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Hiroki Tanabe, born on February 23, 1932, was brought up in Tokyo. He majored in 

Mathematics at the University of Tokyo, obtained his Bachelor’s degree in 1954, his Master’s 

degree in 1956, and successively entered the doctor’s course. Leaving the doctor’s course, he 

was appointed to Assistant at Osaka University in 1956. He received the title of Doctor of 

Science from Osaka University in 1960. After being promoted to Lecturer and Associate 

Professor, he was promoted to Professor at Osaka University in 1967. After retiring from Osaka 

University in 1995, he worked as Professor at Otemon Gakuin University until 2002. 

Tanabe acted as a member of editorial board of mathematical journals: Osaka Journal of 

Mathematics, Funkcialaj Ekvacioj, and Advances in Mathematical Science and Applications. 

 In 1964 he received the Fujihara Award from the Fujihara Foundation of Science for his 

famous work on the theory of abstract evolution equations and its applications. In 2011 he was 

awarded the Order of the Sacred Treasure (Zuihou Shou) from the Japanese Government for his 

distinguished accomplishments in education and researches. 

 

Hiroki Tanabe made a profound contribution to developing the study of functional analytic 

methods for partial differential equations. We here describe some of them which are classified in 

five subjects. 

He presented definitive results of constructing a fundamental solution for non-autonomous 

linear abstract parabolic evolution equations. For the case where the domains of linear operators 

appearing in equations are temporally constant the work has been done independently with 

Sobolevskiĭ and is now called the Sobolevskiĭ and Tanabe theory. For the case where the 

domains of linear operators are temporally variable it has been done jointly with Kato. The 

Kato-Tanabe condition is now widely known as one of the fundamental sufficient conditions for 

solving various parabolic equations in a unified way. 

He introduced a very general formula for estimating the distribution of eigenvalues of elliptic 

operators which are determined from coercive sesquilinear forms. His method enables us to 

know the distribution of eigenvalues under minimum assumptions of the regularity of 

coefficient functions in the elliptic operators. 

The L
1
 space is a specifically important space in which the parabolic equations should be 

handled, although one cannot prove directly the generation of analytic semigroups for elliptic 

operators differently from the L
p
 spaces for 1 < p <  . Tanabe introduced a new method of 

utilizing integral kernels to show the L
1
 generation of analytic semigroups and together to 

construct an L
1
 fundamental solution to parabolic equations. 

He developed these profound results to the advanced study on abstract evolution equations 

with memory and abstract evolution equations of degenerate type. Partial differential equations 

containing memory effects form one of the important classes of problems to be studied in 
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mathematical engineering. He first showed methods how to construct a fundamental solution to 

these equations which are at the same time available to a wide class of problems. 

Abstract degenerate equations were first studied by Favini systematically. Tanabe then 

contributed deeply to develop the theory by newly introducing useful methods for constructing a 

fundamental solution to the equations. 

 

Hiroki Tanabe is a world-famous researcher, driven by his powerful will to cast light on the 

difficult problems of mathematics. His accomplishment as a scientist is enormous and his mind 

is both proactive and profound. However, it is not just his performance as a scientist that we 

praise on his 80th birthday; his kindness, his courtesy and his good nature make him an 

invaluable and true leader for all of us. 
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Preface 

 

This volume is the proceedings of a five day seminar on partial differential equations 

held at Osaka University in August, 2012, under the support of Osaka University. Such 

a seminar is annually held and is organized in rotation by Tanabe’s school members. 

Seminar 2012 was specially organized in honor of his 80th birthday. The volume is 

divided into two parts. The first consists of the reports of the speakers of Seminar 2012. 

The second is devoted to the reports of contributors to the annual seminar. 

 

We gratefully acknowledge the support of the Japan Society for the Promotion of 

Science through Grant-in-Aid for Scientific Researches, No. 20340035, on Structural 

Analysis of Exponential Attractors for Dissipative Systems and its Applications. 

 

 

Atsushi Yagi and Yoshitaka Yamamoto (Editors) 
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Codimension-n bifurcation theorems applicable

to the numerical verification

Tadashi KAWANAGO

Department of Mathematics, Tokyo Institute of Technology

2-12-1, Oh-Okayama, Meguro-ku, Tokyo 152-8551, Japan

tadashi@math.titech.ac.jp

Abstract. This article is a digest version of our paper [K5]. We establish codimension-n

bifurcation theorems applicable to the numerical verification methods. They are genera-

lization of codimension-1 bifurcation theorems in [K1].

1．Introduction and our main result

By the recent growth of the computer power, we can observe numerically bifurcation

phenomena of solutions for a lot of differential equations and systems. It is often difficult,

however, to analyze such phenomena by the use of pure analytical methods. On the other

hand, it is becoming more and more possible to analyze the bifurcation phenomena rigor-

ously by numerical verification methods based on some appropriate bifurcation theorems.

Actually, by using a symmetry-breaking bifurcation theorem [K1, Theorem 3.1] and the

numerical verification methods, we proved the existence of a Z2-symmetry breaking bifur-

cation point for a nonlinear forced vibration system described by a wave equation in [K2],

and Nakao, Watanabe, Yamamoto, Nishida and Kim verified some symmetry-breaking

bifurcation points for two-dimensional Rayleigh-Bénard heat convection system in [WN]

and [NWYNK].

In this article, we describe codimension-n bifurcation theorems applicable to the nu-

merical verification methods, which were recently established in the author’s paper [K5].

They are generalization of codimension-1 bifurcation theorems in [K1].

Here, we present our main theorem. Let X and Y be real Banach spaces. Let X1

and X2 be closed subspaces of X, and Y1 and Y2 be closed subspaces of Y . We assume

that X = X1 ⊕ X2 and Y = Y1 ⊕ Y2. Here, ⊕ means the direct sum. Let n ∈ N and

g ∈ C2(Rn × X, Y ) have the following properties:

(1.1) g(Λ, v) ∈ Y1 for any Λ ∈ Rn and v ∈ X1,

(1.2) gu(Λ, v)Xj ⊂ Yj for any Λ ∈ Rn and v ∈ X1 (j = 1, 2),

(1.3) guu(Λ, v1)v2w ∈ Y2 for any Λ ∈ Rn, v1, v2 ∈ X1 and w ∈ X2.

1
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We denote by e1 := (1, 0, · · · , 0) ∈ Rn the first row vector of the identity matrix of order

n. We define J : Rn ⊕ X → Rn ⊕ Y by

(1.4) J

Λ

v

w

 :=

 lw − e1

g(Λ, v)

gu(Λ, v)w

 ∈ Rn × Y1 × Y2 for (Λ, v, w) ∈ Rn × X1 × X2.

Here, l ∈ L(X, Rn) and we assume that lv = 0 for any v ∈ X1. We define projections p

and P by

(1.5) p : (r1, r2, · · · , rn) ∈ Rn 7−→ r1 ∈ R,

(1.6) P : (r1, r2, · · · , rn) ∈ Rn 7−→ (r2, · · · , rn) ∈ Rn−1 for the case n ≥ 2.

In what follows, we always set formally Rn−1 × Y := Y for the case: n = 1. We define

G : Rn × X → Rn−1 × Y by

(1.7) G := g (n = 1) and G

(
Λ

u

)
:=

(
Plu

g(Λ, u)

)
(n ≥ 2).

We set Z := (pl)−1(0) = {u ∈ X ; plu = 0} and R+ := (0,∞). Our main theorem is the

following:

Theorem 1.1. In addition to the assumptions above we assume that (Λ0, v0, w0)

∈ Rn × X1 × X2 satisfies the following (H1) and (H2):

(H1) A point (Λ, v, w) = (Λ0, v0, w0) is an isolated solution of the extended system

J(Λ, v, w) = 0,

(H2) The linear operator gu(Λ0, v0)|X1 : X1 → Y1 is bijective.

Then, the point (Λ0, v0) is a bifurcation point of the equation G(Λ, v) = 0. Exactly,

there exist an open neighborhood W of (Λ0, v0) in Rn × X, a ∈ R+, ζ ∈ C1((−a, a), Rn),

η ∈ C1((−a, a), Z), an open neighborhood V of 0 in Rn and q ∈ C2(Λ0 + V, X1) such that

ζ(0) = Λ0, η(0) = 0, q(Λ0) = v0 and

(1.8) G−1(0)∩W = {(Λ, q(Λ)) ; (Λ, q(Λ)) ∈ W}∪{(ζ(α), αw0+αη(α)+q(ζ(α))) ; |α| < a}.

Roughly speaking, the well-known pitchfork bifurcation theorem [CR, Theorem 1.7] by

Crandall and Rabinowitz is equivalent to our Theorem 1.1 with n = 1, X1 = {0} and

Y1 = {0} (see Section 2). We immediately obtain a Z2-symmetry breaking bifurcation

theorem [K1, Theorem 3.1] by setting n = 1 in our Theorem 1.1 and by choosing the

symmetric subspace of X as X1 and the anti-symmetric subspace as X2. We can apply

our Theorem 1.1 to Hopf bifurcation by setting n = 2 and choosing an appropriate space
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of periodic functions as X, the subspace of steady functions as X1 and the complementary

subspace of X1 as X2 (see [K5, Section 4] for the details).

We note that most known bifurcation theorems are not applicable directly to the nu-

merical verification methods. We explain this point by Hopf bifurcation as an example.

We consider the next autonomous ordinary differential equation:

(O) ẏ = f(λ, y), y, f(λ, y) ∈ Rd.

Hopf bifurcation theorem. The point (λ, y) = (λ0, y0) is a Hopf bifurcation point

of the equation (O), i.e. a branch of periodic solutions of (O) bifurcates at the point

(λ, y) = (λ0, y0) from a branch of steady solutions of (O) with the initial period 2πσ0,

provided the following conditions (C1)-(C4) are satisfied:

(C1) f(λ0, y0) = 0,

(C2) ± i are the simple eigenvalues of σ0fy(λ0, y0) (So, by the implicit function theorem,

the matrix σ0fy(λ, y(λ)) has a pair of complex conjugate of eigenvalues µ(λ), µ(λ) with

µ(λ0) = i),

(C3) (Transversality condition of eigenvalues) Reµ′(λ0) 6= 0,

(C4) ik is not an eigenvalue of σ0fy(λ0, y0) for k ∈ Z − {−1, 1}.

It is difficult to check rigorously by numerical methods the simplicity condition (C2) and

the dynamic condition (C3). In Theorem 1.1 these conditions correspond to static condi-

tions, i.e. regularity conditions for linear operators. It is not difficult to verify them by

some numerical method. See [K5, Section 4.4] for the details.

We omit the proofs of our results described in this article. See [K5] for them. For a

numerical example see [K5, Section 4], where we applied Theorem 1.1 with n = 2 and our

numerical verification method to a parabolic system called Brusslator model to verify that

it has a Hopf bifurcation point.

The author asks the readers interested in this article to contact him by e-mail. He is

willing to send [K5] (a PDF document) to them.

2. Basic bifurcation theorems

Theorem 2.1 in this section is a generalized version of [K1, Theorem 2.1] and can be

regarded as as a refined version of Theorem 1.1 with X1 = {0} and Y1 = {0}.
Let X and Y be Banach spaces and U be an open neighborhood of 0 in X. Let n ∈ N

and V be an open neighborhood of 0 in Rn. Let f ∈ C1(V × U, Y ) be a map such that

(2.1) f(Λ, 0) = 0 for any Λ = (Λ1, · · · , Λn) ∈ V

3
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and the partial Fréchet derivative fΛku exists and is continuous for k = 1, · · · , n. We

denote fΛu = (fΛ1u, · · · , fΛnu) for simplicity.

We define H : V × X → Rn × Y by

(2.2) H

(
Λ

u

)
:=

(
lu − e1

fu(Λ, 0)u

)
.

Here, l ∈ L(X, Rn). In what follows, we often use the same notations as in Section 1. We

define F : V × U → Rn−1 × Y by

F := f (n = 1) and F

(
Λ

u

)
:=

(
Plu

f(Λ, u)

)
(n ≥ 2).

We set Z := (pl)−1(0) = {u ∈ X ; plu = 0}.

Theorem 2.1. In addition to the assumptions above we assume

(H) There exists u0 ∈ U such that (Λ, u) = (0, u0) is an isolated solution of the extended

system H(Λ, u) = 0.

Then there exist an open neighborhood W of (0,0) in Rn × X, a ∈ R+ and continuous

functions ζ : (−a, a) → Rn, η : (−a, a) → Z such that ζ(0) = 0, η(0) = 0 such that

(2.3) F−1(0) ∩ W = {(Λ, 0) ; (Λ, 0) ∈ W} ∪ {(ζ(α), αu0 + αη(α)) ; |α| < a}.

Moreover, if f ∈ Ck+1 (k ∈ N) then ζ, η ∈ Ck.

For simplicity, we write DH0 := DH(0, u0), f 0
u := fu(0, 0), F 0

u := Fu(0, 0), F 0
Λu :=

FΛu(0, 0) and so on. We have

(2.4) DH0

(
Λ

u

)
=

(
lu

Λ · f0
Λuu0 + f 0

uu

)
=

(
plu

Λ · F 0
Λuu0 + F 0

uu

)
.

In view of the next result, we may consider Theorem 2.1 as a generalized version of [CR,

Theorem 1.7].

Proposition 2.1. The condition (H) in Theorem 2.1 is equivalent to the following (i) and

(ii):

(i) dimN (F 0
u ) = 1 and codimR(F 0

u ) = n.

(ii) ∃u0 ∈ U such that

(2.5) plu0 = 1, N (F 0
u ) = span {u0},

(2.6) span(F 0
Λuu0) ⊕R(F 0

u ) = Rn−1 × Y.

Here, we denote span(F 0
Λuu0) := {Λ · F 0

Λuu0 ; Λ ∈ Rn}.

4
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ON THE FORMALLY SELF-ADJOINT SCHERÖDINGER OPERATORS

KIYOKO FURUYA

Dedicated to Professor Hiroki Tanabe on his 80th birthday

Abstract. A Schrödinger operator, (not self-adjoint but) formally self-adjoint, generates a
(not unitary but) contraction semigroup. Our class of potentials U in Schrödinger equation
is wide enough : the real measurable potential U should be locally essentially bounded
except a closed set of measure zero.

1. Introduction

We shall construct a family of unique solutions to the Schrödinger equation in RN

h
∂

∂t
u(t, x) =

ih2

2m
�u(t, x) − iU(x)u(t, x), u(0, x) = ϕ(x),(1)

for U ∈ L∞
loc(RN\N , R) where N is a closed set of measure 0. For further information, see

(2), (4) . Here h and m are positive constants.

Remark 1. We define a sequence of functions {Un}n∈N as follows:

Un(x) =

⎧⎪⎪⎨⎪⎪⎩
n if n < U(x),

U(x) if −n ≤ U(x) ≤ n for n ∈ N
−n if U(x) < −n

(2)

It is easily checked that Un(x) = min
{
n, max{−n, U(x)}

}
. Then we shall approximate the

potential U by Un. The unique solution obtained by this approximation seems to correspond
to the case no particle comes from infinity in the example above. This solution seems natural
for the theory of path integrals. The physical meaning of the solution by Nelson[11] is unclear
to the author.

Definition 1. Let B be a densely defined operator on Hilbert space H. Then
(i) B is essentially self-adjoint if and only if it has a unique self-adjoint extension, necessarily

its closure B̄,
(ii) B is formally self-adjoint if 〈Bϕ,ψ〉 = 〈ϕ,Bψ〉 for all ϕ and ψ in H.

We consider a closed extension of (not necessarily essentially self-adjoint but) formally
self-adjoint operator iA ≡ −(h2/2m)� + U on C∞

0 (RN\N ). Here C∞
0 (E) denote the set

of all infinitely differentiable functions with compact support in E. The semigroup of our
solution family, which is obtained by the approximation (2), is not necessarily a group of
unitary operators but a semigroup of contractions. Our result improves one of the Nelson
[11]’s, which says the contraction semigroup of his solution family exists (not for all but) for
a. e. m > 0 and for any U ∈ C(RN\N0; R), where N0 is a closed subset of capacity 0. Our
results is closely related to the theory of path integrals (see Furuya [4]).

Date: October 29, 2012.
1
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2 KIYOKO FURUYA

2. Schrödinger equation

For simplicity we consider the following normalized equation :

∂

∂t
u(t, x) = i�u(t, x) − iU(x)u(t, x), u(0, x) = ϕ(x) for ϕ ∈ H(2)(RN ; C),(3)

where H(2)(RN ; C) denote the Sobolev space of L2-functions with first and second distribu-
tional derivatives also in L2 on RN to C.

If �− U is essentially self-adjoint, the operator family {T (t)} defined by T (t)ϕ = u(t) is

uniquely extended to a group of unitary operators from L2(RN ; C
)

to L2(RN ; C). Let N be

a fixed closed subset of RN of measure 0 and D = {D} be the maximum family such that
each element D ⊂ D ⊂ RN\N is a finite union of connected bounded open sets. The family
D = {D} satisfies

⋃
D∈D D = RN\N . We denote the restriction of f to D by f |D. We use

the following notation

L∞
loc(RN\N ; R) =

{
f
∣∣∣∣ f(x) ∈ R, x ∈ RN , f |D ∈ L∞(D; R), ∀D ∈ D

}
.(4)

Let U ∈ L∞
loc(RN\N , R). We assume for any neighbourhood of any point of N , U is not

essentially bounded. By this assumption, U uniquely determines N in the following sense :

N =
⋂
ν

{Nν

∣∣∣∣ U ∈ L∞
loc(RN\Nν ; R)}.(5)

Let

Bn = { x ∈ RN
∣∣∣ − n < U(x) < n } for n ∈ N.(6)

We have Bm ⊃ Bn for m > n and

for any D ∈ D, there exists Bn such that D ⊂ D ⊂ Bn.(7)

We denote Un(x) = min
{
n, max{−n, U(x)}

}
. Thus Un ∈ L∞(RN ; R). For U ∈ L∞

loc(RN\N ; R)

we consider the approximative equation

d

dt
un(t) = Anun(t) where An = i(�− Un).(8)

In this case the operator −iAn is essentially self-adjoint. Hence the semigroup {Tn(t)}
generated by −iAn is the family of solutions to (8) and is a group of unitary operators :
‖Tn(t)ϕ‖ = ‖ϕ‖ for t ∈ R and ϕ ∈ L2(RN ; C).

The main theorem in this paper is the following :

Theorem 1. For any U ∈ L∞
loc(RN\N , R), there exists a closed extension of (i�−iU)|C∞

0 (RN\N )

in L2(RN ; C) to L2(RN ; C) which generates a unique contraction C0-semigroup {T (t)
∣∣∣ t ≥ 0}

such that

T (t)ϕ = w- lim
n→∞

Tn(t)ϕ for all ϕ ∈ L2(RN ; C),(9)

where Tn(t)ϕ is the solution to (8) and w-lim means the weak convergence.
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ON THE FORMALLY SELF-ADJOINT SCHERÖDINGER OPERATORS 3

3. Preliminaries

In this section we begin by introducing some terminology and notation and present those
aspects of the basic theory which are required in subsequent sections.

3.1. Filter.

Definition 2. Given a set E, a partial ordering ⊂ can be defined on the powerset P(E) by
subset inclusion. Define a filter F on E as a subset of P(E) with the following properties:
(i) ∅ �∈ F .(The empty set is not in F .)
(ii) If A ∈ F and B ∈ F , then A

⋂
B ∈ F . (F is closed under finite meets.)

(iii) If A ∈ F and A ⊂ B, then B ∈ F . (Therefore E ∈ F .)

Definition 3. Let B is a subset of P(E). B is called filter base on E if and only if
(i) The intersection of any two sets of B contains a set of B,
(ii) B is non-empty and the empty set is not in B

Let X be a topological space.

Definition 4. U(x) is called the neighourhood filter at point x for X if and only if U(x) is
the set of all topological neighbourhoods of the point x.

Definition 5. To say that filter base B converges to x, denoted B → x, means that for every
neighourhood U of x, there is a B ∈ B such that B ⊂ U . In this case, x is called a limit of
B and B is called a convergent filter base

Lemma 1. X is a Hausdorff space if and only if every filter base on X has at most one
limit.

Definition 6. A filter F in a topological spacec is called ultra filter if having the property
that no other filter exists in the space having among its subsets all the subsets in the given
filter.

For details concerning the filter, we refer to Bourbak[1].

3.2. Compact open topology.

Definition 7. A linear topological space X is called a locally convex linear topological space,
or, in short, a locally convex space, if and only if its open sets � 0 contains a convex, balanced
and absorbing open set.

Let X and X ′ be two linear spaces over the complex field C and a scalar product 〈x, x′〉 ∈ C
for x ∈ X and x′ ∈ X ′ be defined.

Definition 8. Let X be topological vector space. The weak topology on X, denote by
σ(X,X ′), is the weakest topology such that all elements of X ′ remains continuous.

Definition 9. The strong topology β of X ′ is the topology of uniform convergence on every
σ(X,X ′)-bounded set in X. X ′

β denotes (X ′)β.

Definition 10. τ0 is the locally convex topology on X, defined by the seminorm system

P = {pγ

∣∣∣ pγ(f) = supg∈Cγ
|〈f, g〉|, Cγ ∈ C}, where C = {Cγ} denotes the family of the

compact subsets of X ′
β. τ0 is called the compact open topology.

In the case of Banach space J. Dieudonné has proved the following theorem.

Theorem 2 (Dieudonné[2]). The bounded weak∗ topology in a Banach space is identical
with the compact open tpoplogy

11



4 KIYOKO FURUYA

We denote by X
′∗ the space of linear functionals bounded on every bounded set in X ′

β.

Proposition 1 (Kōmura and Furuya[9] Proposition 1). Let Xτ0 be the completion of the
space Xτ0. Then we have:

(X ′
β)′ ⊂ Xτ0 ⊂ X

′∗.

Lemma 2 (Kōmura and Furuya[9] Lemma 5). Let x′′ ∈ X ′′. x′′ ∈ Xτ0 if and only if x′′ is
σ(X ′, X)-continuous on every τ0-equi-continuous set {U o

p |Up ∈ Uτ0}. Here U o
p is a polar set

of Up.

Corollary 1. If X is a Banach space, we have X ′′ = Xτ0.

4. Existence of weak limit of unitary groups in abstract case

(H, ‖·‖), or simply H , denotes a Hilbert space with norm ‖·‖ . Instead of the convergence
of subsequences we use the convergence of filters. We consider an infinite semi-ordered index
set A = {α}. We assume that there exists an ultra-filter Φ of infinite subsets of A satisfying

∀φ ∈ Φ, ∀α ∈ A, ∃α′ ∈ φ : α′ � α.(10)

In the following {Φ} denotes the family of ultra-filters whose element satisfies (10).

Remark 2. Note that we can use subsequences {αk}∞k=1 instead of ultra-filters, if H is
separable.

Let a family {Tα(t) | −∞ < t < ∞}α∈A of groups of unitary operators in H be given.
Aα denotes the generator of {Tα(t)} :

d

dt
Tα(t)ϕ = AαTα(t)ϕ for ϕ ∈ D(Aα).

Definition 11. For an ultra-filter Φ satisfying (10), the operators (I −AΦ)−1 and TΦ(t) are
defined as follows :

(I − AΦ)−1f = w- lim
α∈φ∈Φ

(I − Aα)−1f for ∀f ∈ H,(11)

TΦ(t)ϕ = w- lim
α∈φ∈Φ

Tα(t)ϕ for ∀ϕ ∈ H.(12)

In this section we shall show the existence of a semigroup {TΦ(t)} in (12). As is well known,
iAα is self-adjoint : 〈Aαϕ, ψ〉 = −〈ϕ,Aαψ〉 for ϕ, ψ ∈ D(Aα), and the resolvent (I − Aα)−1

is a contraction : ‖(I − Aα)−1‖ ≤ 1. Since a bounded subset of H is relatively σ(H,H)-
compact, ‖(I − Aα)−1ϕ‖ ≤ ‖ϕ‖ and ‖Tα(t)ϕ‖ = ‖ϕ‖, there exist w- limα∈φ∈Φ(I − Aα)−1ϕ
and w- limα∈φ∈Φ Tα(t)ϕ. Hence (I − AΦ)−1 and TΦ(t) are well defined. Note that AΦ may
be multi-valued. The following condition implies AΦ is single-valued, which will be verified
later (See.Theorem 4).
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ON THE FORMALLY SELF-ADJOINT SCHERÖDINGER OPERATORS 5

Condition 1. There exist a dense subspace H0 of H satisfying H0 ⊂ ⋂
α∈φ D(Aα) and a

linear operator A0 : H0 −→ H such that

∀ψ ∈ H0, ∃α(ψ) ∈ A : A0ψ = Aαψ for ∀α � α(ψ).(13)

Throughout this paper, we assume Condition 1 holds. By definition, (11) means

∀f ∈ H, ∀ε > 0,∀Cβ ∈ C,∃φ ∈ Φ : sup
α∈φ,ϕ∈Cβ

|〈(I − AΦ)−1f − (I − Aα)−1f, ϕ〉| < ε.

Lemma 3. For a fixed f ∈ H, put

ϕα = (I − Aα)−1f and ϕΦ = (I − AΦ)−1f.(14)

Under the condition 1, we have
(a) Let f = (I − A0)ϕ for ϕ ∈ H0 then ϕ = limα∈φ∈Φ(I − Aα)−1f.
(b) Let ϕα = (I − Aα)−1f and ϕΦ = w- limα∈φ∈Φ ϕα, then

w - lim
α∈φ∈Φ

Aαϕα = AΦϕΦ.

Moreover if AΦ is single-valued, it follows that

H0 ⊂ D(AΦ), AΦ|H0 = A0,(15)

〈AΦϕ, ψ〉 = −〈ϕ,A0ψ〉 for ∀ϕ ∈ D(AΦ) and ∀ψ ∈ H0.(16)

Proposition 2. The range of (I − AΦ)−1 : R((I − AΦ)−1) = (I − AΦ)−1H is dense in H.

We cite Theorem 9 in [9] as Theorem 3. Let X be a reflexive Banach space and {Tα(t)}α∈A
be a family of contraction C0-semigroups in X.

Theorem 3 ( Kōmura and Furuya [9] Theorem 9). Suppose for some filter Φ

∀f ∈ X, ∃ϕΦ = w- lim
α∈φ∈Φ

(I − Aα)−1f.(17)

Thus the operator (I −AΦ)−1 is defined. If the range R((I −AΦ)−1) is dense in X, AΦ is a
densely defined closed operator and generates a semigroup {TΦ(t)} :

w- lim
α∈φ∈Φ

Tα(t)x = TΦ(t)x for ∀x ∈ X.(18)

Moreover, we have {TΦ(t)} is a contraction C0-semigroup in X.

Theorem 4. Under condition 1, AΦ is a closed operator and generates a contraction C0-
semigroup {TΦ(t)}.

Proof. Since the range R((I − AΦ)−1) is dense in H by Proposition 2, our Theorm follows
from Theorem 3. �
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6 KIYOKO FURUYA

5. Approximation by bounded domains

Let D = {D} be the maximum family such that each element D ⊂ D ⊂ RN\N is a
finite union of connected bounded open sets. For D ∈ D, L2(D; C) denotes the L2-space
on D to C and H(1)(D; C) denote the Sobolev space of L2-functions with first distributional
derivatives also in L2 on D to C. H(2)(D; C) denote the Sobolev space of L2-functions
with first and second distributional derivatives also in L2 on D to C with norm ‖ · ‖(2).

H
(1)
0 (D; C) is defined as the closure in H(1)(D; C) of C∞

0 (D; C). For U ∈ L∞(D; R), the
functional ΨD(ϕ) ≡ 1

2
‖(−�)−1/2ϕ‖2 + 1

2
‖
√

U + Cϕ‖2 is lower semicontinuous and convex,

where C = max{0,−ess inf U}. The domain of ΨD is H(1)(D; C).

Definition 12. We denote by ΨD
0 if the domain is restricted to the closure of C∞

0 (D; C) :

D(ΨD
0 ) = H

(1)
0 (D; C).

Definition 13. Let Ψ : H →] −∞, +∞] be a propery convex function. The subdifferential
of Ψ is the (possibly multivalued) operator ∂Ψ : H → H defined by

∂Ψ(x) = {w ∈ H; Ψ(x) − Ψ(v) ≤ (w, x − v), ∀v ∈ H}.

Since

−∂ΨD
0 = �− U − C and D(∂ΨD

0 ) = H
(1)
0 (D; C)

⋂
H(2)(D; C),

the equation in L2(D; C) with Dirichlet condition is written as

d

dt
uD(t) = −i∂ΨD

0 (uD(t))
(
= i(�− U − C)uD(t)

)
and uD(0) = ϕ.(19)

If the boundary ∂D of D is smooth, the normal derivative ∂n is defined on ∂D, and we have

−∂ΨD = �− U − C where D(∂ΨD) = {ϕ ∈ H(2)(D; C)
∣∣∣ ∂nϕ|∂D = 0}.

Hence the equation in L2(D; C) with (generalized) Neumann condition is written as

d

dt
uD(t) = −i∂ΨD(uD(t)) and uD(0) = ϕ.(20)

The semigroup {TD(t)}, TD(t)ϕ = e−iCtuD(t), of solution family to (19) or (20) is a group of
unitary operators, respectively. We define an order in D as follows :

Dα, Dβ ∈ D : Dα ≺ Dβ ⇐⇒ Dα ⊂ Dβ.(21)

We consider an ultra-filter Φ = {φ} whose element φ consists of infinite subsets of D satisfying
(10) for A = D in the next section :

lim
D∈φ∈Φ

D =
⋃

D∈φ∈Φ

D = RN\N .

Proposition 3. We define an operator TΦ(t) for TD(t) associated with (19) or (20) by

TΦ(t)ϕ = w- lim
D∈φ∈Φ

TD(t)ϕ
(
= τ0- lim

D∈φ∈Φ
TD(t)ϕ

)
for ∀ϕ ∈ L2.(22)

Then {TΦ(t)} is a contraction semigroup.
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ON THE FORMALLY SELF-ADJOINT SCHERÖDINGER OPERATORS 7

6. Weak limit of unitary groups

6.1. Existence in L2-case.

Theorem 5. For each approximation {An} or {AD}, the limit TΦ(t) = limΦ exp(tAn) or
limΦ exp(tAD) exists and {TΦ(t)} is a contraction C0-semigroup. Here AD = ∂ΦD

0 in (19)
or ∂ΦD in (20).

Lemma 4. Condition 1 is satisfied for H0 = C∞
0 (RN\N ; C).

We consider an ultra-filter D1 = {δ} by the order (21 ) whose element φ consists of infinite
subsets of D. D1 satisfies (10) and

lim
D∈δ∈D1

D =
⋃

D∈δ∈D1

D = RN\N .(23)

Lemma 5. Let ϕΦ = w- limm∈φ1∈Φ(I − Am)−1f for f ∈ L2(RN ; C). Then on any fixed
D ∈ D, the filter {ϕm; ϕm = (I − Am)−1f,m ∈ φ ∈ Φ} strongly converge to ϕΦ on D, that
is,

∀D ∈ D, ∀ε > 0, ∃φ ∈ Φ :
∥∥∥(ϕΦ − ϕm)

∣∣∣
D

∥∥∥ < ε for all m ∈ φ,(24)

and the filter {ϕΦ|D; D ∈ D1} strongly converge to ϕΦ, that is,

∀ε > 0, ∃D ∈ D such that
∥∥∥ϕΦ − ϕΦ

∣∣∣
D

∥∥∥ < ε.(25)

Hence for m > l, we have∫
D
|(I − Al)ϕm(x)|2dx =

∫
D
|(I − Am)ϕm(x)|2dx ≤

∫
RN

|(I − Am)ϕm(x)|2dx = ‖f‖2.

That is, {ϕm|D,m ∈ φ} is contained in a bounded subset of H(2)(RN ; C)|D ≡ {ϕ|D
∣∣∣ ϕ ∈

H(2)(RN ; C)}, since two norms ‖ · ‖(2) and ‖ · ‖l = ‖(I − Al)
−1 · ‖ are equivalent on

H(2)(RN ; C)|D. A closed bounded subset of H(2)(RN ; C)|D is a compact subset of L2(D; C),
since D is bounded in RN . Since the filter {ϕm|D, m ∈ φ ∈ Φ} is weakly convergent in
L2(D; C), it is strongly convergent in L2(D; C).

Proposition 4. Let A = AΦ with domain D(A) = H
(2)
loc (RN\N ; C). Then A is a closed

operator from L2
loc(RN\N ; C) to L2

loc(RN\N ; C).

Proof. Proof follows from Lemma 5. �
Proof of Theorem 5. From Lemma 4, Proposition 4 and Theorem 4 we obtain Thorem 5.

6.2. Uniqueness. In this subsection we shall show the uniqueness of TΦ(t) in (12) for the
approximative equation (8).

Let Φ =
{
φ = {nk} ; nk ∈ N

}
be an ultra-filter of subsequences of natural numbers.

Theorem 6. TΦ(t) does not depend on Φ.

We assume the following Assumption:
Assumption 1. AΦ1 �= AΦ2 for two ultra-filters Φ1 and Φ2 with Φ1 �=Φ2.

In the following we shall show that Assumption 1 implies a contradiction. We shall begin
with several Lemmas.
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Lemma 6. Suppose TΦ1(t) �= TΦ2(t). There exists ϕ0 ∈ C∞
0 (RN\N ; C) satisfies

∃t1 > 0,∃c0 > 0 such that
d

dt
‖TΦ1(t)ϕ0 − TΦ2(t)ϕ0‖

∣∣∣∣
t=t1

≥ c0.(26)

Put ϕ1 = TΦ1(t1)ϕ0 and ϕ2 = TΦ2(t1)ϕ0. (26) means

d

dt
‖TΦ1(t)ϕ1 − TΦ2(t)ϕ2‖

∣∣∣
t=0

≥ c0 > 0.(27)

Note that ϕ1 ∈ D(AΦ1) and ϕ2 ∈ D(AΦ2)
Case 1. In the case that ϕ2 ∈ D(AΦ1).
We have

d+

dt
‖TΦ1(t)ϕ1 − TΦ1(t)ϕ2‖

∣∣∣∣
t=0

≤ 0,(28)

In fact,

‖TΦ1(h) (TΦ1(t)ϕ1 − TΦ1(t)ϕ2) ‖ ≤ ‖TΦ1(t)ϕ1 − TΦ1(t)ϕ2‖ for ∀h > 0,

implies

1

h

(
‖TΦ1(t + h)ϕ1 − TΦ1(t + h)ϕ2‖ − ‖TΦ1(t)ϕ1 − TΦ1(t)ϕ2‖

)
≤ 0 for ∀h > 0.

From which the relation (28) follows. Note that the left hand of (28) exists since d+

dt
TΦ1(t)ϕ1

∣∣∣
t=0

and d+

dt
TΦ1(t)ϕ2

∣∣∣
t=0

exist for ϕ1, ϕ2 ∈ D(AΦ1). We have

‖TΦ1(h)ϕ2 − TΦ2(h)ϕ2‖ + ‖TΦ1(h)ϕ1 − TΦ1(h)ϕ2‖ − ‖ϕ1 − ϕ2‖
≥ ‖TΦ1(h)ϕ1 − TΦ2(h)ϕ2‖ − ‖ϕ1 − ϕ2‖.

Hence

d+

dt
‖TΦ1(t)ϕ2 −TΦ2(t)ϕ2‖

∣∣∣
t=0

+
d+

dt
‖TΦ1(t)ϕ1 −TΦ1(t)ϕ2‖

∣∣∣
t=0

≥ d+

dt
‖TΦ1(t)ϕ1 −TΦ2(t)ϕ2‖

∣∣∣
t=0

.

We have by (27) and (28)

d+

dt
‖TΦ1(t)ϕ2 − TΦ2(t)ϕ2‖

∣∣∣
t=0

≥ d+

dt
‖TΦ1(t)ϕ1 − TΦ2(t)ϕ2‖

∣∣∣
t=0

− d+

dt
‖TΦ1(t)ϕ1 − TΦ1(t)ϕ2‖

∣∣∣
t=0

> 0.

Hence

Re〈(AΦ2 − AΦ1)ϕ2, ϕ2〉 = Re
d+

dt
〈(TΦ2(t) − TΦ1(t))ϕ2, ϕ2〉

∣∣∣∣
t=0

(29)

=
1

2

d+

dt
‖(TΦ2(t) − TΦ1(t))ϕ2‖2

∣∣∣∣
t=0

> 0,

Thus we have AΦ2ϕ2 �= AΦ1ϕ2. Since C∞
0 (RN\N ; C) is dense in L2(RN ; C), there exists

ψ ∈ C∞
0 (RN\N ; C) such that

〈(AΦ2 − AΦ1)ϕ2, ψ〉 �= 0.

Nevertheless, from (30) of lemma 7 we obtain that

〈(AΦ2 − AΦ1)ϕ2, ψ〉 = 〈ϕ2, (
tAΦ2 − tAΦ1)ψ〉 = −〈ϕ2, (A0 − A0)ψ〉 = 0.
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This is a contradiction.

Lemma 7. Let A0 = A|C∞
0 (RN\N ;C) (see Condition 1). We have

A0 = −tAΦ1 |C∞
0 (RN\N ;C) = −tAΦ2 |C∞

0 (RN\N ;C).(30)

Proof. Proof follows from (16) by Lemma 4. �

Corollary 2. Let f ∈ L2(RN ; C) and ψ ∈ C∞
0 (RN\N ; C). Then 〈TΦ2(t)f, ψ〉 is differentiable

in t ≥ 0 :

d

dt
〈TΦ2(t)f, ψ〉 = 〈TΦ2(t)AΦ2f, ψ〉 = 〈f, t(TΦ2(t)

tAΦ2)ψ〉 = −〈f, tTΦ2(t)A0ψ〉.

Case 2. In the case that ϕ2 /∈ D(AΦ1).
This means

‖AΦ1ϕ2‖2 = lim
D∈δ∈D1

∫
D
|AΦ1ϕ2|2dx = ∞,(31)

since ϕ2 ∈ D(AΦ2) ⊂ H
(2)
loc (RN\N ; C) and AΦ1ϕ2 = A0ϕ2 ∈ L2

loc(RN\N ; C) by
Proposition 4.

Lemma 8. There exists δ > 0 such that

0 < Re
d

dt
〈TΦ2(t)ϕ2 − TΦ1(t)ϕ1, ψ〉

∣∣∣
t=0

,(32)

if ‖ϕ2 − ϕ1 − ψ‖ < δ and ψ ∈ C∞
0 (RN\N ; C).

Proof. Let δ satisfy

0 < δ <
c0‖ϕ2 − ϕ1‖

2‖AΦ2ϕ2 − AΦ1ϕ1‖
.

�

Lemma 9. Let δ be in Lemma 8. Then there exists ψ1 ∈ D(AΦ1) with ‖ϕ2 − ϕ1 − ψ1‖ < δ,
such that

Re
d

dt
〈TΦ1(t)ϕ2 − TΦ1(t)ϕ1, ψ1〉

∣∣∣
t=0

= Re〈AΦ1ϕ2 − AΦ1ϕ1, ψ1〉 ≤ 0,(33)

where

d

dt
〈TΦ1(t)ϕ2 − TΦ1(t)ϕ1, ψ1〉 =

d

dt
〈ϕ2 − ϕ1,

tTΦ1(t)ψ1〉
(

= 〈ϕ2 − ϕ1,
d

dt
tTΦ1(t)ψ1〉

)
.

Proof. We recall ‖AΦ1ϕ2‖ = ∞ (see (31)). That is, for any L > 0 and δ in Lemma 8, there
exists ψε ∈ C∞

0 (RN\N ; C) such that |〈AΦ1ϕ2 − AΦ1ϕ1, ψε〉| > L and ‖ψε‖ < δ/2. Therfore
〈AΦ1ϕ2 − AΦ1ϕ1, e

iθψε〉 < −L for some real θ.
For ψ0 ∈ C∞

0 (RN\N ; C) satisfying ‖ϕ2 − ϕ1 − ψ0‖ < δ/2, put

L := |〈AΦ1(ϕ2 − ϕ1), ψ0〉|.

17
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For ψ1 = ψ0 + eiθψε we have ‖ϕ2 − ϕ1 − ψ1‖ < δ. Hence by Lemma 8

Re〈AΦ1ϕ2 − AΦ1ϕ1, ψ1〉 = Re〈AΦ1ϕ2 − AΦ1ϕ1, ψ0 + eiθψε〉
≤ |〈AΦ1ϕ2 − AΦ1ϕ1, ψ0〉| + 〈AΦ1ϕ2 − AΦ1ϕ1, e

iθψε〉
≤ L − L = 0.

�
Lemma 10. For ψ1 ∈ C∞

0 (RN\N ; C) in Lemma 9 we have

Re
d

dt
〈(TΦ2(t) − TΦ1(t))ϕ2, ψ1〉

∣∣∣
t=0

> 0,(34)

where d
dt
〈(TΦ2(t) − TΦ1(t)) ϕ2, ψ1〉 = d

dt
〈ϕ2, (

tTΦ2(t) − tTΦ1(t)) ψ1〉.

Proof. By using (32) and (33) we get

0 < Re
d

dt
〈TΦ2(t)ϕ2 − TΦ1(t)ϕ1, ψ1〉

∣∣∣
t=0

+ Re
d

dt
〈TΦ1(t)ϕ1 − TΦ1(t)ϕ2, ψ1〉

∣∣∣
t=0

= Re
d

dt
〈TΦ2(t)ϕ2 − TΦ1(t)ϕ2, ψ1〉

∣∣∣
t=0

.

�
On the other hand, from Lemma 7 and Corollary 2 it follows that

Re
d

dt
〈TΦ2(t)ϕ2 − TΦ1(t)ϕ2, ψ1〉

∣∣∣
t=0

= Re〈ϕ2, (
tAΦ2 − tAΦ1)ψ1〉 = Re〈ϕ2, (A0 − A0)ψ1〉 = 0.

This is a contradiction to (34).
Thus in both cases we get a contradiction and the proof of Theorem 6 is complete.
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Structure of solutions to the Emden equation on a
geodesic ball in a sphere

Atsushi Kosaka ∗†

1 Introduction and main results

In this seminar we discussed the following problem
∆SNu+ up = 0 in Bθ0 ,

u > 0 in Bθ0 ,

u+ κ
∂u

∂n
= 0 on ∂Bθ0 ,

(1.1)

where N ≥ 3, SN = {x ∈ RN+1 | |x| = 1}, ∆SN is the Laplace-Beltrami operator on
SN , n is the outer unit normal vector to ∂Bθ0 and κ ≥ 0. Here Bθ0 is a geodesic ball
in SN with its geodesic radius θ0 ∈ (0, π), and its center is located at the north pole
Pn = (x1, x2, ..., xN+1) = (0, 0, ..., 1).

Especially we focused on a radial solution to (1.1), that is, a solution u to (1.1)
depending only on a geodesic distance from Pn. It is significant to consider a radial
solution. In fact, in [3] and [5], it is proved that, under p ≤ p∗ := (N + 2)/(N − 2) and
κ = 0, any solution u ∈ C2(Bθ0) to (1.1) is a radially symmetric. In addition the existence
of a positive radial solution is corresponding the Sobolev imbeddingH1

0 (Bθ0) → Lp+1(Bθ0).
In [1] and [2], the problem (1.1) is studied to investigate the existence of a function
attaining the best constant of the Sobolev imbedding with p = p∗, that is, the critical
Sobolev exponent. Thus we were also interested in a radial solution to (1.1), and hence
we write (1.1) by using polar coordinates. Namely let

x1 = r sin θ sinφ1 sinφ2... sinφN−1

x2 = r sin θ sinφ1 sinφ2... cosφN−1

x3 = r sin θ sinφ1 sinφ2... cosφN−2

...

xN = r sin θ cosφ1

xN+1 = r cos θ

(1.2)

∗Department of Mathematical Sciences, Osaka Prefecture University.
†e-mail: kosaka@ms.osakafu-u.ac.jp
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with r ≥ 0, θ, φi ∈ [0, π] (i = 1, 2, ..., N − 2) and φ ∈ [0, 2π]. By (1.2), the Laplace–
Beltrami operator ∆SN is written by

∆SNu =
1

sinN−1

∂

∂θ

(
sinN−1 θ

∂u

∂θ

)
+

N−1∑
i=1

1

sin2 θ sinN−i−1 φi

∏i−1
j=1 sin

2 φj

∂

∂φi

(
sinN−i−1 φi

∂u

∂φi

)
.

Therefore a radial solution to (1.1) satisfies
1

sinN−1 θ

(
uθ sin

N−1 θ
)
θ
+ up = 0 for θ ∈ (0, θ0),

u(θ) > 0 for θ ∈ (0, θ0),

u(θ0) + κuθ(θ0) = 0.

(1.3)

In this talk, we spoke of structure of solutions to (1.3) with two cases, that is, the critical
case p = p∗ and the supercritical case p > p∗. Hereafter a solution u to (1.3) converging
to some constant as θ → 0 is said to be a regular solution. On the other hand, a solution
u to (1.3) tends to +∞ as θ → 0 is said to be a singular solution.

First we stated the critical case. Under p = p∗, there are preceding studies, e.g.,[1]
and [2], and the following proposition is proved:

Proposition 1.1 Assume p = p∗ and κ = 0. If N = 3, then the following statements
hold:

(i) If θ0 ∈ (0, π/2], then there exists no regular solution to (1.3).

(ii) If θ0 ∈ (π/2, π), then there exists a singular classical solution to (1.3).

On the other hand, if N ≥ 4, then, for any θ0 ∈ (0, π), a regular solution to (1.3) exists.

Thus, under the Dirichlet boundary condition, the structure of solutions to (1.3) is com-
pletely known. Moreover, from Proposition 1.1, we see that there is a difference between
the cases N = 3 and N ≥ 4. Under N = 3, the existence of solutions varies at θ0 = π/2.
Bandle, Brillard and Flucher have proved that, in N = 3, the existence of solutions varies
at some constant θc ∈ (0, π). After their study, Bandle and Peletier investigated this
problem in detail, and they proved θc = π/2.

We considered the above problem under a more general boundary condition. That is
why we expect that the investigation provides us a comprehensive view to the structure
of solutions to the Emden equation. Our results is as follows:

Theorem 1.1 (Theorem 1.1 in [6]) Assume p = p∗. For (1.3), the following state-
ments hold.

(i) Suppose that 0 ≤ κ ≤ 1/2. If θ0 satisfies

1

2
Arcsin 2κ ≤ θ0 ≤

1

2
(π − Arcsin 2κ), (C)

then (1.3) has no regular or singular solution. On the other hand, if θ0 does not
satisfy (C), then, for each θ0, (1.3) has a unique regular solution and infinitely
many singular solutions.

2
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(ii) Suppose that κ > 1/2. Then, for any θ0, (1.3) has a unique regular solution and
infinitely many of singular solutions.

By Theorem 1.1, we strictly obtain the information concerning the existence of solutions
to (1.3) with N = 3. Moreover we proved the existence of a singular solution as well as a
regular solution.

Second we stated the supercritical case p > p∗. In this case, we assume κ = 0, that is,
we only consider the Dirichlet boundary condition. Because of the continuity of solutions
to (1.3) concerning a parameter, it seems that there exists a solution to (1.3) with p > p∗
for some θ0. In fact, for p sufficiently near p∗, there exists a regular solution:

Theorem 1.2 Assume κ = 0, and θ0 ∈ (π/2, π) (N = 3) or θ0 ∈ (0, π) (N ≥ 4). Then
there exists some ϵ0(θ0) > 0 such that, for any ϵ ∈ (0, ϵ0), there exists at least two regular
solutions to (1.3) with p = p∗ + ϵ.

Theorem 1.2 implies that, for a perturbation p = p∗+ϵ, a new solution appears. The above
result only explains the sufficiently near critical case, and it seems difficult to investigate
the existence of solutions to (1.3) for any p > p∗, and we do not obtain such a result yet.
However we can investigate the nonexistence of solutions for sufficiently large p > p∗, and
the result is as follows:

Theorem 1.3 Under the same assumptions as in Theorem 1.2, there exists some pc(θ0) >
p∗ such that, for any p > pc, there exists no regular or singular solution to (1.3).

Theorems 1.2 and 1.3 are quite different from results of the Emden equation on a ball in
the Euclidean space RN . It seems that the difference derive from the metric of SN , and
we are required to investigate the problem in detail.

2 Ideas of proofs

In this section we explain ideas used in proofs of Theorems 1.1–1.3. Our methods of
proofs are owing to Yanagida and Yotsutani’s studies [8], [9]. First we transform (1.3) to
the exterior problem. Namely we define

ρ :=
κ

sinN−1 θ0
, (2.1)

τ :=

∫ θ0

θ

dψ

sinN−1 ψ
+ ρ, (2.2)

and, by using (2.1) and (2.2), a new function

w(τ) :=
u(θ)

τ

is defined. Here we remark that, from (2.2), τ attains ρ as θ = θ0, and τ → +∞ as θ → 0.
For w defined above, the next lemma holds:

3
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Lemma 2.1 The function w = u/τ satisfies
1

τ 2
(
τ 2wτ

)
τ
+K(τ)wp(τ) = 0 for τ ∈ (ρ,+∞),

w(ρ) = β,

wτ (ρ) = 0,

(2.3)

where β := α sin2 θ0 with α := −uθ(θ0). Here K(τ) is defined as

K(τ) := τ p−1 sin2N−2 θ.

Conversely if w ∈ C2(ρ,+∞) is a positive solution to (2.3), then u = τw is a solution to
(1.3).

Next we will investigate the structure of solutions to (2.3) instead of that of (1.3). The
following lemma implies that positive solutions to (2.3) is classified into two types:

Lemma 2.2 If a solution w to (2.3) satisfies w > 0 on (ρ,+∞), then τw(τ) is non-
decreasing for τ ∈ (ρ,+∞).

Namely if w is a positive solution to (2.3), then limτ→+∞ τw(τ) = const. or τw tends to
+∞ as τ → +∞. We define these types as follows:

Definition 2.1 (i) A solution w to (2.3) is said to be a rapidly decaying solution if
w > 0 on [ρ,+∞) and τw(τ) converges to some positive constant as τ → +∞.

(ii) A solution w to (2.3) is said to be a slowly decaying solution if w > 0 on [ρ,+∞)
and τw(τ) → +∞ as τ → +∞.

(iii) A solution w to (2.3) is said to be a crossing solution if w has a zero in (ρ,+∞).

Moreover we see that three types of solutions are corresponding to the behavior of the
function

P (τ ;w) :=
1

2
τ 2wτ{τwτ + w}+ τ 3

p
K(τ)wp.

Kawano, Yanagida and Yotsutani [4] investigated the relation between types defined in
Definition 2.1 and the behavior of P . From their results, the following statements holds:

Lemma 2.3 (1) τw → const. as τ → +∞ if and only if limτ→+∞ P (τ ;w) = 0,

(2) τw → +∞ as τ → +∞ if and only if limτ→+∞ P (τ ;w) < 0,

(3) w attains 0 for some τ1 ∈ (ρ,+∞) if and only if limτ→+∞ P (τ ;w) > 0.

From the above arguments, it suffices to investigate the behavior of P as τ → +∞.
Since P contains the unknown function w, and it is not easy to investigate the behavior
of P . Yanagida and Yotsutani’s idea is to use the next functions

G(τ) :=
1

p+ 1

{
τ 3K(τ)− 1

2
(p+ 1)

∫ τ

ρ

s2K(s)ds

}
,

H(τ) :=
1

p+ 1

{
τ 2−pK(τ)− 1

2
(p+ 1)

∫ +∞

τ

s1−pK(s)ds

}
.

4
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For G and H, it holds that

d

dτ
P (τ ;w) = Gτ (τ)w

p+1(τ),

and

Gτ (τ) =
τ (p+1)/2

p+ 1
(τ−

p−5
2 L)τ = τ p+1Hτ (τ).

We see that the behavior of P depends on that of G. Functions G andH plays a important
role when we investigate the behavior of P . Before stating the result, we define

τG := inf{τ ∈ [ρ,+∞) | G(τ) < 0},
τH := sup{τ ∈ [ρ,+∞) | H(τ) < 0}.

Here we define τG = +∞ if G(τ) ≥ 0 on (ρ,+∞) and τH = ρ if H(τ) ≥ 0 on (ρ,+∞).
By using two value τG and τH , the next statements holds:

Proposition 2.1 Under p = p∗, the following statements holds.

(i) If τG = +∞, then the structure of solutions to (2.3) is of type C : w(τ ; β) is a crossing
solution for any β > 0.

(ii) If ρ = 0 and τH = 0, then the structure of solutions to (2.3) is of type S : w(τ ; β) is
a slowly decaying solution for any β > 0.

(iii) If ρ < τH ≤ τG < +∞, then the structure of solutions to (2.3) is of type M :
there exists a constant β∗ > 0 such that w(τ ; β) is a slowly decaying solution for
β ∈ (0, β∗), w(τ ; β∗) is a rapidly decaying solution, and w(τ ; β) is a crossing solution
for β ∈ (β∗,+∞).

(iv) If 0 < ρ = τH ≤ τG < +∞, then the structure of solutions to (2.3) is of type M.

(We newly proved Proposition 2.1 (iv) in [6]. The case (iv) is not proved in [8] and [9]
yet.) Theorem 1.1 is a direct result of Proposition 2.1, and, for strict calculation, see
Section 4 in [6].

Finally we states the case p > p∗. In this case we also use the function P , that is,
since

d

dτ
P (τ ;w) = Gτ (τ)w

p+1(τ),

Gτ (τ) =
1

p+ 1
r(τ, p)τ p+1 sin2N−2 θ,

r(τ, p) =
p+ 3

2
− (2N − 2)τ sinN−2 θ cos θ,

we see that P (τ ;w) → +∞ as τ → +∞ when p is sufficiently large. In fact if p is
sufficiently large, then r(τ, p) > 0 for any τ . Hence dP/dτ > 0, and we obtain Theorem
1.3. On the other hand, if p = p∗ + ϵ (ϵ is sufficiently small), then the behavior of P is
complicated, and it is difficult to investigate the behavior of that (in this case, we cannot
apply Proposition 2.1). However, for small initial data β, the following lemma is known:

5
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Lemma 2.4 (Theorem 3 in [9]) If lim infτ→+∞Gτ (τ) > 0, then there exists βc > 0
such that, for any β ∈ (0, βc), w(τ ; β) is a crossing solution.

If we assume that there exists only one rapidly decaying solution to (2.3) with p = p∗+ ϵ,
then the assumption is inconsistent with Lemma 2.4, and therefore we can prove Theorem
1.2 (strict arguments are stated in [7]).
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ON WELL-POSEDNESS FOR NONLINEAR SCHRÖDINGER

EQUATIONS WITH POWER NONLINEARITY IN FRACTIONAL

ORDER SOBOLEV SPACES

HARUNORI UCHIZONO AND TAKESHI WADA

Abstract. We study the well-posedness for the nonlinear Schrödinger equa-
tion (NLS)

i∂tu+
1

2
∆u = λ|u|p−1u

in R1+n, where p > 1, λ ∈ C, and prove that (NLS) is locally well-posed in

Hs if 2 < s < 4 and s/2 < p < 1 + 4/(n− 2s)+. To obtain good lower bound
for p, we systematically use Strichartz type estimates in fractional order Besov
spaces for time variable.

1. Introduction

This paper is a survey of our recent result [15]. We consider the Cauchy Problem
for the nonlinear Schrödinger equation

i∂tu+
1

2
∆u = f(u),(1)

u(0) = ϕ,(2)

where u : R1+n → C is the unknown function, f(u) = λ|u|p−1u with p > 1, λ ∈ C.
Introducing the propagator U(t) = exp(it∆/2) and the retarded potential Gg(t) =∫ t

0
U(t − τ)g(τ)dτ , we can convert the problem (1)-(2) to the equivalent integral

equation

u(t) = U(t)ϕ− i (Gf(u)) (t).(3)

The solvability of (1)-(2) has been studied by many authors, see e.g. [1,3,5–8,10–13].
The problem (1)-(2) is said to be locally well-posed in Hs if (3) has a unique
local (in time) solution u ∈ C([0, T ];Hs) for any ϕ ∈ Hs and the flow mapping
ϕ 7→ u is a continuous mapping from Hs to C([0, T ];Hs). Here T need to be taken
uniformly in some neighborhood of arbitrarily fixed ϕ ∈ Hs. If 0 ≤ s < n/2, the
local solvability of (3) has been established for p0(s) < p < 1 + 4/(n − 2s), where
p0(s) = 1 for s ≤ 2, s − 1 for 2 < s < 4 and s − 2 for s ≥ 4; if s ≥ n/2, (3)
is locally solvable for p0(s) < p < ∞. In some cases, we need auxiliary spaces of
Strichartz type (see [9]). The lower bound p0(s) mentioned above is due to [11].
This result was proved for s = 1 by [5, 6], s = 0 by [12], and s = 2 by [13]
provided that λ ∈ R, mainly by the use of Lp-Lq estimate and the regularization
technique. Kato [7, 8] systematically used the Strichartz estimate and gave an
alternative proof of solvability for s = 0, 1, 2. His proof is also applicable for the

Topics: Nonlinear Differential Equations and Evolution Equations, Partial Differential Equa-
tions and their Applications
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2 HARUNORI UCHIZONO AND TAKESHI WADA

case λ /∈ R. Cazenave-Weissler [3] proved the result above for s /∈ Z under the
additional assumption p > [s] + 1, and this can be lowered to p > s by the method
of Ginibre-Ozawa-Velo [4]. Pecher [11] used fractional regularity spaces of Besov
type for time variable and proved the result for p > p0(s).

In the preceding results referred above, the natural upper bound p < 4/(n− 2s)
comes from the scale invariance of (1), whereas the lower bound p > p0(s) comes
from the finite (at most p-times) differentiability of the nonlinear term f(u). Indeed,
Pecher [11] principally estimate the equation in H1

q (B
s−2−ϵ
r,2 ) when 2 < s < 4, and

in H2
q (B

s−4−ϵ
r,2 ) when s ≥ 4, by which we would need p > p0(s). However, this

condition does not seem to be natural since p0(4−0) > p0(4+0). Taking account of
the property that for Schrödinger equation, one time derivative corresponds to two
space derivatives, the optimal lower bound for 2 < s < 4 should be p > s/2, which
linearly connects p0(2) and p0(4). Actually, by the systematical use of fractional
order Besov spaces for time variable, we can obtain the desired result, to be stated
in §2.

2. Main result

Theorem 1. Let n ≥ 5, 2 < s < min(4, n/2) and s/2 < p < 1 + 4/(n− 2s). Let(n
2
− s
) p− 1

p+ 1
<

2

q
= δ(r) ≡ n

2
− n

r
< min

{
n

2
− s;

n

2
· p− 1

p+ 1
;

2

p+ 1

}
.

Then for any ϕ ∈ Hs, there exists T = T (∥ϕ∥Hs) and (3) has a unique solution u
in

X = C([0, T ];Hs) ∩ Lq(0, T ;Bs
r,q) ∩B

s/2
q,2 (0, T ;L

r).

Moreover, the flow mapping ϕ 7→ u is a continuous mapping from Hs to X.

We remark that in the preceding we have assumed s < n/2, which requires
n ≥ 5 in our theorem, simply because we describe the results (and the proof of the
theorem) in a unified manner. If s > n/2, we can obtain similar results more easily
because Hs ⊂ L∞. Especially, we can prove the analogous result to our theorem
under the assumption n ≥ 1, 2 < s < 4 and s/2 < p < 1+ 4/(n− 2s)+. If s ≥ n/2,
we should choose q, r so that

0 <
2

q
= δ(r) < min

{
n

2
· p− 1

p+ 1
;

2

p+ 1

}
.

We can prove Theorem 1 by contraction mapping principle. For the proof,
see [15]. One of the key estimate in the proof is the following version of Strichartz
type estimates.

Lemma 1. Let s > 0, 0 < θ− < θ < θ+ < 1 and let 0 < 2/q = δ(r) < 1. Then we
have the following:

(i) if ϕ ∈ Hs, then U(·)ϕ ∈ C(Hs) ∩ Lq(Bs
r,2) ∩B

s/2
q,2 (L

r) with the estimate

∥U(·)ϕ∥
L∞(Hs)∩Lq(Bs

r,2)∩B
s/2
q,2 (Lr)

≤ C∥ϕ∥Hs ;

(ii) if f ∈ Bθ
q′,2(L

r′) ∩
∩

± Lq∗(θ±)(Lr∗(θ±)), then Gf ∈ C(H2θ) with the estimate

∥Gf∥L∞(H2θ) ≤ C∥f∥Bθ
q′,2(L

r′ ) + Cmax
±

∥f∥
Lq∗(θ±)(Lr∗(θ±))

,
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where 1/q∗(θ) = (1− θ)/q′ and 1/r∗(θ) = (1− θ)/r′ + θ/2;

(iii) if f ∈ Bθ
q′,2(L

r′)∩
∩

± Lq̄(θ±)(Lr∗(θ±)), then Gf ∈ Lq(B2θ
r,q)∩Bθ

q,2(L
r) with the

estimate

∥Gf∥Lq(B2θ
r,q)∩Bθ

q,2(L
r) ≤ C∥f∥Bθ

q′,2(L
r′ ) + Cmax

±
∥f∥

Lq̄(θ±)(Lr̄(θ±))
,

where 1/q̄(θ) = (1− θ)/q′ + θ/q and 1/r̄(θ) = (1− θ)/r′ + θ/r.

This lemma is first proved by Pecher [11] and refined in our papers [14, 15].
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Existence and stability of stationary solutions to a

multidimensional SKT cross-diffusion equation

On the occasion of 80th birthday of Professor Hiroki Tanabe

Shoji Yotsutani (Ryukoku University)

1 Introduction

This is a joint project with Yuan Lou (Ohio State University), Wei.-Ming Ni (Univer-

sity of Minnesota and East China Normal University) concerning mathematical analysis,

and Masaharu Nagayama (Hokkaido University), Tatsuki Mori (Ryukoku University)

concerning numerical computation.

In an attempt to model segregation phenomena in population dynamics, Shigesada,

Kawasaki and Teramoto [7] in 1979 incorporated the inter-competition system. In par-

ticular, the following system was proposed⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ut = ∆[(d1 + ρ11u+ ρ12v)u] + u(a1 − b1u− c1v), in Ω× (0,∞),
vt = ∆[(d2 + ρ21u+ ρ22v)v] + v(a2 − b2u− c2v), in Ω× (0,∞),
∂u

∂n
=

∂v

∂n
= 0, on ∂Ω× (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), in Ω,

(1.1)

where Ω is a bounded domain RN(N ≥ 1) with smooth boundary ∂Ω. Here u and v
represent the densities of two competing species. The constants aj, bj, cj and dj (j = 1, 2)

are all positive, where a1, a2 denote the intrinsic growth rates of these two species,

b1 and c2 account for intra-specific competitions while b2, c1 account for inter-specific

competitions, and d1, d2 are their diffusion rates. The constants ρ11, ρ22 represent intra-

specific population pressures, also known as self-diffusion rates, and ρ12, ρ21 are the

coefficients of inter-specific population pressures, also known as cross-diffusion rates.

For convenience, we set A := a1/a2, B := b1/b2, C := c1/c2. If B < C, we call it

the strong competition case and B > C the weak competition case.

If ρ11 = ρ12 = ρ21 = ρ22 = 0, then (1.1) is the classical Lotka-Volterra competition

diffusion system with Neumann boundary condition⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ut = d1∆u+ u(a1 − b1u− c1v), in Ω× (0,∞),
vt = d2∆v + v(a2 − b2u− c2v), in Ω× (0,∞),
∂u

∂n
=
∂v

∂n
= 0, on ∂Ω× (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), in Ω.

(1.2)

1
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It is well known that in the ”weak competition” case, i.e.

B > A > C,

the constant steady state (u∗, v∗) =
³
a1c2−a2c1
b1c2−b2c1 ,

b1a2−b2a1
b1c2−b2c1

´
is globally asymptotically sta-

ble regardless of the diffusion rates d1 and d2. This implies, in particular, that no

nonconstant steady state can exist for any diffusion rates d1, d2.

On the other hand, it seems not entirely reasonable to add just diffusions to models

in population dynamics, since individuals do not move around completely randomly. In

particular, while modeling segregation phenomena for two competing species one must

take into account the cross-diffusion pressures⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ut = ∆[(d1 + ρ12v)u] + u(a1 − b1u− c1v), in Ω× (0,∞),
vt = ∆[(d2 + ρ21u)v] + v(a2 − b2u− c2v), in Ω× (0,∞),
∂u

∂n
=

∂v

∂n
= 0, on ∂Ω× (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), in Ω.

(1.3)

Mimura and his collaborators started mathematical analysis around 1980 (see, e.g.

Mimura [4]). Considerable work has been done concerning the global existence of solu-

tions to systems (1.3) under various hypotheses. A priori estimates are crucial to obtain

the global existence. As for recent progress including stationary problems, see Ni [5], Ni

[6], Yagi[9] and Yamada [10].

2 Limiting equation

The following two theorem are due to Lou-Ni [1], [2].

Theorem 2.1 ([2]) Suppose for simplicity that ρ21 = 0. Suppose further that B 6= A 6=
C, n ≤ 3 and a2

d2
6= λk for any k ≥ 1, where λk is the kth eigenvalue of −∆ on Ω

with zero Neumann boundary data. Let (uj, vj) be a nonconstant steady state solution

of (1.3) with ρ12 = ρ12,j. Then by passing to a subsequence if necessary, either (i) of

(ii) holds as ρ12,j →∞:
(i) (uj,

ρ12,j
d1
vj)→ (u, v) uniformly, u > 0, v > 0, and⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d1∆[(1 + v)u] + u(a1 − b1u) = 0 in Ω,

d2∆v + v(a2 − b2u) = 0 in Ω,

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω.

2
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(ii) (uj, vj)→ ( τ
v
, v) uniformly, τ is a positive constant, v > 0, and⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Z
Ω

τ

v

³
a1 − b1 τ

v
− c1v

´
dx = 0,

d2∆v + v(a2 − c2v)− b2τ = 0 in Ω,

∂v

∂n
= 0, on ∂Ω.

(2.1)

Their proofs of obtaining the above limiting equations are quite hard and lengthy.

The most important step in the proof is to obtain a priori bounds on steady states of

(1.3) that are independent of ρ12.

It seems from numerical computations that solutions of the case (i) is not directly

related with stable solutions of the original equation with sufficiently large ρ12. However,

we observe numerically that solutions of the case (ii) is closely related with the original

equation with sufficiently large ρ12.

Thus, we will concentrate on the case (ii). Now, we consider the 1-dimensional case

with Ω = (0, 1). The limiting equation becomes as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Z 1

0

1

v

³
a1 − b1 τ

v

´
dx− c1 = 0,

d2vxx + v
¡
a2 − b2 τv − c2v

¢
= 0, in (0, 1),

vx(0) = vx(1) = 0,

v > 0, in (0, 1).

(2.2)

Let us consider about a time-dependent limiting equation as ρ12 →∞ under the con-

dition ρ21 = 0. Time-dependent limiting equation is the following: Unknown functions

are τ(t), v(x, t), and⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d

dt

µZ
Ω

τ

v
dx

¶
=

Z
Ω

τ

v

³
a1 − b1 τ

v
− c1v

´
dx,

∂v

∂t
= d2∆v + v(a2 − c2v)− b2τ in Ω,

∂v

∂n
= 0 on ∂Ω.

(2.3)

This is formally derived by rewriting the first equation as

ut = ρ12 ∆

∙µ
d1

ρ12
+ v

¶
u

¸
+ u(a1 − b1u− c1v)

and
d

dt

µZ
Ω

udx

¶
=

Z
Ω

u(a1 − b1u− c1v)dx.

3
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3 Structure and stability in 1-dimensional case
Due to the scaling and reflection properties of solutions to autonomous ordinary

differential equations, all solutions to the (2.2) are obtained by several reflections and a

suitable re-scaling from solutions of the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z 1

0

1

v

³
a1 − b1 τ

v

´
dx− c1 = 0,

d2vxx + v
³
a2 − b2 τ

v
− c2v

´
= 0 in (0, 1),

vx(0) = vx(1) = 0,

v > 0, and vx > 0, in (0, 1).

(3.1)

Now, we will discuss about the structure of stationary solutions and their stability.

This system (3.1) consists of a nonlinear elliptic equation and an integral constraint.

As far as existence and non-existence in one dimensional domain are concerned, Lou-

Ni-Yotsutani [3] obtained nearly complete knowledge. They also obtained the precise

qualitative behavior of solutions to this limiting system as the diffusion rate varies.

Their basic approach is to convert the problem of solving the system to a problem

of solving its “representation” in a different parameter space. This is first done without

the integral constraint, and then they use the integral constraint to find the “solution

curve” in the new parameter space. This turns out to be a powerful method as it gives

fairly precise information about the solutions.

We have recently made clear the remained delicate parts due to the explicit repre-

sentation by elliptic functions.

We summarized the structure of solutions of (3.1). We concentrate on the case

B < C (strong competition case).

The following two theorem are due to [3].

Theorem 3.1 (Existence) Suppose that B < C. If

max

½
0,
B + C − 2A
C − B

¾
a2

π2
< d2 <

a2

π2
,

then there exists a solution (v(x), τ) of (3.1).

Theorem 3.2 (Nonexistence) Suppose that B < C.

(i) If d2 ≥ a2

π2
, then there exists no solution of (3.1).

(iii) If A < B, there exists no solution of (3.1).

(iii) If B ≤ A < B+C
2
, then there exists a d∗2 = d

∗
2(A,B,C, a2) > 0 such that

there exists no solution of (3.1) for d2 ∈ (0, d∗2].

4
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We see that the above theorem is sharp by the following theorems. The existence

region depending on the the ratio C/B. The situation drastically changes at C/B = 7/3.

Theorem 3.3 Suppose that B < C ≤ 7B/3. (3.1) has a solution (v(x), τ) if and only
if d2 satisfies

max

½
0,
B + C − 2A
C − B

¾
a2

π2
< d2 <

a2

π2
.

Moreover, the solution is unique.

Figure 3.1: Case B < C ≤ 7B/3

■4

Theorem 3.4 Suppose that 7B/3 < C. (3.1) has the unique solution (v(x), τ) if

max

½
0,
B + C − 2A
C − B

¾
a2

π2
< d2 <

a2

π2
.

Moreover, there exists the only one connected non-empty open set D with

D ⊂
½
(A, d2) : B < A <

B + C

2
, 0 < d2 <

½
B + C − 2A
C − B

¾
a2

π2

¾
such that (3.1) has exactly two solutions (v(x), τ) if and only if d2 ∈ D.

Figure 3.2: Case 7B/3 < C

■4

D
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The following theorems in [3] give the shape of solutions to (3.1) as d2 ↑ a2/π2.

Theorem 3.5 (Shape of solutions as d2 ↑ a2/π2 ) Suppose that B < C.
Let (v(x, d2), τ(d2)) be solutions of (3.1). If A ≥ B, then

v(x; d2)→ 0,
v(x; d2)− v(0; d2)
v(1; d2)− v(0; d2)

→ 1− cos(πx)
2

,

τ(d2)

v(x; d2)
→ a2

b2
· 1

1−
q
1− B

A
cos(πx)

uniformly on [0, 1] as d2 ↑ a2/π2.

Figure 3.3: u as d2 ↑ a2/π2 Figure 3.4: v as d2 ↑ a2/π2

The following theorems in [3] give the shape of solutions to (3.1) as d2 ↓ 0. A new
number (B + 3C)/4 appears. The shape is drastically change at A = (B + 3C)/4

Theorem 3.6 (Shape of solutions as d2 → 0 for A < B+3C
4

) Suppose that B 6= C. Let
(v(x, d2), τ(d2)) be solutions of (3.1). If A <

B+3C
4

and B < C, then

v(0; d2)→ 2 · a2
c2
·
B+3C
4
− A

C − B , v(x; d2)→ a2

c2
· A− B
C − B for x > 0,

τ(d2)

v(0; d2)
→ a2

2c2
· C − A
C − B ·

A− B
B+3C
4
− A ,

τ(d2)

v(x; d2)
→ a2

b2
· C − A
C − B for x > 0,

as d2 ↓ 0.

Figure 3.5: u for A ≤ (B + 3C)/4 Figure 3.6: v for A ≤ (B + 3C)/4

6
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Theorem 3.7 (Shape of solutions as d2 → 0 for A ≥ B+3C
4

) Suppose that B 6= C. Let
(v(x, d2), τ(d2)) be solutions of (3.1). If B < C and A ≥ B+3C

4
, then

v(0; d2)→ 0, v(x; d2)→ 3a2

4c2
for x > 0,

τ(d2)

v(0; d2)
→∞, τ(d2)

v(x; d2)
→ a2

4c2
for x > 0, as d2 → 0.

Figure 3.7: u for (B + 3C)/4 < A Figure 3.8: v for (B + 3C)/4 < A

4 Stability in one-dimensional problem

Let us consider the stability of stationary solutions, and multi-dimensional solutions

with their stability.

The following Figure 4.1 shows numerical results for

d1 = 1, d2 = ∗, r = 700, 000

a2 = ∗, b2 = 1, c2 = 2.

a2 = 1, b2 = 1, c2 = 1.

We note that C < 7B/3, (B + C)/2 = 1.5 and (B + 3C)/4 = 1.75.　

Figure 4.1: Stability and instability

7
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Wu[8] gave a proof of instability for

d2 sufficiently small with (B + C)/2 < A < (B + 4C)/4

in one-dimensional case. Recently, she have also given a proof of stability for

d2(< a2/π
2) sufficiently close to a2/π

2 with (B + C)/2 < A < (B + 4C)/4

in one-dimensional case.

5 Multi-dimensional problem

We have done various numerical computations for the case Ω is rectangles in 2-

dimensional space. It seems that the structure of stable stationary solutions is essentially

very similar to 1-dimensional case, though there are much varieties of shape of solutions

in 2-dimensional case than in one-dimensional case.

　

Figure 5.1: 2D global

Now, we will state some mathematical results. We prepare notations. Let

λ0 = 0 < λ1 ≤ λ2 ≤ · · ·

ϕ0 = const., ϕ1, ϕ2, · · · .
be eigen values and corresponding eigen functions of −∆ in Ω ⊂ RN with Neumann

boundary.

Theorem 5.1 Suppose that N ≤ 3 and λ1 be a simple eigen values with an eigen

function ϕ1. Then, there exists exactly two positive non-constant solutions (v−, τ−) and

(v+, τ+) of (2.1) for d2 sufficiently close to a2/λ1 with d2 < a2/λ1

8
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Moreover,

τ → 0,

τ±(d2)
v±(x; d2)

→ a2

b2
· 1

1 + μ±ϕ1(x)

as d2 ↑ a2/λ1, where μ−,μ+ (μ− < 0 < μ+) are solutions ofR
Ω
(1 + μ ϕ1(x))

−2
dxR

Ω
(1 + μ ϕ1(x))

−1
dx
=
A

B
.

Remark. The set {(v−, τ−), (v+, τ+)} is uniquely determined though there is a freedom
to pick up ϕ1. The condition N ≤ 3 comes from Harnack’s inequality in our proof.

Remark. For N = 1, Ω = (0, 1), it is easy to see that

λ1 = π2, ϕ1(x) = cos πx,
1

1− μ2
=
A

B
, μ± = ±

r
1− B

A
.

Remark. For N = 2, Ω = (0, 1)× (0, `) with 0 < ` < 1, it is easy to see that

λ1 = π2, ϕ1(x, y) = cos πx,
1

1− μ2
=
A

B
, μ± = ±

r
1− B

A
.

Theorem 5.2 Suppose that N ≤ 3 and λ1 be a simple eigen values. Then, (v−, τ−)
and (v+, τ+) defined by Theorem 5.1 are asymptotically stable for d2 sufficiently close to

a2/λ1 with d2 < a2/λ1.

The following general lemma plays crucial role to prove Theorems 5.1 and 5.2.

Lemma 5.3 Suppose that N ≥ 1 and ϕ1 be eigen values corresponding to λ1. Let g(μ)
be defined by

g(μ) :=

R
Ω
(1 + μ ϕ1(x))

−2
dxR

Ω
(1 + μ ϕ1(x))

−1
dx

for μ ∈ (−1/maxΩ̄ ϕ1,−1/minΩ̄ ϕ1). Then

dg(μ)

dμ
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+ for μ > 0,

0 for μ = 0,

− for μ < 0.

Moreover, for N ≤ 4, ⎧⎨⎩g(μ)→∞ as μ ↑ μ+,
g(μ)→∞ as μ ↓ μ−.
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Different degrees of reaction rates can block

interfacial dynamics in reaction-diffusion systems
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1 Introduction

We point out some remarks on singulrar limits of reaction-diffusion systems in this article which
is based on the joint work with H. Monobe, H. Murakawa and H. Ninomiya [4].

Some reaction-diffusion systems with huge parameters are often reduced to free boundary
problems as their singular limits when the parameters tend to infinity. Let Ω be a bounded
domain in RN with smooth boundary ∂Ω. For any positive number T we set QT = Ω ×
(0, T ). Hilhorst-Hout-Peletier [1, 2] investigated a simple reaction-diffusion system with a huge
parameter k 

∂u

∂t
= ∆u− kuv,

∂v

∂t
= −kuv

(1)

which describes a “rapid reaction” between a diffusive reactant and a non-diffusive one. As-
suming that the initial values of u and v are non-negative, they derived the singular limit of
an initial-boundary value problem in QT for (1) as k → ∞. Their results are summarized as
follows: the solution (uk, vk) of their initial-boundary value problem for (1) in QT posseses its
singular limit (u∗, v∗) as k → ∞ such that u∗v∗ ≡ 0 in QT ; therefore, when we use the notation

Ωu(t) = {x ∈ Ω|u∗(x, t) > 0}, Ωv(t) = {x ∈ Ω| v∗(x, t) > 0},
Γ(t) = Ω \ (Ωu(t) ∪ Ωv(t)) = {x ∈ Ω|u∗(x, t) = v∗(x, t) = 0},

the region Ωu(t) and the region Ωv(t) are divided by an “interface” Γ(t); moreover u∗ satisfies
the one-phase Stefan problem

∂u∗
∂t

= ∆u∗ in Ωu(t),

v∗
∣∣
Γ(t)+0n

Vn = − ∂u∗
∂n

∣∣∣∣
Γ(t)−0n

, u∗
∣∣
Γ(t)

= 0.
(2)

in a weak sense; in particular, if Γ(t) is a smooth, closed and orientable hypersurface, and if u∗

is smooth on ∪
t ∈ [0, T ]

(
Ωu(t)× {t}

)
, and also if the boundary value of v∗ on ∂Ωv(t) is well-defined

at each t ∈ [0, T ], then (2) holds true in the classical sense. Here n is the unit normal vector
to Γ(t) oriented from Ωu(t) to Ωv(t), and Vn is the velocity of Γ(t) in the direction of n. They
also proved in [3] that the singular limit of a reaction-“degenerated diffusion” system

∂u

∂t
= ∆(u2)− kuv,

∂v

∂t
= −kuv

(3)
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as k → ∞ becomes a free boundary problem with no propagation of the interface: the solution
(uk, vk) of an initial-boundary value problem in QT for (3) possesses its singular limit (u∗, v∗)
as k → ∞ such that u∗v∗ ≡ 0 in QT ; u∗ is a weak solution of

∂u∗
∂t

= ∆(u∗
2) in Ωu0 ,

Vn = 0, u∗
∣∣
Γ0

= 0,
(4)

where Ωu0 , Γ0 and Vn are respectively defined similarly to Ωu(t), Γ(t) and Vn which are given
above, however Ωu0 and Γ0 cannot propagate as time goes on. The singular limit (4) obtained
from (3) is much different from the porous media equation in that the support of u∗(·, t) in
(4) cannot propagate at all. On the other hand Nakaki-Murakawa [5] indicated that another
reaction-“degenerate diffusion” system

∂u

∂t
= ∆(u2)− 2ku

3
2v2,

∂v

∂t
= −kuv

(5)

with a huge parameter k in Ω becomes a good approximation to a porous media equation

∂u∗
∂t

= ∆(u∗
2) in Ω, (6)

where the support of u∗(·, t) does propagate with a positive speed. Let (uk, vk) be the solution
of an initial-boundary value problem in QT for (5). When k is large enough in (5), ukvk almost
vanishes in QT , and a “transition layer” of the profile of vk(·, t), together with a “corner layer”
of the profile of uk(·, t), appears in a thin region of Ω. They showed in [5] that the transition
layer of vk(·, t) well approximates the moving boundary of the support of u∗(·, t) by using the
Barenblatt solution for (6). The consumption rate kuv of u in (3) is much greater than the

consumption rate 2ku
3
2v2 of u in (5) when u is very small. Thus the blocking of the propagating

front of the “region of diffusive u” by the great consumption of u due to the rapid reaction
with v in the corner (resp. transition) layer of u (resp. v) seems to arise easier in (3) than in
(5). However, the reason why the exponents in the reaction rates of (5) bring about exactly the
propagation speed of the interface appearing in the porous media equation (6) has not been
clarified at all.

Taking account of these results, we will investigate the singular limits of initial-boundary
value problems in QT for reaction-diffusion systems

∂u

∂t
= ∆(um)− kupvq,

∂v

∂t
= −kurvs

(7)

as k → ∞. Let (uk, vk) be the solution of an initial-boundary value problem in QT for (7) and
let (u∗, v∗) = lim

k→∞
(uk, vk). We expect a similar situation to above the results: u∗v∗ ≡ 0 in QT ;

namely the region Ωu(t) = {x ∈ Ω|u∗(x, t) > 0} and the region Ωv(t) = {x ∈ Ω| v∗(x, t) > 0}
would be divided by an interface Γ(t) = Ω \ (Ωu(t) ∪ Ωv(t)) = {x ∈ Ω|u∗(x, t) = v∗(x, t) = 0}.
Then a question naturally arises: which values of the exponents p, q, r and s can block the
propagation of the interface Γ(t)? To answer this question, we will consider the situation where
m = q = s = 1 and p < r as a first step.
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2 Results

For simplicity we assume that p = 1 and r ≥ 2 in (7); so we investigate the singular limit of
∂u

∂t
= ∆u− kuv in QT ,

∂v

∂t
= −kurv in QT

(8)

as k → ∞. We impose the homogeneous Neumann boundary condition

∂u

∂ν
= 0 on ∂Ω× (0, T ] (9)

on u and the following conditions on our initial datum (u0, v0):

(I1) u0 ∈ C(Ω), v0 ∈ L∞(Ω);

(I2) u0 ≥ 0, v0 ≥ 0 in Ω, Ωu0 = {x ∈ Ω|u0(x) > 0} ̸= ϕ, Ωv0 = {x ∈ Ω| v0(x) > 0} ̸= ϕ;

(I3) Ωu0 ∩ Ωv0 = ϕ.

We can obtain the following a priori estimates for the solution of our initial-boundary value
problem for (8).

Theorem 1. Let (uk, vk) be the solution of (8)(9) with the initial value (u0, v0) for each k > 0.
Then

(i) 0 ≤ uk(x, t) ≤ ∥u0∥∞, 0 ≤ vk(x, t) ≤ ∥v0∥∞ in QT ;

(ii)

{∫ ∫
QT

kukvk dxdt

}
k>0

is bounded.;

(iii) {uk}k>0 and {vk}k>0 are pre-compact in L2(QT );

(iv) {uk}k>0 and {ukr}k>0 are bounded in L2
(
0, T ; H1(Ω)

)
;

(v)

{
∂vk
∂t

}
k>0

is bounded in H−1
(
0, T ; L2(Ω)

) (
=
{
H1

0

(
0, T ; L2(Ω)

)}∗)
;

(vi)
{
uk

r−2|∇u∗|2
}
k>0

is bounded in H−1(QT )
(
=
{
H1

0 (QT )
}∗)

.

Corollary 2. Let (uk, vk) be the solution of (8)(9) with the initial value (u0, v0) for each k > 0.
Then there exist functions u∗ ∈ L∞(QT ) ∩ L2

(
0, T ; H1(Ω)

)
, v∗ ∈ L∞(QT ) and a distribution

ω∗ ∈ H−1(QT ) such that

uk −→ u∗ strongly in L2(QT ), a.e. in QT , weakly in L2
(
0, T ; H1(Ω)

)
;

vk −→ v∗ strongly in L2(QT ), a.e. in QT ;
uk

r −→ u∗
r strongly in L2(QT ), weakly in L2

(
0, T ; H1(Ω)

)
;

∂vk
∂t

−→ ∂v∗
∂t

weakly in H−1
(
0, T ; L2(Ω)

)
;

uk
r−2|∇uk|2 −→ ω∗ weakly in H−1(QT )

subsequentially as k = kj → ∞. Moreover (u∗, v∗, ω∗) satisfies

0 ≤ u∗ ≤ ∥u0∥∞, 0 ≤ v∗ ≤ ∥v0∥∞, u∗v∗ ≡ 0,
∂v∗
∂t

≤ 0, ω∗ ≥ 0 in QT

and

∫ ∫
QT

{
−
(
u∗

r

r
− v∗

)
ζt + u∗

r−1∇u∗ · ∇ζ
}
dxdt+ (r − 1) H−1(QT )⟨ω∗, ζ⟩H1

0(QT ) = 0 (10)

for any ζ ∈ H1
0 (QT ). 41
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For the limit functions u∗ and v∗ obtained in Corollary 2 we set

Ωu(t) = {x ∈ Ω|u∗(x, t) > 0}, Ωv(t) = {x ∈ Ω| v∗(x, t) > 0},
Γ(t) = Ω \ (Ωu(t) ∪ Ωv(t)) = {x ∈ Ω|u∗(x, t) = v∗(x, t) = 0}

at each t ∈ [0, T ]. The fact u∗v∗ ≡ 0 implies that

Ωu(t) ∩ Ωv(t) = ϕ, t ∈ [0, T ].

We can rewrite the weak form (10) as a free boundary problem under the following assumptions
on the smoothness of u∗, ω∗ and v0:

(A1) v0 is continuous on Ωv0 , and inf
Ωv0

v0 > 0;

(A2) Γ(t) is a smooth, closed and orientable hypersurface in RN satisfying Γ(t) ∩ ∂Ω
≡ ϕ at each t ∈ [0, T ];

(A3) Γ(t) smoothly moves with a normal velocity Vn from Ωu(t) to Ωv(t);

(A4) u∗ is continuous in QT ;

(A5) u∗ is a smooth on ∪
t ∈ [0, T ]

(
Ωu(t)× {t}

)
;

(A6) ω∗ ∈ L1
loc(QT ).

Theorem 3. Let (uk, vk) be the solution of (8)(9) with the initial value (u0, v0) for each k > 0.
Assume (A1)-(A6). Then

Vn ≡ 0 on ∪
t ∈ [0, T ]

(
Γ(t)× {t}

)
(11)(

i.e., Ωu(t) ≡ Ωu0 , Ωv(t) ≡ Ωv0 , Γ(t) ≡ Γ0 := Ω \ (Ωu0 ∪ Ωv0)
)

(12)

and

ω∗ =

{
u∗

r−2|∇u∗|2 in Ωu0 × (0, T ],
0 in Ωv0 × (0, T ]

hold true. Moreover (u∗, v∗) satisfies (9) and
∂u∗
∂t

= ∆u∗ in Ωu0 × (0, T ],

u∗ = 0 on Γ0 × (0, T ],
u∗|t=0 = u0 in Ωu0 ;

v∗ = v0 in Ωv0 × (0, T ].

In particular, the subsequential convergence as k = kj → ∞ in Corollary 2 is replaced by the
convergence as k → ∞.

Remark Among the assumptions (A1)-(A6) it seems that (A4) and (A6) might be remov-
able; however we have not succeeded in removing them yet.

Here we omit the proofs of Theorems 1 and 3 which will be given in [4].
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Abstract. In this paper, we consider an SIR epidemic model with delays in which population
growth is subject to logistic growth in absence of disease. The force of infection with a discrete
delay is given by a separable nonlinear incidence rate. Under the monotonicity conditions, we
investigate asymptotic stability of the trivial equilibrium, the disease-free equilibrium and the
endemic equilibrium. By constructing a Lyapunov functional, we establish the global stability of
the disease-free equilibrium if and only if the basic reproduction number is less than or equal to
one. Moreover, by investigating the location of roots of the associated characteristic equations,
we prove that there exists a critical length of delay such that the endemic equilibrium is locally
asymptotically stable when the delay is less than the value.

1 Introduction

In order to investigate the spread of infectious diseases, many authors have formulated various
epidemic models and the stability of equilibria has also been extensively studied (see [1-5] and
the references therein). From an epidemiological point of view, it is important to investigate
the population dynamics of the disease transmission. Recently, based on an SIR (Susceptible-
Infected-Recovered) epidemic model, Wang et al. [4] considered the asymptotic behavior of the
following delayed epidemic model in which population growth is subject to logistic growth in
absence of disease: 

dS(t)

dt
= r

(
1− S(t)

K

)
S(t)− βS(t)I(t− τ),

dI(t)

dt
= βS(t)I(t− τ)− (µ1 + γ)I(t),

dR(t)

dt
= γI(t)− µ2R(t).

(1.1)

S(t), I(t) and R(t) denote the fractions of susceptible, infective and recovered host individuals
at time t, respectively. In system (1.1), it is assumed that the population growth in susceptible
host individuals is governed by the logistic growth with a carrying capacity K > 0 as well as
intrinsic birth rate constant r > 0. β > 0 is the average number of constants per infective per
unit time and τ ≥ 0 is the incubation time, µ1 > 0 and µ2 > 0 represent the death rates of

1
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infective and recovered individuals, respectively. γ > 0 represents the recovery rate of infective
individuals.

Wang et al. [4] obtained stability results of equilibria of (1.1) in terms of the basic reproduc-
tion number R0: the disease-free equilibrium is globally asymptotically stable if R0 < 1 while
a unique endemic equilibrium can be unstable if R0 > 1. More precisely, if 1 < R0 ≤ 3, then
the endemic equilibrium is asymptotically stable for any delay τ and if R0 > 3, then there exists
a critical length of delay such that the endemic equilibrium is asymptotically stable for delay
which is less than the value while it is unstable for delay which is greater than the value. It is
also shown that Hopf bifurcation at the endemic equilibrium occurs when the delay crosses a
sequence of critical values.

On the other hand, since nonlinearity in the incidence rates has been observed in disease
transmission dynamics, it has been suggested that the standard bilinear incidence rate shall be
modified into a nonlinear incidence rate by some authors (see, e.g., [1, 3]). In this paper, we
replace the incidence rate in (1.1) by a nonlinear incidence rate of the form F (S(t))G(I(t− τ)).
Throughout the paper, it is assumed that the functions F and G are continuous on [0,+∞) and
continuously differentiable on (0,+∞) satisfying the following hypotheses:

(H1) F (S) is strictly monotone increasing on [0,+∞) with F (0) = 0,

(H2) G(I) is strictly monotone increasing on [0,+∞) with G(0) = 0,

(H3) I/G(I) is monotone increasing on (0,+∞) with limI→+0 I/G(I) = 1.

Then we obtain the following system:

dS(t)

dt
= r

(
1− S(t)

K

)
S(t)− F (S(t))G(I(t− τ)),

dI(t)

dt
= F (S(t))G(I(t− τ))− (µ1 + γ)I(t),

dR(t)

dt
= γI(t)− µ2R(t).

(1.2)

The functions F and G include some special incidence rates. For instance, if F (S) = βS with
β > 0 and G(I) = I, then the incidence rate is used in Wang et al. [4] and if F (S) = βS

1+αS with
α, β > 0 and G(I) = I, then the incidence rate, describing saturated effects of the prevalence of
infectious diseases, is used in Zhang et al. [5].

The initial conditions of system (1.2) take the following form{
S(θ) = ϕ1(θ), I(θ) = ϕ2(θ), R(θ) = ϕ3(θ),
ϕi(θ) ≥ 0, θ ∈ [−τ, 0], ϕi(0) > 0, ϕi ∈ C([−τ, 0],R+0), i = 1, 2, 3,

(1.3)

where R+0 = {x ∈ R|x ≥ 0}. By the fundamental theory of functional differential equations,
system (1.2) has a unique positive solution (S(t), I(t), R(t)) satisfying

lim sup
t→+∞

(S(t) + I(t) +R(t)) ≤
(r + µ)K

µ
, (1.4)

where µ = min(µ1, µ2). We define the basic reproduction number by

R0 =
F (K)

µ1 + γ
. (1.5)

2
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In this paper we analyze the stability of equilibria by investigating location of the roots of
associated characteristic equation and constructing a Lyapunov functional. System (1.2) always
has a trivial equilibrium E0 = (0, 0, 0) and a disease-free equilibrium E1 = (K, 0, 0). If R0 > 1,
then system (1.2) has an endemic equilibrium E∗ = (S∗, I∗, R∗) with S∗ > 0, I∗ > 0 and R∗ > 0
(see Lemma 3.1).

The organization of this paper is as follows. In Section 2, we investigate the stability of the
trivial equilibrium and the disease-free equilibrium. In Section 3, for R0 > 1, we investigate
unique existence of the endemic equilibrium of system (1.2) exists. Moreover, we investigate the
delay effect concerning the local asymptotic stability of endemic equilibrium. Finally, in Section
4, we introduce an example of our model to offer some corollaries.

2 Stability of the disease-free equilibrium

In this section, we analyze the stability of the trivial equilibrium E0. By constructing a Lyapunov
functional, we further establish the global asymptotic stability of the disease-free equilibrium E1

for R0 ≤ 1. At an arbitrary equilibrium (Ŝ, Î, R̂) of (1.2), the characteristic equation is given by

(λ+ µ2)

[{
λ+ F ′(Ŝ)G(Î)− r

(
1− 2Ŝ

K

)}
(λ+µ1 + γ − F (Ŝ)G′(Î)e−λτ )

+ F (Ŝ)G′(Î)e−λτF ′(Ŝ)G(Î)

]
= 0. (2.1)

Theorem 2.1. The trivial equilibrium E0 of system (1.2) is always unstable.

Proof. For (Ŝ, Î, R̂) = (0, 0, 0) the characteristic equation (2.1) becomes as follows.

(λ+ µ2)(λ− r)(λ+ µ1 + γ) = 0. (2.2)

Since (2.2) has a positive root λ = r, E0 is unstable. □
Constructing a Lyapunov functional, we prove that the global asymptotic stability of the

disease-free equilibrium E1 is determined by the basic reproduction number R0.

Theorem 2.2. The disease-free equilibrium E1 of system (1.2) is globally asymptotically stable
if and only if R0 ≤ 1 and it is unstable if and only if R0 > 1.

Proof. First we assume R0 ≤ 1. We define a Lyapunov functional by

V (t) =

∫ S(t)

K

(
1− F (K)

F (s)

)
ds+ I(t) + F (K)

∫ t

t−τ
G(I(s))ds, (2.3)

where g(x) = x − 1 − lnx ≥ g(1) = 0 for x > 0. Then the time derivative of V (t) along the
solution of (1.2) becomes as follows.

dV (t)

dt
=

(
1− F (K)

F (S(t))

){
r

(
1− S(t)

K

)
S(t)− F (S(t))G(I(t− τ))

}
+ F (S(t))G(I(t− τ))− (µ1 + γ)I(t) + F (K)(G(I(t))−G(I(t− τ)))

=− rS(t)

KF (S(t))
(F (S(t))− F (K))(S(t)−K) + F (K)G(I(t))− (µ1 + γ)I(t).

=− rS(t)

KF (S(t))
(F (S(t))− F (K))(S(t)−K) + F (K)

(
G(I(t))

I(t)
− 1

R0

)
I(t).

3
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Since the hypothesis (H3) yields 0 < G(I)
I ≤ 1 for I > 0, we obtain

dV (t)

dt
≤ − rS(t)

KF (S(t))
(F (S(t))− F (K))(S(t)−K) + F (K)

(
1− 1

R0

)
I(t). (2.4)

By the hypothesis (H1), (F (S(t))− F (K))(S(t)−K) ≥ 0 with equality if and only if S(t) = K.

For the case R0 < 1, we obtain dV (t)
dt ≤ 0 with equality if and only if S(t) = K and I(t) = 0.

For the case R0 = 1, we obtain dV (t)
dt ≤ 0 with equality if and only if S(t) = K. By Lyapunov-

LaSalle asymptotic stability theorem, we have limt→+∞ S(t) = K if R0 ≤ 1. By the first and
third equations of (1.2), limt→+∞ S(t) = K implies limt→+∞ I(t) = 0 and limt→+∞R(t) = 0.

Since it follows that E1 is uniformly stable from the relation V (t) ≥
∫ S(t)
K

(
1− F (K)

F (s)

)
ds+ I(t),

E1 is globally asymptotically stable.
Second we assume R0 > 1. For (Ŝ, Î, R̂) = (K, 0, 0), the characteristic equation (2.1) becomes

as follows.
(λ+ µ2)(λ+ r)(λ+ µ1 + γ − F (K)e−λτ ) = 0. (2.5)

One can see that λ = −µ2 and λ = −r are negative real roots of (2.5). Moreover, (2.5) has roots
of

p(λ) := λ+ µ1 + γ − F (K)e−λτ = 0.

Since p(0) = (µ1 + γ)(1 − R0) < 0 and limλ→+∞ p(λ) = +∞, we conclude that p(λ) = 0 has at
least one positive root. Hence E1 is unstable. The proof is complete. □

3 Stability of the endemic equilibrium

In this section, we establish local asymptotic stability of the endemic equilibrium E∗ for R0 > 1
by investigating location of the roots of the characteristic equation.

3.1 Unique existence

In this subsection, we give the result on the unique existence of the endemic equilibrium E∗ for
R0 > 1.

Lemma 3.1. If R0 > 1, then system (1.2) has an endemic equilibrium E∗ = (S∗, I∗, R∗) satis-
fying the following equations:

r

(
1− S∗

K

)
S∗ − F (S∗)G(I∗) = 0,

F (S∗)G(I∗)− (µ1 + γ)I∗ = 0,
γI∗ − µ2R

∗ = 0.

(3.1)

Moreover, if R0 > 1 and

F ′(S)− F (S)

S
≥ 0 for all S ∈ (0,K), (3.2)

then the endemic equilibrium E∗ is unique.
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Proof. At a fixed point of (S, I,R) of system (1.2), the following equalitions hold.

r

(
1− S

K

)
S − (µ1 + γ)I = 0, F (S)G(I)− (µ1 + γ)I = 0, γI − µ2R = 0. (3.3)

Substituting the first equation of (3.3) into the second equation of (3.3), we consider the following
equation:

H(S) := F (S)− (µ1 + γ)

r
µ1+γ (1−

S
K )S

G( r
µ1+γ (1−

S
K )S)

= 0.

By the hypotheses (H1) and (H3), we obtain

lim
S→+0

H(S) = −(µ1 + γ) < 0, lim
S→K−0

H(S) = F (K)− (µ1 + γ) = (µ1 + γ)(R0 − 1) > 0,

which implies that there exists a positive root S = S∗ < K such that H(S) = 0. By the first and
third equations of (3.3), we have I∗ = r

µ1+γ (1−
S∗

K )S∗ > 0, and R∗ = γ
µ2(µ1+γ)r(1−

S∗

K )S∗ > 0.
Hence, we obtain the first part of this lemma.

Next, under the condition (3.2), we prove that the function H is strictly monotone increasing
on (0,K). We define

L(S) :=
r

µ1 + γ

(
1− S

K

)
S.

By the relation r(1 − 2S
K ) = r(1 − S

K ) − rS
K = F (S)G(L(S))

S − rS
K and d

dI (
I

G(I))|I=L(S) ≥ 0 for all

S ∈ (0,K), we obtain

H ′(S) =F ′(S)− (µ1 + γ)
dL(S)

dS
· d

dI

(
I

G(I)

)∣∣∣
I=L(S)

=F ′(S)− r

(
1− 2S

K

)
· d

dI

(
I

G(I)

)∣∣∣
I=L(S)

=F ′(S)−
(
F (S)G(L(S))

S
− rS

K

)
· d

dI

(
I

G(I)

)∣∣∣
I=L(S)

≥F ′(S)− F (S)G(L(S))

S
· d

dI

(
I

G(I)

)∣∣∣
I=L(S)

for all S ∈ (0,K). In addition, since G(L(S)) d
dI (

I
G(I))|I=L(S) = 1− L(S)G′(L(S))

G(L(S)) and G′(L(S)) > 0

for all S ∈ (0,K) by the hypothesis (H2), it follows from the condition (3.2) that

H ′(S) ≥F ′(S)− F (S)

S

(
1− L(S)G′(L(S))

G(L(S))

)
>F ′(S)− F (S)

S
≥ 0

for all S ∈ (0,K). This implies that there exists a unique positive root S = S∗ < K such that
H(S) = 0. Hence, we obtain the second part of this lemma. The proof is complete. □

Proposition 3.1. The functions such that F (S)
S is monotone increasing on (0,+∞) satisfy the

condition (3.2). For example, the function F (S) = βSp with p ≥ 1 satisfies (3.2).
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3.2 Local asymptotic stability

In this subsection, we investigate local asymptotic stability of the endemic equilibrium E∗ =
(S∗, I∗, R∗) for system (1.2). Let us assume that R0 > 1 holds. For (Ŝ, Î, R̂) = (S∗, I∗, R∗) the
characteristic roots of (2.1) are the root λ = −µ2 and the roots of

λ2 + aλ+ b− e−λτ (cλ+ d) = 0 (3.4)

with

a =
F (S∗)G(I∗)

I∗
+

(
F ′(S∗)− F (S∗)

S∗

)
G(I∗) +

rS∗

K
,

b =
F (S∗)G(I∗)

I∗

{(
F ′(S∗)− F (S∗)

S∗

)
G(I∗) +

rS∗

K

}
,

c =F (S∗)G′(I∗),

d =F (S∗)G′(I∗)

(
−F (S∗)G(I∗)

S∗ +
rS∗

K

)
.

First we prove that all the roots of (3.4) have negative real part for τ = 0.

Proposition 3.2. Assume R0 > 1. If the condition (3.2) holds, then all the roots of (3.4) have
negative real part for τ = 0.

Proof. When τ = 0, (3.4) yields

λ2 + (a− c)λ+ (b− d) = 0. (3.5)

Noting from the hypotheses (H2) and (H3) that G′(I∗) > 0 and G(I∗)− I∗G′(I∗) ≥ 0, we have

a− c = F (S∗)

(
G(I∗)

I∗
−G′(I∗)

)
+

(
F ′(S∗)− F (S∗)

S∗

)
G(I∗) +

rS∗

K
> 0

and

b− d

=
F (S∗)G(I∗)

I∗

{(
F ′(S∗)− F (S∗)

S∗

)
G(I∗) +

rS∗

K

}
+ F (S∗)G′(I∗)

(
F (S∗)G(I∗)

S∗ − rS∗

K

)
=
rS∗F (S∗)

K

(
G(I∗)

I∗
−G′(I∗)

)
+

F (S∗)(G(I∗))2

I∗

(
F ′(S∗)− F (S∗)

S∗

)
+

(F (S∗))2G′(I∗)G(I∗)

S∗

>0,

which implies that all the roots of (3.5) have negative real part. The proof is complete. □

Next we consider the case F (S) = βS. Then, by Lemma 3.1, system (1.2) has a unique
endemic equilibrium E∗ = (S∗, I∗, R∗). Let us define

R0 = 2
I∗

G(I∗)
+

1

G′(I∗)
. (3.6)

Then we prove that R0 = R0 is a threshold condition which determines the existence of purely
imaginary roots of (3.4) for τ > 0. The following proposition is an extension of the stability
results for the case G(I) = I in Wang et al. [4].
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Proposition 3.3. Assume R0 > 1. Then the following statement holds true.

(i) If R0 ≤ R0, then all the roots of (3.4) have negative real part for any τ > 0.

(ii) If R0 < R0, then there exists a monotone increasing sequence {τn}∞n=0 with τ0 > 0 such
that (3.4) has a pair of imaginary roots for τ = τn (n = 0, 1, · · · ).

Proof. From Proposition 3.2, all the roots of equation (3.4) have negative real part for sufficiently
small τ . Suppose that λ = iω, ω > 0 is a root of (3.4). Substituting λ = iω into the characteristic
equation (3.4) yields equations, which split into its real and imaginary parts as follows:{

−ω2 + b = d cosωτ + cω sinωτ,
aω = cω cosωτ − d sinωτ.

(3.7)

Squaring and adding both equations in (3.7), we have

ω4 + (a2 − 2b− c2)ω2 + (b+ d)(b− d) = 0. (3.8)

By the relations r(1− S∗

K ) = βG(I∗), R0 =
KI∗

S∗G(I∗) and

2S∗G′(I∗) +
K

R0
=

2KI∗G′(I∗)

R0G(I∗)
+

K

R0
=

KG′(I∗)

R0

(
2

I∗

G(I∗)
+

1

G′(I∗)

)
=

R0KG′(I∗)

R0
,

we obtain

a2 − 2b− c2 =

(
βG(I∗)

I∗
+

r

K

)2

(S∗)2 − βG(I∗)

I∗
2r

K
(S∗)2 − (βS∗)2G′(I∗)2

=(S∗)2
{(

βG(I∗)

I∗

)2

− (βG′(I∗))2 +

(
r

K

)2}
and

b+ d =
βS∗G(I∗)

I∗
rS∗

K
+ βS∗G′(I∗)

(
−βG(I∗) +

rS∗

K

)
=
βS∗G(I∗)

I∗
rS∗

K
+ βS∗G′(I∗)

(
−r +

2rS∗

K

)
=
rβS∗

K

(
2S∗G′(I∗) +

K

R0

)
− rβS∗G′(I∗)

=
rβS∗G′(I∗)

R0
(R0 −R0).

First we assume R0 ≤ R0. Then we have a2 − 2b − c2 > 0 and (b + d)(b − d) ≥ 0, that is,
there is no positive real ω satisfying (3.8). This leads to a contradiction and all the roots of (3.4)
have negative real part for any τ ≥ 0. Hence we obtain the first part of this proposition.

Second we assume R0 < R0. Then it follows from the relations a2 − 2b − c2 > 0 and
(b+ d)(b− d) < 0 that there is a unique positive real ω0 satisfying (3.8), where

ω0 =

{
−(a2 − 2b− c2) +

√
(a2 − 2b− c2)2 − 4(b+ d)(b− d)

2

} 1
2

.
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Noting from (3.7) that λ = −iω0 is also a root of (3.4), this implies that (3.8) has a single pair
of purely imaginary roots ±iω0. By the relation

(ac− d)ω2
0 + bd = (c2ω2

0 + d2) cosω0τ,

τn corresponding to ω0 can be obtained as follows:

τn =
1

ω0
arccos

(ac− d)ω2
0 + bd

c2ω2
0 + d2

+
2nπ

ω0
, n = 0, 1, 2, · · · .

Hence we obtain the second part of this proposition. The proof is complete. □
The following proposition indicates that a conjugate pair of the characteristic roots λ = ±iω0

of (2.1) cross the imaginary axis from the left half complex plane to the right half complex plane
when τ crosses τn (n = 0, 1, · · · ) if 1 < R0 < R0.

Proposition 3.4. Assume R0 > 1. If R0 < R0, then the transversality condition:

dRe(λ(τ))

dτ

∣∣∣
τ=τn

> 0

holds for n = 0, 1, · · · .
Proof. Differentiating (3.4) with respect to τ , we obtain

(2λ+ a)
dλ

dτ
= {e−λτ c− τe−λτ (cλ+ d)}dλ

dτ
− λe−λτ (cλ+ d),

that is, (
dλ

dτ

)−1

=
(2λ+ a)− e−λτ c+ τe−λτ (cλ+ d)

−λe−λτ (cλ+ d)

=
2λ+ a

−λe−λτ (cλ+ d)
+

c

λ(cλ+ d)
− τ

λ

=− λ(2λ+ a)

λ2(λ2 + aλ+ b)
+

cλ

λ2(cλ+ d)
− τ

λ

=− (λ2 + aλ+ b) + λ2 − b

λ2(λ2 + aλ+ b)
+

(cλ+ d)− d

λ2(cλ+ d)
− τ

λ

=− λ2 − b

λ2(λ2 + aλ+ b)
+

−d

λ2(cλ+ d)
− τ

λ
.

By the relation

dλ

dτ
=

dRe(λ)

dτ
+ i

dIm(λ)

dτ
=

{(
dRe(λ)

dτ

)2

+

(
dIm(λ)

dτ

)2}(dRe(λ)

dτ
− i

dIm(λ)

dτ

)−1

,

we have dRe(λ)
dτ = Re(dλdτ )

−1{(dRe(λ)
dτ )2 + (dIm(λ)

dτ )2} and

Re

(
dλ

dτ

)−1∣∣∣
τ=τn

=
(−ω2

0 − b)(b− ω2
0)

ω2
0{(b− ω2

0)
2 + a2ω2

0}
+

d2

ω2
0(c

2ω2
0 + d2)

=
ω4
0 − b2 + d2

ω2
0(c

2ω2
0 + d2)

=
ω4
0 − (b− d)(b+ d)

ω2
0(c

2ω2
0 + d2)

> 0.
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Hence we obtain dRe(λ)
dτ |τ=τn > 0 for n = 0, 1, · · · . The proof is complete. □

By Proposition 3.2 and the first part of Proposition 3.3, all the roots of (3.4) have negative
real part for any τ ≥ 0 if 1 < R0 ≤ R0. By Proposition 3.2, the second part of Proposition
3.3 and Proposition 3.4, all the roots of (3.4) have negative real part for 0 ≤ τ < τ0 and there
exists at least 2 roots having positive real part for τ > τ0 if 1 < R0 < R0. We then establish the
stability condition for the endemic equilibrium as follows.

Theorem 3.1 (Enatsu et al. [2, Theorem 3.2]). Assume R0 > 1. Then the following
statement holds true.

(i) If R0 ≤ R0, then the endemic equilibrium E∗ of system (1.2) is locally asymptotically stable
for any τ ≥ 0.

(ii) If R0 < R0, then the endemic equilibrium E∗ of system (1.2) is locally asymptotically stable
for 0 ≤ τ < τ0 and it is unstable for τ > τ0.

Remark 3.1. System (1.2) undergoes Hopf bifurcation at the endemic equilibrium E∗ when τ
crosses τn (n = 0, 1, · · · ) for 1 < R0 < R0.

4 Example

In this section, we consider the following model:

dS(t)

dt
= r

(
1− S(t)

K

)
S(t)− βS(t)

I(t− τ)

1 + αI(t− τ)
,

dI(t)

dt
= βS(t)

I(t− τ)

1 + αI(t− τ)
− (µ1 + γ)I(t),

dR(t)

dt
= γI(t)− µ2R(t)

(4.1)

with α ≥ 0. One can see that system (4.1) always has the trivial equilibrium E0 and the
disease-free equilibrium E1. Applying Theorems 2.1 and 2.2, we obtain the following results:

Corollary 4.1. The trivial equilibrium E0 of system (4.1) is always unstable.

Corollary 4.2. The disease-free equilibrium E1 of system (4.1) is globally asymptotically stable
if and only if R0 ≤ 1 and it is unstable if and only if R0 > 1.

Since G(I) = I
1+αI satisfies the hypothesis (H3), system (4.1) has a unique endemic equi-

librium E∗ = (S∗, I∗, R∗) if and only if R0 > 1. In particular, the second component of I∗

becomes

I∗ =
K(αr − β)− 2αr(µ1 + γ) +

√
K2(αr − β)2 + 4Kαrβ(µ1 + γ)

2α2r(µ1 + γ)
> 0.

Applying Theorem 3.1, we obtain the following result:
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Corollary 4.3 (Enatsu et al. [2, Corollary 4.3]). Assume R0 > 1. Then the following
statement holds true.

(i) If R0 ≤ R0, then the endemic equilibrium E∗ of system (4.1) is locally asymptotically stable
for any τ ≥ 0.

(ii) If R0 < R0, then the endemic equilibrium E∗ of system (4.1) is locally asymptotically stable
for 0 ≤ τ < τ0 and it is unstable for τ > τ0.

By Corollary 4.3, R0 = 1 is a threshold condition which determines stability of the disease-free
equilibrium and the existence of the endemic equilibrium. Moreover, if R0 > 1 then R0 = R0 is
a threshold condition which determines delay-dependent stability or delay-independent stability
for the endemic equilibrium (see, for details, Enatsu et al. [2, Section 4 and Appendix A]).
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Asymptotic behavior of solutions for free boundary
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1 Introduction

The spreading of invasive or new species has been a main topic in math-
ematical ecology. Many researchers have studied the problem from various
aspects. See, for example Shigesada and Kawasaki [11], for detailed informa-
tion. We consider, in this article, a new mathematical model which has been
proposed by Du and Lin [3]. It is described as a free boundary problem for
diffusive logistic equation:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut − duxx = u(a − bu), t > 0, 0 < x < h(t),

ux(t, 0) = 0, u(t, h(t)) = 0, t > 0,

h′(t) = −μux(t, h(t)), t > 0,

h(0) = h0, u(0, x) = u0(x), 0 ≤ x ≤ h0,

(1.1)

where μ, h0, d, a and b are given positive numbers. Initial data satisfies
u0 ∈ C2(0, h0), u′

0(0) = u(h0) = 0 and u0(x) > 0 in [0, h0). An unknown
quantity u = u(t, x) is a population density of invasive or new species which
occupies one dimensional region, (0, h(t)). The right-hand side of the habi-
tat x = h(t) is called free boundary which means a spreading front of the
species. Moreover, the dynamical behavior of the free boundary is determined
by Stefan-like condition, h′(t) = −μux(t, h(t)). This implies that spreading
speed of the species is proportional to the population pressure at the free
boundary.

Du and Lin [3] have obtained the existence and uniqueness of global solu-
tions for (1.1) and studied their asymptotic behavior as t → ∞. In particular,
the asymptotic behavior is divided into two cases:

(i) Spreading: lim
t→∞

h(t) = ∞ and lim
t→∞

u(t, x) =
a

b
uniformly in any compact

subset of [0,∞);

(ii) Vanishing: lim
t→∞

h(t) ≤ π

2

√
d

a
and lim

t→∞
‖u(t, ·)‖C(0,h(t)) = 0.

∗e-mail: kaneko.y5oda@toki.waseda.jp
†e-mail: yamada@waseda.jp
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This result is called in [3] the dichotomy theorem, where case (i) implies that
the species success to spread to a new environment, while case (ii) implies that
the species must vanish eventually.

We are concerned with more realistic environments and seek radially sym-
metric solutions of a free boundary problem in higher space dimension. Our
free boundary problem is given by

(FBP)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ut − durr −

(N − 1)d

r
ur = uf(u), t > 0, R < r < h(t),

u(t, R) = 0, u(t, h(t)) = 0, t > 0,

h′(t) = −μur(t, h(t)), t > 0,

h(0) = h0, u(0, r) = u0(r), R ≤ r ≤ h0,

where r = |x| (x ∈ RN , N ≥ 1) and μ, h0, d and R are positive constants.
Initial data (u0, h0) satisfies

u0 ∈ C2(R, h0) with u0(R) = u0(h0) = 0 and u0 > 0 in (R, h0).

Moreover, the nonlinear function in the diffusion equation is assumed to satisfy

f ∈ C1(R) and f(u) < 0 for u > 1. (1.2)

Differently from the problem discussed in [3], our problem (FBP) allows more
general nonlinearity in the diffusion equation and has Dirichlet boundary con-
ditions on both fixed and free boundaries. This condition means, from an
ecological view-point, that species inhabit an annular domain {x ∈ RN | R <
|x| < h(t)}, but a region {x ∈ RN | |x| ≤ R} is a hostile environment for the
species.

r

h(t)

R

O

free boundary

fixed boundary

Figure 1. habitat of species
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The main purpose of this paper is as follows:

(i) Present recent results on global existence and asymptotic properties of
solutions for (FBP).

(ii) Find underlying principles to determine spreading or vanishing of species.

(iii) Construct a dichotomy theorem in the radially symmetric case and com-
pare the theorem with that in one-dimensional case.

We have obtained a global existence and uniqueness theorem for (FBP).

Theorem 1.1. The free boundary problem (FBP) has a unique solution (u, h)
satisfying

0 < u(t, r) ≤ C1, 0 < h′(t) ≤ μC2 for t ≥ 0, R < r < h(t),

where C1 and C2 are positive constants depending only on ‖u0‖C(R,h0) and
‖u0‖C1(R,h0), respectively.

By this theorem, we find that the free boundary is strictly increasing with
respect to t; so the limit of h(t) exists and it may be a finite number or equal
to infinity.

We define spreading and vanishing of species under general situations as
follows.

Definition 1.1. Let (u, h) be any solution of (FBP).

(I) Spreading of species is the case when

lim
t→∞

h(t) = ∞ and lim inf
t→∞

‖u(t, ·)‖C(R,h(t)) > 0;

(II) Vanishing of species is the case when

lim
t→∞

‖u(t, ·)‖C(R,h(t)) = 0.

One of sufficient conditions for the spreading property of (FBP) satisfying

lim inf
t→∞

u(t, r) > 0 for R < r < ∞

is given by the following proposition.

Proposition 1.1. Let q be a positive solution of

(IP)

⎧⎨⎩dqrr +
(N − 1)d

r
qr + qf(q) = 0, R < r < l,

q(R) = q(l) = 0

with a positive number l > R. Then, the solution (u, h) of (FBP) with initial
data (q, l) satisfies
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(i) lim
t→∞

h(t) = ∞;

(ii) ut(t, r) ≥ 0 for t > 0, R < r < h(t);

(iii) lim
t→∞

u(t, r) = v∗(r) : uniformly in any compact subset of [R,∞),

where v∗ is a minimal positive solution of

(SP)

⎧⎨⎩dvrr +
(N − 1)d

r
vr + vf(v) = 0, R < r < ∞,

v(R) = 0

which satisfies v∗(r) ≥ q(r) in [R, l].

The following proposition is a vanishing property.

Proposition 1.2. Let (u, h) be any solution of (FBP). If lim
t→∞

h(t) < ∞, then

lim
t→∞

‖u(t, ·)‖C(R,h(t)) = 0.

We omit here the proofs of Theorem 1.1, Propositions 1.1 and 1.2. The
proofs of the results in one-dimensional case can be found in Kaneko and
Yamada [6], where we have referred to some properties in Tanabe [13] to in-
vestigate the asymptotic behavior of solutions. Note that the results can be
naturally extended to the radially symmetric case.

2 Asymptotic behavior

We assume that the nonlinear function in (FBP) satisfies f ∈ C1(R) and

f(u) > 0 for 0 ≤ u < 1, f(u) < 0 for u > 1, f(1) = 0 and f ′(u) ≤ 0 for u ≥ 0.

It is a kind of nonlinearities satisfying (1.2); so we can obtain global existence
and asymptotic properties of solutions by Theorem 1.1, Propositions 1.1 and
1.2.

2.1 Spreading and vanishing in one-dimensional case

Let N = 1 and R = 0 in (FBP), (IP) and (SP). We replace r with x. Then,
the free boundary problem for a reaction-diffusion equation is given by

(P)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut − duxx = uf(u), t > 0, 0 < x < h(t),

u(t, 0) = 0, u(t, h(t)) = 0, t > 0,

h′(t) = −μux(t, h(t)), t > 0,

h(0) = h0, u(0, x) = u0(x), 0 ≤ x ≤ h0,
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where μ, h0 and d are positive constants and initial data (u0, h0) satisfies

u0 ∈ C2(0, h0) with u0(0) = u0(h0) = 0 and u0 > 0 in (0, h0).

We present some recent results obtained in Kaneko, Oeda and Yamada
[5]. The following theorem is a dichotomy theorem which means that the
asymptotic behavior of solutions for (P) is divided into two cases.

Theorem 2.1. Let (u, h) be any solution of (P). Then, either (I) or (II) holds
true:

(I) Spreading : lim
t→∞

h(t) = ∞ and lim
t→∞

u(t, x) = v∗(x) uniformly in any

compact subset of [0,∞), where v∗(x) is a unique positive

solution of (SP);

(II) Vanishing : lim
t→∞

h(t) ≤ π

√
d

f(0)
and lim

t→∞
‖u(t, ·)‖C(0,h(t)) = 0.

We will also show some sufficient conditions for spreading and vanishing.

Theorem 2.2. Let (u, h) be any solution of (P). Then, the following results
hold true:

(i) Suppose h0 ≥ π
√

d/f(0). Then spreading occurs.

(ii) Suppose h0 < π
√

d/f(0).

(a) There exists a positive function w in [0, h0] such that, if u0(x) ≤
w(x) in [0, h0], then vanishing occurs and ‖u(t, ·)‖C(0,h(t)) = O(e−βt)
for some β > 0 as t → ∞.

(b) If ∫ h0

0

xu0(x) dx ≥ d

2μ

( π2d

f(0)
− h2

0

)
max{1, ‖u0‖C(0,h0)},

then spreading occurs.

2.2 Spreading and vanishing in radially symmetric case

First we prepare some results of the elliptic boundary value problem (IP)
and a corresponding eigenvalue problem:

(EP)

⎧⎨⎩dφrr +
(N − 1)d

r
φr + λφ = 0, R < r < l,

φ(R) = φ(l) = 0.

Here l is a given positive number. By Proposition 1.1, when (IP) has a positive
solution q(r; l), one can show that the solution for (FBP) with initial data (q, l)
satisfies spreading property.
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Proposition 2.1. The following results hold true:

(i) If f(0) > λ1, then (IP) has a unique positive solution q(x);

(ii) If f(0) ≤ λ1, then q ≡ 0 is a unique solution of (IP),

where λ1 = λ1(R, d, l) is the least eigenvalue of (EP).

Regard λ1(R, d, l) as a function of l. It is well known that λ1(R, d, l) is
continuous and decreasing with respect to l. Hence

lim
l→R+0

λ1(l) = +∞ and lim
l→+∞

λ1(l) = 0.

It follows that, for any given R, d and f , there exists a positive number
R∗ = R∗(R, d, f(0)) such that

f(0) = λ1(R
∗) and f(0) > λ1(l) for l > R∗.

For example, in one-dimensional case, R∗(R, d, f(0)) is given by π
√

d/f(0)+R.
This number R∗ plays an important role to study the asymptotic behavior of
solutions. In particular, Proposition 2.1 is rewritten to a more convenient style
(c.f. Cantrell and Cosner [1]).

Proposition 2.2. The following results hold true:

(i) If l > R∗, then (IP) has a unique positive solution q(x);

(ii) If l ≤ R∗, then q ≡ 0 is a unique solution of (IP).

The following result is a dichotomy theorem for (FBP).

Theorem 2.3. Let (u, h) be any solution of (FBP). Then, either (I) or (II)
holds true:

(I) Spreading : lim
t→∞

h(t) = ∞ and lim
t→∞

u(t, r) = v∗(r) uniformly in any

compact subset of [R,∞), where v∗(r) is a unique positive

solution of (SP);

(II) Vanishing : lim
t→∞

h(t) ≤ R∗ and lim
t→∞

‖u(t, ·)‖C(R,h(t)) = 0.

The following theorem gives some sufficient conditions for spreading and
vanishing.

Theorem 2.4. Let (u, h) be any solution of (FBP).

(i) Suppose h0 ≥ R∗. Then spreading occurs.

(ii) Suppose h0 < R∗. Then there exists a positive function w in [R, h0] such
that, if 0 ≤ u0(r) ≤ w(r) in [R, h0], then vanishing occurs. Moreover, it
holds that ‖u(t, ·)‖C[R,h(t)] = O(e−βt) for some β > 0 as t → ∞.
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2.3 Proofs of main results

We will prove Theorem 2.3. The proof will be accomplished by using
Propositions 2.3 and 2.4.

Proposition 2.3. Let (u, h) be any solution of (FBP). If lim
t→∞

h(t) < ∞, then

lim
t→∞

h(t) ≤ R∗ and lim
t→∞

‖u(t, ·)‖C(R,h(t)) = 0.

Proof. Proposition 1.2 shows that, if lim
t→∞

h(t) < ∞, then

lim
t→∞

‖u(t, ·)‖C(R,h(t)) = 0. (2.1)

Hence, it suffices to prove lim
t→∞

h(t) ≤ R∗. Otherwise, there exists T > 0 such

that h(T ) > R∗. Take l = h(T ) and let w = w(t, r) be the solution of the
problem: ⎧⎪⎪⎨⎪⎪⎩

wt − dwrr −
(N − 1)d

r
wr = wf(w), t > 0, R < r < l,

w(t, R) = 0, w(t, l) = 0, t > 0,

w(T, r) = u(T, r), R < r < l.

Then, the comparison principle (see Protter and Weinberger [9] or Smoller
[12]) shows

u(t, r) ≥ w(t, r) for t ≥ T, R < r < l.

Moreover, it holds that lim
t→∞

w(t, r) = q(r) for R < r < l, where q(r) is a

positive solution of (IP). Hence

lim inf
t→∞

u(t, r) ≥ q(r) > 0 for R < r < l.

This contradicts (2.1) and the free boundary must satisfy lim
t→∞

h(t) ≤ R∗. �

Proposition 2.4. Let (u, h) be any solution of (FBP). If lim
t→∞

h(t) = ∞, then

lim
t→∞

u(t, r) = v∗(r) uniformly in any compact subset of [R,∞),

where v∗(r) is a unique solution of (SP).

Proof. We will first construct a suitable upper solution for the free boundary
problem. Define M = max{1, ‖u0‖C(R,h0)}. Let u(t, r) be the solution of⎧⎪⎪⎨⎪⎪⎩

ut − durr −
(N − 1)d

r
ur = uf(u), t > 0, r > R,

u(t, R) = 0, t > 0,

u(0, r) = M, r > R.
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Then, v ≡ M is regarded as an upper solution of (SP). Hence u(t, ·) is decreas-
ing and satisfies lim

t→∞
u(t, r) = v∗(r) uniformly in any compact subset of [R,∞)

(see Sattinger [10]). Note that u0(r) ≤ M in [R, h0]. Then, the comparison
principle proves

u(t, r) ≤ u(t, r) for t > 0, R < r < h(t).

Letting t → ∞ implies

lim sup
t→∞

u(t, r) ≤ lim
t→∞

u(t, r) = v∗(r) for R < r < ∞.

On the other hand, for any positive number l > R∗, one can take T > 0 such
that h(T ) = l. In the same way of the proof of Proposition 2.3, we obtain

lim inf
t→∞

u(t, r) ≥ q(r; l) for R < r < l.

Moreover, we get

lim
l→∞

q(r; l) = v∗(r) for R < r < ∞.

Hence,
lim inf

t→∞
u(t, r) ≥ v∗(r) for R < r < l.

As a result, it holds that

lim
t→∞

u(t, r) = v∗(r) uniformly in any compact subset of (R,∞).

The proof is complete. �

3 Concluding remarks

Spreading and vanishing for the asymptotic behavior of solutions are char-
acteristic of this free boundary model. A Similar dichotomy theorem also
holds true for free boundary problems with other nonlinear terms like bistable
nonlinearities which satisfy

f(u) < 0 for 0 ≤ u < c and u > 1, f(u) > 0 for c < u < 1,

f(c) = f(1) = 0, f ′(c) > 0 and f ′(1) < 0 with

∫ 1

0

uf(u) du > 0.

Kaneko, Oeda and Yamada [5] have proved that, in this free boundary model,

• the population vanishes, that is,

lim
t→∞

‖u(t, ·)‖C(0,h(t)) = 0

if and only if lim
t→∞

h(t) < ∞.
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• when vanishing occurs, the population decreases exponentially to 0 in
large time.

We should refer to some related free boundary problems. Du and Lou [4]
have studied a one-dimensional free boundary problem with free boundaries in
both left and right boundaries. Du and Guo [2] have investigated a logistic free
boundary problem in multi-dimensional ball and extended their dichotomy re-
sults to the higher dimensional case. Two species models with a free boundary
condition have been studied by Mimura, Yamada and Yotsutani [8] and Lin
[7].
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Turing’s instability and pattern transitions
in a nonlinear differential equation

Hiroko Okochi∗

Abstract

Motivated to study the pattern formations of solutions’ level sets, which are
seen in many nonlinear reaction-diffusion equations from chemistry, physics, biol-
ogy, etc, we research necessary or sufficient conditions on the equation

du/dt ∈ −∂ϕ(u(t)) + g∞, t > 0,

for Turing’s instability, aftereffects of a kind of momentary decomposition, or tran-
sitions of level set patterns. Here ∂ϕ denotes a subdifferential operator defined in
a real Hilbert space H and g∞ ∈ H.

It is shown that for pattern transitions the relation g∞ ∈ R(∂ϕ) is necessary,
while to get Turing’s instability the relation g∞ /∈ R(∂ϕ) is needed. If g∞ ∈ R(∂ϕ)\
R(∂ϕ) and ϕ satisfies ϕ(rx) = |r|pϕ(x) for some p > 1, then the solutions behave
in aftereffects of the momentary decomposition and show pattern transitions.

Key Words: pattern formation, reaction-diffusion equation, Turing’s instability,
asymptotic behavior of solutions, subdifferential operator.

1 Introduction

This paper’s motive is to research essential or sufficient conditions on the reaction-
diffusion equations of the form

∂u

∂t
(x, t) = 4u+ f(u, v, α),

∂v

∂t
(x, t) = ε4v + g(u, v, β), (1.1)

or
∂u

∂t
(x, t) = 4u(x, t) + f(u(x, t), x) (1.2)

for the pattern formations of level sets of the solution u, which are seen in many situations
of physics, chemistry, biology etc.

∗Tokyo University of Pharmacy and Life Science, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392,
Japan. E-mail: okochi@toyaku.ac.jp
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In many cases, solution v(x, t) of (1.1) converges to some v∞(x) as t → ∞. Putting
f∞(u, x) = f(u, v∞(x), β) implies the single equation (1.2) with f = f∞. Hence, in this
paper, we are concerned with only (1.2).

Solution u of the form of (1.1) or (1.2) many times satisfies the following properties.

(P1) (instability) u(., t) grows up as t→ ∞.

(P2) (asymptotic disappearance of movement) (∂/∂t)u(., t) decreases and vanishes to
0 as t→ ∞.

(P3) (pattern transitions) There is a sequence {ti} ⊂ (0, ∞) such that for each
i 6= j, the patterns of level sets of u(., ti) and u(., tj) are enough different from
each other. Hence, in the case where u(., ti) ∈ L2(Ω), there is δ > 0 such that
|(u(., ti), u(., tj))| ≤ (1− δ)‖u(., ti)‖‖u(., tj)‖ holds for i 6= j.

Although (P1) means the instability of u, the both term 4 and f of (1.2) often satisfy
the stability as below:

Every solution v(x, t) of
∂v

∂t
= 4v converges to 0 as t→ ∞.

Every solution w(x, t) of
∂w

∂t
= f(w, x) converges to some w∞(x) as t→ ∞.

To research necessary or sufficient conditions for the properties (P1)-(P3), we put
ũ(x, t) = u(x, t)− w∞(x). Then, by (1.2),

∂ũ

∂t
(x, t) = 4ũ(x, t) + f(ũ+ w∞, x) +4w∞(x), (x, t) ∈ Ω× [0,∞). (1.3)

In this paper, we consider (1.3) to be an ordinary differential equation in L2(Ω) or in
a real Hilbert space H. Under the condition that f(., x) is nondecreasing for each x, it
is usually possible to put −∂ϕ(ũ) in stead of 4ũ + f(ũ + w∞, .) in (1.3). We also take
g∞ ∈ H in stead of 4w∞. Hence

dũ

dt
(t) ∈ −∂ϕ(ũ(t)) + g∞, t ∈ [0,∞). (1.4)

Here ∂ϕ denotes a subdifferential operator defined in H.
We show the following.

(a) Any solution ũ of (1.4) satisfies (P1), more precisely ‖ũ(t)‖ → ∞ as t → ∞, if
and only if g∞ /∈ R(∂ϕ). Thus, the relation ∆w∞ /∈ R(−∆ · −f(·+w∞)) seems essential
for solutions of (1.3) to satisfy (P1).

(b) If a solution ũ of (1.4) satisfies (P3), then ũ needs to satisfy (P2).
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(c) A solution of (1.4) satisfies (P2) if and only if g∞ ∈ R(∂ϕ). This suggests that
the relation ∆w∞ ∈ R(−∆ · −f(·+ w∞)) is close to a essential condition for solutions
of (1.3) to fulfill (P2).

(d) For all solutions of (1.4) one gets (P3) together with (P1), (P2) under the condi-
tions that g∞ ∈ R(∂ϕ) \ R(∂ϕ) and ϕ(rx) = |r|pϕ(x), r ∈ R. Hence, the combination
of these conditions seems close to a sufficient condition for solutions of (1.3) to satisfy
all of (P1)-(P3).

2 Results

Let H be a real Hilbert space with norm ‖.‖ and inner product (., .), and ϕ : H →
(−∞, ∞] be a proper lower semi continuous (l.s.c.) convex functional. The set D(ϕ) ≡
{v ∈ H : ϕ(v) <∞} is called the effective domain of ϕ. The subdifferential operator ∂ϕ
of ϕ is defined as below:

∂ϕ(v) = {f ∈ H : ϕ(w) ≥ ϕ(v) + (f, w − v), ∀w ∈ D(ϕ)} ,

D(∂ϕ) = {v ∈ D(ϕ) : ∂ϕ(v) 6= φ} .

Under the assumption that ϕ is a proper l.s.c convex functional, ∂ϕ is known to be a
maximal monotone operator defined in H. (e.g., [3], [4])

Let g∞ ∈ H. We research the asymptotic behaviors of solutions of

d

dt
u(t) ∈ −∂ϕ(u(t)) + g∞, t ≥ 0. (2.1)

Here u(.) is called a solution of (2.1) if and only if u(.) belongs to W 1,2
loc ((0,∞) : H) and

satisfies the relation (2.1) for almost all t > 0. For each u0 ∈ D(∂ϕ), there is an unique
solution u ∈ W 1,2

loc ((0,∞) : H) ∩ C ([0,∞) : H) of (2.1) satisfying u(0) = u0.
It is known that each solution of (2.1) satisfies the equation

d+

dt
u(t) = −(∂ϕ(u(t))− g∞)0, ∀t > 0,

where (∂ϕ(x)− g∞)0 denotes the minimum norm point of ∂ϕ(x)− g∞, that is, (∂ϕ(x)−
g∞)0 ∈ ∂ϕ(x)− g∞ and ‖(∂ϕ(x)− g∞)0‖ = min{‖y‖ : y ∈ ∂ϕ(x)− g∞}. (e.g., [3], [4])

In the following, u′(t) denotes (d+/dt)u(t).

Proposition 2.1 For arbitrary {tn} with 0 = t0 < t1 < · · · < tn < · · ·, let {Un} be the
approximate solution of (2.1) such that

U ′
n ∈ −∂ϕ(Un) + g∞, U ′

n =
Un − Un−1

∆tn
, ∆tn = tn − tn−1. (2.2)
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Then, one has

‖U ′
n+1‖ ≤

(
U ′
n+1

‖U ′
n+1‖

,
U ′
n

‖U ′
n‖

)
‖U ′

n‖. (2.3)

Corollary 2.1 For any solution u of (2.1), ‖u′(t)‖ is nonincreasing.

Remark 2.1 The result of Corollary 2.1 is well known by other proofs.

Estimate (2.3) in Proposition 2.1 means that the speed ‖U ′
n+1‖ has to be smaller than

the speed ‖U ′
n‖ so much as the directions of U ′

n+1/‖U ′
n+1‖ and U ′

n/‖U ′
n‖ are different from

each other. This suggests that if a solution u of (2.1) satisfies (P3) in Section 1, then
‖u′(t)‖ converges to 0, or, (P2) holds. We will see that this expectation is true by
Corollary 2.3 in below.

Our first theorem below shows essential conditions on g∞ for the asymptotic behaviors
(P1), (P2).

Theorem 2.1 Let u be an arbitrary solution of (2.1).

(i) If g∞ ∈ R(∂ϕ), then the orbit ∪t>0u(t) is bounded, the value ϕ(u(t)) − (g∞, u(t))
converges to minH{ϕ(.) − (g∞, .)}, ‖u′(t)‖ ↓ 0, and u(t) converges weakly to a point of
(∂ϕ)−1(g∞) as t→ ∞.

(ii) Let g∞ /∈ R(∂ϕ). Then, limt→∞ ‖u(t)‖ = ∞ and the following hold.

(ii-1) In case of g∞ ∈ R(∂ϕ) \R(∂ϕ), ‖u′(t)‖ ↓ 0 as t→ ∞.

(ii-2) If g∞ /∈ R(∂ϕ), then ‖u′(t)− h‖ → 0 as t→ ∞, where h = (I −ProjR(∂ϕ)) g∞.

Corollary 2.2 For each solution u of (2.1), u′(t) converges strongly to (I−ProjR(∂ϕ))g∞
as t→ ∞.

Corollary 2.1 impleis that u(t)/t converges strongly to (I −ProjR(∂ϕ))g∞ as t→ ∞.

Thus, if (I−ProjR(∂ϕ))g∞ = h 6= 0, then u(t)/‖u(t)‖ converges strongly to h/‖h‖. This
means that the level sets patterns of u(t) converges that of h as t → ∞, or, u does not
satisfy (P3). Hence, we have the following Corollary.

Corollary 2.3 Suppose that a solution of (2.1) satisfies (P3). Then, g∞ ∈ D(∂ϕ) holds
and (P2) satisfied for all solutions of (2.1).

Remark 2.2 Assertion (i) of Theorem 2.1 is a simple application of well known results.
(e.g., [5],[8])

Remark 2.3 To get g∞ 6∈ R(∂ϕ), ∂ϕ needs to be not coercive. In fact, ∂ϕ is coercive
if and only if R(∂ϕ) = H.
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We see by Theorem 2.1 that an arbitrary solution u satisfies the instability (P1),
more precisely ‖u(t)‖ → ∞ as t→ ∞, if and only if g∞ /∈ R(∂ϕ).

One might wish that solutions satisfy all of (P1)-(P3) in every case of g∞ ∈ R(∂ϕ) \
R(∂ϕ). However, some additional condition to g∞ ∈ R(∂ϕ) \ R(∂ϕ) is needed for (P3).
In fact, there is an example as below.

Example Fix any z ∈ H \ {0} and put

ϕ(x) =
1

(x, z)
, D(ϕ) = {x : (x, z) > 0}.

Then, since R(∂ϕ) = {rz; r < 0}, one has (i) 0 ∈ R(∂ϕ) \R(∂ϕ); and (ii) every solution
u of (2.1) with g∞ = 0 is described as u(t) = u(0)+λ(t)z satisfying λ(t) → ∞ as t→ ∞,
hence u(t)/‖u(t)‖ → z/‖z‖. Thus u does not satisfy (P3).

To get the pattern transitions (P3) for each solution u of (2.1), we suppose that, for
some p > 1, ϕ satisfies

ϕ(rx) = |r|pϕ(x), r ∈ R, x ∈ D(ϕ). (2.4)

One notes that, in general, the convexity of ϕ implies p ≥ 1. If p = 1, then R(∂ϕ) is
closed, or R(∂ϕ) \R(∂ϕ) is empty.

Fixing any t > 0 and f ∈ ∂ϕ(u(t)) and putting PL(t,f) = ProjL(t,f), L(t, f) = {λf :
λ ∈ R}, we consider the decomposition

−∂ϕ(·) + g∞ = {−∂ϕ(·) + PL(t,f)g∞}+ (I − PL(t,f))g∞. (2.5)

Here (I − PL(t,f))g∞ is orthogonal to λp−1f ∈ ∂ϕ(λu(t)), ∀λ ∈ R.

In the case where g∞ ∈ R(∂ϕ) and f = −u′(t) + g∞ ∈ ∂ϕ(u(t)), one sees by
Theorem 2.1 that ‖(I − PL(t,f))g∞‖ ≤ ‖g∞ − f‖ = ‖u′(t)‖ ↓ 0.

Let λ0 = λ0(f) be such that

PL(t,f)g∞ ∈ ∂ϕ(λ0u(t)). (2.6)

Then, λ0u(t) is a stable fixed point of the first term −∂ϕ(·) + PL(t,f)g∞ in (2.5).

Theorem 2.2 (aftereffects of decompositions (2.5)) Suppose that ϕ satisfies (2.4) for
some p > 1. Then, for each t > 0 and f ∈ ∂ϕ(u(t)),

−α(((I − PL(t,f))g∞, u(τ)− u(t)))

≤
(
f

‖f‖
, u(τ)− u(t)

)
≤ β(((I − PL(t,f))g∞, u(τ)− u(t))), τ > t,

where α, β are continuous functions satisfying

β(ρ) ≤ ρ

‖f − PL(t,f)g∞‖
, ∀ρ > 0, α(ρ) ≈ (a0 + ρ)1/2, ρ is not large,

α(ρ) ≈ b0ρ
1/p, β(ρ) ≈ b0ρ

1/p, ρ� 1.

5
69



In the case where ϕ satisfies (2.4) and g∞ ∈ R(∂ϕ) \ R(∂ϕ), Theorem 2.2 means
that u(τ)− u(t) is almost orthogonal to every f ∈ ∂ϕ(u(t)) if τ � t such that ‖u(τ)‖ is
sufficiently large. On the other hand, for f = −u′(t) + g∞ ∈ ∂ϕ(u(t)), (ii-1) of Theorem
2.1 implies ‖u′(t)‖ = ‖f − g∞‖ ↓ 0. Thus, every solution u of (2.1) has the following
property;

(A) u(τ)− u(t) (≈ u(τ)), ∀τ � ∀t� 1, is almost orthogonal to g∞.

Here one notes g∞ 6= 0, since g∞ 6∈ R(∂ϕ) and 0 ∈ ∂ϕ(0) ⊂ R(∂ϕ) by (2.4).
This property (A) is very different from the case where ∂ϕ ≡ 0, because each solution

v of (2.1) with ∂ϕ ≡ 0 satisfies

(B) v′(τ) = g∞, ∀τ > 0.

In the following theorem, we assume a generalized condition of (2.4) on ϕ and get all
of (P1)-(P3) for every solution of (2.1).

Theorem 2.3 (pattern transitions) Suppose that g∞ ∈ R(∂ϕ) \R(∂ϕ) and that, for all
z ∈ D(ϕ) with ‖z‖ = 1, ϕ satisfies either (i) or (ii) as below.

(i) ∃εz > 0, ∃Rz > 0, ∃kz : [Rz,∞) → (0,∞) satisfying limr→∞ kz(r)/r = ∞ and
ϕ(ry) ≥ kz(r)ϕ(Rzy) > 0, ∀r ≥ Rz, ∀y ∈ {‖y‖ = 1, ‖y − z‖ < εz}.

(ii) ϕ(rz) = 0, ∀r ∈ R.

Here infH ϕ = 0 is assumed without loss of generality.

Then, for any solution u(t) of (2.1), the omega limit set of u(t)/‖u(t)‖ is empty. Con-
sequently, there are {Ti} with Ti ↑ ∞ and δ > 0 such that

(u(Ti), u(Tj)) < (1− δ)‖u(Tj)‖‖u(Ti)‖, i 6= j.

Example The following ϕ satisfies the condition (i) of Theorem 2.3 with Rz = 1 and
kz(r) = rmin{p,q} for each z.

ϕ(v) =
∫
Ω
a(x)|∇v(x)|pdx+

∫
Ω
b(x)|v(x)|qdx, where a(x), b(x) ≥ 0, p, q > 1.

To end this talk, we consider the cases of g∞ ∈ R(∂ϕ). As is mentioned in (i) of
Theorem 2.1, any solution of (2.1) converges weakly to a point of (∂ϕ)−1(g∞) as t→ ∞
if and only if g∞ ∈ R(∂ϕ). Concerning this fact, J. B. Billon [1] gives an abstract
example of ϕ on `2 which satisfies (i) 0 ∈ R(∂ϕ), and (ii) a solution u of (2.1) with
g∞ = 0 converges weakly to 0 ∈ `2 but does not converge strongly, thus, for each t > 0,
limτ→∞(u(τ), u(t)) = 0 and inft ‖u(t)‖ > 0. Hence this solution u satisfies (P3) together
with (P2) but (P1). However, it seems that no concrete differential equation of the
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form (2.1) is known to have solutions satisfying such asymptotic weak and not strong
convergence.
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1 Introduction

Let H and V be real Hilbert spaces such that V is a dense subspace in H. Let U be
a Banach space of control variables. In this paper, we are concerned with the global
existence of solution and the approximate controllability for the following abstract neutral
functional differential system in a Hilbert space H:{

d
dt [(x(t) + (Bx)(t)] = Ax(t) + f(t, x(t)) + (Cu)(t), t ∈ (0, T ],

x(0) = x0, (Bx)(0) = y0,
(1.1)

where A is an operator associated with a sesquilinear form on V × V satisfying G̊arding’s
inequality, f is a nonlinear mapping of [0, T ]×V into H satisfying the local Lipschitz con-
tinuity, B : L2(0, T ;V ) → L2(0, T ;H) and C : L2(0, T ;U) → L2(0, T ;H) are appropriate
bounded linear mapping.

Recently, the existence of solutions for mild solutions for neutral differential equations
with state-dependence delay has been recently studied in the literature in [1] and references
therein. As for partial neutral integro-differential equations, we refer to [2]. However
there are few papers treating the regularity and controllability for the systems with local
Lipschipz continuity, we can just find a recent article Wang [3] in case semilinear systems.

In thia paper, we construct some results on the regularity of solutions and the approxi-
mate controllability for neutral functional differential equations with unbounded principal
operators in Hilbert spaces. In order to establish the controllability of the neutral equa-
tions, we first consider the existence and regularity of solutions of the neutral control
system by using fractional power of operators and the local Lipschtiz continuity of non-
linear term. Our purpose is to obtain the existence of solutions and the approximate
controllability for neutral functional differential control systems without using many of
the strong restrictions considering in the previous literature.

1

73



2

2 preliminaries

If H is identified with its dual space we may write V ⊂ H ⊂ V ∗ densely and the corre-
sponding injections are continuous. The norm on V , H and V ∗ will be denoted by || · ||,
| · | and || · ||∗, respectively. For brevity, we may regard that

||u||∗ ≤ |u| ≤ ||u||, ∀u ∈ V. (2.1)

Let a(·, ·) be a bounded sesquilinear form defined in V × V and satisfying G̊arding’s
inequality

Re a(u, u) ≥ δ||u||2, δ > 0. (2.2)

Let A be the operator associated with this sesquilinear form: (Au, v) = a(u, v) for any
u, v ∈ V. Then A is a bounded linear operator from V to V ∗ by the Lax-Milgram Theorem.
The realization of A in H which is the restriction of A to D(A) = {u ∈ V : Au ∈ H} is
also denoted by A. From (2.2) we may think that there exists a constant C0 > 0 such that

||u|| ≤ C0||u||1/2D(A)|u|
1/2. (2.3)

Thus we have the following sequence:

D(A) ⊂ V ⊂ H ⊂ V ∗ ⊂ D(A)∗, (2.4)

where each space is dense in the next one and continuous injection.

Lemma 2.1. With the notations (2.3), (2.4), we have

(V, V ∗)1/2,2 = H, (D(A), H)1/2,2 = V,

where (V, V ∗)1/2,2 denotes the real interpolation space between V and V ∗(Section 1.3.3 of
[6]).

It is also well known that A generates an analytic semigroup S(t) in both H and V ∗.
By virtue of (2.2), we have that 0 ∈ ρ(A) the closed half plane {λ : Reλ ≥ 0} is contained
in the resolvent set of A. In this case, we can define the fractional power Aα(α > 0) of A
and collect some simple properties of the fractional power of A.

Lemma 2.2. (a) Aα is a closed operator with its domain dense.
(b) If 0 < α < β, then D(Aα) ⊃ D(Aβ).
(c) For any T > 0, there exists a posive constant Cα such that the following inequalities
hold for all t > 0( [7, Lemma 3.6.2]):

||AαS(t)||L(H) ≤
Cα
tα
, ||AαS(t)||L(V,H) ≤

Cα

t3α/2
. (2.5)

Let the solution spaces W(T ) and W1(T ) of strong solutions be defined by

W(T ) = L2(0, T ;D(A)) ∩W 1,2(0, T ;H), W1(T ) = L2(0, T ;V ) ∩W 1,2(0, T ;V ∗).

Here, we note that by using interpolation theory, there exists a constant M1 > 0 such that

||x||C([0,T ];V ) ≤M1||x||W(T ), ||x||C([0,T ];H) ≤M1||x||W1(T ). (2.6)

By a simple calculation, we obtain the following.
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Lemma 2.3. For every k ∈ L2(0, T ;H), let x(t) =
∫ t
0 S(t− s)k(s)ds for 0 ≤ t ≤ T . Then

there exists a constant C2 such that such that

||x||L2(0,T ;V ) ≤ C2

√
T ||k||L2(0,T ;H). (2.7)

3 Neutral differential equations

Consider the following abstract neutral functional differential system:{
d
dt [(x(t) + (Bx)(t)] = Ax(t) + f(t, x(t)) + k(t), t ∈ (0, T ],

x(0) = x0, (Bx)(0) = y0.
(3.1)

Then we will show that the initial value problem (3.1) has a solution by solving the integral
equation:

x(t) = S(t)[x0 + y0]− (Bx)(t) +

∫ t

0
AS(t− s)Bx(s)ds+

∫ t

0
S(t− s){f(s, x(s)) + k(s)}ds.

(3.2)
Now we give the basic assumptions on the system (3.1)
Assumption (B). Let B : L2(0, T ;V ) → L2(0, T ;H) be a bounded linear mapping

such that there exists constants β > 2/3 and L > 0 such that

||AβBx||L2(0,T ;H) ≤ L||x||L2(0,T ;V ), ∀x ∈ L2(0, T ;V ).

Assumption (F). f is a nonlinear mapping of [0, T ]×V into H satisfying following:

(i) There exists a function L1 : R+ → R such that for ||x|| ≤ r and ||y|| ≤ r,

|f(t, x)− f(t, y)| ≤ L1(r)||x− y||, t ∈ [0, T ].

(ii) The inequality
|f(t, x)| ≤ L1(r)(||x||+ 1)

holds For every t ∈ [0, T ] and x ∈ V .

Let us rewrite (Fx)(t) = f(t, x(t)) for each x ∈ L2(0, T ;V ). From now on, we establish
the following results on the solvability of the equation (3.1).

Theorem 3.1. Let Assumptions (B) and (F) be satisfied. Assume that x0 ∈ H, k ∈
L2(0, T ;V ∗) for T > 0. Then, there exists a solution x of the equation (3.1) such that

x ∈ W1(T ) ≡ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H).

Moreover, there is a constant C3 independent of x0 and the forcing term k such that

||x||W1(T ) ≤ C3(1 + |x0|+ ||k||L2(0,T ;V ∗)). (3.3)

One of the main useful tools is the following Sadvoskii’s fixed point theorem.
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Lemma 3.1. Suppose that Σ is a closed convex subset of a Banach space X. Assume that
K1 and K2 are mappings from Σ into X such that the following conditions are satisfied:
(i) (K1 +K2)(Σ) ⊂ Σ,
(ii) K1 is a completely continuous mapping,
(iii) K2 is a contraction mapping.
Then the operator K1 +K2 has a fixed point in Σ.

Proof of Theorem.
Let r0 = 2(C1|x0 + y0|+ r0M0L), where C1 is constant satisfying

||x||W(T ) ≤ C1(||x0||+ ||k||L2(0,T ;H)). (3.4)

Let γ = max{1/2, (3β − 2)1/2}, choose 0 < T1 < T such that

T γ1
[
{C2L1(r0)(r0 + 1) +C2||k||L2(0,T1;V )}+ (3β − 2)−1/2r0LC1−β

]
≤ C1|x0 + y0|+ r0M0L,

(3.5)
where C2 is constant in (2.7) and

M̂ ≡ T γ1
{
C2L1(r0) + (3β − 2)−1/2C1−βL

}
< 1. (3.6)

Define a mapping J : L2(0, T1;V )→ L2(0, T1;V ) as

(Jx)(t) =S(t)(x0 + y0)− (Bx)(t)

+

∫ t

0
AS(t− s)(Bx)(s)ds+

∫ t

0
S(t− s){f(s, x(s)) + k(s)}ds.

It will be shown that the operator J has a fixed point in the space L2(0, T1;V ). By
assumptions (B) and (F), it is easily seen that J is continuous from C([0, T1];H) into
itself. Let

Σ = {x ∈ L2(0, T1;V ) : ||x||L2(0,T1;V ) ≤ r0, x(0) = x0},

which is a bounded closed subset of L2(0, T1;V ). By (2.5), (2.6) and Assumption (B) we
have

||Bx||L2(0,T1;V ) ≤ ||A−β||L(H,V )||AβBx||L2(0,T1;H) ≤ r0M0L. (3.7)

By virtue of (2.7), for 0 < t < T1, it holds

||
∫ t

0
S(t− s){f(s, x(s)) + k(s)}ds||L2(0,T1;V ) ≤ C2

√
T1||Fx+ k||L2(0,T1;H) (3.8)

≤ C2

√
T1{L1(r0)(r0 + 1) + ||k||L2(0,T1;V )}.

Since (2.5) and Assumption (F) the following inequality holds:

||AS(t− s)Bx(s)|| = ||A1−βS(t− s)AβBx(s)|| ≤
C1−β

(t− s)3(1−β)/2
r0L,

there holds

||
∫ t

0
AS(t− s)Bx(s)ds||L2(0,T1;V ) ≤ (3β − 2)−1/2r0LC1−βT

√
3β−2

1 . (3.9)
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Therefore, from (3.4), (3.6)-(3.9) it follows that

||Jx||L2(0,T1;V ) ≤ C1|x0 + y0|+ r0M0L

+ T γ1
[
{C2L1(r0)(r0 + 1) + C2||k||L2(0,T1;V )}+ (3β − 2)−1/2r0LC1−β

]
≤ r0,

and hence J maps Σ into Σ. Define mapping J = K1 +K2 on L2(0, T1;V ) by the formula

(K1x)(t) = −(Bx)(t)

(K2x)(t) = S(t)(x0 + y0) +

∫ t

0
AS(t− s)(Bx)(s)ds+

∫ t

0
S(t− s){f(s, x(s)) + k(s)}ds.

We can now employ Lemma 3.1 with Σ. Assume that a sequence {xn} of L2(0, T1;V )
converges weakly to an element x∞ ∈ L2(0, T1;V ), i.e., w − limn→∞ xn = x∞. Then we
will show that

lim
n→∞

||K1xn −K1x∞|| = 0, (3.10)

which is equivalent to the completely continuity of K1 since L2(0, T1;V ) is reflexive. For a
fixed t ∈ [0, T1], let x∗t (x) = (K1x)(t) for every x ∈ L2(0, T1;V ). Then x∗t ∈ L2(0, T1;V

∗)
and we have limn→∞ x

∗
t (xn) = x∗t (x∞) since w − limn→∞ xn = x∞. Hence,

lim
n→∞

(K1xn)(t) = (K1x∞)(t), t ∈ [0, T1].

By (2.5), (2.6) and Assumption (B) we have ||(K1x)(t)|| ≤ ||A−β||L(H,V )||AβBx||L2(0,T1;H) ≤
∞. Therefore, by Lebesgue’s dominated convergence theorem it holds limn→∞ ||K1xn||L2(0,T1;V ) =
||K1x∞||L2(0,T1;V ). Since L2(0, T1;V ) is a Hilbert space, it holds (3.10).

Next, we prove that K2 is a contraction mapping on Σ. Indeed, for every x1 and
x2 ∈ Σ, by similar to (3.9) and (3.10), we have

||K2x1 −K2x2||L2(0,T1;V ) ≤ T
γ
1

{
C2L1(r0) + (3β − 2)−1/2C1−βL

}
||x1 − x2||L2(0,T1;V ).

So by virtue of the condition (3.6) the contraction mapping principle gives that the solution
of (3.1) exists uniquely in [0, T1]. So by virtue of the condition (3.6), K2 is contractive.
Thus, Lemma 3.1 gives that the equation of (3.1) has a solution in W1(T1).

From now on we establish a variation of constant formula (3.3) of solution of (3.1).
Let x be a solution of (3.1) and x0 ∈ H. Then we have that from (3.7)-(3.10) it follows
that

||x||L2(0,T1;V ) ≤ C1|x0 + y0|+ r0M0L+ T γ1
[
{C2L1(r0)(||x||L2(0,T1;V ∗) + 1)

+ C2||k||L2(0,T1;V ∗)}+ (3β − 2)−1/2C1−βL||x||L2(0,T1;V )

]
Taking into account (3.6), there exists a constant C3 such that

||x||L2(0,T1;V ) ≤ (1− M̂)−1
[
C1|x0 + y0|+ r0M0L

+ T γ1 {C2L1(r0) + C2||k||L2(0,T1;V ∗)}
]
≤ C3(1 + |x0|+ ||k||L2(0,T1;V ∗))
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which obtain the inequality (3.3). Since the conditions (3.5) and (3.6) are independent of
initial value and by (2.6)

|x(T1)| ≤ ||x||C([0,T1;H]) ≤M1||x||W1(T ),

by repeating the above process, the solution can be extended to the interval [0, T ]. �
From the following result, we obtain that the solution mapping is continuous, which is

useful for physical applications of the given equation. The proof is immediately obtained
from Theorem 3.1.

Theorem 3.2. Let Assumptions (B) and (F) be satisfied and (x0, y0, k) ∈ H × H ×
L2(0, T ;V ∗). Then the solution x of the equation (3.1) belongs to x ∈ W1(T ) ≡ L2(0, T ;V )∩
W 1,2(0, T ;V ∗) and the mapping

H ×H × L2(0, T ;V ∗) 3 (x0, y0, k) 7→ x ∈ W1(T )

is continuous.

For k ∈ L2(0, T ;V ∗) let xk be the solution of equation (3.1) with k instead of Bu.
Here, we remark that if V is compactly embedded in H by assumption, the embedding
W1(T ) ⊂ L2(0, T ;H) is compact in view of Theorem 2 of Aubin [9]. So we can prove the
following result from Theorem 3.1.

Theorem 3.3. Let us assume that the embedding V ⊂ H is compact. For k ∈ L2(0, T ;V ∗)
let xk be the solution of equation (3.1). Then the mapping k 7→ xk is compact from
L2(0, T ;V ∗) to L2(0, T ;H). Moreover, if we define the operator F by F(k) = f(·, xk),
then F is also a compact mapping from L2(0, T ;V ∗) to L2(0, T ;H).

4 Approximate Controllability

4.1 Newtral control systems

In this section, we show that the controllability of the corresponding linear equation is
extended to the nonlinear differential equation. Let U be a Banach space of control
variables. Here C is a linear bounded operator from L2(0, T ;U) to L2(0, T ;H), which is
called a controller. For x ∈ L2(0, T ;H) we set

(Bx)(t) =

∫ t

0
N(t− s)x(s)ds,

where N : [0,∞) → L(H,V ) is strongly continuous. Then it is immediately seen that
Bx ∈ C([0, T ];V ) and hence AS(s)(Bx)(s) = AS(s)(Bx)(s) for 0 ≤ s ≤ T because
D(A) = V . Since t → N(t) is strong continuous, by the uniform boundedness principle
there exists a constant MN such that for any T > 0,

sup
t∈[0,T ]

||AN(t)||L(H,V ∗) ≤MN . (4.1)
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Let x(T ;B, f, u) be a state value of the system (1.1) at time T corresponding to the
operator B, the nonlinear term f and the control u. We note that S(·) is the analytic
semigroup generated by −A. In view of Theorem 4.1,

||x(·;B, f, u)||W1(T ) ≤ C3(|x0|+ ||C||L(U,H)||u||L2(0,T ;U)). (4.3)

We define the reachable sets for the system (1.1) as follows:

R(T ) = {x(T ;B, f, u) : u ∈ L2(0, T ;U)}, L(T ) = {x(T ; 0, 0, u) : u ∈ L2(0, T ;U)}.
Definition 4.1. The system (1.1) is said to be approximately controllable on [0, T ] if for
every desired final state zT ∈ H and ε > 0 there exists a control function u ∈ L2(0, T ;U)
such that the solution x(T ;B, f, u) of (1.1) satisfies |x(T ; f, u)− zT | < ε, that is, RT (f) =
H where R(T ) is the closure of R(T ) in H.

We define the linear operator Ŝ from L2(0, T ;H) to H by

Ŝp =

∫ T

0
S(T − s)p(s)ds, ∀p ∈ L2(0, T ;H)

We need the following hypothesis:
Assumption (S). (i) For any ε > 0 and p ∈ L2(0, T ;H) there exists a u ∈ L2(0, T ;U)

such that
|Ŝp− ŜCu| < ε, ||Cu||L2(0,t;H) ≤ q1||p||L2(0,t;H), 0 ≤ t ≤ T.

where q1 is a constant independent of p.
(ii) f is a nonlinear mapping of [0, T ]×H into H satisfying following:
There exists a function L1 : R+ → R such that

|f(t, x)− f(t, y)| ≤ L1(r)|x− y|, t ∈ [0, T ]

hold for |x| ≤ r and |y| ≤ r.
By virtue of the condition (i) of Assumption (S) we note that AS(t − s)Bx = S(t −

s)ABx for each x ∈ V . Therefore, the system (1.1) is approximately controllable on [0, T ]
if for any ε > 0 and zT ∈ H there exists a control u ∈ L2(0, T ;U) such that

||S(T )(x0 + y0)− (Bx)(T ) + Ŝ{ABx+ Fx+ Cu})− zT || < ε,

where (Fx)(t) = f(t, x(t)) for t ≥ 0. Throughout this section, Invoking (4.3), we can
choose a constant r1 such that

r1 > C3(|x0|+ ||C||L(U,H)||u||L2(0,T ;U)). (4.4)

The proof of the following lemma is obtained by using Gronwall’s inequality,.

Lemma 4.1. Let u1 and u2 be in L2(0, T ;U). Then under the assumption (S), we have
that for 0 ≤ t ≤ T ,

|x(t;B, f, u1)− x(t;B, f, u2)| ≤MeM2
√
t||Cu1 − Cu2||L2(0,T ;H),

where M2 = eM(MNT+L1(r1))

Thanks to Lemma 4.1, the following theorem is obtained from [10, Theorem 4.1].

Theorem 4.1. Under the assumptions (S), the system (1.1) is approximately controllable
on [0, T ].
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4.2 Semilinear control systems(B ≡ 0)

Let

N = {p ∈ L2(0, T ;H) :

∫ T

0
S(T − s)p(s)ds = 0}

and denote by N⊥ be the orthogonal complement of N in L2(0, T ;H). We denote the
range of the operator C by HC . We need the following assumption:

Assumption (A). For each p ∈ L2(0, T ;H) there exists an element q ∈ HC such that∫ T

0
S(T − s)p(s)ds =

∫ T

0
S(T − s)q(s)ds,

that is, L2(0, T ;H) = HC +N , where HC is the closure of HC in L2(0, T ;H).

Here, we remark that under Assumption (A) it is known that RT (0) = H as in [4].

Theorem 4.2. Under Assumptions (F) in Section 3 and (A), and assuming in addition

lim sup
r→∞

(r −
√
T sup{L(s) : |s| ≤ r}) =∞, (4.5)

we have
RT (0) ⊂ RT (f).

Therefore, if the linear system (1.1) with f ≡ 0 and B ≡ 0 is approximately controllable
at time T , then so is the nonlinear system (1.1).

Proof. It will be shown that RT (0) ⊂ RT (f)
V

, where RT (f)
V

is the closure of RT (f)
in V . For u ∈ N⊥, let Pu be the unique minimum norm element of {u+N} ∩HC . Then
the proof of Lemma 1 of Naito [4] can be applied to show that P is a linear and continuous
operator from N⊥ to HC . Let Ỹ = L2(0, T ;H)/N be the quotient space and the norm of
a coset ũ = u+N ∈ Ỹ is defined of ||ũ|| = inf{|u+ f | : f ∈ N}.

We define by Q the isometric isomorphism from Ỹ onto N⊥, that is, Qũ is the minimum
norm element in ũ = {u+ f : f ∈ N}. Let

F̃ ũ = F(PQũ) +N, ∀ũ ∈ Ỹ .

Then F̃ is a compact mapping from Ỹ to itself by Theorem 3.1. If (x0, k) ∈ V ×L2(0, T ;H),
we know y ∈ W(T ) ⊂ C([0, T ];V ) by (2.6). Let

η =

∫ T

0
S(T − s)(Cv)(s)ds ∈ RT (0).

We are going to show that for every ε > 0 there exists w such that

||η − x(T ; f, w)|| ≤ ε.

Put z = Cv and r1 = ||C||||v||L2(0,T ;U). Then it follows that

z̃ = z +N ∈ Vr1 = {x̃ ∈ Ỹ : ||x̃||Ỹ ≤ r1}.
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From (3.3), noting that ||yk||L2(0,T ;V ) ≤ C3(1 + ||x0||+ ||k||L2(0,T ;H)), we choose a constant
r > 0 such that

r ≥ C3(1 + ||x0||+ ||k||L2(0,T ;H)).

Then it holds that

||F(k)||L2(0,T ;H) ≤ L(r)
√
T , ||F̃(k̃)||Ỹ ≤ L(r)

√
T .

Let

L(r) = sup{L(s) : |s| ≤ r}.

Then by the assumption (4.5), there exists r > 0 such that

L(r)
√
T + r1 < r. (4.6)

Define an operator J from Ỹ to itself as

J(ũ) = z̃ − F̃ ũ, ũ ∈ Ỹ .

Then since z̃ ∈ Vr1 and from (4.6) it follows that

||Jũ|| ≤ ||z̃||+ ||F̃ ũ|| ≤ r1 + L(r)
√
T ≤ r1 + L(r)

√
T < r.

Hence, J maps bounded closed set Vr into itself. It follows from the Schauder fixed point
theorem that there exists a fixed point ũ of J in Vr, that is, it holds

z̃ = F̃ ũ+ ũ.

Put u = Qũ and uC = PQũ. Then we have that uC = Pu and u − uC = u − Pu ∈ N .
Hence

z̃ = F(uC) + u+N = F(uC) + uC +N.

Therefore,

η =

∫ T

0
S(T − s)(F(uC)(s) + uC(s))ds =

∫ T

0
S(T − s)(f(s, yuC ) + uC(s))ds.

Since uC ∈ HC , there exists a sequence {vn} ∈ L2(0, T ;U) such that Cvn 7→ uC in
L2(0, T ;H). Then by Theorem 3.2 we have that x(·; f, vn) 7→ yuC in L2(0, T ;D(A)) ∩
W 1,2(0, T ;H), and hence x(T ; f, vn) 7→ yuC (T ) = η in V . Thus we conclude η ∈ RT (f)

V
.

�

Corollary 4.1. Under Assumptions (A) and (F), and assuming in addition that f(·, ·) is
continuous and uniformly bounded, we have

RT (0) ⊂ RT (f).
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1 Introduction

This paper is concerned with the following identification problem

d

dt
Mu(t) + Lu(t) = f(t)z + h(t), 0 � t � T, (1.1)

Mu(0) = Mu0, (1.2)

Φ[Mu(t)] = g(t), 0 � t � T. (1.3)

Here L is the realization in L2(Ω) of a second order strongly elliptic linear differential operator with
the Dirichlet boundary condition, and M is the multiplication operator by a nonnegtive function
m ∈ L∞(Ω): Mu = mu and Φ ∈ L2(Ω)∗. The coefficients of L are assumed to be sufficiently
smooth and Ω is a bounded open set of Rn with smooth boundary. The problem is to seek for u
and f from known values of z, h, u0 and g.

It is assumed that the sesquilinear form a(·, ·) associated with L satisfies

Re a(u, u) � c0‖u‖H1
0(Ω), ∀u ∈ H1

0 (Ω)

for some positive constant c0. Hence 0 ∈ ρ(L). Set A = LM−1. Then A is multivalued unless
m > 0 a.e., and

D(A) = MD(L) = {mu; u ∈ D(L)},
Ay = {Lu; y = mu, u ∈ D(L)} for y ∈ D(A).

D(A) is a Banach space with norm ‖y‖D(A) = inff∈Ay ‖f‖L2(Ω). If we introduce the new unknown
variable y(t) = Mu(t), problem (1.1)-(1.3) is transformed to⎧⎪⎪⎨⎪⎪⎩

d

dt
y(t) + Ay(t) � f(t)z + h(t), 0 � t � T,

y(0) = y0,

Φ[y(t)] = g(t), 0 � t � T,

(1.4)

where y0 = mu0.
The following result is an extension of Theorem 4.2 of A. Favini, A. Lorenzi and H. Tanabe [1]

to the case where A is multivalued and its proof will be published in a forthcoming paper:
Let A be a possibly multivalued linear operator in a complex Banach space X such that

ρ(A) ⊃ Σα = {λ ∈ C; Reλ � c(1 + |λ|)α}, (1.5)

and the following inequality holds for λ ∈ Σα

‖(λ − A)−1‖L(X,X) � c(1 + |λ|)−β , (1.6)

where α, β and c are positive constants such that β � α � 1 and 2α + β > 2. Let for 0 < θ < 1

Xθ
A = {u ∈ X; sup

0<t<∞
tθ‖u − t(t + A)−1u‖X < ∞}. (1.7)

1
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Theorem A Suppose (0 �)3 − 2α − β < θ < 1 and

y0 ∈ D(A), Ay0 ∩ (X,D(A))θ,∞ 	= ∅, (1.8)

z ∈ (X,D(A))θ,∞ , (1.9)

h ∈ C([0, T ]; X) ∩ B([0, T ]; (X,D(A))θ,∞), (1.10)

g ∈ C1([0, T ]; C), Φ[y0] = g(0), (1.11)

Φ[z] 	= 0. (1.12)

Then problem (1.4) admits a unique solution (y, f) such that

y ∈ C1([0, T ]; X), f ∈ C([0, T ]; C), (1.13)

y′ − f(·)z − h ∈ C(2α+β+θ−3)/α([0, T ]; X) ∩ B([0, T ]; X(2α+β+θ−3)/α
A ), (1.14)

where B([0, T ]; Y ) is the set of all bounded (not necessarily measurable) functions defined in [0, T ]
with values in Y for any Banach space Y .

In the case of problem (1.1)-(1.3) X = L2(Ω), A = LM−1, and it is established in Chapter III
of A. Favini and A. Yagi [3] and Theorem 3.3 of A. Favini, A. Lorenzi, H. Tanabe and A. Yagi [2]
that α = 1 and

β = 1/2 if m ∈ L∞(Ω),

β = (2 − ρ)−1(> 1/2) if m is ρ-regular, 0 < ρ < 1,

where m is said to be ρ-regular if m ∈ C1(Ω) and ∃c > 0 |∇m| � cmρ. The condition 3−2α−β <
θ < 1 becomes β + θ > 1. Therefore if we apply Theorem A with θ = 1/2, it is necessary that
β > 1/2, and so m has to be ρ-regular.

Suppose u0 ∈ D(L) and Lu0 ∈ (L2(Ω),D(A))1/2,∞ . Then y0 = mu0(= Mu0) ∈ D(A) and
Lu0 ∈ Ay0. Hence Ay0 ∩ (L2(Ω),D(A))1/2,∞ 	= ∅, and assumption (1.8) is satisfied with θ = 1/2.
Suppose further that m is ρ-regular and (1.9)-(1.12) are satisfied with θ = 1/2. Then problem
(1.4) has a unique solution (y, f). If we define a function u by

u(t) = L−1(f(t)z + h(t) − y′(t)),

then

Lu(t) = f(t)z + h(t) − y′(t) ∈ Ay(t) = LM−1y(t). (1.15)

This implies u(t) ∈ M−1y(t), since L is invertible. Hence y(t) = Mu(t). Substitution of this
in the first equality of (1.15) yields (1.1). Therefore the pair (u, f) is a solution to (1.1)-(1.3).
Substituting α = 1, β = (2−ρ)−1 and θ = 1/2 in (1.14) and noting Lu = f(·)z+h−y′ one obtains

Lu ∈ Cρ/[2(2−ρ)]([0, T ]; L2(Ω)) ∩ B([0, T ]; L2(Ω)ρ/[2(2−ρ)]
A ).

Note that 0 < ρ/[2(2 − ρ)] < 1/2. Thus the following theorem is obtained.

Theorem B Suppose that m is ρ-regular for some ρ ∈ (0, 1), and

u0 ∈ D(L), Lu0 ∈ (L2(Ω),D(A))1/2,∞ ,

z ∈ (L2(Ω),D(A))1/2,∞ ,

h ∈ C([0, T ]; L2(Ω)) ∩ B([0, T ]; (L2(Ω),D(A))1/2,∞),

g ∈ C1([0, T ]; C), Φ[mu0] = g(0),

Φ[z] 	= 0.

Then problem (1.1)-(1.3) admits a unique solution (u, f) such that

Mu ∈ C1([0, T ]; L2(Ω)), f ∈ C([0, T ]; C),

Lu ∈ Cρ/[2(2−ρ)]([0, T ]; L2(Ω)) ∩ B([0, T ]; L2(Ω)ρ/[2(2−ρ)]
A ),

.
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This is a result obtained by applying the general theory.
Let L̃ be the operator defined by

a(u, v) = (L̃u, v), u, v ∈ H1
0 (Ω).

Then L̃ ∈ L(H1
0 (Ω),H−1(Ω)) and L ⊂ L̃. Set Ã = L̃M−1. Then

D(Ã) = MD(L̃) = MH1
0 (Ω) = {mu; u ∈ H1

0 (Ω)},
Ãy = {L̃u; y = mu, u ∈ H1

0 (Ω)} for y ∈ D(Ã).

D(Ã) is a Banach space with norm ‖y‖D( �A) = infφ∈ �Ay ‖φ‖H−1(Ω) for y ∈ D(Ã).
It was shown in the book A. Favini and A. Yagi [3] that the following inequalities hold for

λ ∈ Σ = {λ ∈ C; Reλ � c(1 + |λ|)}:
‖(λ − A)−1‖L(L2(Ω),L2(Ω)) � C0(1 + |λ|)−1/2, (1.16)

‖(λ − Ã)−1‖L(H−1(Ω),H−1(Ω)) � C0(1 + |λ|)−1, (1.17)

‖(λ − Ã)−1‖L(H−1(Ω),L2(Ω)) � C0(1 + |λ|)−1/2, (1.18)

and hence −A and −Ã generate C∞-semigroups e−tA and e−t �A in L2(Ω) and H−1(Ω) respectively
such that for 0 < t < ∞

‖e−tA‖L(L2(Ω),L2(Ω)) � C0t
−1/2, (1.19)

‖e−t �A‖L(H−1(Ω),H−1(Ω)) � C0, (1.20)

‖e−t �A‖L(H−1(Ω),L2(Ω)) � C0t
−1/2, (1.21)

where C0 is some positive constant. It is known that e−tAu → u in L2(Ω) as t → 0 for u ∈ D(A).
By virtue of (1.20) it holds that e−t �Au → u in H−1(Ω) as t → 0 if u belongs to the closure of D(Ã)
in H−1(Ω) just as in the nondegenerate case m ≡ 1.

Let u ∈ Xθ
A, and u0(t) = u − t(t + A)−1u, u1(t) = t(t + A)−1u, t > 0. Then u = u0(t) + u1(t),

and

sup
0<t<∞

tθ‖u0(t)‖X = sup
0<t<∞

tθ‖u − t(t + A)−1u‖X < ∞,

by the definition of Xθ
A. Since A(t + A)−1u � u − t(t + A)−1u, one has Au1(t) = tA(t + A)−1u �

t(u − t(t + A)−1u). Hence

sup
0<t<∞

tθ−1‖u1(t)‖D(A) � sup
0<t<∞

tθ−1‖t(u − t(t + A)−1u)‖X = sup
0<t<∞

tθ‖u − t(t + A)−1u‖X < ∞.

Therefore u ∈ (X,D(A))θ,∞ . Thus it has been proved that

Xθ
A ⊂ (X,D(A))θ,∞ , 0 < θ < 1. (1.22)

Suppose u ∈ D(Ã), and φ ∈ Ãu. Then

u = (t + Ã)−1(tu + φ) = t(t + A)−1u + (t + Ã)−1φ.

Hence with the aid of (1.18)

t1/2‖u − t(t + A)−1u‖L2(Ω) = t1/2‖(t + Ã)−1φ‖L2(Ω) � C0‖φ‖H−1(Ω).

This means u ∈ L2(Ω)1/2
A , and we have proved D(Ã) ⊂ L2(Ω)1/2

A . By combining this with (1.22)
the following inclusion relation is obtained:

D(Ã) ⊂ L2(Ω)1/2
A ⊂ (L2(Ω),D(A))1/2,∞ . (1.23)

The object of this paper is to show that if we choose D(Ã) instead of (L2(Ω),D(A))1/2,∞ , we
can obtain better estimates without assuming the ρ-regularity of m.

An analogous results are obtained also when the boundary condition is of Robin type.
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2 Main result

Theorem 2.1 Suppose that

u0 ∈ D(L), Lu0 ∈ D(Ã), (2.1)

z ∈ D(Ã), (2.2)

h ∈ C([0, T ]; L2(Ω)) ∩ B([0, T ]; D(Ã)), (2.3)

g ∈ C1([0, T ]; C), Φ[mu0] = g(0), (2.4)

Φ[z] 	= 0. (2.5)

Then there exists a unique pair of functions (u, f) such that

Mu ∈ C1([0, T ]; L2(Ω)), f ∈ C([0, T ]; C),

Lu ∈ C1/2([0, T ]; L2(Ω)) ∩ B([0, T ]; L2(Ω)1/2
A ),

d(Mu)/dt ∈ C([0, T ]; L2(Ω)) ∩ B([0, T ]; L2(Ω)1/2
A ),

(2.6)

and (1.1)-(1.3) holds.

In the proof of this theorem we use the following proposition whose proof is given in a forthcoming
paper.

Proposition 2.1 Suppose that

h ∈ C([0, T ]; L2(Ω)) ∩ B([0, T ]; D(Ã)).

Then
∫ t

0 e−(t−s)Ah(s)ds is differentible in L2(Ω), and

d

dt

∫ t

0

e−(t−s)Ah(s)ds = h(t) +
∫ t

0

∂

∂t
e−(t−s)Ah(s)ds, (2.7)

∥∥∥∥∫ t

0

∂

∂t
e−(t−s)Ah(s)ds

∥∥∥∥
L2(Ω)

� 2C0t
1/2‖h‖B([0,T ];D( �A)). (2.8)

Furthermore, the function t → ∫ t

0
∂
∂te

−(t−s)Ah(s)ds belongs to C1/2([0, T ]; L2(Ω))∩B([0, T ]; L2(Ω)1/2
A ).

Lemma 2.1 For v ∈ D(Ã) one has∥∥∥∥ d

dt
e−tAv

∥∥∥∥
L2(Ω)

� C0t
−1/2‖v‖D( �A), (2.9)

‖e−tAv − e−sAv‖L2(Ω) � 2C0(t − s)1/2‖v‖D( �A), (2.10)

‖e−tAv − v‖L2(Ω) → 0 as t → 0. (2.11)

Proof. If v ∈ D(Ã), there exists an element φ ∈ H−1(Ω) such that φ ∈ Ãv. Hence in view of
(1.18) ∥∥∥∥ d

dt
e−tAv

∥∥∥∥
L2(Ω)

=
∥∥∥∥ d

dt
e−t �AÃ−1φ

∥∥∥∥
L2(Ω)

= ‖e−t �Aφ‖L2(Ω) � C0t
−1/2‖φ‖H−1(Ω),

which implies (2.9). With the aid of (2.9) one observes for 0 < s < t

‖e−tAv − e−sAv‖L2(Ω) =
∥∥∥∥∫ t

s

d

dσ
e−σAvdσ

∥∥∥∥
L2(Ω)

� C0

∫ t

s

σ−1/2dσ‖v‖D( �A) � 2C0(t − s)1/2‖v‖D( �A).

Hence (2.10) is established and limt→0 e−tAv exists in L2(Ω). Since e−tAv = e−t �Av → v in H−1(Ω),
it follows that limt→0 e−tAv = v.
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From (1.1) and (1.3) it follows that

g′(t) + Φ[Lu(t)] = f(t)Φ[z] + Φ[h(t)].

Dividing both sides by Φ[z] one gets

f(t) = χg′(t) + χΦ[Lu(t)] − χΦ[h(t)],

where χ = Φ[z]−1. Substitution of this in (1.3) yields the equation to be satified by u:

d

dt
Mu(t) + Lu(t) = χg′(t)z + χΦ[Lu(t)]z − χΦ[h(t)]z + h(t). (2.12)

Set

y0 = mu0. (2.13)

For the time being we make formal calculations. Suppose that there exists a solution u ∈
C([0, T ]; D(L)) to the following integral equation

Lu(t) = − d

dt
e−tAy0 − χ

∫ t

0

g′(s)
∂

∂t
e−(t−s)Azds

−χ

∫ t

0

Φ[Lu(s)]
∂

∂t
e−(t−s)Azds −

∫ t

0

∂

∂t
e−(t−s)Ah(s)ds, (2.14)

Applying A−1 = ML−1 to both sides of (2.14) and noting that

A−1 d

dt
e−tA =

d

dt
e−tAA−1 = −e−tA (2.15)

one obtains

Mu(t) = e−tAy0 + χ

∫ t

0

g′(s)e−(t−s)Azds + χ

∫ t

0

Φ[Lu(s)]e−(t−s)Azds +
∫ t

0

e−(t−s)Ah(s)ds.

By differentiztion one obtains using that e−tAz → z as t → 0 in view of Lemma 2.1

d

dt
Mu(t) =

d

dt
e−tAy0 + χg′(t)z + χ

∫ t

0

g′(s)
∂

∂t
e−(t−s)Azds

+χΦ[Lu(t)]z + χ

∫ t

0

Φ[Lu(s)]
∂

∂t
e−(t−s)Azds +

d

dt

∫ t

0

e−(t−s)Ah(s)ds. (2.16)

Addition of (2.14) and (2.16) yields (2.12) in view of (2.7). Consequently the problem is reduced
to solving (2.14). Let u1 be the function defined by

Lu1(t) = − d

dt
e−tAy0 − χ

∫ t

0

g′(s)
∂

∂t
e−(t−s)Azds −

∫ t

0

∂

∂t
e−(t−s)Ah(s)ds. (2.17)

Then the integral equation (2.14) is rewritten as

Lu(t) = Lu1(t) − χ

∫ t

0

Φ[Lu(s)]
∂

∂t
e−(t−s)Azds, (2.18)

Since in view of (2.13) y0 = mu0 = A−1Lu0, one gets using (2.15)

− d

dt
e−tAy0 = − d

dt
e−tAA−1Lu0 = e−tALu0. (2.19)

Since Lu0 ∈ D(Ã) by assumption (2.1), the first term of the right hand side of (2.17) belongs to
C1/2([0, T ]; L2(Ω)) in view of (2.19) and Lemma 2.1, (2.10). Let φ ∈ ÃLu0. Then e−tALu0 =
e−tAÃ−1φ = Ã−1e−t �Aφ. This implies Ãe−tALu0 � e−t �Aφ. Hence

‖e−tALu0‖D( �A) � ‖e−t �Aφ‖H−1(Ω) � C0‖φ‖H−1(Ω),
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where we used (1.20). Therefore the first term of the right hand side of (2.17) belongs to
B([0, T ]; D(Ã)), and hence to B([0, T ]; L2(Ω)1/2

A ) in view of the first inclusion relation of (1.23).
The last term of (2.17) belongs to C1/2([0, T ]; L2(Ω)) ∩ B([0, T ]; L2(Ω)1/2

A ) in view of Proposi-
tion 2.1. Clearly g′(·)z ∈ C([0, T ]; L2(Ω)) ∩ B([0, T ]; D(Ã)). Hence applying this proposition to
g′(·)z instead of h we see that the second term of the right hand side of (2.17) also belongs to
C1/2([0, T ]; L2(Ω)) ∩ B([0, T ]; L2(Ω)1/2

A ). Therefore

Lu1 ∈ C1/2([0, T ]; L2(Ω)) ∩ B([0, T ]; L2(Ω)1/2
A ). (2.20)

The integral equation (2.18) is solved by successive approximation. Let

Lun+1(t) = Lu1(t) − χ

∫ t

0

Φ[Lun(s)]
∂

∂t
e−(t−s)Azds, n = 1, 2, 3, . . . .

By virtue of (2.9) the following inequalities hold for n = 2, 3, . . .

‖Lun+1(t) − Lun(t)‖L2(Ω) =
∥∥∥∥χ∫ t

0

Φ[Lun(s) − Lun−1(s)]
∂

∂t
e−(t−s)Azds

∥∥∥∥
L2(Ω)

� C0|χ|‖Φ‖
∫ t

0

‖Lun(s) − Lun−1(s)‖L2(Ω)(t − s)−1/2ds‖z‖D( �A).

By induction it can be shown without difficulty that

‖Lun+1(t) − Lun(t)‖L2(Ω) � 2C2(C0|χ|‖Φ‖)n π(n−1)/2

nΓ(n/2)
√

πtn/2‖z‖n
D( �A)

, n = 2, 3, . . . ,

where C2 is a constant such that

‖Lu1(t)‖ � C2, 0 � t � T.

Consequently the sequence {un} tends to a function u satisfying (2.18) in C([0, T ]; D(L)). Applying
Proposition 2.1 to Φ[Lu(·)]z we see that the second term of the right hand side of (2.18) belongs
to C1/2([0, T ]; L2(Ω)) ∩ B([0, T ]; L2(Ω)1/2

A ). Therefore

Lu ∈ C1/2([0, T ]; L2(Ω)) ∩ B([0, T ]; L2(Ω)1/2
A ).

Other regularity properties of u listed in the statement of the theorem are obvious. Consequently
the proof of the thoerem is complete.
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DEGENERATE DIFFERENTIAL EQUATIONS OF

PARABOLIC TYPE AND INVERSE PROBLEMS

Angelo Favini∗ and Hiroki Tanabe

Abstract

Some identification problems for degenerate linear differential equations in Banach spaces
are studied by reducing them to related direct problems. The abstract results are applied to
treat some inverse problems for partial differential equations.

1 Introduction

In this paper a general method to solve inverse problems for degenerate differential equations in
Banach spaces is described.

It basically consists in reducing the inverse problem to a direct problem whose operator-
coefficients are perturbations of some operator-coefficients of the given equation.

More precisely, the strategy for solving the inverse problem to determine the pair (y, f) ∈
C
(
[0, r];D(L)

)
× C

(
[0, r];C

)
satisfying the possibly degenerate initial-value problem

d

dt

(
My(t)

)
+ Ly(t) = f(t)z + h(t), 0 ≤ t ≤ r, (1.1)

(My)(0) = My0, y0 ∈ D(L), (1.2)

Φ
[
My(t)

]
= g(t), 0 ≤ t ≤ r, (1.3)

under the assumptions

(i) L and M are closed linear operators acting on the complex Banach space X, the domain
D(L) of L is contained in D(M), 0 ∈ ρ(L),

(ii) L and M satisfy the weak parabolicity condition ζM + L has a bounded inverse for any
ζ ∈ Σα, where

Σα =
{
ζ ∈ C : Re ζ ≥ −C

(
1 + | Im ζ|

)α}
, C > 0

and ∥∥M(ζM + L)−1
∥∥
L(X)

≤ C ′
(
1 + |ζ|

)−β
, ∀ζ ∈ Σα, 0 < β ≤ α ≤ 1,

(iii) h ∈ C
(
[0, r];X

)
, Φ ∈ X∗, g ∈ C1

(
[0, r];C

)
and the compatibility relation

g(0) = Φ[My0] (1.4)

holds,

is as follows. Notice that the parabolicity assumptions (ii) comes from the monograph [12] from
Favini and Yagi.

Applying Φ to (1.1) and using the additional information (1.3), we get that necessarily f satisfies

g′(t) = −Φ
[
Ly(t)

]
+ f(t)Φ[z] + Φ

[
h(t)

]
; 0 ≤ t ≤ r,

therefore, if Φ[z] 6= 0, then f(t) is given by

f(t) =
1

Φ[z]

{
g′(t) + Φ

[
Ly(t)

]
−Φ
[
h(t)

]}
. (1.5)

∗Partially supported by INdAM and RFO funds of the University of Bologna.
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If we substitute (1.5) in (1.1), this yields the direct problem

d

dt

(
My(t)

)
= −Ly(t)− L1y(t)− 1

Φ[z]
Φ
[
h(t)

]
z +

g′(t)

Φ[z]
z + h(t), 0 ≤ t ≤ r,

(My)(0) = My0,

(1.6)

where the operator L1 is defined by

D(L1) = D(L), L1y := −Φ[Ly]

Φ[z]
z, y ∈ D(L1).

Hence the direct problem (1.6), together with f(t) furnished by (1.5) is equivalent to (1.1)∼(1.3).
Such a strategy has been already used in the paper [11] from A. Favini and G. Marinoschi in

order to treat identification problems for degenerate equations of hyperbolic type. One can solve
problem (1.6), after having shown that the pair (L+ L1,M) satisfies the same resolvent estimate
as in (ii), by using either regularity in time of the data or spatial regularity of them.

Concerning space regularity, a first approach can be found in a paper [10] from Favini, Lorenzi,
Marinoschi, Tanabe. In that paper, the assumption L + L1 to have a bounded inverse (and thus
to be closed) was introduced to simplify the treatment, but it is not so obvious.

A main aim in this paper is to cover this possible gap. The assumptions on the given elements
y0, z will be concerned with the intermediate spaces

Xθ
A =

{
u ∈ X : sup

t>0
(1 + t)θ

∥∥A◦(tI +A)−1u
∥∥
X

= ‖u‖XθA <∞
}

(1.7)

where A◦(tI + A)−1 means I − t(tI + A)−1, A being the multivalued linear operator LM−1,
D(A) = M

(
D(L)

)
.

Recently, in russian literature, see papers from G.A. Baskakov and his co-authors, such opera-
tors are also named linear relations. The choice of the spaces Xθ

A compels us to some restrictions
on θ, that can be avoided provided that, according to a very recent paper [8] by Favini, Lorenzi,
Tanabe we use the interpolation spaces

(
X,D(A)

)
θ,∞ instead. On the other hand a characteri-

zation of these interpolation spaces as in Triebel’s monograph [14] for α = β = 1 appears very
difficult.

We note that maximal regularity in time for degenerate differential equations and its applica-
tions to inverse problems was investigated in the paper [3] from Favini, Lorenzi, Tanabe and very
recently in [1], [2] from Favini and Favaron.

The contents of the paper are as follows. In Section 2 we recall some perturbation results from
[10]. Section 3 and 4 concern solvability of (1.1)∼(1.3) under maximal regularity in space and in
time, respectively. In Section 5 a related inverse problem for the equation My′ = −Ly+f(t)z+h(t)
is considered. Section 6 is devoted to applications to PDEs and integro-differential equations.

At last, we want to thank very much professor Giovanni Dore for his important help and useful
discussions and remarks.

2 Perturbation results

The result that follows furnishes an extension to well known statements concerning sectorial oper-
ators, cfr. Lunardi [13]. We refer to Favini, Lorenzi, Marinoschi, Tanabe [10].

Theorem 2.1. Let M , L, L1 be closed linear operators in the complex Banach space X, with
D(L1) = D(L) ⊆ D(M), 0 ∈ ρ(L), 0 < β ≤ α ≤ 1,∥∥M(ζM + L)−1x

∥∥
X
≤ C(1 + |ζ|)−β‖x‖X ; ζ ∈ Σα, x ∈ X. (2.1)

If, in addition, L1 ∈ L
(
D(L), Xθ

A

)
, where A is the multivalued operator LM−1 and 1− β < θ < 1,

then ∥∥M(ζM + L+ L1)−1
∥∥
L(X)

≤ C(1 + |ζ|)−β ; ζ ∈ Σα, |ζ| large. (2.2)

2
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Notice that A satisfies the resolvent estimate∥∥(ζI +A)−1
∥∥
L(X)

≤ C(1 + |ζ|)−β , ζ ∈ Σα.

If α = β = 1, then Xθ
A coincides with

(
X,D(A)

)
θ,∞, 0 < θ < 1. Recall (cfr. [11]) that

A◦(ζI +A)−1 = (ζA−1 + I)−1 = I − ζ(ζI +A)−1.

Then D(A) is a Banach space under the graph norm

‖x‖D(A) := inf
y∈Ax

‖y‖X .

We recall the following existence and uniqueness result from Favini, Lorenzi, Marinoschi, Tan-
abe [10].

We need to introduce a further notation to this purpose. If Y is a Banach space, B
(
[0, r];Y

)
denotes the space of all bounded Y -valued functions f on [0, r] with

‖f‖B([0,r];Y ) = sup
0≤t≤r

‖f(t)‖Y .

We have

Theorem 2.2. Suppose L and M satisfy (2.1), 0 < β ≤ α ≤ 1, y0 ∈ D(L), Ly0 ∈ Xθ
A where

2− α− β < θ < 1, α+ β > 1, f ∈ B
(
[0, r];Xθ

A

)
∩ C

(
[0, r];X

)
. Then the problem

d

dt

(
My(t)

)
+ Ly(t) = f(t), 0 ≤ t ≤ r, (2.3)

(My)(0) = My0, (2.4)

admits a unique strict solution y ∈ C
(
[0, r];D(L)

)
with the spatial regularity

Ly, (My)′ ∈ B
(
[0, r];X

θ−(2−α−β)
A

)
∩ C

(
[0, r];X

)
.

If, in addition, 2α+ β > 2 and 3− 2α− β < θ < 1, then y enjoys the time regularity

Ly ∈ C(2α+β+θ−3)/α
(
[0, r];X

)
.

3 A first identification problem

After the change of variable y(t) = ektw(t), k > 0, problem (1.1)∼(1.3) becomes

d

dt

(
Mw(t)

)
+ (kM + L)w(t) = e−ktf(t)z + e−kth(t),

= f1(t)z + h1(t),

0 ≤ t ≤ r, (3.1)

(Mw)(0) = My0, y0 ∈ D(L), (3.2)

Φ
[
Mw(t)

]
= e−ktg(t),

= g1(t),

0 ≤ t ≤ r, (3.3)

Applying Φ to both members in (3.1), and taking into account (3.3), we get

g′1(t) + Φ
[
(kM + L)w(t)

]
= f1(t)Φ[z] + Φ

[
h1(t)

]
.

Since Φ[z] 6= 0, then

f1(t) =
g′1(t) + Φ

[
(kM + L)w(t)

]
−Φ
[
h1(t)

]
Φ[z]

and thus (3.1) becomes

d

dt

(
w(t)

)
+ (kM + L+ L1)w(t) =

g′1(t)

Φ[z]
z −

Φ
[
h1(t)

]
Φ[z]

z + h1(t), 0 ≤ t ≤ r,

(Mw)(0) = My0,

(3.4)
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where L1 is the operator from D(L1) = D(L) into X defined by

L1w = −
Φ
[
(kM + L)w

]
Φ[z]

z.

Assume z ∈ Xθ
A, θ > 1− β, and observe that

kM + L+ L1 = (kM + L)
(
I + (kM + L)−1L1

)
= (kM + L)

(
I + L−1(kML−1 + I)−1L1

)
= (kM + L)

(
I + L−1A◦(kI +A)−1L1

)
.

It is known (see [12], p. 49) that∥∥A◦(kI +A)−1f
∥∥
X
≤ C(1 + k)1−β−θ‖f‖XθA

and hence, if k is large enough,∥∥L−1A◦(kI +A)−1L1f
∥∥
D(L)

≤ q‖f‖D(L),

with 0 < q < 1. It follows that I +L−1A◦(kI +A)−1L1 has a bounded inverse form D(L) to itself.
Since kM + L has a bounded inverse from X into D(L), we conclude that kM + L + L1 has a
bounded inverse from X into D(L) and also from X into itself. Moreover∥∥∥(I + L−1A◦(kI +A)−1L1

)−1
(kM + L)−1f

∥∥∥
D(L)

≤ C
∥∥L(kM + L)−1f

∥∥
X
≤ C(1 + k)1−β‖f‖X .

Hence kM + L+ L1 has a bounded inverse in L(X) as declared in Theorem 2.1,∥∥∥M((ζ + k)M + L+ L1

)−1
∥∥∥
L(X)

≤ C
(
1 + |ζ|

)−β
, Re ζ ≥ −C

(
1 + | Im ζ|

)α
.

It follows that Theorem 2.2 applies with kM + L+ L1 instead of L.
Denote by Ã the multivalued linear operator (kM + L + L1)M−1 and by A1 the multivalued

operator (kM + L)M−1 = kI +A.
We need two lemmas as follows.

Lemma 3.1. Let θ ∈ (0, 1). Then Xθ
A1

= Xθ
A.

Proof. First of all, we observe that since A is supposed to have a bounded inverse, the space Xθ
A

has an equivalent norm ‖x‖X + supt>k(1 + t)θ
∥∥A◦(tI +A)−1x

∥∥
X

. Write(
tA−1 + I

)−1 −
(
t(kI +A)−1 + I

)−1
=
(
tA−1 + I

)−1[
t(kI +A)−1 − tA−1

](
t(kI +A)−1 + I

)−1

= −k
(
tA−1 + I

)−1
A−1t(kI +A)−1

(
t(kI +A)−1 + I

)−1
.

Observe that if (kI +A)−1 = 0 then (tI +A)−1 = 0 for any t ∈ ρ(−A), cfr. [11]. p. 23. Therefore(
tA−1 + I

)−1 −
(
t(kI +A)−1 + I

)−1
=

= −k(kI +A)−1
(
t(kI +A)−1 + I

)−1
+ k
(
tA−1 + I

)−1
(kI +A)−1

(
t(kI +A)−1 + I

)−1

= −k(kI +A)−1
(
t(kI +A)−1 + I

)−1
+ k
(
I − t(tI +A)−1

)
(kI +A)−1

(
t(kI +A)−1 + I

)−1

= −kt(tI +A)−1(kI +A)−1
(
t(kI +A)−1 + I

)−1

= −k t

t− k
[
(kI +A)−1 − (tI +A)−1

](
t(kI +A)−1 + I

)−1
.

Therefore

sup
t>k+1

(1 + t)θ
∥∥A◦(tI +A)−1f

∥∥
X
≤ C sup

t>k+1
(1 + t)θ

∥∥(A+ kI)◦(tI + kI +A)−1f
∥∥
X
.

Thus Xθ
A+kI ↪→ Xθ

A. Exchanging the role of A and A + kI, the embedding Xθ
A ↪→ Xθ

A+kI holds
too. This proves the assertion.
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Lemma 3.2. If 1− β < θ < 1, then

Xθ
A ↪→ Xθ+β−1

Ã
.

Proof. We recall that if A1 = (kM + L)M−1, then Xθ
A1

= Xθ
A. We have for any f ∈ X

Ã◦(tI + Ã)−1f −A◦1(tI +A1)−1f = (tÃ−1 + I)−1f − (tA−1
1 + I)−1f

= (tÃ−1 + I)−1t(A−1
1 − Ã−1)(tA−1

1 + I)−1f

(using Ã−1 = T = M(kM + L+ L1)−1, A−1
1 = S = M(kM + L)−1)

= −(tT + I)−1t(T − S)(tS + I)−1f

= −(tT + I)−1tM
[
(kM + L+ L1)−1 − (kM + L)−1

]
(tS + I)−1f

= (tT + I)−1tM(kM + L+ L1)−1L1(kM + L)−1(tS + I)−1f

= L1L
−1L(kM + L)−1(tS + I)−1f − (tT + I)−1L1(kM + L)−1(tS + I)−1f.

Since L1L
−1 ∈ L(X), we conclude that ‖u‖Xθ

Ã
≤ ‖u‖Xθ+1−β

A1

.

Writing σ = θ + 1 − β, the continuous embedding Xσ
A ↪→ Xσ+β−1

Ã
, σ ∈ (1 − β, 1) is proved.

Analogously, one sees that Xσ
Ã
↪→ Xσ+β−1

A , σ ∈ (1− β, 1).

We are now in a position to solve problem (3.4). Take z ∈ Xθ
A (⊆ Xθ+β−1

Ã
), θ > 1− β. Then if

g′1(·)
Φ[z]

z −
Φ
[
h1(·)

]
Φ[z]

z + h1(·) ∈ B
(
[0, r];Xθ

A

)
∩ C

(
[0, r];X

)
, (3.5)

problem (3.4) admits a unique strict solution w such that (see Theorem 2.2 with kM + L + L1

instead of L)

(Mw)′, (kM + L+ L1)w ∈ B
(
[0, r];X

θ−1+β−(2−α−β)

Ã

)
∩ C

(
[0, r];X

)
= B

(
[0, r];Xθ+α+2β−3

Ã

)
∩ C

(
[0, r];X

)
,

θ > 3− α − 2β, α + 2β > 2, provided that (kM + L+ L1)y0 ∈ Xθ
A. Moreover, if 2α + β > 2 and

3− 2α− β < θ − 1 + β, then (kM + L+ L1)w ∈ C2α+2β+θ−4
(
[0, r];X

)
. On the other hand,

L(tM + L)−1My0 = t−1L(tM + L)−1(tM + L− L)y0 = t−1Ly0 − t−1L(tM + L)−1Ly0

guarantees that supt>0(1 + t)θ
∥∥L(tM + L)−1My0

∥∥
X
<∞. Moreover

sup
t>0

(1 + t)θ
∥∥L(tM + L)−1L1y0

∥∥
X

= sup
t>0

(1 + t)θ

∥∥∥∥∥L(tM + L)−1 Φ
[
(kM + L)y0

]
Φ[z]

z

∥∥∥∥∥
X

=

∣∣Φ[(kM + L)y0

]∣∣
|Φ[z]|

sup
t>0

(1 + t)θ
∥∥L(tM + L)−1z

∥∥
X
<∞,

since z ∈ Xθ
A. Thus (kM + L+ L1)y0 ∈ Xθ

A reduces to Ly0 ∈ Xθ
A. Since z ∈ Xθ

A, (3.5) reduces to
h ∈ B

(
[0, r];Xθ

A

)
∩ C

(
[0, r];X

)
. Note also that (2α+ β)− (α+ 2β) = α− β ≥ 0.

In view of Lemma 3.2 we deduce that if α+ 2β > 2, then

d

dt
(Mw)(t), (kM + L+ L1)w(t) ∈ Xθ+α+2β−3

Ã
↪→ Xθ+α+3β−4

A ,

θ > 4− α− 3β, α+ 3β > 3.
At last, if α + β > 3/2, so that 2α + β > 2 and θ > 4 − 2α − 2β = 2(2 − α − β),

then (kM + L+ L1)w ∈ C2α+2β−4+θ
(
[0, r];X

)
and hence Lw ∈ C2α+2β−4+θ

(
[0, r];X

)
. On the

other hand, α + 3β − 4 − (2α + 2β − 4) = −α + β ≤ 0. It follows that if α + 3β > 3,
α + β > 3k, θ ∈ (4 − α − 3β, 1), the unique solution w of (3.4) possesses the additional regu-

larities d
dt (Mw)(t), (kM + L+ L1)w(t) ∈ Xθ+α+3β−4

A , Lw ∈ Cθ+2(α+β−2)
(
[0, r];X

)
.

We can establish the result concerning problem (1.1)∼(1.3) as follows
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Theorem 3.3. Suppose 0 < β ≤ α ≤ 1, α + 3β > 3, 4− α − 3β < θ < 1, y0 ∈ D(L), Ly0 ∈ Xθ
A,

h ∈ C
(
[0, r];X

)
∩B

(
[0, r];Xθ

A

)
, z ∈ Xθ

A, Φ ∈ X∗, Φ[z] 6= 0, g ∈ C1
(
[0, r];C

)
, g(0) = Φ[My0].

Then problem (1.1)∼(1.3) admits a unique solution (y, f) ∈ C
(
[0, r];D(L)

)
× C

(
[0, r];C

)
.

Very recently a different approach was used for solving problem (1.1)∼(1.3) in Favini, Lorenzi,
Tanabe [9]. The starting point is the following existence and uniqueness result.

Proposition 3.4. Suppose that 2α+β+θ > 3 (2α+β > 2), y0 ∈ D(L), Ly0 ∈
(
X,D(A)

)
θ,∞, A =

LM−1, ‖y‖D(A) := inf
{
‖Lu‖X : y = Mu, u ∈ D(L)

}
, f ∈ C

(
[0, r];X

)
∩ B

(
[0, r];

(
X,D(A)

)
θ,∞

)
.

Then there exists a unique solution y to problem

d

dt

(
My(t)

)
+ Ly(t) = f(t), 0 ≤ t ≤ r,

(My)(0) = My0,

such that My ∈ C1
(
[0, r];X

)
, Ly ∈ C(2α+β−3+θ)/α

(
[0, r];X

)
∩B

(
[0, r];X

(2α+β−3+θ)/α
A

)
.

Proof. Let u0 = My0, then u0 ∈ D(A) and by hypothesis Ly0 ∈ Au0 ∩
(
X,D(A)

)
θ,∞.

One can apply an existence and uniqueness result for u′ − f ∈ Au, u(0) = u0 in [9] according
to which there is a unique solution u to this initial problem for the inclusion u′ − f ∈ Au. Set
y(t) = L−1

(
f(t)−u′(t)

)
. Then Ly(t) = f(t)−u′(t) ∈ Au(t) = LM−1u(t). Since L is invertible we

have y(t) ∈M−1u(t), i.e. My(t) = u(t) and thus Ly(t) = f(t)− d
dtMy(t).

Moreover (My)(0) = u0 = My0.

By using a fixed point argument, the identification result is established as follows.

Theorem 3.5. Let 2α + β > 2 and suppose 3 − 2α − β < θ < 1, y0 ∈ D(L), g ∈ C1
(
[0, r];C

)
,

Φ ∈ X∗, Φ[My0] = g(0), z ∈
(
X,D(A)

)
θ,∞, Φ[z] 6= 0, h ∈ C

(
[0, r];X

)
∩ B

(
[0, r];

(
X,D(A)

)
θ,∞

)
.

Then there is a unique solution (y, f) to (1.1)∼(1.3) such that My ∈ C1
(
[0, r];X

)
, f ∈ C

(
[0, r];C

)
,

(My)′ − f(·)z − h(·) ∈ C(2α+β−3+θ)/α
(
[0, r];X

)
∩B

(
[0, r];X

(2α+β−3+θ)/α
A

)
.

The proof of Theorem 3.5 is an immediate consequence of Theorem 4.1 in [9], after transforming
our problem to the one to determine (x, f), x ∈ C1

(
[0, r];X

)
, f ∈ C

(
[0, r];C

)
, satisfying

x′(t)− f(t)z − h(t) ∈ Ax(t),

x(0) = My0,

Φ
[
x(t)

]
= g(t).

4 Maximal regularity in time

We want to solve problem (3.4) under maximal time regularity assumptions, by using [3], Theo-
rem 7.2.

Suppose z ∈ Xθ
A, θ > 1 − β, so that Xθ

A ↪→ Xθ−1+β

Ã
, and take h ∈ Cθ

(
[0, r];X

)
, g ∈

C1+θ
(
[0, r];C

)
, so that h1 and g1 have the same regularity.

Compute

h1(0) +
Φ
[
h1(0)

]
Φ[z]

z +
g′1(0)

Φ[z]
z − (kM + L+ L1)y0,

where

L1y0 = −
Φ
[
(kM + L)y0

]
Φ[z]

z.

Suppose h(0) − Ly0 ∈ Xθ
A ⊂ X

θ−(1−β)

Ã
. Then, by Theorem 7.2 in [3], problem (3.4) admits a

unique strict solution w ∈ C
(
[0, r], D(L)

)
, (kM + L+ L1)w ∈ C

(
[0, r], X

)
, such that

(Mw)′, (kM + L+ L1)w ∈ Cθ−1+β+α+β−2
(
[0, r], X

)
= Cθ+α+2β−3

(
[0, r], X

)
,

(2− α− β) + (1− β) = 3− α− 2β < θ < 1, α+ 2β > 2,
This yields a result as follows:
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Theorem 4.1. Suppose α + 2β > 2 and let 3 − α − 2β < θ < 1. If Φ ∈ X∗, Φ[z] 6= 0,
Φ[My0] = g(0), g ∈ C1+θ

(
[0, r];C

)
, h ∈ Cθ

(
[0, r];X

)
, then inverse problem (1.1)∼(1.3) admits a

unique strict solution (y, f) ∈ Cθ+α+2β−3
(
[0, r];D(L)

)
× Cθ+α+2β−3

(
[0, r];C

)
.

A refinement of Theorem 4.1 comes from [2], Theorem 6.3 and can be established as follows:

Theorem 4.2. Suppose 3α + 4β > 6 (so that 5α + 2β > 6)). Take f(0) − Ly0 ∈ Xϕ0

A , ϕ0 ∈
(6− 3α− 3β, β), z ∈ Xϕ1

A , ϕ1 ∈ (6− 3α− 3β, 1), f ∈ Cµ0
(
[0, r], X

)
, µ0 ∈

[
(6− 3α− 3β)/(2α), 1

)
,

g ∈ C1+µ1
(
[0, r],C

)
, µ1 ∈

(
(3 − 2α − β)/α, 1

)
, 0 ∈ ρ(L), Φ ∈ X∗, Φ[z] 6= 0, g(0) = Φ[My0]. Let

γi = ϕi + β − 1, i = 0, 1, γ = mini=0,1 γi, τ = min
{
µ, (α+ β + γ − 2)/α

}
, where µ = mini=0,1 µi.

Let

Iα,β,τ =

{(
(3− 2α− β)/α, τ

]
, if τ ∈

(
(3− 2α− β)/α, 1/2

)
,(

(3− 2α− β)/α, 1/2
)
, if τ ∈ [1/2, 1).

Then, for every fixed δ ∈ Iα,β,τ , the degenerate identification problem (1.1)∼(1.3) admits a unique
solution (y, f) such that y ∈ Cδ

(
[0, r], D(L)

)
, My ∈ C1+δ

(
[0, r], X

)
, y(0) = y0, f ∈ Cδ

(
[0, r],C

)
.

It is to be noticed the same regularity in the class Cδ of y and f .

5 A latter identification problem

Let us consider the problem to find the pair (y, f) ∈ C1
(
[0, r];X

)
× C

(
[0, r];C

)
such that

My′(t) = −Ly(t) + f(t)z + h(t), 0 ≤ t ≤ r, (5.1)

y(0) = y0, (5.2)

Φ
[
My(t)

]
= g(t), 0 ≤ t ≤ r. (5.3)

It is well known that further compatibility relations must be introduced. A first remark says us
that necessarily

g′(0) = −Φ[Ly0] + f(0)Φ[z] + Φ
[
h(0)

]
,

so that, if Φ[z] 6= 0, then

f(0) =
1

Φ[z]

{
g′(0) + Φ[Ly0]− Φ

[
h(0)

]}
.

In particular, if y1 = y′(0), then necessarily

My1 = −Ly0 + f(0)z + h(0) (5.4)

for such a f(0). Deriving both the members of (5.1) we get

d

dt

(
My′(t)

)
= −Ly′(t) + f ′(t)z + h′(t), 0 ≤ t ≤ r, (5.5)

(My′)(0) = −Ly0 + f(0)z + h(0) = My1, (5.6)

Φ
[
My′(t)

]
= g′(t), 0 ≤ t ≤ r. (5.7)

This inverse problem can be solved by using the previous results and for sake of brevity we
confine to use Theorem 3.5.

Therefore, if 2α + β > 2, 3− 2α − β < θ < 1, y1 ∈ D(L), g ∈ C2
(
[0, r];C

)
, Φ ∈ X∗, Φ[z] 6= 0,

z ∈
(
X,D(A)

)
θ,∞, h ∈ C1

(
[0, r];X

)
, h′ ∈ B

(
[0, r];

(
X,D(A)

)
θ,∞

)
, then the identification problem

d

dt

(
Mξ(t)

)
= −Lξ(t) + f1(t)z + h′(t), 0 ≤ t ≤ r, (5.8)

(Mξ)(0) = My1, (5.9)

Φ
[
Mξ(t)

]
= g′(t), 0 ≤ t ≤ r, (5.10)
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admits a unique strict solution (ξ, f1) ∈ C
(
[0, r];D(L)

)
×C

(
[0, r];C

)
such that Mξ ∈ C1

(
[0, r];X

)
and (Mξ)′ − f1(·)z − h′(·) ∈ C(2α+β−3+θ)/α

(
[0, r];X

)
∩B

(
[0, r];X

(2α+β−3+θ)/α
A

)
.

Integrating (5.8) on (0, t), we get

Mξ(t)−My1 = −L
∫ t

0

ξ(s) ds+

∫ t

0

f1(s) ds z + h(t)− h(0).

Now, write f1(s) = f ′(s), with f(0) =
g′(0) + Φ[Ly0]− Φ

[
h(0)

]
Φ[z]

. Thus we obtain

Mξ(t)−My1 = −L
[∫ t

0

ξ(s) ds+ y0

]
+ Ly0 + f(t)z − f(0)z + h(t)− h(0).

But My1 = −Ly0 + f(0)z + h(0). Hence y(t) = y0 +
∫ t

0
ξ(s) ds satisfies problem (5.1), (5.2).

Moreover

Φ
[
My′(t)

]
=

d

dt
Φ
[
My(t)

]
= Φ

[
Mξ(t)

]
= g′(t)

and thus
∫ t

0
d
dt

(
My(s)

)
ds = My(t)−My0 implies that∫ t

0

Φ
[
My′(s)

]
ds = Φ

[
My(t)

]
− Φ[My0] =

∫ t

0

g′(s) ds = g(t)− g(0).

But g(0) = Φ[My0], therefore Φ
[
My(t)

]
= g(t), as desired.

We have established the result as follows.

Theorem 5.1. Let 2α+ β > 2, 3− 2α− β < θ < 1. Let y1 ∈ D(L) such that

My1 = −Ly0 +
g′(0) + Φ[Ly0]− Φ

[
h(0)

]
Φ[z]

z + h(0),

with y0 ∈ D(L), z ∈
(
X,D(A)

)
θ,∞, Φ ∈ X∗, Φ[My0] = g(0), Φ[z] 6= 0, g ∈ C2

(
[0, r];C

)
,

h ∈ C1
(
[0, r];X

)
, h′ ∈ B

(
[0, r];

(
X,D(A)

)
θ,∞

)
.

Then problem (5.1)∼(5.3) admits a unique strict solution (y, f) ∈ C1
(
[0, r];D(L)

)
×C1

(
[0, r];C

)
such that My′ ∈ C1

(
[0, r];X

)
,

(My′)′ − f ′(·)z − h′(·) ∈ C(2α+β−3+θ)/α
(
[0, r];X

)
∩B

(
[0, r];X

(2α+β−3+θ)/α
A

)
.

6 Examples and applications

6.1 Degenerate integrodifferential equations

In a complex Banach space X, consider the integrodifferential inverse problem to recover (y, f) ∈
C
(
[0, r];D(L)

)
× C

(
[0, r];C

)
such that

d

dt

(
My(t)

)
+ Ly(t) =

∫ t

0

K(t− s)L1y(s) ds+ f(t)z + h(t), 0 ≤ t ≤ r, (6.1)

(My)(0) = My0, (6.2)

Φ
[
My(t)

]
= g(t), 0 ≤ t ≤ r, (6.3)

with Φ[My0] = g(0), under the type of hypotheses made in Sections 2, 3.
Applying Φ to both members of (6.1), we see that necessarily, if Φ[z] 6= 0, and after the change

of variable y(t) = ektx(t), we get

d

dt

(
Mx(t)

)
+ (kM + L)x(t)−

Φ
[
(kM + L)x(t)

]
Φ[z]

z

=

∫ t

0

K1(t− s)L1x(s) ds−
∫ t

0

K1(t− s)
Φ
[
L1x(s)

]
Φ[z]

z ds+
g′1(t)

Φ[z]
z −

Φ
[
h1(t)

]
Φ[z]

z + h1(t),

(6.4)
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where g1(t) = e−ktg(t), h1(t) = e−kth(t), K1(t) = e−ktK(t),

f1(t) =
g′1(t) + Φ

[
(kM + L)x(t)

]
−
∫ t

0
K1(t− s)Φ

[
L1x(s)

]
ds− Φ

[
h1(t)

]
Φ[z]

,

(Mx)(0) = My0. (6.5)

(6.4), (6.5) is a direct problem. Introduce the operator L2 by

D(L2) = D(L1), L2x = L1x−
Φ[L1x]

Φ[z]
z.

We must require that L2 is a closed operator in X.

To this end, suppose
∥∥(ζI + L1)−1

∥∥
L(X)

≤ C
(
1 + |ζ|

)−β1
, Re ζ ≥ −C

(
1 + | Im ζ|

)α1
, 0 <

β1 ≤ α1 ≤ 1. If B1x = −Φ[L1x]
Φ[z] z, assume z ∈ Xσ

L1
, β1 < σ < 1. Then ζI + L1 + B1 =

(ζI+L1)
(
I+(ζI+L1)−1B1

)
, B1 ∈ L

(
D(L1), Xσ

L1

)
,
∥∥L1(ζI + L1)−1

∥∥
L(XσL1

,X)
≤ C

(
1+ |ζ|

)1−β1−σ
.

Therefore
(
I + (ζI + L1)−1B1

)−1 ∈ L
(
D(L1)

)
and

(ζI + L1 +B1)−1 =
(
I + (ζI + L1)−1B1

)−1
(ζI + L1)−1 ∈ L

(
X,D(L1)

)
⊂ L(X).

Therefore ζI + L1 +B1 has a bounded inverse and hence it is closed. But then L1 +B1 is closed
too.

At a first step, we want to apply Favini, Lorenzi, Tanabe [4], Theorem 2.1. p. 469.
Suppose D(L) ⊂ D(M) ∩D(L1), z ∈ Xθ

A ∩Xσ
L1

, θ > 1− β, where∥∥(ζI + L1)−1
∥∥
L(X)

≤ C
(
1 + |ζ|

)−β1
, Re ζ ≥ −C

(
1 + | Im ζ|

)α1
, (6.6)

0 < β1 ≤ α1 ≤ 1, σ > 1− β1. Then z ∈ Xθ−1+β

Ã
.

Take g ∈ Cθ+β
(
[0, r];C

)
, h ∈ Cθ

(
[0, r];X

)
⊆ Cθ−1+β

(
[0, r];X

)
, K ∈ Cθ

(
[0, r];C

)
, h(0) −

(kM + L)y0 + Φ[(kM+L)y0]
Φ[z] z ∈ R(T ), i.e. h(0)− Ly0 ∈ R(T ) = D(A), z ∈ D(A).

Then (6.1)∼(6.3) has a unique strict solution

(y, f) ∈ Cθ−1+β−2+α+β
(
[0, r];D(L)

)
× Cθ−3+2β+α

(
[0, r];C

)
= Cθ−3+2β+α

(
[0, r];D(L)

)
× Cθ−3+2β+α

(
[0, r];C

)
,

3− 2β − α < θ < 1, α+ 2β > 2.
Summing up, we have:

Theorem 6.1. Let α + 2β > 2, 3 − 2β − α < θ < 1 and suppose D(L) ⊂ D(M) ∩ D(L1)
where the closed linear operator L1 satisfies (6.6). Let z ∈ D(A) ∩ Xσ

L1
, σ > 1 − β1. Suppose

g ∈ Cθ+β
(
[0, r];C

)
, h ∈ Cθ

(
[0, r];X

)
, K ∈ Cθ

(
[0, r];C

)
, h(0)− Ly0 ∈ R(T ) = D(A), Φ[z] 6= 0.

Then problem (6.1)∼(6.3) admits a unique strict solution

(y, f) = Cθ−3+2β+α
(
[0, r];D(L)

)
× Cθ−3+2β+α

(
[0, r];C

)
.

If we allow to α and β more restrictive conditions, we can obtain less restrictive assumptions
on z, taking into account the following particular case of Theorem. 5.13 in Favaron, Favini [1], that
we recall as a lemma.

Lemma 6.2. Suppose 0 < β ≤ α ≤ 1 and (ii) to hold with 5α+2β > 6. Suppose K ∈ Cs
(
[0, r];C

)
,

s ∈
(
(3 − 2α − β)/α, 1

)
, f(0) − Ly0 ∈ Yγ ∈

{(
X,D(A)

)
γ,∞, X

γ
A

}
, with γ ∈ (5 − 3α − 2β, 1). Let

τ = max
{
s, (α+ β + γ − 2)/α

}
and introduce the interval Iα,β,τ by

Iα,β,τ =

{(
(3− 2α− β)/α, τ

)
, if τ ∈

(
(3− 2α− β)/α, 1/2

)
,(

(3− 2α− β)/α, 1/2
)
, if τ ∈ [1/2, 1).
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Then for every fixed δ ∈ Iα,β,τ , problem

d

dt

(
My(t)

)
+ Ly(t) = (K ∗ L1)(y)(t) + f(t), t ∈ [0, r], (My)(0) = My0, (6.7)

admits a unique strict solution y ∈ Cδ
(
[0, r];D(L)

)
such that y(0) = y0 and (My)′ ∈ Cδ

(
[0, r];X

)
,

provided that f ∈ Cµ
(
[0, r];X

)
, µ ∈

[
δ + (3− 2α− β)/α, 1

)
. As a consequence, we have the result

on (6.1)∼(6.3) as follows.

Theorem 6.3. Suppose 0 < β ≤ α ≤ 1, 3α + 3β > 5, θ ∈
(
6 − 3(α + β), 1

)
, z ∈ Xθ

A, Φ ∈ X∗,
Φ[z] 6= 0, y0 ∈ D(L), h(0) − Ly0 ∈ Xθ

A ∪
(
X,D(A)

)
θ,∞. Let K ∈ Cs

(
[0, r];C

)
and let τ∗ =

max
{
s, (α+ 2β+ θ− 3)/α

}
. Let Iα,β,τ∗ be the interval introduced previously. Then for every fixed

δ ∈ Iα,β,τ∗ , for all g ∈ C1+µ
(
[0, r];C

)
, h ∈ Cµ

(
[0, r];X

)
, µ ∈

[
δ + (3 − 2α − β)/α, 1

)
, problem

(6.4), (6.5) admits a unique strict solution x ∈ Cδ
(
[0, r];D(L)

)
, (Mx)′ ∈ Cδ

(
[0, r];X

)
.

Proof. All is reduced to solve the initial value problem

d

dt

(
Mx(t)

)
+ (kM + L+ L1)x(t)

=

∫ t

0

K1(t− s)L2x(s) ds+
g′1(t)

Φ[z]
z −

Φ
[
h1(t)

]
Φ[z]

z + h1(t), 0 ≤ t ≤ r,

(Mx)(0) = My0

Since K ∈ Cs
(
[0, r];C

)
, (α + 2β − 3)/α < s < 1, g ∈ C1+µ

(
[0, r];C

)
, h ∈ Cµ

(
[0, r];X

)
,

z ∈ Xθ
A ↪→ Xθ−1+β

Ã
, then

g′(0)

Φ[z]
z −

Φ
[
h1(0)

]
Φ[z]

z + h1(0)− (kM + L+ L1)y0 ∈ Xθ
A ⊂ X

θ−1+β

Ã
.

θ − 1 + β (= γ in the Lemma) ∈ (5− 3α− 2β, 1) ⇐⇒ θ ∈
(
6− 3(α+ β), 2− β

)
, 3α+ 2β > 4.

Moreover, since Xθ
A ↪→

(
X,D(A)

)
θ,∞ and

(
X,D(A)

)
θ,∞ =

(
X,D(Ã)

)
θ,∞,

g′1(0)

Φ[z]
z −

Φ
[
h1(0)

]
Φ[z]

z + h1(0)− (kM + L+ L1)y0 ∈
(
X,D(A)

)
θ,∞.

We conclude that

g′1(0)

Φ[z]
z−

Φ
[
h1(0)

]
Φ[z]

z+h1(0)− (kM +L+L1)y0 ∈
(
X,D(A)

)
θ,∞ ∪X

θ
A ⊆

(
X,D(Ã)

)
θ,∞ ∪X

θ−1+β

Ã
.

Recall that, in our case, γ in Lemma 6.2 is θ − 1 + β, so that

τ∗ = max
{
s, (α+ β + θ − 1 + β − 2)/α

}
= max

{
s, (α+ 2β + θ − 3)/α

}
;

Iα,β,τ∗ is introduced correspondingly as in Lemma 6.2. Hence we deduce that, for every fixed
δ ∈ Iα,β,τ∗ , problem (6.4), (6.5) admits a unique strict solution x ∈ Cδ

(
[0, r];D(L)

)
such that

(Mx)′ ∈ Cδ
(
[0, r];X

)
, provided that

g′1(·)
Φ[z]

z −
Φ
[
h1(·)

]
Φ[z]

z + h1(·) ∈ Cµ
(
[0, r];X

)
,

µ ∈
[
δ + (3− 2α− 3β)/α, 1

)
, i.e. just g ∈ C1+µ

(
[0, r];C

)
, h ∈ Cµ

(
[0, r];X

)
.

As a consequence, let 0 < β ≤ α ≤ 1, 3α + 4β > 6, θ ∈
(
6 − 3(α + β), β

)
, z ∈ Xθ

A, Φ ∈ X∗,
Φ[z] 6= 0, y0 ∈ D(L), h(0) − Ly0 ∈ Xθ

A or h(0) − Ly0 ∈
(
X,D(A)

)
θ,∞, K ∈ Cs

(
[0, r];C

)
,

s ∈
[
(3 − 2α − β)/α, 1

)
. Fixed δ ∈ Iα,β,τ∗ , for all g ∈ C1+µ

(
[0, r];C

)
, h ∈ Cµ

(
[0, r];X

)
, where

µ ∈
[
δ + (3 − 2α − β)/α, 1

)
, problem (6.1)∼(6.3) admits a unique solution (y, f) such that Ly ∈

Cδ
(
[0, r];X

)
, (My)′ ∈ Cδ

(
[0, r];X

)
and f ∈ Cδ

(
[0, r];C

)
.

10

98



6.2 Examples of applications to PDE

Let Ω be a bounded open set in Rn with a C2 boundary ∂Ω, 1 < p <∞. Let

L = −
n∑

i,j=1

∂

∂xj

(
aij(x)

∂

∂xi

)
+

n∑
i=1

ai(x)
∂

∂xi
+ a0(x),

be a second order differential operator such that aij , ai are real-valued functions such that

aij ,
∂aij
∂xj

, ai,
∂ai
∂xi

, a0 ∈ C(Ω), i, j = 1, . . . , n,

(
aij(x)

)
is a positive definite symmetric matrix for each x ∈ Ω, a0(x) ≥ C1, a0(x)−

∑n
i=1

∂ai
∂xi
≥ C1,

for x ∈ Ω, with some positive constant C1.
Let b0 be a real-valued function belonging to C(∂Ω), such that, for x ∈ ∂Ω, b0(x) ≥ 0,

b0(x) +
∑n
i=1 ai(x)νi(x) ≥ 0 when ν = (ν1, . . . , νn) is the outer normal vector to ∂Ω.

The operator Lp is the realization of L in Lp(Ω), with Robin boundary conditions, defined by

D(Lp) =

{
u ∈W 2,p(Ω):

n∑
i,j=1

aij(·)νj
∂u

∂xj
+ b0(·)u = 0 on ∂Ω

}
,

Lpu = Lu, for u ∈ D(Lp).

If m(x) is a non-negative bounded measurable function on Ω, let us denote by Mp the operator
of multiplication by m(·) in Lp(Ω).

We assume that m ∈ C1(Ω) and satisfies |∇m(x)| ≤ C0m(x)ρ, x ∈ Ω, where C0 is a positive
constant, ρ satisfies 2− p < ρ < 1.

In the forthcoming paper [8] from Favini, Lorenzi, Tanabe it is shown that∥∥Mp(ζMp + Lp)
−1
∥∥
L(Lp(Ω))

≤ C1,p

(
|ζ|+ 1

)−(2−ρ)−1

, if p ≤ 2,∥∥Mp(ζMp + Lp)
−1
∥∥
L(Lp(Ω))

≤ C2,p

(
|ζ|+ 1

)−2[p(2−ρ)]−1

, if p > 2,

without the additional assumptions in Favini, Lorenzi, Tanabe, Yagi [5], [6].
Notice that if m(·) ∈ C1(Ω) and k ∈ N, then∣∣∇(m(x)k

)∣∣ = km(x)k−1 |∇m(x)| = k
[
m(x)k

]1−1/k |∇m(x)| ≤ C
[
m(x)k

]1−1/k
,

and 1− 1/k → 1 as k →∞.
Then all our abstract results in the previous Sections apply to the identification problem

d

dt

(
(Mpy)(t, x)

)
+ (Lpy)(t, x) = f(t)z(x) + h(t, x), t ∈ [0, r], x ∈ Ω,

(Mpy)(0, x) = m(x)y0(x), x ∈ Ω,∫
Ω

η(x)(Mpy)(t, x) dx = g(t), t ∈ [0, r],

where η ∈ Lp′(Ω), 1/p+ 1/p′ = 1.
Analogously, if we take the operator L̃p as previously, but with Dirichlet boundary conditions

in Lp and L1 = ∆ + c(·), where c(x) ≤ 0 is continuous on Ω, we can handle the inverse problem
(see [7], Favini, Lorenzi, Tanabe)

d

dt

(
(Mpy)(t, x)

)
+ (Lpy)(t, x) =

∫ t

0

K(t− s)(L1y)(s, x) ds+ f(t)z(x) + h(t, x), t ∈ [0, r], x ∈ Ω,

(Mpy)(0, x) = m(x)y0(x), x ∈ Ω,∫
Ω

η(x)(Mpy)(t, x) dx = g(t), t ∈ [0, r],

In this case, z is to be taken in Xθ
A ∩

(
Lp(Ω),W 2,p(Ω) ∩

◦
W 1,p(Ω)

)
σ,∞.

The details are left to the reader.
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A variational approach to gradient flows

Goro Akagi1

Dedicated to Professor Hiroki Tanabe on the occasion of his 80th birthday

Abstract

This note is concerned with a variational approach to gradient flows
of nonconvex energies in Hilbert spacesH. We employ theWeighted
Energy-Dissipation (WED for short) functional, which consists
of dissipation functional and energy functional with exponential
weight in time and which is defined for each orbit u : [0, T ] → H
satisfying initial condition. In this approach, gradient flows will be
obtained as a limit of minimizers uε of WED functionals Wε as a
parameter ε goes to zero.

This note is based on a joint work [1] with Ulisse Stefanelli (IMATI-CNR, Italy).

1 Variational formulation of gradient flows

Gradient flow is a major principle in the descriptions of various sorts of phenomena
(e.g., phase transition), and there have been a large number of contributions from
numerous points of view. On the other hand, variational principle is also another
major principle, and particularly, it would be the most universal principle of physics.
Gradient flows could be regarded as a principle describing more transitional phase
and they are not necessarily formulated as a variational principle in a natural way.
However, in this study, we are making an attempt to pursue (natural) variational
principles to describe gradient flows.

Let H be a Hilbert space and let E : H → R be an energy functional. Gradient
flows u : [0, T ] → H of E are generated by the evolution equation

u′(t) = −dE(u(t)) in H, t ∈ (0, T ), (1)

where u′ = du/dt and dE denotes a functional derivative of E in a proper sense. Let
us give a typical example below.

Example 1.1 (Allen-Cahn equation). Set H = L2(Ω) with a domain Ω ⊂ RN and
define

E(u) =
1

2

∫
Ω

|∇u|2dx+
∫
Ω

W (u(x))dx for u ∈ D(E) ⊂ H

1Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-
8501 Japan (e-mail: akagi@port.kobe-u.ac.jp). Supported by JSPS KAKENHI Grant Number
22740093; JSPS-CNR Joint Research Project; Hyogo Science and Technology Association.

1

101



with a double-well potential W : R → R and D(E) = {u ∈ H1
0 (Ω) : W (u(·)) ∈

L1(Ω)}. Then the evolution equation (1) corresponds to the Allen-Cahn equation

∂tu−∆u+W ′(u) = 0 in Ω× (0, T )

with the homogeneous Dirichlet boundary condition.

On the other hand, equilibrium states φ of the evolution equation (1) are formu-
lated in a variational fashion,

dE(φ) = 0.

In this note, we shall present a variational formulation for gradient flows. Such
variational formulations can be realized in a couple of manners such as

(i) time-discretization

(ii) Brézis-Ekeland’s principle (see [5, 6])

(iii) Weighted Energy-Dissipation (WED for short) functional

Example 1.2 (Time-discretization of gradient systems). One can incrementally ob-
tain a next step un from the previous step un−1 by solving the semi-discretized prob-
lem for (1),

un − un−1

h
= −dE(un),

which is an Euler-Lagrange equation of the functional

In(w) :=
1

2
|w|2H + hE(w)− (un−1, w)H for w ∈ H.

Example 1.3 (Brézis-Ekeland’s variational principle [5, 6]). Let φ be a proper lower
semicontinuous convex functional on a Hilbert space H. Then Brézis and Ekeland
found the following relation,

u′(t) + ∂φ(u(t)) 3 0, u(0) = u0 iff J(u) = inf
D(J)

J = 0,

where J is a functional on L2(0, T ;H) given by

J(u) :=

∫ T

0

(
φ(u(t)) + φ∗(−u′(t))

)
dt+

1

2
|u(T )|2H − 1

2
|u0|2H

with the domain D(J) := {u ∈ W 1,2(0, T ;H) : u(0) = u0, φ(u(·)), φ∗(−u′(·)) ∈
L1(0, T )}, where φ∗ is the convex conjugate of φ defined by

φ∗(v) := sup
u∈H

{(v, u)H − φ(u)} for v ∈ H.
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In this note, we address ourselves to the third approach based on the Weighted
Energy-Dissipation (WED) functional. Let us briefly exhibit an overview of this
approach. Let E : H → R be a convex energy and consider the Cauchy problem,{

u′(t) = −dE(u(t)) in H, 0 < t < T,

u(0) = u0.
(2)

An WED functional is defined for (2) as follows:

Wε(u) :=

∫ T

0

e−t/ε
(ε
2
|u′(t)|2H + E(u(t))

)
dt

for u ∈ H := L2(0, T ;H) satisfying u(0) = u0. The minimization approach using
WED functionals is formulated as follows: Let uε be a unique (by convexity) mini-
mizer of Wε(u) subject to u(0) = u0. Then the minimizer uε approximates a gradient
flow u of E for ε > 0 sufficiently small (more precisely, uε → u strongly in C([0, T ];H)
as ε→ 0). In [14], the convergence of minimizers has already been proved for convex,
lower semicontinuous energy functionals in a subdifferential framework.

Example 1.4 (WED approach to the heat equation). As a simplest example, let us
treat the heat equation,

(Heat)

{
∂tu−∆u = 0 in Q := Ω× (0, T ),
u|∂Ω = 0, u(·, 0) = u0.

For each ε > 0, let us define

Wε(u) :=

∫∫
Q

e−t/ε

(
ε

2
|∂tu|2 +

1

2
|∇u|2

)
dxdt

for u ∈ W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) with u(·, 0) = u0. Then the Euler-

Lagrange equation dWε(u) = 0 provides elliptic-in-time regularizations of (Heat):

(Heat)ε

{
−ε∂2t u+ ∂tu−∆u = 0 in Q,
u|∂Ω = 0, u(·, 0) = u0, ∂tu(·, T ) = 0.

Indeed, for smooth test functions φ satisfying φ(0) = 0 (from initial constraint), we
observe that

(dWε(u), φ)L2(Q) =

∫∫
Q

e−t/ε (ε∂tu∂tφ+∇u · ∇φ) dxdt

=

∫
Ω

εe−t/ε∂tuφ dx
∣∣∣t=T

t=0
−
∫∫

Q

ε∂t
(
e−t/ε∂tu

)
φ dxdt

−
∫∫

Q

e−t/ε∆uφ dxdt

=

∫
Ω

εe−T/ε∂tu(T )φ(T ) dx−
∫∫

Q

ε

(
e−t/ε∂2t u−

1

ε
e−t/ε∂tu

)
φ dxdt

−
∫∫

Q

e−t/ε∆uφ dxdt

=

∫
Ω

εe−T/ε∂tu(T )φ(T ) dx+

∫∫
Q

e−t/ε
(
−ε∂2t u+ ∂tu−∆u

)
φ dxdt.
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From the arbitrariness of φ(T ) and φ, we obtain (Heat)ε. Then uε → u strongly in
C([0, T ];L2(Ω)) as ε → 0 and u solves (Heat). This fact is well known as elliptic-in-
time regularizations technique (see, e.g., [12]).

Let us briefly review previous studies on this topic. Ilmanen [9] introduced transla-
tive functional, which is based on a similar idea to WED functionals, to prove the
partial regularity of Brakke mean curvature flow of varifolds. Hirano [8] also employed
functionals similar to WED functionals to verify the existence of periodic solutions
for nonlinear evolution equations. The term “WED functional” was first introduced
by Mielke-Ortiz and Conti-Ortiz in [13] and [7], where rate-independent systems are
studied. Moreover, Mielke-Stefanelli [14] provided an WED approach to gradient
flows of the form u′ + ∂φ(u) 3 f in a Hilbert space H for convex energies φ and
proved the convergence of minimizers as ε → 0. Furthermore, Akagi-Stefanelli [3, 2]
also presented an WED formulation for generalized gradient flows, dψ(u′)+∂φ(u) 3 0
with convex dissipation functional ψ and convex energy φ in a Banach space setting.
Recently, Rossi et al [18] established an WED approach to metric gradient flows. On
the other hand, the WED approach is also applicable to other types of problems, e.g.,
wave equations and Lagrange systems (see [11]). As for semilinear wave equations,
the convergence of minimizers of the corresponding WED functionals is known as one
of De Giorgi’s conjectures. Stefanelli [20] first treated this issue and Serra-Tilli [19]
(almost) completely proved the conjecture. Here we emphasize that all these works
are done for convex (or λ-convex) energies. The aim of this note is to extend the
WED framework to gradient flows for non-convex energies.

2 Main results

Let H be a Hilbert space and let E : H → (−∞,∞] be a non-convex energy of the
form

E(u) := ϕ1(u)− ϕ2(u) for u ∈ D(E) := D(ϕ1) ∩D(ϕ2)

with proper lower semicontinuous convex functionals ϕ1, ϕ2 : H → [0,∞] and effective
domains D(ϕi) := {u ∈ H : ϕi(u) <∞}.

Let us consider gradient flows u : [0, T ] → H of E generated by

(GF)

{
u′(t) + ∂ϕ1(u(t))− ∂ϕ2(u(t)) = 0 in H, 0 < t < T,

u(0) = u0,

where ∂ϕi : H → H is the subdifferential operator of ϕi (i = 1, 2) defined by

∂ϕi(u) := {ξ ∈ H : ϕi(v)− ϕi(u) ≥ (ξ, v − u)H ∀v ∈ D(ϕi)} for u ∈ D(ϕi)

with the domain D(∂ϕi) := {u ∈ D(ϕi) : ∂ϕi(u) 6= ∅} (throughout this paper, we
assume that ∂ϕi is single-valued). We refer the reader to [15, 10, 16, 17] for the
existence of solutions and their large-time behaviors for the Cauchy problem (GF).
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We define the WED functional Wε for (GF) as follows:

Wε(u) :=



∫ T

0

e−t/ε
(ε
2
|u′(t)|2H + E(u(t))

)
dt

if u ∈ W 1,2(0, T ;H), E(u(·)) ∈ L1(0, T ),

u(0) = u0, u(t) ∈ D(E) for a.e. t ∈ (0, T ),

∞ else

for u ∈ H := L2(0, T ;H). The target issues of the present note are to prove the
following items:

• the existence of minimizers uε of Wε for any ε > 0,

• the convergence of minimizers uε to a limit u as ε→ ∞,

• the limit u is a solution of (GF).

Denote by L the set of non-increasing functions in R and let us introduce the following
assumptions:

(A0) ϕ1, ϕ2 are proper, lower semicontinuous and convex in H. Moreover, ∂ϕ1 and
∂ϕ2 are single-valued.

(A1) There exist a Banach space X compactly embedded in H and `1 ∈ L such that

|u|X ≤ `1(|u|H)
(
ϕ1(u) + 1

)
∀u ∈ D(ϕ1).

(A2) There exist k1 ∈ (0, 1) and C1 ≥ 0 such that

ϕ2(u) ≤ k1ϕ
1(u) + C1 ∀u ∈ D(ϕ1).

(A3) There exist k2 ∈ (0, 1) and `2 ∈ L such that

|∂ϕ2(u)|2H ≤ k2|∂ϕ1(u)|2H + `2(|u|H)
(
ϕ1(u) + 1

)
∀u ∈ D(∂ϕ1).

Remark 2.1 (Meaning of assumptions). (i) Roughly speaking, (A1) means the
compactness in H of sublevel sets [ϕ1 ≤ λ] given by

[ϕ1 ≤ λ] :=
{
u ∈ H : ϕ1(u) ≤ λ

}
for λ ∈ R

of ϕ1.

(ii) By (A2), the energy functional E is bounded from below. Indeed,

E(u) = ϕ1(u)− ϕ2(u)
(A2)

≥ (1− k1)ϕ
1(u)− C1 ∀u ∈ D(ϕ1).

Moreover by (A1), sublevels [E ≤ λ] of E are also precompact in H.
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(iii) (A3) means that the anti-monotone part −∂ϕ2 is dominated by the monotone
part ∂ϕ1.

Now our main result reads,

Theorem 2.2 (WED formulation of (GF)). Suppose that (A0)–(A3) hold and u0 ∈
D(∂ϕ1). Then it holds that :

(i) For each ε > 0, Wε admits a global minimizer uε over H.

Let uε be a global or local minimizer of Wε.

(ii) Then uε belongs to W 2,2(0, T ;H) and solves{
−εu′′ε(t) + u′ε(t) + ∂ϕ1(uε(t))− ∂ϕ2(uε(t)) = 0 in H, 0 < t < T,

uε(0) = u0, u′ε(T ) = 0.

(iii) There exists u ∈ W 1,2(0, T ;H) such that, up to a subsequence,

uε → u strongly in C([0, T ];H),

weakly in W 1,2(0, T ;H) as ε→ 0.

Moreover, the limit u solves (GF).

Remark 2.3 (Assertions (i) and (ii) are not obvious). The existence of minimizers
of Wε is not obvious, as Wε might not be lower semicontinuous in H. Moreover, from
the non-smoothness of Wε, it would be difficult to directly calculate dWε. Hence (ii)
is also not obvious.

3 Application to Allen-Cahn equations

Let us consider the following Allen-Cahn equation:

(AC)

{
∂tu−∆u+W ′(u) = 0 in Q := Ω× (0, T ),
u|∂Ω = 0, u(·, 0) = u0,

where W ′(u) = |u|m−2u − |u|q−2u ( 1 < q < m < ∞ ) and Ω ⊂ RN is a smooth
bounded domain.

Set H = L2(Ω) and an energy functional,

E(u) := ϕ1(u)− ϕ2(u)

with convex parts ϕ1, ϕ2 : H → [0,∞] given by

ϕ1(u) :=


1

2

∫
Ω

|∇u|2dx+ 1

m

∫
Ω

|u|mdx if u ∈ H1
0 (Ω) ∩ Lm(Ω),

∞ else,

ϕ2(u) :=


1

q

∫
Ω

|u|qdx if u ∈ Lq(Ω),

∞ else.
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Then (AC) is reduced into the Cauchy problem,

u′(t) + ∂ϕ1(u(t))− ∂ϕ2(u(t)) = 0 in H, 0 < t < T, u(0) = u0.

Let us briefly check (A0)–(A3) for this setting. (A0) follows immediately from
well-known facts. (A1) with X = H1

0 (Ω) ∩ Lm(Ω) follows from Rellich-Kondrachov’s
compactness lemma. As for (A2), since q < m, for any k1 > 0 there exists C1 ≥ 0
such that

ϕ2(u) =
1

q

∫
Ω

|u|qdx ≤ k1
m

∫
Ω

|u|mdx+ C1 ≤ k1ϕ
1(u) + C1.

Concerning (A3), for any k2 > 0 one can take C2 ≥ 0 such that

|∂ϕ2(u)|2H =
∣∣|u|q−2u

∣∣2
L2 =

∫
Ω

|u|2(q−1)dx

≤ k2

∫
Ω

|u|2(m−1)dx+ C2

≤ k2|∂ϕ1(u)|2H + C2.

Therefore Theorem 2.2 is applicable to (AC).

4 Outline of proof

In this section, we give an outline of proof for Theorem 2.2.

Step 1. Construction of a solution of (EL) by minimization of approxi-
mated WED functionals.

Define approximated functionals for Wε,λ by

Wε,λ(u) :=

∫ T

0

e−t/ε
(ε
2
|u′(t)|2H + ϕ1(u(t))− ϕ2

λ(u(t))
)
dt

for u ∈ W 1,2(0, T ;H) satisfying ϕ1(u(·)) ∈ L1(0, T ) and u(0) = u0. Here ϕ2
λ stands

for the Moreau-Yosida regularization of ϕ2 (see, e.g., [4]). Since ϕ2
λ is Fréchet dif-

ferentiable in H, the WED functionals Wε,λ admit minimizers uλ, and moreover, uλ
solves

(EL)λ

{
−εu′′λ(t) + u′λ(t) + ∂ϕ1(uλ(t))− ∂ϕ2

λ(uλ(t)) = 0 in H, 0 < t < T,

uλ(0) = u0, u′λ(T ) = 0.

Finally, we prove that uλ → u strongly in C([0, T ];H) as λ→ 0 and u solves (EL).

Step 2. The solution u minimizes Wε.
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Since uλ minimizes Wε,λ, we see that

Wε,λ(uλ) ≤ Wε,λ(v) ∀v ∈ H.

Noting that ϕ2
λ(u) ≤ ϕ2(u) and uλ → u, we have

Wε,λ(uλ) ≥ Wε(uλ) and lim inf
λ→0

Wε(uλ) ≥ Wε(u).

Moreover, it also follows that

Wε,λ(v) → Wε(v) as λ→ 0.

Combining these facts, we deduce that

Wε(u) ≤ Wε(v) ∀v ∈ H.

Therefore u minimizes Wε. Thus the assertion (i) of Theorem 2.2 is proved.

Step 3. Every minimizer uε of Wε solves (EL).

In case the minimizer of Wε is unique, uε coincides with the solution of (EL)
obtained in Step 1.

In case uε is one of global minimizers, for δ > 0 let us set

Ŵε(u) := Wε(u) +
1

2δ

∫ T

0

e−t/ε|u(t)− uε(t)|2H dt.

Then uε becomes a unique global minimizer of Ŵε. Therefore uε solves the Euler-
Lagrange equation for Ŵε,

−εu′′ + u′ + ∂ϕ1(u)− ∂ϕ2(u) +
1

δ
(u− uε) = 0.

Hence uε solves (EL) as well (to this end, we should repeat the preceding argument
for (1) with a forcing term f(t) and it is possible).

In case uε is a local minimizer, one can similarly obtain the conclusion. Thus (ii)
is proved.

Step 4. Convergence of minimizers uε as ε→ 0

Here we only show how to obtain uniform estimates for uε. For simplicity, we
omit the subscript ε. Multiply (EL) by u′ to get

−ε(u′′, u′)H + |u′|2H +
d

dt
ϕ1(u)− d

dt
ϕ2(u) = 0.

Noting (u′′, u′)H = (1/2)(d/dt)|u′|2H and integrating it over (0, T ), we deduce that

ε

2
|u′(0)|2H +

∫ T

0

|u′(t)|2Hdt+ E(u(T )) =
ε

2
|u′(T )|2H + E(u0).
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Here we note that E(u(T )) ≥ (1− k1)ϕ
1(u(T ))− C1 by (A1) and u′(T ) = 0. Hence

we get

ε|u′(0)|2H +

∫ T

0

|u′(t)|2Hdt ≤ C.

Moreover, integrating (EL) ×u′(t) over (0, t), we have

ε

2
|u′(0)|2H +

∫ t

0

|u′(τ)|2Hdτ + (1− k1)ϕ
1(u(t))

≤ C1 +
ε

2
|u′(t)|2H + E(u0).

Integrate both sides over (0, T ) again. We obtain

(1− k1)

∫ T

0

ϕ1(u(t))dt ≤ C +
ε

2

∫ T

0

|u′(t)|2Hdt ≤ C.

We can also derive a maximal regularity type estimate of the form∫ T

0

|εu′′(t)|2Hdt+
∫ T

0

|u′ε(t)|2Hdt+
∫ T

0

|∂ϕ1(u(t))|2Hdt

≤
∫ T

0

|∂ϕ2(u(t))|2Hdt+ C
(
ϕ1(u0) + ε|u′ε(0)|H |∂ϕ1(u0)|H

)
.

Then by (A3),∫ T

0

|∂ϕ2(u)|2Hdt ≤ k2

∫ T

0

|∂ϕ1(u)|2Hdt+ C

(∫ T

0

ϕ1(u)dt+ 1

)
.

Hence ∫ T

0

|εu′′(t)|2Hdt+
∫ T

0

|∂ϕ1(u(t))|2Hdt ≤ C.

Combining these estimates with monotone technique, one can prove the convergence
of minimizers uε as ε→ 0 and the identification of the limit.

5 Final remarks

We close this paper with the following remarks.

(i) WED formalism enables us to apply variational tools such as direct method,
other critical point theories and Γ-convergence theory to analyze gradient flows.

(ii) WED formalism provides numerical schemes for gradient flows. Actually, one
may obtain approximate solutions by directly minimizing WED functionals.

(iii) As for further generalizations, one may consider the cases with energies un-
bounded from below, relaxation of (A0)–(A3), smoothing effect, Banach space
framework.

(iv) Moreover, one can also apply Theorem 2.2 to other types of PDEs such as
semilinear (resp., p-Laplace) heat equations with sublinear (resp., subprincipal)
nonlinearity.
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Abstract
This paper studies a boundary controllability problem for the

control system described by diffusion equation with nonlocal terms.
It is shown that the associated nonlocal operator generates a C0-
semigroup in L2-space. The deformation formula method is extended
for nonlocal diffusion equations, and the structural properties of semi-
groups are investigated. Applying the method to the original system,
the existence of Riesz basis is proved and the exact representation of
semigroups is shown. Based on the representation it is proved that
the boundary control system is controllable in any finite time.

1. Introduction
In this paper, we study a boundary control system described by the diffusion
equation with Volterra integral and nonlocal terms both in state and boudary
condition:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
=

∂2u

∂x2
− p(x)u +

∫ x

0

f(x, y)u(t, y)dy + g(x)u(t, 0), t > 0, x ∈ (0, 1),

−∂u(t, 0)

∂x
+ hu(t, 0) = 0,

∂u(t, 1)

∂x
+ ju(t, 1) +

∫ 1

0

γ(y)u(t, y)dy = U(t), t > 0,

u(0, x) = u0(x), x ∈ [0, 1],

(1.1)
where p, g, γ ∈ C[0, 1], f ∈ C(D), D = {(x, y) : 0 < x < y < 1}, h, j ∈ R, u0 ∈
L2(0, 1), and U(t) ∈ R is a boundary control input at the boundary point x = 1.
Throughout this paper we suppose that all coefficients p(x), g(x), γ(x), f(x, y),
h, j in (1.1) are real valued. As for the control systems described by heat equa-
tions without nonlocal terms, many studies on control problems have been done
since old times (cf. Curtain and Zwart [1]). Recently, in the study of boundary
feedback stabilization of unstable heat equations with nonlocal terms, Krstic and
Smyshlyaev [9] have constructed the integral kernel function such that the inte-
gral transformation converts the solution of nonlocal heat equation to the solution
pf a simple heat equation with nonlocal boundary condition. The transforma-
tion is considered a generalization of the deformation formula due to Suzuki [10]

Keywords: boundary controllability, nonlocal heat equation, C0-semigroup, deformation for-
mula, Riesz basis.
∗ e-mail: nakagiri@cs.kobe-u.ac.jp
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which is used in the study of inverse problems for heat equations. We shall ex-
tend the deformation formula method to nonlocal equation (1.1), and investigate
the structural properties of solution semigroups. Then, applying the method to
the original system, the spectral properties of operators such as the existence of
Riesz basis are given. Thus, it is verified that the solution semigroup generates an
analystic semigroup, and the exact representation of solutions for the boundary
control system (1.1) is given. Based on the representation, it is shown that the
boundary control system (1.1) is approximately controllable in any finite time.

2. Solution semigroup and deformation formula
First we state the semigroup treatment of free system (1.1) with null control
U(t) ≡ 0. Let L2(0, 1) be the complex Hilbert space with inner product defined

by 〈ϕ, ψ〉L2 :=
∫ 1

0
ϕ(x)ψ(x)dx for ϕ, ψ ∈ L2(0, 1). The norm of L2(0, 1) is denoted

by ‖ · ‖L2 . Let H2(0, 1) be the Sobolev space of order 2.
In what follows we suppose that p, g ∈ C1[0, 1], γ ∈ C[0, 1], f ∈ C1(D), h, j ∈

R in (1.1). We introduce the space of coefficients X by

X := C1[0, 1] × C1(D) × C1[0, 1] × C[0, 1] × R2. (2.1)

For each
P = (p, f, g, γ, h, j) ∈ X, (2.2)

we define the operator AP : D(AP) ⊂ L2(0, 1) → L2(0, 1) by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(APϕ)(x) =
d2ϕ(x)

dx2
− p(x)ϕ(x) +

∫ x

0

f(x, y)ϕ(y)dy + g(x)ϕ(0),

a.e. x ∈ [0, 1],

D(AP) =
{

ϕ ∈ H2(0, 1);−ϕ′(0) + hϕ(0) = 0,

ϕ′(1) + jϕ(1) +

∫ 1

0

γ(y)ϕ(y)dy = 0
}
.

(2.3)

It is verified that AP is a densely defined closed linear operator in L2(0, 1). We
shall show that AP generates a C0-semigroup etAP on L2(0, 1). For the purpose,
we calculate the adjoint operator A∗

P of AP .

Proposition 2.1 The adjoint operator A∗
P of AP is given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(A∗
Pψ)(x) =

d2ψ(x)

dx2
− p(x)ψ(x) +

∫ 1

x

f(y, x)ψ(y)dy − γ(x)ψ(1),

a.e. x ∈ [0, 1],

D(A∗
P) =

{
ψ ∈ H2(0, 1) ;−ψ′(0) + hψ(0) −

∫ 1

0

g(y)ψ(y)dy = 0,

ψ′(1) + jψ(1) = 0
}
.

(2.4)

By showing the estimates{
Re 〈APϕ, ϕ〉L2 ≤ ω‖ϕ‖2

L2, ∀ϕ ∈ D(A),

Re 〈A∗
Pψ, ψ〉L2 ≤ ω‖ψ‖2

L2, ∀ψ ∈ D(A∗)
(2.5)
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for some ω ∈ R, we can prove that the operator AP generates a C0-semigroup
(cf. Curtain and Zwart [1], Corollary 2.2.3.).

Theorem 2.1 The operator AP defined by (2.3) generates a C0-semigroup etAP

on L2(0, 1).

We can prove the unique existence of k(x, y) such that it transforms the semi-
group etAP associated with (1.1) to other semigroup etAQ associated with nonlocal
diffusion equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v

∂t
=

∂2v

∂x2
− P (x)v +

∫ x

0

F (x, y)v(t, y)dy + G(x)v(t, 0), t > 0, x ∈ (0, 1),

−∂v(t, 0)

∂x
+ Hv(t, 0) = 0

∂v(t, 1)

∂x
+ Jv(t, 1) +

∫ 1

0

Γ(y)v(t, y)dy = 0, t > 0,

v(0, x) = v0(x), a.e. x ∈ [0, 1],

(2.6)
where Q = (P, F, G, Γ, H, J) ∈ X and P, G, F, H are arbitrarily given parameters
and J, Γ are prescribed parameters．

Proposition 2.2 Let p, g ∈ C1[0, 1], f ∈ C1(D), h ∈ R, and let P, G ∈ C1[0, 1],
F ∈ C1(D), H ∈ R. Then there exists a unique solution k(x, y) ∈ C2(D) of the
hyperbolic partial integro-differential equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kxx(x, y) − kyy(x, y) = (P (x) − p(y))k(x, y) +

∫ x

y

k(x, ξ)f(ξ, y)dξ

−
∫ x

y

k(ξ, y)F (x, ξ)dξ + f(x, y) − F (x, y), (x, y) ∈ D,

ky(x, 0) = hk(x, 0) − g(x) −
∫ x

0

k(x, y)g(y)dy + G(x), x ∈ [0, 1],

k(x, x) = (H − h) +
1

2

∫ x

0

(P (y)− p(y))dy, x ∈ [0, 1].

(2.7)

The resolvent kernel of k(x, y) is given by the following proposition. For a proof,
see Miller [4].

Proposition 2.3 Let k(x, y) ∈ C2(D) be the kernel function in Proposition 2.2,
and let ψ ∈ L2(0, 1). Then the Volterra integral equation

ϕ(x) +

∫ x

0

k(x, y)ϕ(y)dy = ψ(x), a.e. x ∈ [0, 1], (2.8)

admits a unique solution ϕ(x) ∈ L2(0, 1) given by

ϕ(x) = ψ(x) +

∫ x

0

r(x, y)ψ(y)dy, a.e. x ∈ [0, 1], (2.9)

where the resolvent kernel r ∈ C2(D) in (2.4) is defined by the solution of

r(x, y) = −k(x, y) −
∫ x

y

r(x, ξ)k(ξ, y)dξ, (x, y) ∈ D. (2.10)
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The following theorem gives a parabolic deformation formula (cf. Suzuki [10],
Nakagiri [7]).

Theorem 2.2 Let (p, f, g, γ, h, j) ∈ X in (1.1). For any P, G ∈ C1[0, 1], F ∈
C1(D), H ∈ R, we define J and Γ(y) by

J := j − (H − h) −
∫ 1

0

(P (y) − p(y))dy (2.11)

and

Γ(y) = γ(y) + (hr(1, y) + rx(1, y)) +

∫ 1

y

γ(ξ)r(ξ, y)dξ, y ∈ [0, 1], (2.12)

where r(x, y) is the resolvent kernel for k(x, y) in Proposition 2.3. Then by the
parabolic deformation formula

v(t, x) = u(t, x) +

∫ x

0

k(x, y)u(t, y)dy, x ∈ [0, 1], (2.13)

the solution u(t, x) of (1.1) with U(t) ≡ 0 is transformed to the solution v(t, x)
of (2.6) with the initial value

v0(x) = u0(x) +

∫ x

0

k(x, y)u0(y)dy, a.e. x ∈ [0, 1]. (2.14)

3. Spectral properties of a generator AP
In this section we state basic spectral properties of a generator AP .

Definition 3.1 (i) ϕ is called a generalized eigenvector of A for an eigenvalue
λ if and only if (λ − A)mϕ = 0 for some natural number m ∈ N.
(ii) The set of generalized eigenvectors {ϕn}∞n=1 is said to be a Riesz basis in
L2(0, 1) if and only if any ϕ ∈ L2(0, 1) has a unique expansion ϕ =

∑∞
n=1 cnϕn

with cn ∈ C, n ∈ N and there exists a C > 0 independent of ϕ such that

C−1

∞∑
n=1

|cn|2 ≤ ‖ϕn‖L2 ≤ C

∞∑
n=1

|cn|2. (3.1)

Theorem 3.1 (i) σ(AP) consists entirely of countable isolated eigenvalues with
finite algebraic multiplicities. Set σ(AP) = {λn}∞n=1. We denote by mn ∈ N the
algebraic multiplicity of each eigenvalue λn ∈ σ(AP). Then σ(AP) is devided
as

σ(AP) = Σ0 ∪ Σ1, Σ0 ∩ Σ1 = ∅ (3.2)

such that Σ0 is a finite set of all eigenvalues λn whose multiplicities mn ≥ 2, and
Σ1 = σ(AP) \ Σ0. Let M =

∑
λn∈Σ0

mn. If we re-order Σ1 by Σ1 = {λkn}∞n=1

suitably, then we have λkn = λn+M for sufficiently large n and

λkn = −(n + M)2π2 + (h + j) +
1

2

∫ 1

0

p(s)ds + O(
1

n
) as n → ∞. (3.3)
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(ii) For each λn ∈ σ(AP), let Pn = Pn(P) be the eigen-projection

Pn =
1

2πi

∫
Cn

(μ − AP)−1dμ, (3.4)

where Cn is a sufficiently small circle with center λn. Then the generalized
eigenspace PnL2(0, 1) := Mn = Mn(P) is given by

Mn = Ker (λn − AP)mn , dimMn = mn. (3.5)

Further, the space Mn is represented by

Mn = Span {ϕnj
= ϕnj

(P) : j = 1, · · · , mn}, (3.6)

where the generalized eigenvectors ϕnj
are defined inductively by

(λn − AP)ϕn1 = 0, (λn − AP)ϕnj+1
= −ϕnj

, j = 1, · · · , mn − 1. (3.7)

(iii) The set of all generalized eigenvectors

{ϕnj
= ϕnj

(P) : n = 1, 2, · · · , j = 1, · · · , mn} (3.8)

of AP forms a Riesz basis in L2(0, 1).
(iv) The spectrum of the adjoint operator A∗

P is given by σ(A∗
P) = {λn}∞n=1,

and the set of all generalized eigenvectors of A∗
P is represented by

{ψ∗
nj

= ψ∗
nj

(P) : n = 1, 2, · · · , j = 1, · · · , mn}, (3.9)

where

(λn − A∗
P)ψ∗

n1
= 0, (λn − A∗

P)ψ∗
nj+1

= −ψ∗
nj

, j = 1, · · · , mn − 1. (3.10)

(v) Suppose that {ϕnj
, ψ∗

nj
} are normalized as

〈ϕnj
, ψ∗

nj
〉 = 1, 〈ϕnj

, ψ∗
ml
〉 = 0, nj �= ml. (3.11)

Then the following two generalized Fourie expansions hold:

ϕ =

∞∑
n=1

mn∑
j=1

〈ϕ, ψ∗
nj
〉ϕnj

=

∞∑
n=1

mn∑
j=1

〈ϕ, ϕnj
〉ψ∗

nj
, ∀ϕ ∈ L2(0, 1). (3.12)

Theorem 3.2 (i) For each P = (p, f, g, γ, h, j) ∈ X, the semigroup etAP is
analytic. Further, there exists a constant M1 > 0 such that

‖etAP‖L(L2) ≤ M1e
λ0t, ∀t ≥ 0, (3.13)

where λ0 = max {Re λn : n = 1, 2, · · ·}.
(ii) The semigroup etAP has the expansion

etAPϕ =
∞∑

n=1

eλnt
mn∑
j=1

( j−1∑
l=0

tl

l!
〈ϕ, ψ∗

nj−l
〉
)
ϕnj

, ∀ϕ ∈ L2(0, 1). (3.14)
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(iii) The generator AP has the representation

APϕ =
∞∑

n=1

(
mn∑
j=1

λn〈ϕ, ψ∗
nj
〉ϕnj

+
mn∑
j=2

〈ϕ, ψ∗
nj−1

〉ϕnj

)
, ∀ϕ ∈ D(AP),

D(AP) =

{
ϕ ∈ L2(0, 1) :

∞∑
n=1

(
mn∑
j=1

|λn|2|〈ϕ, ϕ∗
nj
〉|2

+2Re

mn∑
j=2

λn〈ϕ, ϕ∗
nj−1

〉〈ϕ, ϕ∗
nj
〉 +

mn∑
j=2

|〈ϕ, ϕ∗
nj−1

〉|2
)

< ∞
}

. (3.15)

(iv) The resolvents R(λ; AP) := (λ − AP)−1 of AP is given by

R(λ; AP)ϕ =

∞∑
n=1

mn∑
j=1

(
j−1∑
l=0

1

(λ − λn)l+1
〈ψ, ϕ∗

nj−l
〉
)

ϕnj
, ∀λ ∈ C \ σ(AP). (3.16)

Similar results in Theorem 3.2 hold true for the adjoint operator A∗
P .

4. Structural properties of semigroups
In this section, based on the deformation formula (2.8) in Theorem 2.1, we develop
the structural study for semigroups associated with nonlocal diffusion equations.

Let P = (p, f, g, γ, h, j) ∈ X be given. For any P, G ∈ C1[0, 1], F ∈ C1(D),
H ∈ R, we define J and Γ(y) by (2.11) and (2.12), respectively. Now, we put

Q = (P, F, G, Γ, H, J) ∈ X. (4.1)

For notational convenience, we denote

SP(t) := etAP , P = (p, f, g, γ, h, j),

SQ(t) := etAQ , Q = (P, F, G, Γ, H, J). (4.2)

Let k(x, y) be the deformation kernel in Proposition 2.2. Define the operator
K : L2(0, 1) → L2(0, 1) by

[Kϕ](x) = ϕ(x) +

∫ x

0

k(x, y)ϕ(y)dy a.e. x ∈ (0, 1), ∀ϕ ∈ L2(0, 1). (4.3)

Proposition 4.1 The operator K = K(P,Q) : L2(0, 1) → L2(0, 1) has a bounded
inverse K−1 = K(P,Q)−1 : L2(0, 1) → L2(0, 1) given by

[K−1ϕ](x) = ϕ(x) +

∫ x

0

r(x, y)ϕ(y)dy, a.e. x ∈ (0, 1), ∀ϕ ∈ L2(0, 1), (4.4)

where r(x, y) is the resolvent kernel for k(x, y).

The following theorem gives a refinement of Theorem 2.1 and its consequences.
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Theorem 4.1 (i) The semigroups SP(t) and SQ(t) are intertwing, i.e.

KSP(t) = SQ(t)K, ∀t ≥ 0. (4.5)

(ii) Th operators AP and AQ are intertwing, i.e.

KD(AP) ⊂ D(AQ) and KAP = AQK. (4.6)

(iii) The spectra of AP and AQ are identical, i.e.

σ(AP) = σ(AQ) = {λn}∞n=1. (4.7)

(iv) For each λn ∈ σ(AP),

Ker (λn − AQ)j = K Ker (λn − AP)j, j = 1, · · · , mn. (4.8)

In particular, the generalized eigenspaces of AP and AQ for λn are related as

Mn(Q) = Ker (λn − AQ)mn = KMn(P)

= Span {Kϕnj
(P) : j = 1, · · · , mn}, (4.9)

where ϕnj
(P) are generalized eigenvectors of AP for λn.

(v) The resolvents of AP and AQ are identical, i.e.

ρ(AP) = ρ(AQ) = C \ σ(AP). (4.10)

Further, the resolvents R(λ; AP) and R(λ; AQ) satisfy

K R(λ; AP) = R(λ; AQ) K, ∀λ ∈ ρ(AP). (4.11)

Next, for the adjoint operators of AP and AQ, we give corresponding results
to Theorem 4.1. The adjoint operator K∗ : L2(0, 1) → L2(0, 1) of K is given by

[K∗ψ](x) = ψ(x) +

∫ 1

x

k(y, x)ψ(y)dy a.e. x ∈ (0, 1), ∀ψ ∈ L2(0, 1). (4.12)

For Q = (P, F, G, Γ, H, J) ∈ X, the adjoint operator A∗
Q of AQ is given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(A∗
Qψ)(x) =

d2ψ(x)

dx2
− P (x)ϕ(x) +

∫ 1

x

F (y, x)ψ(y)dy − Γ(x)ψ(1),

a.e. x ∈ [0, 1],

D(A∗
Q) =

{
ψ ∈ H2(0, 1) ;−ψ′(0) + Hψ(0) −

∫ 1

0

G(y)ψ(y)dy = 0,

ψ′(1) + Jψ(1) = 0
}
.

(4.13)

As is well-known in Kato [3], the operators A∗
P and A∗

Q generate adjoint semi-
groups

S∗
P(t) := etA∗

P = (etAP )∗, S∗
Q(t) := etA∗

Q = (etAQ)∗, (4.14)

which are analytic.
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Theorem 4.2 (i) The semigroups S∗
P(t) and S∗

Q(t) are intertwing, i.e.

S∗
P(t)K∗ = K∗S∗

Q(t), ∀t ≥ 0. (4.15)

(ii) Th operators AP and AQ are intertwing, i.e.

K∗D(A∗
Q) ⊂ D(A∗

P) and A∗
PK∗ = K∗A∗

Q. (4.16)

(iii) The spectra of A∗
P and A∗

Q are identical, i.e.

σ(A∗
P) = σ(A∗

Q) = {λn}∞n=1. (4.17)

(iv) For each λn ∈ σ(A∗
P),

Ker (λn − A∗
P)j = K∗Ker (λn − A∗

Q)j, j = 1, · · · , mn (4.18)

In particular, the generalized eigenspaces of A∗
P and A∗

Q for λn are related as

M∗
n(P) = Ker (λn − A∗

P)mn = K∗M∗
n(Q)

= Span {K∗ψ∗
nj

(Q) : j = 1, · · · , mn}, (4.19)

where ψ∗
nj

(Q) are generalized eigenvectors of A∗
Q for λn.

(v) The resolvents of A∗
P and A∗

Q are identical, i.e.

ρ(A∗
P) = ρ(A∗

Q) = C \ σ(A∗
P). (4.20)

Further, the resolvents R(λ; A∗
P) and R(λ; A∗

Q) satisfy

R(λ; A∗
P)K∗ = K∗R(λ; A∗

Q), ∀λ ∈ ρ(A∗
P). (4.21)

These Theorem 4.1 and Theorem 4.2 imply that the operators K and K∗ are
the structural operators which connect two generators AP , AQ, and two adjoint
generators A∗

P , A∗
Q, respectively. For related further arguments on structural

operators, we refer to Nakagiri [5], Nakagiri and Tanabe [6].
Now, we take a special operator AO which is connected by AP . That is,

we consider transformation of parameters P = (p, f, g, γ, h, j) → Q = O :=
(0, 0, 0, Γ0, 0, J0) in Theorem 4.1. Let k0(x, y) be the solution of (2.7) with

P (x) ≡ 0, F (x, y) ≡ 0, G(x) ≡ 0, H = 0. (4.22)

The resolvent kernel for k0(x, y) is denoted by r0(x, y). Then J0 and Γ0 are given
by

J0 := (h + j) +
1

2

∫ 1

0

p(y)dy, (4.23)

Γ0(y) := γ(y) + (r0
x(1, y) + jr0(1, y)) +

∫ 1

y

γ(ξ)r0(ξ, y)dξ, y ∈ [0, 1], (4.24)

respectively. Thus, the proof of Theorem 3.1 is reduced to the analysis of the
special eigenvalue problem AOφ = λφ, i.e.,⎧⎪⎪⎨⎪⎪⎩

d2φ(x)

dx2
= λφ(x), x ∈ [0, 1]

−dφ(0)

dx
= 0,

dφ(1)

dx
+ J0φ(1) +

∫ 1

0

Γ0(y)φ(y)dy = 0.
(4.25)
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5. Boundary controllability
In this final section we study a boundary controllability problem for the con-
trol system (1.1). For related results on reactor diffusion equations, we refer to
Winkin, Dochain and Ligarius [13] and Sano and Nakagiri [8]. By applying the
parabolic theory (cf. Tanabe [11]), the control system (1.1) admits a unique
solution u(t, x) in 0 ≤ x ≤ 1, 0 ≤ t < ∞ in the following sense:

(i) For each t ≥ 0, u(t, ·) ∈ L2(0, 1) and if t > 0, the both distributive derivatives
∂u
∂x

(t, ·) and ∂2u
∂x2 (t, ·) exist and lie in L2(0, 1).

(ii) The function u(t, ·) : [0,∞) → L2(0, 1) is continuous on [0,∞) and contin-
uously differentiable on (0,∞) with respect to the norm ‖ · ‖L2 of L2(0, 1).
In particular the initial condition in (1.1) is satisfied in the sense that
limt→0+ ‖u(t, ·) − u0‖L2 = 0.

(iii) For each t > 0 the first differential equation in (1.1) is satisfied for almost
all x ∈ [0, 1], ∂u

∂x
and ∂2u

∂x2 being defined as in (i) while ∂u
∂t

is defined as in (ii).

(iv) The boundary conditions in (1.1) are satisfied for t > 0.

Using the generalized Fourie expansion (3.14) and applying the divergence
theorem to the expansion of solutions as in Fattorini and Russel [2], we can verify
that the unique solution of (1.1), in the above sense, is represented by

u(t, x) =

∞∑
n=1

eλnt

mn∑
j=1

( j−1∑
l=0

tl

l!
〈u0, ψ

∗
nj−l

〉
)
ϕnj

(x)

−
∫ t

0

{ ∞∑
n=0

e−λn(t−s)
mn∑
j=1

( j−1∑
l=0

(t − s)l

l!
ψ∗

nj−l
(1)
)
ϕnj

(x)

}
U(s)ds

≡ u(u0; t, x) + u(U ; t, x), t > 0, x ∈ [0, 1]. (5.1)

In the representation (5.1) we remark that

ψ∗
nl

(1) �= 0, ψ∗
n2

(1) = · · · = ψ∗
nmn

(1) = 0, ∀n = 1, 2, · · · . (5.2)

The attainable subspace of system (1.1) at time t > 0 is defined by

A(t) :=
{

ϕ ∈ L2(0, 1) ; ∃U ∈ L2(0, t; R) s.t. ϕ = u(U ; t, ·)
}
. (5.3)

Definition 5.1 (i) The control system (1.1) is said to be exactly controllable at
time t > 0 if and only if A(t) = L2(0, 1).
(ii) The control system (1.1) is said to be approximately controllable at time
t > 0 if and only if A(t) = L2(0, 1), where A(t) denotes the closure of set A(t) in
L2(0, 1).

For the exact controllability the following negative result holds.

Theorem 5.1 The boundary control system (1.1) can never be exactly reachable
at any time t > 0.
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This theorem follows from the compactness of analytic semigroup etAP for t > 0
and the Baire’s category theorem as in the proof of Triggiani [12].

For the approximate controllability the following positive result holds.

Theorem 5.2 The boundary control system (1.1) is approximately controllable
at any time t > 0. That is, A(t) = L2(0, 1) holds for all t > 0.

The above theorem is proved by showing that the orthogonal complement {A(t)}⊥
equals {0} for all t > 0 via (5.1) and (5.2).

Funding This research is supported by KAKENHI [Grant-in-Aid for Scientific
Research (C), No. 23540240], Japan Society for the Promotion of Science.
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On the convergence of an area minimizing scheme for the
anisotropic mean curvature flow

Katsuyuki Ishii

Graduate school of Maritime Sciences, Kobe University
Higashinada, Kobe 658-0022, JAPAN

1 Introduction

In this article we present the convergence of an area minimizing scheme for for the
anisotropic mean curvature flow (AMCF for short) and its application to an approxi-
mation of the crystalline curvature flow (CCF) in the plane.

A family {Γ(t)}t≥0 of hypersurfaces in RN is called an AMCF provided that Γ(t)
evolves by the equation of the form

(1.1) V = −div ξ(n) on Γ(t), t > 0.

Here n is the Euclidean outer unit normal vector field of Γ(t), the function γ = γ(p) is
the surface energy density, ξ = ∇pγ := (γp1 , · · · , γpN ) is called the Cahn-Hoffman vector.
The function γ is assumed to be convex. In particular, if γ(p) = |p|, then (1.1) is the
usual mean curvature flow (MCF) equation:

(1.2) V = −divn on Γ(t), t > 0.

These equations arise in geometry, interface dynamics, crystal growth and image process-
ing etc. Many people have been studying MCF, AMCF and CCF from various viewpoints.
With relation to the applications mentioned above, numerical schemes have also been
studied.

Among them, Chambolle [4] proposed an algorithm for MCF. His algorithm is de-
scribed as follows: Let E0 ⊂ RN be a compact set and fix a time step h > 0. We choose
a bounded domain Ω ⊂ RN including E0 and take a function w0 ∈ L2(Ω) ∩ BV (Ω) as a
unique minimizer of the functional Jh(·, E0) defined by

(1.3) Jh(v, E0) :=


∫
Ω

|Dv|+ 1

2h
∥v − dE0∥2L2(Ω) if v ∈ L2(Ω) ∩BV (Ω),

+∞ if v ∈ L2(Ω)\BV (Ω).

Here
∫
Ω
|Dv| is the total variation of v, Dv is the gradient of v in the sense of distribution,

and d(E0) = d(·, E0) denotes the Euclidean signed distance function to ∂E0, namely,

(1.4) d(x,E0) := dist(x,E0)− dist(x,RN\E0) for x ∈ RN .

Then we set

(1.5) E1 := {w0 ≤ 0}.
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Throughout this paper we use the notations {f ≥ µ} := {x ∈ RN | f(x) ≥ µ}, {f ≤
µ} := {x ∈ RN | f(x) ≤ µ} etc. Next we take a function w1 ∈ L2(Ω)∩BV (Ω) as a unique
minimizer of the functional Jh(·, E1) and define E2 as the set in (1.5) with w1 replacing
w0. Repeating this process, we have a sequence {Ek}k=0,1,... of compact sets. We then set

(1.6) Eh(t) := Ek for t ∈ [kh, (k + 1)h) and k = 0, 1, . . .

Sending h → 0, we obtain a limit {E(t)}t≥0 of {Eh(t)}t≥0,h>0 and formally observe that
{Γ(t) = ∂E(t)}t≥0 is an MCF starting from Γ(0)(= ∂E0).

In this paper we extend Chambolle’s algorithm to the AMCF by use of the elliptic
differential inclusion:

(1.7) w − hdiv∂pγ(∇w) ∋ d(E) in RN .

(See section 3 below for the precise description of our algorithm.) Note that this is the
Euler - Lagrange equation for such a variational problem as (1.3). This idea is essentially
given by Caselles - Chambolle [3].

There are some papers studying anisotropic extensions of Chambolle’s algorithm. See
Bellettini - Caselles - Chambolle - Novaga [2], Caselles - Chambolle [3], Chambolle -
Novaga [5], [6] and Eto - Giga - Ishii [8]. In these papers the convergences are proved
in the sense of the Hausdorff distance and are locally uniform with respect to the time
variable (except for [5]). As for the proofs of the convergences, the authors of [3], [2],
[6] and [5] used some variational techniques. In [8] the authors applied some ideas from
mathematical morphology, level set method and the theory of viscosity solutions.

The main purpose of this paper is to provide a different proof of the convergence of an
anisotropic Chambolle’s algorithm from those given in [2], [3], [5], [6] and [8]. Moreover,
we apply our results to an approximation of the noncompact and nonconvex NLMCF.

The main idea is to employ the signed distance functions and the eikonal equations.
This is motivated by Soner [16] and Goto - Ishii - Ogawa [12], in which they discussed,
respectively, the convergence of Allen - Cahn equations and that of the Bence - Merriman
- Osher algorithm for MCF. Consequently, under the nonfattening condition, we are able
to show that the approximate flow by (1.7) converges to an AMCF in the sense of the
Hausdorff distance and that it is locally uniform with respect to the time variable. Also
we are able to apply our results to an approximation to CCF in the plane.

2 Preliminaries

2.1 Anisotropies and an elliptic differential inclusion

We make the following assumptions on γ.

(A1) γ : RN −→ [0,+∞) : convex.

(A2) γ(−p) = γ(p) and γ(ap) = aγ(p) for all p ∈ RN and a > 0.

(A3) Λ−1|p| ≤ γ(p) ≤ Λ|p| for all p ∈ RN and some Λ > 0 .
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We easily see by (A1) - (A3) that γ Lipshcitz continuous in RN . Let ∂pγ(p) be the
subdifferential of ζ at p ∈ RN :

∂pγ(p) := {ξ ∈ RN | ⟨ξ, q − p⟩ ≤ γ(q)− γ(p) for all q ∈ RN}.

If γ is differentiable at p, then we write ∇pγ(p) in place of ∂pγ(p). It follows from [8,
Lemma 2.1] that ∂pγ(p) ⊂ ∂pγ(0) ⊂ clB(0,Λ) for all p ∈ RN . Here and in the sequel,
B(x, r) := {y ∈ RN | |y−x| < r} for x ∈ RN and r > 0 and clA is the closure of A ⊂ RN .

We define the support function γ◦ of the convex set {γ ≤ 1} (often called Frank
diagram for γ) by

γ◦(p) := sup
γ(q)≤1

⟨p, q⟩.

We observe that γ◦ also satisfies (A1) - (A3) and Lipschitz continuity in RN .
In addition to (A1) - (A3), we assume some regularity on γ.

(A4) γ ∈ C2(RN\{0}), ∇2
pγ

2 > O in RN\{0}.

Remark 2.1. The second condition of (A4) is equivalent to the strict convexity of {γ ≤ 1}
and that if ζ satisfies (A4), then γ◦ does so (cf. [14, Section 2.5] and [10, Remark 1.7.5]).

Assume that ∂E is smooth. The anisotropic mean curvature is defined as follows.

Definition 2.1. Let E be an open set in RN with the smooth boundary ∂E. Then the
anisotropic mean curvature κγ◦(x,E) of ∂E is defined by

κγ◦(x,E) := −div∇pγ(n)(= −div ξ(n(x))) for x ∈ ∂E.

Next we introduce the anisotropic total variation. Let Ω ⊂ RN be an open set with
Lipschitz boundary. Denote by BV (Ω) the space of all functions of bounded variation
and by BVloc(Ω) the class of all functions of locally bounded variation.

We define the anisotropic total variation of u ∈ BV (Ω) with respect to γ in Ω as∫
Ω

γ(Du) := sup

{∫
Ω

udivφdx

∣∣∣∣ φ ∈ C1
0(Ω;RN), γ◦(φ) ≤ 1 in Ω

}
.

SetX(Ω) := {z ∈ L∞(Ω;RN) | divz ∈ L2(Ω)}. For w ∈ L2(Ω)∩BV (Ω) and z ∈ X(Ω),
we define a functional on C1

0(Ω) as

(2.1)

∫
Ω

(z,Dw)ψ := −
∫
Ω

wψdivz dx−
∫
Ω

w⟨z,∇ψ⟩dx for ψ ∈ C1
0(Ω).

We can extend this functional to a linear one on C0(Ω). Hence (z,Dw) is a Radon
measure. We recall Green’s formula for w ∈ L2(Ω) ∩BV (Ω) and z ∈ X(Ω).

Theorem 2.1. ([1]) Let Ω ⊂ RN be a bounded domain with Lipschitz boundary. Let
w ∈ L2(Ω) ∩ BV (Ω) and z ∈ X(Ω). Then there exists [z · n] ∈ L∞(∂Ω) such that
∥[z · n]∥L∞(∂Ω) ≤ ∥z∥L∞(Ω) and∫

Ω

wdiv zdx+

∫
Ω

(z,Dw) =

∫
∂Ω

[z · n]wdHN−1,

3123



where HN−1 is the (N −1)-dimensional Hausdorff measure. In the case Ω = RN , we have∫
RN

wdiv zdx+

∫
RN

(z,Dw) = 0

for all w ∈ L2(RN) ∩BV (RN) and z ∈ X(RN).

We briefly review some results on solutions of an elliptic differential inclusion:

(2.2) w − hdiv∂pγ(∇w) ∋ g in RN ,

where g ∈ L2
loc(RN) and h > 0.

We give the definition of weak solutions of (2.2).

Definition 2.2. We say that w ∈ L2
loc(RN) ∩ BVloc(RN) is a weak solution of (2.2)

provided that there exists z ∈ L∞(RN ;RN), divz ∈ L2
loc(RN) such that

(1) z ∈ ∂γ(∇w) a.e. in RN ,

(2) (z,Dw) = γ(Dw) locally as measures in RN ,

(3) w − hdivz = g in D′(RN).

The existence, uniqueness and regularity of solutions of (2.2) are stated as follows.

Theorem 2.2. (cf. [3] and [8]) Assume (A1) - (A3). For any g ∈ L2
loc(RN), (2.2) admits

a unique weak solution. Moreover, a weak solution w of (2.2) is Lipschitz continuous in
RN and |∇w| ≤ 1 for a.e. in RN and all h > 0.

2.2 Generalized AMCF

Assume that γ satisfies (A1) - (A4). The level set equation for (1.1) is the following:

(2.3) ut − |∇u|div ξ(∇u) = 0 in (0, T )× RN .

Notice that div ξ(∇u) = tr(∇2
pγ(∇u)∇2u) if ∇u ̸= 0.

We give the definition of viscosity solutions of (2.3). Let U be a subset of a metric
space (X, ρ) and let f be a function on U . The upper (resp., lower) semicontinuous
envelope f ∗ (resp., f∗) is defined as follows: For each x ∈ U ,

(2.4) f ∗(x) := lim sup
y∈U,ρ(y,x)→0

f(y), f∗(x) := lim inf
y∈U,ρ(y,x)→0

f(y).

Definition 2.3. Let u : [0, T )× RN −→ R.

(1) We say that u is a viscosity subsolution (resp., supersolution) of (2.3) provided that
u∗(t, x) < +∞ (resp., u∗(t, x) > −∞) for all (t, x) ∈ [0, T ) × RN and for any
ϕ ∈ C∞((0, T )× RN), if u∗ − ϕ takes a local maximum (resp., minimum) at (t̂, x̂),
then

ϕt(t̂, x̂)− |∇ϕ(t̂, x̂)|div ξ(∇φ(t̂, x̂)) ≤ 0 (resp.,≥ 0) if ∇φ(t̂, x̂) ̸= 0,

ϕt(t̂, x̂) ≤ 0 (resp.,≥ 0) if ∇φ(t̂, x̂) = 0 and ∇2φ(t̂, x̂) = O.
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(2) We say that u is a viscosity solution of (2.3) if u is a viscosity sub- and super-solution
of (2.3).

A family {Γ(t)}t≥0 of hypersurfaces in RN is called a generalized AMCF (or a generalized
motion by (1.1)) if Γ(t) = {u(t, ·) = 0}, where u is a viscosity solution of (2.3). We refer
to [10] for the theory of generalized motion of surface evolution equations including (1.1).

In sections 4 and 5 we use the notion of distance solutions for AMCF developed by [15].
Let {Γ(t)}t≥0 be a family of hypersurfaces and E(t) a closed set such that Γ(t) = ∂E(t).
Let d = d(t, ·) be the signed distance function to Γ(t) given by (1.4) with E0 = E(t).

Definition 2.4. We say that {Γ(t)}t≥0 is a distance solution of (1.1) provided that d ∧ 0
and d ∨ 0 are, respectively, a viscosity subsolution and a viscosity supersolution of (2.3).

Remark 2.2. In section 5 we will discuss an approximation of CCF and not assume (A4).
Then −div ξ(n) in (1.1) is not defined in the classical sense. However, in two dimensional
case it can be regarded as the crystalline curvature due to [17], [13] etc., more generally as
the nonlocal curvature due to [9]. In [9] the authors develop the theory of the generalized
motion by nonlocal curvature including CCF.

3 An anisotropic version of Chambolle’s algorithm

An anisotropic version of Chambolle’s algorithm is stated in the following way.
Fix E0 ∈ C(RN). Let w(E0) := w(·, E0) be a weak solution of (1.7) with E = E0. We

then define a new set E1 by
E1 := {w(·, E0) ≤ 0}.

Notice by Theorem 2.2 that E1 ∈ C(RN). Let w(E1) be a weak solution of (1.7) with
E = E1. Again we define a new set E2 by

E2 := {w(·, E1) ≤ 0}.

Repeating this process, we have a sequence {Ek}[T/h]k=0 of closed subsets of RN . Set

(3.1) Eh(t) := E[t/h] for t ≥ 0.

Letting h → 0, we obtain a limit flow {E(t)}t≥0 of {Eh(t)}t≥0,h>0 and formally observe
that ∂E(t) is an AMCF starting from ∂E0.

4 Convergence

In this section we assume (A1) - (A4) and formally show the convergences of {dh}h>0,
{wh)}h>0 and {Eh(t)}t≥0,h>0. We also establish that {Γ(t) = ∂E(t)}t≥0 is a distance
solution of (1.1).

For E0 ∈ C(RN) let {Eh(t)}t≥0,h>0, {d(Eh(t))}t≥0,h>0, and {w(Eh(t))}t≥0,h>0 be de-
fined in the previous section. Set

dh(t, x) := d(x,Eh(t)), wh(t, x) := w(x,Eh(t)) for t ∈ [0, T ) and x ∈ RN .
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Wemention our strategy to prove the convergence of our scheme. Since wh(t, ·) satisfies

wh(t, ·)− hdiv∂pγ(∇wh(t, ·)) ∋ dh(t, ·) in RN ,

in a weak sense, letting h → 0, we get lim
h→0

wh(t, x) = lim
h→0

dh(t, x) at least formally. By

this observation we compute the limit of {dh}h>0 as h→ 0.
We observe that for each t ∈ [0, T ), dh(t, ·) satisfies

(4.1) |∇dh| − 1 = 0 in {dh(t, ·) > 0},−|∇dh|+ 1 = 0 in {dh(t, ·) < 0},

in the sense of viscosity solutions. Then setting

(4.2) d(t, x) := lim sup
(h,s,y)→(0,t,x)

dh(s, y), d(t, x) := lim inf
(h,s,y)→(0,t,x)

dh(s, y),

we can verify by the stability of viscosity solutions that ρ(= d, d) is a viscosity solution of

|∇ρ| − 1 = 0 in {ρ(t, ·) > 0},−|∇ρ|+ 1 = 0 in {ρ(t, ·) < 0},

Besides, it is seen from the barrier construction argument that

d(0, ·) = d(0, ·) = d(·, E0) in RN .

We impose an important assumption: Set Γ(t) := {d(t, ·) ≤ 0 ≤ d(t, ·)}.

(4.3) Γ(t) ̸= ∅, Γ(t) = ∂{d(t, ·) < 0} = ∂{d(t, ·) > 0} for all t ∈ [0, T ).

Then we observe that the map t 7→ Γ(t) is continuous in [0, T ) in the sense that

(4.4) lim
s→t

dH(Γ(s),Γ(t)) = 0 for each t ∈ [0, T ),

where dH is the Hausdorff distance defined by

dH(A,B) := max

{
sup
x∈A

dist (x,B), sup
x∈B

dist (x,A)

}
for A,B ⊂ RN .

Hence we have the convergence of {dh}h>0. Let d = d(t, ·) be the signed distance function
to Γ(t) given by (1.4) with E0 = E(t). Note that d is continuous in [0, T )×RN under the
assumption (4.3) because of (4.4) and Lipschitz continuity of d(t, ·) for all t ∈ [0, T ).

Theorem 4.1. Assume (A1) - (A4) and (4.3). Then d = d = d in [0, T ) × RN . Thus
{dh}h>0 converges to d as h → 0 locally uniformly in [0, T ) × RN . Moreover, ∂Eh(t)
converges to Γ(t) as h → 0 in the sense of the Hausdorff distance, locally uniformly in
[0, T ).

The formula lim
h→0

wh(t, x) = lim
h→0

dh(t, x) can be obtained as follows. First, we remark

that any weak solution of (2.2) is a minimizer of the associated variational problem.

Proposition 4.1. ([3, Proposition 3.1]) Let g ∈ L2
loc(RN) and w ∈ L2

loc(RN) ∩BVloc(RN).
The following assertions are equivalent.
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(1) w is a weak solution of (2.2).

(2) For each r > 0, w satisfies∫
B(0,r)

γ(Dw) +
1

2h
∥w − g∥2L2(B(0,r)) ≤

∫
B(0,r)

γ(Dv) +
1

2h
∥v − g∥2L2(B(0,r))

+

∫
∂B(0,r)

γ(n(B(0, r)))|v − w|dHN−1

for all v ∈ L2(B(0, r))∩BV (B(0, r)). where HN−1 denotes the (N −1) dimensional
Hausdorff measure.

Applying this proposition with g = v = dh(t, ·) and w = wh(t, ·), we get

1

2h
∥wh(t, ·)−dh(t, ·)∥2L2(B(0,r)) ≤

∫
B(0,r)

γ(∇dh(t, ·))+
∫
∂B(0,r)

γ(n)|dh(t, ·)−wh(t, ·)|dHN−1

It is seen by (A3) and the fact |∇dh(t, ·)| = 1 for a.e. in RN that the first term of the
right-hand side of this inequality is uniformly bounded for h > 0. Since we can observe
that the second term is also uniformly bounded for h > 0, we have

sup
t∈[0,T )

∥wh(t, ·)− dh(t, ·)∥L2(B(0,r)) ≤ C
√
h,

where C > 0 is independent of h > 0. Moreover, note that {dh(t, ·)}t≥0,h>0 and {wh(t, ·)}t≥0,h>0

are equi-Lipschitz continuous in RN (cf. Theorem 2.2). Hence combining these facts, we
obtain w = d and w = d in [0, T )× RN . Here w, w is defined by (4.2) with wh replacing
dh. These formulae and Theorem 4.1 yield lim

h→0
wh(t, x) = lim

h→0
dh(t, x) and the convergence

of {wh(t, ·)}t≥0,h>0.

Theorem 4.2. Assume (A1) - (A4) and (4.3). Then {wh}h>0 converges to d as h → 0
locally uniformly in [0, T )× RN .

Now we show that Γ(t) is an AMCF. For simplicity we assume that lim
h→0

wh = dh in

the C1,2 sense. We get from (1.7) with w = wh(t, ·) and E0 = Eh(t)

(4.5)
wh(t, ·)− d(·, Eh(t))

h
∈ div∂pγ(∇wh(t, ·)) on ∂Eh(t).

Recall that Eh(t) is given by

Eh(t) = E[t/h] = {w(·, E[t/h]−1) ≤ 0} = {wh(t− h, ·) ≤ 0}.

Hence wh(t− h, ·) = 0 on ∂Eh(t). Since d(·, Eh(t)) = 0 and |∇d(·, Eh(t))| = 1 on ∂Eh(t),
we obtain from (4.5)

wh(t, ·)− wh(t− h, ·)
h

= div ξ(∇wh(t, ·)) on ∂Eh(t).
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Sending h→ 0, we have

dt = div ξ(∇d) on Γ(t), t > 0.

This equation is nothing but (1.1) because dt = −V and ∇d = n.
The above arguments are justfied in the sense of a distance solution, mentioned at the

end of subsection 2.2.

Theorem 4.3. Assume (A1) - (A4) and (4.3). Then {Γ(t)}t≥0 is a distance solution of
(1.1).

5 An application to CCF

The purpose of this section is to apply the results in section 4 to an approximation for
CCF.

Fix n(≥ 2) ∈ N. Let θi := iπ/n and let qi := (cos θi, sin θi). Define γ(p) :=
max1≤i≤2n⟨qi, p⟩ for p ∈ R2. Then this γ satisfies (A1) - (A3), but not (A4). In this
case div (n) cannot be defined in the classical sense, as mentioned in Remark 2.2. Hence
we rewrite (1.1) as follows:

(5.1) V = −“div ξ(n)′′ = 0 on Γ(t), t > 0.

Here Γ(t) is a simple and closed curve in R2 and “div ξ(n)′′ is interpreted as the crystalline
curvature (cf. [13], [18]). The family {Γ(t)}t≥0 evolving by (5.1) is is often called a
crystalline curvature flow (CCF).

The level set equation for (5.1) is given by

(5.2) ut − |∇u|“div ξ(∇u)′′ in (0, T )× R2.

The generalized CCF {Γ(t)}t≥0 (or generalized motion by (5.1)) is defined by Γ(t) :=
{u(t, ·) = 0} for each t ∈ [0, T ). Here u is a viscosity solution of (5.2). We use the results
in [9] to show the convergence of our scheme to a generalized CCF, although we omit the
detail.

For our purpose we approximate γ by smooth functions. By [11, Lemma 2.5] there is
a sequence {γτ}τ>0 satisfying (A1) - (A4) and

γτ −→ γ as τ → 0 locally uniformly in R2,(5.3)
1

2Λ
|p| ≤ γτ (p) ≤ 2Λ|p| for p ∈ R2 and τ > 0.(5.4)

We use {γτ}τ>0 to construct approximate sequences: Fix a compact set E0 ⊂ RN and
set Eτ

0 := E0. Let wτ (E0) be a weak solution of (1.7) with γ = γτ and E0 := Eτ
0 . Then

we define a new set Eτ
1 := {wτ (E0) ≤ 0}. Next take wτ (E1) as a weak soltuion of (1.7)

with γ = γτ and E0 := Eτ
1 . Define a new set Eτ

2 := {wτ (E1) ≤ 0}. Repeating the process,
we have sequences {Eτ

k}k=0,1,..., {d(Eτ
k )}k=0,1,... and {wτ (Eτ

k )}k=0,1,....
For t ≥ 0 and x ∈ RN , set

Eτ,h(t) := Eτ
[t/h], d

τ,h(t, x) := d(x,Eτ,h(t)), wτ,h(t, x) := wτ (x,Eτ,h(t)).
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Define

(5.5) ρ(t, x) := lim sup
(τ,h,s,y)→(0,0,t,x)

dτ,h(s, y), ρ(t, x) := lim inf
(τ,h,s,y)→(0,0,t,x)

dτ,h(s, y),

and Γ(t) := {ρ(t, ·) ≤ 0 ≤ ρ(t, ·)}. Similar arguments to those before Theorem 4.1 yield
the following theorem. Let d = d(t, ·) be the signed distance function to Γ(t) given by
(1.4) with E0 = E(t)

Theorem 5.1. Assume (A1) - (A4) and

(5.6) Γ(t) ̸= ∅ and Γ(t) = ∂{ρ(t, ·) < 0} = ∂{ρ(t, ·) > 0} for all t ∈ [0, T ).

Then d = d = d in [0, T ) × RN . Thus {dτ,h}τ,h>0 converges to d as τ , h → 0 locally
uniformly in [0, T )× RN . Moreover, ∂Eτ,h(t) converges to Γ(t) as τ , h → 0 in the sense
of the Hausdorff distance, locally uniformly in [0, T ).

Thanks to (5.4), we directly apply Proposition 4.1 with γ = γτ to get

sup
t∈[0,T ),τ>0

∥wτ,h(t, ·)− dτ,h(t, ·)∥L2(B(0,r)) ≤ C
√
h,

where C > 0 is independent of τ , h > 0. Since we observe that |∇dτ,h(t, ·)| = 1 and
|wτ,h(t, ·)| ≤ 1 a.e. in RN for all t ∈ [0, T ), combining these facts, we have the convergence
of {wτ,h}τ,h>0.

Theorem 5.2. Assume (A1) - (A4) and (5.6). Then {wτ,h}τ,h>0 converges to d as τ ,
h→ 0 locally uniformly in [0, T )× RN .

The characterization of {Γ(t)}t≥0 is shown by using the results due to [15] and [9].

Theorem 5.3. Assume (A1) - (A4) and (5.6). Then {Γ(t)}t≥0 is a distance solution
of (5.1). In other words, d ∧ 0 and d ∨ 0 are, respectively, a viscosity subsolution and a
viscosity supersolution of (5.2).
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BEHAVIOR OF SOLUTIONS TO SOME MATHEMATICAL MODEL
FOR ANGIOGENESIS

DOAN DUY HAI AND ATSUSHI YAGI

1. Introduction

We are concerned with the Cauchy problem for a mathematical model of tumor-induced
angiogenesis:

(1.1)



∂u

∂t
= a∆u− µ∇ · [u(σ − u)∇χ1(ρ)]

− ν∇ · [u(σ − u)∇χ2(η)] + fu(σ − u) in Ω× (0,∞),

∂ρ

∂t
= b∆ρ− αuρ+ gu in Ω× (0,∞),

∂η

∂t
= c∆η − hη − βuη + φ(x) in Ω× (0,∞),

∂u

∂n
=
∂ρ

∂n
=
∂η

∂n
= 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x), ρ(x, 0) = ρ0(x), η(x, 0) = η0(x) in Ω,

in a bounded domain Ω in R3. Here, unknown functions u(x, t), ρ(x, t) and η(x, t) denote
the densities of endothelial-cells, the concentration of fibronectin and the concentration
of TAF (tumor angiogenesis factor), respectively, at a position x of an organism Ω and
at time t ≥ 0. Cells diffuse in Ω with diffusion constant a > 0. Cells have a directed
mobility in responce to fibronectin gradients which is called haptotaxis. Haptotaxis is
described by the nonlinear advection term −µ∇ · [u∇ρ] with flow rate µ > 0. Similarly,
cells have a directed mobility in responce to TAF gradients called chemotaxis. Chemotaxis
is described by −ν∇ · [u∇ log (1 + θη)] with flow rate ν > 0 and some constant θ > 0. In
the equation of fibronectin, the term gu denotes production due to cells with rate g > 0
and conversely the term −αuρ denotes uptake by cells themselves with rate α > 0. In
the equation of TAF, the term −βuρ denotes uptake by cells.

In 1998, Anderson-Chaplain [1] has presented a mathematical model for describing
the process of tumor-induced angiogenesis. We, however, intend to modify the model
equations of [1] into the form (1.1) in the view points:

(1) The diffusion for both fibronectin and ATF is considered with diffusion constant
b > 0 and c > 0, respectively.

(2) The proliferation of endothelial-cells are considered. The growth term is assumed
to be given by fu(σ − u) with saturation density σ > 0 and constant f > 0.

(3) Saturation takes place in the effects of not only proliferation but also advection.
So, the advection terms take the forms −µ∇ · [u(σ− u)∇χ1(ρ)] and −ν∇ · [u(σ−
u)∇χ2(η)], respectively, with suitable sensitivity functions χ1(·) and χ2(·).

The last author is supported by Grant-in-Aid for Scientific Research (No. ) by Japan Society for the
Promotion of Science.
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(4) Constant supply of TAF due to tumor and natural decline are considered. Sup-
plying rate is given by φ(x) ≥ 0 and the decling constant is denoted by h > 0.

As for validity of these modifications, we refer the reader to the papers [1, 4, 5].
This paper is devoted to studying longtime behavior of solutions to (1.1). First, we

will construct a dynamical system generated by (1.1) and prove that, unless u0 ̸≡ 0, the
solution (u(t), ρ(t), η(t)) converges as t→ ∞ to the stationary solution (σ, g

α
, η(x)), where

η(x) is a nonnegative function satisfying −c∆η + (h + βσ)η = φ(x) in Ω with boundary
conditions ∂η

∂n
= 0 on ∂Ω. Second, we will exhibit some numerical results which enlighten

very complex profiles in a short time range.
We consider (1.1) in a three-dimensional, C2 or convex bounded domain Ω. The sup-

plying function φ(x) is such that

(1.2) 0 ≤ φ ∈ L2(Ω).

The sensitivity functions χi(·) (i = 1, 2) are a real valued C1 function on [0,∞), i.e.,

(1.3) χi ∈ C1([0,∞);R), i = 1, 2.

2. Abstract Formulation

Let us formulate (1.1) as the Cauchy problem for a semilinear abstract evolution equa-
tion

(2.1)


dU

dt
+ AU = F (U), 0 < t <∞,

U(0) = U0

in a Banach space X. As X we set

(2.2) X = {t(u, ρ, η); u ∈ H1(Ω)′, ρ ∈ L2(Ω), η ∈ L2(Ω)}.
Here, A = diag {A1, A2, A3} is a diagonal operator matrix of X, where Ai (i = 1, 2, 3) are
a realization of Laplace operator under the homogeneous Neumann boundary conditions
on ∂Ω such that A1 = −a∆ + 1, A2 = −b∆ + 1 and A3 = −c∆ + h, respectively.
More precisely, A1 is a sectorial operator acting in H1(Ω)′ with domain D(A1) = H1(Ω);
meanwhile, Ai (i = 2, 3) are a self-adjoint operator of L2(Ω) with domain D(Ai) = H2

N(Ω).
Consequently, the domain of A is given by

D(A) = {t(u, ρ, η); u ∈ H1(Ω), ρ ∈ H2
N(Ω), η ∈ H2

N(Ω)}.
The operator F (U) is a nonlinear operator of X of the form

F (U) = F

uρ
η

 =

F1(U) + u[1 + f(σ − u)]
ρ− αuρ+ gu
−βuη + φ(x)

 ,

where

(2.3) F1(U) = −µ∇ · [Ψ(Reu)Ψ(σ − Reu)∇χ1(Re ρ)]

− ν∇ · [Ψ(Reu)Ψ(σ − Reu)∇χ2(Re η)].

Here, Ψ(u) denotes a cutoff function defined for −∞ < u < ∞ such that Ψ(u) ≡ 0 if
−∞ < u < 0, Ψ(u) = u if 0 ≤ u ≤ σ if 0 ≤ u ≤ σ, Ψ(u) ≡ σ if σ < u < ∞. And
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for i = 1, 2, χi(·) are assumed to be extended on the whole real line (−∞,∞) as a real
valued C1 function (remember (1.3)). As for the domain of F , we set

D(F ) = {t(u, ρ, η); u ∈ L4(Ω), ρ ∈ H
7
4
N(Ω), η ∈ H

7
4
N(Ω)}.

Since H
7
4
N(Ω) ⊂ C(Ω), it is easily obtained that

∥F1(U)− F1(Ũ)∥(H1)′ ≤ p(∥A
7
8U∥X + ∥A

7
8 Ũ∥X)∥A

7
8 (U − Ũ)∥X , U, Ũ ∈ D(A

7
8 ),

where p(·) denotes some suitable increasing function which is determined from χi(·) (i =
1, 2). So it is similar for F (U), i.e.,

(2.4) ∥F (U)− F (Ũ)∥X ≤ p(∥A
7
8U∥X + ∥A

7
8 Ũ∥X)∥A

7
8 (U − Ũ)∥X , U, Ũ ∈ D(A

7
8 ).

We are then led to introduce the space of initial functions by

(2.5) K = {U0 =
t(u0, ρ0, η0); 0 ≤ u0 ≤ σ, u0 ∈ H

3
4 (Ω),

0 ≤ ρ0 ≤ g
α
, ρ0 ∈ H

7
4
N(Ω), 0 ≤ η0 ∈ H

7
4
N(Ω)}.

This space is a subset ofD(A
7
8 ). We here apply the theory of semilinear abstract parabolic

evolution equations to conclude local existence of solutions. The following theorem is a
direct consequence of [6, Theorem 4.1].

Theorem 2.1. For any U0 ∈ K, (2.1) possesses a unique local solution in the function
space:

(2.6) U ∈ C((0, TU0 ];D(A)) ∩ C([0, TU0 ];D(A
7
8 )) ∩ C1((0, TU0 ];X).

Furthermore, U(t) satisfies

(2.7) 0 ≤ u(t) ≤ σ, 0 ≤ ρ(t) ≤ g
α
, η(t) ≥ 0 for every 0 ≤ t ≤ TU0 .

3. Dynamical System

In this section, we shall construct global solutions for (1.1) and the dynamical system
generated by (1.1). We begin with proving a priori estimates for the local solutions. Let
U(t) denote a local solution of (2.1) in the function space:

(3.1) U ∈ C((0, TU ];D(A)) ∩ C([0, TU ] : D(A
7
8 )) ∩ C1((0, TU ];X)

with values in K, i.e.,

(3.2) 0 ≤ u(t) ≤ σ, 0 ≤ ρ(t) ≤ g
α
, η(t) ≥ 0 for every 0 ≤ t ≤ TU ,

where [0, TU ] is the interval on which U(t) is defined.

Proposition 3.1. Let U0 ∈ K and let U(t) be any local solution to (2.1) in the function
space (3.1) with values in K. Then, there exists an increasing function p(·) such that

(3.3) ∥A
7
8U(t)∥X ≤ p(∥A

7
8U0∥X), 0 ≤ t ≤ TU .
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Proof. The proof is divided into several steps.
Step 1. The second equation of (1.1) is written as the abstract equation in the space

L2(Ω). Then, ρ(t) is represented by

ρ(t) = e−tA2ρ0 +

∫ t

0

e−(t−s)A2{ρ(s) + u(s)[g − αρ(s)]}ds,

where e−tA2 is the analytic semigroup generated by −A2 on L2(Ω). As A2 ≥ 1, we have

∥e−tA2∥L2 ≤ e−t. Operating A
7
8
2 to this equality and estimating its norm, we obatin that

∥A
7
8
2 ρ(t)∥L2 ≤ e−t∥A

7
8
2 ρ0∥L2 + C

∫ t

0

(t− s)−
7
8 e−(t−s)∥ρ(s) + u(s)[g − αρ(s)]∥L2ds.

On account of (3.2), we conclude that

(3.4) ∥A
7
8
2 ρ(t)∥L2 ≤ e−t∥A

7
8
2 ρ0∥L2 + C, 0 ≤ t ≤ TU .

Step 2. Multiply the third equation of (1.1) by η and integrate the product in Ω. Then,

1

2

d

dt

∫
Ω

η2dx+ c

∫
Ω

|∇η|2dx+ h

∫
Ω

η2dx =

∫
Ω

(−βuη2 + φη)dx

≤ h

2
∥η∥2L2 +

1

2h
∥φ∥2L2

.

Therefore, on account of (1.2),

d

dt

∫
Ω

η2dx+ 2c

∫
Ω

|∇η|2dx+ h

∫
Ω

η2dx ≤ C.

Hence,

(3.5) ∥η(t)∥2L2
≤ e−ht∥η0∥2L2

+ C, 0 ≤ t ≤ TU .

Step 3. The third equation of (1.1) is regarded as the abstract equation in the space
L2(Ω). Then, η(t) is represented by

η(t) = e−tA3η0 +

∫ t

0

e−(t−s)A3 [−βu(s)η(s) + φ]ds.

Furthermore,

A
7
8
3 η(t) = e−tA3A

7
8
3 η0 +

∫ t

0

A
7
8
3 e

−(t−s)A3 [−βu(s)η(s) + φ]ds.

As A3 ≥ h, the analytic semigroup e−tA3 generated by −A3 on L2(Ω) is estimated by
∥e−tA3∥L2 ≤ e−ht. Hence, in view of (1.2), (3.2) and (3.5), we obtain that

(3.6) ∥A
7
8
3 η(t)∥L2 ≤ e−ht∥A

7
8
3 η0∥L2 + C(∥η0∥L2 + 1), 0 ≤ t ≤ TU .

Step 4. From the first equation of (1.1) we have a representation for u(t) of the form

u(t) = e−tA1u0 +

∫ t

0

e−(t−s)A1{F1(U(s)) + u(s)[1 + f(σ − u(s))]}ds,
4
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using the analytic semigroup e−tA1 generated by −A1 on H1(Ω)′. Furthermore,

A
7
8
1 u(t) = e−tA1A

7
8
1 u0 +

∫ t

0

A
7
8
1 e

−(t−s)A1{F1(U(s)) + u(s)[1 + f(σ − u(s)]}ds.

Since the spectrum σ(A1) of A1 is contained in the half plane {λ ∈ C; Reλ ≥ 1}, we have
∥e−tA1∥(H1)′ ≤ Ce−t. On account of this fact, we observe that

∥A
7
8
1 u(t)∥(H1)′ ≤ Ce−t∥A

7
8
1 u0∥(H1)′

+ C

∫ t

0

(t− s)−
7
8 e−(t−s){∥F1(U(s))∥(H1)′ + ∥u(s)[1 + f(σ − u(s))]∥(H1)′}ds.

Here, due to (1.3),

∥F1(U)∥(H1)′ ≤ C[∥∇χ1(ρ)∥L2 + ∥∇χ2(η)∥L2 ]

≤ C[∥χ′
1(ρ)∇ρ∥L2 + ∥χ′

2(η)∇η∥L2 ]

≤ p(∥ρ∥
H

7
4
+ ∥η∥

H
7
4
),

p(·) being some suitable increasing function. While, we already know from (3.4) and (3.5)

that ∥ρ(t)∥
H

7
4
+ ∥η(t)∥

H
7
4
≤ C(∥A

7
8
2 ρ0∥L2 + ∥A

7
8
3 η0∥L2 + 1). Hence, we conclude that

(3.7) ∥A
7
8
1 u(t)∥(H1)′ ≤ Ce−δt∥A

7
8
1 u0∥(H1)′ + p(∥A

7
8
2 ρ0∥L2 + ∥A

7
8
3 η0∥L2), 0 ≤ t ≤ TU ,

with some exponent δ > 0.
We have thus accomplished the proof of (3.3). □

As an immediate consequence of Proposition 3.1 we have the global existence. For any
U0 ∈ K, (2.1) possesses a unique global solution in the function space:

(3.8) U ∈ C((0,∞);D(A)) ∩ C([0,∞);D(A
7
8 )) ∩ C1((0,∞);X).

with values U(t) ∈ K for all 0 ≤ t <∞.
In the meantime, it is possible to show the smoothing estimate

(3.9) ∥AU(t)∥X ≤ CU0(t
− 1

8 + 1), 0 < t <∞,

CU0 being determined by the norm ∥A 7
8U0∥X .

Let next us construct a dynamical system generated by (2.1). For U0 ∈ K, let
U(t;U0) denote the global solution to (2.1) belonging to (3.8). Put for 0 ≤ t < ∞,
S(t)U0 = U(t;U0). Then, S(t) is a nonlinear operator acting on K. It is also seen by the
methods described in [6, Subsection 6.5.1] that the mapping G : [0,∞)×K → K defined
by G(t, U0) = S(t)U0 is continuous, here K is regarded as a metric space equipped with

the distance d(U0, V0) = ∥A 7
8 (U0 − V0)∥X .

Theorem 3.1. (2.1) (and hance (1.1)) generates a dynamical system (S(t), K,D(A
7
8 )),

where K is a phase space and D(A
7
8 ) ≡ D 7

8
is a universal space.
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4. Convergence of S(t)U0 as t→ ∞

Let us study longtime behavior of trajectories of (S(t), K,D 7
8
). Let U = t(u, ρ, η) ∈ K

be a point such that u ≡ σ, ρ ≡ g
α
, and η ∈ D(A3) is a unique solution to

(4.1) −c∆η + (h+ βσ)η = φ(x).

Since U ∈ D(A) is a stationary solution to (2.1), this point is clearly an equilibrium. Our
goal is then to show that, for every U0 ∈ K, unless u0 ≡ 0, S(t)U0 converges to U in D 7

8

as t→ ∞.
Let U0 ∈ K and let S(t)U0 =

t(u(t), ρ(t), η(t)). We notice from (3.9) that u(t) satisfies
a uniform bounded estimate

(4.2) ∥u(t)∥H1 ≤ CU0 , 1 ≤ t <∞.

Our first goal is then to observe that, as t→ ∞, ∥u(t)[σ − u(t)]∥L1 → 0.

Proposition 4.1. It holds that
∫∞
0

∥u(s)[σ − u(s)]∥L1ds ≤ f−1σ|Ω|.

Proof. Integrate the first equation of (1.1) in Ω. Then, we have

(4.3)
d

dt

∫
Ω

u dx = f

∫
Ω

u(σ − u) dx.

Since 0 ≤ u ≤ σ, we observe that

(4.4) 0 ≤ d

dt

∫
Ω

u dx ≤ fσ2

4
|Ω|.

In particular, ∥u(t)∥L1 is monotone increasing as t→ ∞.
Integrate further (4.3) in t. Then,

∥u(T )∥L1 − ∥u0∥L1 = f

∫ T

0

∫
Ω

u(σ − u) dxdt.

Since ∥u(T )∥L1 ≤ σ|Ω|, the desired estimate is verified. □
Proposition 4.2. It holds that

∣∣ d
dt
∥u(t)[σ − u(t)]∥L1

∣∣ ≤ CU0 for every 1 ≤ t <∞.

Proof. As 0 ≤ u ≤ σ, we see that

d

dt
∥u(t)[σ − u(t)]∥L1 = σ

d

dt

∫
Ω

u dx− d

dt

∫
Ω

u2dx.

Meanwhile, from the first equation of (1.1) we have

1

2

d

dt

∫
Ω

u2dx+ a

∫
Ω

|∇u|2dx

=

∫
Ω

u(σ − u)[µ∇χ1(ρ) + ν∇χ2(η)] · ∇u dx+ f

∫
Ω

u2(σ − u) dx.

So, (4.2) yields that
∣∣ d
dt

∫
Ω
u2dx

∣∣ ≤ CU0 . Hence, the desired estimate is verified by this
and (4.4). □

Two Propositions 4.1 and 4.2 naturally yield that, as t→ ∞,

(4.5) ∥u(t)[σ − u(t)]∥L1 → 0.

Proposition 4.3. If ∥u0∥L1 > 0, then u(t) converges to σ in L2(Ω).
6
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Proof. Consider any time sequence tn ↑ ∞. It then suffices to prove that this sequence
contains a subsequence tn′ ↑ ∞ such that u(tn′) → σ in L2(Ω).

Since the bounded balls ofH1(Ω) is weakly sequentially compact and since (4.2) is valid,
the sequence u(tn) contains a subsequence which is weakly convergent in H1(Ω). Since
H1(Ω) is compactly embedded in L2(Ω), u(tn) contains a subsequence which is convergent
in L2(Ω). Moreover, (3.2) implies that u(tn) contains a subsequence which is convergent in
L∞(Ω) with w∗-topology. These mean that one can extract a subsequence u(tn′) of u(tn)
which converges to u∞ in L2(Ω) and that u∞ belongs to the intersection H1(Ω)∩L∞(Ω).
Since u(tn′)[σ − u(tn′)] converges to u∞(σ − u∞) in L1(Ω), too, we observe by (4.5) that
u∞(σ − u∞) = 0, namely, u∞ equals to either 0 or σ almost everywhere. In addition, we
observe that u∞(σ − u∞) ∈ H1(Ω) with 0 = ∇[u∞(σ − u∞)] = (σ − 2u∞)∇u∞, hence
∇u∞ = 0 almost everywhere. Consequently, u∞ is a homogeneous function, i.e., either
u∞ = 0 almost everywhere or u∞ = σ almost everywhere. But, as shown above, ∥u(t)∥L1

is monotone increasing; therefore, ∥u0∥L1 > 0 implies ∥u∞∥L1 > 0; hence, u∞ coincides
with σ almost everywhere. □

Proposition 4.4. If ∥u0∥L1 > 0, then ρ(t) converges to g
α
in L2(Ω).

Proof. Writing the second equation of (1.1) as

(4.6)
∂

∂t
(ρ− g

α
) = b∆(ρ− g

α
)− ασ(ρ− g

α
)− α(u− σ)(ρ− g

α
),

we multiply this one by (ρ− g
α
) and integrate the product in Ω. Then,

1

2

d

dt

∫
Ω

(ρ− g
α
)2dx+ b

∫
Ω

|∇(ρ− g
α
)|2dx+ ασ

∫
Ω

(ρ− g
α
)2dx = α

∫
Ω

(σ − u)(ρ− g
α
)2dx.

Therefore,

d

dt

∫
Ω

(ρ− g
α
)2dx+ 2ασ

∫
Ω

(ρ− g
α
)2dx ≤ C∥u(t)− σ∥L1 .

Solving this differential inequality on [T,∞), we have

∥ρ(t)− g
α
∥2L2

≤ e−2ασ(t−T )∥ρ(T )− g
α
∥2L2

+ C

∫ t

T

e−2ασ(t−s)∥u(s)− σ∥L1ds

≤ e−2ασ(t−T )∥ρ(T )− g
α
∥2L2

+ C sup
T≤s<∞

∥u(s)− σ∥L1 .

Therefore,

lim sup
t→∞

∥ρ(t)− g
α
∥2L2

≤ C sup
T≤s<∞

∥u(s)− σ∥L1 .

Meanwhile, in view of Proposition 4.3, the right hand side can be arbitrarily small as
T ↑ ∞. Hence, the assertion of proposition is proved. □

Proposition 4.5. If ∥u0∥L1 > 0, then η(t) converges to η in L2(Ω).

Proof. Since η satisfies (4.1), we can write the equation of η in the form

(4.7)
∂

∂t
(η − η) = c∆(η − η)− (h+ βσ)(η − η)− β(u− σ)η.
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Multiply this equation by η − η and integrate the product in Ω. Then,

1

2

d

dt

∫
Ω

(η − η)2dx+ c

∫
Ω

|∇(η − η)|2dx+ (h+ βσ)

∫
Ω

(η − η)2dx

= β

∫
Ω

(σ − u)η(η − η)dx.

We can then argue in an analogous way as in the proof of Proposition 4.4. □
In this way we arrive at the following theorem.

Theorem 4.1. Let ∥u0∥L1 > 0. As t→ ∞, S(t)U0 converges to U in D 7
8
.

5. Numerical Examples

In this section, we demonstrate the behavior of the angiogenesis model (1.1) by two
computational examples. The values of parameters are the same in both examples and
taken from [1]:

a = 3.5× 10−4, b = 10−5, c = 1.0, µ = 0.75, ν = 4.0,

σ = 1.0, f = 0.1, α = 0.1, g = 0.05, h = 0.05, β = 1.0,

the computational domain Ω is [0, 1]2. The initial values of endothelial cell density and
of fibronectin concentration in two examples are given as in Figure 1. The differences

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 1. Initial values of endothelial cell density (left) and of fibronectin
concentration (right).

between two examples are about initial value of TAF concentration and TAF supplying
rate. In the first example, the tumor size is supposed to be small and therefore the TAF
supplying source is also restricted in a small area of domain Ω. We increased the tumor
size and then the TAF supplying source in the second example. The TAF supplying rates
are given respectively:

φ(x) =

{
0.1 if

√
(1− x1)2 + (0.5− x2)2 ⩽ 0.1,

0 otherwise,
in the first example,

φ(x) =

{
0.1 if

√
(1− x1)2 + (0.5− x2)2 ⩽ 0.4,

0 otherwise,
in the second example.

The initial values of TAF concentration are plotted as in Figure 2. For computing,
8
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we employed the discontinuous Galerkin method [2] for spatial discretization and the
Rosenbrock strong stability–preserving method [3] for temporal discretization.

If the tumor’s size is small as in the first example, the numerical results in Figure 3
showed that the blood vessel developed toward the tumor and then it stopped before
approaching the tumor. It can be explained that the attraction generated by the chemo-
taxis in this case is equivalent to the one generated by the haptotaxis. The appearance
of haptotaxis also slowed down the development of the blood vessel.

But when the tumor’s size becomes bigger as in the second example, the strength of the
attraction generated by the chemotaxis is superior to the one generated by the haptotaxis.
In this case the development of blood vessel is not only up to the tumor but also much
faster than the one in the first example. This process is shown in Figure 4.
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Figure 2. Initial values of TAF concetrations in the first (left) and the
second (right) example.

Figure 3. The development of endothelial cell in case of small size tumor.
From the left to right, there are density of endothelial cell at t = 2.0,
t = 12.0, t = 72.0, and t = 100.0. The light regions represent high density
of endothelial cell.

Figure 4. The development of endothelial cell in case of big size tumor.
From the left to right, there are density of endothelial cell at t = 2.0, t = 6.0
and t = 12.0. The light regions represent high density of endothelial cell.
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1 Introduction and our main result

In this article we investigate linear application of a system of quasilinear hyperbolic equations.
In the sequel RnN denotes the set of all N by n matrices with real elements. Let f be a real valued
function defined on RnN and let ε be a positive number. Suppose that u satisfies

∂2ui

∂t2
(t, x)−

n∑

α=1

∂

∂xα
{fpi

α
(∇u(t, x))} = 0, i = 1, 2, . . . , N,(1)

in a bounded domain Ω with u(0, x) = εu0(x), ut(0, x) = εv0(x) and

u(t, x) = 0, x ∈ ∂Ω.(2)

Our final destination is to show that, as ε → 0, uε := ε−1u converges to a weak solution to
linearlized equation for (1).

In the case that N = 1 and f(p) =
√

1 + |p|2, Equation (1) is

∂2u

∂t2
(t, x)−

n∑

α=1

∂

∂xα
{(1 + |∇u(t, x)|2)−1/2 ∂u

∂xα
} = 0, x ∈ Ω,(3)

which is in [3, 4, 5] referred to as an equation of motion of vibrating membrane. Up to now neither
existence nor uniqueness of a solution to (3) is obtained. In [3, 4, 5] we only have that a sequence
of approximate solutions to (3) converges to a function u in an appropriate function space, and
that, if u satisfies the energy conservation law, it is a weak solution to (3). Instead in [6] linear
approximation for (3) is investigated.

For (1), existence and uniqueness are also very difficult problems, but linear approximation
seems to be attackable and hence in this article we try it. In this article we suppose that f is linear
growth and quasiconvex, more precisely,

(A1) there exist constants m and M such that

m|p| ≤ f(p) ≤ M(1 + |p|)(4)

(A2) for each bounded domain D ⊂ Rn, for each p0 ∈ RnN , and for each ϕ ∈ [W 1,∞
0 (D)]N

1
Ln(D)

∫

D
f(p0 +∇ϕ(x))dx ≥ f(p).

The energy functional for the operator −
n∑

α=1

∂

∂xα
{fpi

α
(∇u(t, x))} is the functional

u 7→
∫

Ω
f(∇u(x))dx.

1
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When u belongs to [L1(Ω)]N \ [W 1,1(Ω)]N , the value of this functional is infinity. But it is not
lower semicontinuous and thus we should introduce relaxation. The relaxed functional of the
above functional in the [L1(Ω)]N norm, which is denoted by J , is finite for u = (u1, u2, . . . , uN ) ∈
[BV (Ω)]N and is expressed as

J(u, Ω) =
∫

Ω
f(∇u(x))dx +

∫

Ω
f∞(

dDsu

d|Dsu|)d|D
su|,(5)

where Du = Dau + Dsu (absolutely continuous part and singular part with respect to Ln), Dau =
Ln L∇u, and f∞(p) is defined as, for p ∈ Rn,

f∞(p) = lim sup
ρ→0

f(
p

ρ
)ρ(6)

(see, for example, [1, Theorem 5.47]).
Similarly to the scalar case the most appropriate weak formulation of Dirichlet condition (2) is

to replace J(u,Ω) with J(u,Ω). The functional J(u,Ω) is expressed as

J(u,Ω) = J(u,Ω) +
∫

∂Ω
f∞(γu× ~n)dHn−1,(7)

where ~n denotes the inward pointing unit normal to ∂Ω andHk denotes the k-dimensional Hausdorff
measure.

In this article we further suppose that

(A3) f ∈ C2(RnN ) and fpp is bounded in RnN

(A4) there exist positive constants α and C such that 0 < α ≤ 1 and

|fpp(p)− fpp(0)| ≤ C|p|α

whenever |p| ≤ 1.

(A5) there exist a positive constant c0 such that, for each ϕ ∈ W 1,∞
0 (Ω),

∫

Ω
[f(∇ϕ)− f(0)]dx ≥ c0

∫

Ω
G(∇ϕ)dx,

where G(p) ∼ |p|2 when |p| << 1 and G(p) ∼ |p| when |p| >> 1.

Remark. Assumption (A5) means a kind of strictness of quasiconvexity at the origin. We

remark that, without loss of generality, we may suppose that G(p) =
|p|2√

1 + |p|2 + 1
, and in the

sequel we let G denote this function.

Example. We define L ⊂ R4 (regarded as the set of all 2 by 2 matrices) as

L = {
(

t −s
s t

)
; s, t ∈ R}.

Let K be an arbitrary closed subset of L and we define f0(p) = dist(p, K). Then it is proved in [9]
that the quasiconvexification f1 := Qf0 satisfies f1(p) > for any p ∈ R4 \K.

Now we put f2(p) = (ρσ ∗ f1)(p), where ρσ denotes the standard mollifier, and we define
f(p) = f2(p) + a

√
1 + |p|2. Then, if K is not convex and a is sufficiently small, f satisfies all

assumptions (A1)–(A5) and f is not convex.
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Suppose that u is a solution to (1) with u(0, x) = εu0(x), ut(0, x) = εv0(x) and (2). Then uε is
a weak solution to

∂2ui

∂t2
(t, x)−

n∑

j=1

∂

∂xj
{1
ε
fpi

α
(ε∇u(t, x))} = 0, x ∈ Ω, i = 1, 2, . . . , N,(8)

with
u(0, x) = u0(x),

∂u

∂t
(0, x) = v0(x), x ∈ Ω,(9)

and (2). A weak solution to this equation is defined as in the following way. We put

Jε(u,Ω) =
1
ε2

J(εu,Ω)− f(0)Ln(Ω).

Note that Jε is the relaxed functional of u 7→
∫

Ω
fε(∇u(x))dx, where fε(p) =

1
ε2 (f(εp) − f(0)).

In [4, 5] a weak solution to (3) is defined as a weak solution to the evolution equation utt +
∂(

√
1 + |Du|2) 3 0. In our problem, since Jε is not convex, this definition is not available. However,

since f is quasiconvex (and thus f is rank-one convex), the functional

L2(Ω) ∩BV (Ω) 3 v 7→ J(u1, . . . , uj−1, v, uj+1, . . . , uN ,Ω)

is convex for each j. Hence we are able to define a weak solution to (8) with (9), (2) as a weak
solution to uj

tt + ∂ujJ(u,Ω) (j = 1, 2, . . . , N): supposing that u0 ∈ [L2(Ω) ∩ BV (Ω)]N and v0 ∈
[L2(Ω)]N and putting

X = {φ ∈ L∞((0, T );L2(Ω) ∩BV (Ω));φt ∈ L2((0, T )× Ω)},
we define

Definition 1 A function u is said to be a solution to (8) with (9), (2) if and only if

i) u ∈ [L∞((0, T );BV (Ω))]N , ut ∈ [L2((0, T )× Ω)]N

ii) s-lim
t↘0

u(t, x) = u0(x) in L2(Ω)

iii) for each T > 0 and for any φ ∈ C0
0 ([0, T );L2(Ω)) ∩ X , and any j = 1, . . . , N ,

∫ T

0
{Jε(u1, . . . , uj−1, uj + φ, uj+1, . . . , uN ,Ω)− Jε(u,Ω)}dt

≥
∫ T

0

∫

Ω
uj

tφtdxdt +
∫

Ω
vj
0(x)φ(0, x)dx.

Remark. Replacing Jε with J , we are able to define a weak solution to (1) with (9), (2).

Let us put f
pi

αpj
β
(0) = aαβ

ij and define a linear operator

Lu = t(
N∑

j=1

n∑

α=1

n∑

β=1

aαβ
ij

∂2uj

∂xα∂xβ
; i = 1, 2, . . . , N).

Now we have

Proposition 1 L is strongly elliptic, namely, there exists a constant m0 such that

N∑

i=1

N∑

j=1

n∑

α=1

n∑

β=1

aαβ
ij ξαξβηiηj ≥ m0|ξ|2|η|2

for each ξ ∈ Rn and each η ∈ RN .
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. Proof. By (A5), for each ϕ ∈ W 1,∞
0 (Ω) and each ε > 0,

1
ε2

∫

Ω
[f(ε∇ϕ)− f(0)]dx ≥ c0

∫

Ω
G(∇ϕ)dx = c0

∫

Ω

|∇ϕ|2√
1 + ε2|∇ϕ|2 + 1

dx.(10)

Since f is of C2 class, we have by the Taylor expansion

1
ε2

∫

Ω
[f(ε∇ϕ)− f(0)]dx =

1
ε2

∫

Ω
[εfp(0)∇ϕ +

1
2

∫ 1

0
< fpp(θε∇ϕ)∇ϕ,∇ϕ > dθ]dx,(11)

where < fpp(q)p, p >=
N∑

i=1

N∑

j=1

n∑

α=1

n∑

β=1

f
pi

αpj
β
(q)pi

αpj
β. Divergence theorem implies

∫

Ω
fp(0)∇ϕdx = 0.

Thus we have by (10) and (11)

1
2

∫

Ω

∫ 1

0
< fpp(θε∇ϕ)∇ϕ,∇ϕ > dθdx ≥ c0

∫

Ω

|∇ϕ|2√
1 + ε2|∇ϕ|2 + 1

dx.

Letting ε → 0, we have ∫

Ω
< fpp(0)∇ϕ,∇ϕ > dx ≥ c0

∫

Ω
|∇ϕ|2dx,

which is equivalent to that L is strongly elliptic. Q.E.D.

By well-known uniqueness result of linear hyperbolic equations we have the following by Propo-
sition 1.

Corollary 1 Suppose that u0 ∈ [W 1,2
0 (Ω)]N and v0 ∈ [L2(Ω)]N . A solution to linearized equation





utt − Lu = 0, (t, x) ∈ (0, T )× Ω)
u(0, x) = u0(x), x ∈ Ω
ut(0, x) = v0(x), x ∈ Ω
u(t, x) = 0, x ∈ ∂Ω.

(12)

is unique in L∞((0, T );W 1,2
0 (Ω)) ∩W 1,2((0, T )× Ω) for each T > 0.

Our main theorem is as follows:

Theorem 1 Let T be a positive number. Suppose that u0 ∈ W 1,2
0 (Ω) and v0 ∈ L2(Ω) and that

uε is a weak solution to (8) with (9), (2) in (0, T ) × Ω. We further suppose uε satisfies energy
inequality: for L1-a.e. t ∈ (0, T ),

1
2

∫

Ω
|uε

t (t, x)|2dx + Jε(uε(t, ·),Ω) ≤ 1
2

∫

Ω
|v0|2dx + Jε(u0, Ω).(13)

Then there exists a function u such that

1). {‖uε
t ‖L∞((0,T );L2(Ω))} is uniformly bounded with respect to ε

2). {‖uε ‖L∞((0,T );L2(Ω)∩BV (Ω))} is uniformly bounded with respect to ε

3). uε converges to u as ε → 0 weakly star in L∞((0, T );L2(Ω))

4). uε
t converges to ut as ε → 0 weakly star in L∞((0, T );L2(Ω))

5). uε converges to u as ε → 0 strongly in Lp((0, T )× Ω) for each 1 ≤ p < 1∗

6). for L1-a.e. t ∈ (0, T ), Duε(t, ·) converges to Du(t, ·) as ε → 0 in the sense of distributions

7). u ∈ L∞((0, T );W 1,2
0 (Ω)) ∩W 1,2((0, T )× Ω)

8). u is a weak solution to (12) with (9), (2).
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2 1st step of the proof of Theorem 1

Lemma 1 For each v ∈ [BV (Ω)]N ,

Jε(v, Ω) ≥ c0(
∫

Ω

|∇v|2√
1 + ε2|∇v|2 + 1

dx +
1
ε
|Dsv|(Ω)).

Before the proof of this lemma we introduce some notations. Let µ be a Rm valued Radon
measure. Then we write its total variation as |µ| and the Radon-Nikodym derivative of µ with
respect to |µ| as ~µ. In particular, µ = |µ| L ~µ. For v ∈ [BV (Ω)]N we define an RnN+1 valued Radon
measure µv by

µv = t(Dv,Ln).

For an open set A ⊂ Ω, total variation |µv| is given by

|µv|(A) = sup{
∫

Ω
(g0 + v divg)dx; (g0, g) ∈ C1(Ω, RnN+1), |g0|2 + |g|2 ≤ 1}

In this article, for the sake of simplicity, we write SnN+1
+ = S+:

S+ = {~s = (s1, · · · , snN+1) ∈ SnN ; snN+1 > 0}.

We also write
S0 = {~s = (s1, · · · , snN+1) ∈ Sn; snN+1 = 0}.(14)

Then S+ = S+ ∪ S0. Given a Radon measure λ in Ω× S+, we let |λ| denote a Radon measure on
Ω defined by

|λ|(A) = λ(A× S+) for a Borel set A ⊂ Ω.

Clearly this notation is an analogy with that of a total variations of a vector valued Radon measure.
In particular, letting λ be a Radon measure in Ω×S+ defined as, for a BV function v ∈ [BV (Ω)]N ,

∫

Ω×S+

β(x,~s)dλ =
∫

Ω
β(x, ~µv(x))d|µv| (β ∈ C0(Ω× S+)),(15)

then we have |λ| = |µv|. For each Radon measure λ in Ω × S+, there exists a probability Radon
measure νλ,x on S+ for |λ|-a.e. x ∈ Ω such that

∫

Ω×S+

β(x,~s)dλ =
∫

Ω
(
∫

S+

β(x,~s)dνλ,x)d|λ| (β ∈ C0(Ω× S+))

(for example, Theorem 10 of page 14 of [2]). Using these notations, we often write λ = |λ| ⊗ νλ,x.
In particular, if λ is as in (15), then λ = |µv| ⊗ δ~µv(x).

In the proof of Lemma 1 we use the following theorem (compare to Proposition 3 of [7]).

Theorem 2 Suppose that
√

1 + |Duk|2(Ω) → √
1 + |Du|2(Ω). Then |µuk

| ⊗ δ~µuk
⇀ |µu| ⊗ δ~µu

in the sense of Radon measures in Ω× S+.

Proof of Lemma 1. For each v ∈ [BV (Ω)]N there exists a sequence ϕk ∈ C1(Ω) such that
ϕk → v strongly in [L1(Ω)]N and

lim
k→∞

√
1 + |Dϕk|2(Ω) =

√
1 + |Dv|2(Ω)
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Then by Theorem 2 and upper semicontinuity of f∗ε

lim sup
k→∞

Jε(ϕk, Ω) = lim sup
k→∞

∫

Ω×S+

f∗ε (~s)d|µϕk
| ⊗ δ ~µϕk

(16)

≤
∫

Ω×S+

f∗ε (~s)d|µv| ⊗ δ ~µv = Jε(v, Ω).

Now we have by (A5)

Jε(ϕk, Ω) ≥
∫

Ω

1
ε2

(f(ε∇ϕk)− f(0))dx ≥ c0

ε2

∫

Ω
G(ε∇ϕk)dx(17)

=
c0

ε2

∫

Ω

|ε∇ϕk|2√
1 + ε2|∇ϕk|2 + 1

dx = c0

∫

Ω

|∇ϕk|2√
1 + ε2|∇ϕk|2 + 1

dx

Since
|∇ϕk|2√

1 + ε2|∇ϕk|2 + 1
=

1
ε2 (

√
1 + ε2|∇ϕk|2 − 1), we have by the lower semicontinuity

lim inf
k→∞

∫

Ω

|∇ϕk|2√
1 + ε2|∇ϕk|2 + 1

dx ≥ 1
ε2

∫

Ω
(
√

1 + ε2|Dv|2 − 1)(18)

=
∫

Ω

|∇v|2√
1 + ε2|∇v|2 + 1

dx +
1
ε
|Dsv|(Ω).

Combining (16), (17), (18), we obtain the assertion. Q.E.D.

Proposition 2 There exists a function u such that, up to a subsequence, Assertions 1) ∼ 6) of
Theorem 1 hold. Furthermore the function u satisfies

a). u ∈ L∞((0, T );BV (Ω) ∩ L2(Ω))

b). s-lim
t↘0

u(t) = u0 in L2(Ω)

Proof. By (A3) we have

fε(p) =
1
ε
fp(0) : p +

∫ 1

0
< fpp(θεp)p, p > dθ(19)

and furthermore there exists a constant C1 such that |fpp(p)| ≤ C1. Since
∫

Ω
fp(0)∇u0(x)dx = 0,

we find
Jε(u0,Ω) ≤ C1

∫

Ω
|∇u0(x)|2dx.(20)

Thus Assertion 1) immediately follows from (13). Since the function ε 7→ ε−2(
√

1 + ε2|p|2 − 1) is
decreasing, we have by Lemma 1

Jε(uε, Ω) ≥
∫

Ω

1
ε2

(
√

1 + ε2|Duε|2 − 1) ≥
∫

Ω
(
√

1 + |Duε|2 − 1)

Thus it also follows from (13) and (20) that {‖|Duε|(Ω)‖L∞(0,T )} is uniformly bounded with respect
to ε. Then Assertion 2) follows from Assertion 1) because

uε(t, x) = u0(x) +
∫ t

0
uε

t (s, x)ds.
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Passing to a subsequence if necessary, we have Assertions 3) and 4) by Assertions 2) and 1),
respectively. By Sobolev’s theorem BV (Ω) ⊂ Lp(Ω) compactly for each 1 ≤ p < 1∗. Then in the
same way as in the proof of [3, Proposition 5.1], passing to a subsequence if necessary, we obtain
Assertion 5). Assertions 3) and 5) imply u ∈ L∞((0,∞);BV (Ω) ∩ L2(Ω)). Assertion 6) follows
from 5). Assertion b) is obtained in the same way as in the proof of [8, Theorem 4.1]. Q.E.D.

Rests are proofs of Assertions 7) and 8).

3 Key propositions (2nd step of the proof of Theorem 1)

The key of the proof of Theorem 1 is the following two propositions. Proofs of them are
essentially the same as those of Lemma 4.4 and Proposition 4.2 of [6], which are mentioned in terms
of varifolds. In this article, taking account of its importance, we present the proof of Proposition
3, and the proof of Proposition 4 is omitted.

Proposition 3 |Dsu(t, ·)|(Ω) = 0

Remark that this proposition implies, in particular, γu = 0.

Proposition 4 u ∈ [L∞((0, T );W 1,2(Ω))]N

Proposition 3 implies that the distributional derivative Du coincides with∇u and hence u(t, ·) ∈
W 1,1

0 (Ω) for L1-a.e. t. Thus, combining these two propositions, we have Assertion 7).
Let uε and u be as in Proposition 2. Then there are one parameter families of RnN+1-valued

Radon measures µuε(t,·), µu(t,·) in Ω, which are in the sequel simply denoted by µε
t , µt, respectively.

By Theorem 1 2), which is proved in Proposition 2, there exists a constant K which is independent
of ε such that

ess. sup
t>0

|µε
t |(Ω) ≤ K.(21)

Thus, for any β ∈ C0(Ω× S+),

ess. sup
t>0

|
∫

Ω×S+

β(x,~s)d|µε
t | ⊗ δ~µε

t (x)| ≤ K sup |β|.(22)

By the use of (22) and standard compactness argument we obtain the following lemma (see, for
example, [3, Proposition 4.3]).

Lemma 2 There exists a subsequence of {ε} (still denoted by {ε}) and a one parameter family
of Radon measures λt in Ω×S+, t ∈ (0,∞), such that, for each ψ ∈ L1(0,∞) and β ∈ C0(Ω×S+),

lim
ε→0

∫ ∞

0
ψ(t)

∫

Ω×S+

β(x,~s)d|µε
t | ⊗ δ~µε

t (x)dt =
∫ ∞

0
ψ(t)

∫

Ω×S+

β(x,~s)dλtdt.

Proposition 5 Then it holds that

1). µt = |λ| L
∫

S+

~sdνλt,x

2). |λt|(A) ≥ |µt|(A) for each Borel set A ⊂ Ω

3). |λt|(A) =
∫

A
D|µt||λt|(x)d|µt| + (|λt| L Z)(A) for A ⊂ Ω, where D|µt||λt| is the derivative of

|λt| with respect to |µt| and Z is the |µt|-null set defined by Z = {x;D|µt||λt|(x) = ∞}
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4).
∫

S+

~sdνλt,x = 0 for |λt| L Z-a.e. x

5). spt νλt,x ⊂ S0 for |λt| L Z-a.e. x, where S0 is as in (14)

6). |Dsu(t, ·)|(Ω) ≤ λt(Ω× S0).

The proof of this proposition is essentially same as that of [6, Proposition 3.3]. Thus we omit
it.

Let us put λε
t = |µε

t | ⊗ δ~µε
t
. As a collorary of Lemma 2 we have

Lemma 3 Put λ
ε =

∫ T

0
λε

tdt and λ =
∫ T

0
λtdt. Then λ

ε
⇀∗ λ in the sense of Radon measures

in Ω× S+.

Proof. Letting ψ = χ[0,T ], the characteristic function of [0, T ], in Lemma 2, we immediately
have the conclusion. Q.E.D.

Proof of Proposition 3. If we have λt(Ω×S0) = 0 for L1-a.e. t, then the conclusion immediately
follows from Lemma 5 6), and, since λt ≥ 0, this follows if we have

λ(Ω× S0) = 0.(23)

Hence we prove (23).
By the definition of µε

t we immediately obtain

∫

Ω

|∇uε|2√
1 + ε2|∇uε|2 + 1

dx +
1
ε
|Duε|(Ω) =

∫

Ω×S+

|~s ′|2√
(snN+1)2 + ε2|~s ′|2 + snN+1

dλε
t ,(24)

the left hand side of which is estimated from above by C2(
1
2

∫

Ω
|v0|2dx +

∫

Ω
|∇u0(x)|2dx) in (28).

On the other hand, given σ > 0, we have

∫

Ω×S+∩{snN+1<σ}
|~s ′|2√

(snN+1)2 + ε2|~s ′|2 + snN+1
dλε

t ≥
1− σ2

√
σ2 + ε2 + σ

λε
t (Ω× S+ ∩ {snN+1 < σ}).

Integrating from 0 to T , we have by (28) and (24)

λ
ε(Ω× S+ ∩ {snN+1 < σ}) ≤

√
σ2 + ε2 + σ

1− σ2
C2(

1
2

∫

Ω
|v0|2dx +

∫

Ω
|∇u0(x)|2dx)T.

Thus, letting ε → 0, we have by Lemma 3 and the lower semicontinuity of Radon measures

λ(Ω× S+ ∩ {snN+1 < σ}) ≤ 2σ

1− σ2
C2(

1
2

∫

Ω
|v0|2dx +

∫

Ω
|∇u0(x)|2dx)T.(25)

Letting σ → 0, we have (23). Q.E.D.
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4 Completion of the proof of Theorem 1

Now the rest is the proof of 8). We already have (9) and (2) in Proposition 2. Hence we only
have to show u satisfies (12) in the weak sense. Noting

∫

{|∇uε|<1/ε}
|∇uε|2√

1 + ε2|∇uε|2 + 1
dx ≥ 1√

2 + 1

∫

{|∇uε|<1/ε}
|∇uε|2dx,

we have by (28)
∫

{|∇uε|<1/ε}
|∇uε|2dx ≤ C2(

√
2 + 1)(

1
2

∫

Ω
|v0|2dx +

∫

Ω
|∇u0(x)|2dx).(26)

Let φ ∈ [C1
0 ([0, T ) × Ω)]N . Then, since the functional u 7→ J(u1, . . . , uj−1, u, uj+1, . . . , uN ) is

convex, we have by Definition 1 iii)
∫

Ω
(fε)pj (∇uε)∇φjdx =

∫ T

0

∫

Ω
uj

tφtdxdt +
∫

Ω
vj
0(x)φ(0, x)dx

for each j = 1, 2, . . . , N , namely,
∫

Ω

1
ε
fp(ε∇uε) : ∇φdx =

∫ T

0

∫

Ω
utφtdxdt +

∫

Ω
v0(x)φ(0, x)dx.(27)

Now, for each φ ∈ [C1
0 ([0, T )× Ω)]N

∫

Ω

1
ε
fp(ε∇uε) : ∇φdx =

∫

Ω
(
1
ε
fp(0) : ∇φ +

∫ 1

0
< fpp(εθ∇uε)∇uε,∇φ > dθ)dx

=
∫

Ω

∫ 1

0
< fpp(εθ∇uε)∇uε,∇φ > dθdx.

Now
∫

{|∇uε|<1/ε}

∫ 1

0
< fpp(εθ∇uε)∇uε,∇φ > dθdx

=
∫

{|∇uε|<1/ε}
< fpp(0)∇uε,∇φ > dx +

∫ 1

0
< [fpp(εθ∇uε)− fpp(0)]∇uε,∇φ > dθdx

=: I + II.

Lemma 4
∫

{|∇uε|≥1/ε}
|∇uε(x)|dx + |Dsuε|(Ω) → 0 as ε → 0.

The proof of this lemma is the same as that of [6, Lemma A.1], thus we omit it. But we note
that in the proof we have

∫

Ω

|∇uε|2√
1 + ε2|∇uε|2 + 1

dx +
1
ε
|Dsuε|(Ω) ≤ C2(

1
2

∫

Ω
|v0|2dx +

∫

Ω
|∇u0(x)|2dx).(28)

By Lemma 4 we have

I =
∫

Ω
< fpp(0)dDuε,∇φ >

− (
∫

{|∇uε|≥1/ε}
< fpp(0)∇uε,∇φ > dx +

∫

Ω
< fpp(0)dDsuε,∇φ >)

→
∫

Ω
< fpp(0)dDu,∇φ > (=

∫

Ω

N∑

i=1

N∑

j=1

n∑

α=1

n∑

β=1

aαβ
ij

∂uj

∂xβ

∂φi

∂xα
dx).
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Next, since (A4) implies

|[fpp(εθ∇uε)− fpp(0)]∇uε| ≤ Const. εα|∇uε|α+1,

we have by (26)

|II| ≤ Const. εα sup |∇φ|
∫

{|∇uε|<1/ε}
|∇uε|α+1dx

≤ Const. εα sup |∇φ|Ln(Ω)
1−α

2 (
∫

{|∇uε|<1/ε}
|∇uε|2dx)

α+1
2

≤ Const. εα sup |∇φ|Ln(Ω)
1−α

2 {C2(
√

2 + 1)(
1
2

∫

Ω
|v0|2dx +

∫

Ω
|∇u0(x)|2dx)}α+1

2 → 0

as ε → 0. Hence, letting ε → 0, we have by (27)

∫ T

0
{−

∫

Ω
utφt(t, x)dx +

∫

Ω

N∑

i=1

N∑

j=1

n∑

α=1

n∑

β=1

aαβ
ij

∂uj

∂xβ

∂φi

∂xα
dx}dt =

∫

Ω
v0(x)φ(0, x)dx,

which means u satisfies (12) in a weak sense.
Finally the uniqueness of a solution to (12) (Corollary 1) implies the rest of the subsequence

has another subsequence that converges to the same function u. Thus we do not have to subtract
a subsequence. This completes the proof of Theorem 1.
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REFINED PROPERTIES OF EVOLUTION OPERATOR UNDER
KATO-TANABE CONDITIONS

ATSUSHI YAGI

1. Introduction

We are concerned with the Cauchy problem for a linear abstract parabolic evolution
equation

(1.1)


dU

dt
+ A(t)U = F (t), 0 < t ≤ T,

U(0) = U0,

in a Banach space X (see [3, 4, 7]). Here, A(t), 0 ≤ t ≤ T, is a family of densely defined,
closed linear operators acting in X and each −A(t) is assumed to be the generator of an
analytic semigroup on X, more precisely to satisfy the conditions (2.1) and (2.2).

Treatments for (1.1) are quite different depending on the nature of varying of the
domains D(A(t)) of A(t) with respect to the temporal variable t. The case when D(A(t))
vary in a temperate manner (including that of constant domains, i.e., D(A(t)) ≡ D) was
handled in author’s monograph [7, Chapter 3]. In the case when D(A(t)) vary completely,
one can treat Problem (1.1) under two different conditions; one is Tanabe’s condition [2]
(i.e., [8, (2.3)-(2.4)]) and the other Kato-Tanabe’s condition [1] (i.e., (2.3)-(2.4) below).
This paper is concerned with the Kato-Tanabe’s condition. Under that, Kato-Tanabe
[1] has constructed an evolution operator U(t, s) which plays a role of the fundamental
solution for (1.1), see Theorems 3.1 and 3.2. This paper then shows several refined
properties of the U(t, s) which were not seen in [1].

Among others, we shall prove the uniform estimate ‖A(t)θU(t, s)A(s)−θ‖L(X) ≤ C, 0 ≤
s ≤ t ≤ T, for all exponents 0 ≤ θ ≤ 1. This property is indeed one of the important
properties of the evolution operator for (1.1). Under the Tanabe’s condition, this uni-
form estimate was already seen in [5]. We shall employ the techniques of using integral
equations of Volterra type as done in author’s old paper [6] in which Problem (1.1) of
completely variable domains of A(t) was treated under more general assumptions than
both of Tanabe and Kato-Tanabe.

The author has recently shown in [8] that the Tanabe’s condition implies an extra
spatial regularity ‖A(t)θU(t, s)‖L(X) ≤ C(t− s)−θ for some suitable exponent θ > 1 that
played a crucial role in establishing the Hölder type maximal regularity of solutions for
(1.1) in the paper. In the present case, however, the condition (2.3)-(2.4) does not seem
to imply such an extra spatial regularity, see Remark 4.1.

2000 Mathematics Subject Classification. Primary 35K90; Secondary 35B30.
Key words and phrases. abstract parabolic equation, maximal regularity.
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2. Structural Assumptions

Let X be a Banach space with norm ‖ · ‖. Consider a family of densely defined, closed
linear operators A(t), 0 ≤ t ≤ T , acting in X. We assume for each A(t) that its spectrum
σ(A(t)) is contained in a fixed sectorial open domain

(2.1) σ(A(t)) ⊂ Σ = {λ ∈ C; | arg λ| < ω},

where 0 < ω < π
2
, and the resolvent (λ− A(t))−1 satisfies

(2.2) ‖(λ− A(t))−1‖L(X) ≤
M

|λ|
, λ 6∈ Σ, 0 ≤ t ≤ T,

with some constant M > 0. As σ(A(t)) is a closed set, (2.1) implicitly means that
0 6∈ σ(A(t)), namely, A(t)−1 is a bounded operator on X. We further assume that A(t)−1

is strongly, continuously differentiable on X for 0 ≤ t ≤ T and that the derivative satisfies
the declining estimate

(2.3)

∥∥∥∥A(t)(λ− A(t))−1dA(t)
−1

dt
A(t)(λ− A(t))−1

∥∥∥∥
L(X)

≤ N

|λ|ν
, λ 6∈ Σ, 0 ≤ t ≤ T,

with some exponent 0 < ν ≤ 1 and a constant N > 0, and the Hölder condition

(2.4)

∥∥∥∥dA(t)−1

dt
− dA(s)−1

ds

∥∥∥∥
L(X)

≤ L|t− s|ρ, 0 ≤ t, s ≤ T,

with some exponent 0 < ρ ≤ 1 and a constant L > 0.
We next notice some immediate consequences from the structural assumptions (2.1),

(2.2), (2.3) and (2.4).
Firstly, since A(t)−1 is continuously differentiable, we have sup0≤t≤T

∥∥ d
dt
A(t)−1

∥∥
L(X)

<

∞. From A(t)−1 = A(0)−1 +
∫ t

0
d
ds
A(s)−1ds, we observe that

‖A(t)−1‖L(X) ≤ D, 0 ≤ t ≤ T,

with some constant D > 0. Therefore, there exists some constant δ > 0 such that

(2.5) {λ ∈ C; |λ| ≤ δ} ⊂ ρ(A(t)), 0 ≤ t ≤ T.

Secondly, (2.1) and (2.2) yield that each −A(t) generates an analytic semigroup e−τA(t),
0 ≤ τ <∞, on X. And for τ > 0, the semigroup is given by the Dunford integral

(2.6) e−τA(t) =
1

2πi

∫
Γ

e−τλ(λ− A(t))−1dλ, 0 ≤ t ≤ T,

in the space L(X), where Γ is an infinite integral contour lying in ρ(A(t)) and encircling
σ(A(t)) anticlockwise. Furthermore, for 0 < θ < ∞, let A(t)θ be the fractional power of
A(t). Then, for τ > 0,

(2.7) A(t)θe−τA(t) =
1

2πi

∫
Γ δ

λθe−τλ(λ− A(t))−1dλ, 0 ≤ t ≤ T, 0 < θ <∞,

where Γ δ = Γ δ1 ∪ Γ δ2 such that Γ δ1 :λ = δeiθ, |θ| ≤ ω, and Γ δ2 :λ = re±iω, δ ≤ r < ∞,
with the δ appearing in (2.5). It is known that, for 0 ≤ θ ≤ 2,

(2.8) ‖A(t)θe−τA(t)‖L(X) ≤ Cτ−θ, 0 ≤ t ≤ T, τ > 0.
2
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Thirdly, the differentiability of A(t)−1 implies that the resolvent (λ − A(t))−1, λ 6∈ Σ,
is also strongly differentiable for 0 ≤ t ≤ T with the derivative

(2.9)
∂

∂t
(λ− A(t))−1 = −A(t)(λ− A(t))−1dA(t)

−1

dt
A(t)(λ− A(t))−1.

So, (2.3) directly yields that

(2.10)

∥∥∥∥ ∂∂t(λ− A(t))−1

∥∥∥∥
L(X)

≤ N |λ|−ν , 0 ≤ t ≤ T, λ ∈ Γ.

Finally, let us verify that a family of the Yosida approximations An(t) also satisfies the
same structural assumptions. For n = 1, 2, 3, . . . , An(t) is defined by

(2.11) An(t) = nA(t)(n+ A(t))−1, 0 ≤ t ≤ T,

and is called the Yosida approximation of A(t). Obviously, each An(t) is a bounded
operator on X. It is easy to see that each An(t) satisfies (2.1) with the same angle ω and
also satisfies the estimate

(2.12) ‖(λ− An(t))
−1‖L(X) ≤

M̃

|λ|
, λ 6∈ Σ, 0 ≤ t ≤ T,

with some constant M̃ independent of n. It follows from (2.11) that An(t)
−1 = n−1 +

A(t)−1. Therefore dAn(t)−1

dt
= dA(t)−1

dt
. This then yields that it holds true for An(t), too,

that

(2.13)

∥∥∥∥An(t)(λ− An(t))
−1dAn(t)

−1

dt
An(t)(λ− An(t))

−1

∥∥∥∥
L(X)

≤ Ñ

|λ|ν
,

with some constant Ñ independent of n. It is clear that the derivative dAn(t)−1

dt
satisfies the

same condition (2.4). Thus, the family of An(t) is verified to satisfy the similar conditions
as (2.1), (2.2), (2.3) and (2.4) with the same angle ω and the same exponents µ, ν as

A(t), M̃ and Ñ being independent of n. In addition, it is also verified that, as n→ ∞,

(2.14) (λ− An(t))
−1 → (λ− A(t))−1 strongly on X for λ 6∈ Σ.

Throughout the paper, we shall denote by C a universal constant which is determined
only by ω, µ, ν, M and N . So, it may change from occurrence to occurrence.

Remark 2.1. We constructed in [6] an evolution operator for Problem (1.1) under some-
what general assumption [6, (1.2)] than the (2.3)-(2.4) above. Similar results of the present
paper can be proved even under such a weaker condition. �

3. Evolution Operator

This section is devoted to reviewing construction of an evolution operator for A(t). We
will argue along the similar method as for the proof of [6, Theorem 1].

For n = 1, 2, 3, . . ., let An(t) be the Yosida approximation of A(t). For An(t), the
evolution operator Un(t, s), 0 ≤ s ≤ t ≤ T , is uniquely constructed. Indeed, Un(t, s)
satisfies ∂

∂t
Un(t, s) = −An(t)Un(t, s) and ∂

∂s
Un(t, s) = Un(t, s)An(s) for 0 ≤ s ≤ t ≤ T .

Furthermore, Un(t, s) has the generalized semigroup property: Un(t, r)Un(r, s) = Un(t, s)
for 0 ≤ s ≤ r ≤ t ≤ T and Un(s, s) = I for 0 ≤ s ≤ T .
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3.1. Integral equations for Un(t, s). It is possible to combine Un(t, s) with the semi-
group e−(t−s)An(s) by an integral equation. In fact,

Un(t, s)− e−(t−s)An(s) =

∫ t

s

∂

∂τ
[e−(t−τ)An(τ)Un(τ, s)]dτ

=

∫ t

s

[
∂

∂τ
e−(t−τ)An(τ) − e−(t−τ)An(τ)An(τ)

]
Un(τ, s)dτ.

Hence,

(3.1) Un(t, s) = e−(t−s)An(s) +

∫ t

s

Pn(t, τ)Un(τ, s)dτ

with

(3.2) Pn(t, s) =

(
∂

∂t
+

∂

∂s

)
e−(t−s)An(s), 0 ≤ s ≤ t ≤ T.

Similarly,

Un(t, s)− e−(t−s)An(t) = −
∫ t

s

Un(t, τ)

[
An(τ)e

−(τ−s)An(τ) +
∂

∂τ
e−(τ−s)An(τ)

]
dτ

= −
∫ t

s

Un(t, τ)

(
∂

∂τ
+

∂

∂s

)
e−(τ−s)An(τ)dτ

with

(3.3) Qn(t, s) =

(
∂

∂t
+

∂

∂s

)
e−(t−s)An(t), 0 ≤ s ≤ t ≤ T.

Operate An(t) to this equality and put Wn(t, s) = An(t)Un(t, s) − An(t)e
−(t−s)An(t), 0 ≤

s ≤ t ≤ T , then we obtain that

(3.4) Wn(t, s) = Rn(t, s)−
∫ t

s

Wn(t, τ)Qn(τ, s)dτ,

where Rn(t, s) is given by

(3.5) Rn(t, s) = −
∫ t

s

An(t)e
−(t−τ)An(t)Qn(τ, s)dτ.

3.2. Convergence of Un(t, s). We next show that Un(t, s) and Wn(t, s) are strongly
convergent as n → ∞ with the aid of (2.14). To this end we shall use the dominate
convergence theorems announced in [7].

Consider first the equation (3.1). From (2.6) and (3.2) it follows that

Pn(t, s) =
1

2πi

∫
Γ

e−(t−s)λ ∂

∂s
(λ− An(s))

−1dλ.

Therefore, (2.10) (A(t) being replaced with An(t)) provides that

(3.6) ‖Pn(t, s)‖L(X) ≤ C(t− s)ν−1, 0 ≤ s < t ≤ T.

In the meantime, by (2.12) and (2.14), as n→ ∞, Pn(t, s) converges to the operator

P (t, s) =

(
∂

∂t
+

∂

∂s

)
e−(t−s)A(s), 0 ≤ s < t ≤ T,
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strongly on X. According to [7, Theorem 1.31], these provide that Un(t, s) satisfies the
uniform estimate

(3.7) ‖Un(t, s)‖L(X) ≤ C, 0 ≤ s ≤ t ≤ T,

and converges to a bounded operator U(t, s) strongly on X for 0 ≤ s ≤ t ≤ T . The limit
U(t, s) is characterized as a solution to the integral equation

(3.8) U(t, s) = e−(t−s)A(s) +

∫ t

s

P (t, τ)U(τ, s)dτ.

Consider next the equation (3.4). From (3.3),

(3.9) Qn(t, s) =
1

2πi

∫
Γ

e−(t−s)λ ∂

∂t
(λ− An(t))

−1dλ.

Then, by the same reason as for Pn(t, s), Qn(t, s) also satisfies the uniform estimates

(3.10) ‖Qn(t, s)‖L(X) ≤ C(t− s)ν−1, 0 ≤ 0 ≤ s < t ≤ T,

and to converge to the operator

(3.11) Q(t, s) =

(
∂

∂t
+

∂

∂s

)
e−(t−s)A(t), 0 ≤ s < t ≤ T,

strongly on X.
It is, however, more delicate to verify such a uniform estimate for Rn(t, s). We shall do

this by the following proposition.

Proposition 3.1. Rn(t, s) satisfies the estimates

(3.12) ‖Rn(t, s)‖L(X) ≤ C[(t− s)ν−1 + (t− s)ρ−1], 0 ≤ s < t ≤ T,

and, as n→ ∞, converges to a bounded operator R(t, s), 0 ≤ s < t ≤ T , strongly on X.

Proof. We first divide the integral in (3.5) into

Rn(t, s) = −
(∫ t

r

+

∫ r

s

)
An(t)e

−(t−τ)An(t)Qn(τ, s)dτ = R1
n(t, s) +R2

n(t, s),

where r = t+s
2
. Then, in view of (2.8) and (3.10), we have

‖R2
n(t, s)‖L(X) ≤ C

∫ r

s

(t− τ)−1(τ − s)ν−1dτ ≤ C(t− s)ν−1, 0 ≤ s < t ≤ T.

So, it suffies to estimate R1
n(t, s). We here write

Qn(τ, s) =
1

2πi

∫
Γ

e−(τ−s)λ

[
∂

∂τ
(λ− An(τ))

−1 − ∂

∂t
(λ− An(t))

−1

]
dλ

+
1

2πi

∫
Γ

e−(τ−s)λ ∂

∂t
(λ− An(t))

−1dλ = Q1
n(t, τ, s) +Q2

n(t, τ, s).

The assumptions (2.3) and (2.4) yield the following lemma.

Lemma 3.1. It holds true that∥∥∥∥ ∂∂τ (λ− An(τ))
−1 − ∂

∂t
(λ− An(t))

−1

∥∥∥∥
L(X)

≤ C(|t− τ ||λ|1−ν + |t− τ |ρ).
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Proof of Lemma. We observe that

An(τ)(λ− An(τ))
−1 − An(t)(λ− An(t))

−1 = [−1 + λ(λ− An(τ))
−1]

− [−1 + λ(λ− An(t))
−1] = −λ

∫ t

τ

∂

∂σ
(λ− An(σ))

−1dσ.

Therefore, it is obtained by (2.13) that

‖An(τ)(λ− An(τ))
−1 − An(t)(λ− An(t))

−1‖L(X) ≤ C|t− τ ||λ|1−ν .

The desired result then follows from (2.9). �
By this lemma, we have

‖Q1
n(t, τ, s)‖L(X) ≤ C(|t− τ ||τ − s|ν−2 + |t− τ |ρ|τ − s|−1).

Hence, ∥∥∥∥∫ t

r

An(t)e
−(t−τ)An(t)Q1

n(t, τ, s)dτ

∥∥∥∥
L(X)

≤ C[(t− s)ν−1 + (t− s)ρ−1].

As for Q2
n(t, τ, s), since A(t)(λ− A(t))−1 = −1 + λ(λ− A(t))−1, we can write

Q2
n(t, τ, s) =

dAn(t)
−1

dt
An(t)e

−(τ−s)An(t)

+ An(t)
−1 1

2πi

∫
Γ

e−(τ−s)λλ
∂

∂t
(λ− An(t))

−1dλ = Q21
n (t, τ, s) +Q22

n (t, τ, s).

According to [6, (2.11)],∫ t

r

An(t)e
−(t−τ)An(t)Q21

n (t, τ, s)dτ = −Qn(t, r)e
−(r−s)An(t).

Meanwhile, it is easy to see that∥∥∥∥∫ t

r

An(t)e
−(t−τ)An(t)Q22

n (t, τ, s)dτ

∥∥∥∥
L(X)

≤ C(t− s)ν−1.

Hence, we have proved (3.12).
Strong convergence is now obvious. Indeed, Rn(t, s) is observed to converge to the

operator

(3.13) R(t, s) = R2(t, s)+Q(t, r)e−(r−s)A(t)−
∫ t

r

A(t)e−(t−τ)A(t)[Q1(t, τ, s)+Q22(t, τ, s)]dτ

strongly on X for 0 ≤ s < t ≤ T . Of course, (3.12) holds true for the operators A(t). �
It is ready to apply the dominate convergence [7, Theorem 1.32] to Wn(t, s). We then

conclude that Wn(t, s) satisfies the uniform estimate

(3.14) ‖Wn(t, s)‖L(X) ≤ C[(t− s)ν−1 + (t− s)ρ−1], 0 ≤ s < t ≤ T,

and converges to a bounded operator W (t, s) strongly on X. As before, W (t, s) is char-
acterized as a solution to the integral equation

(3.15) W (t, s) = R(t, s)−
∫ t

s

W (t, τ)Q(τ, s)dτ.

Furthermore, W (t, s) equals to A(t)U(t, s)− A(t)e−(t−s)A(t).
6
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In this way, we can arrive at the following theorem (for the detailed proof, see [6]).

Theorem 3.1. Under (2.1), (2.2), (2.3) and (2.4), there exists a unique family of bounded
operators U(t, s) on X defined for 0 ≤ s ≤ t ≤ T with the following properties: 1) U(t, s)
has the semigroup property; 2) U(t, s) is strongly continuous for 0 ≤ s ≤ t ≤ T with the
estimate ‖U(t, s)‖L(X) ≤ C; 3) A(t)U(t, s) is strongly continuous for 0 ≤ s < t ≤ T with
the estimate ‖A(t)U(t, s)‖L(X) ≤ C(t − s)−1; and 4) U(t, s) is strongly differentiable for

t > s with the derivative ∂
∂t
U(t, s) = −A(t)U(t, s).

3.3. Cauchy problem. The evolution operator U(t, s) provides a unique solution to
Problem (1.1). Let 0 < β ≤ 1 and let F belong to the space

(3.16) F ∈ Fβ,σ((0, T ];X), 0 < σ < β.

For the definition of Fβ,σ((0, T ];X), see [7, 8].

Theorem 3.2. Under (2.1), (2.2), (2.3) and (2.4), let F satisfy (3.16) and let U0 be in
X. Then, (1.1) possesses a unique solution U in the function space:

U ∈ C([0, T ];X) ∩ C1((0, T ];X), A(t)U ∈ C((0, T ];X).

Moreover, U is necessarily given by

U(t) = U(t, 0)U0 +

∫ t

0

U(t, τ)F (τ)dτ, 0 ≤ t ≤ T.

As the proof of this theorem is quite similar to that of [8, Theorem 3.2], we may omit
it.

4. Refined properties of U(t, s)

Let (2.1), (2.2), (2.3) and (2.4) be satisfied, and let U(t, s) be the evolution operator for
A(t) constructed by Theorem 3.1. Let us investigate more refined properties of U(t, s).

For 0 ≤ θ ≤ 1, it holds true that

(4.1) ‖A(t)θU(t, s)‖L(X) ≤ C(t− s)−θ, 0 ≤ s < t ≤ T.

For 0 ≤ θ < 1, U(t, s)A(s)θ admits a bounded extension on X and its extension
(denoted again by U(t, s)A(s)θ) satisfies the estimate

(4.2) ‖U(t, s)A(s)θ‖L(X) ≤ Cθ(t− s)−θ, 0 ≤ s < t ≤ T.

For 0 ≤ θ ≤ 1,

(4.3) ‖A(t)θU(t, s)A(s)−θ‖L(X) ≤ C, 0 ≤ s ≤ t ≤ T.

For the difference of U(t, s) and e−(t−s)A(s), we have

(4.4) ‖U(t, s)− e−(t−s)A(s)‖L(X) ≤ C(t− s)ν , 0 ≤ s ≤ t ≤ T.

Similarly, for the difference of U(t, s) and e−(t−s)A(t),

‖U(t, s)− e−(t−s)A(t)‖L(X) ≤ C(t− s)ν , 0 ≤ s ≤ t ≤ T,(4.5)

‖A(t)[U(t, s)− e−(t−s)A(t)]‖L(X) ≤ C[(t− s)ν−1 + (t− s)ρ−1], 0 ≤ s < t ≤ T.(4.6)
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Remark 4.1. As mentioned in Introduction, it is shown in [8] that the Tanabe’s condition
imples the extra spatial regularity that (4.1) holds true for some θ exceeding 1. But under
(2.3)-(2.4), that may not be the case. The point is whether the operator R(t, s) given
by (3.13) satisfies the condition R(R(t, s)) ⊂ D(A(t)θ) for sme θ > 0 or not. All the
members in the right hand side of (3.13) except Q(t, r)e−(r−s)A(t) are certainly verified to
satisfy this, but the definition (3.9) seems not to allow the operator Q(t, r) (and hence
Q(t, r)e−(r−s)A(t)) to enjoy this property. �

Let us here describe the proof of these properties step by step.
For θ = 0, 1, (4.1) is already seen by Theorem 3.1. Therefore, for general 0 < θ < 1, it

can be verified by the moment inequality applied to A(t)θ.
For 0 ≤ θ < 1, it follows from (3.1) that

Un(t, s)An(s)
θ = An(s)

θe−(t−s)An(s) +

∫ t

s

Pn(t, τ)Un(τ, s)An(s)
θdτ.

Then, Un(t, s)An(s)
θ is shown to converge strongly to a bounded operator of X. Hence,

U(t, s)A(s)θ has a bounded extension on X with the estimate (4.2). Its extension is also
denoted by U(t, s)A(s)θ.

Let us next prove (4.3). When 0 ≤ θ < 1, its proof is immediate; to the contrary, when
θ = 1, it is rather complicated. First, consider the case when 0 ≤ θ < 1. Operating
A(t)θ−1 to (3.15) from the left hand side, we have

(4.7) A(t)θ−1W (t, s) = A(t)θ−1R(t, s)−
∫ t

s

A(t)θ−1W (t, τ)Q(τ, s)dτ.

Since

A(t)θ−1R(t, s) = −
∫ t

s

A(t)θe−(t−τ)A(t)Q(τ, s)dτ,

it follows by (2.8) and (3.10) that

‖A(t)θ−1R(t, s)‖L(X) ≤ C

∫ t

s

(t− τ)−θ(τ − s)ν−1dτ ≤ C(t− s)ν−θ.

Regarding A(t)θ−1W (t, s) as a solution of (4.7), we obtain that ‖A(t)θ−1W (t, s)‖L(X) ≤
C(t− s)ν−θ.
Now operate A(s)−θ to (4.7) from the right hand side. Then,

A(t)θ−1W (t, s)A(s)−θ = A(t)θ−1R(t, s)A(s)−θ −
∫ t

s

A(t)θ−1W (t, τ)Q(τ, s)A(s)−θdτ.

Note that Q(τ, s)A(s)−θ = Q(τ, s)[A(s)−θ − A(τ)−θ] + Q(τ, s)A(τ)−θ. Then, in view of
Lemma 4.1 below, we see that

‖Q(τ, s)[A(s)−θ − A(τ)−θ]‖L(X) ≤ C(τ − s)θ+ν−1.

In addition, from (3.9) (An(t) being replaced with A(t)) and (3.11),

‖Q(τ, s)A(τ)−θ‖L(X) ≤ C

∫
Γ

e−(τ−s)Reλ

∥∥∥∥ ∂∂τ (λ− A(τ))−1 · A(τ)−θ

∥∥∥∥
L(X)

|dλ|

≤ C

∫
Γ

|λ|−θe−(τ−s)Reλ|dλ| ≤ C(τ − s)θ−1.
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Hence, ‖Q(τ, s)A(s)−θ‖L(X) ≤ C(τ − s)θ−1. Similarly, ‖A(t)θ−1R(t, s)A(s)−θ‖L(X) ≤ C.
We thus conclude that

‖A(t)θ−1W (t, s)A(s)−θ‖L(X) ≤ C + C

∫ t

s

(t− τ)ν−θ(τ − s)θ−1dτ ≤ C.

Then, (4.3) is verified from Lemma 4.2.
Let us verify (4.3) for θ = 1. From (3.15) we have

(4.8) W (t, s)A(s)−1 = R(t, s)A(s)−1 −
∫ t

s

W (t, τ)Q(τ, s)A(s)−1dτ.

We already know that ‖Q(τ, s)A(s)−1‖L(X) ≤ C. So, our goal is to show the same estimate
for R(t, s)A(s)−1. To this end, however, we have to use (3.13). Since

R2(t, s)A(s)−1 = −
∫ r

s

A(t)e−(t−τ)A(t)Q(τ, s)A(s)−1dτ,

it is clear that ‖R2(t, s)A(s)−1‖L(X) ≤ C. Writing

Q(t, r)e−(r−s)A(t)A(s)−1 = Q(t, r)e−(r−s)A(t)[A(s)−1 − A(t)−1] +Q(t, r)A(t)−1e−(r−s)A(t),

we observe that ‖Q(t, r)e−(r−s)A(t)A(s)−1‖L(X) ≤ C. For estimating the integral term
containing Q1(t, τ, s), we use the following estimate∥∥∥∥[ ∂∂τ (λ− A(τ))−1 − ∂

∂t
(λ− A(t))−1

]
A(τ)−1

∥∥∥∥
L(X)

≤ C(|t− τ ||λ|−ν + |t− τ |ρ|λ|−1 + |t− τ |)

which can readily be verified in the same way as Lemma 3.1. As a result, we have∥∥∥∥∫ t

r

A(t)e−(t−τ)A(t)Q1(t, τ, s)A(s)−1dτ

∥∥∥∥
L(X)

≤ C.

It is the same for the integral term containing Q22(t, τ, s), i.e.,∥∥∥∥∫ t

r

A(t)e−(t−τ)A(t)Q22(t, τ, s)A(s)−1dτ

∥∥∥∥
L(X)

≤ C.

Hence, we have shown that ‖R(t, s)A(s)−1‖L(X) ≤ C.
It then follows from (4.8) that ‖W (t, s)A(s)−1‖L(X) ≤ C. The desired estimate (4.3)

for θ = 1 is now obtained by Lemma 4.2.
Finally, (4.4) is verified from (3.8) in view of (3.6), An(t) being replaced with A(t).

Similarly, (4.5) is shown by operating A(t)−1 to (3.15) from the left hand side, and (4.6)
is also verified from (3.15) in view of (3.12), An(t) being replaced with A(t).

Lemma 4.1. For 0 ≤ θ ≤ 1,

(4.9) ‖A(t)−θ − A(s)−θ‖L(X) ≤ C|t− s|θ, 0 ≤ t, s ≤ T.

Proof of Lemma. Obviously it suffices to consider the case when 0 < θ < 1. Dividing 1
as 1 = (1− θ) + θ, we obtain by (2.2) and (2.3) that

‖(λ− A(t))−1 − (λ− A(s))−1‖L(X) ≤ C|λ|θ−1(|λ|−ν |t− s|)θ, λ ∈ Γ.
9
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Then,

‖A(t)−θ − A(s)−θ‖L(X) ≤
1

2π

∫
Γ

|λ|−θ‖(λ− A(t))−1 − (λ− A(s))−1‖L(X)

≤ C

∫
Γ

|λ|−θν−1|dλ| |t− s|θ ≤ C|t− s|θ.

�
Lemma 4.2. For 0 ≤ θ ≤ 1,

‖[A(t)θe−τA(t) − A(s)θe−τA(s)]A(s)−θ‖L(X) ≤ Cτ−1|t− s|.

Proof of Lemma. From (2.7) we write

[A(t)θe−τA(t) − A(s)θe−τA(s)]A(s)−θ

= − 1

2πi

∫
Γ δ

λθe−τλA(t)(λ− A(t))−1[A(t)−1 − A(s)−1]A(s)1−θ(λ− A(s))−1dλ.

Then it follows that

‖[A(t)θe−τA(t) − A(s)θe−τA(s)]A(s)−θ‖L(X) ≤ C|t− s|
∫
Γ δ

e−τReλ|dλ| ≤ C|t− s|τ−1.

�
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Abstract. Analytic continuation of the C0-semigroup {e−zA} on Lp(RN ) generated
by a second order elliptic operator −A is investigated, where A is formally defined as
Au = − div(a∇u) + (F · ∇)u + V u with lower order coefficients having singularities at
infinity or at the origin. The result extends the sector of analyticity for the contraction
semigroup determined in Metafune et al. [23] and [24].

1. Introduction

In this paper we deal with general second order elliptic operators of the form

(Au)(x) := −div(a(x)∇u(x)) + (F (x) · ∇)u(x) + V (x)u(x), x ∈ RN ,(1.1)

where N ∈ N, a ∈ C1 ∩W 1,∞(RN ; RN×N), F ∈ C1(Ω; RN) and V ∈ L∞
loc(Ω; R) and the

choice of Ω = RN or Ω = RN \{0} depends on the location of the singularities of F and V .
As a differential expression A may be said to be symmetric or nonsymmetric, respectively,
if F = 0 or F ̸= 0. Under the assumption on the triplet (a, F, V ) specified below we want
to discuss the maximal sector of analyticity for the semigroups {e−zAp,max} and {e−zAp}
on Lp = Lp(RN) (1 < p <∞) generated by −Ap,max and −Ap, respectively, defined as

Ap,maxu :=Au, D(Ap,max) := {u ∈ Lp ∩W 2,p
loc (R

N); Au ∈ Lp},(1.2)

Apu :=Au, D(Ap) := {u ∈ W 2,p(RN); (F · ∇)u, V u ∈ Lp}.(1.3)

In particular, if A = −∆ and Gz is the Gaussian kernel, then D(Ap) = W 2,p(RN) (=
D(Ap,max)) and the C0-semigroup {e−zAp} = {ez∆} on Lp is explicitly given by

(1.4) (ez∆f)(x) = (Gz ∗ f)(x), z ∈ C+ := {z ∈ C; Re z > 0},
2010 Mathematics Subject Classification: Primary: 35J15, Secondary: 47D06.
Key words and phrases: Elliptic operators in Lp, analytic semigroups, maximal sector of analyticity.
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with ∥ez∆∥Lp ≤ (sin ε)−N/2 for z ∈ Σ(π/2− ε). Here Σ(ψ) is the closure of an open sector

(1.5) Σ(ψ) := {z ∈ C \ {0}; | arg z| < ψ}.

Thus the maximal domain of analyticity for {ez∆} is nothing but C+ = Σ(π/2). The
generalization from −∆ to general A is divided into two cases, symmetric and nonsym-
metric, which had started by Stein and Kato, respectively, in the 1960’s. Namely, if p ̸= 2,
then Stein [31, p. 67, Theorem 1] observed through his interpolation theorem that gen-
eral symmetric diffusion semigroups on Lp can be extended to an analytic contraction
semigroup in the sector Σ(π

2
(1−|1− 2

p
|)). Later, Henry [14, p. 32] established the optimal

angle of contractivity for {ez∆} as

(1.6) Σ(ω̃p) = Σ
(π
2
− ωp

)
, ω̃p := tan−1 2

√
p− 1

|p− 2|
, ωp := tan−1 |p− 2|

2
√
p− 1

(more generally, for the symmetric case see Pazy [28, Theorem 7.3.6], Bakry [4], Okazawa
[25] and Liskevich-Perel’muter [18], for the nonsymmetric case see the next paragraph,
and for optimality see also Voigt [33]). (1.4) and (1.6) shows that ez∆ with p ̸= 2 is non-
contractive on C+ \ Σ(ω̃p) as a simplest case. Nevertheless, the maximal domain C+ is
stable under perturbation by a real-valued potential V . In fact, the contraction semigroup
{et(∆−V ); t ≥ 0} generated by the (negative) Schrödinger operator ∆− V has an analytic
continuation ez(∆−V ) onto the maximal domain C+. This is conjectured by Kato [17, Part
D, Remark (e)] and later solved by Ouhabaz [27] by introducing Gaussian estimates (see
also Arendt [1] and Hieber [15]). Incidentally, it was noted by Okazawa [26, Theorem 3.3]
that ∥ez(∆−V )∥Lp ≤ 1 in the same sector as (1.6). That is, ez(∆−V ) is also non-contractive
on C+ \ Σ(ω̃p). In this connection it is worth noticing that if |θ| ≤ ωp = π/2 − ω̃p, then
{exp (teiθ(∆ − V )); t ≥ 0} is a contraction semigroup on Lp. This is equivalent to the
m-sectoriality of −∆+ V in Lp in the sense of Goldstein [13, Definition 1.5.8]:

|Im ((−∆+ V )u, |u|p−2u)| ≤ (tanωp)Re ((−∆+ V + sV )u, |u|p−2u).

Sometimes the term “regular m-accretivity” (see Tanabe [32, Section 2.2]) is employed
instead of m-sectoriality because there is another notion of sectoriality (see Engel-Nagel
[8, Section II.4a]). Therefore it is worth noticing that A is m-sectorial of type S(tanω)
in Lp if and only if −A is the generator of an analytic contraction semigroup {e−zA; z ∈
Σ(ω̃) = Σ(π/2− ω)} on Lp (see [13, Theorem1.5.9 and Proposition 1.3.9]).

The simplest case (where N = 1 and p = 2) of nonsymmetric A with bounded and
continuous coefficients is stated in Kato [16, Example V.3.34] and then the general case
(where N ∈ N and 1 < p <∞) is dealt with in Fattorini [9, Theorem 4.9.1] (see also [10]),
Lunardi [20, Theorem 3.1.3] and more recently in Chill-Fašangová-Metafune-Pallara [7]
(with nonsymmetric diffusion matrix a). Later, these results are completely extended to
the non-contractive case in Arendt-ter Elst [2, Theorem 5.3] by utilizing Gaussian esti-
mates; in particular, they established that if the diffusion a is symmetric and real-valued,
then e−zAp admits a non-contractive analytic continuation onto the maximal domain C+.
In this connection Sobol-Vogt [30] and Liskevich-Sobol-Vogt [19] show that the diffusion
semigroup associated with the formal operator A (without mentioning the domain explic-
itly) can be extended to an analytic semigroup in a p-independent sector.
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On the other hand, if the lower order terms have singularities (i.e., F and/or V are not
bounded), then Ap,max does not in general coincide with Ap. These cases are also investi-
gated intensively in the last decade (for bounded diffusion see, e.g., a pioneering work by
Cannarsa-Vespri [5] and Metafune-Prüss-Rhandi-Schnaubelt [24], for unbounded diffusion
see, e.g., Metafune-Pallara-Prüss-Schnaubelt [23], Fornaro-Lorenzi [11] and Giuli-Gozzi-
Monte-Vespri [12]). In particular, [24] and [23] established that Ap is m-sectorial of type
S(tanω) with ω > ωp in the respective case where Ω = RN and Ω = RN \ {0}. This
means that the sector of analyticity for {e−zAp} is smaller than the sector (1.6):

Σ(π/2− ω) ⊂ Σ(π/2− ωp).

Recently, it is shown by Sobajima [29] that when Ω = RN , −Ap,max generates an analytic
contraction semigroup {e−zAp,max} on essentially the same sector as in [23] and [24] under
weaker assumption. To weaken the assumption the key found by Sobajima is an identity
(see [29, Section 1]) which plays a crucial role in proving the m-sectoriality of Ap,max.

The previous works mentioned above can be divided into two major cases (where A is
symmetric or not) as in the following two tables:

Coefficients of A Generation of analytic Noncontractive
a V (quasi-)contraction semigroup analytic continuation

(δjk) 0 Henry [14] Before 19th century

bounded 0 Pazy [28], Okazawa [25]
Ouhabaz [27](δjk) locally singular Kato [17], Okazawa [26]

bounded locally singular M-P-P-S [23] Incomplete I

diffusion semigroup Stein [31], Bakry [4], Ouhabaz [27]
Liskevich-Perel’muter [18], Voigt [33] L-S-V [19]

Table 1: Known results for symmetric case (Au = −div(a∇u) + V u)

Coefficients of A Generation of analytic Non-contractive
a F V (quasi-)contraction semigroup analytic continuation

bounded bounded bounded Kato [16], Fattorini [9], [10], Arendt-ter Elst [2]
Lunardi [20], C-F-M-P [7]

bounded singular singular Cannarsa-Vespri [5],
at infnity at infnity M-P-R-S [24]

Incomplete IIbounded locally locally M-P-P-S [23]
singular singular

singular locally locally M-P-P-S [23],
at infinity singular singular Fornaro-Lorenzi [11], unknown

G-G-M-V [12]

diffusion semigroup Sobol-Vogt [30] L-S-V [19]

Table 2: Known results for nonsymmetric case (Au = −div(a∇u) + F · ∇u+ V u)

Two incomplete cases I and II in Table 1 and 2 are partially studied. In fact, the
case I can be discussed by the result in [27] in which it is assumed that {eAp,max} admits
a Gaussian estimate, while Gaussian estimates in the case II is already proved by in
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Arendt-Metafune-Pallara [3] when F, V have singularities at infinity. In both cases the
coincidence of Ap,max and Ap is still open; note that this is false if V is strongly singular.
In particular, a p-independence of the sectors of analyticity for {e−tAp,max} and {e−tAp}
in the case II is dealt with in [3], but the maximality is not. In other words, in both
cases I and II there seems to be no previous work for the maximal sector of analyticity
corresponding to [23] and [24].

This paper is a resumé of the preprint [22] in which the case II (including case I) is
completed. Namely, we have shown in [22] that when the lower order coefficients have
singularities, both {e−zAp,max} and {e−zAp} admit non-contractive analytic continuations
to a certain sector which is independent of p and bigger than the sector described in [23]
and [29] (see Theorems 2.1 (Ω = RN) and 2.2 (Ω = RN \ {0}) in Section 2 and an outline
of their proofs in Section 3). The full notes [22] will be published elsewhere.

2. Main result

2.1. Basic assumption

Now we present the basic assumption on the triplet (a, F, V ) defining Ap,max and Ap [ see
(1.2) and (1.3)]. As stated in Introduction Ω stands for RN or RN \ {0}.
(H1) ta = a ∈ C1 ∩W 1,∞(RN ,RN×N) and a is uniformly elliptic on RN , that is, there
exists a constant ν > 0 such that ⟨a(x)ξ, ξ⟩ ≥ ν|ξ|2 for x ∈ RN , ξ ∈ CN ;

(H2) F ∈ C1(Ω;RN), V ∈ L∞
loc(Ω;R) and there exist three constants β ≥ 0, γ1, γ∞ > 0

and a nonnegative auxiliary function U ∈ L∞
loc(Ω) such that

|⟨F (x), ξ⟩| ≤ βU(x)
1
2 ⟨a(x)ξ, ξ⟩

1
2 a.a. x ∈ Ω, ξ ∈ CN ,(2.1)

V (x)− divF (x) ≥ γ1U(x) a.a. x ∈ Ω,(2.2)

V (x) ≥ γ∞U(x) a.a. x ∈ Ω;(2.3)

(H3) the auxiliary function U ≥ 0 in (H2) belongs to C1(Ω;R) and there exists a
constant c0 ≥ k0 := max{γ1, γ∞} > 0 such that

(2.4) V (x) ≤ c0U(x) a.a. x ∈ Ω

and U satisfies an oscillation condition with respect to the diffusion a, that is,

(2.5) λ0 := lim
c→∞

[
sup
x∈Ω

(⟨a(x)∇U(x),∇U(x)⟩1/2
(U(x) + c)3/2

)]
<∞.

This yields a working form of the oscillation condition: for every λ > λ0 there exist a
constant Cλ > 0 such that

(2.6) ⟨a(x)∇U(x),∇U(x)⟩1/2 ≤ λ(U(x) + Cλ)
3/2, x ∈ Ω.

In particular, if Ω = RN \ {0} then U(x) is assumed to tend to infinity as x→ 0.

Example 1 (Maeda-Okazawa [21]). In the simplest case ajk = δjk it is possible to compute
λ0 for U(x) := |x|α when α /∈ (−2, 1].
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(i) Let U(x) := |x|α (α > 1). Then U ∈ C1(RN) and λ0 = lim
c→0

(αc−1/2−1/α) = 0.

(ii) Let U(x) := |x|−β (β > 2). Then U ∈ C1(RN \ {0}) and λ0 = 0. The computation is
similar as above. In particular, if β = 2, then λ0 = 2.

Remark 1. Let λ > λ0 and Cλ > 0 as in (2.6) and put

Ũ(x) := U(x) + Cλ > 0, Ṽ (x) := V (x) + k0Cλ > 0 on Ω,

where k0 is as in condition (H3). Then Ũ plays the role of a positive auxiliary function
for the new (formal) operator with modified potential

Ãu := Au+ k0Cλu = −div(a∇u) + F · ∇u+ Ṽ u.

In fact, the new triplet (a, F, Ṽ ) satisfies the original inequalities (2.1)–(2.4) with U(x)
and V (x) replaced with Ũ(x) and Ṽ (x), respectively:

|⟨F (x), ξ⟩| ≤ β(U(x) + Cλ)
1
2 ⟨a(x)ξ, ξ⟩

1
2 ,(2.1′)

[V (x) + k0Cλ]− divF (x) ≥ γ1(U(x) + Cλ),(2.2 ′)

V (x) + k0Cλ ≥ γ∞(U(x) + Cλ),(2.3 ′)

V (x) + k0Cλ ≤ c0(U(x) + Cλ).(2.4′)

Note further that (2.6) is also written in terms of Ũ :

(2.6′) ⟨a(x)∇Ũ(x),∇Ũ(x)⟩1/2 ≤ λ Ũ(x)3/2 on Ω.

2.2. The operators with singularities at infinity

Now we are in a position to state the first theorem on analytic continuation for (analytic
contraction) semigroups generated by the elliptic operators Ap,max and Ap [ see (1.2) and
(1.3)] under conditions (H1), (H2) and (H3) with Ω = RN .

Theorem 2.1. Assume that conditions (H1) and (H2) are satisfied with Ω = RN . Then
one has the following assertions :

(i) Let 1 < q < ∞. Then Aq,max is m-sectorial in Lq, that is, {e−zAq,max} is an analytic
contraction semigroup on Lq on the closed sector Σ(π/2− tan−1 cq,β,γ), where

(2.7) cq,β,γ :=

√
(q − 2)2

4(q − 1)
+
β2

4

(
γ1
q

+
γ∞
q ′

)−1

and q ′ is the Hölder conjugate of q. Moreover, C∞
0 (RN) is a core for Aq,max.

(ii) Let p ∈ (1,∞) be arbitrarily fixed. Then the semigroup {e−zAp,max} in assertion (i)
admits an analytic continuation to the open sector Σ(π/2− tan−1Kβ,γ), where

(2.8) Kβ,γ := min{cq,β,γ ; 1 < q <∞}.

Moreover, there exists a constant ω0 > 0 such that {e−z(ω0+Ap,max)} forms a bounded
analytic semigroup on Lp :

∥e−zAp,max∥Lp ≤Mεe
ω0Re z on Σ(π/2− tan−1Kβ,γ − ε).(2.9)
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Here the constant ω0 depends only on N , ∥ajk∥L∞(RN ) and ∥∇ajk∥L∞(RN ), while the other
constant Mε ≥ 1 depends only on ε, N , ν, β, γ1, γ∞ and ∥ajk∥L∞(RN ).

(iii) Assume further that (H3) is satisfied with Ω = RN . If

(2.10) (p− 1)λ0
[
(β/p) + (λ0/4)

]
< (γ1/p) + (γ∞/p

′),

then Ap,max has the so-called separation property: for all u ∈ D(Ap,max)

∥div(a∇u)∥Lp + ∥(F · ∇)u∥Lp + ∥V u∥Lp ≤ C∥(1 + Ap,max)u∥Lp ,(2.11)

that is, D(Ap,max) coincides with D(Ap) = W 2,p(RN)∩D(F ·∇)∩D(V ), where D(F ·∇) :=
{u ∈ Lp ∩W 1,p

loc (RN); (F · ∇)u ∈ Lp} and D(V ) := {u ∈ Lp;V u ∈ Lp}, and hence {e−zAp}
is analytic in Σ(π/2− tan−1Kβ,γ).

Here three remarks and an example to Theorem2.1 are in order.

Remark 2. Assertion (i) is a particular case of [29, Theorem1.3]; it is worth noticing that
the sector of analyticity and contraction property for {e−zAp,max} is reduced to the positive
real axis (that is, tan−1 cp,β,γ → π/2) as p tends to 1 or to ∞.

Remark 3. Assertion (ii) suggests the possibility that {e−zAp,max} admits a non-contractive
analytic continuation to a p -independent sector Σ(π/2− tan−1Kβ,γ) which is bigger than
Σ(π/2−tan−1 c q, β,γ), 1 < q <∞. Moreover, the constant c 2, β,γ does not in general attain
min{c q, β,γ ; 1 < q <∞} (= Kβ,γ) if γ1 ̸= γ∞. This implies that if γ1 ̸= γ∞, then the sector
derived in Lp (for some p) can be bigger than the one derived in L2. In other words, we
have c 2, β,γ > Kβ,γ and hence we may conclude that {e−tA2} has a noncontractive analytic
continuation to a wider sector in spite of the belief that the best property is held when
p = 2. An example with γ1 ̸= γ∞ is also given later (see Example 3 in Subsection 2.3).

Remark 4. The proof in [23] is based on a perturbation technique with the separation
property (2.11) under a setting similar to assertion (iii). Theorem2.1 makes it clear that
(2.11) is necessary only for the domain characterization of Ap.

Example 2. We consider a typical one-dimensional Ornstein-Uhlenbeck operator

(Aµv)(x) := −v ′′(x) + xv ′(x)

in Lp
µ (the Lp-space with respect to the invariant measure e−x2/2dx). Chill-Fašangová-

Metafune-Pallara [6] show that the C0-semigroup on Lp
µ generated by −Aµ is analytic in

the sector Σ(ω̃p) and that the angle ω̃p = π/2− ωp of analyticity is optimal.
Here, applying Theorem 2.1 (ii), we give another derivation of their angle ωp. Using

the isometry u 7→ e−x2/2pu, we can transform Aµ into A:

(Au)(x) := −u′′(x) + p−1(p− 2)xu′(x) + [ p−2(p− 1)x2 − p−1]u

in the usual space Lp(RN). Thus we set a(x) = 1, F (x) = (1 − 2/p)x and V (x) =
p−2(p − 1)x2 − 1/p. Taking U(x) := x2, we see that the triplet (a, F, V + 1) satisfies
conditions (H1) and (H2) with respective constants

β = p−1|p− 2|, γ1 = p−2(p− 1) = γ∞.
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This leads us to the angle ωp introduced in (1.6):

Kβ,γ = inf
{√

(tanωq)2 + (tanωp)2 ; 1 < q <∞
}
= tanωp.

This shows that the domain of analyticity in this case cannot extend beyond Σ(π/2−ωp)
in a form of sector with vertex at the origin. Moreover, U(x) satisfies (2.4) and (2.5) in
(H3) with c0 = 1 and λ0 = 0 (see Example 1), respectively. Hence A has a separation
property (2.11).

2.3. The operators with local singularities

Next we state the second theorem on analytic continuation for (analytic contraction)
semigroups generated by elliptic operators Ap [ see (1.3)] under conditions (H1), (H2)
and (H3) with Ω = RN \ {0} together with domain characterization of Ap.

Theorem 2.2. Let 1 < p < ∞. Assume that conditions (H1), (H2) and (H3) are
satisfied with Ω = RN \{0}. Let Kβ,γ be the constant determined by (2.8). If (2.10) holds,
then {e−zAp} admits an analytic continuation to the sector Σ(π/2 − tan−1Kβ,γ). In this
case Ap has the separation property (2.11).

Example 3 (A case where γ1 ̸= γ∞). We consider the following operator

Au = −∆u+ b|x|−2(x · ∇)u+ c|x|−2u,(2.12)

that is, (a, F, V ) and Ω in our notation are given by

ajk(x) := δjk, F (x) := b|x|−2x, V (x) := c|x|−2, Ω = RN \ {0};

note that this operator has a singularities at the origin. Taking U(x) := |x|−2 as an
auxiliary funtion, we have γ1 ̸= γ∞ in condition (H2) if N ̸= 2 and b ̸= 0. In fact, we can
see that the constants are given by β = |b|, γ1 = c− b(N − 2) and γ∞ = c. We also have
λ0 = 2 (see Example 1). Hence if b, c and p satisfy (2.10), that is, if

p− 1 + (2/p)|b| = (p− 1)λ0(β/p+ λ0/4) < (γ1/p) + (γ∞/p
′) = c− b(N − 2)/p

holds, then we can apply Theorem 2.2 to the operator A and hence the conclusion of
Remark 3 implies that c2,β,γ > Kβ,γ.

3. Strategy of the proof of theorems

Here we give the rough description of the proof of Theorem 2.1.

Proof of Theorem 2.1. First show (i). Noting that (H1) and (H2) with Ω = RNare
satisfied, we can apply [29, Theorem 1.3] with the following auxiliary function Ψp to
(a, F, V ):

Ψp(x) :=
[
(γ1/q) + (γ∞/q

′)
]
U(x).

Thus we obtain (i).
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Next we prove (ii). The key of this part is a Gaussian estimate for the C0-semigroup
{e−Ap,max} in (i). This estimate is already established in [3]. That is, under the assumption
in (ii), {e−tA2,max} admits a Gaussian estimate with nonnegative kernel {kt} satisfying

0 ≤ kt(x, y) ≤Ct−N/2 exp
(
ω0t− |x− y|2/(bt)

)
a.a. (x, y) ∈ RN × RN ,

where the constant ω0 depends only on N , ∥ajk∥L∞ and ∥∇ajk∥L∞ , while C, b depend
only on N , ν, β, γ1, γ∞ and ∥ajk∥L∞ . {e−Ap,max} is also represented by the kernel {kt}.
Now we put p0 ∈ (1,∞) satisfying

cp0,β,γ = min{cq,β,γ ; 1 < q <∞} (=: Kβ,γ).

Applying [15] (or [2]) to {e−Ap0,max}, we obtain that for every 1 < p <∞, {e−Ap,max} can
be extended a bounded analytic C0-semigroup on Lp in the sector Σ(π/2− tan−1Kβ,γ).

It remains to prove (iii) that Ap,max has a separation property (2.11). Set

kp := (γ1/p) + (γ∞/p
′)− (p− 1)λ0

[
(β/p) + (λ0/4)

]
> 0.

In a way similar to that in [23, Lemma 2.3], it follows from (H3) with RN and condition
(2.10) that kp > 0 and there exists a constant C > 0 such that for every u ∈ C∞

0 (RN),

∥u∥W 2,p(RN ) + ∥(F · ∇)u∥Lp + ∥V u∥Lp ≤ C(1 + k−1
p )(∥u∥Lp + ∥Au∥Lp).

where C > 0 depends only on N , p, ν, β, and ∥ajk∥W 1,∞ . This implies (2.11). This
completes the proof of Theorem 2.1.

Proof of Theorem 2.2. To apply Theorem 2.1, we approximate F , U and V as follows:

Fδ(x) :=

{
F (x)(1 + δU(x))−2, x ̸= 0,

0, x = 0,

Uδ(x) :=

{
U(x)(1 + δU(x))−1, x ̸= 0,

δ−1, x = 0,

Vδ(x) :=
V (x)

1 + δU(x)
+ γ1

δU(x)2

(1 + δU(x))2
+ 2βλ0

δ(U(x) + Cλ)
2

(1 + δU(x))3
a.a. x ∈ RN

for δ > 0, where λ and Cλ are the constants in (2.6). Then it is worth noticing that
(a, Fδ, Vδ) and Uδ satisfy (2.1)–(2.3) and (2.5) with Ω = RN and the respective original
constants. Moreover, (a, Fδ, Vδ) and Uδ satisfy (2.4):

Vδ(x) ≤ (c0 + γ1 + 2βλ0)Uδ(x),

Applying Theorem 2.1 (iii) to (a, Fδ, Vδ) (and Uδ), and letting δ ↓ 0, we obtain that {e−Ap}
can be extended a bounded analytic C0-semigroup on Lp in the sector Σ(π/2−tan−1Kβ,γ).
We finish the proof.
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Time-discretization approach to
various parabolic systems

associated with grain boundaries

Ken Shirakawa†

Dedicated to Professor Hiroki Tanabe on the Occasion of his 80th Birthday

1 Introduction
This paper is based on a recent collaboration with Professor Salvador Moll, University

of Valencia, Spain (cf. [12]), which is communicated and supported by Professor José M.
Mazón, University of Valencia, Spain.

Let 0 < T < ∞ be a fixed constant, let N ∈ N be a fixed number, and let Ω ⊂ RN

be a bounded domain. Also, let us assume that the boundary ∂Ω of Ω is smooth if
N > 1. On that basis, we denote by ν∂Ω the unit outer normal vector on ∂Ω, and we set
Q := (0, T ) × Ω and Σ := (0, T ) × ∂Ω.

Let ν > 0 be a fixed small constant. In this paper, a coupled system of two parabolic
initial-boundary value problems is considered. This system is denoted by (S)ν , and for-
mally described as follows.

(S)ν : ⎧⎪⎨⎪⎩
ηt − Δη + g(η) + α′(η)β(∇θ) = 0 in Q,

∇η · ν∂Ω = 0 on Σ,

η(0, x) = η0(x), x ∈ Ω;

(1.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α0(η)θt − div

(
α(η)Dβ(∇θ) +

ν

2
D[(β0)

2](∇θ)
)

= 0 in Q,(
α(η)Dβ(∇θ) +

ν

2
D[(β0)

2](∇θ)
)
· ν∂Ω = 0 on Σ,

θ(0, x) = θ0(x), x ∈ Ω.

(1.2)

System (S)ν is derived from the following energy functional, called “free energy”:

[η, θ] ∈ H1(Ω) × H1(Ω) �→ Fν(η, θ) :=
1

2

∫
Ω

|∇η|2 dx +

∫
Ω

ĝ(η) dx

+

∫
Ω

α(η)β(∇θ) dx +
ν

2

∫
Ω

β0(∇θ)2 dx; (1.3)

† Department of Mathematics, Faculty of Education, Chiba University, 1-33 Yayoi-cho, Inage-ku,
Chiba, 263-8522, Japan; sirakawa@faculty.chiba-u.jp. AMS Subject Classification 35K87, 35K67.
This study is supported by Grant-in-Aid for Encouragement of Young Scientists (B) (No. 24740099)
JSPS.
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and initial-boundary value problems (1.1) and (1.2) correspond to the L2-gradient flows
of the unknowns η and θ, respectively. Here, α0 is a positive-valued locally Lipschitz
function of one-variable. α is a positive-valued C2-convex function of one-variable, and α′

is the differential of α. β0 and β are given nonnegative-valued Lipschitz convex functions
of N -variables, and Dβ and D[(β0)

2] denote the differentials (subdifferentials) of β and
(β0)

2, respectively. g is a given locally Lipschitz function of one-variable, and ĝ is a
nonnegative primitive of g. η0 and θ0 are given initial data.

The functional Fν given in (1.3) is a generalized version of the free energy adopted in
“Kobayashi-Warren-Carter model”, which is a phase field model of planar grain boundary
motion proposed by Kobayashi et al. [9, 10]. In the context, the unknowns η = η(t, x)
and θ = θ(t, x) are supposed to be order parameters which indicate, respectively, “the
orientation order” and “the orientation angle” at each (t, x) ∈ Q in the crystal. The
function g is a perturbation which is to constrain the value of η onto the range [0, 1] of
ratio, i.e. 0 ≤ η ≤ 1 in Q.

In the original study of Kobayashi et al. [9, 10], the grain boundary is prescribed as
a free boundary between the facet structures (or simply facets) in the crystal. In this
regard, α0 and α are supposed to activate the mobility of the grain boundary. β0 and β
are supposed to advance the presences of facets, and the both of these are settled as the
Euclidean norm (in R2). Hence, in [9, 10], the diffusion term as in (1.2) is described in
the following form of singular type:

−div

(
α(η)

∇θ

|∇θ|
+ ν∇θ

)
. (1.4)

Under the above setting, the authors of [9, 10] provided some numerical data to confirm
the appropriateness of their modelling method. Also, in recent years, the studies by
mathematical theories have been developed by several mathematicians [4, 5, 6, 8]. The
goals and objectives of these studies include the limiting observation of (S)ν as ν ↘ 0,
but this objective have not been achieved yet, except for a few study examples [13, 14]
concerned with the one-dimensional case of Ω.

Based on such background, we set the solvability of the generalized version (S)ν of the
Kobayashi-Warren-Carter model, as the theme of the Main Theorem. Then, the concepts
of the generalization will be to enable the mathematical treatments of various problems,
which are possibly appear in several useful situations such as the following.

(A) Reproduction of the anisotropy. The functions β0 and β can be involved in the
reproduction of the anisotropy in the crystalline structure. Then, the structural
unit of crystal is to be characterized by a compact and origin-symmetric convex set
W ⊂ RN , called “Wulff shape”, and the both functions β0 and β are to be settled
as the gauge function of the Wulff shape W , i.e.:

β0(ϑ) = β(ϑ) := inf
{

λ ≥ 0 ϑ ∈ λW
}

, for any ϑ ∈ RN .

Incidentally, the setting (1.4) corresponds to the case when W coincides with the
convex hull co(SN−1) of the N -dimensional sphere SN−1.

(B) Approximations. The singularity as in (1.4) brings down the difficulties in the
theoretical and numerical analyses of the Kobayashi-Warren-Carter model. In this
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light, the functions β0 and β can be given as suitable approximations of the gauge
functions, which can relax such singularity. For example, under (1.4), one of repre-
sentative choices is to set that:

β0(ϑ) := |ϑ| and β(ϑ) :=
√

ε2 + |ϑ|2 for any ϑ ∈ RN ,

with a sufficiently small constant ε > 0.

Note that the functions β0 and β may be given separately, in general approximating
situations.

The Main Theorem will be stated as the existence theorem for the system (S)ν , and
the proof of the Main Theorem will be proceeded in accordance with the method of
the time-discretization. Furthermore, as another consequence, it will be asserted that
the time-discretization approach will be a uniform solution method for various problems
associated with the Kobayashi-Warren-Carter model.

2 Statement of the the Main Theorem
First of all, let us confirm the assumptions for the given functions g, ĝ, α0, α, β0, β,

η0 and θ0 associated with the system (S)ν .

(A1) g : R −→ R is a locally Lipschitz continuous function, such that:

g(−∞, 0] ⊂ (−∞, 0] and g[1,∞) ⊂ [0,∞).

Also, g is supposed to have a nonnegative primitive ĝ : R −→ [0,∞).

(A2) α0 : R −→ (0,∞) is a locally Lipschitz function, and α : R −→ (0,∞) is a C2-
function, such that α′(0) = 0 and α′′ ≥ 0 on R, where α′ and α′′ are the first
differential and the second differential of α, respectively. Note that α turns out to
be a nonnegative and convex function on R, and:

δα := min
τ∈[0,1]

{α0(τ), α(τ)} > 0.

(A3) β0 : RN −→ [0,∞) and β : RN −→ [0,∞) are Lipschitz continuous convex functions
such that:

β0(ϑ) ≥ β0(0) and β(ϑ) ≥ β(0), for any ϑ ∈ RN ,

and there exist constants δβ > 0 and cβ ≥ 0, such that:

β0(ϑ) ≥ δβ|ϑ| − cβ, for any ϑ ∈ RN .

(A4) The pair [η0, θ0] of initial data belongs to a class D0 ⊂ H1(Ω) × H1(Ω), defined as:

D0 :=
{

[w, z] ∈ H1(Ω) × H1(Ω) 0 ≤ w ≤ 1 a.e. in Ω and z ∈ L∞(Ω)
}

.

Additionally, for the convenience of descriptions, we prepare the following notations.

Notation 2.1 (I) For any w ∈ L2(Ω), let Φν(w; · ) be a proper l.s.c. and convex
function on L2(Ω), defined as:

z ∈ L2(Ω) �→ Φν(w; z) :=

⎧⎨⎩
∫

Ω

α(w)β(∇z) dx +
ν

2

∫
Ω

β0(∇z)2 dx, if z ∈ H1(Ω),

∞, otherwise,

and let ∂Φν(w; · ) be the L2-subdifferential of Φν(w; · ).
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(II) For any open interval I ⊂ (0, T ) and any ξ ∈ L2(I; L2(Ω)), let Φ̂ν(ξ; · )I be a proper
l.s.c. and convex function on L2(I; L2(Ω)), defined as:

ζ ∈ L2(I; L2(Ω)) �→ Φ̂ν(ξ; ζ)I :=

⎧⎨⎩
∫

I

Φν(ξ(t); ζ(t)) dt, if ζ ∈ L2(I; H1(Ω)),

∞, otherwise.

Now, the Main Theorem in this paper is stated as follows.

Main Theorem. (Solvability of the system (S)ν) Under the assumptions (A1)-(A4),
the system (S)ν admits at least one solution [η, θ], in the sense of the following four items.

(S1) η ∈ W 1,2(0, T ; L2(Ω)) ∩ L∞(0, T ; H1(Ω)) ∩ L2(0, T ; H2(Ω)), 0 ≤ η ≤ 1 a.e. in Q;
θ ∈ W 1,2(0, T ; L2(Ω)) ∩ L∞(0, T ; H1(Ω)) ∩ L∞(Q), |θ|L∞(Q) ≤ |θ0|L∞(Ω).

(S2) η solves the following variational identity of parabolic type with θ:∫
Ω

(
ηt(t) + g(η(t)) + α′(η(t))β(∇θ(t))

)
w dx +

∫
Ω

∇η(t) · ∇w dx = 0,

for any w ∈ H1(Ω) and a.e. t ∈ (0, T ).

(2.1)

(S3) θ solves the following variational inequality of parabolic type with η:∫
Ω

α0(η(t))θt(t)(θ(t) − z) dx + Φν(η(t); θ(t)) ≤ Φν(η(t); z),

for any z ∈ H1(Ω) and a.e. t ∈ (0, T ).

(2.2)

(S4) [η(0), θ(0)] = [η0, θ0] in L2(Ω) × L2(Ω).

3 Approximation problem for the system (S)ν

As seen from (1.1)-(1.2), the system (S)ν can be reformulated to the following system
of evolution equations:{

ηt(t) − ΔNη(t) + g(η(t)) + α′(η(t))β(∇θ(t)) = 0 in L2(Ω),

α0(η(t))θt(t) + ∂Φν(η(t); θ(t)) � 0 in L2(Ω),
a.e. t ∈ (0, T ), (3.1)

where ΔN is the operator of the Laplacian subject to the Neumann-zero boundary con-
dition, i.e.

ΔN : w ∈ DN :=
{

w̃ ∈ H2(Ω) ∇w̃ · ν∂Ω = 0 a.e. on ∂Ω
}
�→ Δw ∈ L2(Ω).

Based on this, we prepare an approximation index h ∈ (0, 1) of the time-step, and denote

by (AP)
(ν)
h the time-discretization system for (3.1), formulated as follows.

(AP)
(ν)
h : ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ηh,i − ηh,i−1

h
− ΔNηh,i + g(ηh,i) + α′(ηh,i)β(∇θh,i−1) = 0 in L2(Ω), (3.2)

α0(ηh,i)
θh,i − θh,i−1

h
+ ∂Φν(α(ηh,i); θh,i) � 0 in L2(Ω), (3.3)

4
176



for i = 1, 2, 3, · · ·, subject to:

[ηh,0, θh,0] := [η0, θ0] in L2(Ω) × L2(Ω). (3.4)

Here, for any 0 < h < 1, we call a pair [{ηh,i}, {θh,i}] ⊂ L2(Ω) × L2(Ω) of sequences a

solution to (AP)
(ν)
h , or simply an approximating solution, if and only if {ηh,i | i ∈ N} ⊂

H2(Ω), {θh,i | i ∈ N} ⊂ H1(Ω), and for any i ∈ N, the components ηh,i and θh,i fulfill the
respective elliptic type problems (3.2) and (3.3) with (3.4).

In this paper, the class {(AP)
(ν)
h |h, ν ∈ (0, 1]} of the time-discretization systems is

adopted as that of the approximation problems for (S)ν . With regard to each approxima-
tion problem, we can prove the following theorem.

Theorem 3.1 (Solvability of the approximation system) Let us assume that 0 < ν ≤ 1,
and:

0 < h ≤ h∗ :=
1

1 + 3|g′|L∞(0,1) + 2|g|2C[0,1]|Ω| + 2|α′|2C[0,1]

, (3.5)

where |Ω| is the N-dimensional Lebesgue measure of Ω. Then, the system (AP)
(ν)
h admits

a unique solution [{ηh,i}, {θh,i}], such that:

0 ≤ ηh,i ≤ 1 a.e. in Ω, |θh,i|L∞(Ω) ≤ |θh,i−1|L∞(Ω), and (3.6)

1

2h
|ηh,i − ηh,i−1|2L2(Ω) +

1

h

∣∣∣√α0(ηh,i)(θh,i − θh,i−1)
∣∣∣2
L2(Ω)

+ Fν(ηh,i, θh,i)

≤ Fν(ηh,i−1, θh,i−1), i = 1, 2, 3, · · · .
(3.7)

Proof. Note that (3.2) and (3.3) can be regarded as independent variational problems
of elliptic types. Indeed, the problem (3.2) has a unique unknown variable ηh,i. Hence,
after solving (3.2), we can restrict the unknown in (3.3) to only one variable θh,i. Namely,
for each step i ∈ N, these problems can be solved in order of (3.2) and (3.3) by means
of the usual variational method such as [3]. The property (3.6) can be deduced on the
basis of the theory of T-monotonicity (cf. [2, 7]). Furthermore, the inequality (3.7) is
obtained by multiplying the both sides of (3.2) and (3.3) by (ηh,i−ηh,i−1) and (θh,i−θh,i−1),
respectively, and taking the sum of the results. Incidentally, the constraint (3.5) for h
will be needed only for the discussions associated with {ηh,i}: the solvability of (3.2); the
range constraint property as in (3.6); the derivation of the coefficient 1

2h
at the head of

(3.7).

4 Proof of the Main Theorem
Let 0 < h∗ ≤ 1 be the small constant given in (3.5), and for any 0 < h ≤ h∗, let

[{ηh,i}, {θh,i}] be the solution to (AP)
(ν)
h . On that basis, let us set:{

th,i := ih, i = 0, 1, 2, 3, · · ·,
Δh,i := [th,i−1, th,i), i = 1, 2, 3, · · ·,

for any 0 < h ≤ h∗, (4.1)

and let us construct sequences:⎧⎪⎪⎨⎪⎪⎩
{[ηh, θh] | 0 < h ≤ h∗} ⊂ L∞(0, T ; H2(Ω)) × L∞(0, T ; H1(Ω)),

{[η
h
, θh] | 0 < h ≤ h∗} ⊂ L∞(0, T ; H1(Ω)) × L∞(0, T ; H1(Ω)),

{[η̂h, θ̂h] | 0 < h ≤ h∗} ⊂ W 1,2(0, T ; H1(Ω)) × W 1,2(0, T ; H1(Ω)),
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by using the following different kinds of time-interpolations:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[ηh(t), θh(t)] := [ηh,i, θh,i] in H2(Ω) × H1(Ω),

[η
h
(t), θh(t)] := [ηh,i−1, θh,i−1] in H1(Ω) × H1(Ω),

[η̂h(t), θ̂h(t)] :=
th,i − t

h
[ηh,i−1, θh,i−1] +

t − th,i−1

h
[ηh,i, θh,i]

in H1(Ω) × H1(Ω),

for all 0 < h ≤ h∗ and all t ∈ Δh,i, i = 1, 2, 3, · · ·.

(4.2)

Now, let us fix any 0 < T < ∞, and let us set:

N ◦
h(T ) := min

{
n◦ ∈ N n◦h ≥ T

}
, for any 0 < h ≤ h∗.

Then, the assumptions (A2)-(A3) and (3.6)-(3.7) of Theorem 3.1 enable us to see that:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

• {ηh | 0 < h ≤ h∗} is bounded in L∞(0, T ; H1(Ω)),

• {η
h
| 0 < h ≤ h∗} is bounded in L∞(0, T ; H1(Ω)),

• {η̂h | 0 < h ≤ h∗} is bounded in W 1,2(0, T ; L2(Ω)) and
bounded in L∞(0, T ; H1(Ω)),

• 0 ≤ ηh ≤ 1, 0 ≤ η
h
≤ 1 and 0 ≤ η̂h ≤ 1, a.e. in Q,

for all 0 < h ≤ h∗;⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

• {θh | 0 < h ≤ h∗} is bounded in L∞(0, T ; H1(Ω)),

• {θh | 0 < h ≤ h∗} is bounded in L∞(0, T ; H1(Ω)),

• {θ̂h | 0 < h ≤ h∗} is bounded in W 1,2(0, T ; L2(Ω)) and
bounded in L∞(0, T ; H1(Ω)),

• |θh|L∞(Q) ≤ |θ0|L∞(Ω), |θh|L∞(Q) ≤ |θ0|L∞(Ω) and

|θ̂h|L∞(Q) ≤ |θ0|L∞(Ω), for all 0 < h ≤ h∗.

Therefore, applying the compactness theory of Aubin’s type [15], we find a sequence
{hn |n ∈ N} ⊂ (0, h∗], a pair [η, θ] ∈ L2(0, T ; L2(Ω)) × L2(0, T ; L2(Ω)) of functions and a
function ξ∗ ∈ L2(0, T ; L2(Ω)), such that:

hn ↘ 0 as n → ∞;{
η ∈ W 1,2(0, T ; L2(Ω)) ∩ L∞(0, T ; H1(Ω)), 0 ≤ η ≤ 1 a.e. in Q,

θ ∈ W 1,2(0, T ; L2(Ω)) ∩ L∞(0, T ; H1(Ω)), |θ|L∞(Q) ≤ |θ0|L∞(Ω),
(4.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ηn := ηhn
→ η and η

n
:= η

hn
→ η in L∞(I; L2(Ω)),

weakly-∗ in L∞(I; H1(Ω)), weakly-∗ in L∞(I × Ω), and
the pointwise sense a.e. in I × Ω,

η̂n := η̂hn → η in C(I; L2(Ω)), weakly in W 1,2(I; L2(Ω)),
weakly-∗ in L∞(I; H1(Ω)), weakly-∗ in L∞(I × Ω), and
the pointwise sense a.e. in I × Ω,

as n → ∞, (4.4)
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

θn := θhn → θ and θn := θhn
→ θ in L∞(I; L2(Ω)),

weakly-∗ in L∞(I; H1(Ω)), weakly-∗ in L∞(I × Ω), and
the pointwise sense a.e. in I × Ω,

θ̂n := θ̂hn → θ in C(I; L2(Ω)), weakly in W 1,2(I; L2(Ω)),
weakly-∗ in L∞(I; H1(Ω)), weakly-∗ in L∞(I × Ω), and
the pointwise sense a.e. in I × Ω,

as n → ∞, (4.5)

and
α′(ηn)β(∇θn) → ξ∗ weakly-∗ in L∞(I; L2(Ω)), as n → ∞, (4.6)

for any open interval I ⊂ (0, T ).

Now, since:

[η̂n(0), θ̂n(0)] = [η0, θ0] in L2(Ω) × L2(Ω), n = 1, 2, 3, · · ·,

the limiting pair [η, θ] satisfies the condition (S4) as in the Main Theorem.
Next, note that the following two variational formulas are derived from the governing

equations (3.2)-(3.3):∫
I

(
(η̂n)t(t) + g(ηn(t)), w

)
L2(Ω)

dt +

∫
I

∫
Ω

∇ηn(t) · ∇w dxdt

+

∫
I

∫
Ω

wα′(ηn(t))β(∇θn(t)) dxdt = 0,

for any n ∈ N, any open interval I ⊂ (0, T ) and any w ∈ H1(Ω);

(4.7)

∫
I

(
α0(ηn(t))(θ̂n)t(t), θn(t) − ψ(t)

)
L2(Ω)

dt

+Φ̂ν(α(ηn); θn)I ≤ Φ̂ν(α(ηn); ψ)I ,

for any n ∈ N, any open interval I ⊂ (0, T ) and any ψ ∈ L2(I; H1(Ω)).

(4.8)

Here, with (A2)-(A3) and (4.3)-(4.5) in mind, letting n → ∞ in (4.8) yields that:∫
I

(
α0(η(t))(θ)t(t), θ(t) − ψ(t)

)
L2(Ω)

dt + Φ̂ν(α(η); θ)I

≤ lim
n→∞

∫
I

(
α0(ηn(t))(θ̂n)t(t), θn(t) − ψ(t)

)
L2(Ω)

dt + lim inf
n→∞

Φ̂ν(α(η); θn)I

= lim inf
n→∞

(∫
I

(
α0(ηn(t))(θ̂n)t(t), θn(t) − ψ(t)

)
L2(Ω)

dt + Φ̂ν(α(ηn); θn)I

)
− lim

n→∞

∫
I

(
α(ηn(t)) − α(η(t)), β(∇θn(t))

)
L2(Ω)

dt

≤ lim
n→∞

Φ̂ν(α(ηn); ψ)I = Φ̂ν(α(η); ψ)I , (4.9)

for any open interval I ⊂ (0, T ) and any ψ ∈ L2(I; H1(Ω)).

This implies that the pair [η, θ] fulfills (S3) in the Main Theorem.
Next, for the component θ ∈ C([0, T ]; L2(Ω)) ∩ L∞(0, T ; H1(Ω)), let us prepare a

sequence {θ◦n |n ∈ N} ⊂ C∞(Q), such that:

θ◦n → θ in L2(0, T ; H1(Ω)) as n → ∞,
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and let us set ψ = θ◦n in (4.8). Then, with help from (A3) and (4.3)-(4.5), we have:

Φ̂ν(α(η); θ)I

≤ lim inf
n→∞

Φ̂ν(α(η); θn)I + lim
n→∞

∫
I

(
α(ηn) − α(η), β(∇θn)

)
L2(Ω)

dt

= lim inf
n→∞

Φ̂ν(α(ηn); θn)I ≤ lim sup
n→∞

Φ̂ν(α(ηn); θn)I

≤ lim sup
n→∞

Φ̂ν(α(ηn); θ◦n)I − lim
n→∞

∫
I

(
α0(ηn(t))(θ̂n)t(t), θn(t) − θ◦n(t)

)
L2(Ω)

dt

= lim
n→∞

(∫
I

(
α(ηn(t)), β(∇θ◦n(t))

)
L2(Ω)

dt +
ν

2

∫
I

|β0(∇θ◦n(t))|2L2(Ω) dt

)
= Φ̂ν(α(η); θ)I ,

namely

lim
n→∞

Φ̂ν(α(ηn); θn)I = Φ̂ν(α(η); θ)I , for any open interval I ⊂ (0, T ). (4.10)

Also: ∫
I

∫
Ω

α(η(t))β(∇θ(t)) dxdt

≤ lim inf
n→∞

∫
I

∫
Ω

α(η(t))β(∇θn(t)) dxdt

+ lim
n→∞

∫
I

(
α(ηn(t)) − α(η(t)), β(∇θn(t))

)
L2(Ω)

dt

= lim inf
n→∞

∫
I

∫
Ω

α(ηn)β(∇θn(t)) dxdt ≤ lim sup
n→∞

∫
I

∫
Ω

α(ηn)β(∇θn(t)) dxdt

= lim
n→∞

Φ̂ν(α(ηn); θn)I −
ν

2
lim inf
n→∞

∫
I

∫
Ω

β0(∇θn(t))2 dxdt

≤
∫

I

∫
Ω

α(η(t))β(∇θ(t)) dxdt,

and therefore:∣∣∣∣∫
I

∫
Ω

α(ηn(t))β(∇θn(t)) dxdt −
∫

I

∫
Ω

α(η(t))β(∇θ(t)) dxdt

∣∣∣∣
≤

∣∣∣∣∫
I

∫
Ω

α(ηn(t))β(∇θn(t)) dxdt −
∫

I

∫
Ω

α(η(t))β(∇θ(t)) dxdt

∣∣∣∣
+

∣∣∣∣∫
I

∫
Ω

α(ηn(t))β(∇θn(t)) dxdt −
∫

I

∫
Ω

α(ηn(t))β(∇θn(t)) dxdt

∣∣∣∣
≤

∣∣∣∣∫
I

∫
Ω

α(ηn(t))β(∇θn(t)) dxdt −
∫

I

∫
Ω

α(η(t))β(∇θ(t)) dxdt

∣∣∣∣
+ sup

n∈N

|β(∇θ̂n)|L∞(I;L2(Ω))

(
T |α(ηn)−α(η

n
)|C(I;L2(Ω)) +2hn|α|C[0,1]|Ω|1/2

)
→ 0 as n → ∞, for any open interval I ⊂ (0, T ). (4.11)

8
180



Meanwhile, in the light of (A3) and (4.3)-(4.5),

lim inf
n→∞

∫
A

α(ηn)β(∇θn) dL N+1

≥ lim inf
n→∞

∫
A

α(η)β(∇θn) dL N+1

+ lim
n→∞

∫
A

(
α(ηn) − α(η)

)
β(∇θn) dL N+1

≥
∫

A

α(η)β(∇θ) dL N+1, (4.12)

for any open interval I ⊂ (0, T ) and any open set A ⊂ I × Ω,

where for any d ∈ N, L d denotes the d-dimensional Lebesgue measure. Taking into
account (4.6), (4.11)-(4.12) and [1, Proposition 1.80], we infer that:

α(ηn)β(∇θn) → α(η)β(∇θ) weakly-∗ in L∞(I; L2(Ω)) as n → ∞,

for any open interval I ⊂ (0, T ).
(4.13)

Moreover, since the assumption (A2) and (4.4) lead to:

wα′(ηn)

α(ηn)
→ wα′(η)

α(η)
in L2(I; L2(Ω)) as n → ∞,

for any w ∈ H1(Ω) and any open interval I ⊂ (0, T ),

we can derive from (4.13) that:∫
I

∫
Ω

wα′(ηn(t))β(∇θn(t)) dxdt =

(
wα′(ηn)

α(ηn)
, α(ηn)β(∇θn)

)
L2(I;L2(Ω))

→
(

wα′(η)

α(η)
, α(η)β(∇θ)

)
L2(I;L2(Ω))

=

∫
I

∫
Ω

wα′(η(t))β(∇θ(t)) dxdt,

for any w ∈ H1(Ω) and any open interval I ⊂ (0, T ).

(4.14)

Owing to (4.3)-(4.5) and (4.14), we obtain the compatibility of the pair [η, θ] with (S2),
by letting n → ∞ in (4.7).

Finally, with (4.3) and (S2) in mind, the condition (S1) will be verified by means of
the standard regularity theory of parabolic PDEs.

Remark 4.1 The line of arguments as in (4.9)-(4.10) are essentially rely on the fact that
the sequence {Φ̂ν(α(ηn); · )I |n ∈ N} of convex functions converges to the convex function
Φ̂ν(α(η); · )I on L2(I; L2(Ω)), in the sense of Mosco [11]. The essence of this fact can be
refer to the previous studies, such as [4, 5, 6, 8].
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An idea of the proof of the comparison principle of viscosity
solutions for doubly nonlinear Hamilton-Jacobi equations

Naoki Yamada

1 Introduction

It is well known that a variational inequality with unilateral condition

max{F (x, u, Du, D2u), u(x)− k} = 0 in Ω

is represented as
F (x, u,Du, D2u) + ∂ψ(u) 3 0

by using the subdifferential ∂ψ of a convex function

ψ(x) =

{
0 x 5 k,

+∞ otherwise.

Here, Du and D2 represent the gradient vector and the Hessian matrices for
u, respectively.

This equation is mainly formulated in a framework of Hilbert space as a
typical example of subdiffrential operators.

The author had treated this inequality in the framework of viscosity so-
lutions [6].

On the other hand, the doubly nonlinear equation

∂ϕ(ut(t)) + Au(t) 3 f(t)

is also considered in the theory of evolution equations ([4], [3], [2], [7], [5],
[1]). Here, ϕ : H →] − ∞, +∞] is a proper lower semicontinuous convex
function in a Hilbert space H, ∂ϕ is its subdifferential and A is a monotone
operator.
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Let ϕ : R→]−∞, +∞] be a proper lower semicontinuous function on R,
and ∂ϕ be its subdifferential. In this note we consider an equation

∂ϕ(ut(t, x))+H(Du(t, x))+u(t, x) 3 f(x) (t, x) ∈ (0,∞)×Rn or (0,∞)×Ω

in the framework of viscosity solutions.
The main goal is to give a definition of viscosity solutions to this equation

and show an idea of the proof of comparison principle.
Since we only present an idea of the proof, we assume that the solution is

smooth. Also we do not pay the attention for the class of the solution such
as increasing rate or the class of initial functions.

The author would like to express his sincere gratitude to Professor Hiroki
Tanabe for his encouragement for many years.

2 Idea of the proof (parabolic case)

In this section we review the idea of the proof of comparison principle for
parabolic equations:

ut(t, x) + H(Du(t, x)) = f(x).

It is well known that these formal discussion is justified in the framework of
viscosity solutions.

Let u be a subsolution and let v be a supersolution, that is u and v satisfy
the inequality

ut + H(Du) 5 f,

vt + H(Dv) = f,

for respectively.
Take ε > 0 and let uε = u− εt. It holds

uε
t + H(Duε) + ε 5 f.

We prove by contradiction. Assume that there exists a point (t0, x0) such
that the inequality

δ = (uε − v)(t0, x0) = max
t,x

(uε − v)(t, x) > 0

2
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holds. By initial condition, it is known that t0 > 0 and x0 is an interior
point. In the following we compute at (t0, x0).

It holds
uε

t − vt = 0, Duε = Dv.

Then it follows

ε 5 f − uε
t −H(Duε)

5 f − vt −H(Dv)

5 0,

which is a contradiction.

3 Idea of the proof (doubly nonlinear case)

In this section we describe the idea of the proof of comparison principle for
doubly nonlinear equations:

∂ϕ(ut) + H(Du) + u 3 f.

We also assume that the solution is smooth.

Definition (subsolution)：We say that a function u(t, x) is a subsolu-
tion if it holds

ϕ(w)− ϕ(ut) = (f −H(Du)− u)(w − ut)

for any w 5 ut at every point (t, x).

Definition (supersolution)：We say that a function v(x, t) is a super-
solution if it holds

ϕ(w)− ϕ(vt) = (f −H(Dv)− v)(w − vt)

for any w = vt at every point (t, x).

Let u(t, x) be a subsolution and v(t, x) be a supersolution. Since we want
to prove u 5 v, we assume that

δ = (u− v)(t0, x0) = max
t,x

(u− v)(t, x) > 0

3
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happens at some point (t0, x0) and drive a contradiction. We assume that
such (t0, x0) exists and t0 > 0. We compute at (t0, x0) in the following. It
holds

ut − vt = 0, Du = Dv.

We take ε > 0 arbitrary and fix it.
If we take w = vt − ε in the definition of subsolution, we have

ϕ(ut)− ϕ(vt − ε)

ut − vt + ε
5 f −H(Du)− u.

If we take w = ut + ε in the definition of supersolution, we get

ϕ(ut + ε)− ϕ(vt)

ut − vt + ε
5 f −H(Dv)− v.

Since vt−ε < vt 5 ut < ut +ε, by a property of convex functions, it must
be holds

ϕ(ut)− ϕ(vt − ε)

ut − vt + ε
5 ϕ(ut + ε)− ϕ(vt)

ut − vt + ε
.

However, since it holds

ϕ(ut)− ϕ(vt − ε)

ut − vt + ε
+ u 5 f −H(Du)

= f −H(Dv)

5 ϕ(ut + ε)− ϕ(vt)

ut − vt + ε
+ v,

we get

ϕ(ut)− ϕ(vt − ε)

ut − vt + ε
− ϕ(ut + ε)− ϕ(vt)

ut − vt + ε
5 v − u = −δ < 0,

which is a contradiction.
In the usual parabolic equations, the comparison principle is stated for

the equation
ut + H(Du) = f.

In this case the term ut acts as the term λu in the elliptic case, that is, it
makes the equation strictly monotone.
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On the other hand, in the case of doubly nonlinear equation, the term
∂ϕ(ut) is only monotone. This is the reason why we describe the idea for the
equation

∂ϕ(ut) + H(Du) + u 3 f

not for the equation
∂ϕ(ut) + H(Du) 3 f.

4 Definition of viscosity solutions

We hope that the previous formal discussion will be justified under the fol-
lowing definition of viscosity solutions.

Definition (subsolution): We say that a continuous function u(t, x) is
a viscosity subsolution if it holds

ϕ(w)− ϕ(τ) = (f −H(p)− u)(w − τ)

for any (τ, p) ∈ J1,1
+ u(t, x) and w 5 τ at every point (t, x).

Definition (supersolution): We say that a continuous function v(x, t)
is a viscosity supersolution if it holds

ϕ(w)− ϕ(σ) = (f −H(q)− v)(w − σ)

for any for any (σ, q) ∈ J1,1
− u(t, x) and w = σ at every point (t, x).

Definition (viscosity solution): We say that a continuous function
u(t, x) is a viscosity solution if u is both viscosity sub- and supersolution.

Here, J1,1
+ u(t, x) and J1,1

− u(t, x) are upper and lower semijets, respectively.
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On Logistic Diffusion Equations with Nonlocal Effects

Yoshio YAMADA ∗

Department of Applied Mathematics
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E-mail: yamada@waseda.jp

1 Introduction

In this paper we discuss the following problem for logistic equations with diffusion and nonlocal
effects:

(P)


ut = d∆u+ u

(
a− bu−

∫
Ω

k(x, y)u(y, t)dy

)
in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),

u(·, 0) = u0 in Ω,

where Ω is a bounded domain in RN with smooth boundary ∂Ω, a, d are positive constants,
b is a nonnegative constant, k ∈ C(Ω × Ω) is a nonnegative function and u0 is a nonnegative
function. In (P), u denotes the population density of a certain species. Usually, the dynamics
of the population density is governed by a logistic diffusion equation (without nonlocal terms).
If k ≡ 0 in (P), it is well known that there exists a unique global solution u and that

lim
t→∞

u(·, t) =

{
0 uniformly in Ω if 0 < a ≤ dλ1,

θ uniformly in Ω if a > dλ1,

where λ1 is the principal eigenvalue of −∆ with homogeneous Dirichlet boundary condition and
θ is a unique positive stationary solution (which exists if and only if a > dλ1). However, it is
sometimes reasonable to take account of nonlocal effects since each individual species interacts
either visually or by chemical means in a real world. So we will discuss a logistic diffusion
equation by adding a nonlocal reaction term as in (P).

Our main purpose is to investigate the difference or similarity between local problems and
nonlocal problems for logistic diffusion equations. In particular, we are interested in the follow-
ing points:

(a) Existence and uniqueness of bounded global solutions for (P),
(b) Asymptotic behavior of global solutions as t → ∞,
(c) Structure of positive solutions for the corresponding stationary problem:

(SP)

d∆u+ u

(
a− bu−

∫
Ω

k(x, y)u(y)dy

)
= 0 in Ω,

u = 0 on ∂Ω.

∗Part of this work has been supported by Grant-in-Aid for Scientific Research (C-24540220), Japan Society
for the Promotion of Science.
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For semilinear elliptic equations with nonlocal terms, there are a lo of works (see, e.g, [1], [2],
[3], [6], [8]). In most papers, existence of positive solutions has been established with use of
bifurcation theory or the Leray-Schauder degree theory. Here we will give a very elementary
method to construct a positive stationary solution to (SP).

The contents of the present paper are as follows. In Section 2, we will show that (P) admits
a unique global solution for any nonnegative initial data in a suitable class. Section 3 is devoted
to the analysis of (SP). We will look for a positive solution of (SP) by a constructive manner.
Finally, some remarks are given in section 4.

Notation. We denote by Lp(Ω) the space of measurable functions u : Ω → R such that
|u(x)|p is integrable over Ω with norm

∥u∥p :=

{∫
Ω

|u(x)|p dx

}1/p

.

For p = 2, we simply write ∥ · ∥ in place of ∥ · ∥2. By W k,p(Ω), we denote the Sobolev space of
functions u → R such that u and its distributional derivatives up to order k belong to Lp(Ω).
Its norm is defined by

∥u∥p
Wk,p =

∑
|ρ|≤k

∥Dρu∥pp,

where ρ denotes a multi-index for derivatives.

2 Existence of global solutions

We will discuss (P) in the framework of Lp(Ω) with p > 1. Define a closed linear operator A in
Lp(Ω) by

Au = −d∆u with domain D(A) = W 2,p(Ω) ∩W 1,p
0 (Ω).

Then it is well known that −A generates an analytic semigroup {e−tA}t≥0 in Lp(Ω) (see, e.g.,
[9, 11]). Our problem (P) can be written as{

ut +Au = f(u, ℓ(u)),

u(0) = u0,
(2.1)

where

f(u, v) = u(a− bu− v) with ℓ(u) =

∫
Ω

k(x, y)u(y)dy.

For (2.1) we can prove the following local existence theorem:

Theorem 2.1. Let p > max{1, N/2}. For any u0 ∈ Lp(Ω), there exists a positive number T
such that (2.1) has a unique solution u in the class

u ∈ C([0, T ];Lp(Ω)) ∩ C((0, T ];W 2,p(Ω)) ∩ C1((0, T ];Lp(Ω)).

Proof. The proof is standard. The first procedure is to rewrite (2.1) in the form of integral
equation

u(t) = e−tAu0 +

∫ t

0

e−(t−s)Af(u(s), ℓ(u(s)))ds. (2.2)

The second procedure is to apply Banach’s fixed point theorem to (2.2) in order to show the
existence and uniqueness of a local solution. For details, see [9] or [11].
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In what follows we assume
u0 ∈ L∞(Ω) (2.3)

and establish the global existence theorem.

Theorem 2.2. Let p > max{1, N/2} and assume (2.3).
(i) If b > 0, then (2.1) has a unique solution u in the class

u ∈ C([0,∞);Lp(Ω)) ∩ C((0,∞);W 2,p(Ω)) ∩ C1((0,∞);Lp(Ω)).

Moreover, u satisfies

0 ≤ u(x, t) ≤ max
{
∥u0∥∞,

a

b

}
for all (x, t) ∈ Ω× [0,∞).
(ii) If b = 0, then (2.1) has a unique solution u in the same class as (i). Moreover, if there
exists a positive constant k0 such that k(x, y) ≥ k0 for all x, y ∈ Ω, then

0 ≤ u(x, t) ≤ m

with a positive number m for all (x, t) ∈ Ω× [0,∞).

Proof. (i) Since u0 ≥ 0, it is easy to show by the maximum principle for parabolic equations
(see [12]) that u(·, t) ≥ 0 as long as it exists. Therefore, u satisfies

ut ≤ d∆u+ u(a− bu) in Ω× [0, T ),

where T is a maximal existence time. The comparison theorem for parabolic equations enables
us to show that

u ≤ max

{
∥u0∥∞,

b

a

}
for (x, t) ∈ Ω× [0, T ). Hence we can conclude T = ∞ and obtain a required estimate.

(ii) We will show the uniform boundedness of the solution u in case k ≥ k0. Integrating the
first equation of (P) leads to

d

dt

∫
Ω

u(x, t)dx = d

∫
Ω

∆u(x, t) + a

∫
Ω

u(x, t)dx−
∫
Ω

u(x, t)ℓ(u(t))dx

= d

∫
∂Ω

∂u

∂n
dσ + a

∫
Ω

u(x, t)dx−
∫
Ω

u(x, t)

(∫
Ω

k(x, y)u(y, t)dy

)
dx

< a

∫
Ω

u(x, t)dx− k0

(∫
Ω

u(x, t)dx

)2

.

(2.4)

Here we have used ∂u/∂n|∂Ω < 0 by the strong maximum principle (see [12]). Solving differen-
tial inequality (2.4) we get ∫

Ω

u(x, t)dx ≤ max

{
∥u0∥1,

a

k0

}
. (2.5)

Since |ℓ(u)| ≤ k∞∥u∥1 with k∞ = sup{k(x, y); x, y ∈ Ω}, we see

∥f(u, ℓ(u))∥1 = ∥u(a− ℓ(u))∥1 ≤ a∥u∥1 + k∞∥u∥21;

so that it follows from (2.5) that

sup
t≥0

{∥f(u(t), ℓ(u(t)))∥1} = m1.

In order to derive uniform boundedness of u(t), it is sufficient to use Lp − Lq estimates for
{e−tA}t≥0 with p, q ∈ [1,∞] and follow the arguments developed in the work of Rothe [13]. So
we omit the rest of the proof.
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3 Stationary positive solutions

In this section we will study (SP) associated with (P). In particular, we are interested in positive
stationary solutions and look for them in the case

k(x, y) = p(x)q(y), (3.1)

where p, q( ̸≡ 0) are nonnegative continuous functions in Ω. So our problem is written as follows:
d∆u+ u

(
a− bu− p(x)

∫
Ω

q(y)u(y)dy

)
= 0 in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(3.2)

where a, d are positive constants, b is a nonnegative number. Lots of authors (e.g., [1], [2], [3].
[6], [8]) have discussed the existence of positive solutions for semilinear elliptic equations with
nonlocal terms by means of bifurcation theory, the Leray-Schauder degree theory and monotone
methods. Among them, Corréa, Delgado and Suárez [2] have studied (3.2) in case b = 0 and
obtained an interesting result.

Theorem 3.1. ([2]) Assume that Ω0 := Int{x ∈ Ω; p(x) = 0} is connected. Then (3.2) has a
unique positive solution u if and only if{

a ∈ (λ1,Ω,∞) in case Ω0 = ∅,
a ∈ (λ1,Ω, λ1,Ω0

) in case Ω0 ̸= ∅.

Here λ1,D stands for the principal eigenvalue of the following eigenvalue problem

−∆u = λu in D with u = 0 on ∂D.

We will briefly explain the idea of the proof of Theorem 3.1. Let u be a positive solution of
(3.2) with b = 0. If we put

α =

∫
Ω

q(x)u(x)dx, (3.3)

we can rewrite (3.2) in the following form
−d∆u+ αp(x)u = au in Ω,

u = 0 on ∂Ω,

u > 0 in Ω.

(3.4)

Since u is a positive definite function, a must be identical with the principal eigenvalue of the
following eigenvalue problem

−d∆u+ αp(x)u = λu in Ω and u = 0 on ∂Ω. (3.5)

If we denote by λ1(αp) the principal eigenvalue of (3.5), we have only to find α satisfying
λ1(αp) = a.

It is well known that λ1(αp) can be expressed by the following variational characterization

λ1(αp) = inf

{
d

∫
Ω

|∇u|2dx+ α

∫
Ω

p(x)u2dx;u ∈ H1
0 (Ω), ∥u∥2 = 1

}
. (3.6)

It should be noted that λ1(αp) has the following properties:
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Lemma 3.1. Let p( ̸≡ 0) be a nonnegative continuous function in Ω and assume that Ω0 is
connected. Then the following properties hold true.
(i) The mapping α → λ1(αp) is continuous and strictly increasing for α ≥ 0.
(ii) lim

α→0
λ1(αp) = λ1(0) = λ1,Ω.

(iii) lim
α→∞

=

{
∞ in case Ω0 = ∅,
λ1,Ω0 in case Ω0 ̸= ∅.

Proof. Assertions (i) and (ii) come from (3.6). For the proof of (iii), see López-Gómez [10].

In order to find a positive solution u of (3.2), it is sufficient to look for α∗ satisfying λ1(α
∗p) =

a for given a. Then u can be obtained as u = cφ with positive constant c, where φ is a positive
eigenfunction of (3.5) corresponding to λ1(α

∗p). In view of (3.3), positive constant c can be
determined from

α∗ = c

∫
Ω

q(x)φ(x)dx.

Therefore, it is easy to prove Theorem 3.1 if we use Lemma 3.1.

We now discuss the existence of positive solutions of (3.2) in case b > 0. Let u be a positive
solution of (3.2). If we define α by (3.3), then the first equation of (3.2) can be written as{

−d∆u+ αp(x)u = u(a− bu) in Ω,

u = 0 on ∂Ω.
(3.7)

Our strategy is to look for a positive solution θ(x : αp) for (3.7) for each α ≥ 0 and determine
α from

α =

∫
Ω

q(x)θ(x;αp)dx. (3.8)

In place of (3.7) we will study the existence of positive solutions for the following auxiliary
problem: 

−d∆u+m(x)u = u(a− bu) in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(3.9)

where a, b, d are positive constants and m : Ω → R is a nonnegative continuous function. We
have the following result.

Proposition 3.1. Let m be a nonnegative continuous function in Ω. Then (3.9) has a unique
positive solution θ(x;m) if and only if a > λ1(m). Moreover, if m1 ≥ m2 (m1 ̸≡ m2), then
θ(x;m2) > θ(x;m1) for x ∈ Ω.

Proof. Since λ1(m) is the principal eigenvalue, one can choose a positive eigenfunction φ(x;m)
corresponding to λ1(m) such that

max
x∈Ω

φ(x;m) = 1 and φ(x;m) > 0 in Ω.

If we set u∗(x) = c1 with positive constant c1 satisfying c1 ≥ a/b, then we see that u∗ is a
supersolution of (3.9). We next take

v∗(x) = εφ(x;m) with positive constant ε.
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Then
−d∆v∗ + v∗(m(x)− a+ bv∗) = ϵφ(x;m)(λ1(m)− a+ bεφ(x;m)).

Hence, if a > λ1(m), one can take a sufficiently small ε > 0 such that bε ≤ a− λ1(m). In this
case,

−d∆v∗ + v∗(m(x)− a+ bv∗) ≤ 0;

that is, v∗ is a subsolution of (3.9). Thus we can construct a supersolution u∗ and a subsolution
v∗ satisfying u∗ ≥ v∗. Hence it follows from the result of Sattinger [14] that (3.9) has a positive
solution.

The proofs of the necessity part and the uniqueness of positive solutions are standard; so
we omit them.

Finally, we will prove the order preserving property. Let m1 ≥ m2; then θ(x;m2) is a
supersolution of (3.9) with m = m1. Therefore

θ(x;m2) ≥ θ(x;m1) in Ω.

Moreover, if we set w(x) = θ(x;m2)− θ(x;m1), then w satisfies{
−d∆w +m2w + w{b(θ(x;m1) + θ(x;m2))− a} ≥ 0 in Ω,

w = 0 on ∂Ω.

Therefore, one can apply the strong maximum principle ([12]) to conclude w > 0 in Ω.

We are ready to study (3.2) in case b > 0. It follows from Proposition 3.1 that (3.7) has a
unique solution θ(x;αp) if and only if

a > λ1(αp). (3.10)

Here we should recall basic properties of λ1(αp) as a function of α (see Lemma 3.1).
In what follows, assume

a > dλ1,Ω. (3.11)

Then it is possible to find a unique ᾱ > 0 satisfying a = λ1(ᾱp) in case Ω0 = ∅. In case Ω0 ̸= ∅,
if we additionally assume a < dλ1,Ω0 ; then it is also possible to find ᾱ which satisfies the same
property as above. When a satisfies a ≥ dλ1,Ω0 in case Ω0 ̸= ∅, we set ᾱ = ∞. Then we see
that (3.10) is equivalent to

0 ≤ α < ᾱ (3.12)

and that, if α satisfies (3.12), then (3.7) has a unique positive solution θ(x;αp).

Lemma 3.2. The mapping α → θ(x;αp) is of class C1 from [0, ᾱ) to C(Ω) and strictly
decreasing. Moreover, it satisfies the following properties:
(i) lim

α→0
θ(·;αp) = θ0 uniformly in Ω, where θ0 is a unique positive solution of

d∆θ + θ(a− bθ) = 0 in Ω and θ = 0 on ∂Ω.

(ii) lim
α→ᾱ

θ(·;αp) =

{
0 uniformly in Ω if ᾱ < ∞,

θ∞ uniformly in Ω if ᾱ = ∞.

Here θ∞ is a function satisfying θ∞ ≡ 0 in Ω \ Ω0 and
d∆θ∞ + θ∞(a− bθ∞) = 0 in Ω0,

θ∞ = 0 on ∂Ω0,

θ∞ > 0 in Ω0.
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Before giving the proof of Lemma 3.2 we will prove the solvability of (3.2).

Theorem 3.2. Let a > dλ1,Ω. Then (3.2) has a unique positive solution u∗.

Remark 3.1. It is easy to show that (3.2) has no positive solution for a ≤ dλ1,Ω.

Proof. Since θ(x;αp) is a positive solution of (3.7) for 0 ≤ α < ᾱ, we see, in view of (3.3),
that θ(x;αp) is a positive solution of (3.2) if and only if α satisfies (3.8). Denote the right-hand
side of (3.8) by F (α). It follows from Lemma 3.2 that F (α) is strictly decreasing for α ∈ [0, ᾱ]
and satisfies

F (0) =

∫
Ω

q(x)θ0(x)dx > 0

and F (ᾱ) = 0 in case ᾱ < ∞,

lim
α→∞

F (α) =

∫
Ω0

q(x)θ∞(x)dx in case ᾱ = ∞.

Therefore, it is easy to find a unique α∗ satisfying α∗ = F (α∗) in both cases ᾱ < ∞ and ᾱ = ∞.
Clearly, θ(x;α∗p) becomes a unique positive solution of (3.2).

Proof of Lemma 3.2. Observe that θ(x;αp) satisfies

−d∆θ(x;αp) + αp(x)θ(x;αp) + θ(x;αp)(bθ(x;αp)− a) = 0 in Ω

with θ(x;αp) = 0 on ∂Ω. Differentiation of the above equation with respect to α leads us to

−d∆w + αp(x)w + (2bθ(x;αp)− a)w = −p(x)θ(x;αp) in Ω and w = 0 on ∂Ω

with w(x) = (∂/∂α)θ(x;αp). We should recall that −d∆+αp(x)+2bθ(x;αp)−a is an invertible
and order-preserving operator from W 2,p(Ω) ∩W 1,p

0 (Ω) to Lp(Ω) (see, e.g., [15, Lemma 1.1]).
Therefore, the implicit function theorem assures to show

∂θ(αp)

∂α
= −{−d∆+ αp(x) + 2θ(x;αp)− a}−1(pθ(αp)) < 0 in Ω.

Thus α → θ(x;αp) is strictly decreasing.
It is easy to see θ(0) = θ0 and θ(ᾱp) = 0 in case ᾱ < ∞.
It remains to study limα→∞ θ(αp) in case ᾱ = ∞. Since θ(αp) is positive and strictly

decreasing with respect to α, there exists a nonnegative function θ∞ such that

lim
α→∞

θ(αp) = θ∞ pointwise in Ω. (3.13)

Take any φ ∈ C∞
0 (Ω); then it holds that

−d

∫
Ω

θ(x;αp)∆φdx+ α

∫
Ω

p(x)θ(x;αp)φdx =

∫
Ω

θ(x;αp)(a− bθ(x;αp))dx. (3.14)

Since p(x) = 0 in Ω0, we see from (3.14) that∫
Ω\Ω0

p(x)θ(x;αp)φdx =
1

α

{
d

∫
Ω

θ(x;αp)∆φdx+

∫
Ω

θ(x;αp)(a− bθ(x;αp))dx

}
. (3.15)

Making use of the uniform boundedness of θ(x;αp) for α ≥ 0 and letting α → ∞ in (3.15) one
can derive ∫

Ω\Ω0

p(x)θ∞(x)φdx = 0 for any φ ∈ C∞
0 (Ω).
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Therefore, θ∞(x) = 0 for x ∈ Ω \ Ω0.
We next take any φ ∈ C∞

0 (Ω0) and define φ̃ ∈ C∞
0 (Ω) by φ̃(x) = φ(x) if x ∈ Ω0 and

φ̃(x) = 0 if x ∈ Ω \ Ω0. Setting φ = φ̃ in (3.14) leads to

−d

∫
Ω0

θ(x;αp)∆φdx =

∫
Ω0

θ(x;αp)(a− bθ(x;αp)φdx.

Letting α → ∞ in the above identity we get

−d

∫
Ω0

θ∞∆φdx =

∫
Ω0

θ∞(a− bθ∞)φdx;

which implies {
−d∆θ∞ = θ∞(a− bθ∞) in Ω,

θ∞ = 0 on ∂Ω.

It should be noted by elliptic regularity theory that θ∞ becomes continuous in Ω. Therefore,
one can conclude from Dini’s theorem that the convergence in (3.13) is uniform. Thus the proof
is complete.

4 Concluding remarks

4.1 Stability of stationary solution

In the previous section, we have shown in Theorem 3.2 that (3.2) has a unique positive solution
u∗. Then it is a very important problem to study the stability of u∗. The spectral problem for
the linearized operator around u = u∗ is given by−d∆v + a1(x)v + p(x)u∗(x)

∫
Ω

q(y)v(y)dy = σv in Ω,

v = 0 on ∂Ω,
(4.1)

where

a1(x) = 2bu∗(x)− a+ p(x)

∫
Ω

q(y)u∗(y)dy.

The above linearized operator is not self-adjoint; so that the spectral problem may have complex
eigenvalues. Moreover, we do not know if the Krein-Rutman theorem holds for (4.1) or not. So
it is difficult to get satisfactory information on the spectrum for (4.1). (Note that Theorem 2.1
in [2] is not applicable to (4.1). )

In general, it is a delicate and difficult problem to study the eigenvalues for the operator
with nonlocal terms, see, e.g., [4], [5, 6, 7].

Finally, it should be noted that, if a is regarded as a bifurcation parameter in (3.2), then the
local bifurcation theory assures the existence and uniqueness of bifurcating positive solutions
of (3.2) if a (> dλ1,Ω) is very close to dλ1,Ω. We can also show that such bifurcating positive
solutions are asymptotically stable when a is very close to dλ1,Ω. So we have a conjecture that
u∗ is asymptotically stable for every a > dλ1,Ω.

4.2 Positive solutions for general case

Our method of analysis is applicable for more general class of equations with diffusion and
nonlocal effects:

ut = d∆u+ u(f(u)− p(x)

∫
Ω

q(y)g(u(y, t))dy),
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where f(u) is a deceasing and locally Lipschitz continuous function such that f(0) > 0 and g(v)
is an increasing, positive and locally Lipschitz continuous function for v > 0.

In Section 3, we have discussed the stationary problem in a case when k has a special form
(3.1). Taking account of nonlocal effects it is also important to study the stationary problem
in case k has the following form

k(x, y) = ρ(x− y),

where ρ is nonnegative and continuous function. For this problem, we can also apply the
bifurcation theory by regarding a as a bifurcation parameter. So it is also possible to show
that, for each a > dλ1,Ωd∆u+ u

(
a− bu−

∫
Ω

ρ(x− y)u(y)dy

)
= 0 in Ω,

u = 0 on ∂Ω,

has at least one positive solution. We will discuss this fact elsewhere.

References

[1] W. Allegretto and A. Barabanova, Existence of positive solutions of semilinear elliptic
equations with nonlocal terms, Funkcial. Ekvac.40 (1997), 395-409.
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