

Title	ON THE HYPERSURFACES OF HERMITIAN SYMMETRIC SPACES OF COMPACT TYPE
Author(s)	Kimura, Yoshio
Citation	大阪大学, 1979, 博士論文
Version Type	VoR
URL	https://hdl.handle.net/11094/24569
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

ON THE HYPERSURFACES OF HERMITIAN SYMMETRIC SPACES OF COMPACT TYPE

YOSHIO KIMURA

ON THE HYPERSURFACES OF HERMITIAN SYMMETRIC SPACES OF COMPACT TYPE YOSHIO KIMURA

(Received

, 197)

Introduction.

これのない 日本にないないない しょうたい

Let M be an irreducible Hermitian symmetric space of compact type and let L be a holomorphic line bundle over M. We denote by $\Omega^{p}(L)$ the sheaf of germs of L-valued holomorphic p-forms on M. In this paper we study the cohomology groups $H^{q}(M, \Omega^{p}(L))$. Further, applying the results so far obtained, we shall consider the hypersurfaces of M.

The paper devided into three parts. §1 is devoted to recalling basic notions and results which are necessary in the following. In §2, for the cases that M is an irreducible Hermitian symmetric space of compact type BDI, EIII or EVII, we obtain the theorems analogous to the following theorem of Bott [3] for $M = P_n(C)$.

Theorem. Let E be the hyperplane bundle over an n-dimensional complex projective space $P_n(C)$. Then the group $H^q(P_n(C), \Omega^p(E^k))$ vanishes except for the following cases: (i) p = q and k = 0, (ii) q = 0 and k > p, (iii) q = n and $k , where <math>E^k = E \otimes \cdots \otimes E$ (k factors).

Further we shall discuss when the groups $H^{q}(M, \Omega^{p}(L))$ vanishes for any irreducible Hermitian symmetric space of compact type for p = 0, 1. These results are obtained by analyzing in detail structure of Lie algebras and their Weyl groups and applying the generalized Borel-Weil theorem.

Let V be a hypersurface of M. Denote by Θ (resp. Ω) the sheaf of germs of holomorphic vector fields (resp. holomorphic functions) on V. In §3 we study the cohomology groups $H^{q}(V, \Theta)$ and $H^{q}(V, \Omega)$ using the results in §2. And we find that if M is BDI, EIII or EVII, one has

$$H^{0}(V,\Theta) = 0$$

for the hypersurfaces V of M except for a certain special case (Theorem 8).

The auther would like to express his gratitude to Professor S. Murakami, Professor M. Takeuchi and Doctor Y. Sakane for their useful suggestions and encouragements.

§1. Preparations.

1.1. The generalized Borel-Weil theorem. In this section we recall the generalized Borel-Weil theorem in a form convenient for our purpose.

Let G be a simply connected complex semi-simple Lie group and let U be a parabolic Lie subgroup of G. Then the quotient manifold M = G/U is a Kähler C-space, that is, a simply connected compact complex homogeneous manifold admitting a Kähler metric. Let g be the Lie algebra of G and h a Cartan subalgebra of g. We denote by Δ the root system of g with respect to h. We shall identify a linear form λ on h with the element H_{λ} of h defined by

 λ (H) = (H_{λ}, H) for H \in h,

where (,) is the Killing form of g. We fix a linear order

on the real form $h_0 = \{ \alpha \in \Delta \}_R$ of h. Let Δ^+ (resp. Δ^-) be the set of all positive (resp. negative) roots. Let Π_1 be a subsystem of Π . We put

$$\Delta_{1} = \{ \alpha \in \Delta; \alpha = \sum_{i=1}^{\ell} m_{i} \alpha_{i}, m_{j} = 0 \text{ for any } \alpha_{j} \notin \Pi_{1} \}$$

$$\Delta(n^{+}) = \{ \beta \in \Delta; \beta = \sum_{i=1}^{\ell} m_{i} \alpha_{i}, m_{j} > 0 \text{ for some } \alpha_{j} \notin \Pi_{1} \}$$

$$\Delta(\mathbf{u}) = \Delta_1 \mathbf{V} \Delta(\mathbf{n}^{\dagger}).$$

Define Lie subalgebras g_1 , n^+ and u of g by

$$g_{1} = h + \sum_{\alpha \in \Delta_{1}} g_{\alpha}$$

$$n^{+} = \sum_{\beta \in \Delta (n^{+})} g_{\beta}$$

$$u = h + \sum_{\alpha \in \Delta (u)} g_{\alpha},$$

where g_{α} is the root space corresponding to $\alpha \in \Delta$. Then g_1 (resp. n^+) is a reductive (resp. nilpotent) subalgebra and $u = g_1 + n^+$ (semi-direct). We denote by U the connected Lie subgroup of G with Lie algebra u. Then U is a parabolic subgroup of G, and M = G/U is a Kähler C-space.

We denote by D (resp. D_1) the set of dominant integral forms of g (resp. g_1). Let $\xi \in D_1$ and choose an irreducible representation ($\rho_{-\xi}^1, W_{-\xi}$) of g_1 with the lowest weight - ξ . We may extend it to arepresentation of u so that its restriction to n^+ is trivial, which will be denoted by ($\rho_{-\xi}, W_{-\xi}$). Since any irreducible representation of u is trivial on n^+ , we may call ($\rho_{-\xi}, W_{-\xi}$) the irreducible representation of u with the lowest weight $-\xi$. Moreover there exists a representation of U which induces the representation ($\rho_{-\xi}$, $W_{-\xi}$) of u, and we denote it by ($\tilde{\rho}_{-\xi}$, $W_{-\xi}$). This representation ($\tilde{\rho}_{-\xi}$, $W_{-\xi}$) defines the holomorphic vector bundle $E_{-\xi}$ over M associated to the principal bundle $G \rightarrow M$ by the representation $\tilde{\rho}_{-\xi}$ of U. For a holomorphic vector bundle vover a complex manifold, we denote by $\Omega(E)$ the sheaf of germs of local holomorphic sections of E. Let W be the Weyl group of g and Δ_1^+ the set of all positive roots of Δ_1 . We define a subset W^1 of W by

$$W^{1} = \{ \sigma \in W; \sigma^{-1}(\Delta_{1}^{+}) \subset \Delta^{+} \},\$$

For any set S, we denote by #S the cardinality of S. The index $n(\sigma)$ of $\sigma \in W$ is then defined by

 $n(\sigma) = \#(\sigma(\Delta^+) \wedge \Delta^-).$

We denote by δ the half of sum of all positive roots of g.

Theorem of Bott [3] (c.f. Kostant [7]). Under the notations defined above let $\xi \in D_1$. Then if $\xi + \delta$ is not regular,

 $H^{j}(M, \Omega E_{-\xi}) = 0$ for all $j = 0, 1, \cdots$.

If $\xi+\delta$ is regular, $\xi+\delta$ is expressed uniquely as $\xi+\delta = \sigma(\lambda+\delta)$, where $\lambda \in D$ and $\sigma \in W^1$, and

$$H^{J}(M, E_{-F}) = 0$$
 for all $j \neq n(\sigma)$,

 $\dim H^{n(\sigma)}(M, E_{-\xi}) = \dim V_{-\lambda},$

where ($\rho_{-\lambda}$, $V_{-\lambda}$) is the irreducible representation of G with the lowest weight $-\lambda$.

We prove the following lemmas to restate this theorem in a form suitable for our parpose.

Lemma 1. Let $\xi \in D_1$. If

 $(\xi+\delta,\beta) \neq 0$ for $\beta \in \Delta(n^+)$,

then $\xi+\delta$ is regular.

Proof. Let α be any root of Δ_1^+ . Then we have $(\xi, \alpha) \ge 0$ and $(\delta, \alpha) > 0$, so that $(\xi + \delta, \alpha) > 0$. Since $\Delta^+ = \Delta_1^+ \bigcup \Delta(n^+)$, we get

$$(\xi+\delta,\gamma) \neq 0$$
 for $\gamma \in \Delta^+$. q.e.d.

Lemma 2. Let $\xi \in D_1$. Assume that there are $\lambda \in D$ and $\sigma \in W^1$ such that $\xi + \delta = \sigma(\lambda + \delta)$. Then

 $n(\sigma) = \#\{ \beta \in \Delta(n^{+}); (\xi + \delta, \beta) < 0 \}.$ Proof. Since $\sigma^{-1}(\Delta_{1}^{+}) \subset \Delta^{+}$, we have

$$n(\sigma) = \#\{ \beta \in \Delta(n^+); \sigma^{-1}(\beta) < 0 \}.$$

By the assumption

 $(\xi+\delta,\alpha) = (\lambda+\delta, \sigma^{-1}(\alpha))$ for $\alpha \in \Delta$. Since $\lambda+\delta$ is dominant and regular, $\sigma^{-1}(\alpha)$ is negative if and only if $(\lambda+\delta, \sigma^{-1}(\alpha))$ is negative. The conclusion now follows from these obserbations.

Theorem of Bott may be restated as follows by these lemmas.

Theorem 1. Let $\xi \in D_1$. Then if there exists a root α of $\Delta(n^+)$ such that $(\xi + \delta, \alpha) = 0$, we have

$$H^{J}(M, \Omega E_{r}) = 0$$
 for $j = 0, 1, \cdots$.

If there exists no root β of $\Delta(n^+)$ such that $(\xi+\delta,\beta) = 0$, we have

$$H^{J}(M, \Omega E_{\xi}) = 0$$
 for $j \neq q$,

and

$$H^{q}(M, \Omega E_{-\xi}) \neq 0,$$

where $q = \#\{\beta \in \Delta(n^+); (\xi+\delta,\beta) < 0\}.$

1.2. Kostant's results. We denote by T(M) the holomorphic tangent bundle of M and denote by T(M)* its dual bundle. Let L be a holomorphic line bundle over M. Then it is easy to see that $\Omega^{p}(L)$ coincides with $\Omega(\frac{p}{\Lambda}T(M)*OL)$, where $\frac{p}{\Lambda}T(M)*$ is p-th exterior product of T(M)*. Since any holomorphic line bundle over a Kähler C-space M is associated to the principal bundle G \rightarrow M by a representation of U (Murakami [8]), we may put $L = E_{-\xi}$ for $\xi \in D_{1}$. It is known n⁺ is invariant by the adjoint representation of U on g. Hence p-th exterior product of n⁺ has a U-module structure. Since n⁺ may be identified with the cotangent space of M at U, $\stackrel{p}{\Lambda}T(M)*\longrightarrow M$ coincides with the holomorphic vector bundle associated to the principal bundle G \rightarrow M by the representation of U on $\stackrel{p}{\Lambda}n^{+}$.

From now on we assume M = G/U is a Hermitian symmetric space of compact type. Then n^+ is abelian. For any integer $p \ge 0$, put

 $W^{1}(p) = \{ \sigma \in W^{1}; n(\sigma) = p \}.$

Kostant [7] has proved that An is decomposed into direct sum:

(1)
$$\int_{\Lambda n^+}^{p^+} = \sum_{\sigma \in W^-} \int_{(p)}^{(\Lambda_n^+)} (\sigma \delta - \delta)$$
 (as U-module),

where $(n^+)_{-(\sigma\delta-\delta)}$ denotes an irreducible U-module with the lowest weight $-(\sigma\delta-\delta)$. The following theorem follows easily from (1) and theorems of Bott [3]. Let W be a holomorphic U-module represented as follows:

$$W = W_{-\xi_1} + \cdots + W_{-\xi_{\ell}} \quad \text{for } \xi_i \in D_1.$$

Denote by E_W the holomorphic vector bundle over M associated to the principal bundle $G \rightarrow M$ by the representation of U on W.

Proposition 1. Under the notations introduced above we have
dim H^j(M,
$$\Omega E_W$$
) = $\sum_{i=1}^{k} \dim H^{j}(M, \Omega E_{-\xi_i})$ for j = 0, 1,

We recall the results of Bott [3] which are necessary to proof the above proposition.

Theorem A. Let S be a holomorphic U-module, and let V be a holomorphic G-module. If E_S is the holomorphic vector bundle over M associated to the principal bundle $G \longrightarrow M$ by the representation of U on S, then

multiplicity of V in $H^{j}(M, \Omega E_{S}) = \dim H^{j}(u, g_{1}, Hom(V,S))$ for $j = 0, 1, \cdots$,

where $H^{j}(u, g_{1}, Hom(V,S))$ denotes the j-th relative cohomology group of Lie algebras u, g_{1} with coefficients in the u-module Hom(V,S).

For g_1 -module T, T^Gl donotes the subspace of S annihilated by all $X \in g_1$.

Theorem B. Let F be a u-module which, considered as g₁-module, is completely reducible. Then

dim
$$H^{j}(u, g_{1}, F) = \dim H^{j}(n^{+}, F)^{g_{1}}$$
.

Proof of Proposition 1. Let V be a holomorphic G-module. Then by Theorems A and B, we have

multiplicity of V in $H^{j}(M, \Omega E_{W}) = \dim H^{j}(n^{+}, \operatorname{Hom}(V,W))^{g}$ for $j = 0, 1, \cdots$. Since $W_{-\xi_{i}}, 1 \leq i \leq l$, are irreducible u-modules, the restrictions to n^{+} of the representations of u on $W_{-\xi_{i}}$ and W are both trivial. Hence

dim H^J(n⁺, Hom(V,W))^g1
= dim (H^j(n⁺, Hom(V,C))
$$\otimes$$
 W)^g1
= $\sum_{i=1}^{\ell}$ dim (H^j(n⁺, Hom(V,C)) \otimes W_{- ξ_i})^g1
= $\sum_{i=1}^{\ell}$ dim H^j(n⁺, Hom(V,W_{- ξ_i}))^g1.

By Theorems A and B dim $H^{j}(n^{+}, Hom(V, W_{-\xi_{i}}))^{g}l = \sum_{i=1}^{\ell} multiplicity of V in H^{j}(M, E_{-\xi_{i}})$ for $j = 0, 1, \cdots$. q.e.d.

The following theorem follows immediately from (1) and the above proposition.

Theorem 2. Let M be a Hermitian symmetric space of compact type. Assume that $E_{-\xi}$, $\xi \in D_1$, is a line bundle over M. Then

dim
$$H^{q}(M, \Omega^{p}(E_{-\xi})) = \sum_{\sigma \in W^{1}(p)} \dim H^{q}(M, \Omega(E_{-(\sigma\delta - \delta + \xi)}))$$

for $q = 0, 1, \cdots$.

Theorem 2 shows us the importance of the study of the structure of W^1 for our porpose.

2. Vanishing of $H^{q}(M, \Omega^{p}(L))$.

We retain the notations and assumptions introduced in the previous section.

Assume that M is an irreducible Hermitian symmetric space of compact type. Then G is simple and there exists $\alpha_j \in \Pi$ such that $\Pi_1 = \Pi - \{\alpha_j\}$. Let $\{\omega_1, \dots, \omega_k\}$ be fundamental weights with respect to $\Pi = \{\alpha_1, \dots, \alpha_k\}$. Then any holomorphic line bundle L over M is isomorphic to $E_{-k\omega_j}$ for some integer k, since any 1-dimensional representation of g_1 is induced by

a representation of the centor of g_1 .

2.1. The case that M is of type BD I i.e. a complex quadric Put dim M = n. The Dinkin diagram of II is as follows:

 $\begin{aligned} & (\operatorname{hat} \ \alpha_{j} = \alpha_{1}) \\ & \text{where } \alpha[0] \quad \operatorname{shows}^{\uparrow} \quad \text{. Let } \{ \ \varepsilon_{i}; \ i = 1, \ \cdots, \ \ell \ \} \ \text{ be a basis of } \\ & h_{0} \quad \text{which satisfies } (\ \varepsilon_{i}, \ \varepsilon_{j} \) = \delta_{ij}. \quad \text{Then, we have:} \\ & \Delta = \begin{cases} \{ \ \pm (\varepsilon_{i} \pm \varepsilon_{j}); \ 1 \le i < j \le \ell, \ \varepsilon_{i}; \ 1 \le i \le \ell \ \}, & \text{if } n = 2\ell - 1, \\ \{ \ \pm (\varepsilon_{i} \pm \varepsilon_{j}); \ 1 \le i < j \le \ell \ \}, & \text{if } n = 2\ell - 2, \end{cases} \\ & \Pi = \begin{cases} \{ \ \alpha_{i} = \varepsilon_{i} - \varepsilon_{i+1}; \ 1 \le i \le \ell - 1, \ \alpha_{\ell} = \varepsilon_{\ell} \ \}, & \text{if } n = 2\ell - 1, \\ \{ \ \alpha_{i} = \varepsilon_{i} - \varepsilon_{i+1}; \ 1 \le i \le \ell - 1, \ \alpha_{\ell} = \varepsilon_{\ell-1} + \varepsilon_{\ell} \ \}, & \\ & (if \ n = 2\ell - 2, \end{cases} \\ & \Lambda(n^{+}) = \begin{cases} \{ \ \varepsilon_{1} \pm \varepsilon_{j}; \ 2 \le j \le \ell, \ \varepsilon_{1} \ \}, & \text{if } n = 2\ell - 1, \\ \{ \ \varepsilon_{1} \pm \varepsilon_{j}; \ 2 \le j \le \ell, \ \varepsilon_{1} \ \}, & \text{if } n = 2\ell - 2, \end{cases} \\ & \omega_{i} = \varepsilon_{1}, \\ & 2\delta = \begin{cases} (2\ell - 1)\varepsilon_{1} + (2\ell - 3)\varepsilon_{2} + \cdots + \varepsilon_{\ell} & \text{if } n = 2\ell - 1, \\ 2(\ell - 1)\varepsilon_{1} + 2(\ell - 2)\varepsilon_{2} + \cdots + 2\varepsilon_{\ell-1} & \text{if } n = 2\ell - 2. \end{cases} \\ & \text{An element } \sigma \in \mathbb{W} \ \text{acts in } h_{0} \ \text{by } \sigma \varepsilon_{i} = \pm \varepsilon_{\sigma}(i) & \text{for } 1 \le i \le \ell, \end{cases} \end{aligned}$

where σ in the index is a permutation of $\{1, 2, \dots, \ell\}$. We represent this element $\sigma \in W$ by

$$\left(\begin{array}{cccc} 1 & 2 & \cdots & \ell \\ \pm \sigma(1) & \pm \sigma(2) & \cdots & \pm \sigma(\ell) \end{array}\right).$$

Then

$$W^{1} = \begin{cases} \begin{cases} \sigma \in W; \ \sigma^{-1} = \begin{pmatrix} 1 & 2 & \cdots & l \\ s(\sigma)i & i_{2} & \cdots & i_{k} \end{pmatrix}, 0 < i_{2} < \cdots < i_{k} \leq l \\ s(\sigma)i & i_{2} & \cdots & i_{k} \end{pmatrix}, if \ n = 2l - 1 \\ \end{cases} \\ \begin{cases} \sigma \in W; \ \sigma^{-1} = \begin{pmatrix} 1 & 2 & \cdots & l \\ s(\sigma)i & i_{2} & \cdots & s(\sigma)i_{k} \end{pmatrix}, 0 < i_{2} < \cdots < i_{k} \leq l \\ s(\sigma)i & i_{2} & \cdots & s(\sigma)i_{k} \end{pmatrix}, s(\sigma) = \pm 1 \\ \end{cases} \\ \end{cases} \\ \end{cases} \\ \end{cases}$$

An element $\sigma \in W^1$ is determined by i and $s(\sigma)$, and its index $n(\sigma)$ of σ is as follows:

$$n(\sigma) = \begin{cases} i - 1 & \text{if } s(\sigma) = 1, \\ n - (i - 1) & \text{if } s(\sigma) = -1 \end{cases}$$

Furthermore for $\sigma \in W^1$, the values of $(\sigma^{\delta}, \frac{2\beta}{(\beta,\beta)})$ are as follows. $\overbrace{\left(\beta \in \Delta(n^{+})\right)}$ If $n = 2\ell - 1$,

 $s(\sigma) = -1$

 $(\sigma\delta,\frac{2\beta}{(\beta,\beta)})$

$$s(\sigma) = 1$$

∆ (n⁺)

 $(\sigma\delta, \frac{2\beta}{(\beta,\beta)})$ Δ (n⁺)

· · · · · · · · · · · · · · · · · · ·				
$\varepsilon_1 - \varepsilon_2$	- (i - 1)		ε ₁ - ε ₂	- 2% + i
$\epsilon_1 - \epsilon_3$	- (i - 2)		ε ₁ - ε ₃	- 2l + i + l
• • •			• • •	•••
^e l ^{- e} i	-1		ε _l - ε _i	- 2£ + 2i - 2
ε _l - ε _{i+l}	1		εl	- 2% + 2i - 1
$\varepsilon_1 - \varepsilon_{i+2}$	2		ε _l - ε _{i+l}	- 2l + 2i
•••	•••		•••	* • •
ε _l - ε _l	2 – i		ε ₁ - ε _l	-l + i - 1
ε _l + ε _k	l - i + 1		$\epsilon_1 + \epsilon_k$	- & + i
$\varepsilon_1 + \varepsilon_{l-1}$	l - i ÷ 2		$\varepsilon_1 + \varepsilon_{l-1}$	- l + i + l
•••	•••		•••	•••
ε _l + ε _{i+l}	22 - 2i		ε _l + ε _{i+l}	-1
εl	21 - 2i + 1		ε _l + ε _i	1
ε _l + ε _i	2& - 2i + 2		ε _l + ε _{i-l}	2
. • • •	•••		•••	•••
ε ₁ + ε ₂	22 - i		ε ₁ + ε ₂	i - 1
		-		

If $n = 2\ell - 2$,

 $s(\sigma) = 1$

ſ

11

 $s(\sigma) = -1$ $1 \leq i < \ell$

i = l

	∆(n ⁺)	(σδ, <u>2β</u>)		Δ(n ⁺)	(σδ, <mark>2β</mark>)		Δ (n ⁺)	$(\sigma\delta,\frac{2\beta}{(\beta,\beta)})$
	ε ₁ - ε ₂	- (i - 1)		ε ₁ - ε ₂	-21 + i + 1		$\varepsilon_1 - \varepsilon_2$	- (l - 1)
	ε ₁ - ε ₃	- (i - 2)		ε ₁ - ε ₃	-2l + i + 2	1 1.	ε ₁ - ε ₃	- (l - 2)
	•••	• • •		•••	•••		•••	•
· !	ε _l - ε _i	-1			-2l + 2i - 1		$\varepsilon_1 - \varepsilon_{l-1}$	-2
	ε _l - ε _{i+l}	1		ε _l - ε _{i+l}	-21 + 2i + 1		ε ₁ - ε ^χ	1
	ε _l - εi+2	2	-	$\varepsilon_1 - \varepsilon_{i+2}$	-2l + 2i + 2		ε ₁ + ε ₂	-1
	•••	•••		•••	•••		$\varepsilon_1 + \varepsilon_{l-1}$	2
	ε ₁ - ε _ℓ	•		$\varepsilon_1 - \varepsilon_k$			$\varepsilon_1 + \varepsilon_{\ell-2}$	3
	$\varepsilon_1 + \varepsilon_k$			ε ₁ + ε _k			•••	•••
	$\varepsilon_1 + \varepsilon_{\ell-1}$	l - i + 1		$\varepsilon_1 + \varepsilon_{\ell-1}$	-(l - i - l)		^ε 1 ^{+ ε} 2	- 1
		• • •		•••	• • •			•
		21 - 2i - 1		ε ₁ + ε _{i+1}	-1			
		2l - 2i + 1		ε _l + ε _i	1			
	ε _l + ε _{i-l}	2l - 2i + 2		^ε l ^{+ ε} i-l	2		• •	
	•••			•••	•••		· · · ·	ана • Солония • Солония
	ε ₁ + ε ₂	2l - i - 1		$\varepsilon_1 + \varepsilon_2$	i - 1			

Furthermore we have

$$(k\omega_{1}, \frac{2\beta}{(\beta, \beta)}) = \begin{cases} k & \text{if } \beta = \varepsilon_{1} \pm \varepsilon_{j}, 2 \leq j \leq \ell, \\ 2k & \text{if } \beta = \varepsilon_{1}. \end{cases}$$

Then, we obtain the following by Theorems 1 and 2,

Theorem 3. Let M be a complex quadric of dimension n, $n \ge 3$. Then the group $H^{q}(M, \Omega^{p}(E_{-k\omega_{1}})) = 0$ except for the following cases: (i) q = 0 and k > p, (ii) p = q and k = 0, (iii) p + q = n and k = 2p - n, (iv) q = n and k .

2.2. The case M is of type EIII. The Dinkin diagram is:

$$\overset{\alpha_1 \alpha_3 \alpha_4 \alpha_5 \alpha_6}{\underbrace{\circ}_{\alpha_2}}$$

, where $\alpha_1 \bigotimes$ shows that $\alpha_j = \alpha_1$ in this case. We have $\#\Delta(n^+) = 16$ and $\#W^1 = 27$. We express $\beta = \sum_{i=1}^6 m_i \alpha_i \in \Delta(n^+)$ by $(m_1 m_2 m_3 m_4 m_5 m_6)$. For σ of W^1 , we put $\sigma\delta = (n_1 n_2 n_3 n_4 m_5 n_6)$ if $\sigma\delta = \sum_{i=1}^6 n_i \alpha_i$. Then we give the values $(\sigma\delta, \frac{2\beta}{(\beta, \beta)})$ for $\sigma \in W^1$ and $\beta \in \Delta(n^+)$ by Table 1. From Table 1, Theorems 1 and 2, we obtain the following theorem.

figure (figure),Theorem 4. Let M be EIII. Then the group $H^q(M, \Omega^p(E_{-k\omega}))$ vanishes except for (p, q, k) listed in Table 2.

3 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3 1 1 <t< th=""><th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th><th>$\begin{array}{c} \beta_{10} \\ \beta_{10} \\ \beta_{10} \\ \beta_{11} \\ \beta_{12} \\ \beta_{11} \\ \beta_{12} \\ \beta_{1$</th><th>$\begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$</th><th>$5 \beta_{16}$ the number which does n appear in the sequence</th></t<>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \beta_{10} \\ \beta_{10} \\ \beta_{10} \\ \beta_{11} \\ \beta_{12} \\ \beta_{11} \\ \beta_{12} \\ \beta_{1$	$\begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ $	$5 \beta_{16}$ the number which does n appear in the sequence
	ス の の し し し し し し し し し し し し し	1 1	543322 2222 2222 22333 23434 4445 55667 F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	のの8822867665564555443433234433224433224433224433224433224433224433224433224433224433224433224433224433	14 ^β 1
ο ο ο ο ο ο ο ο ο ο ο ο ο ο	Ф Ф	g GDDAGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		ουΨΨΨΨΨΨΑσοσαμαμαμασοσασασασασασασασασασασασασασα	β 8
1 1	δ δ				6 م
6 β 1	6 6 1	δ Δ δ <t< td=""><td></td><td></td><td>β 5 β</td></t<>			β 5 β
$ \begin{array}{c} \beta_{5} \\ \beta_{5} \\ \beta_{6} \\ \beta_{7} \\ \beta_{6} \\ \beta_{7} \\ \beta_{6} \\ \beta_{7} \\ \beta_{7} \\ \beta_{8} \\ \beta_{7} \\ \beta_{8} \\ \beta_{7} \\ \beta_{8} \\ \beta_{9} \\ \beta_{9} \\ \beta_{10} \\ \beta_{11} \\ \beta_$	Φ Λ Λ Φ Λ Φ Λ Φ Λ Φ Φ 1 <td>α 1<!--</td--><td>Ф 4 4 0</td><td>4 W W H H H H H H H H H H H H H H H H H</td><td>β4</td></td>	α 1 </td <td>Ф 4 4 0</td> <td>4 W W H H H H H H H H H H H H H H H H H</td> <td>β4</td>	Ф 4 4 0	4 W W H H H H H H H H H H H H H H H H H	β4
$ \begin{array}{c} B \\ A \\ A \\ B \\ C \\ B \\ C \\ C \\ C \\ C \\ C \\ C \\ C$	Φ Φ Φ Φ Φ 1 </td <td>Φ 4</td> <td></td> <td>ииника 111111111111111111111111111111111111</td> <td>B 3</td>	Φ 4		ииника 111111111111111111111111111111111111	B 3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} B_{3} \\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3$	9988777666655555544343322112133 β 998887776666555554433332121113344 β 111111111111111111111111111111111111	99888776666555554434332211233 β 09888776666555544333321211113344 β 111111111111111111111111111111111111		β ₂
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	。 。 。 。 。 。 。	β
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Q S B

Table 1 $(\sigma\delta,\frac{2\beta}{(\beta,\beta)}) \text{ for } \sigma \in W^1 \text{ and } \beta \in \Delta(n^+) \text{ (type E III}$

Values

, where	$\sigma \sigma \delta, \sigma \in W^1, \text{ and }$	β∈∆((n ⁺) a	are expre	ssed	as	; fo
 σ₀δ	(111111)		β ₁	(100	0 0	0	>
σιδ	(-112111)		^β 2	(101	0 0	0)
σ₂δ	(-211211)			(101	1 0	0).
σ₃δ	(-321121)		^β 3				
σ₄δ	(-431112)		^β 4	(101	11	0)
σ4 δ	(-411131)		β ₅	(111	1 0	0)
σ₅δ	(-541111)		β ₆	(101	11	1	· •
σ5΄δ	(-521122)						
σεδ	(-631121)		^β 7	(111	T.T	0)
σ ₆ δ	(-611213)		^β 8	(111	11	1)
070	(-7 2 1 2 1 2)		βg	(111	2 1	0)
σ7 δ	(-712114)						
σ ₈ δ	(-811311)	-	^β 10	(111	2 I	T)
σ ₈ δ	(-822113)		β ₁₁	(112	2 1	0)
σείδ	(-711115)		β ₁₂	(112	2 1	1)
σοδ	(-912212)	-		(111			
δευ	(-821114)		^β 13				
σιοδ	(-911213)		β14	(112	2 2	1)
σ10 δ.	(-10 1 3 1 2 1)		^β 15	(112	32	1)
σιιδ	(-11 1 4 1 1 1)		4.0	(122	32	1	3
δ11 δ	(-10 1 2 1 2 2) (-11 1 3 111 2)		^β 16				
σ12δ	(-11 1 3 111 2) (-10 1 1 1 3 1)			· · ·			
σ12 δ	(-1011131) (-1112121)					· · ·	
σ13δ σ14δ	(-11 1 2 1 2 1)						
σ15δ	(-11 2 1 1 1 1)		•				
σ16δ	$(-11 \ 2 \ 1 \ 1 \ 1 \ 1)$			· · · · ·	· .		
~		• .			-		

 $\sigma\delta$, $\sigma \in W^1$, and $\beta \in \Delta(n^+)$ are expressed as follows:

Table	2

pq = 0 $1 \leq q \leq 15$, (a,b) shows q = a and k = bq = 160k > -1k <k <-111k > 1(1,0)k <-112k > 2(2,0), (14,-9)k <-113k > 3(3,0), (15,-10)k <-114k > 4(4,0), (12,-6), (15,-9), (15,-10)k <-115k > 5(5,0), (3,2), (15,-8), (15,-9), (15,-10)k <-116k > 6(6,0), (3,3), (2,4), (10,-3), (14,-7), (15,-8)k <-10(15,-9)(15,-9)(15,-9)(14,-7), (15,-8)k <-98k > 8(8,0), (1,7), (2,5), (2,6), (14,-5), (14,-6)k < -8(14,-7)(14,-7)(14,-7)(14,-7)9k > 9(9,0), (1,8), (2,6), (14,-5), (15,-6)k < -710k > 10(10,0), (1,8), (1,9), (2,7), (6,3), (13,-3)k < -6(14,-4)(14,-4)(14,-4)(14,-4)11k > 11(11,0), (1,9), (1,10), (13,-2)k < -512k > 11(11,0), (1,9), (1,10), (4,6)k < -413k > 11(13,0), (1,10)k < -214k > 11(14,0), (2,9)k < -11616k > 11(15,0)k < -116			•	
1 $k \ge 1$ $(1,0)$ $k < -11$ 2 $k \ge 2$ $(2,0)$, $(14,-9)$ $k < -11$ 3 $k \ge 3$ $(3,0)$, $(15,-10)$ $k < -11$ 4 $k \ge 4$ $(4,0)$, $(12,-6)$, $(15,-9)$, $(15,-10)$ $k < -11$ 5 $k \ge 5$ $(5,0)$, $(3,2)$, $(15,-8)$, $(15,-9)$, $(15,-10)$ $k < -11$ 6 $k \ge 6$ $(6,0)$, $(3,3)$, $(2,4)$, $(10,-3)$, $(14,-7)$, $(15,-8)$ $k < -10$ 7 $k \ge 7$ $(7,0)$, $(1,6)$, $(2,5)$, $(14,-6)$, $(15,-8)$ $k < -9$ 8 $k \ge 8$ $(8,0)$, $(1,7)$, $(2,5)$, $(2,6)$, $(14,-5)$, $(14,-6)$ $k < -8$ $(14,-7)$ $(14,-7)$ $(14,-7)$ $(14,-7)$ 9 $k \ge 8$ $(8,0)$, $(1,7)$, $(2,5)$, $(2,6)$, $(14,-5)$, $(14,-6)$ $k < -8$ $(14,-7)$ $(14,-7)$ $(14,-4)$ $(14,-4)$ 11 $k \ge 10$ $(10,0)$, $(1,8)$, $(1,9)$, $(2,7)$, $(6,3)$, $(13,-3)$ $k < -6$ $(14,-4)$ $(14,-4)$ $(14,-4)$ $(14,-4)$ $(14,-4)$ 11 $k \ge 11$ $(12,0)$, $(1,9)$, $(1,10)$, $(4,6)$ $k < -3$ 12 $k \ge 11$ $(13,0)$, $(1,10)$ $k < -3$	р	q = 0	$1 \leq q \leq 15$, (a,b) shows $q = a$ and $k = b$	q = 16
2 k > 2 (2,0), (14,-9) k < -11	0	k > -1		k < -11
3 k > 3 $(3,0), (15,-10)$ k < -11	1	k > 1	(1,0)	k < -11
4 $k > 4$ $(4,0), (12,-6), (15,-9), (15,-10)$ $k < -11$ 5 $k > 5$ $(5,0), (3,2), (15,-8), (15,-9), (15,-10)$ $k < -11$ 6 $k > 6$ $(6,0), (3,3), (2,4), (10,-3), (14,-7), (15,-8)$ $k < -10$ $(15,-9)$ $(15,-9)$ $(14,-7), (15,-8)$ $k < -9$ 7 $k > 7$ $(7,0), (1,6), (2,5), (14,-6), (15,-8)$ $k < -9$ 8 $k > 8$ $(8,0), (1,7), (2,5), (2,6), (14,-5), (14,-6)$ $k < -8$ $(14,-7)$ $(14,-7)$ $(14,-7)$ $(14,-6)$ $k < -8$ 9 $k > 9$ $(9,0), (1,8), (2,6), (14,-5), (15,-6)$ $k < -7$ 10 $k > 10$ $(10,0), (1,8), (1,9), (2,7), (6,3), (13,-3)$ $k < -6$ $(14,-4)$ $(14,-4)$ $(11,0), (1,8), (1,9), (1,10), (13,-2)$ $k < -5$ 12 $k > 11$ $(11,0), (1,9), (1,10), (4,6)$ $k < -4$ 13 $k > 11$ $(14,0), (2,9)$ $k < -2$ 15 $k > 11$ $(15,0)$ $k < -1$	2	k > 2	(2,0), (14,-9)	k < -11
5 k > 5 $(5,0), (3,2), (15,-8), (15,-9), (15,-10)$ k < -11	3	k > 3	(3,0), (15,-10)	k < -11
6 $k > 6$ $(6,0), (3,3), (2,4), (10,-3), (14,-7), (15,-8)$ $k < -10$ (15,-9) (15,-9) $k < -9$ 7 $k > 7$ $(7,0), (1,6), (2,5), (14,-6), (15,-8)$ $k < -9$ 8 $k > 8$ $(8,0), (1,7), (2,5), (2,6), (14,-5), (14,-6)$ $k < -8$ $(14,-7)$ $(14,-7)$ $k < -7$ 9 $k > 9$ $(9,0), (1,8), (2,6), (14,-5), (15,-6)$ $k < -7$ 10 $k > 10$ $(10,0), (1,8), (1,9), (2,7), (6,3), (13,-3)$ $k < -6$ $(14,-4)$ $(14,-4)$ $k < -1$ $k < -1$ 11 $k > 11$ $(11,0), (1,8), (1,9), (1,10), (13,-2)$ $k < -5$ 12 $k > 11$ $(12,0), (1,9), (1,10), (4,6)$ $k < -4$ 13 $k > 11$ $(14,0), (2,9)$ $k < -2$ 15 $k > 11$ $(14,0), (2,9)$ $k < -1$	4	k > 4	(4,0), (12,-6), (15,-9), (15,-10)	k < -11
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	k > 5	(5,0), (3,2), (15,-8), (15,-9), (15,-10)	k < -11
7 $k > 7$ $(7,0), (1,6), (2,5), (14,-6), (15,-8)$ $k < -9$ 8 $k > 8$ $(8,0), (1,7), (2,5), (2,6), (14,-5), (14,-6)$ $k < -8$ $(14,-7)$ $(14,-7)$ $k < -7$ 9 $k > 9$ $(9,0), (1,8), (2,6), (14,-5), (15,-6)$ $k < -7$ 10 $k > 10$ $(10,0), (1,8), (1,9), (2,7), (6,3), (13,-3)$ $k < -6$ $(14,-4)$ $(14,-4)$ $k < 11$ $(11,0), (1,8), (1,9), (1,10), (13,-2)$ $k < -5$ 12 $k > 11$ $(12,0), (1,9), (1,10), (4,6)$ $k < -4$ 13 $k > 11$ $(13,0), (1,10)$ $k < -3$ 14 $k > 11$ $(14,0), (2,9)$ $k < -2$ 15 $k > 11$ $(15,0)$ $k < -1$	6	k > 6	(6,0), (3,3), (2,4), (10,-3), (14,-7), (15,-8)	k < -10
8 $k > 8$ $(8,0), (1,7), (2,5), (2,6), (14,-5), (14,-6)$ $k < -8$ 9 $k > 9$ $(9,0), (1,8), (2,6), (14,-5), (15,-6)$ $k < -7$ 10 $k > 10$ $(10,0), (1,8), (1,9), (2,7), (6,3), (13,-3)$ $k < -6$ $(14,-4)$ $(14,-4)$ $k < -1$ $k < -5$ 11 $k > 11$ $(11,0), (1,8), (1,9), (1,10), (13,-2)$ $k < -5$ 12 $k > 11$ $(12,0), (1,9), (1,10), (4,6)$ $k < -4$ 13 $k > 11$ $(14,0), (2,9)$ $k < -2$ 14 $k > 11$ $(14,0), (2,9)$ $k < -1$			(15,-9)	
(14, -7)9 $k > 9$ $(9,0), (1,8), (2,6), (14, -5), (15, -6)$ $k < -7$ 10 $k > 10$ $(10,0), (1,8), (1,9), (2,7), (6,3), (13, -3)$ $k < -6$ $(14, -4)$ 11 $k > 11$ $(11,0), (1,8), (1,9), (1,10), (13, -2)$ $k < -5$ 12 $k > 11$ $(12,0), (1,9), (1,10), (4,6)$ $k < -4$ 13 $k > 11$ $(14,0), (2,9)$ $k < -2$ 15 $k > 11$ $(15,0)$	7	k > 7	(7,0), (1,6), (2,5), (14,-6), (15,-8)	k < -9
9 $k > 9$ $(9,0), (1,8), (2,6), (14,-5), (15,-6)$ $k < -7$ 10 $k > 10$ $(10,0), (1,8), (1,9), (2,7), (6,3), (13,-3)$ $k < -6$ $(14,-4)$ $(14,-4)$ $k > 11$ $(11,0), (1,8), (1,9), (1,10), (13,-2)$ $k < -5$ 12 $k > 11$ $(12,0), (1,9), (1,10), (4,6)$ $k < -4$ 13 $k > 11$ $(13,0), (1,10)$ $k < -3$ 14 $k > 11$ $(14,0), (2,9)$ $k < -2$ 15 $k > 11$ $(15,0)$ $k < -1$	8	k > 8	(8,0), (1,7), (2,5), (2,6), (14,-5), (14,-6)	. k < −8
10 $k > 10$ $(10,0)$, $(1,8)$, $(1,9)$, $(2,7)$, $(6,3)$, $(13,-3)$ $k < -6$ $(14,-4)$ $(14,-4)$ $k > 11$ $(11,0)$, $(1,8)$, $(1,9)$, $(1,10)$, $(13,-2)$ $k < -5$ 12 $k > 11$ $(12,0)$, $(1,9)$, $(1,10)$, $(4,6)$ $k < -4$ 13 $k > 11$ $(13,0)$, $(1,10)$ $k < -3$ 14 $k > 11$ $(14,0)$, $(2,9)$ $k < -2$ 15 $k > 11$ $(15,0)$ $k < -1$			(14,-7)	
(14, -4)11k > 11 $(11, 0), (1, 8), (1, 9), (1, 10), (13, -2)$ k < -5	9	k > 9	(9,0), (1,8), (2,6), (14,-5), (15,-6)	k < -7
11 $k > 11$ $(11,0), (1,8), (1,9), (1,10), (13,-2)$ $k < -5$ 12 $k > 11$ $(12,0), (1,9), (1,10), (4,6)$ $k < -4$ 13 $k > 11$ $(13,0), (1,10)$ $k < -3$ 14 $k > 11$ $(14,0), (2,9)$ $k < -2$ 15 $k > 11$ $(15,0)$ $k < -1$	10	k > 10	(10,0), (1,8), (1,9), (2,7), (6,3), (13,-3)	k < -6
12 k > 11 (12,0), (1,9), (1,10), (4,6) k < -4	· .	-	(14,-4)	
13 k > 11 (13,0), (1,10) k < -3	11	k > 11	(11,0), (1,8), (1,9), (1,10), (13,-2)	k < -5
14 k > 11 (14,0), (2,9) k < -2	12	k > 11	(12,0), (1,9), (1,10), (4,6)	k < -4
15 k > 11 (15,0) k < -1	13	k > 11	(13,0), (1,10)	k < -3
	14	k > 11	(14,0), (2,9)	k < -2
16 k > 11 k < 1	15	k > 11	(15,0)	k < -1
	16	k > 11		k < 1

2.3. The case M is of type E VII. The Dinkin diagram of M is:

$$\overset{\alpha_1 \alpha_3 \alpha_4 \alpha_5 \ldots 6 \alpha_7}{\circ} \overset{\circ}{\longrightarrow} \overset{\circ}{\to} \overset{\circ}{\to$$

where $\alpha_7 \bigotimes \text{shows} \bigwedge^{\alpha} j = \alpha_7$ in this case. We have $\# \Delta(n^+) = 27$ and $\# W^1 = 56$. We express β of $\Delta(n^+)$ and $\sigma\delta$ for $\sigma \in W^1$ in a similar way as in 2.2. Then the values $(\sigma\delta, \frac{2\beta}{(\beta,\beta)})$ for $\sigma \in W^1$ and $\beta \in \Delta(n^+)$ are as in Table 3. From Table 3, Theorems 1 and 2, we obtain the following.

Theorem 5. Let M be of type E VII. Then the group $H^{q}(M, \Omega^{p}(E_{-k\omega})) = 0$ except for (p, q, k) listed in Table 4.

Table 3

۲

Values $(\sigma\delta, \frac{2\beta}{(\beta,\beta)})$ for $\sigma \in W^1$ and $\beta \in \Delta(n^+)$ (E VII) type

, , , , ,	Va	lues	, ((⁵ °'(β,β))	for	σε	: W-	and	p (€∆(n')	(typ	e I	E VII	;)
	σδβ	β ₁	β2	β3	β ₄	β5	β6	β7	β8	β9	β ₁	0 ^β 1	1 ^β 1	2 ^β 13	β ^β 14	βls	5 ^β 16]
	σοδ σιδ σ ₂ δ	1 -1 -2	2 1 -1	3 2 1	4 3 2	5 4 3	5 4 3	6 5 4	6 5 4	7 6 5	7 6 5	8 7 7	• 8 7 6	9 9 8	9 9 8	9 8 7	10 10	İ
	020 σ3δ σ4δ	-3 -4	-2 -3	-1 -2	1 -1	2	2 1	3	4 3 2	5 5 3	4	7	6 5	8 5	8 7 6	7 7 7	9 8 7	
	σ5δ σ5 ⁵ δ	-5 -5 -6	-4 -4 -5	-3 -3 -4	-2 -2 -3	1 -1 -1	-1 1	2 2	1	· 2 3	4 3 2	3 4	5	4 5	6 5 5	6 7	7 6	
	σ 6 δ σ 6 δ σ 7 δ	-6 -7	-5 -5 -6	-4 -4 -5	-3 -3 -4	-1 1 -1	-1 -2 -2	1 2 1	1 -1 -1	2 3 2	3 3 2	3 4 3	4 4 3	4 5 4	5 5 4	6 5 5	6 6 5	
	σ7 δ σ8 δ	-7 -8	-6 -7	-5 -6	-3 -4	-2 -2	-2 -3	-1 -1	1 -1	1 1	2 1	2 2	4 3	3 3	5 4	5 4	6 5	
	σ ₈ ~δ σ ₉ δ σ ₉ ~δ	-8 -9 -9	-7 -8 -8	-5 -7 -6	-4 -4 -5	-3 -3 -3	-3 -3 -4	-2 -2 -2	1 -2 -1	-1 1 -1	2 -1 1	1 2 1	3 2 2	2 3 2	5 3 4	4 3 3	6 4 5	
	σ ₁₀ δ	-9 -10	-7 -9	-6 -7	-5 -5	-4 -4	-4 -4	-3 -3	1 -2	-2 -1	2 -1	-1 1	3 1	1 2	4 3	4 2	6 4	· ·
	$\begin{array}{c}\sigma_{10} & \delta\\\sigma_{10} & \delta\\\sigma_{11}\delta\end{array}$	-10 -9 -11	-8 -8 -10	-7 -7 -7	-6 -6 -6	-4 -5 -5	-5 -5 -4	-3 -4 -3	-1 1 -3	-2 -3 2	1 2 -2	-1 -2 11	2 3 -1	1 -1 2	3 4 2	3 4 1	5 5 3	
	$\frac{\sigma_{11}}{\sigma_{11}} \delta$	-11 -10	-9 -9	-8 -8	-6 -7	-5 -5	-5 -6	-4 -4	-2 -1	-2 -3	-1 1	-1 -2	1 2	1 -1	2 3	2 3	4 4	
	$ \begin{array}{c} \sigma_{12}\delta \\ \sigma_{12}\delta \\ \sigma_{12}\delta \end{array} $	-12 -12 -11	-11 -10 -10	-7 -8 -9	-6 -7 -7	-5 -6 -6	-5 -5 -6	-4 -4 -5	-4 -3 -2	-3 -3 -3	-3 -2 -1	1 -1 -2	-2 -1 1	2 1 -1	2 1 2	-1 1 2	3 3 3	
	σ13δ σ13 δ	-13 -13	-11 -10	-8 -9	-7 -8	-6 -7	-6 -5	-5 -4	-4 -4	-4 -3	-3 -3	-1 -2	-2 -2	1 1	1 -1	-1 1	3 2	
	$ \begin{array}{c} \sigma_{13} & \delta \\ \sigma_{14} & \delta \\ \sigma_{14} & \delta \end{array} $	-12 -14 -13	-11 -11 -12	-9 -9 -9	-8 -8 -8	-7 -7 -7	-6 -6 -7	-5 -5 -6	-3 -5 -4	-4 -4 -5	-2 -4 -3	-2 -2 -2	-1 -3 -2	-1 1 -1	1 -1 1	1 -1 -1	2 2 1	
	$\begin{array}{c} \sigma_{14} & \delta \\ \sigma_{15} \delta \end{array}$	-13 -13	-11 -12	-10 -11	-9 -10	-8 -9	-6 -6	-5 -5	-4 -5	-4 -4	-3 -4	-3 -3	-2 -3	-1 -2	-1 -2	1 1	1 -1	
	σ ₁₅ δ σ ₁₅ δ σ ₁₆ δ	-14 -15 -14	-11	-10 -10 -11	-9 -8 -10	8 7 -9	-7 -7 -7	-6 -6 -6	-5 -6 -6	-5 -4 -5	-4 -5 -5	-3 -3 -3	-3 -3 -4	-1 1 -2	-1 -2 -2	-1 -2 -1	1 2 -1	
	$\sigma_{16}\delta$ $\sigma_{16}\delta$	-15 -16	-12 -11	-11 -10	-9 -9	-8 -7	-8 -8	-7 -6	-6 -7	-5 -5	-5 -5	-4 -4	-3 -4	-1 1	-2 -3	-2 -3	1 2	
	$ \begin{array}{c} \sigma_{17}\delta\\\sigma_{17}\delta\\\sigma_{17}\delta\end{array} $	-15 -16 -17	-12	-12 -11 -10	-10 -10 -9	-9 -8 -8	-8 -9 -8	-7 -7 -7	-7 -7 -7	-5 -6 -6	-6 -5 -6	-4 -5 -5	-4 -4 -5	-1	-3 -3 -4	-2 -3 -4	-1 1 2	
	σ ₁₈ δ σ ₁₈ δ	-15 -16	-14 -13	-13 -12	-10 -11	-9 -9	-9 -9	-8 -7	-8 -8	-5 -6	-7 -6	-4 -5	-4 -5	-3 -2	-3 -4	-3 -3	-2 -1	
	$ \begin{array}{c} \sigma_{18} & \delta \\ \sigma_{19} & \delta \\ \sigma_{19} & \delta \end{array} $	-17 ⁻ -16 -17	-14	-11 -13 -12	-10 -11 -11	-9 -9 -10	-9 -10 -9	-8 -8 -8	-7 -9 -8	-7 -6 -7	-6 -7 -7	-6 -5 -6	-5 -5 -6	-3	-4 -4 -5	-4 -4 -4	1 -2 -1	
	$\sigma_{20}\delta$ $\sigma_{20}\delta$	-16 -17	-15 -14	-13 -13	-12 -11	-9 -10	-11 -10	-8 -9	-10 -9	-7 -7	-7 -8	-5 -6	-6 -6	-4 -3	-4 -5	-5 -5	-3 -2	
	$ \begin{array}{c} \sigma_{21}\delta \\ \sigma_{21}\delta \\ \sigma_{22}\delta \end{array} $	-16 -17 -17	-15	-14 -13 -14	-13 -12 -13	-9 -10 -10	-12 -11 -12	-8 -9 -9	-11 -10 -11	-7 -8 -8	-7 -8 -8	-6 -6 -7	-6 -7 -7	-4	-5 -5 -6	-5 -6 -6	-4 -3 -4	
	022 δ 023δ	-17 -17	-16 -16	-13 -14	-12 -13	-11 -11	-11 -12	-10 -10	-10 -11	-9 -9	-9 -9	-6 -7	-8 -8	-5 -6	-5 -6	-7 -7	-4 -5	
	σ ₂₄ δ σ ₂₅ δ	-17 -17 -17	-16	-15 -15 -15	-13 -14 -14	-12 -13 -13	-12 -12 -13	-11 -11 -12	-11 -11 -11	-9 -10 -11	-10 -10 -10	-8 -9 -10	-8 -9 -9		-7 -8 -8	-7 -7 -8	-6 -7 -7	
	026δ 027δ				-14	-13 -13	-13	-12		-11	-11	-10	-10		-8 -9	-8	-8	

•	•	•											•	-	~~~~		•			•						· · ·	•	•	:		•	•			•	:	•		, , , , , , , , , , , , , , , , , , ,	
the number which does not	ear in the sequence		15	4, 1		, 10 , 10	4, 0, 12, 15, 16	, 12, 15	, 15, 16	5, -6, 0, 6, 11, 12 7, 0, 10, 14, 15	, 13, 14, 1	, -6, 0, 11, 1	, 0, 13, 14, 15 12 12 14 15	тс, то, т4, т -0 о в 10		12, 13, 14, 15	9, -8, 0, 7, 8	11, -9, 0, 2, 11, 13 2, -, 0, 0, 12, 12, 1	2109. 0. 7. 12	2, -11, -6,	10, 12, 13	3, -10,	2, -7, 0, 9, 10, 12		3, -11, -2, 0, 9, 11 , -13 -12 -0, 9, 11	4, -13, -12, - 2, -8, 0, 8	4,-13,-10, 0, 3, 7	5, -14, -13, -	14, -11 U, b, 8 151413. D. 9	6, -15, -14, -13	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	, -15, -14,	5, -12, 0, 5	6, -15, - /	1	0,0	16, -14, 0, 2	15, -14, 0	15,0	
6 ⁸ 27 t	17																с С														ן ס מ	ו ו חסה	۱ ∞ ه	-1 00		9	ן 1 1 0 נו	۱۱ م س	4.6	ר ר
^β 25 ^β 2	15 16 15	л Ч Ч	4-	+ H	с - С -	4 r	 	н м	1	н- мс	ч н ч н	2			ᅯᆑ	H O	н н			 	- 1 -	┥┍┥		r-1 r			5									4 5	4, u D 4	ი ი 4 4	0 C	1
⁸ 23 ⁸ 24	14 14	2 2	Ч г 0, 0	ч н ч н		-		0			1		40		10	6	-	6 a		2 8	6 C	ວ ດ ດ	6 7	ى ت ە	ר ה ה ר	4 0	5	6 7	0 0 7 1 7	5	€ 1 1 1 1 1 1 1	4 7 0 0	е 4	נט כ קי <i>ב</i>	4 C1	3	с П с	 - ~		
⁸ 21 ⁸ 22	13				0	н с 0 о	>	6	-1 (-																			1	1		11	
19 ⁸ 20	1 12 0 12	0	010	л Ч	5	ω ο	0 01	ω	ω (8 6	- 00	2		- ע		. 0	ц Ц	עט	ດທ	0	LO LI	04	ы	4	4° L(იო	4	4 (ი ო	4	C4 C	1 4 M	н (21 1		1 1 1 1	11 ოო 11	2
17 B18 B															-					••					-			I	1	I		1	ו הי	ו ו 	1 4 m	1 	1 1 1 1	เ า m	1.1)
B B1	/ 6	ۍ دې ۳ ص			6	 20	0 0 	ۍ ۲	، رہ و	۰ ۲ ۳	ŝ	 	ю \ \ \ \ \			1, 0	20	\$ \$ \$	۲ ع ک ت	, °, , °,	ۍ ۲	0) () ()	\$,,4	ۍ د کې	ا ، ، ، ، ،	eô u	، ک ک	، مرز ع		- 2	1 .001	ه م م ر	ور م ر	<u>و</u> م		10		1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	<u>، م</u> گر	, ,

. .

 \odot

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $. , where	$e \sigma \delta, \sigma \in \mathbb{N}^1$, and	$\beta \in \Delta(n^+)$	are e	xpressed	as follows	s:
$ \begin{array}{c} \sigma_{16} \\ \sigma_{16} \\ (1 1 1 1 2 1 1 - 2) \\ \sigma_{26} \\ (1 1 1 1 2 1 1 - 3) \\ \sigma_{46} \\ (1 2 2 1 1 1 - 4) \\ \sigma_{56} \\ (2 2 1 1 1 - 4) \\ \sigma_{56} \\ (2 2 2 1 1 1 - 6) \\ \sigma_{66} \\ (2 2 2 2 1 1 1 - 6) \\ \sigma_{66} \\ (2 2 2 2 1 1 1 - 6) \\ \sigma_{66} \\ (2 2 2 2 1 1 1 - 6) \\ \sigma_{66} \\ (2 2 2 2 1 1 1 - 6) \\ \sigma_{76} \\ (1 3 2 1 1 2 1 - 7) \\ \sigma_{76} \\ (1 3 2 1 1 2 1 - 7) \\ \sigma_{76} \\ (1 3 2 1 1 2 1 - 9) \\ \sigma_{76} \\ (2 1 1 2 2 1 - 1 - 9) \\ \sigma_{76} \\ (1 2 1 1 2 1 - 9) \\ \sigma_{76} \\ (2 1 1 2 2 1 - 1 - 9) \\ \sigma_{76} \\ (2 1 1 2 2 1 - 1 - 9) \\ \sigma_{76} \\ (2 1 1 2 2 1 - 1 - 9) \\ \sigma_{76} \\ (2 1 1 2 2 1 - 1 - 9) \\ \sigma_{76} \\ (2 1 1 2 2 1 - 1 - 9) \\ \sigma_{76} \\ (2 1 1 2 2 1 - 1 - 9) \\ \sigma_{76} \\ (2 1 1 2 2 1 - 1 - 9) \\ \sigma_{76} \\ (2 1 1 2 2 1 - 1 - 9) \\ \sigma_{10} \\ \sigma_{10} \\ (6 1 1 1 1 1 - 9) \\ \sigma_{11} \\ \sigma_{6} \\ (2 1 1 2 2 1 - 1 - 1) \\ \sigma_{11} \\ \sigma_{6} \\ (2 1 1 2 2 1 - 1 - 1) \\ \sigma_{11} \\ \sigma_{6} \\ (2 1 1 2 2 1 2 2 - 1 - 1) \\ \sigma_{11} \\ \sigma_{6} \\ (1 1 1 2 1 2 1 - 1 - 1) \\ \sigma_{11} \\ \sigma_{6} \\ (1 1 1 2 1 2 1 - 1 - 1) \\ \sigma_{11} \\ \sigma_{6} \\ (1 1 1 2 1 2 1 - 1 - 1) \\ \sigma_{11} \\ \sigma_{6} \\ (1 1 1 2 1 2 - 1 - 1) \\ \sigma_{11} \\ \sigma_{6} \\ (1 1 1 2 1 2 1 - 1 - 1) \\ \sigma_{11} \\ \sigma_{6} \\ (1 1 1 2 1 2 1 - 1 - 1) \\ \sigma_{11} \\ \sigma_{6} \\ (1 1 1 2 1 2 1 - 1 - 1) \\ \sigma_{11} \\ \sigma_{6} \\ (1 1 1 2 1 2 - 1 - 1) \\ \sigma_{11} \\ \sigma_{6} \\ (1 1 1 2 1 2 - 1 - 1) \\ \sigma_{11} \\ \sigma_{6} \\ (1 1 1 2 1 2 - 1 - 1) \\ \sigma_{11} \\ \sigma_{6} \\ (1 1 1 2 1 2 - 1 - 1) \\ \sigma_{11} \\ \sigma_{6} \\ (1 1 1 2 1 2 - 2 - 1 - 1) \\ \sigma_{11} \\ \sigma_{6} \\ (1 1 1 1 2 1 4 - 1 - 1) \\ \sigma_{11} \\ \sigma_{6} \\ (1 1 1 2 1 2 - 1 - 1 - 1) \\ \sigma_{11} \\ \sigma_{11} \\ \sigma_{11} \\ \sigma_{11} \\ \sigma_{11} \\ \sigma_{11} \\ \sigma_{12} \\ \sigma_{11} \\ \sigma_{11} \\ \sigma_{11} \\ \sigma_{12} \\ \sigma_{11} \\ \sigma_{11} \\ \sigma_{11} \\ \sigma_{12} \\ \sigma_{11} \\ \sigma_{11} \\ \sigma_{12} \\ \sigma_{11} \\ \sigma_$	5.8	(1111111)	ן ן	β ₁	(000	0001)	
$ \begin{array}{c} \sigma_{3}\delta \\ \sigma_{4}\delta \\ (1 1 2 2 1 1 1 -4) \\ \sigma_{5}\delta \\ (2 3 1 1 1 1 -5) \\ \sigma_{5}\delta \\ (1 1 3 1 1 1 -5) \\ \sigma_{5}\delta \\ (2 2 1 2 1 1 1 -6) \\ \sigma_{6}\delta \\ (2 2 1 2 1 1 1 -7) \\ \sigma_{7}\delta \\ (1 3 2 1 1 2 -1) \\ \sigma_{7}\delta \\ (1 3 2 1 1 2 -7) \\ \sigma_{7}\delta \\ (1 3 2 1 1 2 -7) \\ \sigma_{7}\delta \\ (2 2 1 2 1 1 -8) \\ \sigma_{7}\delta \\ (2 2 1 2 1 1 -8) \\ \sigma_{5}\delta \\ (2 2 1 2 1 1 -8) \\ \sigma_{5}\delta \\ (2 2 1 2 2 1 -1 -8) \\ \sigma_{5}\delta \\ (2 1 1 2 2 1 -9) \\ \sigma_{5}\delta \\ (2 1 1 2 2 1 -10) \\ \sigma_{10}\delta \\ (2 1 1 2 2 1 -10) \\ \sigma_{10}\delta \\ (2 1 1 2 2 1 -10) \\ \sigma_{10}\delta \\ (2 1 1 2 1 1 -7) \\ \sigma_{10}\delta \\ (2 1 1 2 2 1 -10) \\ \sigma_{10}\delta \\ (2 1 1 2 1 2 -11) \\ \sigma_{11}\delta \\ (1 1 2 1 2 1 -11) \\ \sigma_{11}\delta \\ (1 1 2 1 2 1 -11) \\ \sigma_{12}\delta \\ (1 1 1 3 1 1 2 -11) \\ \sigma_{12}\delta \\ (1 1 1 3 1 1 2 -11) \\ \sigma_{13}\delta \\ (1 1 2 1 2 1 -11) \\ \sigma_{13}\delta \\ (1 1 2 1 2 1 -11) \\ \sigma_{13}\delta \\ (1 1 1 3 1 1 3 -13) \\ \sigma_{13}\delta \\ (1 1 1 3 1 1 3 -13) \\ \sigma_{13}\delta \\ (1 1 1 2 1 2 -11) \\ \sigma_{14}\delta \\ (2 1 1 1 2 1 2 -11) \\ \sigma_{15}\delta \\ (1 1 2 1 2 1 -11) \\ \sigma_{15}\delta \\ (1 1 2 1 2 1 -11) \\ \sigma_{15}\delta \\ (1 1 2 1 2 1 -12) \\ \sigma_{15}\delta \\ (1 1 1 2 1 2 1 -13) \\ \sigma_{15}\delta \\ (1 1 1 2 1 2 1 -12) \\ \sigma_{15}\delta \\ (1 1 1 1 1 1 -15) \\ \sigma_{16}\delta \\ (1 1 1 1 1 1 -15) \\ \sigma_{16}\delta \\ (1 1 2 1 2 1 -16) \\ \sigma_{17}\delta \\ (1 1 1 2 1 2 1 -16) \\ \sigma_{17}\delta \\ (1 1 1 2 1 2 1 -16) \\ \sigma_{16}\delta \\ (1 1 2 1 1 2 -17) \\ \sigma_{26}\delta \\ (1 1 2 1 1 2 -17) \\ \sigma_{26}\delta \\ (1 1 1 1 1 1 -16) \\ \sigma_{21}\delta \\ (1 1 1 2 1 1 -17) \\ \sigma_{26}\delta \\ (1 1 1 1 1 1 -17) \\ \sigma_{26}\delta \\ (1 1 1 1 1 1 -17) \\ \sigma_{26}\delta \\ (1 1 1 1 2 1 -17) \\ \sigma_{26}\delta \\ (1 1 1 1 2 1 -17) \\ \sigma_{26}\delta \\ (1 1 1 1 2 1 -17) \\ \sigma_{26}\delta \\ (1 1 1 1 1 3 1 -17) \\ \sigma_{26}\delta \\ (1 1 1 1 1 1 1 -17) \\ \sigma_{26}\delta \\ (1 1 1 1 1 1 -17) \\ \sigma_{26}\delta \\ (1 1 1 1 1 1 -17) \\ \sigma_{26}\delta \\ (1 1 1 1 1 1 -17) \\ \sigma_{26}\delta \\ (1 1 1 1 1 1 -17) \\ \sigma_{26}\delta \\ (1 1 1 1 1 1 -17) \\ \sigma_{26}\delta \\ (1 1 1 1 2 1 -17) \\ \sigma_{26}\delta \\ (1 1 1 2 1 1 -17) \\ \sigma_{26}\delta \\ (1 1 1 2 1 1 -17) \\ \sigma_{26}\delta \\ (1 1 1 2 1 1 -17) \\ \sigma_{26}\delta \\ (1 1 1 2 1 1 -17) \\ \sigma_{26}\delta \\ (1 1 1 2 1 1 -17) \\ \sigma_{26}\delta \\ (1 1 1 2 1 1 -17) \\ \sigma_{26}\delta \\ (1 1 1 2 1 1 -17) \\ \sigma_{26}\delta \\ (1 1 1 2 1 1 -17) \\ \sigma_{26}\delta \\ (1 1 1 2 1 1 -17) \\ \sigma_{26}\delta \\ (1 1 1 2 1 1 -17) \\ \sigma_{26}\delta \\ (1 1 1 2 1 1 -17) \\ \sigma_{26}\delta \\ (1 1 1$	σιδ	(111112-1)		^β 2	(000	0 0 111)	
$ \begin{array}{c} \sigma_{5}\delta \\ \sigma_{5}\delta \\ (1 & 1 & 3 & 1 & 1 & 1 & -5 \\ \sigma_{6}\delta \\ (1 & 1 & 3 & 1 & 1 & 1 & -5 \\ \sigma_{6}\delta \\ (2 & 2 & 2 & 1 & 1 & 1 & -6 \\ \sigma_{7}\delta \\ (3 & 1 & 1 & 2 & 1 & 1 & -7 \\ \sigma_{7}\delta \\ (3 & 1 & 1 & 2 & 1 & 1 & -7 \\ \sigma_{7}\delta \\ (3 & 1 & 1 & 2 & 1 & 1 & -7 \\ \sigma_{7}\delta \\ (2 & 2 & 1 & 2 & 1 & 1 & -7 \\ \sigma_{7}\delta \\ (2 & 2 & 1 & 2 & 1 & 1 & -7 \\ \sigma_{7}\delta \\ (2 & 2 & 1 & 2 & 1 & 1 & -7 \\ \sigma_{7}\delta \\ (2 & 2 & 1 & 2 & 1 & 1 & -7 \\ \sigma_{7}\delta \\ (2 & 2 & 1 & 2 & 1 & 1 & -7 \\ \sigma_{7}\delta \\ (2 & 2 & 1 & 2 & 1 & 1 & -7 \\ \sigma_{7}\delta \\ (2 & 1 & 1 & 2 & 1 & -7 \\ \sigma_{7}\delta \\ (2 & 1 & 2 & 1 & 1 & -7 \\ \sigma_{7}\delta \\ (2 & 1 & 2 & 1 & 1 & -7 \\ \sigma_{7}\delta \\ (2 & 1 & 2 & 1 & 1 & -7 \\ \sigma_{7}\delta \\ (2 & 1 & 2 & 1 & 1 & -7 \\ \sigma_{7}\delta \\ (2 & 1 & 1 & 2 & 1 & -7 \\ \sigma_{7}\delta \\ (2 & 1 & 1 & 2 & 1 & -7 \\ \sigma_{7}\delta \\ (2 & 1 & 1 & 2 & 1 & -7 \\ \sigma_{1}\delta \\ (2 & 1 & 1 & 2 & 1 & -7 \\ \sigma_{1}\sigma^{5} \\ (2 & 1 & 2 & 1 & 2 & -10 \\ \sigma_{1}\sigma^{5} \\ (2 & 1 & 2 & 1 & 2 & -11 \\ \sigma_{1}\sigma^{5} \\ (1 & 1 & 1 & 2 & 1 & -11 \\ \sigma_{1}\sigma^{5} \\ (1 & 1 & 2 & 1 & 2 & -12 \\ \sigma_{1}\sigma^{5} \\ (1 & 1 & 1 & 2 & 1 & -12 \\ \sigma_{1}\sigma^{5} \\ (1 & 1 & 1 & 2 & 1 & -12 \\ \sigma_{1}\sigma^{5} \\ (1 & 1 & 1 & 2 & 1 & -12 \\ \sigma_{1}\sigma^{5} \\ (1 & 1 & 1 & 2 & 1 & -13 \\ \sigma_{1}\sigma^{5} \\ (1 & 1 & 1 & 2 & 1 & -13 \\ \sigma_{1}\sigma^{5} \\ (1 & 1 & 1 & 2 & 1 & -13 \\ \sigma_{1}\sigma^{5} \\ (1 & 1 & 1 & 2 & 1 & -13 \\ \sigma_{1}\sigma^{5} \\ (1 & 1 & 1 & 2 & 1 & -13 \\ \sigma_{1}\sigma^{5} \\ (1 & 1 & 1 & 2 & 1 & -13 \\ \sigma_{1}\sigma^{5} \\ (1 & 1 & 1 & 2 & 1 & -13 \\ \sigma_{1}\sigma^{5} \\ (1 & 1 & 1 & 2 & 1 & -15 \\ \sigma_{1}\sigma^{5} \\ (1 & 1 & 1 & 2 & 1 & -15 \\ \sigma_{1}\sigma^{5} \\ (1 & 2 & 1 & 1 & 1 & -15 \\ \sigma_{1}\sigma^{5} \\ (1 & 2 & 1 & 1 & 1 & -15 \\ \sigma_{1}\sigma^{5} \\ (1 & 2 & 1 & 1 & 1 & -15 \\ \sigma_{1}\sigma^{5} \\ (1 & 2 & 1 & 1 & 1 & -15 \\ \sigma_{1}\sigma^{5} \\ (1 & 2 & 1 & 1 & 1 & -15 \\ \sigma_{1}\sigma^{5} \\ (1 & 2 & 1 & 1 & 2 & -16 \\ \sigma_{2}\sigma^{5} \\ (1 & 1 & 1 & 1 & 2 & -17 \\ \sigma_{2}\delta \\ (1 & 1 & 1 & 2 & 1 & -17 \\ \sigma_{2}\delta \\ (1 & 1 & 1 & 2 & 1 & -17 \\ \sigma_{2}\delta \\ (1 & 1 & 1 & 2 & 1 & -17 \\ \sigma_{2}\delta \\ (1 & 1 & 1 & 2 & 1 & -17 \\ \sigma_{2}\delta \\ (1 & 1 & 1 & 2 & 1 & -17 \\ \sigma_{2}\delta \\ (1 & 1 & 1 & 2 & 1 & -17 \\ \sigma_{2}\delta \\ (1 & 1 & 1 & 2 & 1 & -17 \\ \sigma_{2}\delta \\ (1 & 1 & 1 & 2 & 1 & -17 \\ \sigma_{2}\delta \\ (1 & 1 & 1 & 2 & 1 & -17 \\ \sigma_$	σ₃δ	(111211-3)		β ₃ .	(0 0 0	0111)	
$ \begin{array}{c} \alpha_{6}^{6} \delta & (1 \ 2 \ 2 \ 2 \ 1 \ 1 \ 1 \ -6 \) \\ \alpha_{6}^{6} \delta & (1 \ 4 \ 1 \ 1 \ 1 \ 1 \ -6 \) \\ \alpha_{7} \delta & (1 \ 3 \ 2 \ 1 \ 1 \ 1 \ -7 \) \\ \alpha_{7} \delta & (2 \ 2 \ 1 \ 2 \ 1 \ 1 \ -7 \) \\ \alpha_{8} \delta & (2 \ 2 \ 1 \ 2 \ 1 \ 1 \ -7 \) \\ \alpha_{8} \delta & (2 \ 2 \ 1 \ 2 \ 1 \ 1 \ -7 \) \\ \alpha_{8} \delta & (2 \ 2 \ 1 \ 2 \ 1 \ 1 \ -7 \) \\ \alpha_{8} \delta & (2 \ 2 \ 1 \ 1 \ 2 \ 1 \ -7 \) \\ \alpha_{8} \delta & (2 \ 2 \ 1 \ 1 \ 2 \ 1 \ -7 \) \\ \alpha_{9} \delta & (1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 $	σ₅δ	(231111-5)		β4	(000	1111)	1
$ \begin{array}{c} \alpha_{7} \delta \\ \alpha_{7} \delta \\ (1 3 2 1 1 1 - 7) \\ \sigma_{8} \delta \\ (2 2 1 2 1 1 - 8) \\ \sigma_{8} \delta \\ (2 1 2 1 2 1 1 - 8) \\ \sigma_{8} \delta \\ (1 1 1 1 2 1 - 9) \\ \sigma_{9} \delta \\ (2 1 1 2 1 - 9) \\ \sigma_{9} \delta \\ (2 1 1 2 1 - 9) \\ \sigma_{9} \delta \\ (2 1 1 2 1 2 - 10) \\ \sigma_{10} \delta \\ (2 1 1 2 2 1 - 10) \\ \sigma_{10} \delta \\ (2 1 1 2 2 1 - 10) \\ \sigma_{10} \delta \\ (2 1 1 2 2 1 - 10) \\ \sigma_{10} \delta \\ (1 1 2 1 3 1 - 11) \\ \sigma_{11} \delta \\ (3 1 1 2 1 2 - 11) \\ \sigma_{11} \delta \\ (3 1 1 2 1 2 - 11) \\ \sigma_{11} \delta \\ (3 1 1 2 1 2 - 11) \\ \sigma_{12} \delta \\ (1 1 1 1 1 1 1 - 12) \\ \sigma_{12} \delta \\ (2 1 1 1 1 3 1 - 12) \\ \sigma_{12} \delta \\ (2 1 1 1 1 3 2 - 13) \\ \sigma_{13} \delta \\ (2 1 1 1 1 3 2 - 13) \\ \sigma_{13} \delta \\ (1 1 1 2 1 2 1 - 12) \\ \sigma_{14} \delta \\ (1 1 2 1 2 1 1 3 2 - 13) \\ \sigma_{15} \delta \\ (1 1 1 2 1 2 2 - 14) \\ \sigma_{15} \delta \\ (1 1 1 2 1 2 2 - 14) \\ \sigma_{15} \delta \\ (1 1 2 1 2 1 2 - 13) \\ \sigma_{15} \delta \\ (1 1 1 2 1 2 1 - 12) \\ \sigma_{16} \delta \\ (1 1 1 2 1 2 2 - 14) \\ \sigma_{16} \delta \\ (1 1 1 2 1 2 1 - 14) \\ \sigma_{17} \delta \\ (1 1 2 1 2 1 1 3 - 13) \\ \sigma_{16} \delta \\ (1 1 1 2 1 2 1 - 14) \\ \sigma_{16} \delta \\ (1 1 1 2 1 2 1 - 14) \\ \sigma_{17} \delta \\ (1 1 2 1 2 1 1 3 - 15) \\ \sigma_{16} \delta \\ (1 1 2 1 2 1 2 - 16) \\ \sigma_{17} \delta \\ (1 1 2 1 2 1 1 3 - 17) \\ \sigma_{20} \delta \\ (1 1 2 1 1 1 2 1 - 17) \\ \sigma_{21} \delta \\ (1 1 2 1 1 2 1 - 17) \\ \sigma_{22} \delta \\ (1 1 2 1 1 1 2 - 17) \\ \sigma_{22} \delta \\ (1 1 2 1 1 1 2 - 17) \\ \sigma_{22} \delta \\ (1 1 2 1 1 1 2 - 17) \\ \sigma_{24} \delta \\ (1 1 2 1 1 1 2 - 17) \\ \sigma_{24} \delta \\ (1 1 2 1 1 - 2 - 17) \\ \sigma_{24} \delta \\ (1 1 2 1 1 - 17) \\ \sigma_{24} \delta \\ (1 1 2 1 1 - 17) \\ \sigma_{24} \delta \\ (1 1 2 1 1 - 17) \\ \sigma_{24} \delta \\ (1 1 2 1 1 - 17) \\ \sigma_{24} \delta \\ (1 1 2 1 1 - 17) \\ \sigma_{24} \delta \\ (1 1 2 1 1 - 17) \\ \sigma_{24} \delta \\ (1 1 2 1 1 - 17) \\ \sigma_{24} \delta \\ (1 1 2 1 1 - 17) \\ \sigma_{24} \delta \\ (1 1 2 1 1 - 17) \\ \sigma_{24} \delta \\ (1 1 2 1 1 - 17) \\ \sigma_{24} \delta \\ (1 1 2 1 1 - 17) \\ \sigma_{24} \delta \\ (1 1 2 1 1 - 17) \\ \sigma_{24} \delta \\ (1 1 2 1 1 - 17) \\ \sigma_{24} \delta \\ (1 1 1 2 1 1 - 17) \\ \sigma_{24} \delta \\ (1 1 1 2 1 1 - 17) \\ \sigma_{24} \delta \\ (1 1 1 2 1 1 - 17) \\ \sigma_{24} \delta \\ (1 1 1 2 1 1 - 17) \\ \sigma_{24} \delta \\ (1 1 1 2 1 1 - 17) \\ \sigma_{24} \delta \\ (1 1 1 2 1 1 - 17) \\ \sigma_{24} \delta \\ (1 1 1 2 1 1 - 17) \\ \sigma_{24} \delta \\ (1 1 1 2 1 1 - 17) \\ \sigma_{24} \delta \\ (1 1 1 2 1 1 - 17) \\ \sigma_{24} \delta \\ (1 1 1 2 1 1 - 17) \\ \sigma_{24} \delta \\ (1 1 1 2 1 1$	σδ			^β 5	(010	1111)	
$ \begin{bmatrix} \sigma_8 & \delta \\ \sigma_9 & \delta \\ (1 & 1 & 1 & 3 & 1 & -9 \\ \sigma_9 & \delta \\ \sigma_9 & \delta \\ (1 & 1 & 1 & 3 & 1 & 1 & -9 \\ \sigma_9 & \delta \\ (5 & 1 & 1 & 1 & 1 & 2 & -9 \\ \sigma_9 & \delta \\ (5 & 1 & 1 & 1 & 1 & 2 & -9 \\ \sigma_9 & \delta \\ (5 & 1 & 1 & 1 & 1 & 2 & -9 \\ \sigma_1 & \delta \\ (1 & 1 & 2 & 1 & 1 & 2 & -10 \\ \sigma_1 & \delta \\ (1 & 1 & 2 & 1 & 1 & 1 & -9 \\ \sigma_1 & \delta \\ (1 & 1 & 2 & 1 & 1 & 1 & -9 \\ \sigma_1 & \delta \\ (1 & 1 & 2 & 1 & 3 & 1 & -11 \\ \sigma_1 & \delta \\ \sigma_1 & \delta \\ (1 & 1 & 2 & 1 & 2 & 1 & -11 \\ \sigma_1 & \delta \\ \sigma_1 & \delta \\ (1 & 1 & 1 & 1 & 1 & -10 \\ \sigma_1 & \delta \\ \sigma_1 & \delta \\ (1 & 1 & 1 & 1 & 1 & -10 \\ \sigma_1 & \delta \\ \sigma_1 & \delta \\ (2 & 1 & 2 & 1 & 2 & -11 \\ \sigma_1 & \delta \\ \sigma_1 & \delta \\ (2 & 1 & 2 & 1 & 2 & -11 \\ \sigma_1 & \delta \\ \sigma_1 & \delta \\ (2 & 1 & 1 & 1 & 3 & -13 \\ \sigma_1 & \delta \\ \sigma_1 & \delta \\ (1 & 1 & 1 & 2 & 1 & -12 \\ \sigma_1 & \delta \\ (1 & 1 & 1 & 2 & 1 & -12 \\ \sigma_1 & \delta \\ (1 & 1 & 1 & 2 & 1 & -12 \\ \sigma_1 & \delta \\ (1 & 1 & 1 & 2 & 1 & -13 \\ \sigma_1 & \delta \\ (1 & 1 & 1 & 2 & 1 & -13 \\ \sigma_1 & \delta \\ (1 & 1 & 3 & 1 & 1 & -33 \\ \sigma_1 & \delta \\ (1 & 1 & 3 & 1 & 1 & -13 \\ \sigma_1 & \delta \\ (1 & 1 & 3 & 1 & 1 & -13 \\ \sigma_1 & \delta \\ (1 & 1 & 3 & 1 & 2 & -13 \\ \sigma_1 & \delta \\ (1 & 1 & 3 & 1 & 1 & -13 \\ \sigma_1 & \delta \\ (1 & 1 & 1 & 2 & 1 & -14 \\ \sigma_1 & \delta \\ (1 & 1 & 1 & 2 & 1 & -14 \\ \sigma_1 & \delta \\ (1 & 1 & 1 & 2 & 1 & -14 \\ \sigma_1 & \delta \\ (1 & 1 & 1 & 2 & 1 & -14 \\ \sigma_1 & \delta \\ (1 & 1 & 1 & 2 & 1 & -14 \\ \sigma_1 & \delta \\ (1 & 1 & 1 & 2 & 1 & -14 \\ \sigma_1 & \delta \\ (1 & 1 & 1 & 2 & 1 & -14 \\ \sigma_1 & \delta \\ (1 & 1 & 1 & 3 & 1 & -15 \\ \sigma_1 & \delta \\ (1 & 1 & 1 & 3 & 1 & -15 \\ \sigma_1 & \delta \\ (1 & 1 & 1 & 2 & 1 & -16 \\ \sigma_1 & \delta \\ (1 & 1 & 1 & 2 & 1 & -16 \\ \sigma_1 & \delta \\ (1 & 1 & 1 & 2 & 1 & -17 \\ \sigma_2 & \delta \\ (1 & 1 & 1 & 2 & 1 & -17 \\ \sigma_2 & \delta \\ (1 & 1 & 1 & 2 & 1 & -17 \\ \sigma_2 & \delta \\ (1 & 1 & 2 & 1 & 1 & -17 \\ \sigma_2 & \delta \\ (1 & 1 & 2 & 1 & 1 & -17 \\ \sigma_2 & \delta \\ (1 & 1 & 2 & 1 & 1 & -17 \\ \sigma_2 & \delta \\ (1 & 1 & 2 & 1 & 1 & -17 \\ \sigma_2 & \delta \\ (1 & 1 & 2 & 1 & -17 \\ \sigma_2 & \delta \\ (1 & 1 & 2 & 1 & -17 \\ \sigma_2 & \delta \\ (1 & 1 & 2 & 1 & -17 \\ \sigma_2 & \delta \\ (1 & 1 & 2 & 1 & -17 \\ \sigma_2 & \delta \\ (1 & 1 & 2 & 1 & -17 \\ \sigma_2 & \delta \\ (1 & 1 & 2 & 1 & -17 \\ \sigma_2 & \delta \\ (1 & 1 & 2 & 1 & -17 \\ \sigma_2 & \delta \\ (1 & 1 & 2 & 1 & -17 \\ \sigma_2 & \delta \\ (1 & 1 & 2 & 1 & -17 \\ \sigma_2 & \delta \\ (1 & 1 & 2 & 1 & -17 \\ \sigma$	070	(311211-7)		^β 6	(001	1111)	
$ \begin{array}{c} \sigma_{9} \cdot \delta \\ \sigma_{9} \cdot \delta \\ \sigma_{10} \cdot \delta \\ (5 1 1 1 1 2 - 9) \\ \sigma_{10} \cdot \delta \\ (2 1 2 2 1 - 10) \\ \sigma_{10} \cdot \delta \\ (4 2 1 1 1 2 - 9) \\ \sigma_{10} \cdot \delta \\ (4 2 1 1 1 2 - 10) \\ \sigma_{10} \cdot \delta \\ (4 2 1 1 1 2 - 10) \\ \sigma_{10} \cdot \delta \\ (4 2 1 1 1 2 - 10) \\ \sigma_{11} \cdot \delta \\ (3 1 1 2 1 2 - 11) \\ \sigma_{11} \cdot \delta \\ (3 1 1 2 1 2 - 11) \\ \sigma_{11} \cdot \delta \\ (3 1 1 2 1 2 - 11) \\ \sigma_{11} \cdot \delta \\ (2 1 2 1 2 2 - 12) \\ \sigma_{12} \cdot \delta \\ (2 1 2 1 2 2 - 12) \\ \sigma_{12} \cdot \delta \\ (2 1 1 1 1 3 2 - 13) \\ \sigma_{13} \cdot \delta \\ (2 1 1 1 1 3 - 13) \\ \sigma_{13} \cdot \delta \\ (2 1 1 1 1 3 - 13) \\ \sigma_{14} \cdot \delta \\ (3 1 2 1 2 1 - 12) \\ \sigma_{14} \cdot \delta \\ (3 1 2 1 2 1 - 12) \\ \sigma_{14} \cdot \delta \\ (1 1 2 1 2 3 - 13) \\ \sigma_{15} \cdot \delta \\ (1 1 1 2 1 2 3 - 14) \\ \sigma_{15} \cdot \delta \\ (1 1 1 1 2 1 4 - 15) \\ \sigma_{16} \cdot \delta \\ (2 1 2 1 2 2 - 14) \\ \sigma_{15} \cdot \delta \\ (1 1 1 1 2 1 4 - 15) \\ \sigma_{16} \cdot \delta \\ (1 1 1 1 2 1 4 - 15) \\ \sigma_{16} \cdot \delta \\ (1 1 1 1 2 1 4 - 15) \\ \sigma_{16} \cdot \delta \\ (1 1 1 1 2 1 4 - 16) \\ \sigma_{17} \cdot \delta \\ (1 1 2 1 1 1 4 - 16) \\ \sigma_{17} \cdot \delta \\ (1 1 2 1 2 1 2 - 16) \\ \sigma_{19} \cdot \delta \\ (1 1 1 1 2 1 4 - 17) \\ \sigma_{18} \cdot \delta \\ (1 1 1 2 1 2 1 - 16) \\ \sigma_{19} \cdot \delta \\ (1 1 1 1 2 1 4 - 17) \\ \sigma_{20} \cdot \delta \\ (1 1 1 1 2 1 4 - 17) \\ \sigma_{21} \cdot \delta \\ (1 1 1 1 2 1 4 - 17) \\ \sigma_{22} \cdot \delta \\ (1 1 1 1 2 1 2 - 17) \\ \sigma_{22} \cdot \delta \\ (1 1 1 1 2 1 2 - 17) \\ \sigma_{22} \cdot \delta \\ (1 1 1 1 2 1 - 17) \\ \sigma_{21} \cdot \delta \\ (1 1 1 1 2 1 - 17) \\ \sigma_{21} \cdot \delta \\ (1 1 1 1 2 1 - 17) \\ \sigma_{21} \cdot \delta \\ (1 1 1 1 2 1 - 17) \\ \sigma_{21} \cdot \delta \\ (1 1 1 1 2 1 - 17) \\ \sigma_{21} \cdot \delta \\ (1 1 1 1 2 1 - 17) \\ \sigma_{21} \cdot \delta \\ ($	σ8δ	(411121-8)		^β 7	(011	1111)	
$ \begin{bmatrix} \sigma_{10} \delta \\ \sigma_{10} \delta \\ \sigma_{10} \delta \\ (42) 1 1 2 2 1 -10 \\ \sigma_{11} \delta \\ (42) 1 1 1 2 -10 \\ \sigma_{11} \delta \\ (11) 2 1 3 1 -11 \\ \sigma_{11} \delta \\ (11) 2 1 3 1 -11 \\ \sigma_{11} \delta \\ (11) 2 1 2 1 2 -11 \\ \sigma_{11} \delta \\ (11) 1 1 1 4 1 -12 \\ \sigma_{12} \delta \\ (11) 1 1 1 4 1 -12 \\ \sigma_{12} \delta \\ (11) 1 1 1 4 1 -12 \\ \sigma_{12} \delta \\ (11) 1 1 1 4 1 -12 \\ \sigma_{12} \delta \\ (11) 1 1 1 4 1 -12 \\ \sigma_{12} \delta \\ (11) 1 1 1 2 1 2 -11 \\ \sigma_{13} \delta \\ (21) 1 2 1 2 -12 \\ \sigma_{13} \delta \\ (11) 1 2 1 2 -12 \\ \sigma_{14} \delta \\ (11) 2 1 2 1 -11 \\ \sigma_{14} \delta \\ (11) 1 2 1 2 -13 \\ \sigma_{15} \delta \\ (21) 1 1 2 2 -14 \\ \sigma_{15} \delta \\ (21) 1 1 2 2 -14 \\ \sigma_{15} \delta \\ (21) 1 1 2 2 -14 \\ \sigma_{15} \delta \\ (21) 2 1 2 2 -14 \\ \sigma_{15} \delta \\ (21) 2 1 2 1 2 -13 \\ \sigma_{16} \delta \\ (11) 1 1 2 1 4 -15 \\ \sigma_{16} \delta \\ (11) 1 1 2 1 4 -15 \\ \sigma_{16} \delta \\ (11) 1 1 2 1 4 -15 \\ \sigma_{16} \delta \\ (11) 1 1 2 1 4 -15 \\ \sigma_{16} \delta \\ (11) 1 1 2 1 4 -15 \\ \sigma_{16} \delta \\ (11) 1 1 2 1 4 -15 \\ \sigma_{16} \delta \\ (11) 1 1 1 1 1 6 -17 \\ \sigma_{16} \delta \\ (11) 1 1 2 1 4 -16 \\ \sigma_{17} \delta \\ \sigma_{11} \delta \\ (11) 1 2 1 2 1 -16 \\ \sigma_{10} \delta \\ (11) 1 2 1 2 1 -16 \\ \sigma_{20} \delta \\ (11) 1 1 2 1 2 -17 \\ \sigma_{21} \delta \\ (11) 1 2 1 2 -17 \\ \sigma_{22} \delta \\ (11) 1 1 2 1 -17 \\ \sigma_{22} \delta \\ (11) 1 1 2 1 -17 \\ \sigma_{22} \delta \\ (11) 1 1 2 1 -17 \\ \sigma_{22} \delta \\ (11) 1 2 1 1 -17 \\ \sigma_{22} \delta \\ (11) 1 2 1 1 -17 \\ \sigma_{22} \delta \\ (11) 1 2 1 -17 \\ \sigma_{22} \delta \\ (11) 1 2 1 -17 \\ \sigma_{22} \delta \\ (11) 1 2 1 -17 \\ \sigma_{22} \delta \\ (11) 1 2 1 -17 \\ \sigma_{22} \delta \\ (11) 1 2 1 -17 \\ \sigma_{22} \delta \\ (11) 1 2 1 -17 \\ \sigma_{22} \delta \\ (11) 1 2 1 -17 \\ \sigma_{22} \delta \\ (11) 1 2 1 -17 \\ \sigma_{22} \delta \\ (11) 1 2 1 -17 \\ \sigma_{22} \delta \\ (11) 1 2 1 -17 \\ \sigma_{22} \delta \\ (11) 1 2 1 -17 \\ \sigma_{22} \delta \\ (12) 1 2 -17 \\ $	σοδ	(321121-9)		^β 8	(101	1111)	
$ \begin{array}{c} \beta_{10} \gamma^{-6} \\ \beta_{11} \\ \beta_{12} \\ \beta_{11} \\ \beta_{11} \\ \beta_{12} \\ \beta_{11} \\ \beta_{11} \\ \beta_{12} \\ \beta_{11} \\ \beta_{12} \\ \beta_{11} \\ \beta_{11} \\ \beta_{12} \\ \beta_{11} \\ \beta_{12} \\ \beta_{11} \\ \beta_{11} \\ \beta_{12} \\ \beta_{11} \\ \beta_{11} \\ \beta_{12} \\ \beta_{11} \\ \beta_{12} \\ \beta_{11} \\ \beta_{12} \\ \beta_{11} \\ \beta_{11} \\ \beta_{11} \\ \beta_{12} \\ \beta_{11} \\ \beta_{11} \\ \beta_{11} \\ \beta_{11} \\ \beta_{12} \\ \beta_{11}	σιοδ	(211221-10)		β ₉	(011	2111)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	σ10 δ	(611111-9)		^β 10	(111	1111)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	σ11 δ	(311212-11)		β _{ll}	(011	2211)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0120	(111141-12)		^β 12	(111	2111)	
$ \begin{bmatrix} \sigma_{13} & \delta & (1 1 1 3 1 1 1 3 - 13) \\ \sigma_{13} & \delta & (3 1 2 1 2 1 - 12) \\ \sigma_{14} & \delta & (1 1 1 2 1 2 3 - 14) \\ \sigma_{14} & \delta & (2 1 3 1 1 2 - 13) \\ \sigma_{15} & \delta & (1 1 1 4 1 1 1 - 13) \\ \sigma_{15} & \delta & (1 1 1 4 1 1 1 - 13) \\ \sigma_{15} & \delta & (1 1 1 4 1 1 1 - 13) \\ \sigma_{15} & \delta & (1 1 1 1 2 1 4 - 15) \\ \sigma_{16} & \delta & (1 1 1 1 2 1 4 - 15) \\ \sigma_{16} & \delta & (1 1 1 1 2 1 1 4 - 16) \\ \sigma_{17} & \delta & (2 1 1 2 1 2 1 2 - 15) \\ \sigma_{16} & \delta & (1 1 1 1 1 1 1 6 - 17) \\ \sigma_{16} & \delta & (1 1 1 1 1 1 1 6 - 17) \\ \sigma_{18} & \delta & (1 1 2 1 1 1 5 - 16) \\ \sigma_{17} & \delta & (1 1 2 1 1 1 5 - 16) \\ \sigma_{17} & \delta & (1 1 1 1 1 1 1 6 - 17) \\ \sigma_{18} & \delta & (1 1 2 1 1 1 1 5 - 17) \\ \sigma_{18} & \delta & (1 1 2 1 2 1 2 1 2 - 16) \\ \sigma_{19} & \delta & (1 1 2 1 1 1 1 1 - 16) \\ \sigma_{21} & \delta & (1 1 2 1 1 1 1 1 - 16) \\ \sigma_{21} & \delta & (1 1 2 1 1 1 2 1 - 17) \\ \sigma_{22} & \delta & (1 1 2 1 1 1 2 - 17) \\ \sigma_{24} & \delta & (1 1 1 1 1 1 1 - 17) \\ \end{bmatrix} $	σ12 δ	(411211-11)		^β 13		-	
$ \begin{array}{c} \sigma_{14} \delta \\ \sigma_{14} \delta \\ \sigma_{14} \delta \\ \sigma_{14} \delta \\ (1 1 2 1 2 3 -14) \\ \sigma_{14} \delta \\ (2 1 3 1 1 3 1 -13) \\ \sigma_{15} \delta \\ (2 1 2 1 2 1 2 -13) \\ \sigma_{15} \delta \\ (1 1 1 4 1 1 1 -13) \\ \sigma_{15} \delta \\ (2 1 2 1 2 1 2 2 -14) \\ \sigma_{16} \delta \\ (1 1 1 3 1 2 1 -4) \\ \sigma_{16} \delta \\ (1 1 1 3 1 2 1 -14) \\ \sigma_{16} \delta \\ (1 1 2 1 1 1 5 -16) \\ \sigma_{17} \delta \\ (2 1 2 2 1 2 1 2 -15) \\ \sigma_{17} \delta \\ (1 1 2 1 1 1 3 -16) \\ \sigma_{18} \delta \\ (1 1 1 2 1 1 4 -16) \\ \sigma_{18} \delta \\ (1 1 1 2 1 1 4 -16) \\ \sigma_{18} \delta \\ (1 1 1 2 1 1 4 -16) \\ \sigma_{18} \delta \\ (1 1 1 2 1 1 4 -16) \\ \sigma_{18} \delta \\ (1 1 1 2 1 1 3 -16) \\ \sigma_{18} \delta \\ (1 1 2 1 1 1 3 -16) \\ \sigma_{18} \delta \\ (1 1 2 1 1 1 2 1 -16) \\ \sigma_{20} \delta \\ (1 1 3 1 1 2 1 -16) \\ \sigma_{21} \delta \\ (1 2 2 1 1 2 2 -17) \\ \sigma_{22} \delta \\ (1 3 1 1 1 2 -17) \\ \sigma_{23} \delta \\ (1 1 2 1 1 2 1 1 -17) \\ \sigma_{24} \delta \\ (1 1 2 1 1 2 1 1 -17) \\ \sigma_{24} \delta \\ (1 1 2 1 1 2 1 1 -17) \\ \end{array} $	σ13 δ	(113113-13)					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	σ14δ	(112123-14)		^β 15			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	σ14 δ	(213112-13)		^β 16	•	*	
$ \begin{array}{c} \sigma_{16}\delta \\ \sigma_{16}\delta \\ \sigma_{16}\delta \\ \sigma_{16}\delta \\ \sigma_{17}\delta \\ \sigma_{11}1111111111111111111111111111111111$	015 0	(212122-14)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	σιεδ	(113121-14)		^β 18	•		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	016 δ	(121115-16)			•		
$ \begin{bmatrix} \sigma_{180} \\ \sigma_{18} \\ \delta \\ \sigma_{18} \\ \delta \\ \sigma_{18} \\ \delta \\ \sigma_{18} \\ \delta \\ \sigma_{19} \\ \delta \\ \sigma_{11} \\ \sigma_{1$	017 8	(221114-16)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	σ18δ	(111311-15)			•		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	σ18 δ	(211115-17)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	019 δ	(112114-17)					
$ \begin{bmatrix} \sigma_{21}^{} \delta \\ \sigma_{22} \delta \\ \sigma_{22} \delta \\ \sigma_{22} \delta \\ \sigma_{23} \delta \\ \sigma_{24} \delta \end{bmatrix} \begin{pmatrix} 1 & 2 & 1 & 1 & 2 & 2 & -17 \\ 1 & 3 & 1 & 1 & 1 & 2 & -17 \\ 1 & 2 & 1 & 1 & 1 & 3 & 1 & -17 \\ \sigma_{23} \delta \\ \sigma_{24} \delta \end{bmatrix} \begin{pmatrix} 1 & 2 & 1 & 1 & 2 & 1 & -17 \\ 1 & 1 & 1 & 2 & 1 & 1 & -17 \\ 1 & 1 & 1 & 2 & 1 & 1 & -17 \\ \end{bmatrix} $	σ20 δ	(111213-17)			•		
$ \begin{array}{c c} \sigma_{22} & \delta \\ \sigma_{23} \delta \\ \sigma_{24} \delta \end{array} \begin{pmatrix} 1 & 1 & 1 & 1 & 3 & 1 & -17 \\ 1 & 2 & 1 & 1 & 2 & 1 & -17 \\ (1 & 1 & 1 & 2 & 1 & 1 & -17 \\ \end{array} \\ \end{array} \right) \qquad $	σ21 δ	(121122-17)			•		
$\sigma_{24\delta}$ (111211-17) β_{27}	σ22 δ	(111131-17)			、 - - -	,	
$1 \cup 250$ $1 (1 \mid 2 \mid 1 \mid 1 = 1/1)$				^β 27	•		
$ \begin{bmatrix} \sigma_{26}\delta \\ \sigma_{27}\delta \end{bmatrix} \begin{pmatrix} 2 & 1 & 1 & 1 & 1 & -17 \\ 1 & 1 & 1 & 1 & 1 & -17 \end{pmatrix} $	0260	(211111-17)			•		•

Table 4	4
---------	---

•

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	р	q = 0	$1 \leq q \leq 26$, (a,b) shows $q = a$ and $k = b$	q = 27
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	k > -1	•	k < -17
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	k > 1	(1,0)	k < -17
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2 ·	k > 2	(2,0)	k < -17
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	k > 3	(3,0), (24, -14)	k < −17
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4	k > 4	(4,0), (25,-15)	k < -17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	k > 5	(5,0), (25,-14 - 15)	k < −17
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	k > 6	(6,0), (4,2), (21,-10), (25,-14), (26,-16)	k < -17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	k > 7	(7,0), (3,4), (4,3), (24,-12), (25,-14), (26,-15,-16))k < -17
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	k > 8	(8,0), (2,6), (3,5), (24,-12), (26,-14,-16)	k < -17
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.9	k > 9	(9,0), (1,8), (2,7), (3,5 6), (18,-6), (23,-10),	k < −17
$\begin{array}{c} 11 & k > 11 & (11,0), (1,10), (2,80), (3,7), (7,3), (22,-8), \\ (24,-10), (25,-12), (26,-12v-15) \\ \hline \\ 12 & k > 12 & (12,0), (1,11), (2,8v10), (3,8), (7,4), (15,-2), \\ (22,-7v-8), (24,-9), (25,-11), (26,-12v-14) \\ \hline \\ 13 & k > 13 & (13,0), (1,11v12), (2,9v10), (5,6), (22,-7), \\ (25,-10v-11), (26,-12v-13) \\ \hline \\ 14 & k > 14 & (14,0), (1,12v13), (2,10v11), (5,7), (22,-6), \\ (25,-9v-10), (26,-11v-12) \\ \hline \\ 15 & k > 15 & (15,0), (1,12v14), (2,11), (5,7v8), (3,9), (12,2), \\ (20,-4), (24,-8), (25,-8v-10), (26,-11) \\ \hline \\ 16 & k > 16 & (16,0), (1,12v15), (2,12), (3,10), (5,8), (20,-3), \\ (24,-7), (25,-8v-9), (26,-10) \\ \hline \\ 17 & k > 17 & (17,0), (1,12v16), (3,11), (24,-6), (25,-8), (26,-9) & k < -10 \\ \hline \\ 18 & k > 17 & (18,0), (1,13v16), (3,11v12), (4,10), (9,6), \\ k < -8 \\ 20 & k > 17 & (20,0), (1,15v16), (2,14), (3,12), (23,-3), (24,-4) & k < -7 \\ \hline \\ 21 & k > 17 & (21,0), (1,16), (2,14) & (6,10), (23,-2) \\ \hline \\ 22 & k > 17 & (22,0), (1,16), (2,14v15) \\ \hline \\ 23 & k > 17 & (23,0), (2,15) \\ \hline \\ 24 & k > 17 & (24,0), (3,14) \\ \hline \\ 25 & k > 17 & (25,0) \\ \hline \\ 26 & k > 17 & (26,0) \\ \hline \end{array}$		>	(24, -11 - 12), (26, -13 - 16)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	k > 10	$(10,0), (1,9), (2,8), (3,6), (24,-11), (26,-12\sqrt{-16})$	k < -17
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11	k > 11	(11,0), (1,10), (2,8v9), (3,7), (7,3), (22,-8),	k < -16
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			$(24,-10), (25,-12), (26,-12 \sim -15)$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	k > 12	$(12,0), (1,11), (2,8 \ge 10), (3,8), (7,4), (15,-2),$	k < -15
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			$(22, -7\nu - 8), (24, -9), (25, -11), (26, -12\nu - 14)$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13	k > 13	$(13,0), (1,11^{10}12), (2,9^{10}), (5,6), (22,-7),$	k < -14
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			$(25, -10\sqrt{-11}), (26, -12\sqrt{-13})$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14	k > 14	$(14,0), (1,12\sim13), (2,10\sim11), (5,7), (22,-6),$	k < -13
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	14		(25, -9 - 10), (26, -11 - 12)	
16k > 16(16,0), (1,12 \circ 15), (2,12), (3,10), (5,8), (20,-3), k < -11 (24,-7), (25,-8 \circ -9), (26,-10)17k > 17(17,0), (1,12 \circ 16), (3,11), (24,-6), (25,-8), (26,-9) k < -10	15	k > 15	$(15,0), (1,12\vee14), (2,11), (5,7\vee8), (3,9), (12,2),$	k < -12
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			$(20,-4), (24,-8), (25,-8\sqrt{-10}), (26,-11)$	
17 $k > 17$ $(17,0)$ $(1,12 \sim 16)$ $(3,11)$ $(24,-6)$ $(25,-8)$ $(26,-9)$ $k < -10$ 18 $k > 17$ $(18,0)$ $(1,13 \sim 16)$ $(3,11 \sim 12)$ $(4,10)$ $(9,6)$ $k < -9$ 19 $k > 17$ $(19,0)$ $(1,14 \sim 16)$ $(3,12)$ $(24,-5)$ $(25,-6)$ $k < -8$ 20 $k > 17$ $(20,0)$ $(1,15 \sim 16)$ $(2,14)$ $(3,12)$ $(23,-3)$ $(24,-4)$ $k < -7$ 21 $k > 17$ $(21,0)$ $(1,16)$ $(2,14)$ $(6,10)$ $(23,-2)$ $k < -6$ 22 $k > 17$ $(22,0)$ $(1,16)$ $(2,14 \sim 15)$ $k < -5$ 23 $k > 17$ $(23,0)$ $(2,15)$ $k < -4$ 24 $k > 17$ $(24,0)$ $(3,14)$ $k < -3$ 25 $k > 17$ $(25,0)$ $k < -2$ 26 $k > 17$ $(26,0)$ $k < -1$.16	k > 16	$(16,0), (1,12\sim15), (2,12), (3,10), (5,8), (20,-3),$	k < -11
18 $k > 17$ (18,0), (1,13 \sim 16), (3,11 \sim 12), (4,10), (9,6), $k < -9$ 19 $k > 17$ (19,0), (1,14 \sim 16), (3,12), (24,-5), (25,-6) $k < -8$ 20 $k > 17$ (20,0), (1,15 \sim 16), (2,14), (3,12), (23,-3), (24,-4) $k < -7$ 21 $k > 17$ (21,0), (1,16), (2,14)(6,10), (23,-2) $k < -6$ 22 $k > 17$ (22,0), (1,16), (2,14 \sim 15) $k < -5$ 23 $k > 17$ (23,0), (2,15) $k < -4$ 24 $k > 17$ (24,0), (3,14) $k < -3$ 25 $k > 17$ (25,0) $k < -2$ 26 $k > 17$ (26,0) $k < -1$			$(24,-7), (25,-8^{-9}), (26,-10)$	
10 $k = 11$ $(10,0), (1,12,12,12), (0,12,12), (1,12,14)$	17	k > 17	$(17,0)$, $(1,12\sim16)$, $(3,11)$, $(24,-6)$, $(25,-8)$, $(26,-9)$	k < -10
121314141414141420 $k > 17$ $(20,0)$, $(1,150,16)$, $(2,14)$, $(3,12)$, $(23,-3)$, $(24,-4)$ $k < -7$ 21 $k > 17$ $(21,0)$, $(1,16)$, $(2,14)$ $(6,10)$, $(23,-2)$ $k < -6$ 22 $k > 17$ $(22,0)$, $(1,16)$, $(2,140,15)$ $k < -5$ 23 $k > 17$ $(23,0)$, $(2,15)$ $k < -4$ 24 $k > 17$ $(24,0)$, $(3,14)$ $k < -3$ 25 $k > 17$ $(25,0)$ $k < -2$ 26 $k > 17$ $(26,0)$ $k < -1$	18	k > 17	$(18,0), (1,13\sim16), (3,11\sim12), (4,10), (9,6),$	k < -9
21 $k > 17$ $(21,0)$, $(1,16)$, $(2,14)$ $(6,10)$, $(23,-2)$ $k < -6$ 22 $k > 17$ $(22,0)$, $(1,16)$, $(2,14v15)$ $k < -5$ 23 $k > 17$ $(23,0)$, $(2,15)$ $k < -4$ 24 $k > 17$ $(24,0)$, $(3,14)$ $k < -3$ 25 $k > 17$ $(25,0)$ $k < -2$ 26 $k > 17$ $(26,0)$ $k < -1$	19	k > 17	$(19,0), (1,14 \ge 16), (3,12), (24,-5), (25,-6)$	k < -8
22 $k > 17$ $(22,0)$ $(1,16)$ $(2,14 \lor 15)$ $k < -5$ 23 $k > 17$ $(23,0)$ $(2,15)$ $k < -4$ 24 $k > 17$ $(24,0)$ $(3,14)$ $k < -3$ 25 $k > 17$ $(25,0)$ $k < -2$ 26 $k > 17$ $(26,0)$ $k < -1$	20	k > 17	$(20,0), (1,15\sim16), (2,14), (3,12), (23,-3), (24,-4)$	k < -7
22 k 17 $(23,0)$ $(2,15)$ $k < -4$ 24 $k > 17$ $(24,0)$ $(3,14)$ $k < -3$ 25 $k > 17$ $(25,0)$ $k < -2$ 26 $k > 17$ $(26,0)$ $k < -1$	21	k > 17	(21,0), (1,16), (2,14) (6,10), (23,-2)	¦k < −6
23 $k = 17$ $(23,0), (3,12)$ $k < -3$ 24 $k > 17$ $(24,0), (3,14)$ $k < -3$ 25 $k > 17$ $(25,0)$ $k < -2$ 26 $k > 17$ $(26,0)$ $k < -1$	22	k > 17	(22,0), (1,16), (2,14~15)	k < -5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	k > 17	(23,0), (2,15)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	k > 17	(24,0), (3,14)	
20 K · 17 (20,0)	25	k > 17	(25,0)	
27 k > 17 $ k < 1$	26	k > 17	(26,0)	k < -1
	27	k > 17		k < 1

19 [:]

2.4. Other cases. If M is of type A III, D III or C I, it is not known completely when the groups $H^{q}(M, \Omega^{P}(E))$ vanish. in this section we consider for the case when p is equal to 0 or 1.

We denote by K_N the canonical line bundle of a complex manifold N. There exists an integer λ such that $K_N = E_{\lambda \omega_j}$. Further we know

$$\lambda = 2 \left(\sum_{\beta \in \Delta(n^+)}^{\prime} \beta, \alpha_j \right) / (\alpha_j, \alpha_j)$$

(Borel-Hirzebruch [2]). Applying this formula, we may calculate λ for each type and get the following table.

A III	$SU(m+n)/S(U(m) \times U(n))$,	$\lambda = m + n,$
DIII	SO(2n)/U(n),	$\lambda = 2n - 2,$
CI	Sp(n)/U(n),	$\lambda = n + 1,$
BD I	$SO(n+2)/SO(2) \times SO(n)$,	$\lambda = n,$
E III	$E_6/Spin(10) \times T^1$,	$\lambda = 12$,
E VII	$E_7 / E_6 \times T^1$	$\lambda = 18.$

Theorem 6. Let M be an n-dimensional irreducible Hermitian symmetric space of compact type. Then the group $H^{q}(M, \Omega E_{-k\omega}) = 0$ except for the following cases: (i) q = 1and $k \ge 0$, (ii) q = n and $k \le -\lambda$.

Proof. By the theorem of Bott, we get

(2.1)		H^0 (M, $\Omega E_{-k\omega_j}$) $\neq 0$			if $k \ge 0$,			
(2.2)		н ^ј (М,	$\Omega E^{-k\omega}$ j) = 0	for	j > 0,	if k≧	0,
(2.3)		н ⁰ (м,	^{ΩE} -kωj) = 0		if k	< 0.	

By serre's duality theorem, we have

dim H^q(M,
$$\Omega E_{-k\omega_{j}}$$
) = dim H^{n-q}(M, $\Omega(K_{M}QE_{k\omega_{j}})$).

Hence we obtain, from (2.1) and (2.2)

(2.4)
$$H^{n}(M, \Omega E_{-k\omega_{i}}) \neq 0$$
 if $k \leq -\lambda$,

(2.5)
$$H^{j}(M, \Omega E_{-k\omega_{j}}) = 0$$
 for $j < n$, if $k \leq -\lambda$.

We note $E_{-k\omega}$ is positive if k > 0. Then by Kodaira's j vanishing theorem, we see

(2.6)
$$H^{j}(M, \Omega E_{-k\omega_{j}}) = 0$$
 for $j > 0$, if $k > -\lambda$.

The conclusion follows from (2.1), (2.3), (2.4), (2.5) and (2.6).

Remark. If M is a Kahler C-space whose 2nd Betti number is 1, we get the same conclusion in the same way as above.

Theorem 7. Let M be an irreducible Hermitian symmetric space of compact type. Assume that M is not $P_n(C)$, Sp(2)/U(2), SO(6)/U(3) or SO(8)/U(4). Then the group $H^q(M, \Omega^1(E_{-k\omega_j})) = 0$ except for the following cases: (i) q = 0 and k > 1, (ii) q = 1 and k = 0, (iii) q = n and $k < -\lambda + 1$.

Proof. We may assume that M is of type A III, C I or D III by Theorems 3, 4 and 5.

It is known

 $n(\sigma) = \min \{ k; \sigma = \tau_{\alpha_{i_1}} \cdots \tau_{\alpha_{i_k}}, \alpha_{i_j} \in \Pi \} \text{ for } \sigma \in W$

, where τ_{α} denotes the symmetry with respect to $\alpha \in \Delta$. Therefore by the definition of $W^{1}(1)$, we have

 $W^{1}(1) = \{ \tau_{\alpha_{j}} \}.$

Since $\tau_{\alpha j} \delta = \delta - \alpha_{j}$, we have by Theorem 2

 $(2.7) \operatorname{dim} H^{q}(M, \Omega^{1}(E_{-,\omega_{j}})) = \operatorname{dim} H^{q}(M, \Omega(E_{-(k\omega_{j}-\alpha_{j})}))$

for $q = 0, 1, \cdots$.

1. The case $M = SU(l+1)/S(U(j)\times U(l+1-j))$ for 1 < j < l. The Dinkin diagram of Π is:

$$\overset{\circ}{\overset{\alpha}_{1}} \overset{\circ}{\overset{\alpha}_{j-1}} \overset{\circ}{\overset{\alpha}_{j}} \overset{\circ}{\overset{\alpha}_{j+1}} \overset{\alpha}{\overset{\alpha}_{\ell}}.$$

We may assume that h_0 is the set of points $(x_i) \in \mathbb{R}^{\ell+1}$ such that $\sum_{i=1}^{\ell+1} x_i = 0$. Let $\{\varepsilon_i\}_{i=1}^{\ell+1}$ be the natural basis of $\mathbb{R}^{\ell+1}$. Then

$$\alpha_{j} = \varepsilon_{j} - \varepsilon_{j+1},$$

$$\delta = \ell \varepsilon_{1} + (\ell-1)\varepsilon_{2} + \cdots + 2\varepsilon_{\ell-1} + \varepsilon_{\ell},$$

$$\Delta(n^{+}) = \{ \varepsilon_{s} - \varepsilon_{t}; 1 \leq s \leq j < t \leq \ell+1 \}.$$

It follows that

{ $(\delta - \alpha_j, \frac{2\beta}{(\beta, \beta)}); \beta \in \Delta(n^+)$ } = { -1, 1, 2, ..., ℓ }. Further if $\beta \in \Delta(n^+)$ satisfies $(\delta - \alpha_j, \frac{2\beta}{(\beta, \beta)})$ = -1, then $\beta = \alpha_j$. Therefore the conclusion follows from Theorem 1. 2. The case $M = Sp(\ell)/U(\ell)$ for $\ell \ge 3$. The Dinkin diagram of I is:

$$\overset{\circ}{\underset{\alpha_1 \quad \alpha_2 \quad \alpha_{\ell-1} \quad \alpha_{\ell}}{\circ}}$$

,where $\alpha_{\ell} \oslash$ means $\alpha_{j} = \alpha_{\ell}$. Let $\{\varepsilon_{i}\}_{i=1}$ be the basis of h_{0} which satisfies $(\varepsilon_{i}, \varepsilon_{j}) = \delta_{ij}$. Then

$$\alpha_{\ell} = 2\varepsilon_{\ell},$$

$$\omega_{\ell} = \varepsilon_{1} + \varepsilon_{2} + \cdots + \varepsilon_{\ell},$$

$$\delta = \ell\varepsilon_{1} + (\ell-1)\varepsilon_{2} + \cdots + 2\varepsilon_{\ell-1} + \varepsilon_{\ell},$$

$$\Delta(n^{+}) = \{ \varepsilon_{i} + \varepsilon_{i}; 1 \leq i < j \leq \ell, 2\varepsilon_{i}; 1 \leq i \leq \ell \}.$$

Hence we have

$$\{ (\delta - \alpha_{\ell}, \beta); \beta \in \Delta(n^{+}) \} = \begin{cases} \{-2, 1, 2, \cdots, 2 - 1, 2\} & \text{if } \ell > 3, \\ \{-2, 1, 2, 4, 5, 6\} & \text{if } \ell = 3. \end{cases}$$

Further if $\beta \in \Delta(n^+)$ satisfies $(\delta - \alpha_{\ell}, \beta) = -2$, then $\beta = \alpha_{\ell}$. Since $(k\omega_{\ell}, \beta) = 2k$, $\beta \in \Delta(n^+)$, the conclusion follows then from Theorem 1.

3. $M = SO(2^{\ell})/U(^{\ell})$ for $\ell \ge 5$. The Dinkin diagram of is:

$$\underbrace{\alpha_1 \quad \alpha_2}^{\alpha_{\ell-1}} \cdots \underbrace{\alpha_{\ell-2}}^{\alpha_{\ell-1}} \alpha_{\ell}$$

, where α_{ℓ} means $\alpha_{j} = \alpha_{\ell}$. Let $\{\epsilon_{i}\}_{i=1}$ be a basis of h_{0} such that $(\epsilon_{i}, \epsilon_{j}) = \delta_{ij}$. Then

$$\alpha_{\ell} = \varepsilon_{\ell-1} + \varepsilon_{\ell},$$

$$\omega_{\ell} = 1/2(\varepsilon_{1} + \varepsilon_{2} + \cdots + \varepsilon_{\ell}),$$

$$\delta = (\ell-1)\varepsilon_{1} + (\ell-2)\varepsilon_{2} + \cdots + \varepsilon_{\ell-1},$$

$$\Delta(n^{+}) = \{ \varepsilon_{1} + \varepsilon_{j}; 1 \leq i < j \leq \ell \}.$$

Hence we have

$$\{(\delta-\alpha_{\ell},\beta); \beta \in \Delta(n^{+})\} = \{-1, 1, 2, \cdots, 2\ell-3\},\$$

$$(k\omega_0,\beta) = k$$
 for any $\beta \in \Delta(n^+)$.

Further, if $\beta \in \Delta(n^+)$ satisfies $(\delta - \alpha_{\ell}, \beta) = -1$, then $\beta = \alpha_{\ell}$. The conclusion follows then from Theorem 1. q.e.d.

Remark. Assume that M is one of the following Hermitian symmetric spaces of compact type. Then the group $H^{q}(M, \Omega^{p}(E_{-k\omega})) = 0$ except for the following cases:

Sp(2)/U(2) (i) q = 0 and k > 1, (ii) q = 1 and k = 0, (iii) q = 2 and k = -1, (iv) q = 3 and k < -2, SO(6)/U(3) (i) q = 0 and k > 1, (ii) q = 1 and k = 0, (iii) q = 3 and k < -2, SO(8)/U(4) (i) q = 0 and k > 1, (ii) q = 1 and k = 0,

(iii) q = 5 and k = -4, (iv) q = 6 and k < -5.

3 Hypersurfaces of Hermitian symmetric spaces of compact type. We retain the notations and assumptions introduced in the previous sections.

Let V be a hypersurface, that is, closed codimension 1 complex submanifold in a Kähler C-space M. Taking a sufficiently fine finite covering $\{U_j\}$ of V, V is defined in each U_j by a holomorphic equation $s_j = 0$. We associate with V the complex line bumdle $\{V\}$ over M determined by the system $\{s_{jk}\}$ of non-vanising holomorphic functions $s_{jk} = s_j/s_k$ on $U_j \cap U_k$. There is an integer d such that $\{V\} = E_{-d\omega_j}$. Since $\{V\}$ has a holomorphic section, d > 0. We call d the degree of V. If $M = P_n(C)$, this definition coinsides with the usual definition of degree. We denote by 0 (resp. Ω) the sheaf of germs of holomorphic vector fields (resp. holomorphic functions) on V. we spall compute the dimensions of $H^q(V, \Theta)$ and $H^q(V, \Omega)$. By Serre's duality theorem, we have

dim
$$H^0(V, \Theta) = \dim H^n(V, \Omega^1(K_V)).$$

Denote by $E|_{V}$ the restriction to V of a holomorphic vector bundle over M. Since $K_{V} = (K_{M} \Theta\{V\})|_{V}$, we have

(3.1) dim
$$H^{0}(V, \Theta) = \dim H^{n}(V, \Omega^{1}(E_{-(d-\lambda)\omega_{1}}|_{V})).$$

Let us recall the following vanishing theorem of Akizuki-Nakano [1]. If L is a positive line bundle over a compact complex folomorphic manifold N. Then we have

(3.2) $H^{q}(N, \Omega^{p}(L)) = 0$ for $p+q \ge n+1$, if L is positive. Therefore we get

$$H^{0}(V, \Theta) = 0 \qquad \text{if } d > \lambda,$$

by (3.1).

Theorem 8. Let M be an irreducible Hermitian symmetric space of compact type BD I, E III or E VII, and let V be a hypersurface of M whose degree is d. Then we have

$$H^0(V, \Theta) = 0$$
 if $d \ge 2$.

The following lemma follows from Theorems 3,4 and 5.

[n-dimensional]

Lemma 3. Let M be an irreducible Hermitian symmetric space of compact type BD I, E III or E VII. Then we have

$$H^{q}(M, \Omega^{p}(E_{-k\omega_{j}})) = 0, H^{q+1}(M, \Omega^{p}(E_{-(k-d)\omega_{j}})) = 0$$

for p + q = n + 2, $k = pd - \lambda$ if $2 \le p \le n$ and $d \ge 2$.

Proof of Theorem 8. Recall the pair of exact sequences (Kodaira and Spencer [6])

$$\begin{split} & \cdots \rightarrow H^{q-1}(v, \Omega^{p}(E_{-k\omega_{j}}|_{V})) \longrightarrow H^{q}(N, \Omega''^{p}(E_{-k\omega_{j}})) \longrightarrow \\ & H^{q}(N, \Omega^{p}(E_{-k\omega_{j}})) \longrightarrow \cdots, \\ & \cdots \rightarrow H^{q}(N, \Omega''^{p}(E_{-k\omega_{j}})) \longrightarrow H^{q}(v, \Omega^{p-1}(E_{-(k-d)\omega_{j}}|_{V})) \longrightarrow \\ & H^{q+1}(N, \Omega^{p}(E_{-(k-d)\omega_{j}})) \longrightarrow \cdots \\ & , \text{ where } \Omega''^{p}(L) \text{ is the kernel of the canonical map of } \Omega^{p}(L) \\ & \text{ onto } \Omega^{p}(L|_{V}) \text{ for a holomorphic line bundle } L \text{ over } M. \\ & \text{We see from the above pair of exact sequences and Lemma 3 that} \\ & H^{X-p-1}(v, \Omega^{p}(E_{-(pd-\lambda)\omega_{j}}|_{V})) \longrightarrow H^{X-p'}(N, \Omega''^{p}(E_{-(pd-\lambda)\omega_{j}})) \longrightarrow 0, \\ & H^{X-p'}(N, \Omega''^{p}(E_{-(pd-\lambda)\omega_{j}})) \longrightarrow H^{X-p'}(v, \Omega^{p-1}(E_{-((p-1)d-\lambda)\omega_{j}}|_{V})) \longrightarrow \\ & 0. \\ & \text{Thus } H^{X-p+1}(v, \Omega^{p}(E_{-(pd-\lambda)\omega_{j}}|_{V})) = 0 \text{ implies} \\ & H^{X-p'}(v, \Omega^{p-1}(E_{-((q-1)d-\lambda)\omega_{j}}|_{V})) = 0, \text{ while we have} \\ & H^{1}(v, \Omega^{n}(E_{-(nd-\lambda)\omega_{j}}|_{V})) = 0 \text{ by } (3.2). \text{ Hence we obtain} \\ & H^{n}(v, \Omega^{1}(E_{-(d-\lambda)\omega_{j}}|_{V})) = 0. \end{aligned}$$

Remark. The above proof is motivated by Kodaira and Spencer [5].

Let N be a complex manifold and let $W \longrightarrow N$ be a holomorphic vector bundle over N. Assume that V is a hypersurface of N.

We denote by $\hat{\Omega}(W|_V)$ the trivial extension of $\Omega(W|_V)$ to N. Then we have the following exact sequence (Kodoira and Spencer [6])

$$(3.3) \quad 0 \longrightarrow \Omega(W \times \{V\}^{-1}) \longrightarrow \Omega(W) \longrightarrow \widehat{\Omega}(W|_V) \longrightarrow 0 \quad .$$

Assume that V is a hypersurface of M with degree d. It is easy to see that the normal bundle of V is equivaliant to $\{V\}|_{V}$. Hence, by Kimura [4], the nullity of V as a minimal submanifold of M is given as follows:

(3.4)
$$n(V) = \dim_R H^0(V, \Omega(\{V\}|_V)).$$

Denote by C the trivial line bundle over M. Then, by (3.3), we have the exact sequence:

$$0 \longrightarrow \Omega(C) \longrightarrow \Omega(\{v\}) \longrightarrow \widehat{\Omega}(\{v\}|_{v}) \longrightarrow 0.$$

Since $H^{1}(M, \Omega(C)) = 0$,

dim
$$H^{0}(V, \Omega(\{V\}|_{V})) = \dim H^{0}(M, \Omega(\{V\})) - 1.$$

Since $\{V\} = E_{-d\omega_i}$, we get

$$\dim H^{0}(M, \Omega(\{V\})) = \dim V_{-d\omega_{i}}$$

by the theorem of Bott. Therefore,

(3.5) dim $H^{0}(V, \Omega(\{V\}|_{V})) = \dim V_{-d\omega_{j}} - 1$, and by (3.4)

$$n(V) = 2(\dim V_{-d\omega_j} - 1).$$

We prove the following lemma.

Lemma 4. Let \mathbb{M} be an irreducible Hermitian symmetric space of compact type of dimension > 3. Assume that M is not $P_n(C)$, Sp(2)/U(2), SO(6)/U(3) or SO(8)/U(4). Then for a hypersurface V of M, we have

dim H^0 (V, $\Omega(T(M)|_V)$) = dim H^0 (M, $\Omega T(M)$),

$$H^{1}(V, \Omega(T(M)|_{V})) = 0.$$

Proof. We have the exact sequence:

by (3.3). On the other hand, by Serre's duality theorem

dim $H^{j}(M, \Omega(T(M)\otimes E_{d\omega_{j}})) = \dim H^{n-j}(M, \Omega^{1}(E_{-(d-\lambda)\omega_{j}})).$ Hence, since $H^{j}(M, \Omega T(M)) = 0$, j = 1, 2, the lemma follows from Theorem 7.

From this lemma we get the following.

Theorem 9. Let M be an irreducible Hermitian symmetric space of compact type of dimension > 3. Assume that M is not P_n(C), Sp(2)/U(2), SO(6)/U(3) or SO(8)/U(4). Then for a hypersurface V of M, we have

dim $H^{1}(V, \Theta) = \dim H^{0}(V, \{V\}|_{V}) + \dim H^{0}(V, \Theta)$ - dim $H^{0}(M, \Omega T(M)).$ By Theorems 8, 9 and (3.5), we obtain the following.

Theorem 10. Let M be an irreducible Hermitian symmetric space of compact type: BD I, E III or E VII, and let V be a hypersurface of M. Assume that dim M > 3 and the degree of $V \ge 2$. Then we have

dim H¹(V,
$$\Theta$$
) = dim V_{-dwj} - dim H⁰(M, $\Omega T(M)$) - 1.

Finally the following theorem follows from Theorem 6.

Theorem 11. Let M be an n-dimensional irreducible Hermitian symmetric space of compact type, and let V be a hypersurface of M with degree d. Then the group $H^{q}(V, \Omega)$ vanishes except for the following cases:

$$q = 0 \text{ or } n-1 \qquad \text{if } d \stackrel{>}{=} \lambda,$$

$$q = 0 \qquad \qquad \text{if } d < \lambda.$$

Proof. By Serre's duality theorem we have

(3.7) dim H^q(V,
$$\Omega$$
) = dim H^{n-1-q}(V, $\Omega(E_{-(d-\lambda)\omega_j}|_V)$)

for $q = 0, \dots, n-1$. On the other hand, by applying (3.3), we obtain the exact sequence:

$$(3.8) \cdots \longrightarrow H^{j}(M, \Omega(E_{\lambda\omega_{j}})) \longrightarrow H^{j}(M, \Omega(E_{-(d-\lambda)\omega_{j}}))$$
$$\longrightarrow H^{j}(V, \Omega(E_{-(d-\lambda)\omega_{j}}|_{V})) \longrightarrow \cdots$$

It follows from Theorem 6 that:

$$H^{q}(M, \Omega(E_{\lambda \omega_{j}})) = 0,$$
 for $q = 0, 1, \dots, n-1,$
 $H^{n}(M, \Omega(E_{\lambda \omega_{j}})) \neq 0,$

$$\begin{split} & H^{q}(M, \Omega(E_{-(d-\lambda)\omega_{j}})) = 0, \quad \text{for any } q, \text{ if } d < \lambda, \\ & H^{q}(M, \Omega(E_{-(d-\lambda)\omega_{j}})) = 0, \quad \text{for } q > 0, \text{ if } d \ge \lambda, \\ & H^{0}(M, \Omega(E_{-(d-\lambda)\omega_{j}})) \neq 0, \quad \text{if } d \ge \lambda. \end{split}$$

Hence the theorem is obtained by (3.7) and (3.8).

Osaka University

References

- Y. Akizuki and S. Nakano: Note on Kodaira-Spencer's proof of Lefschetz theorems, Proc. of the Jap. Acad., 30(1954), 226-272.
- [2] A. Borel and F. Hirzebruch: Characteristic classes and homogeneous spaces, I., Am. J. Math., 80(1958), 458-538.
- [3] R. Bott: Homogeneous vector bundles, Ann. of Math.,66(1957), 203-248.
- [4] Y. Kimura: The nullity of compact Kahler submanifolds in a complex projective space, J. Math. Soc. Japan, 29(1977) 561-580.
- [5] K. Kodaira and D. C. Spencer: On deformations of complex analytic structures, I-II., Ann. of Math., 67(1958), 328
 466.
- [6] K. Kodaira and D.C. Spencer: On a theorem of Lefschez and the Lemma of Enriques-Severi-Zariski, Proc. Nat. Acad. Sci.
 U.S.A., 39(1953), 1273-1278.
- [7] B. Kostant: Lie algebra cohomology and the generalizedBorel-Weil theorem, Ann. of Math., 74(1961), 329-387.
- [8] S. Murakami: Sur certains espaces fibres principaux differentiables et holomorphes, Nagoya Math. J., 15(1959), 171-199.
- [9] H. C. Wang: Closed manifolds with homogeneous complex structure, Amer. J. Math., 76(1954), 1-32.

ON THE HYPERSURFACES OF HERMITIAN SYMMETRIC

SPACES OF COMPACT TYPE II

YOSHIO KIMURA

(Received November 20, 1978)

1. Introduction.

Let M be an irreducible Hermitian symmetric space of compact type and let L be a holomorphic line bundle over M. Denote by $(\underline{\Omega}^{p}(L))$ the sheaf of germs of L-valued holomorphic p-forms on M. In the previous paper [1] we have studied the cohomology groups $H^{q}(M, \underline{\Omega}^{p}(L))$ of M if M is of type BDI, EIII or EVII. This note is the continuation of [1], and we retain the notations introduced in [1]. In this note we study the cohomology groups $H^{q}(M, \underline{\Omega}^{p}(L))$ of M of type AIII, CI or DIII and show the following theorem.

<u>Theorem</u>. Let M be an irreducible Hermitian symmetric space of compact type but not a complex projective space or a complex quadric of even dimension. Let V be a hypersurface of M whose degree ≥ 2 . Then

$$H^{0}(V,\Theta) = (0)$$

where \bigcirc is the sheaf of germs of holomorphic vector fields on V.

The auther would like to express his gratitude to Professor S. Murakami, Professor M. Takeuchi and Doctor M. Numata for their useful suggestions and encourragements.

ロギリジマ字 ロドイツ文字
2. Proof of the theorem.

Theorem 8 and Lemma 3 in the previous paper [1] is incorrect. The followings are true.

Theorem 8. Let M be an irreducible Hermitian symmetric space of type EIII, EVII or a complex quadoric of odd dimension (resp. a complex quadoric of even dimension), and let V be a hypersurface of M whose degree is d. Then

> $H^{0}(V, \bigcirc) = (0)$ if $d \ge 2$ (resp. 3). t ২ 3

Lemma 3. Let M be an n-dimensional irreducible Hermitian 17 symmetric space of compact type EIII, EVII or a complex quadoric of odd dimension (resp. a complex quadoric of even dimension). Then

$$H^{q}(M, \widehat{\Omega}^{p}_{i}(E_{-k\widehat{\omega}_{i}})) = (0), \quad H^{q+1}(M, \widehat{\Omega}^{p}_{i}(E_{-(k-d)\widehat{\omega}_{i}})) = (0)$$

for p+q = n+1, $k = pd-\hat{\lambda}$ if $2 \leq p \leq n-1$ and $d \geq 2$ (resp. 3).

From the above theorem we may assume that M is of type AIII, CI or DIII but not a complex projective space or a complex quadoric. If we prove the following proposition, we get the above theorem in the same way as in the proof of Theorem 8 in [1].

<u>Proposition 1</u>. If $d \ge 2$

$$H^{q}(M, \widehat{\mathbb{O}}^{p}(E_{-k\widehat{\omega}_{k}})) = (0), \quad H^{q+1}(M, \widehat{\mathbb{O}}^{p}(E_{-(k-d)\widehat{\omega}_{k}})) = (0)$$

for $p+q \ge n+1$, $k = pd-\lambda$.

By Theorems 1 and 2 in [1], we get Proposition 1 if we prove the following inequalities:

 $\#\{\widehat{\mathbb{B}} \in \widehat{\mathbb{A}}(\widehat{n}^{\dagger}); (\widehat{\mathbb{G}}\widehat{\delta} + (\operatorname{dn}(\widehat{\mathbb{G}}) - \widehat{\lambda})\widehat{\mathbb{W}}_{j}, \widehat{\mathbb{B}}) < 0 \} < n+1-n(\widehat{\mathbb{G}}), \\ \#\{\widehat{\mathbb{B}} \in \widehat{\mathbb{A}}(\widehat{n}^{\dagger}); (\widehat{\mathbb{G}}\widehat{\delta} + (\operatorname{dn}(\widehat{\mathbb{G}}) - d - \widehat{\lambda})\widehat{\mathbb{W}}_{j}, \widehat{\mathbb{B}}) < 0 \} < n+2-n(\widehat{\mathbb{G}}), \\ for \quad \widehat{\mathbb{G}} \in \mathbb{W}^{1} \quad \text{and} \quad d \ge 2.$

Since $(\widehat{\omega}_j, \widehat{\beta}) > 0$ for $\widehat{\beta} \in \widehat{\Delta}(\widehat{n}^+)$, we only have to prove the inequalities in the case of d = 2. Recall that $\#\widehat{\Delta}(\widehat{n}^+) = n$. We can restate the inequalities, in the case of d = 2, sa follows:

<u>Proposition 2.</u> For $\widehat{0} \in \mathbb{W}^1$ #{ $\widehat{B} \in \widehat{\Delta}(\widehat{n}^+)$; ($\widehat{0}$, \widehat{B}) ≥ ($(\widehat{\lambda} - 2n(\widehat{c}))\widehat{\omega}_j$, \widehat{B})} > $n(\widehat{c}) - 1$, #{ $\widehat{B} \in \widehat{\Delta}(\widehat{n}^+)$; ($\widehat{0}$, \widehat{B}) ≥ ($(\widehat{\lambda} + 2 - 2n(\widehat{c}))\widehat{\omega}_j$, \widehat{B})} > $n(\widehat{c}) - 2$.

In the following we shall prove Proposition 2 in each case.

2.1. The case that M is of type AIII but not a complex projective space, that is $M = SU(l+1)/S(U(j)\times U(l+1-j))$, $l \ge 3$ and $2 \le j \le l-1$. We immediately see that n = j(l+1-j) and $\lambda = l+1$. The Dynkin diagram of (II) is as follows:

Let $\{\widehat{\mathfrak{O}}_{i}; 1 \leq i \leq l+1\}$ be a usual basis of \mathbb{R}^{l+1} . Then we have:

$$\begin{split} &(h_0 = \{ \sum_{i=1}^{\ell+1} a_i \widehat{e}_i \in \mathbb{R}^{\ell+1}; \sum_{i=1}^{\ell+1} a_i = 0 \}, \\ &(\Delta) = \{ \widehat{e}_i - \widehat{e}_k; 1 \leq i, k \leq \ell+1, i \neq k \}, \\ &(\Pi) = \{ \widehat{e}_1 - \widehat{e}_2, \widehat{a}_2 = \widehat{e}_2 - \widehat{e}_3, \cdots, \widehat{a}_{\ell} = \widehat{e}_{\ell} - \widehat{e}_{\ell+1} \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_i - \widehat{e}_k; 1 \leq i \leq j < k \leq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \leq i \leq j < k \leq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \leq i \leq j < k \leq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \leq i \leq j < k \leq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \leq i \leq j < k \leq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \leq i \leq j < k \leq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \leq i \leq j < k \leq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \leq i \leq j < k \leq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \leq i \leq j < \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \leq i \leq j < \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \leq i \leq j < \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \leq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \leq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \leq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \leq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \leq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \leq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \leq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \leq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \leq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \leq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \leq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \leq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \leq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \leq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \leq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \leq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \leq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \geq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_1 - \widehat{e}_k; 1 \geq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_k; 1 \geq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_k; 1 \geq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_k; 1 \geq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_k; 1 \geq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{e}_k; 1 \geq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{n}_k; 1 \geq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{n}_k; 1 \geq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{n}_k; 1 \geq \ell+1 \}, \\ &(\Delta(\widehat{n}^+) = \{ \widehat{n}_k;$$

4

An element $\widehat{O} \in W$ acts on \mathbb{R}^{l+1} by $\widehat{OE}_{i} = \widehat{CO}_{(i)}$ for $1 \leq i$ $\leq l + 1$, where \widehat{O} in the index is a permutation of $\{1, 2, \cdots, l+1\}$. We represent \widehat{O} by $\mathcal{K} \not\in \Lambda \not\in \mathcal{I} \land$

$$\left(\begin{array}{cccc} 1 & 2 & \cdots & \ell+1 \\ \hline g(1) & g(2) & \cdots & g(\ell+1) \end{array}\right)$$

Then

$$W^{1} = \left\{ \widehat{\mathcal{O}} \in W; \ \widehat{\mathcal{O}}^{-1} = \begin{pmatrix} 1 & \cdots & \ell+1 \\ \widehat{\mathcal{O}}^{-1}(1) & \cdots & \widehat{\mathcal{O}}^{-1}(\ell+1) \end{pmatrix}, \ \widehat{\mathcal{O}}^{-1}(j) & \cdots & \widehat{\mathcal{O}}^{-1}(j+1) & \cdots & \widehat{\mathcal{O}}^{-1}(\ell+1) \\ \widehat{\mathcal{O}}^{-1}(j) & \cdots & \widehat{\mathcal{O}}^{-1}(\ell+1) & \cdots & \widehat{\mathcal{O}}^{-1}(\ell+1) \end{pmatrix} \right\}$$

The index $n(\widehat{g})$ of $\widehat{g} \in W^1$ is given by

$$\mathbf{n}(\widehat{\mathbf{o}}) = \sum_{i=1}^{j-1} (\widehat{\mathbf{o}})^{-1} (i) - i)$$

(Takeuchi [2]). We see easily that

$$(\widehat{\omega}_{j}, \widehat{\beta}) = 1$$
 for any $\widehat{\beta} \in \widehat{\Delta}(\widehat{n}^{+}),$
 $(\widehat{\sigma\delta}, \widehat{\varepsilon}_{i} - \widehat{\varepsilon}_{k}) = \widehat{\sigma}^{1}(k) - \widehat{\sigma}^{1}(i)$ for $1 \leq i, k \leq l+1.$

Therefore we have to prove that the following two inequalities are true for any $\widehat{\sigma} \in W^1$

(1.1) #{ (i,k); $1 \le i \le j < k \le l+1$, $(\overline{0})^{-1}(k) - (\overline{0})^{-1}(i) \ge l+l-2n(\overline{0})$ } > $n(\overline{0}) - l$, (1.2) #{ (i,k); $1 \le i \le j < k < l+1$, $(\overline{0})^{-1}(k) - (\overline{0})^{-1}(i) \ge l+3-2n(\overline{0})$ } > $n(\overline{0}) - 2$. First we prove the inequality (1.1).

<u>Lemma 1.1.</u> Let $(\widehat{\sigma} \in W^1$. If $n(\widehat{g}) \ge l+1$, the inequality (1.1) is true. 1/3

<u>Proof.</u> Since $n(\widehat{\sigma}) \ge l+1$, $l+l-2n(\widehat{\sigma}) \ge -(l+1)$. There existe no pair (i, k), $i \ne k$, which satisfies

$$(\overline{0}^{-1}(k) - \overline{0}^{-1}(i) < -(\ell+1).$$

5

Therefore

$$\{(\mathbf{i},\mathbf{k}); 1 \leq \mathbf{i} \leq \mathbf{j} < \mathbf{k} \leq \ell+1, \mathbf{0}^{-1}(\mathbf{k}) - \mathbf{0}^{-1}(\mathbf{i}) \geq \ell+1-2n(\mathbf{0})\} = n.$$

From the definition of the index $n(\widehat{o}) \leq n$, it follows that $n > n(\widehat{o}) - 1$. Q.E.D.

 $\underbrace{\underbrace{\text{Lemma 1.2.}}_{\substack{1,2\\ \hline{1,2\\ \hline$

$$n(\widehat{\sigma}) = \sum_{i=1}^{j-1} (\widehat{\sigma}^{-1}(i) - i)$$

$$= \widehat{\sigma}^{-1}(j) - j + \sum_{i=1}^{j-1} (\widehat{\sigma}^{-1}(i) - i)$$

$$\geq (\ell + 1 - j) + (\ell - 1)$$

$$= \ell.$$

Q.E.D.

Lemma 1.3. Let $\widehat{\mathfrak{O}} \in W^1$. Assume that $\widehat{\mathfrak{O}}(1) \neq 1$ and $\widehat{\mathfrak{O}}(\ell+1) \neq \ell+1$. Then the inequality (1.1) is true for $\widehat{\mathfrak{O}}$.

<u>Proof.</u> By Lemmas 1.1 and 1.2 we assume that $n(\hat{g}) = l$. Then such an element \hat{g} is unique and given by

$$(\underbrace{ \bigcirc}^{-1}_{2 \cdots j} = \begin{pmatrix} 1 \cdots j - 1 & j & j + 1 & j + 2 \cdots & \ell + 1 \\ 2 \cdots & j & \ell + 1 & 1 & j + 1 \cdots & \ell \end{pmatrix}.$$

The pair (i, k), $1 \leq i \leq j < k \leq l + 1$, which satisfies

$$\hat{\sigma}^{-1}(k) - \hat{\sigma}^{-1}(i) < \ell + 1 - 2n(\hat{\sigma}) = 1 - \ell$$

is (j, j+1). Hence

 $\#\{(\mathbf{i},\mathbf{k}); \ l \leq \mathbf{i} \leq \mathbf{j} < \mathbf{k} \leq \ell+1, \ \widehat{\mathbf{0}}^{-1}(\mathbf{k}) - \widehat{\mathbf{0}}^{-1}(\mathbf{i}) \geq 1-\ell\} = n-1 > n(\widehat{\mathbf{0}})-1.$

<u>Lemma 1.4.</u> If j = 2, the inequality (1.1) is true for any $\bigcirc \mathbb{C} \in \mathbb{W}^1$.

Proof. From the definition of
$$n(\widehat{o})$$

(1.3)
$$n(\hat{o}) = \hat{o}^{-1}(1) + \hat{o}^{-1}(2) - 3.$$

If $n(\hat{o}) = 0$, the inequation (1.1) is clearly true. Let $n(\hat{o})$ = 1. Then $\hat{o}^{-1}(1) = 1, \hat{o}^{-1}(2) = 3$ and

$$\widehat{\mathcal{O}}^{-1}(\ell+1) - \widehat{\mathcal{O}}^{-1}(1) = \ell > \ell + 1 - 2n(\widehat{\mathcal{O}}).$$

It follows that the inequality (1.1) is true. Let $n(\vec{g}) = 2$. It is easy to see that the inequality (1.1) is true.

By Lemma 1.1 we have already seen that if $n(g) \ge l + 1$ the inequality is true. Hence we only have to show that (1.1) is true under the following condition:

(1.4)
$$5 < \overline{0}^{-1}(1) + \overline{0}^{-1}(2) < \ell + 4.$$

By (1.3)

$$\ell + 1 - 2n(\hat{\sigma}) = \ell + 7 - 2(\hat{\sigma})^{-1}(1) + \hat{\sigma}^{-1}(2)).$$

Since $\sigma^{-1}(k) \ge k - 2$ for $2 < k \le 2 + 1$,

 $\# \{ k; 2 < k \leq \ell+1, \widehat{\sigma}^{-1}(k) - \widehat{\sigma}^{-1}(1) \geq \ell+7-2(\widehat{\sigma}^{-1}(1) + \widehat{\sigma}^{-1}(2)) \}$ $\geq \min\{\widehat{\sigma}^{-1}(1) + 2\widehat{\sigma}^{-1}(2) - 7, \ell - 1 \}.$

Similarly

$$= \min\{ 2\hat{0}^{-1}(1) + \hat{0}^{-1}(2) \ge \ell + 7 - 2(\hat{0}^{-1}(1) + \hat{0}^{-1}(2)) \}$$

Therefore

$$\#\{(i,k); \ l \leq i \leq 2 < k \leq \ell+1, \ \textcircled{o}^{-1}(k) - \textcircled{o}^{-1}(i) \geq \ell+1-2n(\textcircled{o})\} \\ \geq \min\{3(\textcircled{o}^{-1}(1) + \textcircled{o}^{-1}(2)) - 14, \ \ell+2 \textcircled{o}^{-1}(1) + \textcircled{o}^{-1}(2) - 8, \ 2\ell-2\}$$

It is easy to see that $3(\hat{g}^{-1}(1)+\hat{g}^{-1}(2))-14$, $\ell+2\hat{g}^{-1}(1)+\hat{g}^{-1}(2)-8$ and $2\ell-2$ are both larger than $n(\hat{g})-1 = \hat{g}^{-1}(1)+\hat{g}^{-1}(2)-4$ under the condition (1.4).

Q.E.D.

We get the following lemma in the similar way as above. <u>Lemma 1.5.</u> If j = l - l, the inequality (1.1) is true for any $\sigma \in W^1$.

We shall prove that the inequality (1.1) is true for any $\bigcirc \in W^1$ by using induction on ℓ . If $\ell = 3$ so that j = 2, it follows, by Lemma 1.4, our assertion is true.

Let $l = l_0 \ge 4$. We can assume that $3 \le j = j_0 \le l_0 - 2$ and whether $(\widehat{O}(1) = 1 \text{ or } \widehat{O}(l_0+1) = l_0+1$ by Lemmas 1.3, 1.4 and 1.5.

Case 1: $\widehat{O}(1) = 1$. Define the element \widehat{T} of W^1 , which is considered for $\ell = \ell_0 -1$ and $j = j_0 - 1$, by as an element of W^1 $\widehat{T}^{-1} = \begin{pmatrix} 1 & 2 & \cdots & \ell_0 \\ \widehat{O}^{-1}(2) - 1 & \widehat{O}^{-1}(3) - 1 & \cdots & \widehat{O}^{-1}(\ell_0 + 1) - 1 \end{pmatrix}$. We immediatly see that $n(\widehat{T}) = n(\widehat{O})$. By the assumption of the

 $2 \leq j \leq l-2$ and

induction,

$$\{ (i,k); 1 \leq i \leq j_0 - 1 < k \leq \ell_0, (j^{-1}(k) - j^{-1}(i)) \geq \ell_0 - 2n(j) \} > n(j) - 1.$$

Hence

$$(1.5) #{(i,k); 2 \leq i \leq j_0 < k \leq \ell_0 + 1, \widehat{O}^{-1}(k) - \widehat{O}^{-1}(i) \geq \ell_0 - 2n(\widehat{O})} > n(\widehat{O}) - 1.$$

For any k, $j_0 \leq k \leq \ell_0 + 1$, if there exists i, $2 \leq i \leq j_0$, which satisfies the following:

$$(\vec{\sigma}^{-1}(k) - \vec{\sigma}^{-1}(i) = \ell_0 - 2n(\vec{\sigma}))$$

such an integer i is unique and

$$\widehat{O}^{-1}(k) - \widehat{O}^{-1}(1) \ge \ell_0 + 1 - 2n(\widehat{O}).$$

Hence (1.5) leads to (1.1).

Case 2: $\mathfrak{G}(l_0+1) = l_0+1$. Define the element $\mathfrak{T} \in W^1$, which is considered for $l = l_0 - 1$ and $j = j_0$, by $\mathfrak{T}_{as an element of W}$, $\mathfrak{T}^{-1} = \begin{pmatrix} 1 & \cdots & l_0 \\ \mathfrak{T}^{-1}(1) & \cdots & \mathfrak{T}^{-1}(l_0) \end{pmatrix}$. Then $\mathfrak{T}(\mathfrak{T}) = \mathfrak{T}(\mathfrak{T})$.

Then $n(\widehat{\tau}) = n(\widehat{\sigma})$. By the assumption of the induction, $3 \le j \le l-1$ and $(1.6) \#\{(i,k); 1 \le i \le j_0 < k \le l_0, \bigcirc^{-1}(k) - \widehat{\sigma}, \stackrel{-1}{(i)} \ge l_0 - 2n(\widehat{\sigma})\} > n(\widehat{\sigma}) - 2.$

For any i, $l \leq i \leq j_0$, if there existes k, $j_0 < k \leq \ell_0$, which satisfies the following:

$$\widehat{g}^{-1}(k) - \widehat{g}^{-1}(i) = \ell_0 - 2n(\widehat{g}),$$

such an integer k is unique and

$$\widehat{G}^{-1}(\ell_0+1) - \widehat{G}^{-1}(i) \ge \ell_0+1 - 2n(\widehat{G}).$$

Hence (1.5) leads to (1.1).

Thus we proved that the inequality (1.1) is true for any $(\sigma) \in W^1$. have

In the following we shall prove that the inequality (1.2) is true for any $\widehat{\sigma} \in \mathbb{N}^1$.

<u>Lemma 1.6.</u> Let $\mathfrak{G} \in \mathbb{W}^1$. If $n(\mathfrak{G}) \ge l+1$, the inequality (1.2) is true.

<u>Proof.</u> Since $n(\hat{g}) \geq l+1$

 $\ell + 3 - 2n(\widehat{0}) \leq 1 - \ell.$

If there existe a pair (i, k), $i \neq k$, which satisfies

 $(\overline{0}^{-1}(k) - (\overline{0}^{-1}(i) < 1 - \ell),$

such a pair is unique. Therefore

 $= \{ (i,k); 1 \leq i \leq j < k \leq l+1, G^{-1}(k) - G^{-1}(i) \geq l+1 - 2n(G) \} \geq n-1 > n(G) - 2.$ Q.E.D.

Lemma 1.7. Let $\bigcirc \in \mathbb{W}^1$. Assume that $\bigcirc (1) \neq 1$ and $\bigcirc (l+1) \neq l+1$. Then the inequality (1.2) is true.

<u>Proof.</u> By Lemmas 1.2 and 1.6 we may assume that $n(\widehat{\sigma}) = l$. Such an element $\widehat{\sigma}$ is unique and represented by

 $\sigma^{-1} = \begin{pmatrix} 1 \cdots j - 1 & j & j + 1 & j + 2 \cdots & l + 1 \\ 2 \cdots j & l + 1 & 1 & j + 1 \cdots & l \end{pmatrix}$

The pairs (i,k), $l \leq i \leq j < k \leq l+1$, which satisfy

$$\bigcirc^{-1}(k) - \bigcirc^{-1}(i) < l + 3 - 2n(\bigcirc) = 3 - k$$

are at most 2. Therefore

Since $n(\hat{g}) = l, n(\hat{g}) < n$. It follows that (1.2) is true. Q.E.D.

 $\underbrace{ \underbrace{\text{Lemma 1.8.}}_{\substack{j = 2, \text{ the inequality (1.2) is true for any}}_{\substack{j \in \mathbb{W}^1}}$

<u>Proof.</u> It is easy to see that (1.2) is true if $n(\widehat{g}) \leq 3$. By Lemma 1.6 and (1.3), we only have to show that (1.2) is true under the condition:

(1.7)
$$6 < \overline{0}^{-1}(1) + \overline{0}^{-1}(2) < \ell + 4.$$

We get the following inequality in the same way as in the proof of Lemma 1.4.

$$\#\{ (i,k); 1 \leq i \leq 2 < k \leq \ell+1, \bigcirc^{-1}(k) - \bigcirc^{-1}(i) \leq \ell+3-2n(\bigcirc) \}$$

$$\geq \min\{ 3(\bigcirc^{-1}(1) + \bigcirc^{-1}(2)) - 18, \ell+2\bigcirc^{-1}(1) + \bigcirc^{-1}(2) - 10, 2\ell-2 \}.$$

It is easy to see that $3(\textcircled{0}^{-1}(1) + \textcircled{0}^{-1}(2)) - 18$, $l+2\textcircled{0}^{-1}(1) + \textcircled{0}^{-1}(2) - 10$ and 2l-2 are both larger than $n\textcircled{0}) - 2 = \textcircled{0}^{-1}(1) + \textcircled{0}^{-1}(2) - 4$ under the condition (1.7).

Q.E.D.

We get the following lemma in the similar way as above.

 $\underbrace{\text{Lemma 1.9.}}_{\text{G} \in W^1}$ If $j = \ell - 1$, the inequality (1.2) is true for any $\sqrt[4]{7}$

From Lemmas 1.7, 1.8 and 1.9, we can prove that the inequality (1.2) is true for any $\widehat{\mathcal{O}} \in \mathbb{W}^1$ in the same way as in the proof of the inequality (1.1).

2.2. The case that M is of type CI, that is M = Sp(l)/U(l). If l = 1, $M = P_1(C)$. If l = 2, M is a complex quadoric of dimension 3. Hence we assume that $l \ge 3$. $hg \land hence$ In this case $n = \frac{1}{2}\ell(\ell+1)$ and $\widehat{\lambda} = \ell + 1$. The Dynkin diagram of $\widehat{\mathbb{I}}$ is as follows:

where $\textcircled{Q}_{l} \oslash$ shows that $\textcircled{Q}_{j} = \textcircled{Q}_{l}$. Let $\{ \textcircled{C}_{i}; 1 \leq i \leq l \}$ be the basis of \textcircled{h}_{0} which satisfies that $(\textcircled{C}_{i}, \textcircled{C}_{j}) = \textcircled{O}_{ij}$. Then we have:

$$\widehat{\Delta} = \{ \pm 2\widehat{e}_{j}; 1 \leq i \leq l, \pm \widehat{e}_{j} \pm \widehat{e}_{j}; 1 \leq i < j \leq l \},$$

$$\widehat{\Pi} = \{ \widehat{e}_{1} = \widehat{e}_{1} - \widehat{e}_{2}, \cdots, \widehat{e}_{l-1} = \widehat{e}_{l-1} - \widehat{e}_{l}, \widehat{e}_{l} = 2\widehat{e}_{l} \},$$

$$\widehat{\Delta} (\widehat{n}^{+}) = \{ 2\widehat{e}_{i}; 1 \leq i \leq l, \widehat{e}_{i} + \widehat{e}_{j}; 1 \leq i < j \leq l \},$$

$$\widehat{\delta} = l\widehat{e}_{1} + (l-1)\widehat{e}_{2} + \cdots + \widehat{e}_{l},$$

$$\widehat{\omega}_{l} = \widehat{e}_{1} + \cdots + \widehat{e}_{l}.$$

An element $\widehat{\sigma} \in W$ acts on \widehat{h}_0 by $\widehat{\sigma}_i = \pm \widehat{c}_{\overline{\sigma}(i)}$ for $1 \leq i \leq l$, where $\widehat{\sigma}$ in the index is a permutation of $\{1, 2, \cdots, l\}$. We denote the element $\widehat{\sigma} \in W$ by the symbol

$$\begin{pmatrix} 1 & 2 & \cdots & \ell \\ \pm & \hline & (1) & \pm & \hline & (2) & \cdots & \pm & \hline & (\ell) \end{pmatrix}$$

Then

$$W^{1} = \left\{ \begin{array}{cccc} \widehat{\mathbb{G}} \in W; \ \widehat{\mathbb{G}}^{-1} = \begin{pmatrix} 1 & \cdots & r & r+1 & \cdots & \ell \\ \\ \widehat{\mathbb{G}}^{-1}(1) & \cdots & \widehat{\mathbb{G}}^{-1}(r) & -\widehat{\mathbb{G}}^{-1}(r+1) & \cdots & -\widehat{\mathbb{G}}^{-1}(\ell) \end{pmatrix} \right.$$

for $0 \leq r \leq \ell, \ \widehat{\mathbb{G}}^{-1}(1) < \cdots < \widehat{\mathbb{G}}^{-1}(r), \ \widehat{\mathbb{G}}^{-1}(r+1) > \cdots > \widehat{\mathbb{G}}^{-1}(\ell) \right\}.$

The index $n(\partial)$ of $(\overline{\partial} \in W^1$ is given by

$$n(\hat{o}) = \sum_{i=1}^{r} (\hat{o}^{-1}(i) - i) + \ell + 1 - r^{c_2}$$

(Takeuchi [2]). We see easily that

$$(\widehat{\omega}_{\ell}, \widehat{\mathbb{B}}) = 2 \quad \text{for any } \widehat{\mathbb{B}} \in \widehat{\mathbb{A}}(\widehat{\mathbb{n}}^+),$$
$$(\widehat{\mathbb{C}}, \widehat{\mathbb{C}}_{1}) = \begin{cases} (\ell + 1 - \widehat{\mathbb{C}}^{-1}(i)) & \text{if } 1 \leq i \leq r \\ -(\ell + 1 - \widehat{\mathbb{C}}^{-1}(i)) & \text{if } r < i \leq \ell. \end{cases}$$

Therefore we have to prove that the following inequalities are true for any $\mathfrak{G} \in W^1$

$$(2.1) \quad \#\{ (\widehat{\mathbb{B}} \in \widehat{\mathbb{A}}(\widehat{n}^{\dagger}); ((\widehat{\mathbb{G}}), (\widehat{\mathbb{B}})) \geq 2(\ell+1) - 4n(\widehat{\mathbb{G}}) \} > n(\widehat{\mathbb{G}}) - 1,$$

(2.2) $\#\{\widehat{B}\in\widehat{\Delta}(\widehat{n}^{\dagger});(\widehat{\sigma\delta},\widehat{B})\geq 2(\ell+3)-4n(\widehat{\sigma})\}>n(\widehat{\sigma})-2.$

Since $(\overline{\mathfrak{o}\delta}, \overline{\mathfrak{B}}) \geq -2\ell$, $\widehat{\mathfrak{B}} \in \widehat{\mathfrak{A}}(\overline{\mathfrak{n}}^+)$, we immediately see that if $\mathfrak{n}(\overline{\mathfrak{o}}) \geq \ell + 1$ (resp. $\ell + 2$), the inequality (2.1) (resp.(2.2)) is true for any $\overline{\mathfrak{o}} \in \mathbb{W}^1$.

<u>Lemma 2.1</u>. Let $\widehat{O} \in W^1$. If $n(\widehat{O}) \ge \ell$, the inequality (2.1) is true.

<u>Proof.</u> From the above notice we can assume that $n(\widehat{g}) = l$. In this case

$$2(\ell+1) - 4n(\hat{\sigma}) = 2 - 2\ell$$
.

It is easy to see that

$$= \{ \widehat{B} \in \widehat{A}(\widehat{n}^{+}); (\widehat{\sigma}, \widehat{B}) < 2 - 2\ell \} \leq 2.$$

Hence

 $\#\{ (\widehat{\mathbb{B}} \in \widehat{\Delta}) (\widehat{\mathbb{n}}^{+}); ((\widehat{\mathbb{O}}), (\widehat{\mathbb{B}}) \ge 2 - 2\ell \} \le \ell + 1^{C_{2}} - 2 > \ell - 1 = n(\widehat{\mathbb{G}}) - 1.$ Q.E.D.

Lemma 2.2. Let $\widehat{\sigma} \in W^1$. If $n(\widehat{\sigma}) \geq l$, the inequality (2.2) is true. <u>Proof.</u> If $n(\hat{\sigma}) \stackrel{1}{\geq} l + l$, the inequality is ture in the same way as above. Therefore we assume that $n(\hat{g}) = l$. Case 1 : l = 3. If r = 0, $n(\hat{g}) = 6 \neq 3$. Hence r > 0, and σ is one of the following elements: $\left(\begin{array}{ccc}1&2&3\\&&&\\1&2&2\end{array}\right),\left(\begin{array}{ccc}1&2&3\\&&\\2&2&1\end{array}\right).$ In each case (2.2) is true. Case 2 : l = 4. If $r \leq 1$, $n(\widehat{G}) \geq 6 > 4$. Hence $r \geq 2$ It follows that $(\overline{\mathfrak{G}}, 2\widehat{\mathfrak{E}}), (\overline{\mathfrak{G}}, \widehat{\mathfrak{E}}_1 + \widehat{\mathfrak{E}})$ and $(\overline{\mathfrak{G}}, 2\widehat{\mathfrak{E}})$ are larger than $2(l+3) - 4n(\sigma) = -2$. On the other hand $n(\hat{\sigma}) - 2 = 2$. Therefore (2.2) is true. Case 3 : $l \geq 5$. If $\widehat{\mathbb{B}} \in \widehat{(\mathbb{A})}(\widehat{\mathbb{N}}^{\dagger})$ satisfies $((\sigma \delta), (\beta)) < 2(l+3) - 4n(\sigma)) = 6 - 2l,$ (β) is one of the following 12 elements: $2\widehat{e}_{\ell}, \widehat{e}_{\ell} + \widehat{e}_{\ell-1}, \widehat{e}_{\ell} + \widehat{e}_{\ell-2}, \widehat{e}_{\ell} + \widehat{e}_{\ell-3}, \widehat{e}_{\ell} + \widehat{e}_{\ell-4}, \widehat{e}_{\ell} + \widehat{e}_{\ell-5},$ $2\widehat{\varepsilon}_{\ell-1}, \widehat{\varepsilon}_{\ell-1} + \widehat{\varepsilon}_{\ell-2}, \widehat{\varepsilon}_{\ell-1} + \widehat{\varepsilon}_{\ell-3}, \widehat{\varepsilon}_{\ell-1} + \widehat{\varepsilon}_{\ell-4}, 2\widehat{\varepsilon}_{\ell-2}, \widehat{\varepsilon}_{\ell-2} + \widehat{\varepsilon}_{\ell-3}.$

On the other hand

$$\begin{split} & \ell + 1^{C} 2 - 12 \quad (\ell - 2) \\ &= \frac{1}{2} \{ \ell (\ell + 1) - 20 - 2\ell \} \\ &= \frac{1}{2} (\ell^{2} - \ell - 20) \\ &= \frac{1}{2} (\ell + 4) (\ell - 5) \geq 0. \end{split}$$

The equality holds only in the case $\ell = 5$. But if $\ell = 5$, $(\beta \neq \widehat{e}_{\ell} + \widehat{e}_{\ell-5})$ for $(\beta \in \widehat{A})(\widehat{n}^+)$. Therefore the inequality is true. Q.E.D.

Lemma 2.3. Let $\widehat{\mathcal{O}} \in W$. If $\widehat{\mathcal{O}}(1) \neq 1$, $n(\widehat{\mathcal{O}}) \geq \ell$. <u>Proof.</u> By the assumption,

$$\sum_{i=1}^{r} (\widehat{\mathfrak{g}}(i) - i) \ge r.$$

Hence

$$n(\tilde{g}) - \ell$$

$$\geq r + \ell + 1 - r^{C_{2}} - \ell$$

$$= \frac{1}{2} (\ell - r - 1) (\ell - r) \geq 0$$

Q.E.D.

We shall prove that the inequality (2.1) is true for any $(e) \in W^1$ by using induction on ℓ . Let $\ell = 3$. If $n(e) \ge 3$. the inequality is true by Lemma 2.1. If n(e) = 0, the inequality is also true for n(e) - 1 < 0. If n(e) = 1 (resp.2), $(e) = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & -3 \end{pmatrix}$ $\begin{pmatrix} resp. \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & -2 \end{pmatrix} \end{pmatrix}$, and (2.1) is true. $\frac{2k}{\sqrt{1}}$ Let $\ell = \ell_0 > 3$. By Lemmas 2.1 and 2.3, we may assume that e(e)(1) = 1. Define the element $(\tau) \in W^1$, which is considered for $\ell = \ell_0 - 1$, by

$$\widehat{\mathbb{C}}^{-1} = \begin{pmatrix} 1 & \cdots & 0 & 1 \\ \overline{\mathbb{C}}^{-1}(2) - 1 & \cdots & \overline{\mathbb{C}}^{-1}(r) - 1 & -(\overline{\mathbb{C}}^{-1}(r+1) - 1) & \cdots & -(\overline{\mathbb{C}}^{-1}(\lambda_0) - 1) \end{pmatrix}$$

We easily see that $n(\widehat{\mathbb{T}}) = n(\widehat{\mathbb{C}})$. By the assumption of the induction,
 $\#\{ (\widehat{\mathbb{C}}_i + \widehat{\mathbb{C}}_j; 1 \leq i, j \leq \lambda_0 - 1, ((\overline{\mathbb{T}} \widehat{\mathbb{C}}', (\widehat{\mathbb{C}}_i + \widehat{\mathbb{C}}_j)) \geq 2 - 4n(\widehat{\mathbb{T}}) \} > n(\widehat{\mathbb{T}}) - 1,$
where $\widehat{\mathbb{C}}' = (\lambda_0 - 1)\varepsilon_1 + (\lambda_0 - 2)\varepsilon_2 + \cdots + \widehat{\mathbb{C}}_{\lambda_0} - 1$. It follows, by
the fact that $((\widehat{\mathbb{T}} \widehat{\mathbb{C}}', (\widehat{\mathbb{C}}_{i-1})) = ((\widehat{\mathbb{C}} \widehat{\mathbb{C}}, (\widehat{\mathbb{C}}_i))$ for $2 \leq i \leq \lambda_0$, that
 $(2.3) \#\{ (\widehat{\mathbb{C}}_i + \widehat{\mathbb{C}}_j; 2 \leq i, j \leq \lambda_0, ((\widehat{\mathbb{C}} \widehat{\mathbb{C}}, (\widehat{\mathbb{C}}_i + \widehat{\mathbb{C}}_j)) \geq 2\lambda - 4n(\widehat{\mathbb{C}}) \} > n(\widehat{\mathbb{C}}) - 1.$

Lemma 2.4. Let

 $s = \#\{\widehat{e}_{i}; 2 \leq i \leq \ell_{0}, \exists \widehat{e}_{j}, 2 \leq j \leq \ell_{0}, j \neq i, \text{ such that} \}$ $(\widehat{\sigma\delta}, \widehat{e}_{i} + \widehat{e}_{j}) = 2\ell - 4n(\widehat{o}) \text{ or } 2\ell + 1 - 4n(\widehat{o}) \}.$

Then

 $\#\{(\widehat{e_{j}} + \widehat{e_{j}}; 2 \leq i < j \leq \ell_{0}, (\widehat{\sigma\delta}, \widehat{e_{i}} + \widehat{e_{j}}) = 2\ell - 4n(\widehat{\sigma}) \text{ or } \\ 2\ell + 1 - 4n(\widehat{\sigma})\} \leq s - 1.$

<u>Proof.</u> Let $(\widehat{e}_{1}, 2 \leq i \leq l_{0}, \text{ satisfy the condition that}$ there exists $(\widehat{e}_{j}, 2 \leq j \leq l_{0}, j \neq i, \text{ such that } (\overline{ob}, (\widehat{e}_{i} + \widehat{e}_{j}))$ = $2^{l} - n(\widehat{o})$ or $2^{l} + 1 - n(\widehat{o})$. For the element (\widehat{e}_{i}) , $(2.4) \#\{(\widehat{e}_{i} + \widehat{e}_{j}; 2 \leq j \leq l_{0}, j \neq i, (\overline{ob}, (\widehat{e}_{i} + (\widehat{e}_{j}))) = 2l - 4n(\widehat{o}))$ or $2^{l} + 1 - 4n(\widehat{o})\} \leq 2$.

In this way we find at most 2s ordered pairs (i, j), $2 \leq i \leq l_0$, j = i, which satisfies $(\sigma \delta, \varepsilon_i + \varepsilon_j) = 2l - 4n(\sigma)$ or $2l + 1 - 4n(\sigma)$. On the other hand the distinct pairs (i, j) and (j, i) induce the same element $\varepsilon_i + \varepsilon_j$. Therefore $(2.5) # \{ \widehat{e}_{i} + \widehat{e}_{j}; 2 \leq i < j \leq \ell_{0}, (\widehat{\sigma\delta}, \widehat{e}_{i} + \widehat{e}_{j}) = 2\ell - 4n(\widehat{g}) \text{ or} \\ 2\ell + 1 - 4n(\widehat{g}) \} \leq s,$

and the equality holds if and only if the equality in (2.4) holds for any $\widehat{\mathcal{O}}_i$, $2 \leq i \leq \ell_0$.

Define the integer i_0 (resp.i_m) by

min (resp. max) { i; $2 \leq i \leq \ell_0$, $\exists j$, $2 \leq j \leq \ell_0$, $j \neq i$ such that ($(\widehat{\sigma}\delta)$, $(\widehat{e}_i + \widehat{e}_j)$) = $\ell - 2n(\widehat{g})$ or $\ell + 1 - 2n(\widehat{g})$ },

If the equality in (2.4) holds, there exists the integers i and j such that $for \ \ensuremath{\mathcal{E}}_{i}$ and $\ensuremath{\mathcal{E}}_{im}$

$$(\widehat{\sigma\delta}, \widehat{\varepsilon}_{i_{0}}^{\dagger} + \widehat{\varepsilon}_{j}^{\dagger}) = \ell - 2n(\widehat{\sigma}) \text{ or } \ell + 1 - 2n(\widehat{\sigma}),$$

$$(\widehat{\sigma\delta}, \widehat{\varepsilon}_{i}^{\dagger} + \widehat{\varepsilon}_{i_{m}}^{\dagger}) = \ell - 2n(\widehat{\sigma}) \text{ or } \ell + 1 - 2n(\widehat{\sigma}),$$

$$\widehat{\ell}_{0}^{\dagger} < (\widehat{i}) \text{ and } (\widehat{j}) < \widehat{\ell}_{m}^{\dagger} \cdot \int_{\text{Hence}}^{\widehat{c} \times \widehat{\beta}_{j}}_{\text{Hence}}$$

$$(\widehat{\sigma\delta}, \widehat{\varepsilon}_{i}^{\dagger} + \widehat{\varepsilon}_{i_{m}}^{\dagger}) \leq (\widehat{\sigma\delta}, \widehat{\varepsilon}_{i_{0}}^{\dagger} + \widehat{\varepsilon}_{j}^{\dagger}) - 2.$$

This is impossible, and therefore the equality does not hold. Q.E.D.

Let (\underline{e}_{i}) satisfy that there exists (\underline{e}_{j}) , $2 \leq j \leq l_{0}$, $j \neq i$, such that $(2 \leq i \leq l_{c})$

$$(\overline{\mathfrak{G}}, \widehat{\mathfrak{e}}_{\mathbf{i}} + \widehat{\mathfrak{e}}_{\mathbf{j}}) = 2\ell - 4n(\widehat{\mathfrak{g}}) \text{ or } 2\ell + 1 - 4n(\widehat{\mathfrak{g}}).$$

For this element $(\varepsilon)_{j}$,

$$(\overline{\sigma\delta}, \widehat{\varepsilon}_{1} + \widehat{\varepsilon}_{1}) \ge 2\ell + 2 - 4n(\overline{\sigma}),$$

in all but the following case:

$$(\overline{\mathfrak{ob}}, \widehat{\mathfrak{e}}_{1} + \widehat{\mathfrak{e}}_{2}) = 2\mathfrak{l} - 4\mathfrak{n}(\overline{\mathfrak{o}}).$$

Therefore

 $\# \{ \widehat{\mathfrak{C}}_{i} + \widehat{\mathfrak{C}}_{j}; 1 \leq i < j \leq \ell_{0}, (\widehat{\mathfrak{O}}, \widehat{\mathfrak{C}}_{i} + \widehat{\mathfrak{C}}_{j}) \leq 2\ell + 2 - 4n(\widehat{\mathfrak{O}}) \}$ $\geq \# \{ \widehat{\mathfrak{C}}_{i} + \widehat{\mathfrak{C}}_{j}; 2 \leq i < j \leq \ell_{0}, (\widehat{\mathfrak{O}}, \widehat{\mathfrak{C}}_{i} + \widehat{\mathfrak{C}}_{j}) \leq 2\ell - 4n(\widehat{\mathfrak{O}}) \}.$

There exists at most one element $\widehat{\mathfrak{G}}_{1}$, $2 \leq i \leq \ell_{0}$, such that $(\overline{\mathfrak{G}}, 2\widehat{\mathfrak{G}}_{1}) = 2\ell - 4n(\widehat{\mathfrak{G}})$ or $2\ell + 1 - 4n(\widehat{\mathfrak{G}})$.

If such $\widehat{\mathfrak{O}}_{i}$ exists,

 $(\overline{\sigma\delta}, 2\hat{\varepsilon}_1) \geq 2\ell + 2 - 4n(\hat{\sigma}).$

Therefore the inequality (2.1) is true.

Thus we have proved that the inequality (2.1) is true for any $\widehat{\sigma} \in W^1$.

From Lemmas 2.2 and 2.3, we can prove that the inequality (2.2) is true for any $\overline{\bigcirc} \in \mathbb{W}^1$ in the same way as above.

If l = 4, M is a complex quadoric of dimension 6. /

2.3. The case that M is of type DIII, that is $M = SO(2\ell)/U(\ell)$ If $\ell = 3$, $M = P_3(\underline{C})$. Hence we assume that $\ell \ge 5$. In this case $n = \frac{1}{2}\ell(\ell-1)$ and $\lambda = 2\ell - 2$. The Dinkin diagram of \square is as follows:

where $\widehat{\mathbb{Q}}_{\ell} \odot$ shows that $\widehat{\mathbb{Q}}_{j} = \widehat{\mathbb{Q}}_{\ell}$. Let $\{ \widehat{\mathbb{Q}}_{i}; 1 \leq i \leq \ell \}$ be the basis of $\widehat{\mathbb{h}}_{0}$ which satisfies that $(\widehat{\mathbb{Q}}_{i}, \widehat{\mathbb{C}}_{j}) = \widehat{\delta}_{ij}$. Then we have:

$$\begin{split} \widehat{\Delta} &= \{ \pm (\widehat{e}_{1} \pm (\widehat{e}_{j}); 1 \leq i < j \leq \ell \}, \\ \widehat{\Pi} &= \{ (\widehat{a}_{1} = (\widehat{e}_{1} - (\widehat{e}_{2}), \cdots, (\widehat{a}_{\ell-1} = (\widehat{e}_{\ell-1} - (\widehat{e}_{\ell}), (\widehat{a}_{\ell} = (\widehat{e}_{\ell-1} + (\widehat{e}_{\ell}))\}, \\ \widehat{\Delta} (\widehat{n}^{+}) &= \{ (\widehat{e}_{1} + (\widehat{e}_{j}); 1 \leq i < j \leq \ell \}, \\ \delta &= (\ell-1)(\widehat{e}_{1} + (\ell-2))(\widehat{e}_{2} + \cdots + (\widehat{e}_{\ell-1}), \\ \widehat{\omega} &= \frac{1}{2} (\widehat{e}_{1} + \cdots + (\widehat{e}_{\ell})). \end{split}$$

An element $\widehat{\sigma} \in W$ acts on h by $\widehat{\sigma}\widehat{\varepsilon}_{i} = \pm \widehat{\varepsilon}_{\overline{\sigma}}(i)$ for $1 \leq i \leq l$, where $\overline{\sigma}$ in the index-is a permutation of $\{1, 2, \dots, l\}$. We denote the element $\widehat{\sigma} \in W$ by the symbol

$$\left(\begin{array}{cccc} 1 & 2 & \cdots & \ell \\ \pm \overline{g}(1) & \pm \overline{g}(2) & \cdots & \pm \overline{g}(\ell) \end{array}\right) \cdot$$

Then

l

$$W^{1} = \left\{ \begin{array}{ccc} \overline{\bigcirc} \in W; \ \overline{\bigcirc}^{-1} = \left(\begin{array}{ccc} 1 & \cdots & r & r+1 & \cdots & \ell \\ \overline{\bigcirc}^{-1}(1) & \cdots & \overline{\bigcirc}^{-1}(r) & -\overline{\bigcirc}^{-1}(r+1) & \cdots & -\overline{\bigcirc}^{-1}(\ell) \end{array} \right) \\ - r & \text{is even, } \overline{\bigcirc}^{-1}(1) < \cdots < \overline{\bigcirc}^{-1}(r), \ \overline{\bigcirc}^{-1}(r+1) > \cdots > \overline{\bigcirc}^{-1}(\ell) \end{array} \right\}$$

20

The index $n(\widehat{g})$ of $\widehat{g} \in W^1$ is given by

$$n(\widehat{o}) = \sum_{i=1}^{r} (\overline{o}^{-1}(i) - i) + l - r^{C}$$

(Takeuchi [2]). We see easily that

$$(\widehat{\omega}_{\ell}, \widehat{\mathbb{B}}) = 1 \quad \text{for any} \quad \beta \in \widehat{\mathbb{A}}(\widehat{\mathbb{n}}^{+}),$$
$$(\widehat{\sigma}, \widehat{\mathbb{C}}_{i}) = \begin{cases} \ell - \overline{\sigma}^{-1}(i) & \text{if } 1 \leq i \leq r \\ -(\ell - \overline{\sigma}^{-1}(i)) & \text{if } r < i \leq \ell. \end{cases}$$

Therefore we have to prove that the following inequalities are true for any $\widehat{\mathcal{O}} \in W^1$.

$$(3.1) \#\{ (\widehat{B} \in \widehat{\mathbb{A}}(\widehat{n}^{\dagger}); (\widehat{0}, \widehat{B}) \ge 2\ell - 2 - 2n(\widehat{0}) \} > n(\widehat{0}) - 1,$$

$$(3.2) \#\{ (\widehat{B} \in \widehat{\mathbb{A}}(\widehat{n}^{\dagger}); (\widehat{0}, \widehat{B}) \ge 2\ell - 2n(\widehat{0}) \} > n(\widehat{0}) - 2.$$

<u>Lemma 3.1.</u> Let $\mathfrak{G} \in W^1$. If $n(\mathfrak{G}) \geq 2l-3$, the inequality (3.1) is true.

<u>Proof.</u> By the assumption $2l-2-2n(\hat{\sigma}) \leq 4-2l$. Let β be an element of $(\hat{\Delta})(\hat{n}^{+})$ which satisfies that

$$(\overline{OS}, \overline{B}) < 4-2\ell$$

then $(\beta) = (\widehat{e}_{l-1} + \widehat{e}_{l})$. Therefore

 $\#\{ \left(\widehat{B} \in (\widehat{n}^{+}); (\widehat{\sigma}^{\delta}, \widehat{B}) \right) \ge 2l-2-2n(\widehat{\sigma}) \} \ge n-1.$

If the equality holds, $n(\hat{g}) = 2\ell - 3$ and $n - n(\hat{g}) = \frac{1}{2}(\ell - 2)(\ell - 3) > 0$. Q.E.D. Lemma 3.2. Let $\emptyset \in W^1$. If $n(\theta_j) \ge 2l-3$, the inequality (3.2) is true.

<u>Proof.</u> If $n(\widehat{\sigma}) \ge 2l-2$, the inequality is true in the same way as above. Therefore we assume that $n(\widehat{\sigma}) = 2l-3$. The number of the elements $\widehat{\beta} \in \widehat{\Delta}(\widehat{n}^+)$ such that

$$(\overline{\sigma\delta}), \overline{\beta}) < 2l-2n(\overline{\sigma}) = 6-2l$$

is at most 4. Since $\ell \geq 5$,

$$(n - 4) - (n(\widehat{\sigma}) - 2) = \frac{1}{2} (\ell - 1) - 4 - 2\ell - 1 = \frac{1}{2} (\ell - 5) + 1 > 0.$$

Q.E.D.

Lemma 3.3. If
$$\widehat{\bigcirc}^{-1}(1) \ge 3$$
, then $n(\widehat{\bigcirc}) \ge 2l-3$.
Proof By the assumption

$$\sum_{i=1}^{n} (\vec{\sigma}^{-1}(i) - i) \ge 2r.$$

It follows that

$$n(\widehat{o}) - (2\ell - 3)$$

$$\geq 2r + {}_{\ell-r}C_2 - (2\ell - 3)$$

$$= \frac{1}{2}(\ell - r - 2)(\ell - r - 3) \geq 0$$

Q.E.D.

We prove that the inequality (3.1) is true for all $\mathcal{G} \in W^1$ by using induction on ℓ . If $\ell = 5$, we easily see that the inequation is true.

Let $\ell = \ell_0 > 5$. By Lemmas 3.1 and 3.3, we can assume that $(\overline{\sigma})^{-1}(1) = 1$ or 2.

Case 1 : $\overline{\sigma}^{-1}(1) = 1$. Define the element $\widehat{\tau} \in W^1$, which is considered for $\ell = \ell_0 - 1$, by

$$(\overline{\mathbf{T}}^{-1} = \begin{pmatrix} 1 & \cdots & r-1 & r & \cdots & \ell-1 \\ \overline{\mathbf{\sigma}}^{-1}(2) - 1 & \cdots & \overline{\mathbf{\sigma}}^{-1}(r) - 1 & -(\overline{\mathbf{\sigma}}^{-1}(r+1) - 1) & \cdots & -(\overline{\mathbf{\sigma}}^{-1}(\ell) - 1) \end{pmatrix}.$$

Then $n(\hat{1}) = n(\hat{\alpha})$. By the assumption of the induction, $\#\{\hat{e}_i + \hat{e}_j; 2 \leq i < j \leq \ell_0, (\hat{a}, \hat{e}_i + \hat{e}_j) \geq 2\ell - 4 - 2n(\hat{a}) \}$ $> n(\hat{a}) - 1$.

Let

$$s = \#\{\widehat{\varepsilon}_{i}; 2 \leq i \leq l_{0}, \exists \widehat{\varepsilon}_{j}, 2 \leq j \neq i \leq l_{0}, \text{ such that } (\widehat{\sigma}\widehat{\delta}, \widehat{\varepsilon}_{i} + \widehat{\varepsilon}_{j} \\ = 2l - 4 - 2n(\sigma) \text{ or } 2l - 3 - 2n(\widehat{\sigma}) \}.$$

Then, in the same way as in Lemma 2.4, we see that

$$\#\{\widehat{\mathbb{E}}_{j} + \widehat{\mathbb{E}}_{j}; 2 \leq i < j \leq \ell_{0}, (\widehat{\sigma}\widehat{\delta}, \widehat{\mathbb{E}}_{i} + \varepsilon_{j}) = 2\ell - 4 - 2n(\widehat{\sigma}) \text{ or}$$

$$2\ell - 3 - 2n(\widehat{\sigma}) \} \leq s - 1.$$

Let \hat{e}_i satisfy that there exists \hat{e}_j , $2 \leq j \leq \ell_0$, $j \neq i$, such that

$$(\widehat{g}\widehat{\delta}), \widehat{\mathbb{E}}_{i} + \widehat{\mathbb{E}}_{j}) = 2l - 4 - 2n(\widehat{g}) \text{ or } 2l - 3 - 2n(\widehat{g})$$

Then

 $(\hat{\sigma}\delta, \epsilon_{1} + \epsilon_{1}) \geq 2\ell - 2 - 2n(\sigma)$

in all but the following case:

$$(\sigma\delta, \varepsilon_1 + \varepsilon_2) = 2\ell - 4 - 2n(\sigma)$$
 and $\overline{\sigma}^{-1}(2) = 2$.

Ther fore the inequality is true.

Case 2: $\overline{\mathcal{G}}^{-1}(1) = 2$. By the definition of W^1

$$\overline{\sigma}^{-1} = \begin{pmatrix} 1 & 2 & \cdots & r & r+1 & \cdots & \ell_0 \\ 2 & \overline{\sigma}^{-1}(2) & \cdots & \overline{\sigma}^{-1}(r) & -\overline{\sigma}^{-1}(r+1) & \cdots & -1 \end{pmatrix}.$$

Define the element $\tilde{\sigma}' \in W^1$ by

$$(\bar{\sigma}')^{-1} = \begin{pmatrix} 1 & 2 & \cdots & r & r+1 & \cdots & \ell_0 - 1 & \ell_0 \\ 1 & \bar{\sigma}^{-1}(2) & \cdots & \bar{\sigma}^{-1}(r) & -\bar{\sigma}^{-1}(r+1) & \cdots & -\bar{\sigma}^{-1}(\ell_0 - 1) & -2 \end{pmatrix}.$$

Then $n(\tilde{g}') = n(\sigma) - 1$. Define another element $\tilde{\tau} \in W^1$, which is considered for $\ell = \ell_0 - 1$, by

$$\widehat{\tau}^{-1} = \begin{pmatrix} 1 & \cdots & r & r+1 & \cdots & \ell_0^{-1} \\ \overline{\sigma}^{-1}(2) - 1 & \cdots & \overline{\sigma}^{-1}(r) - 1 & -(\overline{\sigma}^{-1}(r+1) - 1) & \cdots & -1 \end{pmatrix}.$$

Then $n(\overline{\tau}) = n(\sigma')$.

Assume that the inequality (3.2) is true for (τ) . If we notice that $(\overline{\sigma'})^{-1}(2) > 2$, we get the following inequality in the same way as incase 1.

 $\#\{\beta \in (\widehat{n}^{\dagger}); (\widehat{\sigma}^{\dagger}, \widehat{\beta}) \ge 2\ell - 2 - 2n(\widehat{\sigma}^{\dagger})\} > n(\widehat{\sigma}^{\dagger}).$

Clearly

$$\sigma\delta, (\hat{\beta}) \geq (\hat{\sigma}'\delta, \hat{\beta}\beta) - 2$$
 for any $(\hat{\beta} \in \hat{\Delta}(n^{\dagger}).$

Hence if $\mathfrak{B} \in (\underline{n}^+)$ satisfies that

$$(\widehat{\mathfrak{g}}, \widehat{\mathfrak{g}}) \geq 2\ell - 2 - 2n(\widehat{\mathfrak{g}}),$$

then

Therefore

$$\# \{ (\widehat{\beta} \in (\widehat{\alpha})^{+}); ((\widehat{\sigma}\delta, (\beta)) \geq 2\ell - 2 - 2n(\widehat{\sigma}) \} > n(\widehat{\sigma}) - 1$$

Thus we have proved that the inequality (3.1) is true for any $\bigcirc \in W^1$. We can prove that the inequality (3.2) is true in the same way as above.

Nagasaki Institute of Applied Science

References

- Y. Kimura: On the hypersurfaces of Hermitian symmetric spaces of compact type, Osaka J. of Math., to appear.
- [2] M. Takeuchi: Cell decompositions and Morse equalities on certain symmetric spaces, J. Fac. Sci. Uni. Tokyo, 12 (1965), 81-192.