re
d

dt
〈TΦ1(t)ϕ2 − TΦ1(t)ϕ1, ψ1〉

∣∣∣
t=0

= Re〈AΦ1ϕ2 − AΦ1ϕ1, ψ1〉 ≤ 0,(33)

where

d

dt
〈TΦ1(t)ϕ2 − TΦ1(t)ϕ1, ψ1〉 =

d

dt
〈ϕ2 − ϕ1,

tTΦ1(t)ψ1〉
(

= 〈ϕ2 − ϕ1,
d

dt
tTΦ1(t)ψ1〉

)
.

Proof. We recall ‖AΦ1ϕ2‖ = ∞ (see (31)). That is, for any L > 0 and δ in Lemma 8, there
exists ψε ∈ C∞

0 (RN\N ; C) such that |〈AΦ1ϕ2 − AΦ1ϕ1, ψε〉| > L and ‖ψε‖ < δ/2. Therfore
〈AΦ1ϕ2 − AΦ1ϕ1, e

iθψε〉 < −L for some real θ.
For ψ0 ∈ C∞

0 (RN\N ; C) satisfying ‖ϕ2 − ϕ1 − ψ0‖ < δ/2, put

L := |〈AΦ1(ϕ2 − ϕ1), ψ0〉|.
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Structure of solutions to the Emden equation on a
geodesic ball in a sphere

Atsushi Kosaka �y

1 Introduction and main results

In this seminar we discussed the following problem8>><>>:
�SNu+ up = 0 in B�0 ;

u > 0 in B�0 ;

u+ �
@u

@n
= 0 on @B�0 ;

(1.1)

where N � 3, SN = fx 2 RN+1 j jxj = 1g, �SN is the Laplace-Beltrami operator on
SN , n is the outer unit normal vector to @B�0 and � � 0. Here B�0 is a geodesic ball
in SN with its geodesic radius �0 2 (0; �), and its center is located at the north pole
Pn = (x1; x2; :::; xN+1) = (0; 0; :::; 1).

Especially we focused on a radial solution to (1.1), that is, a solution u to (1.1)
depending only on a geodesic distance from Pn. It is signi�cant to consider a radial
solution. In fact, in [3] and [5], it is proved that, under p � p� := (N + 2)=(N � 2) and
� = 0, any solution u 2 C2(B�0) to (1.1) is a radially symmetric. In addition the existence
of a positive radial solution is corresponding the Sobolev imbeddingH1

0 (B�0) ! Lp+1(B�0).
In [1] and [2], the problem (1.1) is studied to investigate the existence of a function
attaining the best constant of the Sobolev imbedding with p = p�, that is, the critical
Sobolev exponent. Thus we were also interested in a radial solution to (1.1), and hence
we write (1.1) by using polar coordinates. Namely let8>>>>>>>>><>>>>>>>>>:

x1 = r sin � sin’1 sin’2::: sin’N�1

x2 = r sin � sin’1 sin’2::: cos’N�1

x3 = r sin � sin’1 sin’2::: cos’N�2

...

xN = r sin � cos’1

xN+1 = r cos �

(1.2)

�Department of Mathematical Sciences, Osaka Prefecture University.
ye-mail: kosaka@ms.osakafu-u.ac.jp
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with r � 0, �; ’i 2 [0; �] (i = 1; 2; :::; N � 2) and ’ 2 [0; 2�]. By (1.2), the Laplace{
Beltrami operator �SN is written by

�SNu =
1

sinN�1

@

@�

�
sinN�1 �

@u

@�

�
+

N�1X
i=1

1

sin2 � sinN�i�1 ’i

Qi�1
j=1 sin2 ’j

@

@’i

�
sinN�i�1 ’i

@u

@’i

�
:

Therefore a radial solution to (1.1) satis�es8>><>>:
1

sinN�1 �

�
u� sinN�1 �

�
�

+ up = 0 for � 2 (0; �0);

u(�) > 0 for � 2 (0; �0);

u(�0) + �u�(�0) = 0:

(1.3)

In this talk, we spoke of structure of solutions to (1.3) with two cases, that is, the critical
case p = p� and the supercritical case p > p�. Hereafter a solution u to (1.3) converging
to some constant as � ! 0 is said to be a regular solution. On the other hand, a solution
u to (1.3) tends to +1 as � ! 0 is said to be a singular solution.

First we stated the critical case. Under p = p�, there are preceding studies, e.g.,[1]
and [2], and the following proposition is proved:

Proposition 1.1 Assume p = p� and � = 0. If N = 3, then the following statements
hold:

(i) If �0 2 (0; �=2], then there exists no regular solution to (1.3).

(ii) If �0 2 (�=2; �), then there exists a singular classical solution to (1.3).

On the other hand, if N � 4, then, for any �0 2 (0; �), a regular solution to (1.3) exists.

Thus, under the Dirichlet boundary condition, the structure of solutions to (1.3) is com-
pletely known. Moreover, from Proposition 1.1, we see that there is a di�erence between
the cases N = 3 and N � 4. Under N = 3, the existence of solutions varies at �0 = �=2.
Bandle, Brillard and Flucher have proved that, in N = 3, the existence of solutions varies
at some constant �c 2 (0; �). After their study, Bandle and Peletier investigated this
problem in detail, and they proved �c = �=2.

We considered the above problem under a more general boundary condition. That is
why we expect that the investigation provides us a comprehensive view to the structure
of solutions to the Emden equation. Our results is as follows:

Theorem 1.1 (Theorem 1.1 in [6]) Assume p = p�. For (1:3); the following state-
ments hold:

(i) Suppose that 0 � � � 1=2. If �0 satis�es

1

2
Arcsin 2� � �0 � 1

2
(� � Arcsin 2�); (C)

then (1:3) has no regular or singular solution. On the other hand, if �0 does not
satisfy (C), then, for each �0, (1:3) has a unique regular solution and in�nitely
many singular solutions.

2
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(ii) Suppose that � > 1=2. Then, for any �0, (1:3) has a unique regular solution and
in�nitely many of singular solutions.

By Theorem 1.1, we strictly obtain the information concerning the existence of solutions
to (1.3) with N = 3. Moreover we proved the existence of a singular solution as well as a
regular solution.

Second we stated the supercritical case p > p�. In this case, we assume � = 0, that is,
we only consider the Dirichlet boundary condition. Because of the continuity of solutions
to (1.3) concerning a parameter, it seems that there exists a solution to (1.3) with p > p�
for some �0. In fact, for p su�ciently near p�, there exists a regular solution:

Theorem 1.2 Assume � = 0, and �0 2 (�=2; �) (N = 3) or �0 2 (0; �) (N � 4). Then
there exists some �0(�0) > 0 such that, for any � 2 (0; �0), there exists at least two regular
solutions to (1.3) with p = p� + �.

Theorem 1.2 implies that, for a perturbation p = p�+�, a new solution appears. The above
result only explains the su�ciently near critical case, and it seems di�cult to investigate
the existence of solutions to (1.3) for any p > p�, and we do not obtain such a result yet.
However we can investigate the nonexistence of solutions for su�ciently large p > p�, and
the result is as follows:

Theorem 1.3 Under the same assumptions as in Theorem 1.2, there exists some pc(�0) >
p� such that, for any p > pc, there exists no regular or singular solution to (1.3).

Theorems 1.2 and 1.3 are quite di�erent from results of the Emden equation on a ball in
the Euclidean space RN . It seems that the di�erence derive from the metric of SN , and
we are required to investigate the problem in detail.

2 Ideas of proofs

In this section we explain ideas used in proofs of Theorems 1.1{1.3. Our methods of
proofs are owing to Yanagida and Yotsutani’s studies [8], [9]. First we transform (1.3) to
the exterior problem. Namely we de�ne

� :=
�

sinN�1 �0

; (2.1)

� :=

Z �0

�

d 

sinN�1  
+ �; (2.2)

and, by using (2.1) and (2.2), a new function

w(�) :=
u(�)

�

is de�ned. Here we remark that, from (2.2), � attains � as � = �0, and � ! +1 as � ! 0.
For w de�ned above, the next lemma holds:

3
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Lemma 2.1 The function w = u=� satis�es8>><>>:
1

� 2

�
� 2w�

�
�

+K(�)wp(�) = 0 for � 2 (�;+1);

w(�) = �;

w� (�) = 0;

(2.3)

where � := � sin2 �0 with � := �u�(�0). Here K(�) is de�ned as

K(�) := � p�1 sin2N�2 �:

Conversely if w 2 C2(�;+1) is a positive solution to (2:3), then u = �w is a solution to
(1:3).

Next we will investigate the structure of solutions to (2.3) instead of that of (1.3). The
following lemma implies that positive solutions to (2.3) is classi�ed into two types:

Lemma 2.2 If a solution w to (2:3) satis�es w > 0 on (�;+1), then �w(�) is non-
decreasing for � 2 (�;+1).

Namely if w is a positive solution to (2.3), then lim�!+1 �w(�) = const: or �w tends to
+1 as � ! +1. We de�ne these types as follows:

De�nition 2.1 (i) A solution w to (2:3) is said to be a rapidly decaying solution if
w > 0 on [�;+1) and �w(�) converges to some positive constant as � ! +1.

(ii) A solution w to (2:3) is said to be a slowly decaying solution if w > 0 on [�;+1)
and �w(�) ! +1 as � ! +1.

(iii) A solution w to (2:3) is said to be a crossing solution if w has a zero in (�;+1).

Moreover we see that three types of solutions are corresponding to the behavior of the
function

P (� ;w) :=
1

2
� 2w� f�w� + wg +

� 3

p
K(�)wp:

Kawano, Yanagida and Yotsutani [4] investigated the relation between types de�ned in
De�nition 2.1 and the behavior of P . From their results, the following statements holds:

Lemma 2.3 (1) �w ! const: as � ! +1 if and only if lim�!+1 P (� ;w) = 0,

(2) �w ! +1 as � ! +1 if and only if lim�!+1 P (� ;w) < 0,

(3) w attains 0 for some �1 2 (�;+1) if and only if lim�!+1 P (� ;w) > 0.

From the above arguments, it su�ces to investigate the behavior of P as � ! +1.
Since P contains the unknown function w, and it is not easy to investigate the behavior
of P . Yanagida and Yotsutani’s idea is to use the next functions

G(�) :=
1

p+ 1

�
� 3K(�) � 1

2
(p+ 1)

Z �

�

s2K(s)ds

�
;

H(�) :=
1

p+ 1

�
� 2�pK(�) � 1

2
(p+ 1)

Z +1

�

s1�pK(s)ds

�
:

4
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For G and H, it holds that

d

d�
P (� ;w) = G� (�)wp+1(�);

and

G� (�) =
� (p+1)=2

p+ 1
(�� p� 5

2 L)� = � p+1H� (�):

We see that the behavior of P depends on that of G. Functions G and H plays a important
role when we investigate the behavior of P . Before stating the result, we de�ne

�G := inff� 2 [�;+1) j G(�) < 0g;
�H := supf� 2 [�;+1) j H(�) < 0g:

Here we de�ne �G = +1 if G(�) � 0 on (�;+1) and �H = � if H(�) � 0 on (�;+1).
By using two value �G and �H , the next statements holds:

Proposition 2.1 Under p = p�, the following statements holds.

(i) If �G = +1, then the structure of solutions to (2:3) is of type C : w(� ; �) is a crossing
solution for any � > 0.

(ii) If � = 0 and �H = 0, then the structure of solutions to (2:3) is of type S : w(� ; �) is
a slowly decaying solution for any � > 0.

(iii) If � < �H � �G < +1, then the structure of solutions to (2:3) is of type M :
there exists a constant �� > 0 such that w(� ; �) is a slowly decaying solution for
� 2 (0; ��), w(� ; ��) is a rapidly decaying solution, and w(� ; �) is a crossing solution
for � 2 (��;+1).

(iv) If 0 < � = �H � �G < +1, then the structure of solutions to (2:3) is of type M.

(We newly proved Proposition 2.1 (iv) in [6]. The case (iv) is not proved in [8] and [9]
yet.) Theorem 1.1 is a direct result of Proposition 2.1, and, for strict calculation, see
Section 4 in [6].

Finally we states the case p > p�. In this case we also use the function P , that is,
since

d

d�
P (� ;w) = G� (�)wp+1(�);

G� (�) =
1

p+ 1
r(�; p)� p+1 sin2N�2 �;

r(�; p) =
p+ 3

2
� (2N � 2)� sinN�2 � cos �;

we see that P (� ;w) ! +1 as � ! +1 when p is su�ciently large. In fact if p is
su�ciently large, then r(�; p) > 0 for any � . Hence dP=d� > 0, and we obtain Theorem
1.3. On the other hand, if p = p� + � (� is su�ciently small), then the behavior of P is
complicated, and it is di�cult to investigate the behavior of that (in this case, we cannot
apply Proposition 2.1). However, for small initial data �, the following lemma is known:

5
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Lemma 2.4 (Theorem 3 in [9]) If lim inf�!+1 G� (�) > 0, then there exists �c > 0
such that, for any � 2 (0; �c); w(� ; �) is a crossing solution.

If we assume that there exists only one rapidly decaying solution to (2.3) with p = p� + �,
then the assumption is inconsistent with Lemma 2.4, and therefore we can prove Theorem
1.2 (strict arguments are stated in [7]).
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ON WELL-POSEDNESS FOR NONLINEAR SCHR �ODINGER

EQUATIONS WITH POWER NONLINEARITY IN FRACTIONAL

ORDER SOBOLEV SPACES

HARUNORI UCHIZONO AND TAKESHI WADA

Abstract. We study the well-posedness for the nonlinear Schr�odinger equa-
tion (NLS)

i@t u +
1

2
�u = �jujp� 1u

in R1+ n , where p > 1; � 2 C, and prove that (NLS) is locally well-posed in

H s if 2 < s < 4 and s=2 < p < 1 + 4=(n � 2s)+ . To obtain good lower bound
for p, we systematically use Strichartz type estimates in fractional order Besov
spaces for time variable.

1. Introduction

This paper is a survey of our recent result [15]. We consider the Cauchy Problem
for the nonlinear Schr�odinger equation

i@tu +
1

2
�u = f(u);(1)

u(0) = �;(2)

where u : R1+n ! C is the unknown function, f(u) = �jujp�1u with p > 1; � 2 C.
Introducing the propagator U(t) = exp(it�=2) and the retarded potential Gg(t) =R t

0
U(t � �)g(�)d� , we can convert the problem (1)-(2) to the equivalent integral

equation

u(t) = U(t)� � i (Gf(u)) (t):(3)

The solvability of (1)-(2) has been studied by many authors, see e.g. [1,3,5{8,10{13].
The problem (1)-(2) is said to be locally well-posed in Hs if (3) has a unique
local (in time) solution u 2 C([0; T ]; Hs) for any � 2 Hs and the 
ow mapping
� 7! u is a continuous mapping from Hs to C([0; T ]; Hs). Here T need to be taken
uniformly in some neighborhood of arbitrarily �xed � 2 Hs. If 0 � s < n=2, the
local solvability of (3) has been established for p0(s) < p < 1 + 4=(n � 2s), where
p0(s) = 1 for s � 2; s � 1 for 2 < s < 4 and s � 2 for s � 4; if s � n=2, (3)
is locally solvable for p0(s) < p < 1. In some cases, we need auxiliary spaces of
Strichartz type (see [9]). The lower bound p0(s) mentioned above is due to [11].
This result was proved for s = 1 by [5, 6], s = 0 by [12], and s = 2 by [13]
provided that � 2 R, mainly by the use of Lp-Lq estimate and the regularization
technique. Kato [7, 8] systematically used the Strichartz estimate and gave an
alternative proof of solvability for s = 0; 1; 2. His proof is also applicable for the

Topics: Nonlinear Di�erential Equations and Evolution Equations, Partial Di�erential Equa-
tions and their Applications
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2 HARUNORI UCHIZONO AND TAKESHI WADA

case � =2 R. Cazenave-Weissler [3] proved the result above for s =2 Z under the
additional assumption p > [s] + 1, and this can be lowered to p > s by the method
of Ginibre-Ozawa-Velo [4]. Pecher [11] used fractional regularity spaces of Besov
type for time variable and proved the result for p > p0(s).

In the preceding results referred above, the natural upper bound p < 4=(n � 2s)
comes from the scale invariance of (1), whereas the lower bound p > p0(s) comes
from the �nite (at most p-times) di�erentiability of the nonlinear term f(u). Indeed,
Pecher [11] principally estimate the equation in H1

q (Bs�2��
r;2 ) when 2 < s < 4, and

in H2
q (Bs�4��

r;2 ) when s � 4, by which we would need p > p0(s). However, this

condition does not seem to be natural since p0(4�0) > p0(4+0). Taking account of
the property that for Schr�odinger equation, one time derivative corresponds to two
space derivatives, the optimal lower bound for 2 < s < 4 should be p > s=2, which
linearly connects p0(2) and p0(4). Actually, by the systematical use of fractional
order Besov spaces for time variable, we can obtain the desired result, to be stated
in x2.

2. Main result

Theorem 1. Let n � 5; 2 < s < min(4; n=2) and s=2 < p < 1 + 4=(n � 2s): Let�n

2
� s

� p � 1

p + 1
<

2

q
= �(r) � n

2
� n

r
< min

�
n

2
� s;

n

2
� p � 1

p + 1
;

2

p + 1

�
:

Then for any � 2 Hs; there exists T = T (k�kHs) and (3) has a unique solution u
in

X = C([0; T ]; Hs) \ Lq(0; T ; Bs
r;q) \ B

s=2
q;2 (0; T ; Lr):

Moreover, the 
ow mapping � 7! u is a continuous mapping from Hs to X.

We remark that in the preceding we have assumed s < n=2, which requires
n � 5 in our theorem, simply because we describe the results (and the proof of the
theorem) in a uni�ed manner. If s > n=2, we can obtain similar results more easily
because Hs � L1. Especially, we can prove the analogous result to our theorem
under the assumption n � 1, 2 < s < 4 and s=2 < p < 1 + 4=(n � 2s)+. If s � n=2,
we should choose q; r so that

0 <
2

q
= �(r) < min

�
n

2
� p � 1

p + 1
;

2

p + 1

�
:

We can prove Theorem 1 by contraction mapping principle. For the proof,
see [15]. One of the key estimate in the proof is the following version of Strichartz
type estimates.

Lemma 1. Let s > 0; 0 < �� < � < �+ < 1 and let 0 < 2=q = �(r) < 1. Then we
have the following:

(i) if � 2 Hs, then U(�)� 2 C(Hs) \ Lq(Bs
r;2) \ B

s=2
q;2 (Lr) with the estimate

kU(�)�k
L1(Hs)\Lq(Bs

r;2)\B
s=2
q;2 (Lr)

� Ck�kHs ;

(ii) if f 2 B�
q0;2(Lr0

) \
T

� Lq�(��)(Lr�(��)), then Gf 2 C(H2�) with the estimate

kGfkL1(H2�) � CkfkB�
q0;2

(Lr0 ) + C max
�

kfk
Lq�(��)(Lr�(��))

;
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where 1=q�(�) = (1 � �)=q0 and 1=r�(�) = (1 � �)=r0 + �=2;

(iii) if f 2 B�
q0;2(Lr0

) \
T

� L�q(��)(Lr�(��)), then Gf 2 Lq(B2�
r;q) \ B�

q;2(Lr) with the
estimate

kGfkLq(B2�
r;q)\B�

q;2(Lr) � CkfkB�
q0;2

(Lr0 ) + C max
�

kfk
L�q(��)(L�r(��))

;

where 1=�q(�) = (1 � �)=q0 + �=q and 1=�r(�) = (1 � �)=r0 + �=r:

This lemma is �rst proved by Pecher [11] and re�ned in our papers [14, 15].
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It is well known that in the ”weak competition” case, i.e.

B > A > C,

the constant steady state (u&, v&) =
³

a1c2.a2c1
b1c2.b2c1

, b1a2.b2a1
b1c2.b2c1

´
is globally asymptotically sta-

ble regardless of the diCusion rates d1 and d2. This implies, in particular, that no

nonconstant steady state can exist for any diCusion rates d1, d2.

On the other hand, it seems not entirely reasonable to add just diCusions to models

in population dynamics, since individuals do not move around completely randomly. In

particular, while modeling segregation phenomena for two competing species one must

take into account the cross-diCusion pressuresq¾¾¾¾¾¾̧
¾¾¾¾¾¾w

ut = #[(d1 + D12v)u] + u(a1 . b1u. c1v), in )× (0,=),

vt = #[(d2 + D21u)v] + v(a2 . b2u. c2v), in )× (0,=),

Eu

En
=
Ev

En
= 0, on E)× (0,=),

u(x, 0) = u0(x), v(x, 0) = v0(x), in ).

(1.3)

Mimura and his collaborators started mathematical analysis around 1980 (see, e.g.

Mimura [4]). Considerable work has been done concerning the global existence of solu-

tions to systems (1.3) under various hypotheses. A priori estimates are crucial to obtain

the global existence. As for recent progress including stationary problems, see Ni [5], Ni

[6], Yagi[9] and Yamada [10].

2 Limiting equation

The following two theorem are due to Lou-Ni [1], [2].

Theorem 2.1 ([2]) Suppose for simplicity that D21 = 0. Suppose further that B 6= A 6=
C, n + 3 and a2

d2
6= &k for any k : 1, where &k is the kth eigenvalue of .# on )

with zero Neumann boundary data. Let (uj, vj) be a nonconstant steady state solution

of (1.3) with D12 = D12,j. Then by passing to a subsequence if necessary, either (i) of

(ii) holds as D12,j )=:

(i) (uj,
D12,j

d1
vj)) (u, v) uniformly, u > 0, v > 0, andq¾¾¾¾̧

¾¾¾¾w
d1#[(1 + v)u] + u(a1 . b1u) = 0 in ),

d2#v + v(a2 . b2u) = 0 in ),

Eu

En
=
Ev

En
= 0 on E).

2
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(ii) (uj, vj)) ( H
v
, v) uniformly, H is a positive constant, v > 0, andq¾¾¾¾¾¾¾̧
¾¾¾¾¾¾¾w

Z
)

H

v

³
a1 . b1

H

v
. c1v

´
dx = 0,

d2#v + v(a2 . c2v). b2H = 0 in ),

Ev

En
= 0, on E).

(2.1)

Their proofs of obtaining the above limiting equations are quite hard and lengthy.

The most important step in the proof is to obtain a priori bounds on steady states of

(1.3) that are independent of D12.

It seems from numerical computations that solutions of the case (i) is not directly

related with stable solutions of the original equation with su{ciently large D12. However,

we observe numerically that solutions of the case (ii) is closely related with the original

equation with su{ciently large D12.

Thus, we will concentrate on the case (ii). Now, we consider the 1-dimensional case

with ) = (0, 1). The limiting equation becomes as follows:q¾¾¾¾¾¾¾̧
¾¾¾¾¾¾¾w

Z 1

0

1

v

³
a1 . b1

H

v

´
dx. c1 = 0,

d2vxx + v
¡
a2 . b2

H
v
. c2v

¢
= 0, in (0, 1),

vx(0) = vx(1) = 0,

v > 0, in (0, 1).

(2.2)

Let us consider about a time-dependent limiting equation as D12 )= under the con-

dition D21 = 0. Time-dependent limiting equation is the following: Unknown functions

are H(t), v(x, t), andq¾¾¾¾¾̧
¾¾¾¾¾w

d

dt

µZ
)

H

v
dx

¶
=

Z
)

H

v

³
a1 . b1

H

v
. c1v

´
dx,

Ev

Et
= d2#v + v(a2 . c2v). b2H in ),

Ev

En
= 0 on E).

(2.3)

This is formally derived by rewriting the first equation as

ut = D12 #

»µ
d1

D12

+ v

¶
u

¸
+ u(a1 . b1u. c1v)

and
d

dt

µZ
)

udx

¶
=

Z
)

u(a1 . b1u. c1v)dx.

3
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3 Structure and stability in 1-dimensional case
Due to the scaling and reflection properties of solutions to autonomous ordinary

diCerential equations, all solutions to the (2.2) are obtained by several reflections and a

suitable re-scaling from solutions of the following system:q¾¾¾¾¾¾¾¾̧
¾¾¾¾¾¾¾¾w

Z 1

0

1

v

³
a1 . b1

H

v

´
dx. c1 = 0,

d2vxx + v
³

a2 . b2

H

v
. c2v

´
= 0 in (0, 1),

vx(0) = vx(1) = 0,

v > 0, and vx > 0, in (0, 1).

(3.1)

Now, we will discuss about the structure of stationary solutions and their stability.

This system (3.1) consists of a nonlinear elliptic equation and an integral constraint.

As far as existence and non-existence in one dimensional domain are concerned, Lou-

Ni-Yotsutani [3] obtained nearly complete knowledge. They also obtained the precise

qualitative behavior of solutions to this limiting system as the diCusion rate varies.

Their basic approach is to convert the problem of solving the system to a problem

of solving its “representation” in a diCerent parameter space. This is first done without

the integral constraint, and then they use the integral constraint to find the “solution

curve” in the new parameter space. This turns out to be a powerful method as it gives

fairly precise information about the solutions.

We have recently made clear the remained delicate parts due to the explicit repre-

sentation by elliptic functions.

We summarized the structure of solutions of (3.1). We concentrate on the case

B < C (strong competition case).

The following two theorem are due to [3].

Theorem 3.1 (Existence) Suppose that B < C. If

max

½
0,

B + C . 2A

C . B

¾
a2

A2
< d2 <

a2

A2
,

then there exists a solution (v(x), H) of (3.1).

Theorem 3.2 (Nonexistence) Suppose that B < C.

(i) If d2 : a2

A2
, then there exists no solution of (3.1).

(iii) If A < B, there exists no solution of (3.1).

(iii) If B + A < B+C
2

, then there exists a d&2 = d&2(A, B, C, a2) > 0 such that

there exists no solution of (3.1) for d2 X (0, d&2].

4
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We see that the above theorem is sharp by the following theorems. The existence

region depending on the the ratio C/B. The situation drastically changes at C/B = 7/3.

Theorem 3.3 Suppose that B < C + 7B/3. (3.1) has a solution (v(x), H) if and only

if d2 satisfies

max

½
0,

B + C . 2A

C . B

¾
a2

A2
< d2 <

a2

A2
.

Moreover, the solution is unique.

Figure 3.1: Case B < C + 7B/3

Ṍ4

Theorem 3.4 Suppose that 7B/3 < C. (3.1) has the unique solution (v(x), H) if

max

½
0,

B + C . 2A

C . B

¾
a2

A2
< d2 <

a2

A2
.

Moreover, there exists the only one connected non-empty open set D with

D O
½

(A, d2) : B < A <
B + C

2
, 0 < d2 <

½
B + C . 2A

C . B

¾
a2

A2

¾
such that (3.1) has exactly two solutions (v(x), H) if and only if d2 X D.

Figure 3.2: Case 7B/3 < C

Ṍ4

D

5
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The following theorems in [3] give the shape of solutions to (3.1) as d2 6 a2/A
2.

Theorem 3.5 (Shape of solutions as d2 6 a2/A2 ) Suppose that B < C.

Let (v(x, d2), H(d2)) be solutions of (3.1). If A : B, then

v(x; d2)) 0,
v(x; d2). v(0; d2)

v(1; d2). v(0; d2)
) 1. cos(Ax)

2
,

H(d2)

v(x; d2)
) a2

b2

· 1

1.
q

1. B
A

cos(Ax)

uniformly on [0, 1] as d2 6 a2/A2.

Figure 3.3: u as d2 6 a2/A
2 Figure 3.4: v as d2 6 a2/A2

The following theorems in [3] give the shape of solutions to (3.1) as d2 9 0. A new

number (B + 3C)/4 appears. The shape is drastically change at A = (B + 3C)/4

Theorem 3.6 (Shape of solutions as d2 ) 0 for A < B+3C
4

) Suppose that B 6= C. Let

(v(x, d2), H(d2)) be solutions of (3.1). If A < B+3C
4

and B < C, then

v(0; d2)) 2 · a2

c2

·
B+3C

4
. A

C . B
, v(x; d2)) a2

c2

· A. B

C . B
for x > 0,

H(d2)

v(0; d2)
) a2

2c2

· C . A

C . B
· A. B

B+3C
4
. A

,
H(d2)

v(x; d2)
) a2

b2

· C . A

C . B
for x > 0,

as d2 9 0.

Figure 3.5: u for A + (B + 3C)/4 Figure 3.6: v for A + (B + 3C)/4

6
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Theorem 3.7 (Shape of solutions as d2 ) 0 for A : B+3C
4

) Suppose that B 6= C. Let

(v(x, d2), H(d2)) be solutions of (3.1). If B < C and A : B+3C
4

, then

v(0; d2)) 0, v(x; d2)) 3a2

4c2

for x > 0,

H(d2)

v(0; d2)
)=,

H(d2)

v(x; d2)
) a2

4c2

for x > 0, as d2 ) 0.

Figure 3.7: u for (B + 3C)/4 < A Figure 3.8: v for (B + 3C)/4 < A

4 Stability in one-dimensional problem

Let us consider the stability of stationary solutions, and multi-dimensional solutions

with their stability.

The following Figure 4.1 shows numerical results for

d1 = 1, d2 = &, r = 700, 000

a2 = &, b2 = 1, c2 = 2.

a2 = 1, b2 = 1, c2 = 1.

We note that C < 7B/3, (B + C)/2 = 1.5 and (B + 3C)/4 = 1.75.ι

Figure 4.1: Stability and instability

7
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Wu[8] gave a proof of instability for

d2 su{ciently small with (B + C)/2 < A < (B + 4C)/4

in one-dimensional case. Recently, she have also given a proof of stability for

d2(< a2/A
2) su{ciently close to a2/A2 with (B + C)/2 < A < (B + 4C)/4

in one-dimensional case.

5 Multi-dimensional problem

We have done various numerical computations for the case ) is rectangles in 2-

dimensional space. It seems that the structure of stable stationary solutions is essentially

very similar to 1-dimensional case, though there are much varieties of shape of solutions

in 2-dimensional case than in one-dimensional case.

ι

Figure 5.1: 2D global

Now, we will state some mathematical results. We prepare notations. Let

&0 = 0 < &1 + &2 + · · ·

#0 = const., #1, #2, · · · .

be eigen values and corresponding eigen functions of .# in ) O RN with Neumann

boundary.

Theorem 5.1 Suppose that N + 3 and &1 be a simple eigen values with an eigen

function #1. Then, there exists exactly two positive non-constant solutions (v., H.) and

(v+, H+) of (2.1) for d2 su{ciently close to a2/&1 with d2 < a2/&1

8
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Moreover,

H ) 0,

H±(d2)

v±(x; d2)
) a2

b2

· 1

1 + =±#1(x)

as d2 6 a2/&1, where =.,=+ (=. < 0 < =+) are solutions ofR
)

(1 + = #1(x))
.2

dxR
)

(1 + = #1(x))
.1

dx
=

A

B
.

Remark. The set {(v., H.), (v+, H+)} is uniquely determined though there is a freedom

to pick up #1. The condition N + 3 comes from Harnack’s inequality in our proof.

Remark. For N = 1, ) = (0, 1), it is easy to see that

&1 = A2, #1(x) = cos Ax,
1

1. =2
=

A

B
, =± = ±

r
1. B

A
.

Remark. For N = 2, ) = (0, 1) × (0, `) with 0 < ` < 1, it is easy to see that

&1 = A2, #1(x, y) = cos Ax,
1

1. =2
=

A

B
, =± = ±

r
1. B

A
.

Theorem 5.2 Suppose that N + 3 and &1 be a simple eigen values. Then, (v., H.)

and (v+, H+) defined by Theorem 5.1 are asymptotically stable for d2 su{ciently close to

a2/&1 with d2 < a2/&1.

The following general lemma plays crucial role to prove Theorems 5.1 and 5.2.

Lemma 5.3 Suppose that N : 1 and #1 be eigen values corresponding to &1. Let g(=)

be defined by

g(=) :=

R
)

(1 + = #1(x))
.2

dxR
)

(1 + = #1(x))
.1

dx

for = X (.1/max)̄ #1,.1/min)̄ #1). Then

dg(=)

d=
=

q¾¾¾̧
¾¾¾w

+ for = > 0,

0 for = = 0,

. for = < 0.

Moreover, for N + 4, q̧
wg(=))= as = 6 =+,

g(=))= as = 9 =..

9
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Di�erent degrees of reaction rates can block

interfacial dynamics in reaction-di�usion systems

Masato Iida
Institute of Education and Research for Engineering

University of Miyazaki
Miyazaki 889-2192, Japan
iida@cc.miyazaki-u.ac.jp

1 Introduction

We point out some remarks on singulrar limits of reaction-di�usion systems in this article which
is based on the joint work with H. Monobe, H. Murakawa and H. Ninomiya [4].

Some reaction-di�usion systems with huge parameters are often reduced to free boundary
problems as their singular limits when the parameters tend to in�nity. Let 
 be a bounded
domain in RN with smooth boundary @
. For any positive number T we set QT = 
 �
(0; T ). Hilhorst-Hout-Peletier [1, 2] investigated a simple reaction-di�usion system with a huge
parameter k 8><>:

@u

@t
= �u � kuv;

@v

@t
= �kuv

(1)

which describes a \rapid reaction" between a di�usive reactant and a non-di�usive one. As-
suming that the initial values of u and v are non-negative, they derived the singular limit of
an initial-boundary value problem in QT for (1) as k ! 1. Their results are summarized as
follows: the solution (uk; vk) of their initial-boundary value problem for (1) in QT posseses its
singular limit (u�; v�) as k ! 1 such that u�v� � 0 in QT ; therefore, when we use the notation


u(t) = fx 2 
j u�(x; t) > 0g; 
v(t) = fx 2 
j v�(x; t) > 0g;
�(t) = 
 n (
u(t) [ 
v(t)) = fx 2 
j u�(x; t) = v�(x; t) = 0g;

the region 
u(t) and the region 
v(t) are divided by an \interface" �(t); moreover u� satis�es
the one-phase Stefan problem8>><>>:

@u�

@t
= �u� in 
u(t);

v�
��
�(t)+0n

Vn = � @u�

@n

����
�(t)�0n

; u�
��
�(t)

= 0:
(2)

in a weak sense; in particular, if �(t) is a smooth, closed and orientable hypersurface, and if u�

is smooth on [
t 2 [0; T ]

�

u(t) � ftg

�
, and also if the boundary value of v� on @
v(t) is well-de�ned

at each t 2 [0; T ], then (2) holds true in the classical sense. Here n is the unit normal vector
to �(t) oriented from 
u(t) to 
v(t), and Vn is the velocity of �(t) in the direction of n. They
also proved in [3] that the singular limit of a reaction-\degenerated di�usion" system8><>:

@u

@t
= �(u2) � kuv;

@v

@t
= �kuv

(3)
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2

as k ! 1 becomes a free boundary problem with no propagation of the interface: the solution
(uk; vk) of an initial-boundary value problem in QT for (3) possesses its singular limit (u�; v�)
as k ! 1 such that u�v� � 0 in QT ; u� is a weak solution of8<:

@u�

@t
= �(u�

2) in 
u0 ;

Vn = 0; u�
��
�0

= 0;
(4)

where 
u0 , �0 and Vn are respectively de�ned similarly to 
u(t), �(t) and Vn which are given
above, however 
u0 and �0 cannot propagate as time goes on. The singular limit (4) obtained
from (3) is much di�erent from the porous media equation in that the support of u�(�; t) in
(4) cannot propagate at all. On the other hand Nakaki-Murakawa [5] indicated that another
reaction-\degenerate di�usion" system8><>:

@u

@t
= �(u2) � 2ku

3
2 v2;

@v

@t
= �kuv

(5)

with a huge parameter k in 
 becomes a good approximation to a porous media equation

@u�

@t
= �(u�

2) in 
; (6)

where the support of u�(�; t) does propagate with a positive speed. Let (uk; vk) be the solution
of an initial-boundary value problem in QT for (5). When k is large enough in (5), ukvk almost
vanishes in QT , and a \transition layer" of the pro�le of vk(�; t), together with a \corner layer"
of the pro�le of uk(�; t), appears in a thin region of 
. They showed in [5] that the transition
layer of vk(�; t) well approximates the moving boundary of the support of u�(�; t) by using the
Barenblatt solution for (6). The consumption rate kuv of u in (3) is much greater than the

consumption rate 2ku
3
2 v2 of u in (5) when u is very small. Thus the blocking of the propagating

front of the \region of di�usive u" by the great consumption of u due to the rapid reaction
with v in the corner (resp. transition) layer of u (resp. v) seems to arise easier in (3) than in
(5). However, the reason why the exponents in the reaction rates of (5) bring about exactly the
propagation speed of the interface appearing in the porous media equation (6) has not been
clari�ed at all.

Taking account of these results, we will investigate the singular limits of initial-boundary
value problems in QT for reaction-di�usion systems8><>:

@u

@t
= �(um) � kupvq;

@v

@t
= �kurvs

(7)

as k ! 1. Let (uk; vk) be the solution of an initial-boundary value problem in QT for (7) and
let (u�; v�) = lim

k!1
(uk; vk). We expect a similar situation to above the results: u�v� � 0 in QT ;

namely the region 
u(t) = fx 2 
j u�(x; t) > 0g and the region 
v(t) = fx 2 
j v�(x; t) > 0g
would be divided by an interface �(t) = 
 n (
u(t) [ 
v(t)) = fx 2 
j u�(x; t) = v�(x; t) = 0g.
Then a question naturally arises: which values of the exponents p; q; r and s can block the
propagation of the interface �(t)? To answer this question, we will consider the situation where
m = q = s = 1 and p < r as a �rst step.
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2 Results

For simplicity we assume that p = 1 and r � 2 in (7); so we investigate the singular limit of8><>:
@u

@t
= �u � kuv in QT ;

@v

@t
= �kurv in QT

(8)

as k ! 1. We impose the homogeneous Neumann boundary condition

@u

@�
= 0 on @
 � (0; T ] (9)

on u and the following conditions on our initial datum (u0; v0):

(I1) u0 2 C(
), v0 2 L1(
);

(I2) u0 � 0, v0 � 0 in 
, 
u0 = fx 2 
j u0(x) > 0g 6= �, 
v0 = fx 2 
j v0(x) > 0g 6= �;

(I3) 
u0 \ 
v0 = �.

We can obtain the following a priori estimates for the solution of our initial-boundary value
problem for (8).

Theorem 1. Let (uk; vk) be the solution of (8)(9) with the initial value (u0; v0) for each k > 0.
Then

(i) 0 � uk(x; t) � ku0k1, 0 � vk(x; t) � kv0k1 in QT ;

(ii)

�Z Z
QT

kukvk dxdt

�
k>0

is bounded.;

(iii) fukgk>0 and fvkgk>0 are pre-compact in L2(QT );

(iv) fukgk>0 and fuk
rgk>0 are bounded in L2

�
0; T ; H1(
)

�
;

(v)

�
@vk

@t

�
k>0

is bounded in H�1
�
0; T ; L2(
)

� �
=

�
H1

0

�
0; T ; L2(
)

�	��
;

(vi)
�

uk
r�2jru�j2

	
k>0

is bounded in H�1(QT )
�
=

�
H1

0 (QT )
	��

.

Corollary 2. Let (uk; vk) be the solution of (8)(9) with the initial value (u0; v0) for each k > 0.
Then there exist functions u� 2 L1(QT ) \ L2

�
0; T ; H1(
)

�
, v� 2 L1(QT ) and a distribution

!� 2 H�1(QT ) such that8>>>>>><>>>>>>:

uk �! u� strongly in L2(QT ); a.e. in QT ; weakly in L2
�
0; T ; H1(
)

�
;

vk �! v� strongly in L2(QT ); a.e. in QT ;
uk

r �! u�
r strongly in L2(QT ); weakly in L2

�
0; T ; H1(
)

�
;

@vk

@t
�! @v�

@t
weakly in H�1

�
0; T ; L2(
)

�
;

uk
r�2jrukj2 �! !� weakly in H�1(QT )

subsequentially as k = kj ! 1. Moreover (u�; v�; !�) satis�es

0 � u� � ku0k1; 0 � v� � kv0k1; u�v� � 0;
@v�

@t
� 0; !� � 0 in QT

and

Z Z
QT

�
�

�
u�

r

r
� v�

�
�t + u�

r�1ru� � r�

�
dxdt + (r � 1) H � 1 ( Q T )h!�; �iH 1

0 ( Q T ) = 0 (10)

for any � 2 H1
0 (QT ).
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For the limit functions u� and v� obtained in Corollary 2 we set


u(t) = fx 2 
j u�(x; t) > 0g; 
v(t) = fx 2 
j v�(x; t) > 0g;
�(t) = 
 n (
u(t) [ 
v(t)) = fx 2 
j u�(x; t) = v�(x; t) = 0g

at each t 2 [0; T ]. The fact u�v� � 0 implies that


u(t) \ 
v(t) = �; t 2 [0; T ]:

We can rewrite the weak form (10) as a free boundary problem under the following assumptions
on the smoothness of u�, !� and v0:

(A1) v0 is continuous on 
v0 , and inf

v0

v0 > 0;

(A2) �(t) is a smooth, closed and orientable hypersurface in RN satisfying �(t) \ @

� � at each t 2 [0; T ];

(A3) �(t) smoothly moves with a normal velocity Vn from 
u(t) to 
v(t);

(A4) u� is continuous in QT ;

(A5) u� is a smooth on [
t 2 [0; T ]

�

u(t) � ftg

�
;

(A6) !� 2 L1
loc(QT ).

Theorem 3. Let (uk; vk) be the solution of (8)(9) with the initial value (u0; v0) for each k > 0.
Assume (A1)-(A6). Then

Vn � 0 on [
t 2 [0; T ]

�
�(t) � ftg

�
(11)�

i.e., 
u(t) � 
u0 ; 
v(t) � 
v0 ; �(t) � �0 := 
 n (
u0 [ 
v0)
�

(12)

and

!� =

�
u�

r�2jru�j2 in 
u0 � (0; T ];
0 in 
v0 � (0; T ]

hold true. Moreover (u�; v�) satis�es (9) and8><>:
@u�

@t
= �u� in 
u0 � (0; T ];

u� = 0 on �0 � (0; T ];
u�jt=0 = u0 in 
u0 ;

v� = v0 in 
v0 � (0; T ]:

In particular, the subsequential convergence as k = kj ! 1 in Corollary 2 is replaced by the
convergence as k ! 1.

Remark Among the assumptions (A1)-(A6) it seems that (A4) and (A6) might be remov-
able; however we have not succeeded in removing them yet.

Here we omit the proofs of Theorems 1 and 3 which will be given in [4].
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Abstract. In this paper, we consider an SIR epidemic model with delays in which population
growth is subject to logistic growth in absence of disease. The force of infection with a discrete
delay is given by a separable nonlinear incidence rate. Under the monotonicity conditions, we
investigate asymptotic stability of the trivial equilibrium, the disease-free equilibrium and the
endemic equilibrium. By constructing a Lyapunov functional, we establish the global stability of
the disease-free equilibrium if and only if the basic reproduction number is less than or equal to
one. Moreover, by investigating the location of roots of the associated characteristic equations,
we prove that there exists a critical length of delay such that the endemic equilibrium is locally
asymptotically stable when the delay is less than the value.

1 Introduction

In order to investigate the spread of infectious diseases, many authors have formulated various
epidemic models and the stability of equilibria has also been extensively studied (see [1-5] and
the references therein). From an epidemiological point of view, it is important to investigate
the population dynamics of the disease transmission. Recently, based on an SIR (Susceptible-
Infected-Recovered) epidemic model, Wang et al. [4] considered the asymptotic behavior of the
following delayed epidemic model in which population growth is subject to logistic growth in
absence of disease: 8>>>>>><>>>>>>:

dS(t)

dt
= r

�
1 � S(t)

K

�
S(t) � �S(t)I(t � �);

dI(t)

dt
= �S(t)I(t � �) � (�1 + 
)I(t);

dR(t)

dt
= 
I(t) � �2R(t):

(1.1)

S(t), I(t) and R(t) denote the fractions of susceptible, infective and recovered host individuals
at time t, respectively. In system (1.1), it is assumed that the population growth in susceptible
host individuals is governed by the logistic growth with a carrying capacity K > 0 as well as
intrinsic birth rate constant r > 0. � > 0 is the average number of constants per infective per
unit time and � � 0 is the incubation time, �1 > 0 and �2 > 0 represent the death rates of

1

45



infective and recovered individuals, respectively. 
 > 0 represents the recovery rate of infective
individuals.

Wang et al. [4] obtained stability results of equilibria of (1.1) in terms of the basic reproduc-
tion number R0: the disease-free equilibrium is globally asymptotically stable if R0 < 1 while
a unique endemic equilibrium can be unstable if R0 > 1. More precisely, if 1 < R0 � 3, then
the endemic equilibrium is asymptotically stable for any delay � and if R0 > 3, then there exists
a critical length of delay such that the endemic equilibrium is asymptotically stable for delay
which is less than the value while it is unstable for delay which is greater than the value. It is
also shown that Hopf bifurcation at the endemic equilibrium occurs when the delay crosses a
sequence of critical values.

On the other hand, since nonlinearity in the incidence rates has been observed in disease
transmission dynamics, it has been suggested that the standard bilinear incidence rate shall be
modi�ed into a nonlinear incidence rate by some authors (see, e.g., [1, 3]). In this paper, we
replace the incidence rate in (1.1) by a nonlinear incidence rate of the form F (S(t))G(I(t � �)).
Throughout the paper, it is assumed that the functions F and G are continuous on [0; +1) and
continuously di�erentiable on (0; +1) satisfying the following hypotheses:

(H1) F (S) is strictly monotone increasing on [0; +1) with F (0) = 0,

(H2) G(I) is strictly monotone increasing on [0; +1) with G(0) = 0,

(H3) I=G(I) is monotone increasing on (0; +1) with limI!+0 I=G(I) = 1.

Then we obtain the following system:8>>>>>><>>>>>>:

dS(t)

dt
= r

�
1 � S(t)

K

�
S(t) � F (S(t))G(I(t � �));

dI(t)

dt
= F (S(t))G(I(t � �)) � (�1 + 
)I(t);

dR(t)

dt
= 
I(t) � �2R(t):

(1.2)

The functions F and G include some special incidence rates. For instance, if F (S) = �S with
� > 0 and G(I) = I, then the incidence rate is used in Wang et al. [4] and if F (S) = �S

1+�S with
�; � > 0 and G(I) = I, then the incidence rate, describing saturated e�ects of the prevalence of
infectious diseases, is used in Zhang et al. [5].

The initial conditions of system (1.2) take the following form�
S(�) = �1(�); I(�) = �2(�); R(�) = �3(�);
�i(�) � 0; � 2 [��; 0]; �i(0) > 0; �i 2 C([��; 0]; R+0); i = 1; 2; 3;

(1.3)

where R+0 = fx 2 Rjx � 0g. By the fundamental theory of functional di�erential equations,
system (1.2) has a unique positive solution (S(t); I(t); R(t)) satisfying

lim sup
t!+1

(S(t) + I(t) + R(t)) �
(r + �)K

�
; (1.4)

where � = min(�1; �2). We de�ne the basic reproduction number by

R0 =
F (K)

�1 + 

: (1.5)

2
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In this paper we analyze the stability of equilibria by investigating location of the roots of
associated characteristic equation and constructing a Lyapunov functional. System (1.2) always
has a trivial equilibrium E0 = (0; 0; 0) and a disease-free equilibrium E1 = (K; 0; 0). If R0 > 1,
then system (1.2) has an endemic equilibrium E� = (S�; I�; R�) with S� > 0, I� > 0 and R� > 0
(see Lemma 3.1).

The organization of this paper is as follows. In Section 2, we investigate the stability of the
trivial equilibrium and the disease-free equilibrium. In Section 3, for R0 > 1, we investigate
unique existence of the endemic equilibrium of system (1.2) exists. Moreover, we investigate the
delay e�ect concerning the local asymptotic stability of endemic equilibrium. Finally, in Section
4, we introduce an example of our model to o�er some corollaries.

2 Stability of the disease-free equilibrium

In this section, we analyze the stability of the trivial equilibrium E0. By constructing a Lyapunov
functional, we further establish the global asymptotic stability of the disease-free equilibrium E1

for R0 � 1. At an arbitrary equilibrium (Ŝ; Î; R̂) of (1.2), the characteristic equation is given by

(� + �2)

��
� + F 0(Ŝ)G(Î) � r

�
1 � 2Ŝ

K

��
(�+�1 + 
 � F (Ŝ)G0(Î)e��� )

+ F (Ŝ)G0(Î)e��� F 0(Ŝ)G(Î)

�
= 0: (2.1)

Theorem 2.1. The trivial equilibrium E0 of system (1.2) is always unstable.

Proof. For (Ŝ; Î; R̂) = (0; 0; 0) the characteristic equation (2.1) becomes as follows.

(� + �2)(� � r)(� + �1 + 
) = 0: (2.2)

Since (2.2) has a positive root � = r, E0 is unstable. �
Constructing a Lyapunov functional, we prove that the global asymptotic stability of the

disease-free equilibrium E1 is determined by the basic reproduction number R0.

Theorem 2.2. The disease-free equilibrium E1 of system (1.2) is globally asymptotically stable
if and only if R0 � 1 and it is unstable if and only if R0 > 1.

Proof. First we assume R0 � 1. We de�ne a Lyapunov functional by

V (t) =

Z S(t)

K

�
1 � F (K)

F (s)

�
ds + I(t) + F (K)

Z t

t��
G(I(s))ds; (2.3)

where g(x) = x � 1 � ln x � g(1) = 0 for x > 0. Then the time derivative of V (t) along the
solution of (1.2) becomes as follows.

dV (t)

dt
=

�
1 � F (K)

F (S(t))

� �
r

�
1 � S(t)

K

�
S(t) � F (S(t))G(I(t � �))

�
+ F (S(t))G(I(t � �)) � (�1 + 
)I(t) + F (K)(G(I(t)) � G(I(t � �)))

= � rS(t)

KF (S(t))
(F (S(t)) � F (K))(S(t) � K) + F (K)G(I(t)) � (�1 + 
)I(t):

= � rS(t)

KF (S(t))
(F (S(t)) � F (K))(S(t) � K) + F (K)

�
G(I(t))

I(t)
� 1

R0

�
I(t):

3
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Since the hypothesis (H3) yields 0 < G(I)
I � 1 for I > 0, we obtain

dV (t)

dt
� � rS(t)

KF (S(t))
(F (S(t)) � F (K))(S(t) � K) + F (K)

�
1 � 1

R0

�
I(t): (2.4)

By the hypothesis (H1), (F (S(t)) � F (K))(S(t) � K) � 0 with equality if and only if S(t) = K.

For the case R0 < 1, we obtain dV (t)
dt � 0 with equality if and only if S(t) = K and I(t) = 0.

For the case R0 = 1, we obtain dV (t)
dt � 0 with equality if and only if S(t) = K. By Lyapunov-

LaSalle asymptotic stability theorem, we have limt!+1 S(t) = K if R0 � 1. By the �rst and
third equations of (1.2), limt!+1 S(t) = K implies limt!+1 I(t) = 0 and limt!+1 R(t) = 0.

Since it follows that E1 is uniformly stable from the relation V (t) �
R S(t)

K

�
1 � F (K)

F (s)

�
ds + I(t),

E1 is globally asymptotically stable.
Second we assume R0 > 1. For (Ŝ; Î; R̂) = (K; 0; 0), the characteristic equation (2.1) becomes

as follows.
(� + �2)(� + r)(� + �1 + 
 � F (K)e��� ) = 0: (2.5)

One can see that � = ��2 and � = �r are negative real roots of (2.5). Moreover, (2.5) has roots
of

p(�) := � + �1 + 
 � F (K)e��� = 0:

Since p(0) = (�1 + 
)(1 � R0) < 0 and lim�!+1 p(�) = +1, we conclude that p(�) = 0 has at
least one positive root. Hence E1 is unstable. The proof is complete. �

3 Stability of the endemic equilibrium

In this section, we establish local asymptotic stability of the endemic equilibrium E� for R0 > 1
by investigating location of the roots of the characteristic equation.

3.1 Unique existence

In this subsection, we give the result on the unique existence of the endemic equilibrium E� for
R0 > 1.

Lemma 3.1. If R0 > 1, then system (1.2) has an endemic equilibrium E� = (S�; I�; R�) satis-
fying the following equations:8>><>>:

r

�
1 � S�

K

�
S� � F (S�)G(I�) = 0;

F (S�)G(I�) � (�1 + 
)I� = 0;

I� � �2R� = 0:

(3.1)

Moreover, if R0 > 1 and

F 0(S) � F (S)

S
� 0 for all S 2 (0; K); (3.2)

then the endemic equilibrium E� is unique.

4
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Proof. At a �xed point of (S; I; R) of system (1.2), the following equalitions hold.

r

�
1 � S

K

�
S � (�1 + 
)I = 0; F (S)G(I) � (�1 + 
)I = 0; 
I � �2R = 0: (3.3)

Substituting the �rst equation of (3.3) into the second equation of (3.3), we consider the following
equation:

H(S) := F (S) � (�1 + 
)

r
�1+
 (1 � S

K )S

G( r
�1+
 (1 � S

K )S)
= 0:

By the hypotheses (H1) and (H3), we obtain

lim
S!+0

H(S) = �(�1 + 
) < 0; lim
S!K�0

H(S) = F (K) � (�1 + 
) = (�1 + 
)(R0 � 1) > 0;

which implies that there exists a positive root S = S� < K such that H(S) = 0. By the �rst and
third equations of (3.3), we have I� = r

�1+
 (1 � S�

K )S� > 0, and R� = 

�2(�1+
)r(1 � S�

K )S� > 0.
Hence, we obtain the �rst part of this lemma.

Next, under the condition (3.2), we prove that the function H is strictly monotone increasing
on (0; K). We de�ne

L(S) :=
r

�1 + 


�
1 � S

K

�
S:

By the relation r(1 � 2S
K ) = r(1 � S

K ) � rS
K = F (S)G(L(S))

S � rS
K and d

dI ( I
G(I))jI=L(S) � 0 for all

S 2 (0; K), we obtain

H 0(S) =F 0(S) � (�1 + 
)
dL(S)

dS
� d

dI

�
I

G(I)

����
I=L(S)

=F 0(S) � r

�
1 � 2S

K

�
� d

dI

�
I

G(I)

����
I=L(S)

=F 0(S) �
�

F (S)G(L(S))

S
� rS

K

�
� d

dI

�
I

G(I)

����
I=L(S)

�F 0(S) � F (S)G(L(S))

S
� d

dI

�
I

G(I)

����
I=L(S)

for all S 2 (0; K). In addition, since G(L(S)) d
dI ( I

G(I))jI=L(S) = 1� L(S)G0(L(S))
G(L(S)) and G0(L(S)) > 0

for all S 2 (0; K) by the hypothesis (H2), it follows from the condition (3.2) that

H 0(S) �F 0(S) � F (S)

S

�
1 � L(S)G0(L(S))

G(L(S))

�
>F 0(S) � F (S)

S
� 0

for all S 2 (0; K). This implies that there exists a unique positive root S = S� < K such that
H(S) = 0. Hence, we obtain the second part of this lemma. The proof is complete. �

Proposition 3.1. The functions such that F (S)
S is monotone increasing on (0; +1) satisfy the

condition (3.2). For example, the function F (S) = �Sp with p � 1 satis�es (3.2).

5
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3.2 Local asymptotic stability

In this subsection, we investigate local asymptotic stability of the endemic equilibrium E� =
(S�; I�; R�) for system (1.2). Let us assume that R0 > 1 holds. For (Ŝ; Î; R̂) = (S�; I�; R�) the
characteristic roots of (2.1) are the root � = ��2 and the roots of

�2 + a� + b � e��� (c� + d) = 0 (3.4)

with

a =
F (S�)G(I�)

I� +

�
F 0(S�) � F (S�)

S�

�
G(I�) +

rS�

K
;

b =
F (S�)G(I�)

I�

��
F 0(S�) � F (S�)

S�

�
G(I�) +

rS�

K

�
;

c =F (S�)G0(I�);

d =F (S�)G0(I�)

�
�F (S�)G(I�)

S� +
rS�

K

�
:

First we prove that all the roots of (3.4) have negative real part for � = 0.

Proposition 3.2. Assume R0 > 1. If the condition (3.2) holds, then all the roots of (3.4) have
negative real part for � = 0.

Proof. When � = 0, (3.4) yields

�2 + (a � c)� + (b � d) = 0: (3.5)

Noting from the hypotheses (H2) and (H3) that G0(I�) > 0 and G(I�) � I�G0(I�) � 0, we have

a � c = F (S�)

�
G(I�)

I� � G0(I�)

�
+

�
F 0(S�) � F (S�)

S�

�
G(I�) +

rS�

K
> 0

and

b � d

=
F (S�)G(I�)

I�

��
F 0(S�) � F (S�)

S�

�
G(I�) +

rS�

K

�
+ F (S�)G0(I�)

�
F (S�)G(I�)

S� � rS�

K

�
=

rS�F (S�)

K

�
G(I�)

I� � G0(I�)

�
+

F (S�)(G(I�))2

I�

�
F 0(S�) � F (S�)

S�

�
+

(F (S�))2G0(I�)G(I�)

S�

>0;

which implies that all the roots of (3.5) have negative real part. The proof is complete. �

Next we consider the case F (S) = �S. Then, by Lemma 3.1, system (1.2) has a unique
endemic equilibrium E� = (S�; I�; R�). Let us de�ne

R0 = 2
I�

G(I�)
+

1

G0(I�)
: (3.6)

Then we prove that R0 = R0 is a threshold condition which determines the existence of purely
imaginary roots of (3.4) for � > 0. The following proposition is an extension of the stability
results for the case G(I) = I in Wang et al. [4].

6

50



Proposition 3.3. Assume R0 > 1. Then the following statement holds true.

(i) If R0 � R0, then all the roots of (3.4) have negative real part for any � > 0.

(ii) If R0 < R0, then there exists a monotone increasing sequence f�ng1
n=0 with �0 > 0 such

that (3.4) has a pair of imaginary roots for � = �n (n = 0; 1; � � � ).

Proof. From Proposition 3.2, all the roots of equation (3.4) have negative real part for su�ciently
small � . Suppose that � = i!, ! > 0 is a root of (3.4). Substituting � = i! into the characteristic
equation (3.4) yields equations, which split into its real and imaginary parts as follows:�

�!2 + b = d cos !� + c! sin !�;
a! = c! cos !� � d sin !�:

(3.7)

Squaring and adding both equations in (3.7), we have

!4 + (a2 � 2b � c2)!2 + (b + d)(b � d) = 0: (3.8)

By the relations r(1 � S�

K ) = �G(I�), R0 = KI�

S�G(I�) and

2S�G0(I�) +
K

R0
=

2KI�G0(I�)

R0G(I�)
+

K

R0
=

KG0(I�)

R0

�
2

I�

G(I�)
+

1

G0(I�)

�
=

R0KG0(I�)

R0
;

we obtain

a2 � 2b � c2 =

�
�G(I�)

I� +
r

K

�2

(S�)2 � �G(I�)

I�
2r

K
(S�)2 � (�S�)2G0(I�)2

=(S�)2

��
�G(I�)

I�

�2

� (�G0(I�))2 +

�
r

K

�2�
and

b + d =
�S�G(I�)

I�
rS�

K
+ �S�G0(I�)

�
��G(I�) +

rS�

K

�
=

�S�G(I�)

I�
rS�

K
+ �S�G0(I�)

�
�r +

2rS�

K

�
=

r�S�

K

�
2S�G0(I�) +

K

R0

�
� r�S�G0(I�)

=
r�S�G0(I�)

R0
(R0 � R0):

First we assume R0 � R0. Then we have a2 � 2b � c2 > 0 and (b + d)(b � d) � 0, that is,
there is no positive real ! satisfying (3.8). This leads to a contradiction and all the roots of (3.4)
have negative real part for any � � 0. Hence we obtain the �rst part of this proposition.

Second we assume R0 < R0. Then it follows from the relations a2 � 2b � c2 > 0 and
(b + d)(b � d) < 0 that there is a unique positive real !0 satisfying (3.8), where

!0 =

(
�(a2 � 2b � c2) +

p
(a2 � 2b � c2)2 � 4(b + d)(b � d)

2

) 1
2

:

7
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Noting from (3.7) that � = �i!0 is also a root of (3.4), this implies that (3.8) has a single pair
of purely imaginary roots �i!0. By the relation

(ac � d)!2
0 + bd = (c2!2

0 + d2) cos !0�;

�n corresponding to !0 can be obtained as follows:

�n =
1

!0
arccos

(ac � d)!2
0 + bd

c2!2
0 + d2

+
2n�

!0
; n = 0; 1; 2; � � � :

Hence we obtain the second part of this proposition. The proof is complete. �
The following proposition indicates that a conjugate pair of the characteristic roots � = �i!0

of (2.1) cross the imaginary axis from the left half complex plane to the right half complex plane
when � crosses �n (n = 0; 1; � � � ) if 1 < R0 < R0.

Proposition 3.4. Assume R0 > 1. If R0 < R0, then the transversality condition:

dRe(�(�))

d�

���
�=�n

> 0

holds for n = 0; 1; � � � .

Proof. Di�erentiating (3.4) with respect to � , we obtain

(2� + a)
d�

d�
= fe��� c � �e��� (c� + d)gd�

d�
� �e��� (c� + d);

that is, �
d�

d�

��1

=
(2� + a) � e��� c + �e��� (c� + d)

��e��� (c� + d)

=
2� + a

��e��� (c� + d)
+

c

�(c� + d)
� �

�

= � �(2� + a)

�2(�2 + a� + b)
+

c�

�2(c� + d)
� �

�

= � (�2 + a� + b) + �2 � b

�2(�2 + a� + b)
+

(c� + d) � d

�2(c� + d)
� �

�

= � �2 � b

�2(�2 + a� + b)
+

�d

�2(c� + d)
� �

�
:

By the relation

d�

d�
=

dRe(�)

d�
+ i

dIm(�)

d�
=

��
dRe(�)

d�

�2

+

�
dIm(�)

d�

�2� �
dRe(�)

d�
� i

dIm(�)

d�

��1

;

we have dRe(�)
d� = Re(d�

d� )�1f(dRe(�)
d� )2 + (dIm(�)

d� )2g and

Re

�
d�

d�

��1���
�=�n

=
(�!2

0 � b)(b � !2
0)

!2
0f(b � !2

0)2 + a2!2
0g

+
d2

!2
0(c2!2

0 + d2)

=
!4

0 � b2 + d2

!2
0(c2!2

0 + d2)

=
!4

0 � (b � d)(b + d)

!2
0(c2!2

0 + d2)
> 0:

8
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Hence we obtain dRe(�)
d� j�=�n > 0 for n = 0; 1; � � � . The proof is complete. �

By Proposition 3.2 and the �rst part of Proposition 3.3, all the roots of (3.4) have negative
real part for any � � 0 if 1 < R0 � R0. By Proposition 3.2, the second part of Proposition
3.3 and Proposition 3.4, all the roots of (3.4) have negative real part for 0 � � < �0 and there
exists at least 2 roots having positive real part for � > �0 if 1 < R0 < R0. We then establish the
stability condition for the endemic equilibrium as follows.

Theorem 3.1 (Enatsu et al. [2, Theorem 3.2]). Assume R0 > 1. Then the following
statement holds true.

(i) If R0 � R0, then the endemic equilibrium E� of system (1.2) is locally asymptotically stable
for any � � 0.

(ii) If R0 < R0, then the endemic equilibrium E� of system (1.2) is locally asymptotically stable
for 0 � � < �0 and it is unstable for � > �0.

Remark 3.1. System (1.2) undergoes Hopf bifurcation at the endemic equilibrium E� when �
crosses �n (n = 0; 1; � � � ) for 1 < R0 < R0.

4 Example

In this section, we consider the following model:8>>>>>><>>>>>>:

dS(t)

dt
= r

�
1 � S(t)

K

�
S(t) � �S(t)

I(t � �)

1 + �I(t � �)
;

dI(t)

dt
= �S(t)

I(t � �)

1 + �I(t � �)
� (�1 + 
)I(t);

dR(t)

dt
= 
I(t) � �2R(t)

(4.1)

with � � 0. One can see that system (4.1) always has the trivial equilibrium E0 and the
disease-free equilibrium E1. Applying Theorems 2.1 and 2.2, we obtain the following results:

Corollary 4.1. The trivial equilibrium E0 of system (4.1) is always unstable.

Corollary 4.2. The disease-free equilibrium E1 of system (4.1) is globally asymptotically stable
if and only if R0 � 1 and it is unstable if and only if R0 > 1.

Since G(I) = I
1+�I satis�es the hypothesis (H3), system (4.1) has a unique endemic equi-

librium E� = (S�; I�; R�) if and only if R0 > 1. In particular, the second component of I�

becomes

I� =
K(�r � �) � 2�r(�1 + 
) +

p
K2(�r � �)2 + 4K�r�(�1 + 
)

2�2r(�1 + 
)
> 0:

Applying Theorem 3.1, we obtain the following result:

9
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Corollary 4.3 (Enatsu et al. [2, Corollary 4.3]). Assume R0 > 1. Then the following
statement holds true.

(i) If R0 � R0, then the endemic equilibrium E� of system (4.1) is locally asymptotically stable
for any � � 0.

(ii) If R0 < R0, then the endemic equilibrium E� of system (4.1) is locally asymptotically stable
for 0 � � < �0 and it is unstable for � > �0.

By Corollary 4.3, R0 = 1 is a threshold condition which determines stability of the disease-free
equilibrium and the existence of the endemic equilibrium. Moreover, if R0 > 1 then R0 = R0 is
a threshold condition which determines delay-dependent stability or delay-independent stability
for the endemic equilibrium (see, for details, Enatsu et al. [2, Section 4 and Appendix A]).
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Asymptotic behavior of solutions for free boundary
problems related to an ecological model

dedicated to Professor Hiroki Tanabe on the occasion of his 80th birthday

Yuki Kaneko∗ and Yoshio Yamada†

Department of Pure and Applied Mathematics, Waseda University,
3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555 Japan

1 Introduction

The spreading of invasive or new species has been a main topic in math-
ematical ecology. Many researchers have studied the problem from various
aspects. See, for example Shigesada and Kawasaki [11], for detailed informa-
tion. We consider, in this article, a new mathematical model which has been
proposed by Du and Lin [3]. It is described as a free boundary problem for
diffusive logistic equation:

ut − duxx = u(a − bu), t > 0, 0 < x < h(t),

ux(t, 0) = 0, u(t, h(t)) = 0, t > 0,

h′(t) = −µux(t, h(t)), t > 0,

h(0) = h0, u(0, x) = u0(x), 0 ≤ x ≤ h0,

(1.1)

where µ, h0, d, a and b are given positive numbers. Initial data satisfies
u0 ∈ C2(0, h0), u′

0(0) = u(h0) = 0 and u0(x) > 0 in [0, h0). An unknown
quantity u = u(t, x) is a population density of invasive or new species which
occupies one dimensional region, (0, h(t)). The right-hand side of the habi-
tat x = h(t) is called free boundary which means a spreading front of the
species. Moreover, the dynamical behavior of the free boundary is determined
by Stefan-like condition, h′(t) = −µux(t, h(t)). This implies that spreading
speed of the species is proportional to the population pressure at the free
boundary.

Du and Lin [3] have obtained the existence and uniqueness of global solu-
tions for (1.1) and studied their asymptotic behavior as t → ∞. In particular,
the asymptotic behavior is divided into two cases:

(i) Spreading: lim
t→∞

h(t) = ∞ and lim
t→∞

u(t, x) =
a

b
uniformly in any compact

subset of [0, ∞);

(ii) Vanishing: lim
t→∞

h(t) ≤ π

2

√
d

a
and lim

t→∞
‖u(t, ·)‖C(0,h(t)) = 0.

�e-mail: kaneko.y5oda@toki.waseda.jp
�e-mail: yamada@waseda.jp
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This result is called in [3] the dichotomy theorem, where case (i) implies that
the species success to spread to a new environment, while case (ii) implies that
the species must vanish eventually.

We are concerned with more realistic environments and seek radially sym-
metric solutions of a free boundary problem in higher space dimension. Our
free boundary problem is given by

(FBP)


ut − durr − (N − 1)d

r
ur = uf(u), t > 0, R < r < h(t),

u(t, R) = 0, u(t, h(t)) = 0, t > 0,

h′(t) = −µur(t, h(t)), t > 0,

h(0) = h0, u(0, r) = u0(r), R ≤ r ≤ h0,

where r = |x| (x ∈ RN , N ≥ 1) and µ, h0, d and R are positive constants.
Initial data (u0, h0) satisfies

u0 ∈ C2(R, h0) with u0(R) = u0(h0) = 0 and u0 > 0 in (R, h0).

Moreover, the nonlinear function in the diffusion equation is assumed to satisfy

f ∈ C1(R) and f(u) < 0 for u > 1. (1.2)

Differently from the problem discussed in [3], our problem (FBP) allows more
general nonlinearity in the diffusion equation and has Dirichlet boundary con-
ditions on both fixed and free boundaries. This condition means, from an
ecological view-point, that species inhabit an annular domain {x ∈ RN | R <
|x| < h(t)}, but a region {x ∈ RN | |x| ≤ R} is a hostile environment for the
species.

r

h(t)

R

O

free boundary

fixed boundary

Figure 1. habitat of species
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The main purpose of this paper is as follows:

(i) Present recent results on global existence and asymptotic properties of
solutions for (FBP).

(ii) Find underlying principles to determine spreading or vanishing of species.

(iii) Construct a dichotomy theorem in the radially symmetric case and com-
pare the theorem with that in one-dimensional case.

We have obtained a global existence and uniqueness theorem for (FBP).

Theorem 1.1. The free boundary problem (FBP) has a unique solution (u, h)
satisfying

0 < u(t, r) ≤ C1, 0 < h′(t) ≤ µC2 for t ≥ 0, R < r < h(t),

where C1 and C2 are positive constants depending only on ‖u0‖C(R,h0) and
‖u0‖C1(R,h0), respectively.

By this theorem, we find that the free boundary is strictly increasing with
respect to t; so the limit of h(t) exists and it may be a finite number or equal
to infinity.

We define spreading and vanishing of species under general situations as
follows.

Definition 1.1. Let (u, h) be any solution of (FBP).

(I) Spreading of species is the case when

lim
t→∞

h(t) = ∞ and lim inf
t→∞

‖u(t, ·)‖C(R,h(t)) > 0;

(II) Vanishing of species is the case when

lim
t→∞

‖u(t, ·)‖C(R,h(t)) = 0.

One of sufficient conditions for the spreading property of (FBP) satisfying

lim inf
t→∞

u(t, r) > 0 for R < r < ∞

is given by the following proposition.

Proposition 1.1. Let q be a positive solution of

(IP)

dqrr +
(N − 1)d

r
qr + qf(q) = 0, R < r < l,

q(R) = q(l) = 0

with a positive number l > R. Then, the solution (u, h) of (FBP) with initial
data (q, l) satisfies
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(i) lim
t→∞

h(t) = ∞;

(ii) ut(t, r) ≥ 0 for t > 0, R < r < h(t);

(iii) lim
t→∞

u(t, r) = v∗(r) : uniformly in any compact subset of [R, ∞),

where v∗ is a minimal positive solution of

(SP)

dvrr +
(N − 1)d

r
vr + vf(v) = 0, R < r < ∞,

v(R) = 0

which satisfies v∗(r) ≥ q(r) in [R, l].

The following proposition is a vanishing property.

Proposition 1.2. Let (u, h) be any solution of (FBP). If lim
t→∞

h(t) < ∞, then

lim
t→∞

‖u(t, ·)‖C(R,h(t)) = 0.

We omit here the proofs of Theorem 1.1, Propositions 1.1 and 1.2. The
proofs of the results in one-dimensional case can be found in Kaneko and
Yamada [6], where we have referred to some properties in Tanabe [13] to in-
vestigate the asymptotic behavior of solutions. Note that the results can be
naturally extended to the radially symmetric case.

2 Asymptotic behavior

We assume that the nonlinear function in (FBP) satisfies f ∈ C1(R) and

f(u) > 0 for 0 ≤ u < 1, f(u) < 0 for u > 1, f(1) = 0 and f ′(u) ≤ 0 for u ≥ 0.

It is a kind of nonlinearities satisfying (1.2); so we can obtain global existence
and asymptotic properties of solutions by Theorem 1.1, Propositions 1.1 and
1.2.

2.1 Spreading and vanishing in one-dimensional case

Let N = 1 and R = 0 in (FBP), (IP) and (SP). We replace r with x. Then,
the free boundary problem for a reaction-diffusion equation is given by

(P)


ut − duxx = uf(u), t > 0, 0 < x < h(t),

u(t, 0) = 0, u(t, h(t)) = 0, t > 0,

h′(t) = −µux(t, h(t)), t > 0,

h(0) = h0, u(0, x) = u0(x), 0 ≤ x ≤ h0,
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where µ, h0 and d are positive constants and initial data (u0, h0) satisfies

u0 ∈ C2(0, h0) with u0(0) = u0(h0) = 0 and u0 > 0 in (0, h0).

We present some recent results obtained in Kaneko, Oeda and Yamada
[5]. The following theorem is a dichotomy theorem which means that the
asymptotic behavior of solutions for (P) is divided into two cases.

Theorem 2.1. Let (u, h) be any solution of (P). Then, either (I) or (II) holds
true:

(I) Spreading : lim
t→∞

h(t) = ∞ and lim
t→∞

u(t, x) = v∗(x) uniformly in any

compact subset of [0, ∞), where v∗(x) is a unique positive

solution of (SP);

(II) Vanishing : lim
t→∞

h(t) ≤ π

√
d

f(0)
and lim

t→∞
‖u(t, ·)‖C(0,h(t)) = 0.

We will also show some sufficient conditions for spreading and vanishing.

Theorem 2.2. Let (u, h) be any solution of (P). Then, the following results
hold true:

(i) Suppose h0 ≥ π
√

d/f(0). Then spreading occurs.

(ii) Suppose h0 < π
√

d/f(0).

(a) There exists a positive function w in [0, h0] such that, if u0(x) ≤
w(x) in [0, h0], then vanishing occurs and ‖u(t, ·)‖C(0,h(t)) = O(e−βt)
for some β > 0 as t → ∞.

(b) If ∫ h0

0

xu0(x) dx ≥ d

2µ

( π2d

f(0)
− h2

0

)
max{1, ‖u0‖C(0,h0)},

then spreading occurs.

2.2 Spreading and vanishing in radially symmetric case

First we prepare some results of the elliptic boundary value problem (IP)
and a corresponding eigenvalue problem:

(EP)

dφrr +
(N − 1)d

r
φr + λφ = 0, R < r < l,

φ(R) = φ(l) = 0.

Here l is a given positive number. By Proposition 1.1, when (IP) has a positive
solution q(r; l), one can show that the solution for (FBP) with initial data (q, l)
satisfies spreading property.

59



Proposition 2.1. The following results hold true:

(i) If f(0) > λ1, then (IP) has a unique positive solution q(x);

(ii) If f(0) ≤ λ1, then q ≡ 0 is a unique solution of (IP),

where λ1 = λ1(R, d, l) is the least eigenvalue of (EP).

Regard λ1(R, d, l) as a function of l. It is well known that λ1(R, d, l) is
continuous and decreasing with respect to l. Hence

lim
l→R+0

λ1(l) = +∞ and lim
l→+∞

λ1(l) = 0.

It follows that, for any given R, d and f , there exists a positive number
R∗ = R∗(R, d, f(0)) such that

f(0) = λ1(R
∗) and f(0) > λ1(l) for l > R∗.

For example, in one-dimensional case, R∗(R, d, f(0)) is given by π
√

d/f(0)+R.
This number R∗ plays an important role to study the asymptotic behavior of
solutions. In particular, Proposition 2.1 is rewritten to a more convenient style
(c.f. Cantrell and Cosner [1]).

Proposition 2.2. The following results hold true:

(i) If l > R∗, then (IP) has a unique positive solution q(x);

(ii) If l ≤ R∗, then q ≡ 0 is a unique solution of (IP).

The following result is a dichotomy theorem for (FBP).

Theorem 2.3. Let (u, h) be any solution of (FBP). Then, either (I) or (II)
holds true:

(I) Spreading : lim
t→∞

h(t) = ∞ and lim
t→∞

u(t, r) = v∗(r) uniformly in any

compact subset of [R, ∞), where v∗(r) is a unique positive

solution of (SP);

(II) Vanishing : lim
t→∞

h(t) ≤ R∗ and lim
t→∞

‖u(t, ·)‖C(R,h(t)) = 0.

The following theorem gives some sufficient conditions for spreading and
vanishing.

Theorem 2.4. Let (u, h) be any solution of (FBP).

(i) Suppose h0 ≥ R∗. Then spreading occurs.

(ii) Suppose h0 < R∗. Then there exists a positive function w in [R, h0] such
that, if 0 ≤ u0(r) ≤ w(r) in [R, h0], then vanishing occurs. Moreover, it
holds that ‖u(t, ·)‖C[R,h(t)] = O(e−βt) for some β > 0 as t → ∞.
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2.3 Proofs of main results

We will prove Theorem 2.3. The proof will be accomplished by using
Propositions 2.3 and 2.4.

Proposition 2.3. Let (u, h) be any solution of (FBP). If lim
t→∞

h(t) < ∞, then

lim
t→∞

h(t) ≤ R∗ and lim
t→∞

‖u(t, ·)‖C(R,h(t)) = 0.

Proof. Proposition 1.2 shows that, if lim
t→∞

h(t) < ∞, then

lim
t→∞

‖u(t, ·)‖C(R,h(t)) = 0. (2.1)

Hence, it suffices to prove lim
t→∞

h(t) ≤ R∗. Otherwise, there exists T > 0 such

that h(T ) > R∗. Take l = h(T ) and let w = w(t, r) be the solution of the
problem: 

wt − dwrr − (N − 1)d

r
wr = wf(w), t > 0, R < r < l,

w(t, R) = 0, w(t, l) = 0, t > 0,

w(T, r) = u(T, r), R < r < l.

Then, the comparison principle (see Protter and Weinberger [9] or Smoller
[12]) shows

u(t, r) ≥ w(t, r) for t ≥ T, R < r < l.

Moreover, it holds that lim
t→∞

w(t, r) = q(r) for R < r < l, where q(r) is a

positive solution of (IP). Hence

lim inf
t→∞

u(t, r) ≥ q(r) > 0 for R < r < l.

This contradicts (2.1) and the free boundary must satisfy lim
t→∞

h(t) ≤ R∗. �

Proposition 2.4. Let (u, h) be any solution of (FBP). If lim
t→∞

h(t) = ∞, then

lim
t→∞

u(t, r) = v∗(r) uniformly in any compact subset of [R, ∞),

where v∗(r) is a unique solution of (SP).

Proof. We will first construct a suitable upper solution for the free boundary
problem. Define M = max{1, ‖u0‖C(R,h0)}. Let u(t, r) be the solution of

ut − durr − (N − 1)d

r
ur = uf(u), t > 0, r > R,

u(t, R) = 0, t > 0,

u(0, r) = M, r > R.
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Then, v ≡ M is regarded as an upper solution of (SP). Hence u(t, ·) is decreas-
ing and satisfies lim

t→∞
u(t, r) = v∗(r) uniformly in any compact subset of [R, ∞)

(see Sattinger [10]). Note that u0(r) ≤ M in [R, h0]. Then, the comparison
principle proves

u(t, r) ≤ u(t, r) for t > 0, R < r < h(t).

Letting t → ∞ implies

lim sup
t→∞

u(t, r) ≤ lim
t→∞

u(t, r) = v∗(r) for R < r < ∞.

On the other hand, for any positive number l > R∗, one can take T > 0 such
that h(T ) = l. In the same way of the proof of Proposition 2.3, we obtain

lim inf
t→∞

u(t, r) ≥ q(r; l) for R < r < l.

Moreover, we get

lim
l→∞

q(r; l) = v∗(r) for R < r < ∞.

Hence,
lim inf

t→∞
u(t, r) ≥ v∗(r) for R < r < l.

As a result, it holds that

lim
t→∞

u(t, r) = v∗(r) uniformly in any compact subset of (R, ∞).

The proof is complete. �

3 Concluding remarks

Spreading and vanishing for the asymptotic behavior of solutions are char-
acteristic of this free boundary model. A Similar dichotomy theorem also
holds true for free boundary problems with other nonlinear terms like bistable
nonlinearities which satisfy

f(u) < 0 for 0 ≤ u < c and u > 1, f(u) > 0 for c < u < 1,

f(c) = f(1) = 0, f ′(c) > 0 and f ′(1) < 0 with

∫ 1

0

uf(u) du > 0.

Kaneko, Oeda and Yamada [5] have proved that, in this free boundary model,

• the population vanishes, that is,

lim
t→∞

‖u(t, ·)‖C(0,h(t)) = 0

if and only if lim
t→∞

h(t) < ∞.
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Turing’s instability and pattern transitions
in a nonlinear di�erential equation

Hiroko Okochi�

Abstract

Motivated to study the pattern formations of solutions’ level sets, which are
seen in many nonlinear reaction-di�usion equations from chemistry, physics, biol-
ogy, etc, we research necessary or su�cient conditions on the equation

du=dt 2 �@’(u(t)) + g1; t > 0;

for Turing’s instability, aftere�ects of a kind of momentary decomposition, or tran-
sitions of level set patterns. Here@’ denotes a subdi�erential operator de�ned in
a real Hilbert spaceH and g1 2 H .

It is shown that for pattern transitions the relation g1 2 R(@’) is necessary,
while to get Turing’s instability the relation g1 =2 R(@’) is needed. Ifg1 2 R(@’)n
R(@’) and ’ satis�es’ (rx ) = jr jp’ (x) for some p > 1, then the solutions behave
in aftere�ects of the momentary decomposition and show pattern transitions.

Key Words: pattern formation, reaction-di�usion equation, Turing’s instability,
asymptotic behavior of solutions, subdi�erential operator.

1 Introduction

This paper’s motive is to research essential or su�cient conditions on the reaction-
di�usion equations of the form

@u

@t
(x; t) = 4u + f(u; v; �);

@v

@t
(x; t) = "4v + g(u; v; �); (1:1)

or
@u

@t
(x; t) = 4u(x; t) + f(u(x; t); x) (1:2)

for the pattern formations of level sets of the solution u, which are seen in many situations
of physics, chemistry, biology etc.

�Tokyo University of Pharmacy and Life Science, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392,
Japan. E-mail: okochi@toyaku.ac.jp
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In many cases, solution v(x; t) of (1.1) converges to some v1(x) as t ! 1. Putting
f1(u; x) = f(u; v1(x); �) implies the single equation (1.2) with f = f1. Hence, in this
paper, we are concerned with only (1.2).

Solution u of the form of (1.1) or (1.2) many times satis�es the following properties.

(P1) (instability) u(:; t) grows up as t ! 1.

(P2) (asymptotic disappearance of movement) (@=@t)u(:; t) decreases and vanishes to
0 as t ! 1.

(P3) (pattern transitions) There is a sequence ftig � (0; 1) such that for each
i 6= j, the patterns of level sets of u(:; ti) and u(:; tj) are enough di�erent from
each other. Hence, in the case where u(:; ti) 2 L2(
), there is � > 0 such that
j(u(:; ti); u(:; tj))j � (1 � �)ku(:; ti)kku(:; tj)k holds for i 6= j.

Although (P1) means the instability of u, the both term 4 and f of (1.2) often satisfy
the stability as below:

Every solution v(x; t) of
@v

@t
= 4v converges to 0 as t ! 1.

Every solution w(x; t) of
@w

@t
= f(w; x) converges to some w1(x) as t ! 1.

To research necessary or su�cient conditions for the properties (P1)-(P3), we put
~u(x; t) = u(x; t) � w1(x). Then, by (1.2),

@~u

@t
(x; t) = 4~u(x; t) + f(~u + w1; x) + 4w1(x); (x; t) 2 
 � [0; 1): (1:3)

In this paper, we consider (1.3) to be an ordinary di�erential equation in L2(
) or in
a real Hilbert space H. Under the condition that f(:; x) is nondecreasing for each x, it
is usually possible to put �@’(~u) in stead of 4~u + f(~u + w1; :) in (1.3). We also take
g1 2 H in stead of 4w1. Hence

d~u

dt
(t) 2 �@’(~u(t)) + g1; t 2 [0; 1): (1:4)

Here @’ denotes a subdi�erential operator de�ned in H.
We show the following.

(a) Any solution ~u of (1.4) satis�es (P1), more precisely k~u(t)k ! 1 as t ! 1, if
and only if g1 =2 R(@’). Thus, the relation �w1 =2 R(�� � �f(� + w1)) seems essential
for solutions of (1.3) to satisfy (P1).

(b) If a solution ~u of (1.4) satis�es (P3), then ~u needs to satisfy (P2).
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(c) A solution of (1.4) satis�es (P2) if and only if g1 2 R(@’). This suggests that
the relation �w1 2 R(�� � �f(� + w1)) is close to a essential condition for solutions
of (1.3) to ful�ll (P2).

(d) For all solutions of (1.4) one gets (P3) together with (P1), (P2) under the condi-
tions that g1 2 R(@’) n R(@’) and ’(rx) = jrjp’(x); r 2 R. Hence, the combination
of these conditions seems close to a su�cient condition for solutions of (1.3) to satisfy
all of (P1)-(P3).

2 Results

Let H be a real Hilbert space with norm k:k and inner product (:; :), and ’ : H !
(�1; 1] be a proper lower semi continuous (l.s.c.) convex functional. The set D(’) �
fv 2 H : ’(v) < 1g is called the e�ective domain of ’. The subdi�erential operator @’
of ’ is de�ned as below:

@’(v) = ff 2 H : ’(w) � ’(v) + (f; w � v); 8w 2 D(’)g ;

D(@’) = fv 2 D(’) : @’(v) 6= �g :

Under the assumption that ’ is a proper l.s.c convex functional, @’ is known to be a
maximal monotone operator de�ned in H. (e.g., [3], [4])

Let g1 2 H. We research the asymptotic behaviors of solutions of

d

dt
u(t) 2 �@’(u(t)) + g1; t � 0: (2:1)

Here u(:) is called a solution of (2.1) if and only if u(:) belongs to W 1;2
loc ((0; 1) : H) and

satis�es the relation (2.1) for almost all t > 0. For each u0 2 D(@’), there is an unique
solution u 2 W 1;2

loc ((0; 1) : H) \ C ([0; 1) : H) of (2.1) satisfying u(0) = u0.
It is known that each solution of (2.1) satis�es the equation

d+

dt
u(t) = �(@’(u(t)) � g1)0; 8t > 0;

where (@’(x) � g1)0 denotes the minimum norm point of @’(x) � g1, that is, (@’(x) �
g1)0 2 @’(x) � g1 and k(@’(x) � g1)0k = minfkyk : y 2 @’(x) � g1g. (e.g., [3], [4])

In the following, u0(t) denotes (d+=dt)u(t).

Proposition 2.1 For arbitrary ftng with 0 = t0 < t1 < � � � < tn < � � �, let fUng be the
approximate solution of (2.1) such that

U 0
n 2 �@’(Un) + g1, U 0

n =
Un � Un�1

�tn

; �tn = tn � tn�1. (2.2)
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Then, one has

kU 0
n+1k �

 
U 0

n+1

kU 0
n+1k

;
U 0

n

kU 0
nk

!
kU 0

nk. (2.3)

Corollary 2.1 For any solution u of (2.1), ku0(t)k is nonincreasing.

Remark 2.1 The result of Corollary 2.1 is well known by other proofs.

Estimate (2.3) in Proposition 2.1 means that the speed kU 0
n+1k has to be smaller than

the speed kU 0
nk so much as the directions of U 0

n+1=kU 0
n+1k and U 0

n=kU 0
nk are di�erent from

each other. This suggests that if a solution u of (2.1) satis�es (P3) in Section 1, then
ku0(t)k converges to 0, or, (P2) holds. We will see that this expectation is true by
Corollary 2.3 in below.

Our �rst theorem below shows essential conditions on g1 for the asymptotic behaviors
(P1), (P2).

Theorem 2.1 Let u be an arbitrary solution of (2.1).

(i) If g1 2 R(@’), then the orbit [t>0u(t) is bounded, the value ’(u(t)) � (g1; u(t))
converges to minHf’(:) � (g1; :)g, ku0(t)k # 0, and u(t) converges weakly to a point of
(@’)�1(g1) as t ! 1.

(ii) Let g1 =2 R(@’). Then, limt!1 ku(t)k = 1 and the following hold.

(ii-1) In case of g1 2 R(@’) n R(@’), ku0(t)k # 0 as t ! 1.

(ii-2) If g1 =2 R(@’), then ku0(t) � hk ! 0 as t ! 1, where h = (I � ProjR(@’)) g1.

Corollary 2.2 For each solution u of (2.1), u0(t) converges strongly to (I �ProjR(@’))g1
as t ! 1.

Corollary 2.1 impleis that u(t)=t converges strongly to (I � ProjR(@’))g1 as t ! 1.

Thus, if (I �ProjR(@’))g1 = h 6= 0, then u(t)=ku(t)k converges strongly to h=khk. This

means that the level sets patterns of u(t) converges that of h as t ! 1, or, u does not
satisfy (P3). Hence, we have the following Corollary.

Corollary 2.3 Suppose that a solution of (2.1) satis�es (P3). Then, g1 2 D(@’) holds
and (P2) satis�ed for all solutions of (2.1).

Remark 2.2 Assertion (i) of Theorem 2.1 is a simple application of well known results.
(e.g., [5],[8])

Remark 2.3 To get g1 62 R(@’), @’ needs to be not coercive. In fact, @’ is coercive
if and only if R(@’) = H.
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We see by Theorem 2.1 that an arbitrary solution u satis�es the instability (P1),
more precisely ku(t)k ! 1 as t ! 1, if and only if g1 =2 R(@’).

One might wish that solutions satisfy all of (P1)-(P3) in every case of g1 2 R(@’) n
R(@’). However, some additional condition to g1 2 R(@’) n R(@’) is needed for (P3).
In fact, there is an example as below.

Example Fix any z 2 H n f0g and put

’(x) =
1

(x; z)
; D(’) = fx : (x; z) > 0g:

Then, since R(@’) = frz; r < 0g, one has (i) 0 2 R(@’) n R(@’); and (ii) every solution
u of (2.1) with g1 = 0 is described as u(t) = u(0)+�(t)z satisfying �(t) ! 1 as t ! 1,
hence u(t)=ku(t)k ! z=kzk. Thus u does not satisfy (P3).

To get the pattern transitions (P3) for each solution u of (2.1), we suppose that, for
some p > 1, ’ satis�es

’(rx) = jrjp’(x); r 2 R; x 2 D(’). (2.4)

One notes that, in general, the convexity of ’ implies p � 1. If p = 1, then R(@’) is
closed, or R(@’) n R(@’) is empty.

Fixing any t > 0 and f 2 @’(u(t)) and putting PL(t;f) = ProjL(t;f), L(t; f) = f�f :
� 2 Rg, we consider the decomposition

�@’(�) + g1 = f�@’(�) + PL(t;f)g1g + (I � PL(t;f))g1. (2.5)

Here (I � PL(t;f))g1 is orthogonal to �p�1f 2 @’(�u(t)); 8� 2 R.

In the case where g1 2 R(@’) and f = �u0(t) + g1 2 @’(u(t)), one sees by
Theorem 2.1 that k(I � PL(t;f))g1k � kg1 � fk = ku0(t)k # 0.

Let �0 = �0(f) be such that

PL(t;f)g1 2 @’(�0u(t)). (2.6)

Then, �0u(t) is a stable �xed point of the �rst term �@’(�) + PL(t;f)g1 in (2.5).

Theorem 2.2 (aftere�ects of decompositions (2.5)) Suppose that ’ satis�es (2.4) for
some p > 1. Then, for each t > 0 and f 2 @’(u(t)),

��(((I � PL(t;f))g1; u(�) � u(t)))

�
 

f

kfk
; u(�) � u(t)

!
� �(((I � PL(t;f))g1; u(�) � u(t))); � > t,

where �; � are continuous functions satisfying

�(�) � �

kf � PL(t;f)g1k
; 8� > 0, �(�) � (a0 + �)1=2, � is not large,

�(�) � b0�1=p, �(�) � b0�1=p, � � 1.
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In the case where ’ satis�es (2.4) and g1 2 R(@’) n R(@’), Theorem 2.2 means
that u(�) � u(t) is almost orthogonal to every f 2 @’(u(t)) if � � t such that ku(�)k is
su�ciently large. On the other hand, for f = �u0(t) + g1 2 @’(u(t)), (ii-1) of Theorem
2.1 implies ku0(t)k = kf � g1k # 0. Thus, every solution u of (2.1) has the following
property;

(A) u(�) � u(t) (� u(�)), 8� � 8t � 1, is almost orthogonal to g1.

Here one notes g1 6= 0, since g1 62 R(@’) and 0 2 @’(0) � R(@’) by (2.4).
This property (A) is very di�erent from the case where @’ � 0, because each solution

v of (2.1) with @’ � 0 satis�es

(B) v0(�) = g1; 8� > 0.

In the following theorem, we assume a generalized condition of (2.4) on ’ and get all
of (P1)-(P3) for every solution of (2.1).

Theorem 2.3 (pattern transitions) Suppose that g1 2 R(@’) n R(@’) and that, for all
z 2 D(’) with kzk = 1, ’ satis�es either (i) or (ii) as below.

(i) 9"z > 0; 9Rz > 0; 9kz : [Rz; 1) ! (0; 1) satisfying limr!1 kz(r)=r = 1 and
’(ry) � kz(r)’(Rzy) > 0; 8r � Rz; 8y 2 fkyk = 1; ky � zk < "zg.

(ii) ’(rz) = 0; 8r 2 R.

Here infH ’ = 0 is assumed without loss of generality.

Then, for any solution u(t) of (2.1), the omega limit set of u(t)=ku(t)k is empty. Con-
sequently, there are fTig with Ti " 1 and � > 0 such that

(u(Ti); u(Tj)) < (1 � �)ku(Tj)kku(Ti)k; i 6= j.

Example The following ’ satis�es the condition (i) of Theorem 2.3 with Rz = 1 and
kz(r) = rminfp;qg for each z.

’(v) =
Z



a(x)jrv(x)jpdx +

Z



b(x)jv(x)jqdx; where a(x); b(x) � 0; p; q > 1.

To end this talk, we consider the cases of g1 2 R(@’). As is mentioned in (i) of
Theorem 2.1, any solution of (2.1) converges weakly to a point of (@’)�1(g1) as t ! 1
if and only if g1 2 R(@’). Concerning this fact, J. B. Billon [1] gives an abstract
example of ’ on ‘2 which satis�es (i) 0 2 R(@’), and (ii) a solution u of (2.1) with
g1 = 0 converges weakly to 0 2 ‘2 but does not converge strongly, thus, for each t > 0,
lim�!1(u(�); u(t)) = 0 and inft ku(t)k > 0. Hence this solution u satis�es (P3) together
with (P2) but (P1). However, it seems that no concrete di�erential equation of the
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form (2.1) is known to have solutions satisfying such asymptotic weak and not strong
convergence.
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1 Introduction

Let H and V be real Hilbert spaces such that V is a dense subspace in H. Let U be
a Banach space of control variables. In this paper, we are concerned with the global
existence of solution and the approximate controllability for the following abstract neutral
functional di�erential system in a Hilbert space H:(

d
dt [(x(t) + (Bx)(t)] = Ax(t) + f(t; x(t)) + (Cu)(t); t 2 (0; T ];

x(0) = x0; (Bx)(0) = y0;
(1.1)

where A is an operator associated with a sesquilinear form on V � V satisfying G�arding’s
inequality, f is a nonlinear mapping of [0; T ]�V into H satisfying the local Lipschitz con-
tinuity, B : L2(0; T ;V ) ! L2(0; T ;H) and C : L2(0; T ;U) ! L2(0; T ;H) are appropriate
bounded linear mapping.

Recently, the existence of solutions for mild solutions for neutral di�erential equations
with state-dependence delay has been recently studied in the literature in [1] and references
therein. As for partial neutral integro-di�erential equations, we refer to [2]. However
there are few papers treating the regularity and controllability for the systems with local
Lipschipz continuity, we can just �nd a recent article Wang [3] in case semilinear systems.

In thia paper, we construct some results on the regularity of solutions and the approxi-
mate controllability for neutral functional di�erential equations with unbounded principal
operators in Hilbert spaces. In order to establish the controllability of the neutral equa-
tions, we �rst consider the existence and regularity of solutions of the neutral control
system by using fractional power of operators and the local Lipschtiz continuity of non-
linear term. Our purpose is to obtain the existence of solutions and the approximate
controllability for neutral functional di�erential control systems without using many of
the strong restrictions considering in the previous literature.

1
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2 preliminaries

If H is identi�ed with its dual space we may write V � H � V � densely and the corre-
sponding injections are continuous. The norm on V , H and V � will be denoted by jj � jj,
j � j and jj � jj�, respectively. For brevity, we may regard that

jjujj� � juj � jjujj; 8u 2 V: (2.1)

Let a(�; �) be a bounded sesquilinear form de�ned in V � V and satisfying G�arding’s
inequality

Re a(u; u) � �jjujj2; � > 0: (2.2)

Let A be the operator associated with this sesquilinear form: (Au; v) = a(u; v) for any
u; v 2 V: Then A is a bounded linear operator from V to V � by the Lax-Milgram Theorem.
The realization of A in H which is the restriction of A to D(A) = fu 2 V : Au 2 Hg is
also denoted by A. From (2.2) we may think that there exists a constant C0 > 0 such that

jjujj � C0jjujj1=2
D(A)juj

1=2: (2.3)

Thus we have the following sequence:

D(A) � V � H � V � � D(A)�; (2.4)

where each space is dense in the next one and continuous injection.

Lemma 2.1. With the notations (2.3), (2.4), we have

(V; V �)1=2;2 = H; (D(A); H)1=2;2 = V;

where (V; V �)1=2;2 denotes the real interpolation space between V and V �(Section 1.3.3 of
[6]).

It is also well known that A generates an analytic semigroup S(t) in both H and V �.
By virtue of (2.2), we have that 0 2 �(A) the closed half plane f� : Re� � 0g is contained
in the resolvent set of A. In this case, we can de�ne the fractional power A�(� > 0) of A
and collect some simple properties of the fractional power of A.

Lemma 2.2. (a) A� is a closed operator with its domain dense.
(b) If 0 < � < �, then D(A�) � D(A�).
(c) For any T > 0, there exists a posive constant C� such that the following inequalities
hold for all t > 0( [7, Lemma 3.6.2]):

jjA�S(t)jjL(H) �
C�
t�
; jjA�S(t)jjL(V;H) �

C�

t3�=2
: (2.5)

Let the solution spaces W(T ) and W1(T ) of strong solutions be de�ned by

W(T ) = L2(0; T ;D(A)) \W 1;2(0; T ;H); W1(T ) = L2(0; T ;V ) \W 1;2(0; T ;V �):

Here, we note that by using interpolation theory, there exists a constant M1 > 0 such that

jjxjjC([0;T ];V ) �M1jjxjjW(T ); jjxjjC([0;T ];H) �M1jjxjjW1(T ): (2.6)

By a simple calculation, we obtain the following.
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Lemma 2.3. For every k 2 L2(0; T ;H), let x(t) =
R t

0 S(t� s)k(s)ds for 0 � t � T . Then
there exists a constant C2 such that such that

jjxjjL2(0;T ;V ) � C2

p
T jjkjjL2(0;T ;H): (2.7)

3 Neutral di�erential equations

Consider the following abstract neutral functional di�erential system:(
d
dt [(x(t) + (Bx)(t)] = Ax(t) + f(t; x(t)) + k(t); t 2 (0; T ];

x(0) = x0; (Bx)(0) = y0:
(3.1)

Then we will show that the initial value problem (3.1) has a solution by solving the integral
equation:

x(t) = S(t)[x0 + y0]� (Bx)(t) +

Z t

0
AS(t� s)Bx(s)ds+

Z t

0
S(t� s)ff(s; x(s)) + k(s)gds:

(3.2)
Now we give the basic assumptions on the system (3.1)
Assumption (B). Let B : L2(0; T ;V ) ! L2(0; T ;H) be a bounded linear mapping

such that there exists constants � > 2=3 and L > 0 such that

jjA�BxjjL2(0;T ;H) � LjjxjjL2(0;T ;V ); 8x 2 L2(0; T ;V ):

Assumption (F). f is a nonlinear mapping of [0; T ]�V into H satisfying following:

(i) There exists a function L1 : R+ ! R such that for jjxjj � r and jjyjj � r,

jf(t; x)� f(t; y)j � L1(r)jjx� yjj; t 2 [0; T ]:

(ii) The inequality
jf(t; x)j � L1(r)(jjxjj+ 1)

holds For every t 2 [0; T ] and x 2 V .

Let us rewrite (Fx)(t) = f(t; x(t)) for each x 2 L2(0; T ;V ). From now on, we establish
the following results on the solvability of the equation (3.1).

Theorem 3.1. Let Assumptions (B) and (F) be satis�ed. Assume that x0 2 H, k 2
L2(0; T ;V �) for T > 0. Then, there exists a solution x of the equation (3.1) such that

x 2 W1(T ) � L2(0; T ;V ) \W 1;2(0; T ;V �) � C([0; T ];H):

Moreover, there is a constant C3 independent of x0 and the forcing term k such that

jjxjjW1(T ) � C3(1 + jx0j+ jjkjjL2(0;T ;V �)): (3.3)

One of the main useful tools is the following Sadvoskii’s �xed point theorem.
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Lemma 3.1. Suppose that � is a closed convex subset of a Banach space X. Assume that
K1 and K2 are mappings from � into X such that the following conditions are satis�ed:
(i) (K1 +K2)(�) � �,
(ii) K1 is a completely continuous mapping,
(iii) K2 is a contraction mapping.
Then the operator K1 +K2 has a �xed point in �.

Proof of Theorem.
Let r0 = 2(C1jx0 + y0j+ r0M0L), where C1 is constant satisfying

jjxjjW(T ) � C1(jjx0jj+ jjkjjL2(0;T ;H)): (3.4)

Let 
 = maxf1=2; (3� � 2)1=2g, choose 0 < T1 < T such that

T 
1
�
fC2L1(r0)(r0 + 1) +C2jjkjjL2(0;T1;V )g+ (3� � 2)�1=2r0LC1��

�
� C1jx0 + y0j+ r0M0L;

(3.5)
where C2 is constant in (2.7) and

M̂ � T 
1
�
C2L1(r0) + (3� � 2)�1=2C1��L

	
< 1: (3.6)

De�ne a mapping J : L2(0; T1;V )! L2(0; T1;V ) as

(Jx)(t) =S(t)(x0 + y0)� (Bx)(t)

+

Z t

0
AS(t� s)(Bx)(s)ds+

Z t

0
S(t� s)ff(s; x(s)) + k(s)gds:

It will be shown that the operator J has a �xed point in the space L2(0; T1;V ). By
assumptions (B) and (F), it is easily seen that J is continuous from C([0; T1];H) into
itself. Let

� = fx 2 L2(0; T1;V ) : jjxjjL2(0;T1;V ) � r0; x(0) = x0g;

which is a bounded closed subset of L2(0; T1;V ). By (2.5), (2.6) and Assumption (B) we
have

jjBxjjL2(0;T1;V ) � jjA��jjL(H;V )jjA�BxjjL2(0;T1;H) � r0M0L: (3.7)

By virtue of (2.7), for 0 < t < T1, it holds

jj
Z t

0
S(t� s)ff(s; x(s)) + k(s)gdsjjL2(0;T1;V ) � C2

p
T1jjFx+ kjjL2(0;T1;H) (3.8)

� C2

p
T1fL1(r0)(r0 + 1) + jjkjjL2(0;T1;V )g:

Since (2.5) and Assumption (F) the following inequality holds:

jjAS(t� s)Bx(s)jj = jjA1��S(t� s)A�Bx(s)jj �
C1��

(t� s)3(1��)=2
r0L;

there holds

jj
Z t

0
AS(t� s)Bx(s)dsjjL2(0;T1;V ) � (3� � 2)�1=2r0LC1��T

p
3��2

1 : (3.9)
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Therefore, from (3.4), (3.6)-(3.9) it follows that

jjJxjjL2(0;T1;V ) � C1jx0 + y0j+ r0M0L

+ T 
1
�
fC2L1(r0)(r0 + 1) + C2jjkjjL2(0;T1;V )g+ (3� � 2)�1=2r0LC1��

�
� r0;

and hence J maps � into �. De�ne mapping J = K1 +K2 on L2(0; T1;V ) by the formula

(K1x)(t) = �(Bx)(t)

(K2x)(t) = S(t)(x0 + y0) +

Z t

0
AS(t� s)(Bx)(s)ds+

Z t

0
S(t� s)ff(s; x(s)) + k(s)gds:

We can now employ Lemma 3.1 with �. Assume that a sequence fxng of L2(0; T1;V )
converges weakly to an element x1 2 L2(0; T1;V ), i.e., w � limn!1 xn = x1. Then we
will show that

lim
n!1

jjK1xn �K1x1jj = 0; (3.10)

which is equivalent to the completely continuity of K1 since L2(0; T1;V ) is re
exive. For a
�xed t 2 [0; T1], let x�t (x) = (K1x)(t) for every x 2 L2(0; T1;V ). Then x�t 2 L2(0; T1;V �)
and we have limn!1 x

�
t (xn) = x�t (x1) since w � limn!1 xn = x1. Hence,

lim
n!1

(K1xn)(t) = (K1x1)(t); t 2 [0; T1]:

By (2.5), (2.6) and Assumption (B) we have jj(K1x)(t)jj � jjA��jjL(H;V )jjA�BxjjL2(0;T1;H) �
1: Therefore, by Lebesgue’s dominated convergence theorem it holds limn!1 jjK1xnjjL2(0;T1;V ) =
jjK1x1jjL2(0;T1;V ). Since L2(0; T1;V ) is a Hilbert space, it holds (3.10).

Next, we prove that K2 is a contraction mapping on �. Indeed, for every x1 and
x2 2 �, by similar to (3.9) and (3.10), we have

jjK2x1 �K2x2jjL2(0;T1;V ) � T


1

�
C2L1(r0) + (3� � 2)�1=2C1��L

	
jjx1 � x2jjL2(0;T1;V ):

So by virtue of the condition (3.6) the contraction mapping principle gives that the solution
of (3.1) exists uniquely in [0; T1]. So by virtue of the condition (3.6), K2 is contractive.
Thus, Lemma 3.1 gives that the equation of (3.1) has a solution in W1(T1).

From now on we establish a variation of constant formula (3.3) of solution of (3.1).
Let x be a solution of (3.1) and x0 2 H. Then we have that from (3.7)-(3.10) it follows
that

jjxjjL2(0;T1;V ) � C1jx0 + y0j+ r0M0L+ T 
1
�
fC2L1(r0)(jjxjjL2(0;T1;V �) + 1)

+ C2jjkjjL2(0;T1;V �)g+ (3� � 2)�1=2C1��LjjxjjL2(0;T1;V )

�
Taking into account (3.6), there exists a constant C3 such that

jjxjjL2(0;T1;V ) � (1� M̂)�1
�
C1jx0 + y0j+ r0M0L

+ T 
1 fC2L1(r0) + C2jjkjjL2(0;T1;V �)g
�
� C3(1 + jx0j+ jjkjjL2(0;T1;V �))
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which obtain the inequality (3.3). Since the conditions (3.5) and (3.6) are independent of
initial value and by (2.6)

jx(T1)j � jjxjjC([0;T1;H]) �M1jjxjjW1(T );

by repeating the above process, the solution can be extended to the interval [0; T ]. �
From the following result, we obtain that the solution mapping is continuous, which is

useful for physical applications of the given equation. The proof is immediately obtained
from Theorem 3.1.

Theorem 3.2. Let Assumptions (B) and (F) be satis�ed and (x0; y0; k) 2 H � H �
L2(0; T ;V �). Then the solution x of the equation (3.1) belongs to x 2 W1(T ) � L2(0; T ;V )\
W 1;2(0; T ;V �) and the mapping

H �H � L2(0; T ;V �) 3 (x0; y0; k) 7! x 2 W1(T )

is continuous.

For k 2 L2(0; T ;V �) let xk be the solution of equation (3.1) with k instead of Bu.
Here, we remark that if V is compactly embedded in H by assumption, the embedding
W1(T ) � L2(0; T ;H) is compact in view of Theorem 2 of Aubin [9]. So we can prove the
following result from Theorem 3.1.

Theorem 3.3. Let us assume that the embedding V � H is compact. For k 2 L2(0; T ;V �)
let xk be the solution of equation (3.1). Then the mapping k 7! xk is compact from
L2(0; T ;V �) to L2(0; T ;H). Moreover, if we de�ne the operator F by F(k) = f(�; xk);
then F is also a compact mapping from L2(0; T ;V �) to L2(0; T ;H).

4 Approximate Controllability

4.1 Newtral control systems

In this section, we show that the controllability of the corresponding linear equation is
extended to the nonlinear di�erential equation. Let U be a Banach space of control
variables. Here C is a linear bounded operator from L2(0; T ;U) to L2(0; T ;H), which is
called a controller. For x 2 L2(0; T ;H) we set

(Bx)(t) =

Z t

0
N(t� s)x(s)ds;

where N : [0;1) ! L(H;V ) is strongly continuous. Then it is immediately seen that
Bx 2 C([0; T ];V ) and hence AS(s)(Bx)(s) = AS(s)(Bx)(s) for 0 � s � T because
D(A) = V . Since t ! N(t) is strong continuous, by the uniform boundedness principle
there exists a constant MN such that for any T > 0,

sup
t2[0;T ]

jjAN(t)jjL(H;V �) �MN : (4.1)
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Let x(T ;B; f; u) be a state value of the system (1.1) at time T corresponding to the
operator B, the nonlinear term f and the control u. We note that S(�) is the analytic
semigroup generated by �A. In view of Theorem 4.1,

jjx(�;B; f; u)jjW1(T ) � C3(jx0j+ jjCjjL(U;H)jjujjL2(0;T ;U)): (4.3)

We de�ne the reachable sets for the system (1.1) as follows:

R(T ) = fx(T ;B; f; u) : u 2 L2(0; T ;U)g; L(T ) = fx(T ; 0; 0; u) : u 2 L2(0; T ;U)g:
De�nition 4.1. The system (1.1) is said to be approximately controllable on [0; T ] if for
every desired �nal state zT 2 H and � > 0 there exists a control function u 2 L2(0; T ;U)
such that the solution x(T ;B; f; u) of (1.1) satis�es jx(T ; f; u)� zT j < �, that is, RT (f) =
H where R(T ) is the closure of R(T ) in H.

We de�ne the linear operator Ŝ from L2(0; T ;H) to H by

Ŝp =

Z T

0
S(T � s)p(s)ds; 8p 2 L2(0; T ;H)

We need the following hypothesis:
Assumption (S). (i) For any " > 0 and p 2 L2(0; T ;H) there exists a u 2 L2(0; T ;U)

such that
jŜp� ŜCuj < "; jjCujjL2(0;t;H) � q1jjpjjL2(0;t;H); 0 � t � T:

where q1 is a constant independent of p.
(ii) f is a nonlinear mapping of [0; T ]�H into H satisfying following:
There exists a function L1 : R+ ! R such that

jf(t; x)� f(t; y)j � L1(r)jx� yj; t 2 [0; T ]

hold for jxj � r and jyj � r.
By virtue of the condition (i) of Assumption (S) we note that AS(t � s)Bx = S(t �

s)ABx for each x 2 V . Therefore, the system (1.1) is approximately controllable on [0; T ]
if for any " > 0 and zT 2 H there exists a control u 2 L2(0; T ;U) such that

jjS(T )(x0 + y0)� (Bx)(T ) + ŜfABx+ Fx+ Cug)� zT jj < ";

where (Fx)(t) = f(t; x(t)) for t � 0. Throughout this section, Invoking (4.3), we can
choose a constant r1 such that

r1 > C3(jx0j+ jjCjjL(U;H)jjujjL2(0;T ;U)): (4.4)

The proof of the following lemma is obtained by using Gronwall’s inequality,.

Lemma 4.1. Let u1 and u2 be in L2(0; T ;U). Then under the assumption (S), we have
that for 0 � t � T ,

jx(t;B; f; u1)� x(t;B; f; u2)j �MeM2
p
tjjCu1 � Cu2jjL2(0;T ;H);

where M2 = eM(MNT+L1(r1))

Thanks to Lemma 4.1, the following theorem is obtained from [10, Theorem 4.1].

Theorem 4.1. Under the assumptions (S), the system (1.1) is approximately controllable
on [0; T ].
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4.2 Semilinear control systems(B � 0)

Let

N = fp 2 L2(0; T ;H) :

Z T

0
S(T � s)p(s)ds = 0g

and denote by N? be the orthogonal complement of N in L2(0; T ;H). We denote the
range of the operator C by HC . We need the following assumption:

Assumption (A). For each p 2 L2(0; T ;H) there exists an element q 2 HC such thatZ T

0
S(T � s)p(s)ds =

Z T

0
S(T � s)q(s)ds;

that is, L2(0; T ;H) = HC +N , where HC is the closure of HC in L2(0; T ;H).

Here, we remark that under Assumption (A) it is known that RT (0) = H as in [4].

Theorem 4.2. Under Assumptions (F) in Section 3 and (A), and assuming in addition

lim sup
r!1

(r �
p
T supfL(s) : jsj � rg) =1; (4.5)

we have
RT (0) � RT (f):

Therefore, if the linear system (1.1) with f � 0 and B � 0 is approximately controllable
at time T , then so is the nonlinear system (1.1).

Proof. It will be shown that RT (0) � RT (f)
V

, where RT (f)
V

is the closure of RT (f)
in V . For u 2 N?, let Pu be the unique minimum norm element of fu+Ng \HC . Then
the proof of Lemma 1 of Naito [4] can be applied to show that P is a linear and continuous
operator from N? to HC . Let ~Y = L2(0; T ;H)=N be the quotient space and the norm of
a coset ~u = u+N 2 ~Y is de�ned of jj~ujj = inffju+ f j : f 2 Ng.

We de�ne by Q the isometric isomorphism from ~Y onto N?, that is, Q~u is the minimum
norm element in ~u = fu+ f : f 2 Ng. Let

~F ~u = F(PQ~u) +N; 8~u 2 ~Y :

Then ~F is a compact mapping from ~Y to itself by Theorem 3.1. If (x0; k) 2 V �L2(0; T ;H),
we know y 2 W(T ) � C([0; T ];V ) by (2.6). Let

� =

Z T

0
S(T � s)(Cv)(s)ds 2 RT (0):

We are going to show that for every � > 0 there exists w such that

jj� � x(T ; f; w)jj � �:

Put z = Cv and r1 = jjCjjjjvjjL2(0;T ;U). Then it follows that

~z = z +N 2 Vr1 = f~x 2 ~Y : jj~xjj ~Y � r1g:
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From (3.3), noting that jjykjjL2(0;T ;V ) � C3(1 + jjx0jj+ jjkjjL2(0;T ;H)), we choose a constant
r > 0 such that

r � C3(1 + jjx0jj+ jjkjjL2(0;T ;H)):

Then it holds that

jjF(k)jjL2(0;T ;H) � L(r)
p
T ; jj ~F(~k)jj ~Y � L(r)

p
T :

Let

L(r) = supfL(s) : jsj � rg:

Then by the assumption (4.5), there exists r > 0 such that

L(r)
p
T + r1 < r: (4.6)

De�ne an operator J from ~Y to itself as

J(~u) = ~z � ~F ~u; ~u 2 ~Y :

Then since ~z 2 Vr1 and from (4.6) it follows that

jjJ ~ujj � jj~zjj+ jj ~F ~ujj � r1 + L(r)
p
T � r1 + L(r)

p
T < r:

Hence, J maps bounded closed set Vr into itself. It follows from the Schauder �xed point
theorem that there exists a �xed point ~u of J in Vr, that is, it holds

~z = ~F ~u+ ~u:

Put u = Q~u and uC = PQ~u. Then we have that uC = Pu and u � uC = u � Pu 2 N .
Hence

~z = F(uC) + u+N = F(uC) + uC +N:

Therefore,

� =

Z T

0
S(T � s)(F(uC)(s) + uC(s))ds =

Z T

0
S(T � s)(f(s; yuC ) + uC(s))ds:

Since uC 2 HC , there exists a sequence fvng 2 L2(0; T ;U) such that Cvn 7! uC in
L2(0; T ;H). Then by Theorem 3.2 we have that x(�; f; vn) 7! yuC in L2(0; T ;D(A)) \
W 1;2(0; T ;H), and hence x(T ; f; vn) 7! yuC (T ) = � in V . Thus we conclude � 2 RT (f)

V
.

�

Corollary 4.1. Under Assumptions (A) and (F), and assuming in addition that f(�; �) is
continuous and uniformly bounded, we have

RT (0) � RT (f):
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1 Introduction

This paper is concerned with the following identification problem

d

dt
Mu(t) + Lu(t) = f(t)z + h(t), 0 � t � T, (1.1)

Mu(0) = Mu0, (1.2)

Φ[Mu(t)] = g(t), 0 � t � T. (1.3)

Here L is the realization in L2(Ω) of a second order strongly elliptic linear differential operator with
the Dirichlet boundary condition, and M is the multiplication operator by a nonnegtive function
m ∈ L∞(Ω): Mu = mu and Φ ∈ L2(Ω)∗. The coefficients of L are assumed to be sufficiently
smooth and Ω is a bounded open set of Rn with smooth boundary. The problem is to seek for u
and f from known values of z, h, u0 and g.

It is assumed that the sesquilinear form a(·, ·) associated with L satisfies

Re a(u, u) � c0‖u‖H1
0(Ω), ∀u ∈ H1

0 (Ω)

for some positive constant c0. Hence 0 ∈ ρ(L). Set A = LM−1. Then A is multivalued unless
m > 0 a.e., and

D(A) = MD(L) = {mu; u ∈ D(L)},

Ay = {Lu; y = mu, u ∈ D(L)} for y ∈ D(A).

D(A) is a Banach space with norm ‖y‖D(A) = inff∈Ay ‖f‖L2(Ω). If we introduce the new unknown
variable y(t) = Mu(t), problem (1.1)-(1.3) is transformed to

d

dt
y(t) + Ay(t) � f(t)z + h(t), 0 � t � T,

y(0) = y0,

Φ[y(t)] = g(t), 0 � t � T,

(1.4)

where y0 = mu0.
The following result is an extension of Theorem 4.2 of A. Favini, A. Lorenzi and H. Tanabe [1]

to the case where A is multivalued and its proof will be published in a forthcoming paper:
Let A be a possibly multivalued linear operator in a complex Banach space X such that

ρ(A) ⊃ Σα = {λ ∈ C; Reλ � c(1 + |λ|)α}, (1.5)

and the following inequality holds for λ ∈ Σα

‖(λ − A)−1‖L(X,X) � c(1 + |λ|)−β , (1.6)

where α, β and c are positive constants such that β � α � 1 and 2α + β > 2. Let for 0 < θ < 1

Xθ
A = {u ∈ X; sup

0<t<∞
tθ‖u − t(t + A)−1u‖X < ∞}. (1.7)

1
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Theorem A Suppose (0 �)3 − 2α − β < θ < 1 and

y0 ∈ D(A), Ay0 ∩ (X,D(A))θ,∞ 	= ∅, (1.8)

z ∈ (X,D(A))θ,∞ , (1.9)

h ∈ C([0, T ]; X) ∩ B([0, T ]; (X,D(A))θ,∞), (1.10)

g ∈ C1([0, T ]; C), Φ[y0] = g(0), (1.11)

Φ[z] 	= 0. (1.12)

Then problem (1.4) admits a unique solution (y, f) such that

y ∈ C1([0, T ]; X), f ∈ C([0, T ]; C), (1.13)

y′ − f(·)z − h ∈ C(2α+β+θ−3)/α([0, T ]; X) ∩ B([0, T ]; X(2α+β+θ−3)/α
A ), (1.14)

where B([0, T ]; Y ) is the set of all bounded (not necessarily measurable) functions defined in [0, T ]
with values in Y for any Banach space Y .

In the case of problem (1.1)-(1.3) X = L2(Ω), A = LM−1, and it is established in Chapter III
of A. Favini and A. Yagi [3] and Theorem 3.3 of A. Favini, A. Lorenzi, H. Tanabe and A. Yagi [2]
that α = 1 and

β = 1/2 if m ∈ L∞(Ω),

β = (2 − ρ)−1(> 1/2) if m is ρ-regular, 0 < ρ < 1,

where m is said to be ρ-regular if m ∈ C1(Ω) and ∃c > 0 |∇m| � cmρ. The condition 3−2α−β <
θ < 1 becomes β + θ > 1. Therefore if we apply Theorem A with θ = 1/2, it is necessary that
β > 1/2, and so m has to be ρ-regular.

Suppose u0 ∈ D(L) and Lu0 ∈ (L2(Ω),D(A))1/2,∞ . Then y0 = mu0(= Mu0) ∈ D(A) and
Lu0 ∈ Ay0. Hence Ay0 ∩ (L2(Ω),D(A))1/2,∞ 	= ∅, and assumption (1.8) is satisfied with θ = 1/2.
Suppose further that m is ρ-regular and (1.9)-(1.12) are satisfied with θ = 1/2. Then problem
(1.4) has a unique solution (y, f). If we define a function u by

u(t) = L−1(f(t)z + h(t) − y′(t)),

then

Lu(t) = f(t)z + h(t) − y′(t) ∈ Ay(t) = LM−1y(t). (1.15)

This implies u(t) ∈ M−1y(t), since L is invertible. Hence y(t) = Mu(t). Substitution of this
in the first equality of (1.15) yields (1.1). Therefore the pair (u, f) is a solution to (1.1)-(1.3).
Substituting α = 1, β = (2−ρ)−1 and θ = 1/2 in (1.14) and noting Lu = f(·)z+h−y′ one obtains

Lu ∈ Cρ/[2(2−ρ)]([0, T ]; L2(Ω)) ∩ B([0, T ]; L2(Ω)ρ/[2(2−ρ)]
A ).

Note that 0 < ρ/[2(2 − ρ)] < 1/2. Thus the following theorem is obtained.

Theorem B Suppose that m is ρ-regular for some ρ ∈ (0, 1), and

u0 ∈ D(L), Lu0 ∈ (L2(Ω),D(A))1/2,∞ ,

z ∈ (L2(Ω),D(A))1/2,∞ ,

h ∈ C([0, T ]; L2(Ω)) ∩ B([0, T ]; (L2(Ω),D(A))1/2,∞),

g ∈ C1([0, T ]; C), Φ[mu0] = g(0),

Φ[z] 	= 0.

Then problem (1.1)-(1.3) admits a unique solution (u, f) such that

Mu ∈ C1([0, T ]; L2(Ω)), f ∈ C([0, T ]; C),

Lu ∈ Cρ/[2(2−ρ)]([0, T ]; L2(Ω)) ∩ B([0, T ]; L2(Ω)ρ/[2(2−ρ)]
A ),

.
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This is a result obtained by applying the general theory.
Let L̃ be the operator defined by

a(u, v) = (L̃u, v), u, v ∈ H1
0 (Ω).

Then L̃ ∈ L(H1
0 (Ω),H−1(Ω)) and L ⊂ L̃. Set Ã = L̃M−1. Then

D(Ã) = MD(L̃) = MH1
0 (Ω) = {mu; u ∈ H1

0 (Ω)},

Ãy = {L̃u; y = mu, u ∈ H1
0 (Ω)} for y ∈ D(Ã).

D(Ã) is a Banach space with norm ‖y‖D( �A) = infφ∈ �Ay ‖φ‖H−1(Ω) for y ∈ D(Ã).
It was shown in the book A. Favini and A. Yagi [3] that the following inequalities hold for

λ ∈ Σ = {λ ∈ C; Reλ � c(1 + |λ|)}:

‖(λ − A)−1‖L(L2(Ω),L2(Ω)) � C0(1 + |λ|)−1/2, (1.16)

‖(λ − Ã)−1‖L(H−1(Ω),H−1(Ω)) � C0(1 + |λ|)−1, (1.17)

‖(λ − Ã)−1‖L(H−1(Ω),L2(Ω)) � C0(1 + |λ|)−1/2, (1.18)

and hence −A and −Ã generate C∞-semigroups e−tA and e−t �A in L2(Ω) and H−1(Ω) respectively
such that for 0 < t < ∞

‖e−tA‖L(L2(Ω),L2(Ω)) � C0t
−1/2, (1.19)

‖e−t �A‖L(H−1(Ω),H−1(Ω)) � C0, (1.20)

‖e−t �A‖L(H−1(Ω),L2(Ω)) � C0t
−1/2, (1.21)

where C0 is some positive constant. It is known that e−tAu → u in L2(Ω) as t → 0 for u ∈ D(A).
By virtue of (1.20) it holds that e−t �Au → u in H−1(Ω) as t → 0 if u belongs to the closure of D(Ã)
in H−1(Ω) just as in the nondegenerate case m ≡ 1.

Let u ∈ Xθ
A, and u0(t) = u − t(t + A)−1u, u1(t) = t(t + A)−1u, t > 0. Then u = u0(t) + u1(t),

and

sup
0<t<∞

tθ‖u0(t)‖X = sup
0<t<∞

tθ‖u − t(t + A)−1u‖X < ∞,

by the definition of Xθ
A. Since A(t + A)−1u � u − t(t + A)−1u, one has Au1(t) = tA(t + A)−1u �

t(u − t(t + A)−1u). Hence

sup
0<t<∞

tθ−1‖u1(t)‖D(A) � sup
0<t<∞

tθ−1‖t(u − t(t + A)−1u)‖X = sup
0<t<∞

tθ‖u − t(t + A)−1u‖X < ∞.

Therefore u ∈ (X,D(A))θ,∞ . Thus it has been proved that

Xθ
A ⊂ (X,D(A))θ,∞ , 0 < θ < 1. (1.22)

Suppose u ∈ D(Ã), and φ ∈ Ãu. Then

u = (t + Ã)−1(tu + φ) = t(t + A)−1u + (t + Ã)−1φ.

Hence with the aid of (1.18)

t1/2‖u − t(t + A)−1u‖L2(Ω) = t1/2‖(t + Ã)−1φ‖L2(Ω) � C0‖φ‖H−1(Ω).

This means u ∈ L2(Ω)1/2
A , and we have proved D(Ã) ⊂ L2(Ω)1/2

A . By combining this with (1.22)
the following inclusion relation is obtained:

D(Ã) ⊂ L2(Ω)1/2
A ⊂ (L2(Ω),D(A))1/2,∞ . (1.23)

The object of this paper is to show that if we choose D(Ã) instead of (L2(Ω),D(A))1/2,∞ , we
can obtain better estimates without assuming the ρ-regularity of m.

An analogous results are obtained also when the boundary condition is of Robin type.
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2 Main result

Theorem 2.1 Suppose that

u0 ∈ D(L), Lu0 ∈ D(Ã), (2.1)

z ∈ D(Ã), (2.2)

h ∈ C([0, T ]; L2(Ω)) ∩ B([0, T ]; D(Ã)), (2.3)

g ∈ C1([0, T ]; C), Φ[mu0] = g(0), (2.4)

Φ[z] 	= 0. (2.5)

Then there exists a unique pair of functions (u, f) such that

Mu ∈ C1([0, T ]; L2(Ω)), f ∈ C([0, T ]; C),

Lu ∈ C1/2([0, T ]; L2(Ω)) ∩ B([0, T ]; L2(Ω)1/2
A ),

d(Mu)/dt ∈ C([0, T ]; L2(Ω)) ∩ B([0, T ]; L2(Ω)1/2
A ),

(2.6)

and (1.1)-(1.3) holds.

In the proof of this theorem we use the following proposition whose proof is given in a forthcoming
paper.

Proposition 2.1 Suppose that

h ∈ C([0, T ]; L2(Ω)) ∩ B([0, T ]; D(Ã)).

Then
∫ t

0 e−(t−s)Ah(s)ds is differentible in L2(Ω), and

d

dt

∫ t

0

e−(t−s)Ah(s)ds = h(t) +
∫ t

0

∂

∂t
e−(t−s)Ah(s)ds, (2.7)

∥∥∥∥∫ t

0

∂

∂t
e−(t−s)Ah(s)ds

∥∥∥∥
L2(Ω)

� 2C0t
1/2‖h‖B([0,T ];D( �A)). (2.8)

Furthermore, the function t → ∫ t

0
∂
∂te

−(t−s)Ah(s)ds belongs to C1/2([0, T ]; L2(Ω))∩B([0, T ]; L2(Ω)1/2
A ).

Lemma 2.1 For v ∈ D(Ã) one has∥∥∥∥ d

dt
e−tAv

∥∥∥∥
L2(Ω)

� C0t
−1/2‖v‖D( �A), (2.9)

‖e−tAv − e−sAv‖L2(Ω) � 2C0(t − s)1/2‖v‖D( �A), (2.10)

‖e−tAv − v‖L2(Ω) → 0 as t → 0. (2.11)

Proof. If v ∈ D(Ã), there exists an element φ ∈ H−1(Ω) such that φ ∈ Ãv. Hence in view of
(1.18) ∥∥∥∥ d

dt
e−tAv

∥∥∥∥
L2(Ω)

=
∥∥∥∥ d

dt
e−t �AÃ−1φ

∥∥∥∥
L2(Ω)

= ‖e−t �Aφ‖L2(Ω) � C0t
−1/2‖φ‖H−1(Ω),

which implies (2.9). With the aid of (2.9) one observes for 0 < s < t

‖e−tAv − e−sAv‖L2(Ω) =
∥∥∥∥∫ t

s

d

dσ
e−σAvdσ

∥∥∥∥
L2(Ω)

� C0

∫ t

s

σ−1/2dσ‖v‖D( �A) � 2C0(t − s)1/2‖v‖D( �A).

Hence (2.10) is established and limt→0 e−tAv exists in L2(Ω). Since e−tAv = e−t �Av → v in H−1(Ω),
it follows that limt→0 e−tAv = v.
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From (1.1) and (1.3) it follows that

g′(t) + Φ[Lu(t)] = f(t)Φ[z] + Φ[h(t)].

Dividing both sides by Φ[z] one gets

f(t) = χg′(t) + χΦ[Lu(t)] − χΦ[h(t)],

where χ = Φ[z]−1. Substitution of this in (1.3) yields the equation to be satified by u:

d

dt
Mu(t) + Lu(t) = χg′(t)z + χΦ[Lu(t)]z − χΦ[h(t)]z + h(t). (2.12)

Set

y0 = mu0. (2.13)

For the time being we make formal calculations. Suppose that there exists a solution u ∈
C([0, T ]; D(L)) to the following integral equation

Lu(t) = − d

dt
e−tAy0 − χ

∫ t

0

g′(s)
∂

∂t
e−(t−s)Azds

−χ

∫ t

0

Φ[Lu(s)]
∂

∂t
e−(t−s)Azds −

∫ t

0

∂

∂t
e−(t−s)Ah(s)ds, (2.14)

Applying A−1 = ML−1 to both sides of (2.14) and noting that

A−1 d

dt
e−tA =

d

dt
e−tAA−1 = −e−tA (2.15)

one obtains

Mu(t) = e−tAy0 + χ

∫ t

0

g′(s)e−(t−s)Azds + χ

∫ t

0

Φ[Lu(s)]e−(t−s)Azds +
∫ t

0

e−(t−s)Ah(s)ds.

By differentiztion one obtains using that e−tAz → z as t → 0 in view of Lemma 2.1

d

dt
Mu(t) =

d

dt
e−tAy0 + χg′(t)z + χ

∫ t

0

g′(s)
∂

∂t
e−(t−s)Azds

+χΦ[Lu(t)]z + χ

∫ t

0

Φ[Lu(s)]
∂

∂t
e−(t−s)Azds +

d

dt

∫ t

0

e−(t−s)Ah(s)ds. (2.16)

Addition of (2.14) and (2.16) yields (2.12) in view of (2.7). Consequently the problem is reduced
to solving (2.14). Let u1 be the function defined by

Lu1(t) = − d

dt
e−tAy0 − χ

∫ t

0

g′(s)
∂

∂t
e−(t−s)Azds −

∫ t

0

∂

∂t
e−(t−s)Ah(s)ds. (2.17)

Then the integral equation (2.14) is rewritten as

Lu(t) = Lu1(t) − χ

∫ t

0

Φ[Lu(s)]
∂

∂t
e−(t−s)Azds, (2.18)

Since in view of (2.13) y0 = mu0 = A−1Lu0, one gets using (2.15)

− d

dt
e−tAy0 = − d

dt
e−tAA−1Lu0 = e−tALu0. (2.19)

Since Lu0 ∈ D(Ã) by assumption (2.1), the first term of the right hand side of (2.17) belongs to
C1/2([0, T ]; L2(Ω)) in view of (2.19) and Lemma 2.1, (2.10). Let φ ∈ ÃLu0. Then e−tALu0 =
e−tAÃ−1φ = Ã−1e−t �Aφ. This implies Ãe−tALu0 � e−t �Aφ. Hence

‖e−tALu0‖D( �A) � ‖e−t �Aφ‖H−1(Ω) � C0‖φ‖H−1(Ω),
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where we used (1.20). Therefore the first term of the right hand side of (2.17) belongs to
B([0, T ]; D(Ã)), and hence to B([0, T ]; L2(Ω)1/2

A ) in view of the first inclusion relation of (1.23).
The last term of (2.17) belongs to C1/2([0, T ]; L2(Ω)) ∩ B([0, T ]; L2(Ω)1/2

A ) in view of Proposi-
tion 2.1. Clearly g′(·)z ∈ C([0, T ]; L2(Ω)) ∩ B([0, T ]; D(Ã)). Hence applying this proposition to
g′(·)z instead of h we see that the second term of the right hand side of (2.17) also belongs to
C1/2([0, T ]; L2(Ω)) ∩ B([0, T ]; L2(Ω)1/2

A ). Therefore

Lu1 ∈ C1/2([0, T ]; L2(Ω)) ∩ B([0, T ]; L2(Ω)1/2
A ). (2.20)

The integral equation (2.18) is solved by successive approximation. Let

Lun+1(t) = Lu1(t) − χ

∫ t

0

Φ[Lun(s)]
∂

∂t
e−(t−s)Azds, n = 1, 2, 3, . . . .

By virtue of (2.9) the following inequalities hold for n = 2, 3, . . .

‖Lun+1(t) − Lun(t)‖L2(Ω) =
∥∥∥∥χ

∫ t

0

Φ[Lun(s) − Lun−1(s)]
∂

∂t
e−(t−s)Azds

∥∥∥∥
L2(Ω)

� C0|χ|‖Φ‖
∫ t

0

‖Lun(s) − Lun−1(s)‖L2(Ω)(t − s)−1/2ds‖z‖D( �A).

By induction it can be shown without difficulty that

‖Lun+1(t) − Lun(t)‖L2(Ω) � 2C2(C0|χ|‖Φ‖)n π(n−1)/2

nΓ(n/2)
√

πtn/2‖z‖n
D( �A)

, n = 2, 3, . . . ,

where C2 is a constant such that

‖Lu1(t)‖ � C2, 0 � t � T.

Consequently the sequence {un} tends to a function u satisfying (2.18) in C([0, T ]; D(L)). Applying
Proposition 2.1 to Φ[Lu(·)]z we see that the second term of the right hand side of (2.18) belongs
to C1/2([0, T ]; L2(Ω)) ∩ B([0, T ]; L2(Ω)1/2

A ). Therefore

Lu ∈ C1/2([0, T ]; L2(Ω)) ∩ B([0, T ]; L2(Ω)1/2
A ).

Other regularity properties of u listed in the statement of the theorem are obvious. Consequently
the proof of the thoerem is complete.

References

[1] A. Favini, A. Lorenzi and H. Tanabe: Direct and inverse problems for systems of singular
differential boundary-value problems, Electronic Journal of Differential Equations, 2012
(2012), No.225, 1-34.

[2] A. Favini, A. Lorenzi, H. Tanabe and A. Yagi: An Lp-approach to singular linear parabolic
equations with lower order terms, Discreet and Continuous Dynamical Systems, 22 (2008),
989-1008

[3] A. Favini and A. Yagi: Degenerate Differential Equations in Banach Spaces: Marcel Dekker,
Inc., New York-Barsel-Hong Kong, 1999.

6
88



DEGENERATE DIFFERENTIAL EQUATIONS OF
PARABOLIC TYPE AND INVERSE PROBLEMS

Angelo Favini� and Hiroki Tanabe

Abstract
Some identi�cation problems for degenerate linear di�erential equations in Banach spaces

are studied by reducing them to related direct problems. The abstract results are applied to
treat some inverse problems for partial di�erential equations.

1 Introduction

In this paper a general method to solve inverse problems for degenerate di�erential equations in
Banach spaces is described.

It basically consists in reducing the inverse problem to a direct problem whose operator-
coe�cients are perturbations of some operator-coe�cients of the given equation.

More precisely, the strategy for solving the inverse problem to determine the pair (y; f) 2
C
�
[0; r];D(L)

�
� C

�
[0; r]; C

�
satisfying the possibly degenerate initial-value problem

d

dt

�
My(t)

�
+ Ly(t) = f(t)z + h(t); 0 � t � r; (1.1)

(My)(0) = My0; y0 2 D(L); (1.2)

�
�
My(t)

�
= g(t); 0 � t � r; (1.3)

under the assumptions

(i) L and M are closed linear operators acting on the complex Banach space X, the domain
D(L) of L is contained in D(M), 0 2 �(L),

(ii) L and M satisfy the weak parabolicity condition �M + L has a bounded inverse for any
� 2 ��, where

�� =
�
� 2 C : Re � � �C

�
1 + j Im �j

��	
; C > 0

and 

M(�M + L)�1



L(X)

� C 0
�
1 + j�j

���
; 8� 2 ��; 0 < � � � � 1;

(iii) h 2 C
�
[0; r];X

�
, � 2 X�, g 2 C1

�
[0; r]; C

�
and the compatibility relation

g(0) = �[My0] (1.4)

holds,

is as follows. Notice that the parabolicity assumptions (ii) comes from the monograph [12] from
Favini and Yagi.

Applying � to (1.1) and using the additional information (1.3), we get that necessarily f satis�es

g0(t) = ��
�
Ly(t)

�
+ f(t)�[z] + �

�
h(t)

�
; 0 � t � r;

therefore, if �[z] 6= 0, then f(t) is given by

f(t) =
1

�[z]

�
g0(t) + �

�
Ly(t)

�
��
�
h(t)

�	
: (1.5)

� Partially supported by INdAM and RFO funds of the University of Bologna.
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If we substitute (1.5) in (1.1), this yields the direct problem

d

dt

�
My(t)

�
= �Ly(t)� L1y(t)� 1

�[z]
�
�
h(t)

�
z +

g0(t)

�[z]
z + h(t); 0 � t � r;

(My)(0) = My0;

(1.6)

where the operator L1 is de�ned by

D(L1) = D(L); L1y := ��[Ly]

�[z]
z; y 2 D(L1):

Hence the direct problem (1.6), together with f(t) furnished by (1.5) is equivalent to (1.1)�(1.3).
Such a strategy has been already used in the paper [11] from A. Favini and G. Marinoschi in

order to treat identi�cation problems for degenerate equations of hyperbolic type. One can solve
problem (1.6), after having shown that the pair (L+ L1;M) satis�es the same resolvent estimate
as in (ii), by using either regularity in time of the data or spatial regularity of them.

Concerning space regularity, a �rst approach can be found in a paper [10] from Favini, Lorenzi,
Marinoschi, Tanabe. In that paper, the assumption L + L1 to have a bounded inverse (and thus
to be closed) was introduced to simplify the treatment, but it is not so obvious.

A main aim in this paper is to cover this possible gap. The assumptions on the given elements
y0, z will be concerned with the intermediate spaces

X�
A =

n
u 2 X : sup

t>0
(1 + t)�



A�(tI +A)�1u



X

= kukX�A <1
o

(1.7)

where A�(tI + A)�1 means I � t(tI + A)�1, A being the multivalued linear operator LM�1,
D(A) = M

�
D(L)

�
.

Recently, in russian literature, see papers from G.A. Baskakov and his co-authors, such opera-
tors are also named linear relations. The choice of the spaces X�

A compels us to some restrictions
on �, that can be avoided provided that, according to a very recent paper [8] by Favini, Lorenzi,
Tanabe we use the interpolation spaces

�
X;D(A)

�
�;1 instead. On the other hand a characteri-

zation of these interpolation spaces as in Triebel’s monograph [14] for � = � = 1 appears very
di�cult.

We note that maximal regularity in time for degenerate di�erential equations and its applica-
tions to inverse problems was investigated in the paper [3] from Favini, Lorenzi, Tanabe and very
recently in [1], [2] from Favini and Favaron.

The contents of the paper are as follows. In Section 2 we recall some perturbation results from
[10]. Section 3 and 4 concern solvability of (1.1)�(1.3) under maximal regularity in space and in
time, respectively. In Section 5 a related inverse problem for the equation My0 = �Ly+f(t)z+h(t)
is considered. Section 6 is devoted to applications to PDEs and integro-di�erential equations.

At last, we want to thank very much professor Giovanni Dore for his important help and useful
discussions and remarks.

2 Perturbation results

The result that follows furnishes an extension to well known statements concerning sectorial oper-
ators, cfr. Lunardi [13]. We refer to Favini, Lorenzi, Marinoschi, Tanabe [10].

Theorem 2.1. Let M , L, L1 be closed linear operators in the complex Banach space X, with
D(L1) = D(L) � D(M), 0 2 �(L), 0 < � � � � 1,

M(�M + L)�1x




X
� C(1 + j�j)��kxkX ; � 2 ��; x 2 X: (2.1)

If, in addition, L1 2 L
�
D(L); X�

A

�
, where A is the multivalued operator LM�1 and 1� � < � < 1,

then 

M(�M + L+ L1)�1



L(X)

� C(1 + j�j)�� ; � 2 ��; j�j large: (2.2)
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Notice that A satis�es the resolvent estimate

(�I +A)�1



L(X)

� C(1 + j�j)�� ; � 2 ��:

If � = � = 1, then X�
A coincides with

�
X;D(A)

�
�;1, 0 < � < 1. Recall (cfr. [11]) that

A�(�I +A)�1 = (�A�1 + I)�1 = I � �(�I +A)�1:

Then D(A) is a Banach space under the graph norm

kxkD(A) := inf
y2Ax

kykX :

We recall the following existence and uniqueness result from Favini, Lorenzi, Marinoschi, Tan-
abe [10].

We need to introduce a further notation to this purpose. If Y is a Banach space, B
�
[0; r];Y

�
denotes the space of all bounded Y -valued functions f on [0; r] with

kfkB([0;r];Y ) = sup
0�t�r

kf(t)kY :

We have

Theorem 2.2. Suppose L and M satisfy (2.1), 0 < � � � � 1, y0 2 D(L), Ly0 2 X�
A where

2� �� � < � < 1, �+ � > 1, f 2 B
�
[0; r];X�

A

�
\ C

�
[0; r];X

�
. Then the problem

d

dt

�
My(t)

�
+ Ly(t) = f(t); 0 � t � r; (2.3)

(My)(0) = My0; (2.4)

admits a unique strict solution y 2 C
�
[0; r];D(L)

�
with the spatial regularity

Ly; (My)0 2 B
�
[0; r];X

��(2����)
A

�
\ C

�
[0; r];X

�
:

If, in addition, 2�+ � > 2 and 3� 2�� � < � < 1, then y enjoys the time regularity

Ly 2 C(2�+�+��3)=�
�
[0; r];X

�
:

3 A �rst identi�cation problem

After the change of variable y(t) = ektw(t), k > 0, problem (1.1)�(1.3) becomes

d

dt

�
Mw(t)

�
+ (kM + L)w(t) = e�ktf(t)z + e�kth(t);

= f1(t)z + h1(t);

0 � t � r; (3.1)

(Mw)(0) = My0; y0 2 D(L); (3.2)

�
�
Mw(t)

�
= e�ktg(t);

= g1(t);

0 � t � r; (3.3)

Applying � to both members in (3.1), and taking into account (3.3), we get

g01(t) + �
�
(kM + L)w(t)

�
= f1(t)�[z] + �

�
h1(t)

�
:

Since �[z] 6= 0, then

f1(t) =
g01(t) + �

�
(kM + L)w(t)

�
��
�
h1(t)

�
�[z]

and thus (3.1) becomes

d

dt

�
w(t)

�
+ (kM + L+ L1)w(t) =

g01(t)

�[z]
z �

�
�
h1(t)

�
�[z]

z + h1(t); 0 � t � r;

(Mw)(0) = My0;

(3.4)
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A variational approach to gradient 
ows

Goro Akagi1

Dedicated to Professor Hiroki Tanabe on the occasion of his 80th birthday

Abstract

This note is concerned with a variational approach to gradient 
ows
of nonconvex energies in Hilbert spacesH. We employ the Weighted
Energy-Dissipation (WED for short) functional, which consists
of dissipation functional and energy functional with exponential
weight in time and which is de�ned for each orbit u : [0; T ] ! H
satisfying initial condition. In this approach, gradient 
ows will be
obtained as a limit of minimizers u" of WED functionals W" as a
parameter " goes to zero.

This note is based on a joint work [1] with Ulisse Stefanelli (IMATI-CNR, Italy).

1 Variational formulation of gradient 
ows

Gradient 
ow is a major principle in the descriptions of various sorts of phenomena
(e.g., phase transition), and there have been a large number of contributions from
numerous points of view. On the other hand, variational principle is also another
major principle, and particularly, it would be the most universal principle of physics.
Gradient 
ows could be regarded as a principle describing more transitional phase
and they are not necessarily formulated as a variational principle in a natural way.
However, in this study, we are making an attempt to pursue (natural) variational
principles to describe gradient 
ows.

Let H be a Hilbert space and let E : H ! R be an energy functional. Gradient

ows u : [0; T ] ! H of E are generated by the evolution equation

u0(t) = �dE(u(t)) in H; t 2 (0; T ); (1)

where u0 = du=dt and dE denotes a functional derivative of E in a proper sense. Let
us give a typical example below.

Example 1.1 (Allen-Cahn equation). Set H = L2(
) with a domain 
 � RN and
de�ne

E(u) =
1

2

Z



jruj2dx+

Z



W (u(x))dx for u 2 D(E) � H

1Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-
8501 Japan (e-mail: akagi@port.kobe-u.ac.jp ). Supported by JSPS KAKENHI Grant Number
22740093; JSPS-CNR Joint Research Project; Hyogo Science and Technology Association.
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Boundary Controllability of
Nonlocal Diffusion Equations

Shin-ichi Nakagiri∗

Department of Applied Mathematics, Faculty of Engineering,
Kobe University, Nada, Kobe 657-8501, Japan

Dedicated to Professor Hiroki Tanabe on the occasion of his eightieth birthday.

Abstract
This paper studies a boundary controllability problem for the

control system described by diffusion equation with nonlocal terms.
It is shown that the associated nonlocal operator generates a C0-
semigroup in L2-space. The deformation formula method is extended
for nonlocal diffusion equations, and the structural properties of semi-
groups are investigated. Applying the method to the original system,
the existence of Riesz basis is proved and the exact representation of
semigroups is shown. Based on the representation it is proved that
the boundary control system is controllable in any finite time.

1. Introduction
In this paper, we study a boundary control system described by the diffusion
equation with Volterra integral and nonlocal terms both in state and boudary
condition:

∂u

∂t
=

∂2u

∂x2
− p(x)u +

∫ x

0

f(x, y)u(t, y)dy + g(x)u(t, 0), t > 0, x ∈ (0, 1),

−∂u(t, 0)

∂x
+ hu(t, 0) = 0,

∂u(t, 1)

∂x
+ ju(t, 1) +

∫ 1

0

γ(y)u(t, y)dy = U(t), t > 0,

u(0, x) = u0(x), x ∈ [0, 1],

(1.1)
where p, g, γ ∈ C[0, 1], f ∈ C(D), D = {(x, y) : 0 < x < y < 1}, h, j ∈ R, u0 ∈
L2(0, 1), and U(t) ∈ R is a boundary control input at the boundary point x = 1.
Throughout this paper we suppose that all coefficients p(x), g(x), γ(x), f(x, y),
h, j in (1.1) are real valued. As for the control systems described by heat equa-
tions without nonlocal terms, many studies on control problems have been done
since old times (cf. Curtain and Zwart [1]). Recently, in the study of boundary
feedback stabilization of unstable heat equations with nonlocal terms, Krstic and
Smyshlyaev [9] have constructed the integral kernel function such that the inte-
gral transformation converts the solution of nonlocal heat equation to the solution
pf a simple heat equation with nonlocal boundary condition. The transforma-
tion is considered a generalization of the deformation formula due to Suzuki [10]

Keywords: boundary controllability, nonlocal heat equation, C0-semigroup, deformation for-
mula, Riesz basis.

� e-mail: nakagiri@cs.kobe-u.ac.jp
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On the convergence of an area minimizing scheme for the
anisotropic mean curvature 
ow

Katsuyuki Ishii

Graduate school of Maritime Sciences, Kobe University
Higashinada, Kobe 658-0022, JAPAN

1 Introduction

In this article we present the convergence of an area minimizing scheme for for the
anisotropic mean curvature 
ow (AMCF for short) and its application to an approxi-
mation of the crystalline curvature 
ow (CCF) in the plane.

A family f�(t)gt�0 of hypersurfaces in RN is called an AMCF provided that �(t)
evolves by the equation of the form

(1.1) V = �div �(n) on �(t); t > 0:

Here n is the Euclidean outer unit normal vector �eld of �(t), the function 
 = 
(p) is
the surface energy density, � = rp
 := (
p1 ; � � � ; 
pN

) is called the Cahn-Ho�man vector.
The function 
 is assumed to be convex. In particular, if 
(p) = jpj, then (1.1) is the
usual mean curvature 
ow (MCF) equation:

(1.2) V = �divn on �(t); t > 0:

These equations arise in geometry, interface dynamics, crystal growth and image process-
ing etc. Many people have been studying MCF, AMCF and CCF from various viewpoints.
With relation to the applications mentioned above, numerical schemes have also been
studied.

Among them, Chambolle [4] proposed an algorithm for MCF. His algorithm is de-
scribed as follows: Let E0 � RN be a compact set and �x a time step h > 0. We choose
a bounded domain 
 � RN including E0 and take a function w0 2 L2(
) \ BV (
) as a
unique minimizer of the functional Jh(�; E0) de�ned by

(1.3) Jh(v; E0) :=

8<:
Z




jDvj +
1

2h
kv � dE0k2

L2(
) if v 2 L2(
) \BV (
);

+1 if v 2 L2(
)nBV (
):

Here
R



jDvj is the total variation of v, Dv is the gradient of v in the sense of distribution,

and d(E0) = d(�; E0) denotes the Euclidean signed distance function to @E0, namely,

(1.4) d(x;E0) := dist(x;E0) � dist(x;RNnE0) for x 2 RN :

Then we set

(1.5) E1 := fw0 � 0g:
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BEHAVIOR OF SOLUTIONS TO SOME MATHEMATICAL MODEL
FOR ANGIOGENESIS

DOAN DUY HAI AND ATSUSHI YAGI

1. Introduction

We are concerned with the Cauchy problem for a mathematical model of tumor-induced
angiogenesis:

(1.1)

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

@u

@t
= a�u � �r � [u(� � u)r�1(�)]

� �r � [u(� � u)r�2(�)] + fu(� � u) in 
 � (0; 1);

@�

@t
= b�� � �u� + gu in 
 � (0; 1);

@�

@t
= c�� � h� � �u� + ’(x) in 
 � (0; 1);

@u

@n
=

@�

@n
=

@�

@n
= 0 on @
 � (0; 1);

u(x; 0) = u0(x); �(x; 0) = �0(x); �(x; 0) = �0(x) in 
;

in a bounded domain 
 in R3. Here, unknown functions u(x; t); �(x; t) and �(x; t) denote
the densities of endothelial-cells, the concentration of �bronectin and the concentration
of TAF (tumor angiogenesis factor), respectively, at a position x of an organism 
 and
at time t � 0. Cells di�use in 
 with di�usion constant a > 0. Cells have a directed
mobility in responce to �bronectin gradients which is called haptotaxis. Haptotaxis is
described by the nonlinear advection term ��r � [ur�] with 
ow rate � > 0. Similarly,
cells have a directed mobility in responce to TAF gradients called chemotaxis. Chemotaxis
is described by ��r � [ur log (1 + ��)] with 
ow rate � > 0 and some constant � > 0. In
the equation of �bronectin, the term gu denotes production due to cells with rate g > 0
and conversely the term ��u� denotes uptake by cells themselves with rate � > 0. In
the equation of TAF, the term ��u� denotes uptake by cells.

In 1998, Anderson-Chaplain [1] has presented a mathematical model for describing
the process of tumor-induced angiogenesis. We, however, intend to modify the model
equations of [1] into the form (1.1) in the view points:

(1) The di�usion for both �bronectin and ATF is considered with di�usion constant
b > 0 and c > 0, respectively.

(2) The proliferation of endothelial-cells are considered. The growth term is assumed
to be given by fu(� � u) with saturation density � > 0 and constant f > 0.

(3) Saturation takes place in the e�ects of not only proliferation but also advection.
So, the advection terms take the forms ��r � [u(� � u)r�1(�)] and ��r � [u(� �
u)r�2(�)], respectively, with suitable sensitivity functions �1(�) and �2(�).

The last author is supported by Grant-in-Aid for Scienti�c Research (No. ) by Japan Society for the
Promotion of Science.
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Linear approximation of a system of quasilinear hyperbolic
equations having linear growth energy functional

Koji Kikuchi

Department of Applied Mathematics, Faculty of Engineering, Shizuoka University
Hamamatsu 432-8561, Japan

e-mail: tskkiku@ipc.shizuoka.ac.jp

1 Introduction and our main result

In this article we investigate linear application of a system of quasilinear hyperbolic equations.
In the sequel RnN denotes the set of all N by n matrices with real elements. Let f be a real valued
function defined on RnN and let " be a positive number. Suppose that u satisfies

@2ui

@t2
(t; x) ¡

nX

fi=1

@

@xfi
ffpi

fi
(ru(t; x))g = 0; i = 1; 2; : : : ; N;(1)

in a bounded domain Ω with u(0; x) = "u0(x); ut(0; x) = "v0(x) and

u(t; x) = 0; x 2 @Ω:(2)

Our final destination is to show that, as " ! 0, u" := "¡1u converges to a weak solution to
linearlized equation for (1).

In the case that N = 1 and f(p) =
p

1 + jpj2, Equation (1) is

@2u

@t2
(t; x) ¡

nX

fi=1

@

@xfi
f(1 + jru(t; x)j2)¡1=2 @u

@xfi
g = 0; x 2 Ω;(3)

which is in [3, 4, 5] referred to as an equation of motion of vibrating membrane. Up to now neither
existence nor uniqueness of a solution to (3) is obtained. In [3, 4, 5] we only have that a sequence
of approximate solutions to (3) converges to a function u in an appropriate function space, and
that, if u satisfies the energy conservation law, it is a weak solution to (3). Instead in [6] linear
approximation for (3) is investigated.

For (1), existence and uniqueness are also very difficult problems, but linear approximation
seems to be attackable and hence in this article we try it. In this article we suppose that f is linear
growth and quasiconvex, more precisely,

(A1) there exist constants m and M such that

mjpj • f(p) • M(1 + jpj)(4)

(A2) for each bounded domain D ‰ Rn, for each p0 2 RnN , and for each ’ 2 [W 1;1
0 (D)]N

1
Ln(D)

Z

D
f(p0 + r’(x))dx ‚ f(p):

The energy functional for the operator ¡
nX

fi=1

@

@xfi
ffpi

fi
(ru(t; x))g is the functional

u 7!
Z

Ω
f(ru(x))dx:

1
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REFINED PROPERTIES OF EVOLUTION OPERATOR UNDER
KATO-TANABE CONDITIONS

ATSUSHI YAGI

1. Introduction

We are concerned with the Cauchy problem for a linear abstract parabolic evolution
equation

(1.1)

8<:
dU

dt
+ A(t)U = F (t); 0 < t � T;

U(0) = U0;

in a Banach space X (see [3, 4, 7]). Here, A(t); 0 � t � T; is a family of densely de�ned,
closed linear operators acting in X and each �A(t) is assumed to be the generator of an
analytic semigroup on X, more precisely to satisfy the conditions (2.1) and (2.2).

Treatments for (1.1) are quite di�erent depending on the nature of varying of the
domains D(A(t)) of A(t) with respect to the temporal variable t. The case when D(A(t))
vary in a temperate manner (including that of constant domains, i.e., D(A(t)) � D) was
handled in author’s monograph [7, Chapter 3]. In the case when D(A(t)) vary completely,
one can treat Problem (1.1) under two di�erent conditions; one is Tanabe’s condition [2]
(i.e., [8, (2.3)-(2.4)]) and the other Kato-Tanabe’s condition [1] (i.e., (2.3)-(2.4) below).
This paper is concerned with the Kato-Tanabe’s condition. Under that, Kato-Tanabe
[1] has constructed an evolution operator U(t; s) which plays a role of the fundamental
solution for (1.1), see Theorems 3.1 and 3.2. This paper then shows several re�ned
properties of the U(t; s) which were not seen in [1].

Among others, we shall prove the uniform estimate kA(t)�U(t; s)A(s)��kL(X) � C; 0 �
s � t � T; for all exponents 0 � � � 1. This property is indeed one of the important
properties of the evolution operator for (1.1). Under the Tanabe’s condition, this uni-
form estimate was already seen in [5]. We shall employ the techniques of using integral
equations of Volterra type as done in author’s old paper [6] in which Problem (1.1) of
completely variable domains of A(t) was treated under more general assumptions than
both of Tanabe and Kato-Tanabe.

The author has recently shown in [8] that the Tanabe’s condition implies an extra
spatial regularity kA(t)�U(t; s)kL(X) � C(t � s)�� for some suitable exponent � > 1 that
played a crucial role in establishing the H�older type maximal regularity of solutions for
(1.1) in the paper. In the present case, however, the condition (2.3)-(2.4) does not seem
to imply such an extra spatial regularity, see Remark 4.1.

2000 Mathematics Subject Classi�cation. Primary 35K90; Secondary 35B30.
Key words and phrases. abstract parabolic equation, maximal regularity.
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Analyticity for C0-semigroups generated

by elliptic operators in Lp

Giorgio Metafune
Department of Mathematics, University of Salento

Piazza Tancredi, N.7 - 73100 Lecce, Italy
email: giorgio.metafune@unisalento.it

and
Noboru Okazawa�, Motohiro Sobajima1 and Tomomi Yokota2

Department of Mathematics, Tokyo University of Science
1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan

*email: okazawa@ma.kagu.tus.ac.jp
1email: j1110706@ed.kagu.tus.ac.jp

2email: yokota@rs.kagu.tus.ac.jp
December 30, 2012

Abstract. Analytic continuation of the C0-semigroup fe� zA g on Lp(RN ) generated
by a second order elliptic operator �A is investigated, where A is formally de�ned as
Au = � div(aru) + (F � r)u + V u with lower order coe�cients having singularities at
in�nity or at the origin. The result extends the sector of analyticity for the contraction
semigroup determined in Metafune et al. [23] and [24].

1. Introduction

In this paper we deal with general second order elliptic operators of the form

(Au)(x) := �div(a(x)ru(x)) + (F (x) � r)u(x) + V (x)u(x); x 2 RN ;(1.1)

where N 2 N, a 2 C1 \ W 1;1(RN ; RN�N), F 2 C1(
; RN) and V 2 L1
loc(
; R) and the

choice of 
 = RN or 
 = RN nf0g depends on the location of the singularities of F and V .
As a di�erential expression A may be said to be symmetric or nonsymmetric, respectively,
if F = 0 or F 6= 0. Under the assumption on the triplet (a; F; V ) speci�ed below we want
to discuss the maximal sector of analyticity for the semigroups fe�zAp;maxg and fe�zApg
on Lp = Lp(RN) (1 < p < 1) generated by �Ap;max and �Ap, respectively, de�ned as

Ap;maxu :=Au; D(Ap;max) := fu 2 Lp \W 2;p
loc (RN); Au 2 Lpg;(1.2)

Apu :=Au; D(Ap) := fu 2 W 2;p(RN); (F � r)u; V u 2 Lpg:(1.3)

In particular, if A = �� and Gz is the Gaussian kernel, then D(Ap) = W 2;p(RN) (=
D(Ap;max)) and the C0-semigroup fe�zApg = fez�g on Lp is explicitly given by

(1.4) (ez�f)(x) = (Gz � f)(x); z 2 C+ := fz 2 C; Re z > 0g;
2010 Mathematics Subject Classi�cation: Primary: 35J15, Secondary: 47D06.
Key words and phrases: Elliptic operators in Lp, analytic semigroups, maximal sector of analyticity.

�Partially supported by Grant-in-Aid for Scienti�c Research (C), No.20540190.
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Time-discretization approach to
various parabolic systems

associated with grain boundaries

Ken Shirakawa†

Dedicated to Professor Hiroki Tanabe on the Occasion of his 80th Birthday

1 Introduction
This paper is based on a recent collaboration with Professor Salvador Moll, University

of Valencia, Spain (cf. [12]), which is communicated and supported by Professor José M.
Mazón, University of Valencia, Spain.

Let 0 < T < ∞ be a fixed constant, let N ∈ N be a fixed number, and let Ω ⊂ RN

be a bounded domain. Also, let us assume that the boundary ∂Ω of Ω is smooth if
N > 1. On that basis, we denote by ν∂Ω the unit outer normal vector on ∂Ω, and we set
Q := (0, T ) × Ω and Σ := (0, T ) × ∂Ω.

Let ν > 0 be a fixed small constant. In this paper, a coupled system of two parabolic
initial-boundary value problems is considered. This system is denoted by (S)ν , and for-
mally described as follows.

(S)ν : 
ηt − ∆η + g(η) + α′(η)β(∇θ) = 0 in Q,

∇η · ν∂Ω = 0 on Σ,

η(0, x) = η0(x), x ∈ Ω;

(1.1)


α0(η)θt − div

(
α(η)Dβ(∇θ) +

ν

2
D[(β0)

2](∇θ)
)

= 0 in Q,(
α(η)Dβ(∇θ) +

ν

2
D[(β0)

2](∇θ)
)

· ν∂Ω = 0 on Σ,

θ(0, x) = θ0(x), x ∈ Ω.

(1.2)

System (S)ν is derived from the following energy functional, called “free energy”:

[η, θ] ∈ H1(Ω) × H1(Ω) �→ Fν(η, θ) :=
1

2

∫
Ω

|∇η|2 dx +

∫
Ω

ĝ(η) dx

+

∫
Ω

α(η)β(∇θ) dx +
ν

2

∫
Ω

β0(∇θ)2 dx; (1.3)

† Department of Mathematics, Faculty of Education, Chiba University, 1-33 Yayoi-cho, Inage-ku,
Chiba, 263-8522, Japan; sirakawa@faculty.chiba-u.jp. AMS Subject Classi�cation 35K87, 35K67.
This study is supported by Grant-in-Aid for Encouragement of Young Scientists (B) (No. 24740099)
JSPS.
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An idea of the proof of the comparison principle of viscosity
solutions for doubly nonlinear Hamilton-Jacobi equations

Naoki Yamada

1 Introduction

It is well known that a variational inequality with unilateral condition

maxfF (x; u; Du; D2u); u(x) ¡ kg = 0 in Ω

is represented as
F (x; u; Du; D2u) + @ˆ(u) 3 0

by using the subdifferential @ˆ of a convex function

ˆ(x) =

(
0 x 5 k;

+1 otherwise:

Here, Du and D2 represent the gradient vector and the Hessian matrices for
u, respectively.

This equation is mainly formulated in a framework of Hilbert space as a
typical example of subdiffrential operators.

The author had treated this inequality in the framework of viscosity so-
lutions [6].

On the other hand, the doubly nonlinear equation

@’(ut(t)) + Au(t) 3 f(t)

is also considered in the theory of evolution equations ([4], [3], [2], [7], [5],
[1]). Here, ’ : H !] ¡ 1; +1] is a proper lower semicontinuous convex
function in a Hilbert space H, @’ is its subdifferential and A is a monotone
operator.
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On Logistic Di�usion Equations with Nonlocal E�ects

Yoshio YAMADA �

Department of Applied Mathematics
Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, JAPAN

E-mail: yamada@waseda.jp

1 Introduction

In this paper we discuss the following problem for logistic equations with di�usion and nonlocal
e�ects:

(P)

8>><>>:
ut = d�u + u

�
a � bu �

Z



k(x; y)u(y; t)dy

�
in 
 � (0; 1);

u = 0 on @
 � (0; 1);

u(�; 0) = u0 in 
;

where 
 is a bounded domain in RN with smooth boundary @
, a; d are positive constants,
b is a nonnegative constant, k 2 C(
 � 
) is a nonnegative function and u0 is a nonnegative
function. In (P), u denotes the population density of a certain species. Usually, the dynamics
of the population density is governed by a logistic di�usion equation (without nonlocal terms).
If k � 0 in (P), it is well known that there exists a unique global solution u and that

lim
t!1

u(�; t) =

(
0 uniformly in 
 if 0 < a � d�1;

� uniformly in 
 if a > d�1;

where �1 is the principal eigenvalue of �� with homogeneous Dirichlet boundary condition and
� is a unique positive stationary solution (which exists if and only if a > d�1). However, it is
sometimes reasonable to take account of nonlocal e�ects since each individual species interacts
either visually or by chemical means in a real world. So we will discuss a logistic di�usion
equation by adding a nonlocal reaction term as in (P).

Our main purpose is to investigate the di�erence or similarity between local problems and
nonlocal problems for logistic di�usion equations. In particular, we are interested in the follow-
ing points:

(a) Existence and uniqueness of bounded global solutions for (P),
(b) Asymptotic behavior of global solutions as t ! 1,
(c) Structure of positive solutions for the corresponding stationary problem:

(SP)

8<:d�u + u

�
a � bu �

Z



k(x; y)u(y)dy

�
= 0 in 
;

u = 0 on @
:

�Part of this work has been supported by Grant-in-Aid for Scienti�c Research (C-24540220), Japan Society
for the Promotion of Science.
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