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PREFACE

Spectfoscopic, thermodynamic, elastic, and crystallographic
measurements have been carried out on polymer crystals. The
baslc theory for each measurement has been establlshed,
although often the theory 1s written for the simplest model
such as monoatdmic cublc crystal and is not qulte appllcable
to polymer crystals. Accordingly, interpretations of
individual data have been made but no consistent analyses
have been carrled out systematlcally ﬁlth realistic structure
models.

All these data, however, are related directly or indirectly
with the force field of the crystal. Accordingly, 1in the
present series of studiésg avallable experimeuntal data on the
crystalline region of polyethylene were systematically
analysed on the basis of the force fleld of the polyethylene
crystal.

Before proceeding to numerical calculation, correlations
of individual experlmental data with the 1ntrécha1n and
interchain force field and/or normal vibrations were theoreti-
cally treated with the real structure of polyethylene crystal.
For most data, theoriles for polymer crystals were written
out so as to be readily programmed for numerical calculations
with electronic computers. It was also necessary to develop
approximate method of calculations without affecting numerical
values of interest.

In the present thesis Btudles, practical methods were

finally worked out for systematlcally treating several
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physical properties of polymer cryestals, ngmely
Intrachain and interchain force field,

Infrared absorption and Raman scattering due to lattlce
vibrations or interchain vibrations,

Splitting of infrared bands sud Bamen lines due to
intrachain vibrations,

Frequency distribution of crystal vibrations,

Specific heat below 150°K and especlally specific heat
below 10°K,

Elastic and inelastic neutron-scattering cross sections
and their agnisotropy,

Sound veloclty and macroscopic elastic constants and
Young's modull,

Temperature factor temsor for X-ray diffraction intensity,

Symmetry of crystal vibrations and frequency dispersion
curves,

Infrared bands due to comblunations of crystal vibratlous.

The physical propertles calculated, in the present studles,
on the polyethylene crystal are in good agreement with
corresponding experimental data. Varlous experimental data
are now interpreted consistently on the basis of the intra-
chain and interchain potentlal functlons. The present force
fieid may aléo be used for estimating some new physical
properties, for example, the frequency distribution curves
of perdeuterated polyethylene crystal or elastic constants
of polyethylene crystsl.

In the present treatments, varlous physical properties
were treated with harmonic force fleld. However, as forth-

coming projects, thermal expansion or temperature dependency

v



of vibrationsgl frequencles and elastic constants are still
left for theoretical trestments on the basis of anharmonlc
force fields. Physical properties of dlsordered part or
amorphous reglon of polymer materlal are left for mnext

higher stage of theoretical treatments.

Teizo Kitagawa
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ABSTRACT

Chapter I NORMAL VIBRATIONS AND RELATED PHYSICAL PROPERTIES
OF ORTHORHOMBIC CRYSTALS.

The crystal vibrations are specified with phase-difference
vectors of vibrational displacements, and accordingly
Carteslan symmetry coordinates of orthorhombic crystals
were derived in g general form. A practlcgl method was
derived for calculating the frequency distribution, specific
heat and Young's modull along the direction perpendicular to
the chaln axis. '

As a preliminary study, polyethylene crystal was treated
where methylene groups were regarded as single dyngmli~o »m*i-
Since the experimental specific heat of polyethylene obeys
the 3 law below 10°K, the coefflcient of T3 was derived
analytically and is found to be nearly proportional to
P"B/z, where P 1s proportlional to the interchain force
constants.

Chapter II NORMAL VIBRATIONS, INTERCHAIN FORCE FIELD,
FREQUENCY DISTRIBUTION AND SPECIFIC HEAT OF
POLYETHYLENE CRYSTAL.

In the refined treatment, vibrational displacements of
hydrogen atoms as well as of carbon atoms were taken into
account. The force field of Schachtschneider gnd Snyder
"was used as the intrachain potential function. Four
hydrogen-hydrogen interaction terms as introduced by Tasumi
and Shimanouchl were incorporated as the interchaln potential
function. The force constants were adjusted with reference
‘to experimental data on the specific heat below 10°K, the
infrared-active lattice vibrations and band splitting of
Intrachain vibrations.

There gre thirty-six brauches of crystal vibrations, but

only eight of them lle in the region below 700 cm™t,

Therefore, a practical method was worked out for treating



low=-frequency crystal vibrations only. The conputer-time
was drastically shortened, although oaluulatnd frequencies
were sccurate within 3 cm 1.

The frequency dlstribution below 700 cm™> was numerically
calculated with the root-sampling method, for treating the

specific heat of the crystalline reglomn.

The calculated results of the optlnsiiy-active lattice-
vibration frequencies, band splltting of intrachain vibratlons,
Young's modull, frequency distributlon and specific heat
agree closely wlth ccrresponding experilmental data.

Chapter I ACCUSTIC PHONCNS AND LOW-TEMPERATURE SPECIFIC
HEAT OF PCLYETHYLENE CRYSTAL.

The speciflc heat below 10°K depends primarily upon three
acoustic branches of crystal vibratlons., Accordlngly, the
dynamical matrix for three acoustlc phonons were derived by
the second order perturbatlon method. Interactlions among
acoustic modes were thus incorporated, and the constant-
frequency surfaces were, 1ln fact, distorted from ellipsoldal
surfaces, From the volume surrounded by thoge surfaces, the
frequency distribution was obtalned analytically and was
found to agree well wlth the frequency distribution
calculated from the root-sampling method. The specific heat
calculated from the frequency distribution of the acoustic
phonons agrees closely with the experimental data by Tucker
and Reese,

Chapter IV SYMMETRY OF CRYSTAL VIBBATIONS, DISPERSION CURVES
AND INFRARED BANDS DUE TO COMBINATION VIBRATIONS.

Frequency dispersion curves of the polyethylene crystal
‘were cglculated on the surfaces of the first Brillouln zone.
The symmetry propertles of those branches and the competi-
bility of the dispersion curves were derived on the basis of
k group of the space group. The irreducible multiplier
corepresentation developed by Maradudin was also applled to
polyethylene crystal, and the degeneracy due to time reversal

x1



~symmetry was deduced. The theoretlcal degeneracy derived
from the group-theoretical anslyses coinclides exactly with
the results of numerical calculation of vibrational
frequencles. .

Combinations of crystal vibrations with +3 and of those
with -3 may become infrared-active. The symmetry of com-
~binagtlon levels 1s derived from dilrect product of the
‘irreducible representation of the k group. From the
frequency distribution of combination vibratlous, infrared
bands are expected negr 240, 280 and 380 cm'l, in good
correspondence with the bands observed near 240, 280 and

340 cm™?L.

Chapter V ELASTIC CONSTANTS OF POLYETHYLENE CRYSTAL.

Born's formulatlon of elastlc constants 1s not necessarlly
convenient for treating molecular crystals. The matrilx
formulatlion by Shilro 1is much more useful for treating
molecular crystals. Also symmetry conslderation 1s readily

applicable to matrix formulations.

For the orthorhomblc crystal of polyethylene, the elastic
constants of Ci1s Cooo 033, 023, 031, and i belongs to Ag
species while Cllys c55, and Cg6 belong to Blg’ BZg’ and BBg
specles, respectlvely. These elastlic constants of poly-
ethylene were calculated from the force field of the poly-
ethylene crystal.

Correlations of elastic constants with dispersion curves
of acoustic phonons are discussed. The dynamical matrix
for the elastic waves of three-dimenslional continuum is
equivalent to the dynamlcal matrix for the three acoustic
phonous.

The Young's modull along the a, b, and c axes of poly-
ethylene were also calculated, in good agreement with the

experimental results of the X-ray diffraction measurement

by Sakurada et al.
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Chapter VI A REFINED METHOD FOR TREATING ONE-~ AND MULTI- -
- PHONON NEUTRON-SCATTERING CROSS SECTIONS.

In crystals contalning hydrogen atoms, thermal neutrons
are scattered primarily from hydrogen nuclel (incoherent
scattering). For inelastic scattering, there 1s no selection
rule related with symmetry properties of crystal vibratious,
and accdrdingly the energy spectrum of inelastlically scattered
neutrons provlides lmportant Informatlions on normal vibrations
of crystals and polymer chaluns.

The baslc theory of neutron scattering has already been
established, although the model used 18 too simple to be
applicable to vibrational analyses on polyethylene crystal.

In the present study, therefore, the differemntial cross
sections for one-phonon and multi-phonon scatterling processes
were derived from Ferml's pseudo potential and Born's first
approximation. The concept of transltlion probablllties was
used and the equatlons for cross sectlons were written so
as to be readlly programmed for electromnic computers.

Multi-phonon scattering cross sections derived here are
essentlally identlcal with those derived from time dependent
correlation functilon, although the present formulation is
much more counvenient for numerical calculatlions.

Chapter VI NEUTRON SCATTERING BY CRYSTAL VIBRATIONS OF
POLYETHYLENE.,

As for polyethylene crystal, the differential cross
sectlons of neutron-scattering have been measured at various
temperatures with both of the up- and down-scattering
techniques. The anisotropy of the scattering cross sections
has also been observed for unlaxlally orlented target of
polyethylene crystal.

For theoretical analyses of these experimental dats,
the differentlal cross sections for one-, two- and three-
phonon processes were calculated from the vibrational
frequencles and vibrational displacements of hydrogen nuclei

involved in crystal vibrations of polyethylene.

x il



The anisotropic cross sections and phonon deunsity curves
calculated for the up- and down~scattering experimental
conditlions are in gccord with the experimental results on
the scattering peak-inteunsities and anisotropy.

Chapter VIIT TEMPERATURE FACTOR FOR X-RAY DIFFRACTION OF
POLYETHYLENE CRYSTAL,

From the polyethylene crystal, x-ray 1s primarily
scattered by electron clouds of carbon atoms. As the

scattering angle 1s increased, intensitles of diffraction
peaks are lowered because of thermal vibrations of scattering
atoms. '

In the present study, the mean squared displacements of
carbon atoms were calculated from the vibrational frequencies
and vibrationgl displacements of carbon atoms involved in
crystal vibratlions of polyethylene.

The temperature factor tensor was calculated, in good
agreement with the experimental data on the magnlitude and
anisotropy. From the numerical calculation, three princlpal
axes of the temperature factor temnsor were obtalilned; the
first one 1s parallel to the chain axis, and the second
and third ones are normal and parallel, respectively, to
the skeletal plane.

Xk



CHAPTER I

NORMAL VIBRATIONS AND RELATED PHYSICAL
PROPERTIES OF ORTHORHOMBIC CRYSTALS

I-1 INTRODUCTION

Physicochemical properties of polyethylene crystal have
been investigated in various ways and it is significant,
at present stage, to relate them with.one another sgelf-
counsistently. Some of them are concerned with frequencies
or atomlc displacementé of thermal vibrations and therefore
may be treated systematically on the basis of the potential
functlon of the crystél.

Wunderlich has measured the speciflc heat of polyethylenel)
and, referring to all the observed valueSZ), has obtagluned the
specific heat of .the crystal part of polyethylemne with the
use of extrapolation method.B) It obeys 73 law at the lowest
temperature and 1s almost proportional to T in the température
reglon below 70°K. Stockmeyer and Hechta) have studled the
specific heat of an anisotropic crystal and have derived 1t
as function of atomlc force counstants where the anlsotropy
has- been taken into account through force counstants gssumed

5)

in a tetragonal lattice. Tarasov has regarded chain
polymers as elastic rods which have weak 1nteractions between
the nearest neilghbors. He represented the speciflc heat of
polymer crystals with two Debye temperatures, namely, @1 and
93, which are one-dimensiongl and three-dimensional

" characteristic temperatures, respectively. By adjusting

91 and 93 sultably, the experimental values of the specific

1



heat of polyethylene crystal may be represented in fairly
wide reglon of tgmperature.B) However, the model used does
not match the polyethylene crystal and the physical meaning

1
optical modes of interchaln vibrations lie velow the cut-off

of 6, and 93 1s not always clear, because low-frequency

frequencles of acoustic branchésﬂand the frequency distri-
- butlion might not be simple like Debye approximation.

On the other hand, the intramolecular force field of

hydrocarbon molecules have been refined systematlcally.é'g)

‘Also the geuneral theory of molecular vibrations of chailn

10-11)

polymers have been already established. Accordingly,

1t 18 now practical to treat the crystal vibratlons of
polyethylene on the basis of the intrachain and interchain
potential functiouns.

12) was applled to

13)

Previously Wilson's GF matrix method
optical actlve vibratious of three dimensional crystal,
but Cartesian coordinate system 18 convenlient for treating
all vibrations including acoustic branches and optically
inactive modes. Accordingly, in the present study, basic
formulation of normal zoordinate treatment and a practical
method of calculatlng the frequency distributlon and specific
heét were provided. Since the frequency of the internal modes

! and they comtribute

of methylene group lie above 700 cm~
l1ittle to the specific heat below 150°K, methylene groups were
regarded as single dynamic unlt on the preliminary calculation
about polyethylene crystal.

_I-2. NOBRMAL COOBDINATE TREATMENT

Normal modes of the orthorhomblc crystals are specifiled



with & set of three phase differences, Sa’ Bb’ and 80 which

are phase differences of vibratlonal displacemeut between

two adjacent unit cells along the a, b, and c axes,rrespectively.
The travelling direction of a phonon ls parallel to k vector
(ka’kb’
difference vector as Ba:a

ko) of the phonon, which 1s relasted with the phase
o¥a? Bbsbokb, and Scmcokc‘ where
8,9 bo and ¢, are lattlice constants. For a glven phase
differencé vector, there are 3n modes of crystal vibrations
where n 1s the number of atoms per unit cell, Accordingly
3n Cartesian symmebry coordinates for a glven phase difference
vector were derived as

S(8) = U(p,8)X(p) (1.1)
where $(3) 18 a Cartesian symmetry coord;naté vector with 3n
components, U(f,&) 1s a unitary matrix for symmetry transior-
matlon and X(g) 1s a Cartesian displacement coordinate vector

of p-th unit cell. The kinetic energy (T) and potential

energy (V) of crystal are represented in a metrix form as

S~

2T = S(S)MSS(S) (1.2)
2V = 5(8)F5(3)5(5) (1.3)

where

Mg = U(p,a)mxﬁip,a)

Fo(8) = U(p,8)B(p)FB(0)T(p,5)
MS 18 3n dimenslonal diagounal matrix whose elements are mgges
of atoms, FB is the potential encrgy matrlx of crystal based
on the internal coordinate system and B(p) is a usual B
matrix'?), that is, R = % Bp)%(2). Fg(B) is the potential
~ energy matrix based dnAthe Carteslan symmetry coordinate

system, dimenslon of which 1s 3n.



The Carteslan symmefry coordinates can be written as
linear combination of the normal coordinates, Q(3), of the
crystal.

5(8) = £2(5)Q(3) (1.4)
With the use of normal coordinates, the kinetlc energy and

potentlal energy are represented as

2T = Q(3)EQ(S) (1.5)
2V = Q(8A8)Q(S) (1.6)
where E 1s unit matrix and /A(3) is a dlagonal matrix whose

elements are elgenvalues (A11=hn202D2).

The equivalence of
two types of representations, that 1s (1.2), (1.3) and (1.5)
(1.6), leadsus to the secular determinant,

T (8) - AGB)| =0 (1.7)
The elgenvector matrix of MglFS(S) 1s proved to be to(s).
Since a symmetric matrix 1s more convenlent to treat, the
dynamical matrix defined by (1.8) 1is used instead of N Fq(d),

Dg(8) = '%F g(d)Mg -2 (1.8)

where MS_% 1s a diagonal matrix, the elements of which are
lnverse of square root of atomic mass. Then the elgenvector
matrix of the dynamical matrlx becomes unltary and is
represented as Lq(3).
| Lg(8) = ng?Lo(s) (1.9)
The use of S(&) reduces the secular determinant of the crystal
vibrations into the corresponding blocks of phase difference
vector, each of which is 3n-dimensional symmetric matrix,
called Fourler transformed dynamical matrix. The incorpo=~

ration of the space symmetry of the crystal may reduce the

dynamical matrix into smaller blocks.



I-.3 SYHMETRY COOCRDINATES
n atoms in the unlt cell can be classified into several
sets (B=1,2,~---,ns) of equivalent atoms on the basls of the
space symmetry. For the f-th set with mB equlvalent atoms,
BmB

same type of symmetry coordlunates can he appllied to other

symmetry coordlnates may be constructed for 3=0 gnd the

sets of atoms on the equivalent sites. On the other hand,
under thermal vibrations, full symmetry of the space group 1is
not always kept., The symmetry of crystal vibratiouns is
gensrally characterlzed by & grouplu), which 18 a subgroup

of the polnt group of the space group. The dynamical matrix
Ds(ﬁ) of the orystal vibratlons msy possibly be factorized 1nto§
symmetry specles of the k group. Usually, on the surface of
the first Brillouin zone, some operations beside identity
operation make the k vector invarlant while, at the inner
points of the zoue, only the identity operation constitutes
the k grouo. Accordingly, at the general points of the first
Brillouin zone, symmetry transformations factorize the dynamical
matrix no mere and only numerical dlagonalizatlon ylelds

the elgen-frequency of the crystal vibratiouns. Then the
ccordinatesiwhich take the shortest time for numerical dla-
gonélization on general value of phase dlfference vector 1s
the most suitable for the present treastment. Since the
highest symmebtry is satlsfied at 8=0, the dynamical matrix
may be factorized into the smallest blocks with the symmetry
transformation, each of which belongs to the irreducible
representation of the point group of the space group. The
compatibility relation shows that symmetry coordinates at

5=0 also belong yet to one of symmetry species of k group

w



~on the adjacent surface of the Brlllouln zone. Besldes,
so-called time reversal degeneracy need not be consldered
for 5=0.1%)  Accordingly, the symmetry coordinate at 5=0
is used through whole the 3§ space, which are derived below.

A symmetry operationm, B, of the space group conslsts of

1

rotation, o, and nonprimitive translation t,. o, 1s three

1
dimensional orthogonal matrix and ti 1s index vector. Both
of p and T are represented as the set of g coefflclent with
regard to the lattice constants. Supposing pg(L) and QS(L)
(J=1,2,n3-m8) are the index vector of j-th atom of Ath set
of atoms in L-th unit cell and its atomic displacement vector
regpectively, then

) = (1/m255 £85)exn[-105(1)3) (1.10)
where N 1s the total number of unit cells, €§(5) ig the

emplitude factor of J-th atom of Bth set and summation runs
over N points in the region of OélBJ ,lel,IBCLSn. The
inverse tromsformation of (1.10) provides
£B(s Bs pB B
= (1/N L).exp[1p (L)3 1.11)
£,(8) = (1/M%5; N(L) exp[1p](L)3] (
The irreducible representation of the poilnt group ( the k
group at 8=(0,0,0)) assoclated with orthorhombic system 1is
always one dimenslonal. Supposing the operation RJ traus-
forms p? 1nto‘p§, the symmetry coordinate corresponding to
p=th 1lrreducible representation is given by
$%(5)P=(m )% $7%a,)a ne(Lyexpf1a,pf(L)+e 13} (1.12)
B 5 £l TG 1 )

J

where Pu(a ) 18 the character of p-th irreducible represen-

J
tatlon of the point group of the space group for operation Rj'
' Thus derived Su(S)B 1s complex-number coordinate while real-

number coordinate is more convenlent for computation. The



corresponding reai number coordinate may be derived w;th

‘standing wave as,16'17)

SLQ(S)B—(Z/m ks ZTu(a Yea, ﬁO(L)cosﬂ:ajpB(g )+t ] 8}

RJL ’ (1.13)
ns B_ 8 o 1

S¥(5)P=(2/m N)* g gr“(a ‘a QJ(L)sinngpl( L)+ »jjﬁ}

J
J

and then the gtomlc dlsplacement vector becomes

3 B B
7?(L)=(2/N)a§0 57 (8)cos[ (L8] + £ (8)sianJ(L 8] (1.14)

where the summatlon runs over N/2 polunts in half of the first
Brillouiln zone., By this transformation, the order of the

dynamlical matrix 1s generally doubled as

—~ 7
{
01\8). 02(5)!

D,(8) D (3) |
where 01(8) is symmetric matrix and 02(8) is skew symmetric
matrix. ®) The method of dlagonalizing the doubled dynamical

matrix has been established.l6)

When center of inversion exists ln the crystal(DZh), the
operation chauges ’Zg and & into- Q%, and -8 without nouprimitive
translation and therefore, both of S*(5)P ana $*(5)P vecome
elther symmetric or antisymmetric to inversion on any value .
of 8. Accordingly, the existeunce of the center of iuversion
removes the cross terms 02(8) of two types of coordlnates
of S¥(8) and S*®(8). Then the dynamical matrix of doubled
order 1s reduced to two identical real symmétrlc matrices of
3n dimension. ‘

- I-4 SYMMETRY COORDINATES FOR POLYETHYLENE CRYSTAL

The crystal structure of orthorhombic polyethylene has

.been analysed by Bunn18) with X-ray diffraction method.

Two molecular chalns pass along the ¢ axls and there are

four methylene groups per unit cell. Since methylene group

7



1s regarded as single dynamic unit, all atoms are equivalent,
that 1is, n=4, n =1, m1=h. On the incorporation of freedom of
hydrogen atoms, ng would become 3, The symmetry of the unit
cell 1s Pnam’ isomorphous to point group Déh’ Lattice
constants at rOOm'tempera%ure are a0=7.40, bo=4.93 and co=2.5h R
and valence angle of C-C-C is 112°%.  The setting angle of the
skeletal zlgzag plane 15 reported to be 48,7° to the a axis.
As shown in Fig. 1, unit cells are specified with three
integers, h, k, and 1 instead of vector L of preceding section.
h denotes the index of the unit cell along the a axis, k
along the b axis and 1 along the c axls, respectlvely, On
the primitive transiation, one of the indexes varies by
whole number, Two tholecular chalns in a unit cell are
specified with the set of two indexes as (h,k) and (h+5,k+3).
Two methylene groups in the same chaln may be distingulshed
by the last index as (1+1/4) and (1-1/4). The index vectors
of four methylene groups are as follows; |
£, (h,k,1)=(h,ik,1+1/4) pa(h,k,1)=(h+%,k+%,1+1/&)
#5(h,k,1)=(h,k,1-1/4) ey (h,k,1)=(h+k. k+k,1~1/k)
a, and ti for elght operations of polyethylene crystal are
given in Table Al. The real symmetry coordingtes derived 1in
(1.13) are represented in Table 1, where summation about h,
k and 1 and factor (2N)-% are omitted. Because of the
summation, apparent difference of sign of h, k, and 1 has
o physical meaning. For instance, (+h,+k,+1-1/4) is8
equivalent to (-h,-k,=1=1/4) and (h+i,k+5,1-1/4) is equivalent
. to (h~3,k-%,1-1/4). The components of fj are written as Xy

yj and zj in Table 1. Thus derived twenty-four symmetry



coordinates (twelve for $¥°(8), and twelve for S$P5(5)) are

deévided into two groups by center of iunversion. After the
operation of iunversion, the following twelve coordinates are

C 8
5g)s SyBa,)y S2(B ),

.8 8 c )
), SX(BZu)’ Sy(BZu)’ SZ(BZg)’ where

. aC c 8 c
invariant; Sx(Ag)’ Sy(Ag)’ SZ(Au), SX(B
8 8 c
5S¢ Byy)s 8y(By), 8 (B,
the symbol iu bracket denotes the symmetry at 8=0. These
are symmetrlc and the 7qphéps are antisymmetric to inversiou.

In D, system, the irreducible volume of the first Brillouin

2h
zone 1ig 1/8 of the first Brillouin zore and therefore

0:58a,8b,805;n is sufficlent. U(p,8) of (1.1) for the poly-
ethylene crystal is gilveu in Table 2. ‘
I-5 POTENTIAL FUNCTION |
Infrared spectrum and intrachaln potential function of

19-23)

polyethylene have been studled in detail. Normal

8)

i
frequencies of polyethylene single chaln™" and of the Crystalhf)

have been calculated rigorously as function of'SC by Tasuml.
It deduces that the maximum frequency of the skeletal bending
branch and the internal rotation branch lie near 500 cm"1

and 200 cm-l, respectively.

In the present study, three types of intermethylene
potential terms, Pys Py and p3 in Flg. 2, which are relatlvely
in close contacts, are incorporated as well as the luntrachailn
potentlal functlon. The equillbrium distances and the number
of potential terms per unit cell are shown in Tgble 3.

The potential energy of the crystal i1s written in a quadratic
form of dlsplacement,

A2V=2[K(Ar)2+H(A¢)2+F(Aq)2+Y(At)2+P1(Ap1)2+P2(Ap2)2+P3(Ap3)2]

where Ar is bond stretching, A4 ls skeletal bending, At 1is

I



internal rotatlion, and Aq 1s repulsion terms of nonbonded
carbons In a chain. Apl’ Ap2 and Ap3 are change of inter-
methylene distance. K, H, ¥, F, Pl’ P2, and P3 are thelr
force constants. Summatlion runs over the crystal. The values
of K, H, Y, and I were chosen so as to reproduce the u-SC
curve closely which had been obtalned in the complete treat-

8)

ment of polyethylene single chailn. The interchain force
constants were adjusted on the basls of the speciflc heat
below 1OOK, where 1n order to decrease the number of para-

meters, P, 1s assumed to be equal to P2 because of nearly

1
same dlstances.

I-6 LATTICE VIBRATIONS AND THE FREQUENCY DISTRIBUTION
Disperslon curves of low frequency crystal vibrations

ére drawn agalnst BC in Fig. 3, where Ba and Sb are set to
be 0., If there is no interaction between adjacent molecules,
all of these elght branches would approach to 0 cm"1 as 80
approaches to 0, and there would appear four doubly degenerate
curves. At the llmit of 80=O, three of these curves would
correspond to translations along three orthogonal axes and
one of them would correspond to rotation around the chailn
axls. However, on account of interchain interactions the
degeneraoy 1s actually removed and the dispersion curves do
not cross one another. Here, three of eight curves still
approach to 0 cm™) as 6, approaches to 0. They are acoustic
branches of the crystal. The remalning flve modes are
optical lattice vibratlons whose frequéncies and symmetry
specles are shown in Fig. 4, B1u and B2u vibrations are
antiparallel translatory vibratlons along the b and a

axes, respectively. They are infrared active modes.

i0



There are two lattice vibrations of rotatlion around the chain
axls. The mode, in which two chains rotate in the same

directlion, belongs to B3 while the other belongs to A

g g*
They are expected to be Raman active. The last mode, antle
parallel translatory vibration along the c¢ axls belongs to Au
which 1s lnactive both in Baman and infrared spectrum. The
experlimental value of this frequency 1s expected to be
observed only in neutron lnelastic scattering.
For representative combinations of Sa, Sb and SC,

Dg(3) was derived and dlagonalized. All these calculatlouns
have been carried out with NEAC-2201 electronic computer.
As the representatlve values of Sa and Sb, nine values (100,
309, 50°, 70°, 90°, 110°, 130°, 150°, 170°) were adopted.
For every set of Sa and Bb, ten values of 80 (0°, 5°, 10°,
20°, 140°, 60°, 90°, 120°, 150°, 180°) were takeu up.
Varlation of Sé or Sb provides small change of frequeuncy
whereas that of 80 shows great change. It comes from the
fact that the contribution of intrachaln force fleld does
not vary with Ga or Bb but varies with &,. For larger SC,
all modes behave as the intrachaln vibratlons. When v varles
. sensitively with &, & space should be divided more finely in
ordér to obtain correct frequency distribution. . For this
reason the disperslon curves agalnst 80 were picked up for
every set of Sa and'Sb, and the frequencles were interpolated
for intermedlate values of SG with the use of cublc curve,

v = a +bd +cd° +38° _ (1.15)
‘The coefflclents a, b, ¢ and d are determined so as the

curve passes through four successive standard poiluts. On the

11



real computation of interpolatiom, frequencies were obtained
at 20' intervals of 80 with the use of (1.16), which 18 a

practical expression of (1.15),

- '\‘1/ ~—y

v=(v, v, Vs v 111 1 (1.16)
3, 8, By 3, 5
2 2 2 2 2
8 8, 85 8 | B
3 83 83 &3 3
81 82 83 65 ..8,
where Yy vz, u3 and v), are the frequenclies obtained from the

dlagonalization of the dynamlcal matrix corresponding to 51,
82, 63,

(OO<:5C<(50), v 1s assumed to be subject to even function of

and SM’ respectively. As for the small values of 80

80 as

v = a4 b15% + orgt (1.17)
where the coefficlents were determined in the same way wlth
(1.16). As shown in Fig. 3, dispersion curves are fairly
complicated for small values of 8@ (80<.6O°) whereas they
are relatively monotonous on large BC. In order to reproduce
dellicate behavior of dispersion curves by interpolation, more
polnts were taken as standard points for 80<:6OO. It was
gonfirmed for arbltrary set of Ba and Sb that the interpolated
frequenciles are colncldent with those obtalned by dlagonall-

1

zation of the dynamical matrix within £1 cm”~ and therefore

the method 1s Justified.

Thus about 350,000 frequencies were calculated and

1

collected. The frequency distribution below 600 cm”  1g shown

in Filg. 5, where the fraction of the number of vibratious for

1 1s plotted against the frequency.

Two peaks appear about 500 and 190 cm'l. These two peaks

~frequency interval 5 cm”

12



had been expected from the dlspersion curves of polyethylene
éingle chain. They correspond to cut-off frequency of skele-
tal bending and internal rotation branch, respectively. The
exlstence of these two peaks has been confirmed by the
experiment of neutron inelastic scattering.zs-zé)
I.7 SPECIFIC HEAT
There are four methylene groups per unlt cell and elight

branches lie below 600 cm-l. Therefore, in the frequency

distribution below 600 cm™

, two degrees of freedom are
contalned per methylene group. On the calculation of the
speclfic heat per methylene group, the frequency distribution
functlon 1s normallized to 2, that 1is,

2 glv) =2 (1.18)
v .

Since the specific heat due to the crystal vibrations is sum

of the coutribution of each osclllator, 1t 1s derived as

c,/R % g(v)xzexp(--x)[l--exp(—x)_-]"2 (1.19)

where x=hcv/kT and v is regarded as the average frequency of
the division of the frequency distribution. On the numerilcal
calculation, the frequency distribution wgs derived at the
frequency interval of 1 cm_l. The specific heat of the poly-
‘ethylene crystal 1s shown in Fig. 6, where solid line 1s the
calculated value and the open circles are experimental ones'
which had been extrapolated to 100% crystallinity by
WunderlichB). The contribution of the internal modes of
methylene group ls estimated as large as 0.002 at 100°K and
0.038 at 150°K.

‘The specific heat below 10°K depends upon three acoustlc

branches which are concerned primarily with interchain force

13



constants. In order to adjust the interchain force constants
from the observed value of the specific heat, the specific
heat was derived as functlon of interchain force constants.
Each element of the dynamical matrix 1s expanded into power
series of Sa’ Bb and 80 where higher terms more than second
power were neglected. Then the ekpanded dynamical matrix

was subjected to similarity transformation with LS(SO) which
is the elgenvector matrix of DS(SO) for very small value of
phase difference, 80. Since DS(O) 1s completely reduced to
small blocks of each lrreducible repfesentation, the cross
terms of DS(S) between different specles are very small for
small 8. Thereby, DS(S) is almost diagoﬁalized with the
‘similarity transformatlon of Lg(3,) near 3=0. A few terms
which remaln as off-dlagonal terms after the transformatlion,
are proportional to first power of phase differences and
correspond to the interactlon of acoustic branches and the
overall rotational modes. They have effects of lowering the
frequency of acoustic branches. Accordingly, the cross terms
were lncorporated to dlagonal terms with the use of second
order perturbation method. The resultant dlagonal terms

corresponding to three acoustic branches are represeunted as

222 _ 2 2 2
Ln“c vy = A18a + 818b + Clgc
222 _ 2 2 2
Ln“c vy = A26a + B28b + CZSC (1.20)

222 _ , o2 2 2
4nevg = ARBS + By + CuB°

The coefficients, Ay, B, and C1 are glven in Table 4 1in the
function of interchaln force constants, Vg is assoclated with
. the translationalong the ¢ axlis to which the skeletal bending

force constants contribute and C3 becomes large. But to the

14



elgenvalues of v, and v_ modes, the contribution of the intra-

1 2

chain force fileld starts from 504, which 1s proved by expanding
G matrix of the chaln vibrations. PFor this regson, u3

gets large senslitively in proportion to Bc but Yy and v2

do not. In Table U4, the frequency of u3 mode does not depend
upou the force counstant of Pl' Also P1 contributes to none

of C C, and C while P3 contributes to none of Al’ A2 and

1’ 72 3!
A,. These results are reasonsble from the following consi-

3

deratlon. Since P, is situated in the ab plane as shown in
Fig. 2, the stretching of the spring p, 1s altered with meither
the translatlion of the plane as a whole along the ¢ axls nor
the change of phase difference along the c¢ axls, 1n the first
order. As p3 1s essentlally on the bc plane, 1t 1s not
concerned wlth the phase difference along the a axlis.

On the other hand (1.20) states that the constant frequency
surfaces of the acoustlic branches are three dimenslonal ellip-
sold in & space. Since the allowed values of phase differences
distribute uniformly 1in the unlt cell of reciprocal lattice

27)

under the cyclic boundary conditlon, the volume surrounded

by the constant frequency surface 1s proportional to the
number of acoustic phonons lying below the frequency,
Subposing V(v) 1s the volume surrounded by the surface corresg-
pondling to the frequency v and the first Brillouln zone- then
it 1s derived as

3
V(v) = (4n/3) 5 (4n2c202)3/2(4 B0 )7E (1.21)
1=1
3

Since the total volume of the first Brillouln zone is 8n” where
four methylene groups are contalned, the volume normalized to

one methylene group 1ls V(u)/32n3. Then the fraction of number

15



of acoustic phonons between v and v+dv per methylene group
1s g(v)dv, where g(v) is represented as
glv) = ) (a,B )-%v2 = pv? (1.22)
3 1

ici
Then the T
C,/R = p(k/hc)BTBJTLMexp(-x)[1-exp(-xi]‘2dx (1.23)

where x=hcv/kT. The dependency of the specific heat upon the

law of the speclfic heat 1ls derived as

Interchaln force counstants 1s obtained by the substitution
Ay, B, and C, from Table 4 into (1.22). It leads us to the
result that Cv 1s nearly proportional to P-B/z, where P 1s
the interchaln force constant.

On the other hand, the experimental values of the
speclfic heat can be expressed approximately as follows.

CV/Rl) = 1.90.10"777

CV/R28)= 1.68.107 713
Since Reese's value includes about 10% error28), the force
constants were adjusted to gilve rise to the lntermedlate
value of two observed specific heat. Thus the analyslis ylelds

P1=P =0.025 and P3=O.003 md/ﬂ and the specific heat calculated

2
from the set 1is
C /R = 1,86-107777

The contribution of each acoustic branch is estimated as

¢, (a)=1.52,  C_(b)=0.31,  C_(c)=0.027 (x10™°RT’)
where a, b and ¢ mean that the vibfatlonal dlsplacement 1is
parallel to the a, b and ¢ axes, respectively. The acoustic
phonons associated wilth the translation along the ¢ axls
contribute 1little to the specific heat. It comes fromvthe

fact that the constant frequency surface of that branch 1s

very oblate ellipsold and the volume is much smaller than two

16



remaining ones., Above 10%K the experimental value of the
speciflic heat deviates gradually from T3 law and then becomes
nearly proportional to T. It means that the force fleld
which controls the atomic motlon is nearly three dimenslonal
for lower frequency whereas it 1s really one dimensional for
hlghér frequencyimodes. The excitation of intrachain vib-
rational modes makes CV proportional to T.

I.8 YOUNG*S MODULI

Young's modull perpendicular to the chain axis depends
upon the interchain potential. Then comparison of the
calculated values of Young's modull with the observed values
is one of ways of examlining the correctness of the interchain
force constants.

The potential energy of the crystal is represented'with
three coordinates, whlch are totally symmetric displacement
along the a and b axes (Aa, Ab) and overall rotation around
the chain axis (8). The former two coordinates correspond to
the external defofmation and the latter corresponds to the
interngl deformation of the crystal under the conditlion of
rigild molecules.

2V =FcCp B = (ba &b A8) (1.24)
Whén the unit cell islengthened by Aa wlith the extermal force
f,» theu at equilibrium state, f, 15 balanced with ~-(?V/aha).
Accordingly the deformgtion of unit cell under arbltrary
external force can be derived from (1.24) with the inverse

matrix of € ss

[aa] = 511 812 513 aV/aha ' (1.25)
Ab 851 822 823 aV/3Ab

)
AB 851 B3p Sgq V/aAe®

17



where s 1s inverse matrix of C gnd may be called as elastic

1]

compliance mgtrix. Since there 1s no external force corres-
ponding to overall rotatlon of molecules, 3V/3A8 is always
zero. From (1.25), Young's moduli along the a and b axes are
derived 1in accordance with the usual definltion.

Ea = ao/(bocosll) (1.26)

By = b /la e s,,)

where 8,9 bo and c, are lattlce constants. From the present
potential they are calculated as E_=0.9, E =0.3 (x101 a/em?y,
In good agreement with the observedAvalue of Ea=0.h and

=0.3%9),

Eb Polssont's ratio is a ratio of relative deformation.

Under the tenslon along the a axls, it 1s represented as
(Aa/a ) :(Ab/b ):48 = (sll/ao):(sm/bo):s31 (1.27)

and under the teunsion along the b axis, it is
(Aa/ao):(Ab/bo):Ae = (slz/ao):(szz/bo):s32 (1.28)

Usually the sign of s and 8 or 8,5, and 512 are different

11 21
from each other, because shortenlng appears in the perpen-
dlcular direction ou pulling the crystal along one directilon.

I-.9 DISCUSSIONS | |
On the estimation of intermethylene force constants,

30) was tried. The

Lennard-Jones potentlal of methane gas
secbnd derivative of the potential function 1s written as
a*v/ar? = 2.008.10%r" ™ _ 1.630.107p78 (keal/R%) (1.29)
where r 1s distance of two methane molecules ( in R). Since
the values at the equilibrium distances may be regarded as
harmonic force constants, putting r of the corresponding

_intermethylene dlstances, 4.12, 4.18 and 4.51 8 1nto (1.29)

yields P,=0.,018, P,=0,015 and P,=0.002 md/g, regspectively.

1 2

3
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The specific hegt below 1OOK calculated from these fprce
constants 1s sllightly larger compared with the observed value,
It suggests that the estimation of intermethylene diétances
might not always be appropriate.

On the other hand, Tasumizu) has incorporated four types
of Interhydrogen potential in the normal coordinate treatment
of polyethylene crystal and determined the force constants
from the observed values of the band sblitting of methylene
rocking, twisting and sclssoring vibrations. The force
constants seem to lie nearly on the Bucklngam's potential
function for hydrogen atoms. OdajlmaBl) has treated the
elastlicity of polyethylene crystal theoreticélly and found
that de Boer's potential of H--H repulsion provides proper set
of interchaln force constants. The second derlvative of

)

de Boer potentlal33 1s written as

dZV/dx2 = 150exp(=-3.53x) (mayne/R) (1.30)
where x 1s HeeH distance. When we apply these function to the
present case, the intermethylene distances might be converted
into the corresponding H+-+H distances of the same van der
Waals' contacts. Supposing the real intermethylene distance
is r then a tentative H-'H distance, r*, which gives the
eqﬁlvalent contact to those two methylene groups, might be

glven by

r#* = (rH/rCHz)r (1.31)

where ry, and PCHg are van der Waals' radil of hydrogen and
methylene group, respectively. Paulinng)_has estimated
rg=1.2 and rCH2=2.O R, Assuming x=r* gives rise to P1=O.024,

P,=0.022 and P3=O.003 md/R for the corresponding intermethylene
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distances of 4.12, 4,18 and 4.51 8, respectively. They agree
closely with those of Table 2 which have been adjusted on the
basls of the observed value of the specific heat below 10°K.
The.agreement suggests that this kind of assumption may be
applicable to calculating configulational energy of complex
molecules.

Though the present calculatlion is preliminary, general
feature of the frequency distrlbution became explicit. Two
prominent peaks corresponding to the cut-off of the skeletal
vibrations and a few weak peaks due to optical branches of
lattice vibrations such as anti=-parallel traunslational or
overall rotatlonal modes, are recognized. The cut-off of the
skeletal bending branch 1s concerned mainly with the intra-
chaln force fleld and U-BC curve, which depends 1little upon
Sa and Bb, 1s almost straight line below 450 em™Y, It leads
us to the result that frequency distribution 1s nearly constant

1 and the specific heat behaves as if Debye's one-

34)

near 300 cm™
dimensional elastic continuum at proper’ temperature reglon.

Therefore Tarasov's characteristlic frequency v, might physl-

1
cally correspond to the cut-off of the skeletal bending mode,
whereas no peak 1s expected at vy from Tarasov's theory.
Thé other characteristic frequency u3, below which the fre-
quency distribution 1s proportional to vz, is not determined
uniquely from Filg. 5, where several peaks due to optilcal
lattlce vibratlons are found below 200 cm™ .. Accordingly, the
frequency distribution predicted by Tarasov 1s unlike that of
polyethylene crystal.

Generally the specific heat ls not always sensltive to

fine structure of the frequency distribution, however, the
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specific heat below 10°K is semsitive to the interchain
potgntial function. Becguse it depends malnly upon three
‘acoustic branches and 1little upon optical branches. Then
low tempersture speciflic heat may be used for the adjustment
of intermolecular force constants.

Montroll et 31.35)

have studled the frequency distribution
of crystals analytically. In the case of one-dimensiongl
crystal, the frequency distributlon 1s proportional to
v 2
(v,
for two-dimenslonal crystal, the shape of peak 1s logarithmic,
2,~-1
v©)

_VZ)-% near v where v_ 1s the cut-off frequemcy. While
that is, proportional to u'llogh(Bumz- . In three-
dimenslonal crystal, no peak appears but several discontl-
nulties exist In the derlvative of the distribution function.
Therefore edges might be eXpected in the frequency distri-
butlon.35) The present calculation may be considered ns an

experiment from the view of theoretical frequency_dlstributlon.

! had been expected from

Since the peaks at 500 and 200 cm”
normal coordingte treatment of 1solated polyethylene chailn,
they correspond to one-dimensional case, in good agreement
with the theoreticgl prediction. However, the theoretical
predlction 1s not always reproduced below 180 cm'l where the
fréquency distributlion 1s expected to be assoclated with
three-dimenslional property of the force fleld.

The approximatlion of regarding methyleue group as single
dynamlc unit might lnduce some efrors on the estimatlon of
vibrational frequencles. In the incorporation of the freedom

of hydrogen atoms, the frequency of rotational mode would

increase whereas that of translational mode would decrease.
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The difference of. the two modéls in which the interchain
potential works between two methylene groups or between two
hydrogen atoms, appears in the effective force constants.

On the rotation of molecules around the chain axis, change

of 1inter-hydrogen distance 1s much larger than the change of
Inter-methylene distance., Then the energy lncrement due to
the ldentlcal rotation 1is larger in the former under the same
force constant. 1In other words, the effective force constants
would become larger in the former. This effect overcomes the

effect of increase of moment of inertias and in comnsequence the

frequency of the vibrational mode would get hiéher, whereas
for the translational modes, change of inter~hydrogen dis-
tance 1s smaller or, at most, equal to change of 1inter-
methylene dlstance.

On the other hand, if the electron clouas of hydrogen
atoms were in van der Waals' contacts in equilibrlum confi-
guratlon, the potentlal energy of the two atoms might constitute
the effective interchain potential function and acting point
of the 1interchalin forces really on hydrogen atom. Then
the directlon and magnitude of the interchain potential would
vary from the presenﬁ approximation, For instance, P3 1s the
smallest term in the present treatment whereas the corres-
ponding term of He«.H potential would become the largest term
because of the smallest dlstance. For these reasons, compa-
risons of the calculated values with observed values were not
carrlied out in detaill in the present treatment. The calcu-
lated values which are not influenced by the present approxi-
matlion were discussed, whlle for detalled discussion about

numerical values, the 1mprbvement of model 1s indispensable.
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However, from the preseut treatment, the way of treating the
_ crystal vibrations and the related quantitlies systematically

may be established.
SUMMARY

The symmetry coordinates of the crystal vibrations for
arbitrary phase difference vector were derived in general
form and were really conflrmed by the applicatlon of them to
polyethylene crystal. The lattlce vibratlons, dispersion
curves, frequency distributlion, the speclfic heat and Young's
modull of polyethylene crystal were treated in regarding
methylene group as single dynamical unit. The specific heat
below 10°K were derived as function of interchaln force
constants and 1t was shown that the specific heat 1s nearly
proportional to P'B/2 where P 1s proportional to interchain
force coustant. The interchain force counstants adjusted from
=0.025, P

the specific heat below 10°K are P =0.025 and

1 2
P3=O.003 md/ﬂ, which are in good agreement wlth the values
obtalned from modifled de Boer potential.

In the present study, the practical method of treating
crystal vibrations and the related propertles were established
but the improvement 1s necessary in crystal model; the

incorporation of freedom of hydrogen atom.
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Table-~1

Symmetry coordinates in real number space

o
Si(Ag)
S;(Ag)
So(a,)
S;(BBg)
yPag
S;(BBu)

)

Cc
Sx(Blu)

C
Sy(Blu)

Cc
Sz(Blg)

c
SX(BZU)

c
Sy(BZu)

C
N

p1{h,k,1)= (h,k,1+1/4)
£o(hsk,1)= (hyky1=1/4)

8, 4
Sx(Ag)
8
Sy(Ag)
8
S (4,)

8
S (Ba,)

38

5
Sy(BBg)

B
Sz(BBu)

8
Sx(Blu)

B
Sz(Blg)

8
Sx(BZu)

8
Sy(BZu)

g
Sz(Bzg)

/

g

+x1

+y1
+z1

+x1

+y1

+z1

+x1

+y1

+21

+X1

Yy

+:§l

N

-xz

uyz

N
...xu

Yy,

_zu

+x’+
-yu
+ZI4,
+X’+

-xu

+y[+

-zu
/

4

cos(p,8)
cos(péﬁ)
cos(f38)

cos(p,d)

~

~
sin(piﬁ)

sin(yzﬁ)
sin(gaé)

sin(g,8)

/

PB(htkwl )=(h+§, k+%’ 1+1/l\")

ph(h,k,l)=(h+§,k+é,1-1/4)

In thls representation, the factor (2N)'% and summation

about h, k, and 1 are omitted.
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Table-2 TranSfOrmétion matrix for symmetry coordinates,i(od)

p1=(hgk,1+1/u),
po=(h,k,1-1/4),

€3=(h+é,k+é,1+1/4)
.P[‘,::(h.%é!k"'ég 1"1/4)

2 {0,k 1) Xyln,k,1)  Xg(h,k,1)  X,(h,k,1)
s{1)(s) u® S u§ o
s(2)(s) u? ug «u% wuz
5(3)(8) ”u? U‘g _u§ ui
st*)(5) -u? ug ug -gi
.Pcos(plﬁ) 0 0 ] u?: hsin(plﬁ) 0 0
0 cos(p,8) 0 0 sin(p, &) 0
|0 0 ~sin(g, 8)) |0 0 ~cos(p &)1
:cos(pzﬁ) 0 o ] ugz Esin(pza) 0 o
0 —cos(pz§) 0 0 ~sin(92§) 0
0 0 -sin(p,8)] 0 0 mcos(pz§i
rcos(938) 0 o ] u§= “sin(g38) 0 o
0o —cos(pjﬁ) 0 0 -sin(gBS) 0
0 0 ~sin(y38) ‘ 0 0 ~cos{p.8)
:cos(p48) 0 o ] ui: Esin(guﬁ) -0 o
0 cos(p, &) 0 0 sin(p, d) 0
-0 0 -sln(puﬁl _coa(guﬁ)

le ng X3 and Xa are Cartesian dilsplacement coordingte vector
of four atoms in the unit cell(h,k,1).
(2N)“’Z(h’k’l) is omitted in each term.
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Tgble=3 quce congtents and the equilibrium c¢ietance

num. per unli cell force constant = dlestance
K i t,0 md/R 1.53 8
H I 0. 59 Emd-g -
Y L 0,07 ma.R
F 5 0,95 ma/R 2,5 R
P, f 0.025 .12
P, & 0.025 b.18
P, I _5.003 N

Table-U The coefficlent of phaebe differences in the
dynemlcal ma»ﬂ*ﬁ fo“ ﬁnﬂu\ujc branch&sa

— 2 T REATT

B BARES SIS O T TN 8 BI \AEAOR

v h‘moao1h,9 +0,0201P
1 i 1

Ban.Oliﬁ-}P1 +G.9201P? +0.01310F.,

/',

T -
C{= +0,02 01? +0.G003F
“““-mm“;ﬂ"uﬂ—“b.‘-mf'muﬂﬁﬁ:ﬂlm‘* WG W M REER GED VTR OV R TR WRYE AWOR GTITR OMTe S TORA Ve

Vo Agzo.,oobp1 +05012u99
B,=0.00357, +0.01i24P, - ,,06u693
sz +0, o1aLP? +0. 0L61‘
Zz ﬁ3~ +O.0033P2
BE: +0.00352P, +0,0056P .,
< 2
CB= +090033P2 +0.001£PB +0.0620

Yir Yo and oy are scousiic branches s&on the a, b ard ¢ 8xes,

respectively.
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of (h+1,k+1)
” (h’k+1) QI’ ’
Vit 4
\..p’ ‘ \-J
4 r\'pu(h+%,k+§,1_1/ub
A

(h+},k+%)
\\i:Dpj(h+%,k+%,l+l/h)

N
“
)

pl(h;k,1+1/u)
» (h,k) < (h+1,k)
’ngg 'l)'
(o, (n,k,1-1/4) \.

Fig. 1 Representative atoms and their index vectors

in the unit cell (h,k,1)
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Fig. 2 The interchaln potential 1n polyethylene

crystal.
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iFig. 3 Dispersion curves of vibrational frequency against

the phase difference galong the ¢ axis.
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- Fig. 4 Optical lattice vibrations of polyethylene crystel.
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Fig. 6 The specific heat of polyethylene crystal.
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Open circles are experimental values nd

solid 1line shows the calculated values.
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CHAPTER II

NORMAL VIBRATIONS, INTERCHAIN FORCE FIELD,
FREQUENCY DISTRIBUTION AND SPECIFIC HEAT
OF POLYETHYLENE CRYSTAL

II-1 INTRODUCTION
Polyethylene crystal 1s the simplest polymer crystal
and the systematic treatment about the dynamlcal properties

1s of great interest since varlous kinds of the experimental

results have been obtained. Wunderlich has deduced the
specific heat of crystal part of polyethyleme by the use of
extrapolation method gbout the crystallinity referrling to all

2) Tucker and Reese

the observed values measured by others.
have found that the specific heat of the polyethylene crystsl
1s proportional to T3 below 9°K whereas that of amorphous
part has excess heat capaclty corresponding to OE=2ﬁ°K even
at the lowest temperature.j) Afterwards Wunderlich has
confirmed hls presumptive value by measuring the speciflc
heat of singlé crystal of polyethylene. These values seem
to lle nearly on the theoretical curve derived by Tarasov5)
who regarded polymer chalns as élastic rods with weak inter-
actions between the nearest nelghbors. However, Tarasov's
model cannot be used for analyzing other physical propertles
particularly spectroscoplc properties of polymer crystals.
On the other hand, infrared bands of methylene rocking
and scilssoring vibratlions in normal hydrocarbon crystals
6-7)

show band splitting due to intermolecular interactious.

These band splitting have also been observed in high density
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polyethylene and thelr polarizatlons have been 1nvest1gated.8-9)

Now the intrachaln potential functions about molecular
vibratlons have been systematlically studled and reliable

10)

force constants are avallgble,. Especlally for n-paraffin

molecules, detalled analysis of spectroscoplc data have been

11-13)

carried out, The gemeral theory of molecular vibrations

of chain molecules has glready been established.lu'lé)
Accordingly, it is practical to treat dynamical properties of
polyethylene crystal self—consistent}y on the basls of the
interchain potential as well as the lntrachaln potential
functious. |
General method of treating crystal vibratlions and related

solid state properties has been studieal?’ and the method
was confirmed ln the preliminary calculation gbout polyethy-
lene crystal, in the preceding chapter, where methylene
groups were regarded ags slngle dynamic unit. In the present
treatment the Carteslan symmetry coordinastes are applied to
more reallstic model and the frequency distribution, the
gspecific heat, the lattice vibrations, the splitting of the
intrachain vibrations and Young's modull are calculated with
the intrachain and interchain potential functious.
I-2 CRYSTAL STRUCTURE

 The crystal structure of orthorhombic polyethylene
crystal has been analysed by Bunun with X-ray diffraction

method.la)

There are four methylene groups per unit cell
and two molecular chalus pass through a unit cell along the
-c.axis. Symmetry of the unit cell 1s lsomorphous to point

group D2h‘ The setting angle of the skeletal zlgzag plane
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with respect to the g axis (8 in Fig. 1) has been reported as

18) 19)

48,7° by Bunn but the value seems uncertain. Teare has

obtained 47.7° for orthorhombic single crystal of 036H74'

20) has assumed 44° on the calculation of the cohesive

21)

Salem
energy about normal paraffin molecules. Shearer and Vand
has obtained 41°23' for monoclinic C36H7u’ while Smith22) got
42° analysing the structure of several single crystals of

normal hydrocarbon molecules. OSnyder has measured the
'1ntenslﬁy ratio of polarized infrared bands which are B1u

and B u components of the band splitting and councluded that

2
8 should be smaller than h5°(6) This setting angle might
depend upon temperature. Since, in the present study, the
dynamical propertles at low temperature are treated, the

23) were used

lattice constants at -196°C obtained by Swan
and was assumed to be 450. The structural parameters used
‘are a,=7.155, b =l.899, c_=2.547, d(C-C)=1.54, and
a(C-H)=1.09 R, The skeletal bond angle (&£C-C-C) 1is usually
larger than the tetrahedral angle 1n normal hydrocarbon
crystals and &4C-C-C=111°47', calculated from the lattice
constanﬁs, was used whlle 4H-C-H is assumed to be tetrahedral
angle.

- I-3 POTENTIAL FUNCTION
13)

Schachtschneider and Snyder has carried out the
force fleld calculatlon of normgl hydrocarbon molecules from
C Hg to CluHBO and —(CHz)n-. They obtalned the force constants
for valence force fleld which can reproduce 270 frequenciles of
, fundameutals within 0.25% of the standard deviation. Siluce

five coordinates of six valence angles around carbon atom are
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independent, local symmetry Cdordinates were used. The

definition 1s same with those used by Tasumilz)

whereas the
transformation matrix 1is éllghtly modified as shown in
Table 1 on account of the departure of the skeletal valence
angle from the tetrahedral angle. The coordinates are shown
in Fig. 2. Arts g CH, symmetric stretching, A3 1is CH,
scissoring, A 1s skeletal bending; aa” 1g CH2 wagging, and
Arc»is skeletal stretching coordlnates which are 1n-p1ané

H .
vibrations. Ar 8 1is CH, agntisymmetric stretching, Ad” is

t

2

CH, rocking, Aa” is CH, twisting and At 1s intermnal rotation

2 2
coordinates which are out-of-plane vibrations. The potential
energy matrix for intrachain coordinates are shown in Table 2
which was transformed from the fprce constants of valence
force fleld except for that of internal rotation. Siluce
internal rotation vibration in normal paraffin molecules 1s
so difficult to observe in spectroscoplc measurements that
the force constant 1s not definite. Accordingly the dlagonal
term of At was adjusted as 0.075 md® with reference to ﬁhe

observed values of the specific heat near 60°K1).

Previously Tasuml and Shimanouchlzu) have treated the
lattlce vibrations of k=0 modes of polyethylene crystal
indorporating four types of HeeH interaction terms. The se§
of force constants, determined from the band splitting, can
reproduce the frequency of the Infrared actlive lattice
vibration. They correspond to the force constants at room
temperature. The speciflic héat velow 10°K calculated from
the potential is slightly small., On the other hand, the

thermal expanslion has been found gppreciable along the a

axls, therefore the interatomic distances at low tempersture
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are different from those at room temperature. Then the
- effectlive fofce constants willl vary with temperature.

In the present study, the same interchain iunteraction
terms were incorporated and the force constants were deter-
mined with reference to the observed values of the specific

heat below 10%k7), lnfrared active lattice vibration?’’ and

band splitting at ~196°c®),  Thus adjustea force constants
and equilibrium atomic distance at -196°C are shown in Table 3.
I-4 LOW FREQUENCY CRYSTAL VIBRATIONS

Derivation of baslc equations for the crystal vibrations
is provided in Chapter I and the same notation is used here
without notice. A practical method of treating low frequendy
modes of‘crystal vibrations are derived here.

Crystal vibrations are specified with the set of Ba’ 5y,
and 80, which are the phase difference of vibrational dis-
plaéement between ddjacent unit cells along the a, b, and c
axés, respectively. Since there are twelve atoms per uuit
cell, there are thirty-six vibrations for a given set of
phase differences. Accordingly, thirty-six Cartesian symmet~-
coordinétes were derived from

5(8) = 3, Ulp,d)X(p) (2.1)
U(p,3) 1s an unitary matrix for symmetry transfopmation,
which is given in Table 4 and explained later. The symmetry
coordinates are represented as linear comblnation of real
normal coordinates of crystal
o Lg(5)0(3) (2.2)

, LS(B),is an elgenvector matrix of the dynamical matrix and

S(3) =M

is normalized to unity. The dynamical matrix and 1ts elgen-

value matrix are given by (2.3) and (2.4), respectively.
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-% -3 '
D(8) = Mg7*Fq(3)Mg | | - (2.3)
ACS) = LS(S)DS(S)LS(a) § (2.4)
L(8)0g(3) = E ' (2.5)

Since the dimemnsion of Dg(8) is 36, dlagounalizatlon of Dg(3)
for many values of 8 requires excessivély iong computatlpn,.
hours. On the other hand, the preliminary calculation ShéWSh
-the vibrational frequencles change sensitivély with 86 wﬁereas
they vary little with 8 or 83. It comes from the fact that
the intrachain forcevconstants are much larger than the 1later-
chéin force constants, that is, from the large anisotropy of
the force fleld of the cr&stal. Accordlngly, the actual
computatlion was carfiedvout 1n,two'steps'described below.
At the first step, the'dynamlcal.ﬁatrlx correspbnding to the
intrachaiu potential was dlagonallzed. Theti, at the second
step, the interchaln potential was luncorporated and the
corresponding dynamical‘maﬁrix was diagonalized.

Supposing Fg'and Fg are the pbtential energy matrices
of the intrachaln and interchain potenﬁial, respectively,
then Fg depends only upon 80 whiie'Fg depends upon 88, Sb
and BCL The dynamical matrices DQ(SC) and Dg(Sa,Bb,SC),
corresponding to FQ(SC) and Fg(Ba,Sb,SC),'are derived in
accordance with (2.3) as A

Dg(3) = D(5_) + DS(B_,5,,5,) (2.6)
where '

Df(5,) = ugTARh(s g (2.7)

0S(5_,8,,8,) = HgTHS(5_,5,,5 ) " | (2.8)

pg(go) 1s fgotorized at least into four dlagonal blocks

vt ad

aviind

dSK(BC) (k=1++L) each of which is a nine dimensional matrix

L1



and 1s assoclated wlth the symmetry coordinate vector chara-

cterized by S$"(5) of Table 4. Since the following relatioms
M

are satisfled about dKK(BC),

M
dll(sc)

0]

M M LM
(122(86) = d33(2ﬂ,-80) = duu(zﬂ-gc)

i

a4(8,) = 0 for axp,
the calculation of Lg(SC), the eigenvector matrix of Dg(BC),
is reduced quite simple. The matrix elements of Dg(Ba,Sb,BC)
is relatively small and the elgeunvectors of intrachain optical
vibrations are little influenced by the interchain interactious,
and therefore Ly(5_) 18 almost identical with Lg(3_,8,,8,)
for twenty-four modes above 760 cm-l. However, the remaining
elght modes (acoustic branches of single chain) are strongly
influenced by Dg(Ba,Bb,SC). Accordingly, the eight columms
corresponding to low frequency modes are picked up and brought
into L?(BC), a new matrix of 36 rows and 8 columns. The
similarity transformation of Dgl(3) with LT(SC) yields

H(5_,5,,5,) = o5, [bl(s,) + oSts_, 5,8, ]Li5,)

= AlMsy) + s bS8, 5,8, )u(s,) (2.9)

where /\Q(SC) 1s dfi elgédvdlud Mdbrix of 1oW fFrequency
intrachain vibrations. Thus dirived ﬁs(Ba,Bb,Sc) is a
dynamical matrix for low frequency crystal vibratious.
Suppos ing LH(Ba,Sb,SC) is the eigenvector matrix of HS(Ba,Bb,
8,), then the corresponding elght columns of LS(Sa,Bb,BC)

are calculated from

1 M :

LB 38,58,) = Ly(8)+Ly(8_,8.,5,) (2.10)
there L%(Sa,Sb,SC) 18 (36x8) submatrix of LS(Sa,Bb,BC) and

/\H(S) = LH(S)HS(S)LH(B) (2.11)

LH(S)LH(S) = E (2.12)
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I'he uoordinatés, which are shifted by n/2 in phase angle from
the present symmetry ooérdlnates, form degenerate palr with
the present coordinates while the existence of center of
inversion removes DZ(S), the cross term bet&een two types of
coordinates in the doubled dyhamical matrix (section I=3).
Therefore, in thls case, the tlermitian matrix (complex
dynamlical matrix) 1s transformed into two identical real-
rumber symmetric matrices. The other symmetry coordinate
vezbor of bthe depenerate palr may be glven by the symmetry
transformation H(e,8). Then the atomic displacement vector
of atoms In eth unlt cell 1s derlved as

— 1, A
Xp) = 2 U(p,&)mgins(a)u(a) + Ulp,0)M "L (8)0(5)  (2.13)

where §(3) and Q(§) are degeunerate palr of real normal coordi-
nate vectors. In the present approxlmation, the atomlc dis-
placement due to low frequency crystal vibratious is
represented as .
Pt J—

. . i My e

.l( —_ \ [ o , -

Ap) - ? J(f,b)ms Ll(bC)HH(B)Q(S)H

b

+ Tlp, o035y (5)R08),, (2.14)
where 9(8),, and 6(5)” are defenecrate pair of vectors of eight
normal coordinates corresponding to low frequency modes.

The equation (2.]&) 1s of great importance in treating the
neutron scattering cross sections and temperature factor of

X-ray diffractlon.



=5 SYMMETRY COORDINATES
Symmetry ccordinates are constructed in accordance with

the consilderation of the preceding chapter (I-4). As n=12,
n =3, mg=4 (B=H ,H,,C) in this case, there are three set of
twelve symmetry coordinates. Both of 5(3) and Z{p) in (2.1)

are vectors of ovder 36 and they are represeunted with

subvectors $"(8) and Xj(p) of ninth_iorder, respectively

o ~ oyt~
sis) =Lt 575 s70s) s"n)] (2.16)
Kp) =[%,(p) X,(p) X4(p) ¥%,(p]] (2.17)

Ky : . Koy .
5‘(b)q which is « component {o=x,y,z) of $"(a), 1s delfined as

three component subvector by

P _{fﬁ S-S ] o ra)
N (8) =i_e2 (E‘))Xu ((})YS (&)Z (!.,.]8.
T, e, o 1 N | R N6

i‘@f\())”=i5 (())”1 sR(8) (?; b'r(r))”]

where f in SK(S)E characterlzes the type of atoms in the
unlt cell as indicated in Ilg. 1 and x denotes the typc of
symnetry coordinates and o represents the Carteslan component.
The index j in Xi(p) ls piven to each methylene group and
therefore Xigp) 1s nine compounent vector of Cartesian
displacement coordlnates ol j-th methylene group In p-th

unit cell. The index vecbor of atoms in the pg-th unlt cell

ls written slmply ns pj.

py = (n,k,1+1/lt) rq = (h+d, k+i,1+1/4)
£o = (G 1-1/0) py = (odh ek, 1=1/0)
Xj(p) 1s represenbed wlth three subvectors ns
2.(p) =[nx () ny (p) e y(p)] (2.21)

and the coustituent subvectors are glven by

. 1P o C
A =AY ADL D A
J &) [[J ‘;1 J]
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where Aa® (a=x,y,z) 1s the o component of atomic dlsplacemeut

J

vector of p~th atom in the j-th methylene group. Each element

of U(p,8) of Table 4 relates subvector SK(S)u with subvector

Aaj, therefore each element denotes three dimensional

constant matrix.
-6 RESULTS
For the set of Ba=8b:80=0, the symmetry coordinates

belong to one of the irreducible representations of polnt

group D2h' The symmetry property of SK(O)U and lts specles

are shown in Table 5. IFrequencles of k=0 vibrational modes
were obtained from Dg(0) and the calculated band splittiugs

6)

are compared with the observed results in Table 6, where

branch number follows Tasumi's notationlz). The calculated

band splitting of CH2 scissoring, uz(n), and CH2 rocking,
vg(n), are slightly smaller than the observed values at
—196OC, since the observed value of the specific heat below
10°K has also beenreferred in the adjustment of the Inter-
chaln force constants. u5 is skeletal bending branch agnd

v, 1s lnternal rotation branch, both of which would be

9
acoustlc branches of an isolated chain., In the crystal,

three of them, that is, u5(n), voln) and VS(O) are the

1imit of acoustic branches assoclated with three translations
along the a, b and c axes, respectively. The remalning five
modes are optical modes of lattice vibratlons, whose

calculated frequencles and modes are shown in I'ig., 3. Blu

and B2u are infrared active while AP and BB& are Raman

)

active. Au 1s optlcally lnactive mode.
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The dispersion curveé of vibrational frequency agailnst
phase difference show drastic change along BG whereas they
change 1little along 88 or Bb. As an example, the dispersion
curves along 8C for 8a=8b=0'15 shown in Fipg. 4., Since, on the
varlation of SQ, the eilght modes change from pure lattice
vibrations to the iuntrachain vibrations such as skeletal
bending and internal rotation vibration, the dispersion curves
along 80 becomes similar‘to those of 1solated chain. On the
other hand, when 80=O, the interchain potential does not con-
tribute to lattice vibrations but the contribution of the
interchain potentlal to lattice vibrations varles with 88 or Bb'
Therefore, the dispersion curves along 83 and Sh are similar
to those of molecular oryst31826). All of the dlsperslion
curves along the Speéial direction in the flrst Brillouin =zone
are calculated and described in Chapﬁer .

Frequency distribution was made with the method descrlibed
in section I-6. As the representative values of Sa and Bb,
nine points (10°, 30°, 50°, 70°, 909, 110°, 130°, 150°, 170°)
and as those of 5,, ten polnts (0°, 50, 10°, 207, 40°, 60°,
900, 1200, 1500, 180°) were adopted. Ior each of these 810
poiunts, HS(S) was derived and dlaponalized. The vibrational
frequencies at the intermediate boints between the represen-
tatlve points, were interpolated at 20' lntervals of 66 wlth
(1.16) and thus about 350,000 frequencies below 700 cm_]
were collected in the frequency distribution. In a
histogram of I'ip., 5, the (ractlion of number of vibrational

1

modes 1s drawn agalinst the Crequency division of 4 cm™ .

Two prominent peaks at 560 and 190 cm-'1 correspond to the



cut-off of the skeletal bendlung and the internal rotation

vibrétions, respectlvely. These beaks had been anticipated

12)

Ny

from the normal coordlnates treatment of 1sgolated chailn.
'rom the present study, several new peaks are expected.
.

The broad peak near 150cm” ‘arises fromin overall rotatory

1

vibratlons around the chain axis. The peak at 90 cm = 1s dve

to the antiparallel translatory vibrations perpendicular tc tre
chailn axis. 'I'ne broad peak near 60cm™! 1s assoclated with

the antlparallel translatofy vibration along the chéin axls
which 1s really lnvarlant on the change of 63 and 3, but

varies rapildly with BC. The exlstenck of these peaks have
been, in fact, cont'ilrmed by the eunergy spectrum of mneutron

27)

inelastic scattering. However, the cross sectlon of mneutron
inelastic scattering depends upon the atomic displacement
besides frequency distribution, it 1s treated 1in detall

in Chapter VI.

The specific heat below 150°K was calculated from (1.19)
and the frequency distributlon where the distribution function
used 1s for every wave number and 1s normalized to 2 per CH2
group In Iig. 6, Lhe calculated specific heat 1s compared with
~the observed values. S5o0lld line denotes the calculated value
and open clircles represent the expcrimental values extrapo-
lated to 100% crystallinity by Wunderlichl). Good agreement
is obtalned below 100°K. Near 1OOOK the intrachalin optical

modes beglin to contribute to the specif'lc heat and 1t 1s

shown in Tablc 7.

Young 's modull perpendicular to Lhe chain axls depends
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primarily upon the Interchaln potential, because the force

constants of the lutrachailn coordinates are much larger than
those of the interchaln coordinates. Young's modull were
derived in the preceding chapter (I-8) under the assumption
of rigid molecule. I'rom the present potential function,

Youn;ts modull perpendicular to the chain axis at -1960C

were calculated asg

1

E o= 7.0 E, = 9,7 (x10 Odyne/cmz)

2 b
and Poison's ratlo were caglculated gas follows;
(Aa/ag):(Ab/bo):Q = 1.0 : =04 : =0.7
(under tension along the a axis)
(Aa/a )1 (Ab/D )0 = =0.5 2 1.0 0.3
(under ﬁensioh along the b axis)

FPremm the Polson's ratio, the length of b axls becomes shorter

and the molecular chalnrotates to the a axis when crystal is

. 28
drawn along the a axis. Sakurada et al. a) have measured

~the Young's modull perpendicular to the chaln axis with the
use of X-ray diffraction technique. The observed values
were Eq=3.1 and Eb=3.8. RBecently the measurement has been

carried out agaln on less branched polyethylene sample and
thus lmproved value 1s Eq=).0 whlle the diffraction spot was

boo weak lor Eb to be observed.ZBh) M&llerzg)

has measured
the linear compressibility and obtalned Ea=10 and Eb=9.0’for
C23”u8' As for the Interchaln potential, normal paraffin 1is
almost ldentical with polyethylene and Muller's values are
also-applicable to polyethylene crystal. Young's modull

calculated from the present potentlal is intermediaste of

L8



two observed values,
O-7 DISCUSSIONS
Bemarkable development in the present study lies on
making use of HS(S), the dynamical matrix of low frequency

crystal vibratlions. Great care was glven to get correct

M
Lg

calculated results, As one of the examlnatlons of the

(BC) and to know the limitation of the exactness of the

present treatment, the elgenfrequency of crystal vibrations

for arbitrary phase difference was obtalned from the dla-

ponalization of Dg(8). The elpenfrequencies of Hg(d) are
compared with those from DS(B) in Table 8. As 80 gets
larger, A?(SO) becomes larger and theu the perturbation

by Dé(ﬁ) has less effect upon AH(S). The deviation of the
cigenfrequency of Hg(8) Crom that of Dy(8) was confirmed to

be at most 3 cm”'. Since the frequency of lattice vibratious
of k=0 modes 1s calculated directly from DS(O), it 1s exact

though the peak position 1n the frequency distributlon is

justified within 3 em™ L,

The intrachain potential functlon obtalned by TasumilZ)
is very simlilar to Schachtschnelder's potentlal except for
the skeletal bending force constant. The former glves the
cut=off of the skeletal bending branch near 500(:m'1 while
the latter gives rise to the cut-off at Séocm-]. SohaufeleBO)
has measured the frequency of accordlion vlibrations of varlous

normal hydrocarbon crystals wlth laser Haman spectrum and

11 e ~ [ \. - 1 "
found. the RBaman lines at 536 and 556 cm for LguH19O’
Therefore the cut=off of the skeletal bending braunch mlght

bg



be above 500 cm"1. Young's modull along the chaln axls

calculated from Tasuml's potentlal 1s comparable with the

28a) and that from Schachtschnelder's 1g a

observed value
1ittle larger. Since the completé single crystal 1s not
used on the measurement of Young's modull of polyethylene,

the observed value might be the least 1imit., At the present

stage, the observed frequency of laser Raman spectrum seems

more rellable than the Young's modull, the intrachaln

13)

potential.function obtained by Schachtschneilder was adopted.
The diagonal term of At is commonly set to be 0.108 mdf for
many hydrocarbon molecules. 'The vibration 1ls optilcally

inactive for planar zlgzap, structure and the presumptlve

value from CzHé 1s not always appropriate to polyethylene
crystal. On the other hand, the specific heat from 30°%K to

70K 1is fairly sensitlive to peak poslition of interunal rotatlon
branch. Accordingly, the force comnstant was adjusted as

0.075 ma® so as to reproduce well the speciflc heat near

60°K with trial and error method.

The calculated specific heat devlates from the observed

values above 120°K. Though seven freedoms are left per one

methylene group, the conﬁribution of methylene symmetric

and anti-symmetric stretching vibratliouns are negliglble below
1500K. Approprlate representatlive frequencles were picked

up from the dispersion curves of 1solated chaln and thelr

contribution to the specific heat was calculated. Thus

estimated value 1s as large as 0,002 at 100°K and 0.038 at
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150°K which are malinly due to methylene rocking vibrations. Even
1f  the contributlon of optical branch is added tolthat of
lattice vibrations, the calculated value 1is slightly smaller
than the observed one. Anharmonicity of the potential
function would induce the mutual interactionof normal coordi-
nates and also make the separation of vibrational energy
levels smaller. The addltional heat capacity due to these
two effects is proportional to T at relatively high tempera-
ture. Accordingly the incorporation of the anharmonicilty
might improve the calculated value of the specific heat.
The lattice vibrations for 8a=8b=80=0 depends upon the

Interchain force constants. The elgenvalues of flve optical

modes are gliven by

Ay A, = 0.1117P, + 0.1260P,

By Ay = 0.4127P, + 0.1100P, + o.ou08P3

BZu AX = O.()%OP1 + 0.3343P2 + O.ZMNBPB (2.23)
Bag Aot 1.8032?1 + 0.030392 + 0.1365P3

Ag Aot 0.0016P1 + 0.9480p, + o.u91u93

where A 1s (MnZCZVZX1O5/NO)(NO;~Avogadro's number) and P,

1s the interchaln force constant represented in (mdyne/ﬂ).

When the setting angle (6 in I"ig. 1) is altered, the coeffl-
31)

clents in (2.23) chanpge a little. Schaufele has measured

Raman effect of polyethylene wlth laser source and found two
Raman lines at 167 and 122 cm"l. They are not conflrmed to
be due to lattice vibratlons of the crystal. The frequeuncy
of HBE' calculated from the present potential 1s 1in close

agreement with one of the observed values (1220m-1), whereas

the other 1is not in so pgood agreement. Infrared active



lattice vibrations are calculated at 73cm'1(B1u) and 930m"1

-1

(BZu)' One of them has been really observed at 73cm

(2980K)32) and at 79cm-1(1OOOK)25). It has been confirmed

that the band comes from the crystal parﬁ of polyethylenezs)

and that the band shows reasonable shift by deutrationBB)
The polarlvation of the band was measured to be parallel to the

includes dipole moment along the a
35)

3&) .
a axls . Since Blu

axls, the asslgnment became confident. Dean and Martin
has found the other band at 109cm™' at 2°K. llowever, the

band 1ls so weak that 1t 1s not definlte, at preéent'stage,
for the band to be due to B 1att1c9 vibratlon. Though

we have measured the far infrared spectrum of high density
polyethylene at 70°K with thick sample, we could not find

sharp absorption peak. Further investigatlon 1s ﬁéoessary,
especlally on the dependency of thetband*intenélty'upon

the crystallinity.
36)

Tasumi and Krimm has studled the reason of the

weakness of the Infrared band of B 1attice vlbration.

The possibility that only B band borrows the bahd:intensity

1u

from B component of methylene rocking vibration was

1u
concluded to be unlike., The assumptlon that two bands overlap

at 79om-1(at 77°K) lead us to unreasonable set of force

constants.

The dipole moment of methylene group 1s so small that

dipole-dipole interaction or -multipole 1nteractloﬁ miﬁht
36)

not be significant. Tasuml and Krimm has examined it

theoretlcally and shown that the frequency of lattice



vibrations is 1little influenced with dipole interactions,
though there was some amblgulty about the position of dipole-~

moment of methylene group. Accordingly van der Waals'

potential seems sufficient as for interchain flr~H interactlon.

)

On the other hgnd, Harada and Shimanouchi37 have treated

the lattlce vibrations of benzene crystal, assuming several

types of intermolecular potentlal between carbon-hydrogen
and hydrogen~hydrogen. . The (orce constants adjusted with

reference to the observed values of band splitting and
lattice vibration lie on the reasomable curve with regard to
the atomic distances. IFrom the curve, the force constant

for C-:-H coordinate in polyethylene is presumed to be at
most 0.0028 md/R for the shortest distance of 3.21 8. As

shown in I"lg. 7, the atomic distances for C-«H 1s relatively
large. Accordlungly the C----ll potential might contribute
1little to the frequency of labttice vibrations.

In the present study, any analytical function is not
used on thé determination of the interchain force constants.
In this sence, the force constants obtained here are
experimental. On the other hand, theoretical potentilal
function of nonbonded hydrogens have been studled in varlous
way.38) Since the force constant is the second derivatlve
of the potential function, the values at the corresponding
atomlc distances 1in polyethylene crystal were estimated {rom
these theoretical potentilal functlons and are shown in Table 9.

The band splitting, for methylene rocking and scissoring

vibrations and the frequency of Blu lattice vibration,
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calculated from the force counstants, are also shown in Table 9.
The sets of theoretical force counstants provide commonly large
band splitting for methylene rocking whereas small value for
methylene scissoring vibfation. Tgasumi's set of force cons=-
tants glves rise to good fit to the observed values of band
splittings and B]u lattice vibratlion but the specific heat below
10°K calculated from it is slightly small. The result
suggests that the unilque set of interchain force constants

is difficult to obtain and the least square method with
reference to the rellable observed values might be practilcal.

In our treatment, the band splittings of methylene
6)

rocking vibratiouns for several values of 80 were incor-

porated lnto least square calculation by the use of flrst

order perturbation method. Taklng many points of 80 for
methylene rockling leads to put high welght on the vibration.
Therefore the least square method involves some amblguity about
welghting., ’ RHepardless of the welght, the analysis ylelds
P2<P3 whereas the interatomic dlstance is contrary.

Several reasons may be polnted out. First, the uncertainty
of the experlmental value of setting angle (@) makes the HeeeH
distances obscure. PFor reference, the inter-hydrogen distances

at -196OC for three setting angles and those at room temperg-

ture for 0=42°(Smith's modelzz)) are shown in Table 10. It
is obvlous that the order of atomic distance depends upon
temperature and the Settinﬂ angle. Secondly, the electron.
cloud of composlte atoms 1n molecular crystal ismﬁqt always

spherical, and the potentlal curve of nounbonded atoms might
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39).

depend upon the directlon . For 1nstance,93 term which
i1s Iin outer side of methylene group mlght be more similar,to
usual spherical HeH potential than P, term whiéh passes
inner side of methylene group. Thirdly, ektremely

anlsotroplc thermal expansion is observed
a axis and the order of the atomic distances might change
even beiow 750K.

On the other hand the thermai expanslon and temperature

dependency of infrared band of B lattice vibratlon suggest

1u
that anharmonicity of the potential function is not disre-

garded at higher temperatufe. Theoretical development
about the treatment of anharmoniclty in crystai vibrations

would be the urgent problem for the future improvement.

SUMMARY

The low frequency modes of lattlce vibrations of poly-

ethylene crystal were treated with the use of HS(S) matrix.

The approxlimation makes computation time much shorter than the

straightforward method and the result is correct within

the 1imitatlon of 3 cm™l.

As the intrachaln potential, the force constants obtalned

by Schachtschnelder and Sunyder were used where the force

constants of luternal rotation was ad justed as 0.075 mdg

with relference to the observed speciflc heat near 60°K.

As for the interchain potential, four types of Hw-H inter-

action terms were incorporated. The force counstants were
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ad justed from the observed values of the speciflc heat below
1OOK, the frequency of B1u lattice vibration and the band
splitting of methylene rocklng and sclssoring vibratlons.
Thus the frequency distribution below 7OOcm'1, the specific
~heat below 1500K, Young's modull perpendlcular to the chain
axls, the frequency of lattice vibrations for k=0 modes,

and the band splittings of the intrachaln vibrations were

calculated, 1in good agreement with the correspondling

observed values.
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Table~1 Matrix Element of Symmetry Transformation

, 1 2 3 M
BOy i/t B9y Bay,gyy Bayiis BagLigy Ay

4

Agl;i/h 0.915317 -0.175597 ~0.181218 -0.181218 -0.181218 -0.181218

8541 /1 0 0.868666 -0.229278 ~0.229278 ~0.229278 40.229278
Aa¥+1/u 0 0 0.5 0.5 -0.5 =0,5
By, gy 0 0 0.5 -0.5 0.5 -0.5
Aa§+1/h 0 0 0.5 «0.5 ~0.5 0.5

Hi HZ
brytin BTyt

arlls, (1i72)t (172t
b8, 4 (1/2)8  ~(1/2)t
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Table-z The In’crachaln Potential Ener'gy Matrix of Polyathylene

. s
Ar1+3/u A81+3/u Azr1+3/u A°1+3/u Arl 3

Ar?fj/u 4.562
831,54 0 0.575
All+3/u 0 0.121 1,024
Aa¥+3/u ) 0 0 0.627
Ar§+é. 0 -0.117  0.225 =0.261  4.427
Argfl/u 0 0 0 0 0
8841 /m 0 0.008  0.030 =-0.029 0
A§1+1/u 0 0.030 0.122 ~0.068 0
bay .y, 0 . 0.029  0.068  ~0.041 0
ar§ 0 ~0.117  0.225  0.261  0.064
ArSs/ Bty 8ay sy 8144
ri®s . b.530
Aa{+3/u 0 0.705
Aaf+3/4 0 0 0.659
Bty ,y 0 0 0 0.075
??1/4 0 0 0 0
Aa1+1/u 0 0.065 0.065 0
Aa§+1/4 0 -0.065 ~0.065 0
Aty 0 0 0 0
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Table-~3 The Interchailn Potential of

Polyethylene Crystal

a(R) P(md/R) n
P, 2.879 0.004, 8
P, 2.712 0.010, 8
Py 2.505 0.006), b
Pu 2.502 0.0112 L
d; inter-atomic distance at ~196°cC,.
P; the force cohstant of the intere

molecular potentipl.
the number of the potential terms
per unit cell.
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Unitary matrix for symmetry transformation U(p8).

_Tgble-U
Ax1 Ay1 Az1 sz Axg Az2 ij Ay3 AzB 8x, Ayu Azu B

81(8)x ¢, 0 0 =c, O 0 +cg o o -¢, 0 O
31(8)y 0 4, 0 0 =0, 0 0 =03 0 0 #cy O
s1(s), 0 0 -8, 0 0 -8, O 0 -85 0 0 =5
82(8)x ¢, 0 0 =-c, 0O 0 -cy 0o 0 4, 0 0
s2(3),, 0 4¢, 0 0 =c, 0 0 4a3 0 0 -oy O
82(8)z 6 0 =8, 0 0 =8, 0 0 4By 0 0 *5,
83(8)x -8, 0 0 -8, 0 0 -84 0O 0 =~8, 0O O
83(8)y 0 -8, O 0 -8, O 0 434 0 0 +g, O
83(8)z 0 0 4, 0 0 =c, O 0 tcy 0 0 -g,
s"(&)x -8, 0 0 =3, 0 0 45, 0 0 s, 0o 0
s’*(s)y 0 -8, 0 0o -8, 0 0 -8y O 0 =3, 0
Su(S)z 0 0 +c, 0 0 =-c, 0 0 =Cq 0 0 *g

e dendtes three dimansional constent metrix

3
%

Table-5 Symmetry properties of Cartesian symmetry coordlnates at 3

of coa(pj&).

denotes three dimensional constant matrix of ain(gjﬁ).

=8,

E c3 cg g 1 gg(be) g, lac) o (ab) species
sl(ti)x,y 11 1 1 1 1 1 1 A
sl(8), 1 -1 =1 1 -1 1 1 -1 By,
e
z u
SZ(S)x’y 1 1 « =1 =1 =1 1 1 B,
57(8) 1 -1 1 =1 1 =1 1 - B
su(S)z 1 -1 1 =1 =1 1 -1 1 528
L ‘x.y 2u
87(8), 1 1 -1 -1 1 1 -1 -1 Big
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Table=6 The Splitting of Intrachaln Vibratious

branch symmetry and wave number A"cg;_f"oba
v,(0) Ag 12873 B38 .2869 | L -
v,(0) Ag 1441 B38 1457 -16 (=-24)
v3(0) By, 1175 A, 1183 -8 -
vy, (0) Ag 1130 Bag 1129 y R
v5(0) Bsy 0 A, 54 —
ve(0) A, 2936 By, 2940 TR
vp(0) Ay 1167 Bsg 1168 -1 -
ue(O) B3u 1090 Au 1086 L (6)
u9(0) Ag 146 ng 121 — —
v,(n) Byu 2854 Bou 2856 -2 0
uz(n) Blu 1482 B2u 1472 10 13
uj(n) B18 1431 BZg 1428 3 —
uu(n) B1g 1079 BZg 1073 6 —
u5(n) B1u 0 B2u g2 — —
vé(n) B1u 2917 B2u 2916 1 —
v7(n) ‘Blg 1314 28 1318 b -
va(n) B1u 722 BZu 712 10 13
vg{n) By, 72 B,, 0 — —
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Table=?7 The specific heat of polyethylene crystal

Temp. ( °K) CV/B(oba.) c,/R (calc.)
lattice intrachain

10 0.0162 ,
20 0.1129 0.0953
30 0.2548 0.2322
40 0.4045 0.3895
50 0.564 : 0.547
60 0.703 0.692
70 0.828 0.819
80 0.939 0.929
90 1.042 1.025

100 1.136 1.108 0.002
110 1.228 1.181 0.004
120 1.298 1.2u46 0.008
130 1.376 1.305 0.014
140 1.454 1.357 0.023
150 1.525 1.404 0.038

Table-8 The eigen-fraquency for Sa=5b=8c=0'1 (em™1)

symmetry at §=0 v from DS($) v from Hé(&)

AE 146 147
338 122 122
Blu 72 73
82u 6.0 6.1
BBu 36.3 36,3
A, 65 65
B1u L.6 k.6
P2u 2 2

DS(S) is the original dynamical matrix whose dimension is 36.
Hg(3) 1s the dynamical matrix for low frequency lattice
vibrations whose dimension is 8.
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Table-9 The Intermolecular Force Constants from the
Theoretical Potential Functions.

Py P2 Pq Py Dok BVpepg V(Byy)
Barton 0.0021 0.0046 0.0120 0.0120 16 1 56
H111 0.0006 0.0016 0.0053 b0.0054 & i 33
Eyring 0.0039 0.0080 0.0195 0.0197 26 3 75
Winstein 0.0018 0.0042 0.0118 0.0120 15 1 54
Hendrickson 0.0026 0.0055 0.014% 0.0145 19 2 62
pondr ckson 0.0026 0.0057 0.0152 0.0153 20 1 63
Barton 0.0030 0,0066 0©.0171 0.0173 22 2 81
Bartell 0.0059 0.0117 0.0272 0.0277 37 5 91
MOller 0.0061 0.0140 0.0397 0.0400 50 2 98
de Boer 0.0057 0.0104 0.0210 0.0220 31 7 86
Tasumi I 0.0045 0.0133 0.0080 0.02 10 12 79
Shimanouchl ;4§ 0038 0.0153 0.0120 0.02 11 11 80
Present Study _ro.oouz 0.0101 0.0064 0.0112 10 10 73

Table~10 The Interatomic Distances (ﬂ)
model  Temp. P1- P2 P3 Py

o=42° 298% 2.956 2.765 2.769 2.595
e=42°  77% 2.877 2.625 2.599 2.534
o=45°  77% 2.879 2.712 2.505 2.502
0=48°  77% 2.884 2.804 2.417 2.484
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Interchain potential in polyethylene crystal.

1

Fig.
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Fig. 3 Ffequency and symmetry of optical modes of
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Fig. 6 The specific heat of polyethylene crystal.
1)

open clrcles are observed values and solld

1ine shows the calculated speclflc heat per

methylene group.
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Fig. 7. The atomic distances of the interchalmn Cesesd

contacts at -196°C.
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CHAPTER 1T

ACOUSTIC PHONONS AND LOW~-TEMPERATURE SPECIFIC

HEAT OF POLYETHYLENE CRYSTAL

III-1 INTRODUCTION

There are three acoustic branches of crystal vibrations,
the frequencies of which approach to O_cm-1 as |d| approaches
“to 0. At the 1limit of 8] =0, the acoustic branches become
overall-translations of the crystal along three orthogonal
directions. In molecular crystals, the frequencles of acoustlic
vibrations depend primarily upon inter-molecular potential
function.

On the other hand, for extremely small value of [8’, the
period of atomlc displacement becomes 1nfinitely large and
then the deformation due to acoustlc vibrations would be
regarded as homogeneous deformgtlon. Ior instance, the
longliltudinal acoustic vibrations along the a, b and ¢ axes
correspond to 01y O, and 03 of the elastlc deformatious,
respectively. The atomlc displacements 1n transverse acoustic
vibtations are similar to those of Oy 05 and 06. Accordingly,
the frequencles of acoustlc vibratlions are represented with
the macroscoplc elastic counstants.

The speclilfic heat at the lowest temperature depends
primarily upon the agcoustic vibratlions. Since, in the poly-
ethylene crystal, there 1s no free electron, the specific

1)

heat 1s proportional to T3 below QOK. The coefficient 1s

determined largely from the interchain force constants. As
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the experimental data are obtalned from careful'observationsl),

the data of the heat capacity are possibly used to adjusting
the interchain force constants.

Debye 's theoryZ) on the specific heat assumes that the
velocity of acoustic phonon does not depend upon the directlon
of travelling but dépends on the type of modes, that 1is,
transverse or longltudinal. This approxlmaﬁlon is not valild
for highly anisotropic crystal such as polyethylene. The
veloclty of the longitudinal mode travelling to the chailn
axls much higher than the veloclty of iongitudinal modes
travelling perpendicularly to the chain axis. Previously
Odajima has treated the elastic constants and low temperature
- speclfic heat, assumling de Boer type Interchain potentilal,
where the speciflic heat 1s calculated from Eq.(1.23) of
Chapter I, and deviation of constant frequency surfaces of
acoustic phonons from ellipsoild had been dlsregarded.

In the present study, the veloclty of acoustic phonons
1s calculated for various directlions of travelling, from
which the frequency distributlon for acoustic phonons and
the specific heat below 9OK were calculated. The several
sets of interchalin force constants, deduced from the
b)

observed frequency of the B1u lattice vibratlonL

the band spllitting of methylene rocking and sclssoring

and

v1brat10ns5), were examlined and adjusted so as to reproduce
the observed value of the speciflic heat below 9OK. Thus
obtained force constants are P]=0.00U2, P,=0.0101, P3=O.OO64

and Pu=0.0112 md/%. The constant frequency surfaces of
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three acoustlc branches are calculated under the incorporation
of mutual interactlons of the branches.
-2 DYNAMICAL MATRIX FOR ACOUSTIC PHONONS
The dynamical matrix for three acoustic vibrations can
be derived in two alternative ways; the perturbation method
about the dynamical matrix of whole lattice vibrations and

the equation for elastlic waves of three dimenslongl elastic

6)

cont inuum. The former has first  been worked out in the

present study and explalined below in detall.
M, . C, . .
The matrix elements of Dg(d ) and Ds(ba,sb,bc) of (2.6)
are expanded into power seriles of Sa, Sb and o, as
M _ 0 1
DS(6C) =D+ % Dm(60> (3.1)
C A0 v nl ~
DS(Sa,Bb,BC) = DC + % DC(Sa,Sb,BC) (3.2)

0

o include constant terms and D$ and Di include

where Dg and D
1-th power of phase differences. Supposing the eigenvector
matrix of Dg(SC) near 6C=0 is represented as

Ly(s) = L0 [E - p(5)) (3.9)
where Lg is the eigenvector matrix of 80=O and E 1s unit
matrix, them (3.4) is derived from the condition for Lg(SC)

to be eigenvector matrix of Dg(BC).

PO )4y = 0
_ . _ 1 0 0,0
P(8,)y, = =P8, )y =[Eoon(o,0L) 1, /092 (3.4)
‘where Ag and Ag are elpenvalues of Dg(O). Thus the dynamical

matrix for low frequency lattice vibrations, Hq(Sa,Sb,Sc) is
obtalined in explicit form of 88, Bb and 5, from
' : 150 I \TOYM C C 0 .0«
Hg (5,8, ,8,)=[L0-(5_)0Nplis )+0S(s, 5, 5. J(Ll-L0p(5 )]
(3.5)

76



The interactilon of acoustic branches with intrachain
vibrations has already been incorporated through P(SC) and,
in next place, the interaction of the aéoustic brgnches wlth
optical branches of low frequency lattice vibratlons are
introduced with the use of second order perturbation method.
The matrix eiements concerned with three acoustic branches
are represented as

_ 2 .2 2 3 ;
HA(B)ua = A D + B0, + CGSC (a=a,b,c) (3.6)

a - a a b

HA(S)uB = daBSGSB
where a detiotes the directlon of the atomlc displacement of
the acoustic bhonon and daB is concerned wlth the mutual
interaction of three acoustlic phonons. The coefficlients,

B

A C. and d,g are derived as function of the interchain

a’ “a’ "o

force constants in Table 1. OSince the potential term Py 1is
essentlglly on the be plane, it ddes not contribute to the
v coeffic&ent of Ba at all. As the potential term of P3 is
assumed in ab plane, 1t contributes nelther to the trans-
latlonal mode along the c¢ axls nor to the coefflcients of
SC. Since the longitudinal mode along the ¢ axis includes
the deformatlon of molecule, force constant of the skeletal
beﬁdlng coordlinate contributes to CC which 18 shown
numerically in Table 1. Thus derived HA(B), the dynamical
matrix for acoustic phonouns, was confirmed to well reproduce
the eigenfrequency of original dynamlcal matrix of the
dimension 36. The left column of Table 2 represents the
elgenfrequency obtained from the dlagonallzation of Dg(d)

and the right columm represents that from HA(S), where phase
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difference 1s set to be Sa=8b:80=0.1 radian. The deviation

! and therefore the present approximation is

1s at most 0.2 cm”
justifiled.
On the other hand, macroscopic theory about elastic

continuum leads to the identical dynamical matrix with acoustlc
branches, Supposing u, v and w are the atomic displacement

along'x, y, and z direction, respectlvely and Xx’ Xy and XZ
are externmal forces per uunlt volume along x directlon oun the

surface normal to x, y, and z axls, respectlively, then the

equation of motion along x direction 1s represented as 7)
ol = (QXX/ax) + (BXy/ay) + (QXZ/az) _ (3.7)
where p 1is density. The elastlc deformation, deflined by
o, = au/?x, o, = av/ay, 0y = aw/az,
oy = (av/az)+(2w/ay), oy = (5u/az)+(ou/ox)
og = (au/ay)+(av/ox)

induces the restoring force which 1s in equilibrium wlith the

external force. The external force,which does not gilve rise

to overgll-rotation of the crystal is represented as six
component vector

F=«Co (3.8)

where € 1s the elastic counstant matrix(clj). Then the

equatlon of motlon is rewritten as

2

pﬁ:cll(azu/ax )+066(82u/ay2)+c55(Dzu/azz)

+(o]2+c66)(azv/axay)+(013+055)(azw/axaz)
pV=066(82v/ax2)+022(92v/ay2)+cuu(32vﬁazz)

+{o tope) (37u/ax0y)+ (0 pqtey, ) (370 /5y 52)
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P%=055(82w/ax2)+cuu(EZW/ay2)+633(82w/322) (3.9)

+(c ) (2%0/0x52)+ (0 440y, ) (270/ 3y 52)

+/
137°55
Under the cyclic boundary condition, the atomlc displacements

are represented as plane wave such as

u = uoexp(iwt-ipﬁ)
v = viexp(ilwt-1p5) : (3.10)
w = wexp(iwt-1pd)

where w 1s angular frequency, p 1s index vector and 3 1is

phase difference vector. Substitution of u, v, and w from

(3.10) into (3.9) yields the secular determinant for elastic

waves.
6,15 K 52 0 B2 (o ,*epc)d B (c,.4c..)5 8
T 2 62 b, 52 12 "66'%a" b 13 "55 "a'c
a
a, by S 84 8%
2 2 2, :
T °66%a %225 Cunds  (Cazton 0 (3.11)
b 2 ! 2 v 2 3.11
29 o, €0 baCh
| uuBb 336?
TC symmetric —ii—*+ 5
ao bo “o0

The eigenvalue of (3.11) 1s pu? and ay, b, and ¢/ are lattice

constants. Ta’ T and TC denote that atomic displacement

b’
is parallel to the a, b and ¢ axes, respectively.

When rellable values of the elastlc counstants are
avallable, the equation (3.11) is of great use as 1t 1is, but

when potentlal functlon is rellable and c is not avallable

13
as polyethylene crystal, the equation (3.6) may be applicable.



-3 SPECIFIC HEAT BELOW 10°K
With the use of spherlcal polar coordinate in' 0 space
the phase differences are written as
18] s1n6 -cosd, 8,= |8|s1in6 -sing, 8 = | 8 |cose
where |3] 1s length of phase difference vector. For very

small values of phase difference vectors, the frequencles of

acoustic phonons are proportional to the magnitude of phase

difference vector, that is, [8]. Supposing vy, 18 the

frequency of 1=-th branch gt & = 8,, then the velocity of the

O!

2, 2.02 2 &2 ,2.-%
phonon 1s given by u01c(SOa/aO+SOb/bOC+SOc/CO) and the

phase difference which glves v

[8,]= (v/vg,) ]3]

N 1s represented as

Thus the constant frequency surface corresponding to v cm"1
may be obtained from the dlagonalization of the dynamical
matrix for varlous direction of 60. Tn Fig. 1, the constant
frequency surfaces for v=1.3 em™! of three acoustlc phonons
of polyethylene crystal 1s drawn in 0 space, where the axls
of SC 1s perpendicular to the paper and the lso-frequency
contours for varlous values of 80 are projected to Sagb
plane. The golld lines are drawn at 0.5° interval of 50 and

other lines agre for lntermedlate values of 80, written beglde

the contour lines. One-elghth of the volume (0< & ,Bb,BCs;n)

surrounded by thp congtant frequency surfaces 1is

n/2(n/2
V(v) = Z J- J J ]8 [ 51n6-4d5 .dedd

n/2 (v 32
J' J J dSOI/UOi) v dvsinededd (3.13)
0 0

Il MW

1
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Then the number of mode between v and v+dv 1s
glv)dv = [BV(U)/BV dv = av? (3.14)
where the coefficient, "a'" is calculated by replacling the

integral in (3.13) with summation as (3.15)

5T
(f&ol/vol)lengAeAé (3.15)

1
a = (1/bn7) 5
&
3

in
2 2
L8
where the factor (1/4n”) 1s introduced so as for g(v) to
represent the frequency distributlion per methylene group,
becauseé the irreducible volume (one-eighth) of the first
Brillouln zone 1is n3 in which four methylehe groups are
included. Theu the specific heat 1is derived as |

00
(CV/R) = a(k/hc)BTéé’xuexp(x)[éxp(x)-;]'zdx (3.16)

where x=(hcv/kT). The upper 1limit of integral 1s convenlently
regarded as inflinlte because the integrated value 1s almost
constant at low temperature for proper v
Since the frequency is altered senslitively wlth‘SC,

but 1ittle with Ba or Bb, AB=1/90 and Ad=n/36 were adopted
on the calculation of (3.15). Finer division was counfirmed
to yleld almost same value. The computation of the formatlon
of the dynamical matrix from the interchaln force constants
and of 1its dlagonallizatlon, 1s short enough to examine
several sets of the interchain force constants deduced from
the least square analysls with regard to other observed
values®™). As described in I-7, the coefficlent, "a™ of
(3.15) 1s nearly proportional to (-3/2)th power of the inter-
chaln force constants. The relation is also of use to adjust
the Iinterchain force constants. Thus determined values are

P,=0.0042, P,=0.0101, P,=0.0064, P;=0.0112 ma/®
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The specific heat, calculated from gbove potentlal, 1s

] - . "Sr 3
(LV/R)a = 0,971-10 7T
_ s ~5m3

(CV/R)b = 0,366-10777
_ ~5m3

(CV/R)O = 0,049.10° 77

C,/B = 1,386+107213
where the suffices indlcate approximate direction of atomic
displacement in acoustic branches. Becguse of mixing of

modes, the definltlon is not always precise. The contributicn

of acoustic branch along the a axis 1s the largest in"
accordance with the 1argeét volume of constant frequency
surface in KFig. 1.

The most recent value of the observed specific heatl) is

¢, /R = 1.35.10757’
while Wunderlich's Valueg) is 1.90*10-5'1‘3 and Reese's

10) is 1.67x10-5T3. Since the extrapolation to

previous value
100% crystallinity has mnot been carried out in the latter
two experimental values, 1t 1s reasonable that the calculated

value 1s in good agreement wlth the most recent value.

OI-4 DISCUSSIONS
Prominent difference of the present treatment from Debyefs
theory lies on the representatlon of the frequency distributlon.
As long as frequency 1s proportional to phase difference 1in
three dimensional crystal, the frequency distribution 1s

3 law 1s derived. lowever,

proportional to u2 and therefore T
in Debye theory, the coefficlent, "a" of (3.14) is determlned

from normalizatlon about freedom and the specific heat includes

ad justable parameter QD’
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0

(CV/B) = (9T3/9D32£xnexp(x)[exp(x)-{]°2

whereas, 1n the present study, the coefficlent 1s determined
uniquely from the interchalin force constants and the specific
heat includes no adjustable parameter. Dependency of the
specific heat upon T3 law is shown in Fig. 2 where open
clrcles are obéerved valuesl)g). Solid line denotes the
coefficlent of 77 calculated from (3.16) below 9°K and from
(1.19) with the frequency distribution (Fig. 5) of the
preceding chapter above 9°K. As temperature 1s ralsed, one
dlmensional property of the dlsperslon curves of the crystal
vibratlions beglns to take dominant effect upon the specific
heat and deviation from 'I‘3 law becomes remarkable, Then the
specific heat gets proportional to T and apparent magnltude
of the coefflclent of T3 becomes smaller. This tendency of
the calculated results 1s in good agreement with the obhserved
results, |

For the calculation of the specific heat at the lowest
temperature, the frequency dlstribution in the lowest fre-
quency reglon 1s necessary. In thls reglon, root sampling
method does not provide sufficlent frequency distribution
uniess a great number of points 1n & space are incorporated.
The frequency distribution from 14,580 points in & space
(about 120,000 modes below 700 cm-l) 18 shown in right hilstogram
of FMlg. 3. As the division of o space gets finer, the fre-
quency dilstributlion approaches to the analytlcal one. The
frequency distribution from 1,180,980 points in & space are

drawn in left histogram of ['ig. 3 where solid line 1s calcu-

lated from (3.15). Accordingly the specific heat calculated
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from the frequency distribution of root sampling method is
smoothly connected”with the value from the analytlcal
expression of (3.16).

Since the intrachain potential contributes to Hy(3)
but not to HA(S)bb and HA(S)aa, the latter two dlagonal
terms dre commonly small and therefore the off-dlagonal term
of HA(S)ab becomes comparable with those diggonal terms.

Though HA(S)a and H,(8),  are as large as HA(S)ab, the effect

C
1s small because of the large value of HA(S)CC and the constant
frequency surface of the translational mode along the c axis
becomes apparently oblate ellipsold along 80, the volume of
which becomes small. While remarkable departure of the cons=~
tant frequency surface from an ellipsold 1s found in Ta and Tb
modes, which results from the mutual repulsion of two acoustic
modes which enters through HA(S)ab. As shown in Table 1, the
potentlal term of P, does not contribute to HA(E’S)ab whereas,
Pl’ P2 and P3 contribute to 1t,. thereby: the repulsion 1s out-
standing in the intermediate direction of Sa and Bb axes. The
increment of volume of the lowest branch due to the interaction
1s larger than the decrease of the volume of other branches and
the resultant specific heat becomes larger than the value

obtained from the ellipsold of diagonal terms which 1s estl-

mated from (1.23) as

— -5 \3
(CV/R)a = 0.587x10 13
— -51
(CV/R)b = 0.387x10°°T
~ -5 !3
(LV/R)C = 0.097x107 71
(¢ /R) = 1.071x10™277
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In consequence 1t became evident that the mlxing of acoustic
modes has the slgnificant effect upon the low tempersture

specific heat.

SUMMARY

The dynamical matrix for acoustic vibrations were derived
with the use of perturbation method. The resultant matrix
1s equivalent to that derived from the elastic waves. On the
calculation of low temperature specific heat, acoustlc phonon-
phonon interactions were incorporated, which led to larger
specifilc heat than without the interaction. The frequency
distribution derived from the constant frequency surface
was in good agreement wlth that of root sampling method. From
the present treatment, the interchaln force constants were
ad justed as P

=0.0042, P,=0.0101, P,=0.0064 and P;=0.0112 md/X.

1 2 3
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Taﬁle-l The coefflclents of 8 for the acoustic branches

A,  0.0029P, + 0.0209P, + 0.0153P,

Ba 0.9929P1 + 0;0209P2 + 0.0153P3 + o;ooo7Pu

ca 0.0550Pi + 0;062022 + 0 + 0.000?Pu

Ab 0.0258P1 +_Q.0069P2 + 0.0026P3

Bb 0.0258P1 + 0.0069P2 + 0.0026P3 + 0;0521Pu

cb 0.0258?1 + 0.0291P2 + 0 + 0'0683Pu

o .O.OO7OP1 + o.oo79P2 0 o

C. 0.0083P, + 0.0102P, + 0 + 0.0068P, + 0.0775
dab 0.0172P1 + o.ozuOP2 + 0.0125P3

dac o.ozusp1 + o.o367P2 + 0.0020P3

dy . 0.0280P1 + 0.0235P2 + o.oooBPj + o.gsuuPu )

Table-2  Comparisons of the calculated frequency. (em™ 1)

mode v from DS(S) v from HA(S)
Ta 4,6 L,6

Tb 6.0 6.2

T 36.3 36.4

3 is set to be § =5 =8 =0.1.
a b ¢
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Fig. 2. Dependency of the speciflc heat upom T3 law.

o; observed values by Tuckerl) forﬁP(BOoK
and by Wunderlich?! for T »>30°K.

--3: cglculated values.
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N p(v)=1.59x10"6v2 A
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Flg. 3. The frequency distribution of acoustlc phonons of
polyethylene crystal. Solid line is obtained from

(3.15) and histograms are obtained from root sampling
method.
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CHAPTER 1V

SYMMIETRY OF CRYSTAL VIBRATIONS, DISPERSION CURVES

AND INFRARED BANDS DUE TO COMBINATION VIBRATIONS

ITV~1  INI'BODUCTION

Because of the translational symmetry of the crystal, the
wave functions ol the crystal 1s expanded in Fourier serles of
reeliprocal vectors, where two wave functlons correspondling to
different, k vectors are orthoponal. Then the Hamiltonian of
the crystal 1s Bpecifled with k vector. When n atoms are
contalned per unlt cell, there are»Bn vibratlions for a glven
k vector, and therefore there are 3n branches of crystal
vibrations.

In a slmple crystal lattices these branches are approxi=-
mately classified with respect to atomic displacements. When
the atomic displacement 1s parallel to k vector, the mode 1s‘
called lonsitudinal but when the displacement 1s perpendicuiar
to the k vecltor, the mode are called transverse. This notatlon
1s of reat advantage to an isotroplc ionle crystals such asg
NaCl, because photons (electromagnetlc (ield) interact only
with transverse modes.l) llowever, for highly anisotroplc
polyethylene crystal, the transverse modes for a glven k vector
are uol. always separable from the lougitudinal modes and the
classifleatlon 1s not valid,

In the present study, the disperslon curves of —(CHz)n-
and '(CUP)n" polyethylene crystals were calculated along bthe

symmetry directions of the Prillouln zone and they are
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classifled in accordance with their symmetry properties.
The dispersion curves of -(CDz)n' crystal are expected to be
obtained directly from the experiment of the coherent
lnelastic scattering of neutrons and, in fact, King et 31.2)
have recently observed the dispersion curve sglong SC; On the
other hand, from the dispersion curves of -(CHz)n- crystal,
1nfrared combination bands may be expected in the frequency
range of 150-600 cm-l. Since polyethylene crystal 1s consl-
dered to be transparent for infrared radiation in thils fre-
quency reglon wiph respect to fundamental bands, thick samples
were examined and several absorptlon bands were, iun fact,
observed.
IV-2 k GROUP

An ensemble of the space group operatlons which make
k vector invarilant 1s called k . group whlch 1s a subgroup of

3) The effect of the space

the polnt group of the space group.

group operation Hh upon exponentlal function 1ls defined by
Bhexp(gpa) = exp(io%pﬁ + 1th6) (4.1)

where & 1s phase difference vector and p 1s index vector.

dh and th are the rotatlonal operation and the relevant non-

primitive translation, respectively. Since o, i an orthogonal

matrix, (ﬂhp)ﬁ is equivalent to‘p(uh"lﬁ).s) Accordingly, the

k group 1s defined as the ensemble of operations which satisfy

uh'lﬁ =08 + 2nm (m; integer). (4.2)

The space group of tﬁe polyethylene crystal 1s Ppgp (Dég)u)

and the corresponding pointvgroup is Dzh' Symmetry operatious

of the polyethylene crystal are shown in Table Al of Appendix I.

For 8=(0,0,0), all of elght operations satisfy Eq.(4.2) and
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then the k group is D, . When the value of Sa varies keeplng
8,=0,=0, Eq.(4.2) 1s satisfied only with four operations which
are R1=E(1dent1ty), R2=Cg(screw,axis along the a axis), H7=
og(ac)(gllde plane normal to the b axis) and R8=og(ab)(g11de
plane normal to the ¢ axis). Accordingly the k group 1is C2v'
While for 8=(n,0,0), the remaining four operations which are
83=Cg(screw axis along the b axis), Bu=Cg(screw axls along the
c axis}, R5=1(1nversion) and H6=ag(bc)(glide plane normal to
the a akis), again satisfy Eq(4.2). It results from the
equivalence of (n,0,0) and (-1,0,0). The k goup agaln becomes
D2h but the irreducible representation 1s different from that
for (0,0,0). All k groups of the polyethylene crystal are
derived in the present study as shown in Tgble 1, where the
symbol of the speclal point in the first Brlillouln zone
follows BSW notation.é)
For a glven phase difference vector, the k group includes
only ldentity operation and the crystal vibrations corres-
ponding to the inner points of the first Brillouln zone are
merely factorized into two groups, symmetrlic and antisymmetric

to inversion. The real dynamical matrix of dimension 3n 1is.

not. endowed with any symmetry property, and s not reducilble.
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~ IV-3 IRREDUCIBLE REPRESENTATION OF k GROUP

Dispersion curves along the symmetry directions of phase
difference vector belong to one of the 1rreducib1e'represen-
tations!of the k group. If the irreducible representation
were avallable, the symmetry coordinates corresponding to
each specles could be constructed and the modes could be
drawn:schematically in termé of the atomic displacement.
Slatera) has derilved the irreducible representation for 20
space groups but the Table for the space group Pngm 18 not
included. Accordingly the irreduclble representations and

3)

base functioms are derived with the use of Slater's method”’.
On successlive application of the polint group operations

to the wave function, the resultant effect 1s equlvalent to

one of the polint group operatlions, whereas for the space

group operations the situation is different wlth regard to

the effect of unonprimitive traunslations. Supposing HJ is

operated on the exponentlal functlon after Rh, then

RJRhexp(lpﬁ) = Bjexp(iuhpﬁ)-exp(itha)

exp [La (0, pt,)8] - exp(12,8)
exp(1nhajp5).exp[}(uﬂtj¥th)8J (4,3)

il

The multiplication table about @ 1s identical wilth that of
the polint group operation. However, even though uh“j is D
ahtj+th 1s not always equal to tk. With the use of %0 defined

by

L R (4, 0)

J h k 0
the effect of two successive operatlons can be represented with

one of the space group operations as
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RyRy By = exp(1L,8)R, -4, (4.5)
where 8, = exp(1pd). Thus the multiplication table for Pugy
were derived as shown in Table A2, where the flrst operatlous
are written in the first row and the second operatiouns in the
first columm. From the table, the irreduclible representatlons
and the base functlons were derlved. All the irreduclble
representations of the space group P, are shown 1n from Table
A3 to Table AZO;' Some of these are plcked up and explalned in
detall here but the remeining ones are proved in the same way.
For 8=(8 +0;0) we have fcur cperations, Ry, Ha, B? and
RB which belong to k group. Multiplicatlon table for thnese

are shown in Table 2. Since R2 and H72M%aacoompanied with

phase factor, the following type of base functlons occur to

our minds.
| | ‘ .
[B,+Bgtexp(~18_/2) (R, +H,) {4, (4.6)
The applicatlor of the operatcrs to ﬁ leads us to
R4, = [R R R Ry + exp(~1d_/2)(B R 4H.A, Nd, =
= {
R4, [R R +R,Rg + exp(-13_/2)( B2P2+32H7 ]do

r \ fxS e
[B,+R +exp(—16 /2}exp(16 J(R +B8 ]éq = exp&i%a/Zfél

B4, [B7+32+exp(i& /2) (Bg+R ]950 = exp(15_/2)8,

Bgd, = [RgR rexp(~18_/2) (R +R,)]6) = 4,

]

Then Ql is a base functlon for one dimenslonal representatlion.
Remaining three functlous, derilved from the regular repre-
sentations, are as follows,

dy= [R *Ry=exp(-18_/2) (B 4R, )] 4,

;53: (R, -Bgrexp(-18_/2)(R,-R, )] 4,
#= (B -Bg-exp(-18,/2) (R,-R, )] 4,



and the resultant function after the applicatlon of symmetry
operations are represented as
31¢2=¢2 Rz¢2=-exp(18a/2)é2 R7¢2=-eXp(188/2)¢2 Rgd,=#,
= = . R -
RléB 53 Bzéj +exp(18a/2)é3 R7¢3 exp(i&a/Z);é3 8¢3 ¢3
R1éu=¢u Bzéu=-exp(i8a/2)¢u H7¢4=+8Xp(15a/2)¢u 88¢4=-¢u
Thus one dimensional representation of the k group at 7 was
derived and 1s summarized in Table A3, where él, éz, ¢3 and
¢4 are base functlons of I, 2o 23 and 2,, respectively.
With the use of the usual point group notation of Cogr 217
2 23, and 3 correspond to Ai’ B,, A, and B,, respectively.
The multiplicatlon table for (Sa,n,o), (Ba,o,n) and
(Sa,n,n) are proved to be identical with Table 2. Accordingly

the irreduclble representations for these polnts are common

to that of (88,0,0). On the other hand, the nonprimitive trans-
b

lations accompanied with Cg, Cz, and CS are different from each
other, therefore.the irreducible represeutations for (0,8,,0)
and (O,O,SC) are not simple permutation of Sa’ Sb and BC in

the representation for (88,0,0). For (O,Sb,o) and (n,Sb,O),
the multiplicatlion tables are common but different from those

fbr‘(o,sb,n) and (n,Sb,n). The irreducible representation of
the former is one dlmenslonal whereas that of the latter is
two dimensional. The irreducible representations for (0,0,80)
and (n,n,SC) are one dimensional but those for (0,n,8,) and
(n,O,SC) are two dimenslonal. As the example, (0,7,5, ) is
~picked up. The multiplication table for (O,n,SC) is shown

in Table 3, where Rl’ Ru, 86 and R7.belong to the k group.
Table 2. 1s symmetric about diagonal line whereas Table 3.
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1s not symmetric. In the same way with Eq(4.6), proper linear
combinations of regular representations such as '

g, = [B1+R7 + exp(-18_/2) (B, +R;)] £, (4.7)
were constructed and subjected to symmetry operations. Rl
and R4 give rise to the same‘type of the functlon, whereas R6
and B7 yleld different type of functilon, éz, as
- Bedy = [Rg(R #R,) + exp(~18_/2)R((R,+R)] 4,
[Bg*R, - exp(18_/2)(R,*R,)] 4,
exp(180/2).¢2 _ (4.8)

Accordingly, the irreduclble representation becomes two-

dimenslongl.

On the surface of the first Brlllouin zone, the k group
1s always CS and the dynamical matrix is factorized into two
blocks with the symmetry transformation. For the example of
(r,5,8), the symmetry operations Qf the k group are B1 and ﬁé.
As they are not polunts of high symmetry, there 1s no BSW symbol
whlle the irreduclble representations for these faces are
shown in Tagbles All;A13. At the cormer of the zone, the
symmetry becomes D2h agaln and there appears degeneracy of the
lattice vibrations. The corner of degeneracy does not always
coincide with the dimensionality of the irreduclble repre-
sentation. Two typlcal examples of the irreduclble represen-
tatloné for D2h aré derived below and the relation of the
dimenslionality with the degemneracy of éhergy.level 1s treated
later.

The multiplication table of the k group at (n,n,0) 1is
represented as Table 4, where operations are rearranged from

Table A2. Supposing that groupof operations, A includes Bl’
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RU’ R5 and R8 while group B includes RZ’ RB’ R6 and R7, then

the multiplication table 1s simply represented as

A B
A A B
B B -A

whefe the operations 1in the first.column are applied after
those In the first row. If we select the base functlons as
¢,=(A+B)g  and #,=(A-B)d,, then the resultant functiouns after
the symmetry operatlons are as follows;
Ay = 8, Ad, = 4, Bf, = -4, Bd, = 4,
Therefore the representation is real and two-dimenslonsl.
For the group of order eight, there should be two types of
two-dlmensionél irreducible representations. On the other
hand, if we take complex functions such as é1=(A+iB)5O and
ﬁ2=(A-1B)dO, then the symmetry operations yleld
Ad, = &, M, =8, B, = -14, . Bd,

and the representation becomes one-dimensional. Since four

"

1¢2

lndependent linear comblnations are possibly made within the
group A or B, eight base functions caun be constructed. Thus
derived one-dlmensional representation is shown in Table A17.
~ The situation of the k group for (n,n,n) is fairly
different from (n,n,0). As shown in Table 5, multiplication
table 18 nelther symmetric nor skew symmetric., If the repre-
sentation 1s written with real number, it becomes four

dimensional, where the base functions are

¢1 = (Rl+88+Bz+R7)¢O
8, = (B +Rg-R,-R, )4,
éa = (85+RQ+R6+R3)é0
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2y, = (Rg*+R)-R¢-R;)8,
On the other hand, theorem of group theory states that the
sum of square of the dimension of the representation is equsl
to the number of operationé7), therefore four dimensional
representation 1s lmpossible for the group of order eight.
Using complex number in the coefficlents of base functions,
we can obtailn two-dimensional representations which are shown
in Table A20.
IVl DEGENERACY OF ENERGY LEVEL
Dimensionallty of the irreducible representation does

not always colncide with therdegree ofidegeneracy of the
energy level. A transformation matrix corresponding to symmetry
operations of the k group keeps the dynamical matrix luvariagnt
and then complex'conjugate of the transformation matrix also
commutes with the dynamical matrix. Supposing T(S,Bi) is the
transformation matrix of symmetry operation, R,, and T*(&,Ri)
is its complex conjugate, then

T(9,R,)Dg(3) = Dg(3)T(3,R,)

T*(§,B,)Dg(3) = Dg(8)T*(3,R,)

(4.9)

where DS(B) is dyﬁamical matrix for arbitrary phase difference
vector and satisfles the secular equation of
DS(S)LJ(S) = AJ(S)LJ(S) (k.10)

where KJ(S) and LJ(S) are j-th elgenvalue and the corresponding
elgenvector, respectively. Multlplying (4.10) from left by
T(S,Ri)_and T*(S,Bi) yields

DS(B)T(S,Rl)LJ(S) = AJ(S)T(S,Rl)LJ(S)

DS(S)T*(S,Ri)LJ(S) = AJ(S)T*(S,Rl)LJ(S)
(8) and T*(S,Bi)bj(ﬁ) are eigen-

(4.11)

It shows that both of T(S,Rl)ﬁ,'j

vector of Dg(§). If T(8,R,) and T*(5,R,) are inequivalent
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two eligenvectors becomes inequivalent and then two llnear
independent vectofs belong to the same elgenvalue. In other
words, 1f T(§,R,) and T*(S,Ri) belong to different épecles,
then extra degeuneracy appears.

8)

Maradudin and Vosko~ ' have studied the symmetry of

crystal vibratlons by the use of multiplier co-representation
method and derived a éimple rule about degeneracy due to time

reversal symmetry.

% 8(8,AR,ABX(3, A BAR) =g a type (4.12a)
S-g b type (4.12b)
= 0 c type (4.12¢)

¢(5,A,R).is a multiplier répresentation of the space group
operation defined by Eq(4,13),

4(5,A,R) = exp[-1(3 + A7'5).T(R)] (4.13)
R is an unitary type operation and A is an antiunitary type
operation. For example at point 2, Rl’ RZ’ R7 and Ry are
unitary type operations and R3’ Rh’ B5 and Rb are gntlunitary
type operatlons. AO 1s an arbitrary operator of A type. In

the case of the polyethylene crystal, it is convenlent to

regard AO as luversion, because inverslon acts always as
aﬁtiunitary operator for all k groups. Xﬁ(ﬁ, AORAOB) is

a character of S-th irreduclble representation for the
operator AOBAOR. When AO is inversion, AORAOR is always equal
to identity operation for all R in D2h gsystem. Summation runs
over gll operators in k group where g 1is order of k group.

Supposing the dimension of the irreducible representation

is fs, then energy level 1s fs-fold degenerate for a type,
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whereas:ZfS-fold degenerate for b and c¢ type.g)

In Table 6, #(3,A R ) are derived for all operators

07y? O
of the space group Ppgp. At each point represented in Table 1,
the corresponding value of phase difference is substituted for

b
- derived and shown in Table 7. The extra degemneracy due tc

Sa’ 5, or 80. Thus the type of time reversal gymmetry were

time reversal symmetry appears at points of 4, C, E, G, Q, F,
S, U; and R. At points of @, S, and R, in particular, the
dimenslon of the irreducible represgentation is two, therefore
the resultant degeneracy of etergy ievel becomes four-fold,
which is rarely seen 1n the molecular vibratlons.
IV~5 DISPERSION CURVES AND COMPATIBILITY RELATIONS
Dispersion curves of the frequency of crystal vibrations
were calcuiated and are shown in Fig. 1 - Fig. 8. The
correspondlng curve of '(CDZ)n' polyethylene crystal were

calculated with the same force constants'and are shown in

.Fig;-Al-'Fig. A6 of Appendix I. Since?eight modes corres-
ponding toklow frequency lattice vibrations below 700 cm™)
nere treated here, four curves appear for doubiy degenergte
cases and two curves appear for four-fold degenerate cages,
in accord with the theoretical prediction of Table 7.

Along (Sa,0,0) there are eight lattice vibrations which
are classified into four groups (21, 22, 23, and Zu) ‘n
accordancevwith the symmetry property about the k group

operations. Even for very small values of Sa’ the classifi-

catlon 1s valld and therefore the symmetry property of the wave
functilou changes continuously on the change of phase difference
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from (85:610):to (0,0,0)," Then the irreducible representation
of the k group changes continuously with the change of phase
difference. Substitution of 8a=0 for the irreducible repre-
sentation of Table A4 shows how the base functions of I point
behave at (0,0,0). It 1s represented in Table 8. When, the
element of Table 8 is identical with the character of the
irreducible representation for (0,0,0), these two species

are compatible. For ;ﬁétance Ag and B, have ldentical
characters with 21, therefore 1attice’§1brations which belong
1u 2t (0,0,0) are connebﬁed with

ﬂ21 branch on (88,0,0).1 This relatioh is called compatibility

to- A or B
g

relation which 1is deriﬁéd from the characters of the 1irreducible
representations, and ﬁhus éerived compatibility dilagram for
polyethylehe crystal 18 shown 1n Tablé-Azi.v

IV-6 COMBINATION BANDS OF THE INFRARED ABSORPTION .

On the 1ﬁteraction of phdnons with photous; total wave
vector 1s always counserved, Since the wave vector of.infrafed~
radlation is extremely small compared with the principal vector
of the reciprocal space, a photon interacts with a phoncn of
almost k=0. When a photon interacts with two phonons
éimultaneously, the counservation law réquires that one-phonoﬁ
corresponds to +3 and the other to -3. |

On the other hand, intensity of infrared absorptioﬁ bandi
depends upon both the number of infrared actilve comblnatlons :
and the squared magnitude of each transltion moment. " Although
a few combinations on the edge of the first Brillouin zone are-

' déducéd to be infrared inactive, all comblnations on the luner
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. polnts of the zone are possibly 1nfrared>active and the

- number of modes 1s extremely larger 1inside of the zone than
on the edges. Then the infrared épectrum might be
qualitatively compared with the number of combination vib-
rations., Accordingly, the frequency distribution of the
binary combination modes were calculated and compared‘with
infrared spectrum, observed at 77°K, in Fig. 9. The infrared

band at 79 cm™ ! 1is B,, fundamental band which is assoclated

with antiparallel translatory vibration perpendicular to the

10-11)

chain axis. Three peaks are expected iu the frequency

1

dlstribution. The calculated peak at 230 cm” = is primarily

~assoclated with the comblunatlon levels of the overall rotatory

vibrations (~150 cm™') with the antiparallel translatory

vibratlons perpendicular to the chain axis (~80 em™ L),

1

- The peak at 280 cm™ 1s due to the comblnation of two rotatory

vibrations which really belong to infrared active combinations

(2,¥Z, or AxA,). The calculated peak near 380 cm™> 1s’

- . assoclated with interunal rotation branches. Since the

1
these peak might possibly be obscured in infrared spectrum,

combingtion of A XABFbelong to infrared inactive specles,

in .good agreemenﬁ wlth the observed results. Accordlngly

the observed bands below 400 cm ™t are reasonably explained

1

-as combination'bands,vhoWever:the band near 560 cm~ " 1s not

assigned‘reasbnably in terms of comblinatlon tones.
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IV-7 DISCUSSIONS
As discussed in Chapter.ﬂl, there is no infrared actlve

fundamental band below 700_cm-1 except for B1u and B2u lattice
2) ‘

have measured the infrared

spectrum at 2°K and found weak absorption at 109 em™ L, They

vibrations. Dean and Martin-

have assligned 1t to the BZu lattice vibration. Accordingly
the weak abéorptions observed in the region of 200-400 cm™?

are not due to fundamental 1a£tice vibratlous., Since_the

‘band 1ntensityAbecomes strongér_aé ﬁemperature 1§ 16wered,

the bands cannot be dlfferenég:éombination bands. On»assignlng
- these bandé to combination toﬁes, transitlion-moment assoclated
~with the transition has to bé fiﬁite, which is equivalent to
state that thé product of the initial and final wave |
functions 1ﬁcludes one of phe_symmetry}spedies of dipole-
moment. Supposing the crystal 1s inltially at ground state

and two vibrations éa(ﬁ) ahdlﬁe(-ﬁj are exclted.by one quantunm
number on the intergction with_photon, then the infrared
absorption is.possibie only when éa(S)ﬁﬁ(-S) includes one of
the symmetry specles of dipole moment, where ﬁa(ﬁ) is wave
function of'd-th»qrystalbvibration for &. Since the ﬁB(—B)
is 'a complex conjugate of éB(S), the character of symmetry
operation for dB(;S)_is also complex conjugate of Tables
represented in Appendix I. Thus symmetry of éa(ﬁ)és(-a) 1s
der;ved ffom the direct product of the symmetry specles.

In Tgble 9, the direct product analysis for (Ba,0,0) 18 shown

as an example. This table is common for the point A, C, and E,.

"Ih point group sz, dipole moment along the a, b and c axes
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belong to Al’ B2 and B1 species, respectively. Therefore the

combination levels corresponding to 21X23 and 22xzuvare

infrared ingctive. In the same way, the transitlons to

combinatlion levels corresponding to Af<A3, B xb,) , AIXAB’
AxA,, and FxF,  are proved to be infrared iunactive. For other
comblnations, direct product includes at least one of the

Infrared actlve gpecles.
The frequency dlstribution for all the infrared inactive
combinations was made and is shown in Fig. 10. The combination

tones which sre infrared 1nact1ve on the faces of the Brillouin

zone would be weak even though & 1s altered. Then combingtion
bands corresponding to peaks 1in Fig. 10 might be weak even 1if
they correspond to the peak in Fig. 9. In fact infrared agbsor-

ption near 380 cm"1 16 weak. However, for the quantitative

discusslons, band intensity has to be estimated theoretically.

‘Maradudint?’

has studled the infrared absorption of a
defect or disordered crystal. He proved that the peak of
frequency distribution is posslbly observed asg infrared

absorption band in such crystals. Since there is a strong

1 in the frequency distribution of ‘the poly-

1

peak at 560 cm™
ethylene crystal, the infrared asbsorption band at 56Qcm' might
be assoclated with the skeletal bending mode, which appeared

in the infrared spectrum because of the disorder. Theoretical

development about the disordered crystal 1s hilghly

deslrable,

On the other hand, 1t 1s interesting to confirm the

exlstence of four-fold degenerate vibrations in terms of
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symmetry coordinates which may be derived for the special
value of & from the base function represented in Appendix I.
For convenlence sake, o, defined by (4.14) was used instead

of Biexp(ipﬁ), where xj, y.j and zj are atomic dlspiacement

of j-th methylene group.

ol=r x{lexp(lpla) 0,= -x;-exp(ipaﬁ) 04= Fxg-exp(ypuﬁ)
~ zl/ :23 :.zl,b

0;,= [-x,Jexp(10,5) 05= [-x]-exp(1p,8) 06; deﬁexp(ipuﬁ)
=¥Yo =¥ Iy
~ 22/ . :22/ ~ ZLP

0,= rxj-exp(ipBS) og= rk{-exp(iplﬁ)
=Yq A (4. 14)
~ 23/ :'le,

P = (h,k,1+1/4) £y = (h+g,k+%,1+1/h)

pr = (hyk,1=1/4) Py, = (h+d,k+k,1-1/4)

According to Table 7, the energy level 1s doubly degemnerate
at point U, though the dimension of the representation of k
group 1s one. Substitution of oy for Ri in Table A17 provides

symmetry coordinates for the k group at polint U as

U1 Xq=X +1x3-1xu, yl-y2-1y3+1yh

U2 X =X -1x3+1xu, yl-y2+1y3-1yu

U3 z,%2, z3-1zu

U z,tz t1z 41z

ULL Zy 23+izu t.15)
5 3 7%

U6 z —22+1z3-izu

'U7 X, +X, x3+1xu Yty o-1ya-1yy,

U8 X +x -1x3-1xu, y1+y2+iy3+1yu

106



Two coordinates included inthe palr of U1 and U,, U, and Uu,

U5 and U6’ and U, and U8’ are, in fact, degenerate.. U_1 and

7

U2 correspond to rotational vibration around the chaln axls

and skeletal stretching modes. The former is commected with |
G,» G, branch along (n,Bb,O) as shown Fig. 1 and with 4, Aé
along (Ba,n,o) as shown in Fig. 2 while the latter lies above

200 cm™t and 1s not treated. U3 and Uy are translatory

vibration along the chain axis. The phase of (h+3,k+3)

chalin is forward or backward by n/2 from (h,k) chain, end

then the vibratlonal frequency for U3 and Uu should be
identical. They are commected with G,, G, along (n,Sb,O)_
or A3, A, along (Ba,n,o). U5 and Ug are intrachaln vibratlons

7
perpendicular to the chain axis.

while U,, and U8 are assoclated with the translatory vibrations

On the other hand, at point B, the irreducible represen-
tations are two-dimenslional. Substitution of oy for Rl in
base functlons represented in Table A20, ylelds the symmetry

coordinates for (n,n,n).

R, g, = (z1+123)exp(1n/h) R, 4, = (zl~123)exp(+1m/4){u .
g, =(=z,=1z) Jexp(-in/L) B =(~22+1z4)exp(-1n/4)\ )

The eunergy corresponding to dl of Rl and ﬁl of Rz are equal
for the same reason with the case of"U3 and Uu. Then, four

functions of (4.16) belong to the same energy level and the
exlstence of four-fold degeneracCy may be understood.

The functions, which provide the ideuntlical characters

with Table A20 but different matrix elements, are also base
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function of the k group. For instance, (4.17) and (4.18) are

proved to be base functions of the irreducible representation

of R1 and BZ'

él(Bl) = (31—1R2-137+B8)exp(1p8) 1n)
g,(R,) = (R5-136—1RB+8u)exp(ip8)

]

4, (R,)
B,(By) = (R 1R +1RB4+R) Jexp(1p3)

(R, +1iR,+1R,+R, )exp(1,03)
172 s c (4.18)

Substitution of o, from (4.14) into Bi from (4,17) and (4.18)

1
leads us to the symmetry coordinates about x and y as
él(Rl) = (x1+1x3)exp(in/4) él(Rl) = (yl—in)exp(in/U)
Bo(Ry) =(-x5-1%) Jexp(-in/4) 4, (R;) =(-y,+1y, Jexp(-1n/k)
él(Bz) = (x1-1x3)¢xp(1n/h) él(RZ) = (y1+iy3)exp(1n/4)
éz(Rz) =(-x,+1x) Jexp(-1n/4) 4,(R,) =(-y2-1y4)exp(—in/4)
Thus the conclusion from time reversal symmetry is really
confirmed 1n terms of symmetry coordinates,
The dispersion curves of -(CDZ)n~ crystal were calculated

from the same force fileld with '(CHz)n' crystal and are shown

in Appendix.

SUMMARX
Ifreducible representation and base function of the k group
of the space group, Pngm were derived with Slater's method.
Dispersion curves of crystal vibrations of normal and
deuterated polyethylene crystals were calculated along the
symmetry directlons. The symmetry of combination tone was
analysed on the basls of the symmetry of disperslon curves,

and lufrared absorptlon bands recognized at 240 and 280 c:m"1
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were asglgned to combinatlon bands. Simple rule about

degeneracy of energy level due to time reversal symmetry,

derived by Maradudin and Vosko, was applied to polyethy-
lene crystal and the theoretical predictlon was odnfirmed

by the numerical calculations. Symmetry coordinates for

polnt U gnd R were derived, and two-fold and fouf-fold
degeneracy were really examined in terms of symmetry coordiuates,

respectively.
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Table-1 k group of the polyethylene crystal

point (88,8b,80) k group operations
I (0,0,0) D, E, 3, cg, cs, 1, o (bc), o,lac), o (ab)
(88,0,0) C, E, Cg, Gg(ac), Ug(ab)

Q
o

(Sa,n,o) C g (ac}, o_(ab)

v

Y
0N
0o
cq

(88,0,n) C, o (ac), o_(ab)

40
NN
™
x

(Ba,n,n) Coy c (ac), o _(ab)
(0,8,,0) ¢C,
(n,Sb,O) C

2
A
C
E
A
G
H (O,Sb,n) C
Q
A
D
B
F

N
(]
0]

v
v
v g (bc), o (ab)

O
N
o]
R

- a,(bc), @ (ab)

AV}
. -
&q
3

e (be), o _(ab)

M omm O® o om oW
(@]

2v » Coo 28 g
(n,8,,m)  Cp , C3, 5 {bc), o (ab)
(0,0,8,) ¢C,, » €31 0, (be), o (ac)
(n,0,3,) Cyy E, Cg, U)(bc), o)(ac)
(0,m,8,) Coy E, Cg, cjibc), og(ac)
(n,1,8,)  Cp, E, Cs, o,(bc), g (ac)
(88,8b,n) C, E, o _(eb)
(Sa,n,BC) Cg E, cg(ac)
(n,Sb,Sc) C8 E, og(bc)
(3,,8,,0) C_ E, og(ab)
(8,,0,8,) Cg E, og(ac)
‘ (O,Sb,SC) CS E, ag(bc)
X (n,0,0) D,y E, cg, cg, cg, 1, Gg(bc), Gg(ac), og(ab)
Z (0,n,0) Dy, E, Cg, Cg, Cg, 1, c;(bc), cg(ac), og(ab)
Y (0,0,m) D,y E, cg, cg, cg, 1, Oé(bc), Ug(ac), og(ab)
Um0 Dy By 5, €3, OF, 1, 0,(bo), o lac), o (ab)
T (0,m,m) D2h E, Cg, Cg, Cg, 1, og(bc), og(ac), cg(ab)
S (n,0,n) D,y E, Cg, Cg, Cg, 1, o (be), cg(ac), Gg(ab)
R | (nyn,m) D2h E, Cg, Cg, Cg, 1, Gf(bc), g (ac), o (ab)

g
o8]
R

111



Table=2 Multlplicafion table of % group operatlons for (35’0’0)

. W
Bl Rz o h8
Ry By R, R, Hg
a a R
i, R, eB  ehg 7
a, a
R? B7 e HB e R1 HZ
Rg h8 R, R, R,

R, R,, R, R, -

R1 2y Bu 36 R7

R R e°R c°R R

b b 1 7 6

Rg By ne°37 mecﬁi B,

H7 B7 —Bé "B# Rl

Table~4 Multiplication table of % group operatlicns for (n,ﬁgﬁ)

Rl R# B5 RB RZ Rj Ré B7
31 Rl Hh' Rs 88 R2 83 Ré R7
R, |R, B Bg R; Ry R, R, R
R5 R5 RB Rl Rh H6 R? RZ B3
Bg 1R R, B, R R, Rg Ry R,
B2 R2 R3 36 : 87 _Rl mH4 —H5 MRS
R3 R3 H2 R7 BG «Hu -Bl mRS -R5
36 Bé H7 Rz BB ~R5 mBS le "Rh
H7 R7 Ré R3 HE —R8 ~B5 "Bh -Rl
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Tgble~5 Multiplication table of k group operations for (#,n,n)

T

R, By R, R, B, R, By By
R, | B, By R, B, B, B By By
Rg | Ry R, R, B, -R -Rg -By -Bg
R, | B, R, -R, -Bg =By -Ry R, B,
R, | R, R, -Rg B R, Bg R, -B,
R, | Bg B, HBg Ry R Ry @ Ry
R, | B, Bg By By Ry R B, R,
Rg | Bg Ry -Bg -8, B, R, B I
Ry | By By B, -Rg R, R, Ry R

Teble-6 Multiplier ceoraprsventation for space group Pnam

VRN SRS XA F T AT

R, AR, TB(AGR,) F+(AR)TIS  TR(AR,) S(te, A R, AR, )
B, B, (0,0,0)  (0,0,0) 0 1 '
R, Rg (£.%,8)  (0,28,,28)) 8,78 exp(=18, ~15 )

Ry R, (%,%,0) (25 .0,23) 5, exp(~13_)

R, Rg (0,0.%)  (28,,28,,0] 0 1

35 R, (0,0,0) (288,28b,280) 0 1

Rg B, (#,8,4)  (28,,0,0) 5, exp(~18 )

R, - Ry (#,%,0) (0,28, ,0) 8, exp(-18, )

BRg B, (0,0,%) (0,0,28,) Sy exp(=13)

ﬁ(AORi)'is represented sg cecefficlent vector of (ao,bo,cc) which
is a primitive transglation. '

¥ = [sr(ar) g

6(k,AORi,A081) = expi—i&“’ﬁ(AOBi;j
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Tablu=7 The degeneracy of dlspersion curves due to time
ragversal symmetry.

point g 2 (&,E) zﬁl‘m"’“bai""oﬁl)' type t; f, total
T{0,0,0} 8 1 8 a 11 i
F (8_,0,0) & 1 4 a 1 1 1
A (Sagn,e) L 1 0 c 2 1 2
C (aa,o,;:) L 1 0 c p 1 2
E (8a,ﬁ,r;) L H 0 c 2 1 2
A (O,Bb,o) 4 i {4 a 1 1 1
G (z,&b,o) 4 1 0 c 2 1 2
H (O,Sb%n) b 2 2 a 1 2 2
Q (r,d, ,m) & 2 -2 b 2 2 Iy
A (090,86} h 1 L A 1 1 1
B (o,a,&c) it 2 2 a 1 2 2
D (nﬂ,o,sc) & 2 2 a 1 2 2
F,(n,n,&c) L 1 0 c 2 1 2
X (r,0,0) 8 2 e 1 2 2
Z (0,m,0) 8 2 L a 1 2 2
Y (0,0,n1) 8 2 b 2 1 2 2
S (%,0,8) 8 2 0 ¢ 2 2 &
T (0;n,n) 8 2 Iy a 1 2 2
U (n,n,0) 8 2 0 c 2 1 2
R (m,m,n) 8 2 ' 0 c 2 2 4
ty, is degeneracy due to time reversal symmetry,

fé 18 degensracy due to space gymmetry. Total degeneracy 1is ts“fa'
Z°(%,E) 13 a character of k group for identity operation.
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Table=8 Symmetry properiy of the base functions for - et (0,0,0},
p ™
B4 Rg Ry Hg
21 1 1 1 1
25 1 -1 =1 1
- |
23 1 1 1 H

Table=-9 Symmetry of wave

function of bingry combingtion.

ﬁg(-8)~ﬁa(+&) By R, B? Rq opecles in C,

zgx %, 1 - 1 - B,
L% 4 1 1 -1 =1 A,
2§¥ 2y, 1 -l -l 1 By
o Zq 1 wl =1 1 B,
ng I 1 1 -1 ~1 &,
P .

Zy X Iy 1 -l 1 -1 B,
%

ij EJ 1 i 1 1 b,
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IR ABSORPTION(%)

Id0 200 300 400 A 500 600
WAVE NUMBER (cm)

Fig. 9 Comparison of infrared spectrum (at 77°K) with

the frequency distribution of binary combination

tones.
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Fig. 10 Frequency distribution of iunfrared lnactive

binary combination tones.
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Table=Al épacé grbup operations of polyethylene crystal (P

nam

)

og(bc)
ag(ac)

ag(ab)

T
QO

L S S AN

OO

0 d
1 0
0 1
0 d
-1 0
0 =1
0 O]
1 0
0 -1
0 O]
-1 0
0 1
0 O]
-1 0
0 -1
0 O
1 0
0 1]
0 O
-1 0
0 1]
0 0
1 O
0 -1

4

T,

(0,0,0)
(2,%,%)
(%,%,0)
(o,o,#)
(0,0,0)
(%,%,8)
(%,%,0)

(0,0,%)

ti_is nonprimitive translation vector which is represented

as the coefflcilent vector for primitive translation vector

(ao,bo,co).
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Table-~A3 Irreduclble representation of

the k group (0,0,0)

Ry B, By B By By By By
I, (Ag) 1 1 1 1 1 1 1 1
I, (Au) 1 1 1 1 -l -1 -1 -1
1"3 (BBg) 1 -1 -1 1 1 -1 -1 1
I, (Biu) 1 -1 -1 1 -1 1 1 ~1
I (Blg) 1 1 | -1 -l 1 1 -1 -1
T (Bm) 1 1 -1 -1 -1 -1 1 1
L (Bzg) 1 -1 1 -1 1 -1 1 -1
I"g (WBZH) 1 51 1 -1 =1 1 -1 1 _

Table-Al Hatrix 21lcments and characters of k group (O~<8€mﬁ)

(6 0,001 V%, 0006 0,718 J7,%) W H,  Hy,  lg
T ] ‘£
s Al 01 E1 1 W, Wy 1 Q;
22 A, C. E2 1 -t ¥ 1 62
X A, C E : - -
3 3 3 3 1 W, W 1 5 3
2y, A Ch By, 1 -y u ~1 8,

q = exp(lba/z)

a2

By =[(R#Bg)+enp(~15 _/2) (R *R, ) ]exp(1p8)
8, ::E(Bl-:-ﬂg)—exp(-.‘LSa/Z)(32'*'37)]'33(‘9(15"5)
;53 = z(ﬁl-»-ﬁe)Jrexp(ulBa/Z)(32”57)}9213( 1p8)
By =[(Ry~Bg)-2xp(~15_/2)(R,R,)]exp(sp8)

Table=A5 Matrix elements and characters of

k group (0<:85<n)

10,6,,0) (‘n;'bb,()) Ry Rj Re Rg
A G, 1 2 Wy 1 él o
A, G, 1 Wy Wy oo o=l 45
A3. G3 1 Wy o=y -1 éB
Ay Gy, 1 Sl 1 8,
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Table-AS5 continued
g, = (R +Rg)+exp(-18 /2)} (R +R¢ ) lexp(1p8)
gy = galaﬁa)-eXp(-iﬁb/z)(Bj-ﬁéi}exp(1pg)
A, =Igﬂl-na)+exp(~18b/2)(33mR6[}¢xp(15&)

ﬁu = ER1+RS)~exp(«18b/2)(R3+Hé)}exp(;p&)

Table-A6 Mgtrix elements and charscters of k group (Oz:bezﬂ)

(O?Bbgn) (2,8, ,n) R H3 R. Bg
(Hl)ll Q044 1 M, 0 0
(Hy) oy ()5, 0 0 -y 1
(B )5 Q)45 0 a) Wy 1

(H )5, (Qy )55 1 - 0 0
A(H) ta,) 2 0 0 0

51e:fgﬁinéé)+exp(-1éb/2)(B3436{}exp(Lg%)

fp = (R 4Bg) ~expl =18, /2) (Ry4R, Jpexp(108)

Table-A7 Matrix elements end characters of & group (0=} ==)

6,575, i 0 By Bg
A, 1 v, W, 1 8,
A, 1 ~u, u, -1 g,
By 1 w, o o=wg =l é3
By, 1 W, -, i ¢4
W= exp(180/2)
#= 91:( R,+R, J+expl18 /2)( Ry +Rg¢ g-exp( 1p8)

¢ gnlmﬁ7)+exp@d§c/2)(Rumﬁéiiexp(13&)
= g31+ﬁ7>“exP@483/2)(Rh+36{}exp(i@&)
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Table-A8 Matrix elements and characters of % group (0< 80<n)

(%,0,0_) | ﬁ; R, Fg R,
(D)4 1 W, 0 0
(D), 0 0 W, 1
(Dy)45 0 0 w, =1
(D1)22 1 -V, 0 0
X(D,) 2 0 0 0

g, = [(R +B,)+exp(-18_/2) (Rg+R,, J}exp(108)
52 = [(31-37)+exp( -180(2)(Hénﬁu Fexp( 108)

Table-A9 Matrix elements and characters of & group (O<SC<K)

(o,n,Sc) Ry Ry, Rg R,
(By)y, " 1 W, 0 0
(By)s, 0 0 ~W,, 1
(81)12 0 0 W, 1
(51)22 1 -, 0 0
A (3)) 2 0 0 0

B, = BR1+R7 )+exp( ~18_/2)( R, +R¢ ):E-exp( 1p8)
8, = [(R,+R,)-exp(-15_/2) (R +R¢ }exp(1p8)

Table-A10 Matrix elements and characters of k group (0<d <)

(n,n,Sc) R Hu R6 R

1 7
Fl 1 w, lw, 1 ’dl
F, 1 W, -iwc -1 8,
F3 1 W, W, -1 ﬁj
F4 1 ~W,  ~lwg 1 éj

6, =[(R-1R;)+exp(~18_/2) (R~ 1R )} exp( 108)
B, = [(R+1R, ) +exp(-18 /2) (R, * 1R¢ )] exp(1p8)
85 = [(R;+1R,)-exp(-18 _/2) (B, +1R¢ [}exp(1p8)
B, = [(31-137 )-exp(~18 /2 )(R),-1R, )}exp(1p8)
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Table-A1l Characters of k group (0-<3_,8 <mn)

(88,8b,0) R, Rg base function
1 1 g = (H1+H8)exp(1p5)
1 -1 g = (B, -RBglexp(1pd)

Table-A12  Characters of k group (0<3 ,8 <mn)

(6_,0,86 ) R R base function
a o 1 7 .
1 W g = lﬂl+exp(-188/2iﬂ7§exp(gg&)
1 - i) = ERlnexp(~18a/2)R7}exp(1p8}

Wy = exp(iSa/Z)

Table-A13 Characters of k group (O-<8b,8c<:n)

(O,Sb,sc) R, Ry base function
1 Yo ¢=£R1+exp(-l(8b+8c)/Z)Ré}exp(1581
1 e p=[R,~exp(~1(8 +5_)/2)R Jexp(1ps)
W = exp[1(8b+80)/2]

Table~-A1lk Matrix elements and characters of k& group at point X.

(r,0,0) R, R, R, B, 5 7 Rg
(X7, 1 0 1 0 0 1 0 1
(x1)21 0 1 0 1 1 0 1 0
(X1)12 0 -1 0 1 1 0 -1 0
()(1)22 1 0 -1 0 0 -1 0 1
X(X,) 2 0 0 0 0 0 0 2
‘ (X2)11 1 0 1 0 0 -1 0 -1
(xz)21 0 1 0 1 ~1 0 -1 0
(xz)12 0 -1 0 1 -1 0 1 0
(Xz)zz 1 0 -1 0 0 1 0 -1
A(X,) 2 0 0 0 0 0 0 -2

éi(X1)=(R1+R3+Bé+R8)-exp(ip&) él(X2)=(Rl+BB-RB-86)'exp(ipﬁ)

52(X1)=(32+Ru+35+ﬁ7)'exp(lﬂﬁ) 62(X2)=(R2+RQAB?—RS)-exp(lp&)
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Table-A15 Matrlx elements and characters of k group at point Z.

(o,%,0) B, R, 33 By, 35 R¢ R, - Rg
(2,)4;, 1 1 0 0 0 0 1 1
(Z1)21 0 0 1 1 % 1 0 0
(21)12 0 0 -1 1 1 -1 0 0
(2,),, 1 =1 0 0 0 0 -1 1
X(z,) 2 0 -0 0 0 0 0 2
(2,); 1 1 0 0 0 0 =1 -1
(22)21 0 0 1 1 -1 -1 0 0
(22)12 0 0 -1 1 -1 1 0 0
(2,),, 1 -1 0 0 0 0 1 -1
x(z,) 2 0 0 0 0 0 0 -2

él(zl)s(ﬂl+ne+nz+n7)exp(195)
52(21)=(83+R6+Bu+ﬁs)exp(198)
é1(22)=(ﬁl—RS+H2-B7}exp(195)
é2(22)=(B3-R6+Hu-BS)exp(1@5)

Table-A16 Matrix elemsnts and characters of & group at point Y.

(0,0,n) R, R, 33 R, Ry Rg B Rg

(Il)11 1 1 0 0 0 0 1 1

(Y1)21 0 0 1 1 1 1 0

(¥,),, © 0 1 -1 1 -1 0 0

(Y,),, 1 -1 0 0 0 0 1 -1 )
A(Y,) 2 0 0 0 0 0 2 0 )
(12)11 1 1 0 0 0 0 -1 -1

‘(Y2)21 0 0 1 1 -1 -1 0 0

(Y,),, 0 0 1 -1 -1 1 0

(Y?)zz 1 -1 0 0 0 0 -1 1

.Z(Yg) 2 0 0 0 0 0 -2 0

B, (Y, )=(R, +R,+R,+Rg)exp(1p3)
dz(Y1)=(RB+Bu+H5+R6)exp(19&)

#,(¥,)=(R,+R,-R,~Rg yexp(1p8)
B,(¥,)=(Ry#R ~R ~R¢ lexp(1pB)
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Table-A17 Matrix elements and characters of k group at polint U,

(n,n,0) R, R, 33 Ry, 35 Rg R, Rq
U, 1 i i 1 1 1 i i
U, 1 -) ~3 1 1 S R | 1
U3 1 ! 1 ) -1 =1 -1 -l
U, 1 wi -1 1 -1 i 1 -1
U5 1 1 ~1 -1 1 1 -1 -1
Ug 1 -l i -1 1 -l 1 -1
U7 1 1 -1 =1 R | 1 1
Ug 1 -4 ! -1 -1 1 i 1

él = (Bl-iﬁzeligéru REMiiéwlﬁ +R }exp(lpﬁ)

ﬁz = (Rl+132+ R3+Bh+Psf1Bf 12 B )enp(xpﬁ)

553 = (31—132»133-4-3“_"354-1'364&1}1?-—& rexp(iph)

| gy, = (Bl+1R2+1B3+RuoR5mi§6-iB7-RB)exp(195)
¢5 = 531-1RZ+133nRuTBS~136+2R grexp(iph)
— AT AR - RN - -

éé = (R +10, 113 R, R5*’36 1R,-R grexp{igd)

57 = (R ~1B?+183‘Bu R, +1P6»187+1 }expiipd)

Bg = (R ﬁ1R2~183nh“~35~136+iﬁ7FHB)eﬂp(Lﬁ@)

Table~Ail Matrl§wglemcni¢ and Cha?&ptg“‘ of It group at polunt T,

(Tl)11 1 1 0 0 1 1 0 o}
(T1)21 0 0 1 1 0 0 -l -1
(T ) 0 ) - -1 0 4] -1 -1
(?1 23 1 i 0 0 | -1 0 0 _
EJI‘) 2 2 0 0 0 0 0 0
(T2)11 1 -1 0 0 1 -1 0 0
(T 0 0 ~l 1 0 0 1 -1
(Tz)12 0 0 1 i 0 0 1 -1
(T ) 1 -1 0 0 -1 1 0 0
?(1'3 P -2 ) 0 0 0 0 0

g,(Ty) = (Ry+R,+R +R¢ )exp(1p3)

6,(T)) = (33+Runﬁ7»38)exp(ipﬁ)

= (R -32+35-H6}ewp(1p6)
85(Tp) = (~BytRy+R,-Rg)exp(1pd)
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Table~A19 HMatrix elements sund characters cof k& group at point S,
P I 1
(n,0,%) 31 B, Ry R, 35 Rg Ro, R
(51)11 1 1 0 ¢ 0 0 1 1
(s,), 0 0 1 1 1 1 0 0
1721
(s )1@ 0 0 -1 -1 1 1 0 0
(§1)22 1 1 0 0 0 0 -1 -1
AAs,) 2 21 ) 0 0 0 0 0
(82311 1 ) ) 5 D 0 -1 A
(S,.),. 0 0 ~i 1 1 -1 0 0
£ i
(S,)45 0 -0 i w1 i -1 0 )
mm(szlag“m, 1 -1 0 0 0 0 1 -1
. SZ) 2 ~21 4] ) 0 ¢ 0 0
$,(8,) = IR 4Rp-1(R+R, )hexp(1p8)
4 1 . s R o
ﬁz(Sl) = ERP+85~1(H wﬁé)feﬂp(‘pa)
8.(8,) = [B Byt LR 4B, Jhexp 103)
5'2‘:82) = ﬁjﬁl}»‘RE*l\BB-{ué)} e,‘-{p(‘n‘)
Table~A20 HMalrlx elicuents snd characters of & group at point R,
(myn,m) }.?_.l R_,,Z H‘j, Ri; '3,; Hx‘S R7 88 ‘
(R0 1 -1 0 0 0 0 -1
(‘21)nl 0 ) 1 1 1 -1 C 0
(Rl)}z e 0 i 1 1 i 0 0
(R, {2 i 1 0 0 0 0 1 1
Z{ R 2 G 0 0 0 ) Z1 0
(BZ)11 1 1 0 C 0 0 ~1 ~1
(B,),, O 0 -1 -3 1 1 ) 0
582)12 0 0 ~1 1 1 -l 0 0
‘32}22 1 -1 0 0 0 -1 1
AR, 2 0 0 0 0 0 -21 0
1, (8,) =!I R, e . P
pl;hl) R +1R,1R.. Rglexp{1gh)
BolRy) =(R 1R ~1R4-R) Jexp(1p8)
3,{H,) =(R 4~ 1R, +1R,~Rg }exp(1p8)
éZ(RZ) -—\RS-iHéMB ~By, }exp(108)

134



Table 421
The compatibiilty reletions of the dispersion curves of
the lattice vibrations

ZFERE W LD

£ -

(0,0,0)  (8.,0,0)  (n,0,0)  (5,8,,0)  (n,%,0)

8

Ay e U
g N«-x? 2 1 L, - S (z . ««,j::::% 1

A :L M;""m p e + e SO
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% /.é & 1*’%,
\Eé /’IJ \‘% e ¢
4 g a0 r Y
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(09090) (0981 .30) (O,K,EO) (69,1:?{)) (_7-';31;'?.3)

2 emat Semr
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CHAPTER V

ELASTIC CONSTANTS OF POLYETHYLENE CRYSTAL

V-1 INTRODUCTION

Elastliclty 1s a macroscoplic feature of dynamical
properties of crystal, which also originates 1n interatomic
potential function. The observatlon of elasntlc constants
provides good informations about the atomlc force constants.
Born and Huang have accomplished the basic feormulation

)

about elastlc property of cr-ystal.1 The theory has been
successfully applied to crystals of high symmetry such as
diatomic lonic crystals.

In molecular crystals, elastic constants depends
primarily upon intermolecular potential function. The
expérimental Information gbou® the Iintermolecular poténtlal

may be obtainable from the measurements of elastlcity as well
as optlcal spectrum, specific heat and neutron scattering

" cross sectlon. On studying the force flileld of the crystal,
it is advantageous to refer to all the experimental results.
Shiro has improved the Bornts formulatlon and incorporated
the elastic constants into the least square analysis of

force constants on tréating normal coordlnate problem of
inorganic crystals.Z) The method 18 characterized with the
appllication of the direct product representation to external

deformation which would enable us to use the polint group

symmetry of crystal easlly. Although the experimental values
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of elastic constants are not obtained yet on polyethylene

crystal, it is significant to calculate them from the present
potential function, which reproduces other kinds of observed

values in good fit. . 7

Accordingly, in this chapter, the elastic constants are
treated generally with ‘the use of the Cartesian symmetry |
coordinates derived in (2 1) and then cij of polyethylene
crystal is represented explicltly in terms of the interchain
force constants. Also the relation of elastic constants with
the frequency of acoustic phonons is derived. The elastlc
constants calculated from proper diSpersioh curves of crystal
vibrations are in good agresnent with those from the
~strailghtford calculation.
V-2‘ THEORY

dWhen crystal lattice is subjected to arbitrary external
force, thefunit cells are assumed to take homogeneous
~deformation. Supposing r(l,k) and Ar(1l,k) denote the equlli-
brium position and the displacement from it of the k-th atom
_in.the 1-th unit cell, respectively, then the external defor-

mation Ar(1,k) is represented with tensor {uaB} asl)

Ae(l,k) =[Ax(1,k)) =fue, ueo v, fx(1,k) | (5.1)
Ay(1,k) Uyy Upy Uyy y(1,k)
Az(1,k) Uy Upy Uy z(1,k)

which may be rewritten in the form of direct produth) as

Ar(l k) = W(1,k)'U ‘ (5.2)

" where matrix W(1,k) and column vector U are defined as
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W(l,k)=]x{1k) y(1k) z(1k) O 0 | 0 0 0 0

0 0 0 x(1k) y(1ik) z(1kx) o 0 0
0 0 0 0 0 0 =x(1k) y(1ikx) z(1k)
(5.3)

~

U= (uxx Ugy Yxz Yyx Yyy Yz Yzx Yoy uzz) (5.4)
In the case of mono-atomic unit cell, this deformation is all
which appears. However, if there are several atoms contalned
per unlt cell, the external deformation 1s not the most stabls
deformation and 1t 1s assumed that, after the external defor-
matlon, the constltuent atoms further change thelr relative
position in the unit cell so as to minimize the energy incre-
ment due to the extermal deformation. Thué, p(k), the atomic
displacement assoclated with the internal deformation, is
represented as a vector measured from the atomlc position
after the external deformation. Therefore, g{(k) depends only
upon the type of atoms bul. does mnot depend upon the cell number.
Then the ensemble of p(k) (k=1,2,-++--,n) is common to all unit
cells and becomes equlval:nt to the atomic displacement of
crystal vibrations for 8=0. Total Cartesian displacement
coordinate vector of (1,k) atom is sum of displacement dus to
two types of deformations, that is,

(1,k) = p(k) + Aril,k)
Since the external defornation may be considered as super-
position of limiting modzs of acoustlic phounons to 8=0, the
displacement X(1,k) alsc corresponds to the atomic displacement
of 8=0. Accordingly, the Cartesian displacement vector 1is
- transformed into iunternal dlsplacement coordinate vector with

3)

the use of B matrix corresponding to 8=0.
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B =2, , B(L,x)X(1,k) = & | B(1,klp(k) + DU  (5.5)

1, l,k

where

D = B(1,kW(1,k) : ‘ (5.6)

Zl,k
and R is internal displacement coordinate vector for &=0.
Since the external deformation parameter includes the rotation

of crystal as a whole, pure elastic deformation (O) is

geparated from the rotation &) by
Ir' =Z U (5.7)
LiU .

-

where & 18 an orthogonal matrix and the inverse transformation

provides U in terms of ¢ and

U = Z"l[a} (5.8)
w
The indivldual elements are represented as follows;
u,. = 0y Uy = (06+w%)/2 u,, = (05-u%)/2
Uy, = 0y U = (cé-w%)/Z U, = (0u+u%)/2
u,, = O u,, = (os%u&)/z U, = (o)-wy )/2

The second term of (5.5) denotes the intermal dilsplacement

Induced by the external deformatlons and is written as

1

DU =02 " {o = Do + D (5.9)

w
Since there 1s no internsl displacement due to the rotation
of the crystsal, D, becomes null matrix.

Supposing w 1s the energy increment per unit volume

on the elastic deformation, then

w = (1/2v)(B p + 5;"53')~E'-(B p + D, )

(1/2vi{p &) Br.B EFRDO P (5.10)

DGFRB DOFRDG o
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bf%here FB 1la & potentlal energy matrix for 8=0 and vris the
volume of the unit cell. Since both of the intermal and
external deformations satisfy the symmetry at 3=0, they are
classifled in accordance with the point group of the space
group. Wlth the use of Cartesian symmetry coordinate vector
defined by (2.1), as

8(8) = T(k,0)p(k)

then (5.10) 1is transformed into

= (1/2v){8(0) oMH__H_||s .
w = ){5(0) o) oo Hoa (0) (5.11)
Hop H  |lo
where »
o, = T(k,o)B(k)FRB(k)T(k,o)

which is equivalent to FS(O) of Eq(1.3) and
. - rY ¥
5 = 2(k,0)B(k)FD -
Supposing Mk 1s the mass of the k-th atom, the matrix elements
of pr are easlly obtalned from the dynamical matrix Dg(d)
of (2.8) as
.
- z
(H = (M M, ,)*Dg(0 (5.12)

pp)kk' )kk'

As described in Chapter I, DS(O) has already oeen completely
factorized iunto symmetry specles of D2h' On the other hand,
from the definltion of oy provided in Chapter I, the symmetry

of Gl is 1somorphous to the symmetry of the product of two

translations of the crystal.

(o) = T(x)xT(x) I(oy) = T(y)xI(z)
I{o,) = Tly)=T(y) ' T(US) = T(z)xT(x)
Tloy) = T(z)xT(z) T{og) = T(x)xI(y)

Ifci), T(x), T(y), and T(z) are characters of group operations
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for'&i, Xy ¥, and z, respectively. In D, system I(x), T(y)
and I(z) are all one dimensionsl and therefore I(017 is
irreducible. In other words oy is symmetry coordinate as
it is. In polyethylene crystal, g,y 0, and 04 belong to Ag
specles and o, 05 and 96 belong to Blg’ B2g and B3g’

respectively. HpG which results from the correlation of the
internal and external deformation, has finite value only
when S and o belong to the same symmetry species. Accordingly
(5.12) 1s represented ag sum of small matrices which belong to
each -irreducible representation, as |
w = (1/2v)2u (5*0) ¥ ng Hgb sMo|  (5.13)
s, k| o

When a crystal has center of inversion, elastic deformation is
always symmetrilc to 1nversibn whereas the translatlion of the
crystal as a whole 1ls always antisymmetric to inversicn.
Therefore, 1n such crystals, HE? of gerade specles has
unilque inverse matrix. V

On‘the other hand, the external force per unit volume,
fk’ which caused the external deformation Oy 18 now balanced
with the restoring force -(8w/aok), and atoms have already

beén dlsplaced B0 as to have no internal stress inside the

unit cell, that 1is, = (aw/aak), and (2w/asj)=o. If the

fk
external force per unit volume 1s represented as f, the six

component column vector, then the condition of equilibration

t H H o



In polyethylene crystal, there is center of inversion and

wlth regard to the symmetry species concerned wlth elastic

constants, the coefficient matrix of (5.14) has unique

inverse matrix. The inverse transformation of (5.14) ylelds

P -1 1
5(0)] = v pr HpU 0 (5.15)

o Ho, Bl |f

The submatrix of (5.15) gives rise to O in terms of ) a8

o, = Zk Sjkrk (Sszskj) (5.16)

where Sjk is elastic compliance constant. In orthorhombic
system, all terms except for 8149 Bops 533, I 855, Bggo

B8y09 523, and 331 are zero. Young's modull along o dlrection
(ny x,y,2) 1s a ratio of the extermal force to the elastlc
deformation which 1s represented as
— _ £
B, = (£ /o,) = (1/8,,) (5.17)

The deformation, realized iu the measurement of Young's

modull, is different from 0y Oy and 03 on the allowance of

shortening 1n the directlion perpendliculer to the external
tension., Polsson's ratio is a ratio of deformation, whilch
1s derived as
(8a/a,):(80/by) i (Be/cg) = (8, f +8,, 48,40 )
| £ 4+8,,f +8,,T ) (5.18)

32°b 33 G
fb and fc

(85 fotspnfyteosly )iy fy
where ag» by and ¢, are lattice constants and fa’
are the a, b, and ¢ axls component of the external tensiocn,
respectively.

The elastic étiffness constant matrix 1is given wlth the

inverse transformation of Eq(5.16) as
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The elements, Cyyr ave directly derived from Eq(5.14) as
nooo_ (g oMoyt tlge
Cy (HD HOppr Hpc)ij | - (5.20)
V-3 RESULTS AND DISCUSSIONS
From the present potential, Young's modull along the a,
b and ¢ axes are calculated as

10 dyne/cmz).

B, = 6.9, E, =29.6, E_ = 316 (x10
When polyethylene molecule 1s assumed to be rigid, Ea and
E, may be given by Eq(1.26) and thus calculated values are
E_=7.0 and E_=9.6 which agree with the values obtained from
above, Thereby the Young's modull perpendicular to the chain
axls, in fact, depends upon the 1nterchain potentlal.

L)

Sakurada et al. have observed the Young's modull of
polyethylene cfystal with the X-ray diffraction method. The
observed values at room temperature are Ea=3.1, Eb=3.8 and
EC=235. On the other hand, recently the measurement has
been reexamined on more crystallline polyethylene and the

5)

observed value 1is revised to Ea=5'0’ which became closer
to the calculated value. Because of wéakness of diffractlon
spot, Eb could not be observed. Since the present potentilal
function corresponds to that at low temperature, the calcu-
lated Young's modull may be compared with the observed value
of low temperature., 1t 1s reasonable that the present
calculated values are slightly larger than the observed

6)

values of room temperature; Mialler has measured the linesar
compressibllity of CZBHHS’ from which Young's modull are

derived as Ea=10 and Eb=9.

The elastic stiffness constants are calculated from

the present potential as
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011=8.38 =11.6 033=317 =4,69

013=1.h8

Ol C55=3445

]

Co2
c,p=h.10 =2.81

10 2
23 (x10"“dyne/cm”™)

066=4.69

The symmetry of c and the intrachaln potential terms

13

‘assoclated with 1t are shown in Tgble 1. ¢ is particularly

33

large in polyethylene crystal. It results from the fact that

the deformation corresponding to 03 18 accompanlied with

deformatlion of molecule itseif. Since the force constants

of C-C stretching is so large that C-C-C valence angle

undertakes the deformation. Then 033 depends primarily upon

the force constant of skeletal bendlng potential. While c

11

and c > depend mailnly upon the luter-molecular potentiagl.

2
Elastic deformations are partly reallzed in the acoustlc

special direction. The dynamical

phonons travelling along

matrix for three acoustic branches was derived as (Chapter 1I)

‘C [¢] ]

7 |-1162+-88524—2357 symmetric

alg © 8 p <P <0

%0 0 0

(c12%°66'80%  %66,2, %2252 “ibi;2
Ty 2% 2" 2% (5.21)
5Py 80 ®, o

. (013+055)8880 (023+04u)8b60 35582+SE&82+31282
“e. 27a 27°b 27¢

¢ 8% 5% 8 Po %

where 841 bO and QO are lattlce constants and Ta’ Tb and TC

mean that the atomic displacement 1s parallel to the a, b,

and ¢ axes, respectively.

The eigenvalue of above dynamical

matrix 1is pw2 where p 1s denslty and w 1is angular frequency.

As shown in Fig. 1, the atomlc dlisplacement in the mode

of Ta(Sa,0,0) 1s equivalent to o, of the extermal deformatlon,
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2 .2, 2
and the eigenvalue of Ta(Ba,0,0) is given by pw :(Clloa/ao)'

!b’
and its elgenvalue 1s derived from (5.21) as pugz(c228§/bg).

Tb(O 5. ,0) 1s the longliltudinal vibration along the b axis

The dispersion curves of Ta(Sa,0,0) and T, (0,5,,0) are Z,

and /M of acoustic branches in Fig. 1 and Fig.2 of Chapter II,

respectively. In Fig. 2, some of transverse acoustic modes

o

are drawn schématically. Ta(Q,Sb,O) indicates that phonon
travells along the b axls and the atomlc displacement 1s
parallel to the g axis.' The elgenvalue 18 derived as
qu=(0668§/bg) from (5.21). Tb(Sa,0,0) is transverse mode in
which phonon travells along the g axls and the atomlc dils-

placement 1s parallel to the b axis. The disperslon curve
corresponds to 22 of Fig. 1 of preceding chapter and the
elgenvalue is glven by qu=(0668§/ag). Since both elgen-

values are commonly assoclated with the elastic constant,

Ce6 1 the simiiarity of the modes are expected. In Fig. 2,

the atomic displacement in the shear deformgtion of O, was

also shown. Ta(O,Sb,O) and Tb(Sa,0,0) seem to compose the
one slde of the elastlc deformation. Therefore, the depen- .
dence of the elgenvalues upon Cg6 is reasonable., However,
homogeneoﬁs deformation 1is not a simple superposition of
aooustic branches since Ta(O,Bb,O) and Tb(Sa,0,0) cannot

be realized simultaneously. The mixing of ‘I‘a and Tb is
possible only when phonon travells to the intermediate
direction of the a and b axes. In the case of 5,=0 and

(Ba/ao)=(8b/b0)=k0, the elgenvalues of T and T, modes are
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given by

ou’ = {0114’022*2"66) * R011"022)2"1‘("124"’66)2]%}}‘3/2
which shows that the elgenvalues depend upon Cyps 011 and
Coop besldes Cgg e Therefore, the atomlc displacement 1s not

exactly idemtlcal wilth T+ Accordingly, it may be stated
that the elgeuvalues of transverse modes along the a, b,
and c¢ axes depend upon shear modulus such as Culys c55 and
Ceer whereas the elastic deformatlon cannot be exactly
realized by acoustic vibrations.

On the other hand, for smail value of phase difference,
the frequency of acoustlc vibrations 1s nearly proportional
to phase difference. If arbitrary dispersion curves were

observed 1n the experiment of inelastic coherent scattering

of neutrons, the experlmental values of the elastlc constants

would be obtained. Accordingly the coeffilcient of v-la]

line was derived for individual case and is summarized in

Table 2. Since the theoretlical dispersion curves are avallablc
the elastic counstants were calculated from the inclination of
those curves shown in the preceding chapter. Thus obtalned

values are as follows;

011=8.4 Cop™ 11.2 033

066'—'—'“.7 012:,3-2 023= ? 013=302 (’(10

=317 cuu:h.7 055=3.5
1Odyne/cm‘
The dlagonal terms agree closely with those obtalned directly

from the potential functlon. Although 012, 023 and 013 are

to be calculated from the dispersion curves along (8,8,0),

(0,5;8) and (8,0,8), respectively, these off-dlagonal terms

actually cannot be determined precisely trom disperslon curves.
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Because these terms influence on the eigenvalues of acoustic

phonons 1in second order together with shear modulus.

The partial derivative of elastic constants with
7)

respect to force constants are derived 1n general form,
which may be of great use especlally for inorganic crystals.

Begarding to the polyethylene crystal, the intrachain

potential is falrly reliable and contributes little to the

elastic constants except Cqq. Accordingly the elastic

constants were derived as function of the interchain force

constants with the use of second order perturbatibn method

described in chapter 1I, and are shown in Table 3. Thus
calculated elastlc constants are as follows;
=11.1

c11=8.uu c =314 cuu=U.73 055=3-53

22 33
10 2
066~u.80 012—3.88 013—2.0u c23—2.82 (x10" "dyne/cm”)

If the experimental values of the elastic constants were

avallable, the force constants of interchaln potential would

become more definite.

The measurement of the velocity of sound wave also
provides the experimentsl values of the elastlic constants.

The.velocity of longltudinal acoustic phonon which travells
along (88,0,0) is equal to (cll/p)% while the velocity of
transverse acoustlic phonon along the a axlis are gilven by
(066/p)% and (055/p)%. Since the experiments about the

sound veloclty or coherent scattering of neutron requlres

falrly large single crystal, elastlc counstants have not been

obtalned yet on polyethylene crystal. However, 1t 1is very
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deslirable to obtalu the exact experimental value of elastic

constants for the study of inter-molecular potentisl.

SUMMARY

Elastic constants are derived 1n the proper form to
molecular crystals with the Carteslan symmetry coordinates,

The relatlon of frequency of acoustic phonons with elastic
counstants were derived and the elastic constants were

calculated from the dispersion curves of the preceding

chapter. The elastic congtants were derived as function

of the interchain force constants. The calculated values
from these three methods are in good agreement with each

other.
The Young's modull along the a, b and c axes were also

calculated, in reasonable agreement with the observed values.
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Tgble-1 Symmetry of the elastic constants and the
associated intrachain potential terms.

symmetry clj Nc Np R
Ag C113C21C3 3 6 CH,sym.str. CH,sclssor.
012'023’613 C-Cstr. CHZantlsym.str.
CHzrock. C-C~C bend.
B1g Ch 1 3 Cszag. CHztwlst. C-Cgtr,
BZg 055 1 3 Cszag. CHztwist. C-Cstr.
ng Cgg 1 6 Cﬁzsym.str. Cstcissor.

C-Cstr, CH,antisym.atr.”

CHzrock. *  CaC-C bend.

n
No is the dimension of Haa'

N, 18 the dimension of ng.
R i1s the internal coordinate. (sym.str.=symmetric stretching,
antsym.str.=antlsymmetric stretching, str.=stretching,
scissor.=s8clissoring, rock.=rocking, twlst.=twisting,

wag.=waggling, and bend.=bending)

The coordinates marked with * do not contribute to Dc‘
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Table-2 The inclination of v-8 curve at the 1limit of [8}0

direction symmetry mode » inclination
2y

(88,0,0) Zl T, (LA) (1/2nc)(c1l/pao)
22 ’I‘b (TA) (1/2nc)(066/pa§)%
5, T (T8) (1/21¢) (o 55/pa)?
(o,Sb,o) A, ' Tb (LA) (1/2nc)(022/pb§)%
2 T, (TA) (1/2nc)(cm,/pbcz))é
Ay, Ta (TA) (1/2nc)(c66/pbg)%
(0,0,80) A T, (LA) (1/2nc)(c33/pcg)é
A, T, (TA) (1/2nc)(c55/pcg)%
Ay, T, (TA) (1/2nc)(944/pcg)%

(LA) means longitudinal acoustic mode and (TA) means

transverse acoustlic mode.
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Table-3 Explicit representation of the elastic constants wlth
interchain force constants.

2 _13 o 2— 2
pNOaO-10 (O.287P1+2.O9OP2+1.527P3-155.6P2 58.9P3

-u.67P1P2 3+191.5P2P3)

2 =13 » . X 2_ 2
22 PNbGr10777(2.579P +0.688P,+0.255P4+5.212P) ~0.46P “-7h. 4P,

€11

+2.88P1P

2 2_i4 n ;
~14.3P3%-0.35P;"~11.7P,P,+5.12P P,+0.80P P,

. . +65.3P2P3 |
PNyc - 10 (0.829P1+1.024P2+O.027P3+0;681Pu+7.745)

+10.3P2Pu-h.5P3Pu)

33

4y
2,.,9-13 b In
55 ANGag-107"(0.698P, +0.787P, +0.008P, )

2 -13 v 2 2
g6 PNobo 107 ~(0.287P +2.090P,+1.527P +0.067P, ~59.2P, “~7.23P,

2 . ~13 -
PNyCE-10 (2.579P1+2.908P2+6.832Ph)

2
-23.8P +l+1.2+P1P2+75.0P1P3+1.ouPIPu-zé.z‘PQP3

3
-O.66P3Pu-0.36P2P4)

¢ g pNOaObO-1o'13(1.722P1+2.397P2+1.249P3)

c -10'13(z.uu7pl+3.6?3pz+o.2ozp3)

C13*Cs55 080%0
b.c -10'13(2.80bP1+2.352P?+O.082P3+5.439Pu)

Co3tCyy  PNyP4C,

eN

N0 1s Avogadro's number,
clj 18 represented 1in (dyne/cmzl If the force oconstants are

given in (mdyne/R), lattice comstants in (R) and p in (g/cmj).
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Fig. 2 The atomic displacement in two transverse gcoustic
vibrations and shear deformation og. Ta(0,6b,0) and'
Tb(Sa,0,0) correspond to /l, and 22 of crystal

vibrations, respectively.
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CHAPTER VI

A REFINED METHOD FOR TREATING ONE- AND MULTI=-

PHONON NEUTRON-SCATTERING CROSS SECTIONS

VIi-1 INTRODUCTION

Recent development of neutron scattering has made it
possible to measure the_inelasfic scattefing cross section
and to determine the dispersion curves of crystal vibrations

)

experlmentally.1 Energy analysis of incoherently scattered
neutrons from hydrogeneous compounds has also been current
subject because of no Belectlon rule for neutron specroscopy.
The baslc formulae about the scattering cross sectlon of

2-14)

neutrons nave already been derived and up to date, the

observed results have been commonly explained on the basis of
the theory. However, the object of that theory are monoatomic
crystal lattices such as metal crystal, and the observed
results from molecular crystals have not been always analysed
sufficiently. Although the use of time depeudent correlation
functionS) provides the stralghtforward representation of the
scattering cross sectlion, the concept of correlation function
' regarding to atomic displacement, does not necessarlly lead
us to concrete 1lmage of 1ts physical meanlng.

On the other hand, the scauning reglon of far infrared
‘ sﬁectfometer has been extended to falrly long wavelength
and also laser Raman technlque has been developed considerably.

Now the optlcal spectrum is of great use to investligate the
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lattice vibrations, Also theoretical treatment of molecular
6)

vibrations has been advanced’ and the assignment of vib-

ratlional frequency obtained from the infrared and Raman spectrum

7)

became reliagble, Generally the resolutlion 1s higher

in infrared and Raman spectram than ln neutron spectrum.
However, the information from neutron spectroscopy is unique
on the observation of the frequency distribution. Therefore;
on the study of lattice vibratiomns, both experimental results
of optlcal and neutron spectram should be reasonably referred.
The scattering cross section of neutron by crystal vib-
rations may be derived on thé basis of statlonary state and
the formulation would be easler for spectroscoplsts to get
acquainted with neutron spectrum. Accordingly, in the
present study, the incoherent scattering cross section of
neutrons 1s derived in general form on the basils of transitlon
probability. The result is same with that from the time
dependent correlatiomn function, while the present derivation
would have analogy to that of optical spectrum and 1s relatively
convenient for numerical computation with electronlc computer,
especlally for multiphonon scattering cross section. The
present result hgs been successfully applied to the analysils

of the experimental results from polyethylene crystal, which

would be described 1in next chapter.

Vi-2 THE CONCEPT OF TRANSITION PROBABILITY

For arbitrary phase difference vector &, normal vibratious

are doubly degenerate and therefore, the atomlc displacement
assoclated with crystal vibratlons are represented wlth
degenerate pairs of two real normal coordinates as
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= (2/m )% PACAULACE Lb (3R] (6.1)

where uu 1s the atomic displacement vector of u~th atoms)

N is total number of unit cells in the crystal, Mu is the

mass of u~th gtom and L is the polarization vector of u~th

i
atom due to 1-th branchu§f lattice vibrations. Summatlions
‘runs over all branches on N/2 valuesg) of & in half of the
first Brillouln zone. Because of the symmetry, the irreduci-
ble vblume of the first Brillouin zone is reduced tc 1/8 of
the first Brillouin zone in the case of polyethylene crystal,
that 1is | '
(0,0,0)S(Ba,ﬁb,Sc)S(n,n,n)
With the use of the matrix elements of symmetry transformation
matrix, U(g,8) of Eq(2.1), the polarization vector 1s written as
Lii(ﬁ) = & ,c08(p 3) + Buis}n{puﬁ) (6.2)
L, (8) =-A ,sin(p 5) + B cos(p )
where pu'is the index vector of p-th atom and Aul and Bu‘1
are vectors of order three which isg subvector of eigenvector
of the dynamical matrix. Numerilcal value of éui and Eui are
calculated with Eq(2.13) from the corresponding elgenvector
of i-th braunch.
In nonmagnetic crystals, the interaction of ﬁeutron with
crystal lattlice has been represented as sum of Fermi's pseudo

10-11) For the scattering of low energy neutron

potential,
from nuclel, Bornts first approximation is practical. Then
the differentlgl cross section for incoherent scattering is
represented as

(dc/dn)lnc

2
=(lkzl/|k1|)(1/hnN)lZl s, 115 . (6:3)
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1 - 3*
MY -(‘{'2 ‘exp[i(kl-kz )uu]|+1> (6.4)
where k1 and k2 are wave vectors of lincident and scattered
neutrons, respectively, and su 1g the bound atom incoherent

cross sectioniz)

of u-th atom and IMSQZT is temperature
average of transitiom probabllity for the crystal vibrations
to change from +1 to +é together with the change of wave

vector of neutron from kl to k,, where f& and Té are the

initial and final wave functions of the crystal vibratlons,
respectively. Under the harmonlc approximation, the wave

functlon of the crystal vibrations 1s written as product of

wave functlon of each normal coordinate gs

t = By, ()8, (Rp)eereedy (Qy)eeee (6.5)

where, for simplicity, the suffix 1 distingulshes both of -
phase differences and branch number,(then i=1,2,3,«:+,3nN/2).
This independency of normal coordinate lets the matrix element of

Eq(6.4) be represented as product of the matrix element of

each normal coordlnate as
uwoo_
mb, ~T;r<¢vi(Qi)lexP( 1F 40, )] dvl(Q1)> (6.6)
where vy and vi are inltlal and final quantum number of 1i-th
normal coordinate and Fui'is a scalar product of the atomlc
dlsplacement vector of u-th atom due to Q1 by the momentum

transfer vector of neutron. Siunce each component of the

degenerate pair of 1-th normal coordinste 1s mutually linear

“independent , the wave function év (Qi) is againly expressed
1

as the composite of two wave functlons.

= b
8(Q,) = 4(QF)-#(q;)
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F'u1 of Eq(6.6) is derived fro¢ Eqe(6.1), (6.2) and (6.4) as

a’ : Ni '
-F7,. = (2/MuN)(k1 -kz)[Auicos(Fuﬁ) + Bulsin(puﬁ)]

nl
b _ A ~ (6.7)
Fa = (@M (ot ) -y einlp ) + B, ycos(p 5)
Supposing I is the matrix element of exp(iFQ) with

v+A,v

regard to two quantum states, v and v+A, where Q 1s arbitrary

,Anondegenerate normal coordinate, then Iv+A v 18 derived 1n
3

2)

general form as

' 2 )5\ THA/2, 2
,Iv+A,v - BV+A)!V]% < éfﬁ):(r+A?f§§ L) (6.8)

where t=1}" %F, ¥= “h and wis the angular frequency of Q.
- The proof o>f Eq(6.8) 1s given in Appendix II.
Then the thermal average of transition probability for

the normal coordinate is given by

Jv+7\ A vzo W Iv+A v IV+A v (6.9)

where w_ 1s the occupancy probability at initlial state, @ (Q),
whlch\results from Bose-statistics.

w, = (1 - x)ex" (6.10)
where |

x = exp(~hw/xT)
Then the transition probabl}ity of the crystal, ,M?JZT is

represented as product of'JV+A v of the constltuent normal
?

coordinates.
Vi-3 THE TRANSITION PROBABILITY FOR ELASTIC SCATTERING

In the elastic scattering, momentum of neutron.changes
Qiﬁhout.thé change of energy. Crystal accepts the momentum
transfer of (kl-kz)h whereas quantum number of crystal

vibratlons 1s not altered at all., The corresponding matrix
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element is

Iv,v = exp(t2/4)°[i + vt2/2 + v(v-i)tb/lé + ...J
| (6.11)

and the thermal average of the square of the I, § is
. *
approximately represented as

Jv,v = § (1‘X)XV'I:;V'IV,V = .exp[t2(1+x)/2(1-xa

v | (6.12)
Since the vibration is degenerate, the trgnsitlion probability

for 1-th pair of normal coordinate 1s written in the product
of two terms corrésponding to Q? and Q?, as
_ 2.2, '
Jv,v(Qi) = exp[(ta+tb)(1+x1)/2(1-x1ﬂ (6.13)
where t =1I'%Fa and t =1I"%Fb From (6.7) and the
a ni b nl® *
definition of t, the exponent of Eq(6.13) is transformed into
2 2 2 2
b, * by = (-z‘ﬁ/MuNw)[(KoAui) + (KB,,y) ] (6.14)
where KO = ky=ks is momentum transfer vector for elastlc
' gcattering. Then the transition probability of the crystal is
2
1 - - |
ol © = exp[-2w (k)] (6.15)
where 2wu(Ko) 18 Debye-Waller factor of p-th atom and
‘represented as
B 2 2
20, (Ky) = 3 (h/n Nw, ) [(Koll.ui) +(K B, )T (14x,)/(1-x,)
(6.16)

where summatlion runs over all branches for N/2 points in

half of the first Brillouln zone. Thus derived

Debye-Waller factor 1is used 1in terms of the temperature
factor for X-ray diffraction.

Accordingly when momentum transfer vector 1s parallel to
éhe-atomic displacement, the transition probabillty for no

energy transfer diminishes and the peak intensity of elastic
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scattering cross sectlon becomes low. In other words,
under such clrcumstances energy 1s also apt to be transferred
besldes momentum,
VI-4 THE TRANSITION PROBABILITY FOR INELASTIC SCATTERING

A) SINGLE PHONON PROCESS

On the collision of neutron with crystal, neuﬁron may

lose (down—scattering) or galn-(up-scattering) energy corres-
ponding to the separstion of vibratlonal energy levels,

or to the contrary, the crystal gets or emitts the corres-

pondlung energy. These inelgstic scatterings are convenleuntly
classified in accordance with the transferred phonon number.

When a-th component of j-th normal coordinate 1s exclted

from v to v+1 (down-scattering), the energy, Et and momentum,

~

Ktﬁ which neutron gives to crystal 1is

B 2yh2/2m = hw | (6.17)

t

K, = k, -k, (6.18)

where m is mass of neutron, w

il

2
( ,kll - lkgl

] 1s the angular frequency of Q?,

"The transition probability associated with this process is

represented as

o Y a
R I Jv+1,v(Qj);£§ T (@) (6.19)
a
From Eqs(6.8) and (6.9), the transition probabllity about Q?
is derived as
3 = § 8(1=x)x"* (v+1)-exp(tZ/2)
v+1,v"v§ v Pitg

X[t + vtB/lJ- + v(v-l)ts/b,B + ....]2
(6.20a)

2
=Jv’v .ta/Z(l—X) (6.20b)

Substitution of JV+1’V(Q?) from Eq(6.20b) into Eq(6.19) yields
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l”?é\ZT = [tZ/Z(l-XJHTJ_JV’V(Qi) | (6.21)

For the b-th component of J-th normal coordinate, the same

amount of energy and momentum 1is transferred. Adcordingly
the transition probability of j-th degenerate pair of vib-
rations becomes sum of the coustituent terms, which 1s
derived as

e, |7 = o [n 2B, )2 Jexn 2 (6, V(1)

(6.22)

where zwu(Kt) is Debye-Waller factor for p~th atom and
represented as

20, (K, ) = 3 (h/MuNwi)[(KtAul)2+(KtBui)2](1+x1)/(1-zcé) |
.23

In the case of up-scattering of the same energy transfer, the

corresponding term Jv_1 v is derived as
4

v -1, V(Q = xj v+l, V(Q
and the transition probablility becomes

Ity |y = B/, {sen, 0208 0P exp 2w (& x /(12 )

(6.24)
The factor xJ results from the lower population of phonons st
higher state and therefore, at low temperature, up~scattering
cross section becomes muoh.smaller than the corresponding
down-scattering cross sectlon.
B) TWO PHONON PROCESS

Two phonon scattering includes all transitlons in which

Qibrétional guantum numbers are ‘changed simultaneously by two

units on single collislon. The cross section is classified

in accordance with the notation of spectroscopy, that is,
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overtone, summation combination and difference comb-.nation.

The traunsition probability for overtone band is derived as

Jy+2,v = vgo (1-x)x" ¢ (v+1) (v+2) -exp(t2/2) .
x[£2 + vt%/6 + v(v=1)t8/96+--+..]
a 2
= V v /8(1 X (6.25)

- For the up-scattering process, the corresponding transition
18 v—-v=2 and the traunsition probabllity 1s derived es
= v27
Jv-2,v , x Jv+2,v (6.26)
Because of low population proportiomnal to x2, overtone peek

18 rarely seen in the up-scattering cross sectilon.
Combination-tone corresponds to the ﬁrocess in which

vibragtional quantum numbers of two different oscillators

are changed simultaneously by one unlt on single collision.

For summation combination, both of j-th and k-th nondegemnerate
normgl vibratlion change from v to v+l and the corresponding

transition probabllity 1is

2
u -
lM12 T = Jv+1’v V+1 V(Qk)il—g kJ V i (6.27)
. and for difference combination, it 1is
IM12‘ = Jya1,v Yy V(QK)JQE RELY (6.28)
14

whefe J=th vibration 1s asgumed to change from v to v-1,
Because of degeneracy of each normal coordinate of
crystal, overtone of J=th normal coordlnate includes three

types of transltion

1) §-+v+2 for Q?
2) v-§v+2 for Q?
3) v=yv+l for Q? and v-—»v+1l for Q?

The energy transfers agre common to these trausitions and

given by

170



- 2 214 2 At
By = (k| © = |&,|“)0%/2m = 2hw,
The difference combination of Q? and Q?

transfer and 1t does not contribute to inelastic scattering

glves no energy

at all. From Eqs(6.20) and (6.25),

b

(QJ)

b a
)+ T v Q0

a
v+2 v(Q (Q )+ Jv+1,v(Qj)Jv+1,V(Qj

(Q§>J (@0 (e 282624t /8(1x )2 (6.29)
Accordlngly the transition probability in the crystal 1is
represented as .

[M§ = B(h/m Nw,)®(1-x,) 2 [ (x J)2+(Kteuj)2}2exp[-2wu(xt)]
(6.30)
Regarding to the summation combinatlon of }-th and k-th
vibrations, theré are four types of combinations; (Qj’Qk ,
(QJ’QK)’ (Qj’Qk , and (QJ’Qk) which gives common energy transfer
e = (uﬁ + w )b (6.31)
With Eqs(6.20) and (6.27), the transition probabillty of the

E

crystal 1s derived as

2 2 2
B B
,Mfg 2 _ H [(KtAug)2+(Kt ][(K A +(KB ) lxp[uzw (%tﬂ
T - - !
MuN (UJ(Uk(l xj)(1 xk)

(6.32)
As for difference combination, in whilch Qj changes from v
to v+1, there are also four types of transltiouns. The transl-

. tlon probabllity is derived from Eqs(6.24) gnd (6.28)

fmu2'2 xjhz[}KtA )2+(1t4y1 ‘][(K A +(Kt uk)%pr[—zwu(gtﬂ

- 2,2

1
T M N Wy W (1-xJ (1~xk)
A (6.33)
and the corresponding energy transfer 1s glven by
2 242
By = (k™ =[%,] "0 /2m = “”k'“ﬁ)h (6.34)
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In the same way, the transition pfobability for oéertone
of down-scattering is derived as
eré2T=(x5h/MuNuﬁ)2(1-x3)'2[(KtAuj)2+(KtBuJ)Zjexp[-Ewu(Ktﬂ
(6.35)
C) THREE PHONON PHOCESS
On this:soattering process, vibrational quantum number
changes by three units simultaneously on single collision.

When three different normsl coordinates, QJ, Q and Ql

particlipate iu the scatteriﬁg, the transitlon probabllity
is derived in analogy with the combination tones of two-
phonon scattering as

A

2
w2 3 2 2 . —
i | = w0 KE,Q&?EAW) w8 )7 exp -2 (K, ] /ug (1mx )

(6.36)
and the corresponding energy transfer 1is
E, = (ua *w, uﬁ)ﬁ (6.37)

In the case of difference combinstion, in which p-th
normal vibration chahges from vy to vp—l, Eq(6.36) has to be
multiplied by the populatlon factor of xp.

When two different normal coordinates take part in the
scattering, the transition probabllity 1s represented as the
product of the corresponding terms of overtone process by

the term for single phonon process, that 1is,

3 5 22 2 2
# [}KtAuj> +H(KB ) 1 Tikga ) *‘thuk).pr[_gwu(xtﬂ

(6.38)

ek -

33 2
2Mu N“(1-x,) u§(1-xk)tuk

J

where Qj,is assumed to perform overtone process.

When one palr of degenerate normal vibrations are
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concerned with three phonon scattering, the compoéite

transition of eight sets of combinations are posgibly classified

into four types of the set; (Q%,Q?,Q?},»B(Q?,Q?,Qg),
3(05,03,07), and (a5,5,03). From Eqa(6.8) and (6.9), I,

1s derived as

= § (1~x)xv-(v+l)(v+2)(V+3)(t2/2)3exp(t2/2)
r=0

Jv+3,v

[1/6 + vt?/48 + v(v-1)t"/960 toeea ] ?

= (£%/2)3/6(1-x)7 (6.39)
o VsV ,
Then the transition probability for three phonon process of

one palr of degenerate normgl vibrations is represented as
2 pa3
B - - 3 2 2
[t | o = (1/6)[B/m N1z )w, ] [k, 07 +(kB, 7]

xexp[-24 (K, )] (6.140)
In the case of three phonon up-scattering, the population
factor x- is mulbtiplied with Eq(6.40).

3
VI-5 SETTLEMENT OF THE BEPRESENTATION

So far the transition probability in one~ two- and three-
phonon scattering processes has been derived with regard to
individual normgl coordinate. In the crystal, there ars
so large number of normai vibrations that several transitious
give rise to almost same amount of energy transfer. On the
computation of the scattering cross section, it is more
convenlent to represent the transition probabllity regarding
to the energy transfer, Accordingly, new function H(K,w) 1is

defined by
' _ -1 2 2 .
Hu(Kt’“B)‘iw (h/M, Nw, ) (1-x, ) [(xtauj) +HK.B, 1) ] (6.41)

J

where summation 1s performed for all the normal coordinates

within the frequency division of ij which could be taken
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arbltrarily in dccordarce with the experimerital resolution
6? the number of points taken up in the first
Brilloliin zome.

Then the differential cross section of nu~th atom for

one phonon transitlon 1s represented as

a%0/andE =(1/bnN) (k,/ky )2 8 H (Kt,uﬁ)expr-ZW (K ] (6.42)

where 2W (K ) is Debye-Waller factor, obtained from Ej(6.2

Kt is momentum transfer for the scatterling angle & which 1s

glveﬁ by
2
K 1® = e © + [6,]° =2 k| <] K] cose (6.43)
and the corresponding energy transfer is |
_ 2 242 _ '
E = (kg © - [iy| “M%/2m = f (6.44)
For two phonon process of down-scattering, the differential

cross section of overtone 1is united with that of summation

combination as .
d G/dﬂdE =(1/Ln) (k,/k )Eis H Kt,wj)Hu({{t,wk)exp[—zwu(i{t)}
(6.,45)

where the energy transfer 1is

= (g % =[] 2b%/2m = (wyrw (6.16)

The down scattering cross sectlon for difference combination

1s represented as

a%o/anaE = (1/57N) (K, /%, )Ef (x /200 (Kow,) HpﬂKtu%)expL-Zwu(Ktﬁ 1
(6.47)

where auk is assumed to be larger than uﬁ. The corresponding

energy transfer 1s

E= (i ? - [k W 2m = (w -w)h (6.48)

ﬂ J
On the up-scattering process, the population factor xjxy is

multiplied with Eq(6.b/»5) as same with Eq(6.35).
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The dlffereﬁtial,crosé section for three phonon down- -
scattering process 18 a composite of fhe following three types

of energy traunsfer.

For energy trausfer of E=(u5+u%+0i)ﬁ : (6,49)
d“o/dNdE = (1/LmN)(k2/k1)(1/3!)ZsuHu(Kth)Hu(Kt(Uk)
xH, (Kow) Jexp [-2W (K, )] (6.50)
For energy traunsfer of E=(u3+m%-ui)h (6.51)
2 { 1]
d“c/dndE =(1/4nN)(k2/k1)§su(x1/3!)Hu(Ktwj)Hn\S{tﬂJk)
xHu(Ktwl)exp[-Zwu(Kt)] (6.52)
For energy transfer of E=(uﬁ—wknu&)ﬁ ' (6.53)

a%/andE =(1/l+nN)(k2/k1)Zsu(xkx1/3} )Hu( Kt“"g)“u( K., )

xH (Kw Jexp[-2W, (K J] (6.54)
VI-6  DISCUSSIONS

In evaluating multi-phonon scattering cross section,

Placzecle) has used the expanslomn about MEl because oi 1ts

rapid convergence. Since the Hu(Kt’W) includes factor M;?,

the expansion 1s essentlally same with the present treatment,
however present expression provides the coefficlent of M;F
in explicit form.
' : £\
With the use of time dependent correlation function’’
G (r,t) = anp [1KCq(t)] exp [1KCq(t)] >T

where € 1s polarization vector of normal vibration and q(t)

18 time part of normal coordlnate, the differentlal cross

L)

sectlon for energy transfer of E 1s represented as
rw
i(su/lmN)( k,/2nk, Jexp[-2(0 )});Z(p[-iEt%-Z( t}dt
(6.55)

dzc/ andE

where

~-1w ht 1w ht
2(t) = 2, (Kcu)zh(e‘ 370+ x @My /20w (1-x ) (6.56)
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z2(0) is Debye-Waller factor which 1s coincident with Eq(6.23).
When exp[Z(tﬂ is expanded into power series of Z(t), the
first term provides elastic scattering cross section while
the second term ylelds one-phonon scattering cross sectlon,

The second power of Z(t) gives rise to the two=-phonon

scattering and third power of Z(t) contributes to three~phonon

scattering cross section. Since Z(t) has time part in the
exponential function, thus expanded Eq(6.55) includes Dirsc'r
8 function about energy transfer., If non-vanlishing terms of Eq
(6.55) with regard to the § function were picked up, they

are exactly colncident with the present result. The equation
(6.55) seems apparently simple, however the numerical
evaluation is faifly complicated because of the & function.
Acgordingly the representation lntroduced in the section

VI-5 18 realistic, at least, on the estimation of two- znd
three-phonon écattering cross sectlom.

In X-ray crystallography as well as neutron diffraction
study, Bloch's theorem 18 generally applled to estimate Eq(6.6],
that 1s, |

. expQp = exp{%<Q2>T} (6.57)
where Q 1s an arbltrary non-degeunerate normal coordinate and

4 >T means the thermal average of the expectatlon value.

'Debye-Waller factor was classically introduced from Eq(6,57).
Certalnly, the thermal average of In a from Eq(6.8) is exactly
9

tranéformed into
® ¥ V.2 r 2
2 2 (1=x)x (t%/2) exp(t®/4)vi/(v-r) rirt

v=0 r=0
=exp[t2(1+x)/2(1—xﬂ (6.58)
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and Eq(6.57) 1is derlved. If the elastic scattering intensity

were proportional to In y the application of Bloch's theorem
. . A

n
might simplify the calculation. However, the transition
probability is proportional to square of matrlx element, and
thermal average of |Iv,v|2 has to be treated.

On the other hand, when the left side of Eq(6.12) was

transformed into simple function such as right side,

appropriate approximation was adopted. To examine the correct-

ness of the gpproximation, the left side was numerically

calculated with incorporation of v till 84 at 100°K. Arbitrary
polarization vector of hydrogen atom in the acoustic branch of

polyethylene crystal was picked up and fixed through the
frequency range. The result isvshown in Fig. 1 where solld
line denotes the exact value of Eq(6.12) and open circles
denote the right side of Eq(6.12). Small deviation is found

below 15 cm™l. As represented in Eq(6.23), 2W(K) is an in*~7ro...

L

quantity of a1l vibrations and the number of vibrations below

1

15 cm™" ieg much less compared with the total number of crystal

vibrations. Accordlngly the approximation incorporated at Rq
(6.12) may be admitted . Since the experimentlé) on poly-
ethylene crystal has been carried out with fixed final energy

of 30 meV of meutron, the same type of calculation was carrled

out for the optical branches with varying temperature and

initial energy and l1s summarized in Table 1. As temperature

is raised, the approximation becomes wWorse especlally for
higher initial energy. However, for low initlal energy, the

right side of Eq(6.12) well reproduces the exact value.
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On deriving the transition probasbility, a proper
approximation was incorporated between Eqs(6.20a) and (6.20Db).
The calculated values from Eq(6.20a) are compared with those
from Eq(6.20b) in Fig. 2, where solid line denotes Eq(6.20a)
and open circles denote Eq(6.20b). On the exact calculation
of Eq(6.20a), v was incorporated till 84, where the experimental
condlitions of k2=30 meV, 9=9OO and the polarizatlonvvector
of hydrogen atom in the acoustic branch of polyethylene crystal
were used. On gccount of the approximatlion, the inelastic
scattering cross section 1s estimated to be relatively small
below 18 cm-l. It results from the fact thagt, for low frequency
motion, F defined by Eq(6.7) becomes so large that higher
terms in power serlies of Eq(6.20a) influence the results.

On the other hand, the experimental resolution is not
-sufflclent for sepafating the inelastic scattering of such

1

Bmall energy transfer as E=20 cm™~ from the elastic scattering.

Generally this regilon is treéted as the quasi-elastic scattering
for which the incorporation of proper analytical funétionsl)
might be sultgble. The same type of examination was carried
out .on optical branches. The result 1ls shown in Table 2,
which suggests that the approximation is sufficlent for
optlcal branches.

Accordingly, the present formulation 1s jJjustifled unless-

very small energy transfer becomes the subject of dlscusslon,
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SUMMARY

Incoherent scattering cross section of neutrons was treated
on the basis of transition probability. Thus derived result
18 coincldent with those derived'préviously from time
dependent correlation functiom.

From the atomic displacement due to crystal vibrations of
polyethylene, Debye- Waller factor was derived as functlon
of momentum transfer. The approximation, 1ncluded in the

present derivation, was examined numerically and coufirmed

to be aliowable;

To calculate the transitlon probability for arbitrary
energy transfer, new function H(K,w) was defined, with which
one- two~ and thrée-phonon scattering cross sectlouns were

represented in convenlent form to computation.
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Table 1. Comparisons of the approximate values of Eq(6. 12)

with exact vglues.

k,=30meV (A=1, 658) ) T=100°K T=298°K
mode viem™')  1left right left right
rot. 14644 0,936  0.935 0.861 0.857
trans. (L)  91.4 0.973 - 0.973" 0.912 0.910
trans.(//) 5&«5} . 0.918  0.916 0.791 0.779
k= ioumev X—o 883) T=100°K T=298°K
~ mods _ wlom 1) left right ; left right
rot. : 146.4 0.863 0.861 0.727 0.708
trans. (L)  9i.4 0.942  0.941 0.818 0.810
- trams.(/]) 54.3  0.829  0.822 0.617 0.572
Table 2. The exatiination of Eq(6.20b)
| T=100°K T=298°K
mode  wlem™!)  (6.20a) (6.20b) (6.20a) (6.20Db)
rot. 146.4 0.0556 0.0556 0.0886 0.0884
trans.(Ll)  91.4 0.0229  0.0229 0.0521  0.0520
trans. (/)  54.3 0.0549  0.0549 0.1106  0.1098

Final cnergy 1s set to be 30meV.
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Fig. 1

¥
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Comparigon of the approximate value of Eq(6.12) with
exact value. Solid line represents the left side and

open circles represent the right side of Eq(6.12).
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WAVE NUMBER (cm™)

Fig. 2 Comparison of numerical results from Eq.(6.20b) with
‘that of Eq(6.20a). Solid line represents Eq(6.20a)

and open ¢tircles represent Eq(6.20b).
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Appendix IL

Proof for

<¢V+Aexp(iFQ)¢¢>-

L

1 ]22" (v+A )l v 1 (tz)r+?\/2 £ 2
!

exp (47-)
(v#A) vl] r=0(v=r)i (A+r)!I r} 2 4

éV(Q); wave function of normal coordinate, Q, at quantum state.v,
¥ = (wh) , w; angular frequency of normal coordinate.

Since the wave function of normal coordinate 1s represented

l .
with Hermite polynomiagl of z= !QQ,l) the integral 1s written as
L Jszf sal@exp(1FQ) g,(Qlaq (A1)
1 3 - -%
=( )< J:xp(-z JH_ . (2)H (z)exp(1¥ %Fz)dz
ne2" M el 2%y e vHA Ty

0jk=

=( VA . )
2" v+ 27y
“Ep

ne
where t=1¢ . Wlth new variable, y, defined by (A-3),
y = z=(t/2) (A-3)

. 2 : ~
.ﬁgxp(—z +tz)Hv+A(z)Hv(z)dz (A~2)

the exponential part of (A-2) 1s written as
exp(-zz+tz) = exp(-y2+t2/4) (A=l1)
and the integr%} of (A-2) becomes
GXp(+t2/h)jrexp(-y2)HV+A(y+t/2)HV(y+E/2)dy (4-7)
With the use a?othe generating function of Hermite polynomial?
the Hermite polynomial of order v is a éoefficienb of v~th
power of variabie X
exp -y2+2x(y+t/2 ] 2 H (y+t/2 X /v( | | (A~6)
After development of leffvs?de of (A~6) into power series of x,

putting the coefficient of v-th power of x to be equal to right

slde ylelds

8

H (y+t/2)=3 0 __ (90t /(v=r) ey (8-7)
r=0
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Substituting of Hv(y+t/2) and Hv+A(y+t/2) from (A-7) into

(A-5) lead us to

V+A v 2
2 (v+A)l vl . s+r| -y w)
exp( 4t /uégozr=olv+A-s)!sl(v-r)!r}“ j:, HV+A-3(Y)Hv-r(y)dy
-0
_ (A-8)
Orthogonality of Hermite polyhomials of (A~9),
<]
2 _ o0y -
léxp(-y )Hn(y)Hm(y)dy = 2 nln Bn,m (A-9)
simplifies (A-8) into (A-10)
v L
z (V+}\)[V[ exp(+t2/4)t2r+7\2v—rn;g (A'-l())

rog (Vv=r)t (r+A)fr!

Substituting (A-10) for the integral part of (A-2) lead us to

the final equationland the proof 1is completed.

1 2V (yrA) VS £2, rer/2 2
Lyan,v™ [(v+>\5? v[] IEO (v=r )l (AFr )7 773 exp(t™/4) (A-11)
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McGRAW-HILL, New York (1955).

2) H.Margenau and G.M.Murphy,“The mathematics of physics aud
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CHAPTER VII

NEUTRON SCATTERING BY -CRYSTAL VIBRATIONS

OF POLYETHYLENE

VII-1 INTRODUCTION
Since high density flux of thermal neutrons became
avallable, great interest has been taken In the observation

of frequency spectrum of polymer crystals.i) Especlally

on polyethylene, many experimental results have beeun accumu-
lated up to date, whilch 1s summarlzed firstly.

2)

Danner et- al. have measured time of flight of neutrons

and obtained the frequency spectrum of normal hydrocarbon

e
crystals as well as polyethylene by the use of up-scattering
)

of cold neutron. King et a1.3 have applled down-scattering

technique of warm meutrons to the same sample of polyethylene

with Danners'z). The frequency distribution, obtained from

two different types of experiments, were like each other.

1 and 200 cm™}, which had

Two prominent peaks near 550 cm
been expected from the normal coordinagte treatment of poly-
ethylene single chainu), were assigned to the cut-off of the
skeletal bending and internal rotation branch, respectively.
Besldes these two peaks, there were several weak peaks, which
were ascigned to lattice vibratlons with reference to the

- calculated frequency dlstribution of polyethylene crystal.ﬁ)
| Summerfleldé) has pointed out that the peak 1ntenélty
of the neutron spectrum depends upon the amplltude welghted

7)

frequency distrlbution and thereby, Myers has measured tlhe
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anlsotropy of scattering cross section on the stretch oriented
polyethylene sample by the use of triple axis crystal spectro-
meter. When momentum transfer vector of neutron 1s parallel

to the chain axis (parallel case), two peaks were recognized

1 1

near 190cm” = and 525 cm’ ~. When the momentum transfer vector

is perpendicular to the chaln axis (perpendicular case), the

1

additional peak was found near 150 cm~ while the peak at

1

525 cm -~ was not found. The peak intensity of 190 cm"1 of

parallel case was almost omne hglf of that of perpendicular

8)

case; Trevino has also measured the anlisotropy of the
scattering cross sectlion independently by the use of time of
flight spectrometer, and confirmed the result previously
obtalned by Mjers; The observed anlsotropy were qualitatively

In good agreement wlth theoretical expectations5). However,

the quantitative discussions were postponed to future study

1

and two peaks at 240 and 340 cm™ " as well as the shoulder

at 380 c:m"1 were left unasslgned because existence of these
peaks was not deduced straightforwardly from the frequency

distribution of the crystal vibrations.

On the other hand, the intrachain potentialu’9>

Interchain potentiallo"ll) of the polyethylene crystal has

and

been studied 1in detall and general method of treating the
chain vibratlonslz-la) and crystal vibratlonslu) has been
established. A practical method of calculating the inco-
hérent scattering cross sectlon of neutron from hydrogen

atom by crystal vibrations has been developed in the preceding
chapter. It 1s now practical to analyse the observed

neutron spectrum on the basis of the theoretlcal treatment
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of the crystal vibrations. And also
thorough calculation about the polyethylene crystal nct only
provides the assignment of the observed nesutron spectrum of
polyethylene but also will serve the anslysis of other
experimental results with regard to estimation of the relative
intensity of the multiphonon scattering and lts anlsotropy.
Accordingly, in the present study, the dlfferential
cross sections for one-, two-~, and three-phonon scattering
were computed with the method described in the preceding
chapter. The calculation was carried out on two cases 1in
which the momentum transfer vector is parallel and also
perpendicular to the chain axis.

VII-2 RESULTS

A) DOWN~SCATTERING
On the measurement of anisotropy of scattering cross

7) has applied down~scattering technique to

sectlon, Myers
the unlaxlally oriented'polyethylene kept at 1OOOK, where
final neutron energy was flxed at 30 meV and scattering

angle was set to be 900. Since the scattering from hydrog:sn
atom 1s predominant in polyethylene crystal, the differentlal
cross sectlons of two types of hydrogen atoms (H1 and Hz in
Fig. 1 of Chapter II) were calculated.

When momentum transfer vector 1s parallel to the chain

axis (parallel to the z axis), z component of ﬂj and Bj

contributes to the scattering. The function H(Kt,wﬂ defined by

(6.41) for parallel case 18 represented as |
(v _ -1 2 2 2
H (Kt,w)—Aa (h/NMw, ) (1-x,) Ky “(a,,%4B,,%) (7.1)
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2

/2 2 2
2W (K,.) = 2 (h/MNw, ) |K A B 1 y .2)
£ : i/MNw, ) [K |7 ( ot iz)( +x,)/(1-x,) (7

where N 1s total number of unit cell in the crystal, M is

mass of hydrogen atom, w, 1s the angular frequency of J-th

J
normal coordinate and xj=exp(;hu3/kT). On the calculation of

one- and two-phonon scattering cross sectlon, Auﬁ was taken

to be 1 cm"1 whille on the three-phonou scattering cross

sectlion, AW, was taken to be § cm"1 to shorten the computation

J
time. Summation about 1 runs over all branches on N/2 points
in the unlt cell of reclprocal lattice, D2h symmetry of
polyethylene crystal reduces the independent sets of phase
différenees to

(0,0,0) £(5_,8,,8 )= (n,n,n).

Since the sample material is uniakially orlented along
the chain axls, random conflguration of micro crystals around
the chain axis has to be averaped., Supposing the direction of
momentum transfer vector 1s along f from x axls, fixed in
the micro crystal, then

2

(K8 )2 = lKl‘(Aicosza 4 AysanB + 28 A 5inBoosp)

and the average of random distributlon of B‘leads us to
(a)? = [k|P(alen2)/2 (7.3)

where Ax’and Ay are x and y component of polarizatlion vector,

respectively. Then, H(Kt,w) correspondling to perpendicular

case ls represented as

o R ! 2, 2., 2., 2, 2
H (Kt’uﬁ)*AﬁH g(h/MNuﬁ)(l xj) }Kti (AjX+Ajy+BjX+BJy)
‘ (7.4)

2wk (K, ) = % (h/ZMNwi)th‘2(Ali+A1§+Bii+81§)(l+x1)/(1—x1)
(7.5)
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Ai’ Bi and w, Wwere calculated for number of representative
points of & space, and slso the lnterpolation of ﬂi, El and
w, were performed with the use of equation (1.15) at the
interval of 1° of 80. Since the scattering angle 1is fixed
at 900, the momentum transfer is given by

K1 % = 2w,% + 2mew/n (7.6)
where m is neutron mass, ¢ 1s 11izht velocity and v is wave
number corresponding to the energy transfer. In this
experiment, final energy is fixed at 30meV.

The calculated Debye-Waller factor for above experimental
condltion is shown in Fig. 1, where exp[—ZW(Ktﬂ 1s plotted
against the energy traasfer. The solid line represents
parallel case whille broken line denotes perpendlcular case.

The countributlon from latrachain vibrations 1s also included.

As energy transfer gets larger, ZW(Kt) becomes larger and
therefore, the transition corresponding to higher emnergy
transfer 18 suppressed 1iun proportion to eXp[-ZW(Kt)].
Experimentalists ususlly assume eXpE-2W(Ktﬂ to be equal to
unity on the analysis of neutron spectrum. However, this
assumption 1s misleading the relstive intensity. As 2W(Kt) is
nearly proportional to temperature, scattering intensity becomes
smaller as temperature 1is raised. It 1ls, in fact, conflrmed
~In the recent,experiment.lS)

Eq(6.15) states that the peak intensity of elastic
. Bcattering depeunds primarily upon Debye~Waller factor.
Accordingly, 2W(K.) and exp[_zw'«t)] for the elastlc scattering
are shown in Table 1, where 'interchain' and *'intrachain' mean

. -1
the contribution of the crystal vibrations below 700 cm = and
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of chain vibrations above 700 cm'l, respectively. The
contribution from the intrachain vibrations cannot be neg-

lected even at 100°K. The perpendicular component of 2W(K, )

due to interchain vibrations 1is especlally large because
the frequencies of the acoustlc branches whose atomic dis-

placements are perpendicular to the chain axis, are relatively

low and the mean squared atomlc displacement gets large com-
pared with the acoustic branch aslong the chaln axis. Therefore,
the perpendicular component of total value of 2W(Kt) is
larger than that of parallel component. In fact, the observed

peak intensity of elastic scattering 1s reported to be weaker

in perpendicular case than in parallel case7).

The differential cross sections for one~, two- and
three-phonon scattering processes were calculated with the
use of Eqs(6.47)-(6.54), The calculated results are shown in
Fig. 2, The one-phonon cross section for perpendicular case

1

is so large below 200 cm™ ' but so small above 200 em™! that

the contribution of two-phonon scattering 1ls recognizable

above 200 em™!. To the contrary, the omne-phonon cross

sectlon for parallel case is relatively small below 200 em™t

but not so small above 200 cm-l, that the contribution of
two-phonon scattering 1s not remarkable. The three-phonon
scattering cross section is recognlzed above 400 cm"1 only
for perpendicular case whereas it makes no distinct peak.

- Accordingly, the three-phonon scattering might appear weakly
as a back ground for perpeundicular case.

The composite differentlal cross sectlion 1s shown in

Fig. 3, where histograms of values of (d°0/dadE) per
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frequency division of 10 cm"1 are drawn‘against the energy
transfer and the scale unlt of the ordinate is (8/ln)(s;
bound atom incoherent cross section of hydrogen atom). This
figure may correspond to the luntensity distribution directly
observed from the neutron spectrum.
Since the experimental results are represented as

phonon~density defined by

CG(w) = (lmN/ST’x)W(l-x)(kl/kz) |Kt|‘2(dzo-/dadE) »(7.7)
Originally, in the.formal representation of G(w), Debye-

Waller factor was canceled from the cross sectlon. However,

on the transformatlon of the observed cross section to G(w),
Debye-Waller factor 1is usually assumed to be unity. Then the
real quantity is equivalent to (7.7) and therefore G(w)
includes Debye-Waller factor. And also (dzo/dndE) might
include multi-phonon scattering. Accordingly, the resultént
phonon density function may not always represent the amplitude

welghted frequency distributilon.
The calculated G(w) is compared with the experimental

6né in Fig. 4, where s0lid lines represent paragllel case
while broken llnes represent the perpendicular case. The
calculated histograms of the lower figure of Fig. 4 may be
compared wlth the experimental curves as glven in Fig. 4 of
ref. 7. However, the experlmental curves for parallel and

. perpendicular cases have been tentatlvely adjusted7) to

provide equal peak heights at 195 cm™l, The true experi-

mental curves may be .obtained from the publlished curves by

multiplying the ordinate of the parallel curve by 56%.
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These experimental curves, which are reproduced in the upper

figure of Fig. U4, may be compared with our calculated results.

1

The perpendicular peak calculated at 195 cm™~ 1s twice

as high as the corresponding parallel peak, and the peak

1

near 560 cm - 18 almost completely parallel whereas the peak

at 150 cm"1 1s almost perpendicular, in good agreement with
the'experimental results. These peaks orlginates from one-
phonon process of the internal rotation, skeletal bending

and overall rotatory vibratlbns around the chaln axls,
respectively. The weak perpendicular peak calculated at
90 cm'1 1s recognlzed as the fine structure of the experi-
mental curve, which 1s due to optlcal branches of the trans-
latory vibrations perpendicular to the chaln axis.

Two weak perpendicular peaks calculated near 240 and
340 cm"1 are assoclated with the summatlon combinatlon tones
of the antiparallel translatory vibrations (~90 cm'l) plus
the overall rotatory vibrations (~150 em™!) and the internal
rotation (~190 cm™1) plus the overall rotatory vibrations
1)

around the chain axis (~150 cm "), respectively. The

perpendlicular cut-off calculated at 380 cm"1 corresponds to

the overtone of the internal rotation branches. The relative
Intensity and anlisotropy of these three peaks, assoclated

with two-phonon scattering, agree closely with the experimental

results.

The differential cross sectlon due to the intrachain
vibrations were also calculated. As shown in Fig. 5, two

prominent parallel peaks are expected at 1080 cm_,1 and
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1

1320 cm - whlle one perpendicular peak 1is expected at

7200m'1. Because of large ZW(Kt) for perpendicular case,

the perpendicular cross section is strongly suppressed and
therefore no peak seems to exist at 1470 cm'l.
One-, two~ and three-phonon scattering cross sectlouns

at 298°K were calculated as shown in Fig. 6. As temperature

1s raised, the scatterling Intensity through one-phonon

process decreases'whereas two~- and three-phonon scattering

increases, especially in theilr difference combinatlons. The

resultant cross sectlon seems to get larger for small energy
transfer but smaller for large energy transfer as shown in

Fig. 7. It may be expected that apparent peak width of the
elastic soattering'becomes broad on account of the 1increase

of 1inelastic contributlon of small energy transfer at higher
temperature. Besides 1t, the peak of inelastic part becomes
relatively obscure compared with that of low temperature(Fig.3).
This tendency agrees with the recent experimental results15)
in which the measurement has been performed at M.ZOK, 77°K
and 300°K with the use of the time of flight down-scattering

technique. Previously, King et a1.3) have measured the

differentlal cross section of unoriented polyethylene at

298°K with the same experimental condition with Myers?'.
The result is reproduced in the upper figure of Fig., 8 for
comparison. The average of two calculated histograms of the

lower figure of Flg. 8 may be compared with the experimental

results.

194



B) UP-SCATTERING

Since the combination of beryllium crystal for mono-
chromatizing filter plus time of flight analyser utlilizes
neutron beam most efficienﬁly,-many experiments on neutron
~spectrum have been performed by the use of the time of
f1light spectrum. Beryllium crystal kept at 77°K has falrly
sharp cut-off at 5 meV, therefore the measurement has been
carried out aBout the neutrons accelerated by the crystal
vibrations. Trevinos) has used»time of flight method to
measure the dichroiém of meutron spectrum of polyethylene
but the assignment explained there 1s not always appropriate.
To make definite assignment of the observed spectrum, we
have calculated the one-, two-, and three-phonon up-scattering
cross sections, using the equlivalent condition with the
experiment, that is T=298°K, Q=9oo(scattering angle), ky=5.2
meV. The calculated Debye-Waller factor is shown in Filg. 8,
where exp[-Zw(Ktﬂ 1s plotted agalnst the energy traunsfer.
Because of small energy of the incident neutron, the elastic
croes section 18 expected to be relatively large compared
wifh Myers' experiment.

The calculated one-, two-, and three-phonon differential

cross sectlons are shown in Fig. 10 (a), (b) and (c). The

composite differential cross sectlon 1s compared wlth the
experimental results in Flg. 11. The calculated hlstogrem

is plotted agalnst the frequency dilvision of 10 cm"1 of energy

transfer whereas the experimental results 1s publlshed as

tlme of flight spectrum, 1n which the dlvision of energy
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traunsfer is based on neutron velocity and 1is getting larger

in proportion to E %. Therefore, apparent intensity of time

t
of flight spectrum seems stronger than the corresponding

differentlal cross sectlon for large energy transfer.

The contribution of two-phonon scattering is expected for
perpendicular case above 200 cm'1 and 1s, in fact, recog-
nized in the time of flight spectrum.

Phonon density from up-scattering cross sectlon 1s

defined by

Glw) = (4uit/shw(1-x)x"t IKt|'2(k1/k2)(dzo/dndE) (7.8)
From the calculated differentlal cross section, the phonon
denslity curve was derived and shown in Flg. 12. The average
of two histograms may be compared with Fig. 4(b) of ref.Z2,
In good agreement with the experimental results, where the
peak helght at 550 cm"'1 1s almost omne half of the peak helght

at 200 cm"1 and the shoulder due to two-phonon scattering 1is

observed near 250 em™ L,

The composite of one-, two- and three-phomon up-
scattering cross sections calculated at 100°k is shown in
Fig. 13 and the corresponding phonon density curve 1s
derived in Fig. 14, As temperature 1s lowered, exp[—ZW(Ktﬂ

becomes larger whereas the population of the phonons at

exclted level becomes smaller, and therefore the resultant

cross sectlon gets smaller. Since the measurement by Danner

)

- et al;2 was carriled out on polycrystalline sample, the
average of two histosrams in Fig. 14 may be compared with

Filg. 3(b) of ref. 2, Two peaks calculated at 150 cm"1 (over-
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all rotatory vibrations) and at 195 om”l(inbernal rotation)

are, 1in fact, resolved in the experimental curve. The
contribution of two-phonon scattering 1s expected to be
centered at 300 Cm—1 while pretty definlte pesk 1s recognized

in the experimental results. The calculated peak inteunsity

1

at 560 cm”~ is weaker than that of 190 cm"l whereas the

intenslity raﬁlo of observed peaks 1s the oppceite.

On the other hand, Trevino et 3116) have attempted to
obtain the frequency spectrum of intrachain vibrations of
polyethylene and measured the anlsotropy of the cross section
for large energy transfer (kl; 234 meV ). 'They have found one

peak at 760 cm"1 for perpeundlcular case whlle two peaks at

1 and 1320 Cm"1 for parallel case. For comparison,

1080 cm™
the amplitude welpghted frequency distribution was calculated
and shown In Flg. 15, where solild line 1s assoclated wilth

the parallel component of the mean squared atomic displacement,
and broken line is for perpendicular components. The perpen-
dicular peak calculated at 720 cm"1 1s due to methylene
rocking vibration, whille two parallel peaks calculated at

1080 and 1320 cm"1 are assoclated with methylene twistling

vibrations. These three peaks are ln close agreement with

6)

the experimeuntal results.1 The perpendicular pcak expected
at 1470 cm-1 is due to methylene sclssoring vibration which
is not recognized 1iun the experimental results.

Vii-3 DISCUSSIONS

Experimental estimation of Debye-Waller factor includes

some amblgulties because the observed cross sectlon of tue
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elastlc scattering 1s not apparently separated from that of

7) have

the Inelastic scattering. Summerfield et al.1
evaluated the elastic scattering cross section by subtracting

the extrapolated 1nelastlc cross section from the apparent
elastic cross section and obtained 2w”=0.02h|K|2 and
2wt=0.027 |k at 77°K. Myers!d) has estimated 2W/=0.0153 [K|2
and 2wL=O.021|K|2 at 77°K with the same extrapolation method.
From the present treatment, théy ate calculated as
2w”=0.021[K!2 and 2wl=o.03u[K|2 at 100°K which might be within
the 1limit bf the uncertainty of the experimental values.

The ratio of 2W”/2Wl of the calculated value is 0.61 while
the experimental value 1s 0,73 from Myers' and 0.89 from
Summerfield's. Since the crystallinity of the sample used

18 80~90% and besides the orlentation of the chain axis by
stretching 1s not complete, 1t 1s reasonable that the
calculated anlsotropy 1s a little larger than the observed

values,

1, which were

The weak peaks observed at 240 and 340 cm™
not expected from the frequency distribution of crystal
vibrations of polyethylene, were consldered as due to the
disordered part such as 3-5 methylene groups of planar zigzag
structure between two gauche 11nkages.2) Recently Safford

1)

has given agaln the same explanatlon to these peaks.

18)

To investigate it experimentally, Boutin et al. have

measured the inelastic cross sectlon of the single crystal
gréwn from solution. It became confident that these two
peaks are assoclated with crystal part of polyethylene.

Then, TrevinoB) has assigned the peak at 240 cm-1 to one of
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two cut-off frequencles of the split branches of the
internal rotation vibrations. On the other hand, from the
disperslon curves shown in Chapter IV, the splitting may be
expected certainly in the disperslon curves along (O,O,SC),
whereas no splitting is found 1In the dispersion curves

along-(n,n,Bp). The magnitude of the splitting varles

contlinuously with Sa and Sb, therefore only one peak? in the
frequency distributlon, is expected as the cut-~off of the
internal rotation branches. The peak width may depend upon
the magnitude of the splitting.

The relative intensity and anlsotropy of the two peaks,
calculated from the present study, are 1in good agreement with
the experimental results. Therefore thesevpeaks are regsonsgbly

assigned to the multi-phonon scatterlng.lg)

Recently the ldentical assignment was proposed by Summerfield,
who made the ampllitude weighted frequency distributlon takling

simply 200 points on the dispersion curve aloung (0,0,80)17).

Because of the limited number of vibratlons incorporated,

the relatlve inteunsity of the frequency dlstrlbution may
include somewhat uncertaintlies. IFor instance, the antil-
parallel translatory vibration along the chain axls does mnot
make definlte peak from the dlsperslon curve of (0,0,80) while

the peak 1s expected at 50 cm"'1 from the dlspersion curves

! in the

along 88 and Sb. e perpendicular peak near 50 cm”
scattering cross section (Flg. 3) results from the acoustic
branches whose atomlc dlsplacements are perpendicular to the

chain axls. These peaks are expccted from the dispersion

curves along (n,Sb,O) and (Ba,n,o). 'wo overall rotatory
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vibrations around the chain axls splits into 147 and 122 cm"1

at (0,0,0) whereas they are degenerate on (n,Bb,O) and

(Sa,n,o). Since the derivative of the vibrational frequency

with regard to phase difference (8v/38) approaches to zero
near zone boundaries, the dispersion curves along the edge

of the first Brillouin zone 1s most significant to estimate

the peak Intenslty of the frequency distribution.
) .

Chany, and Summerfieldzo have measured the multi-phonon
scattering, cross section with high energy incident neutrons

(191 meV)., The contribution of multi-phonon process to the

inelastic scattering 1s falrly large at higher temperature,
which may be probable, becagse H(Kt,w) becomes larger in
proportion tolKéz and higher terms of power series of H(Kt,w)
contribute to the cross section. In such a situatlon, the
approximation incorporated in Eqs(6.12) and (6.20) becomes poor
and then the present type of calculatlon would not be advan-

tageous to analyze the the inelastic cross sectlon.

21)

Safford et al. have measured the neutron spectrum

with hlgher resolutlon and found peaks at 550, 200, 167, 147,
114, 67 and 39 en™!.  In addition to them, ten weak peaks
were found at 620, 4U45, 360, 330, 310, 285, 255, 230, 140 and
95 om_l, which were left unexplalned. Unfortunately the
number of points, taken in the first Brillouln zone 1in the
present study, is not enough to decompose the broad peaks of
the calculated phonoun density curve into their component

peaks. llowever, the exlstence of these weak peaks are not

)

v
always confildent, since Myers et 311) could not find them
even in the careful experiment with the use of time of fllight
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plus down-scattering technique at 4,29k,
There 1s a dlscrepancy among the reported frequencles’

about the peak position of the heutron spectrum. Danner et

a1.%) observed five peaks st 570, 340, 200, 130 and 60 em™}

at 100°K. Although King et al.j) used the identical sample,

the reported frequencles are slightly different as 500, 340,
7)

275, 200, 160, 95, 66 and 50 cm™ 1, Myers et al.'’ have

reported in thelr first paper the peaks at 550(//), 195(L, )

and 150(L) about stretch oriented polyethylene. Boutin et 3118)

has obtalned silx peaks, from the analysis of single crystal

of polyethylene, at 500, 300, 200, 120, 80 and 40 cm™! while

8) -1

“Trevino ' has found two peaks at 530(/) and 250(L) cm

about the orilented polyethylene. Myersl5) has performed the

measurement at BOOOK, 77°K and 4.2°K. The observed frequencles
0 * #* : * #*

at 77 K are 524 , 201 , 186, 161, 133, 119 , 97 , 79 and

- #
45* em™t for the parallel case and 387, 340, 197%, 165, 125 ,

1

#* 3 -
97 4 73, 52 and 32 cm for the perpendicular case, where

the mark * indicates the frequency of falrly definite peak.

These frequencles are not always colncldent with those

reported by Saffor621). Accordingly, the comparlson‘between

the calculated and observed spectram wlth regard to detaills
is meaningless t111 the definite frequency of the neutron

spectrum will be provided.

-
Myerslj) has discussed, from the experimental results

from neutron spectrum, that the cut-off{ of the skeletal"

bending branch is not higher than 536 em™ 1, However,

22)

Schauflele has, in fact, found Baman lines due to accordion

vibration of COM”1OO at 536 and 556 cm-] in the laser excited
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Raman spectrum. It sugpgests that the cut-off of the skeletal

1

bending branch lies above 550 cm” = and therefore supports

the presetit calculated results.
Sinde the bound atom incohereht cross section of carbon
atom (C12;O.01, 013;1.0 barn) 1is much smaller than that of

hydrogen atom (80 barn), the scattering from carbon atom 1s

not recognized except for the case in which the peak intensity
of amplitudewelghted frequency distribution of hydrogen 1is
extfemely Weak whereas that of carbon 1s falrly strong. As the
amplitude welghted trequency distirbution of oarbon given 1n
the following chapter, 1ls similar to that of hydrogen atom,

any peak due to carbon atom would not be expected in the

neutron scatterinpg, of polyethylene.

17) has obtalned the frequeuncy spectrum of

Lynch
deuterated polyethylene. Two prominent peaks are found at

165 (;m_1 and 105 cm-]. I'rom the dispersion curves glven in

Appendlx, the peak due to lnternal rotation branch 1s expected
near 160 cm™) from the curves along (O,Sb,n) or (Ba,o,n)
and the peak due to the overall rotatory modes ls expected

near 105 cn™! from the curves along (6, ,1,0) and (n,8,,0),

in good apgreement with the observed results. The broad peak
observed at 270 (:m"1 might be combination-tone of the internal

rotation (165 cm_l) and the overall rotational modes (105'cm-1).

The cub-off of the skeletal bending mode 1s expected at 500 cm']

while the experimental phonon denslity curve 1ls avallable
only below 440 cm-l. The weak shoulder observed at 70 cm-1

might be assoclated with the translatory vibratlons perpen-
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dicular to the chain axis.

3)

Recently, King et al.2 has observed the dlspersion

curve 1tself along (O,O,BC) from the analyslé of coherent
scattering of neutron fromdeuterated polyethylene. The
maximum frequency of bending branch lies relatively low

compared with the calculated dispersion curves.

-SUMMARY

Neutron scattering of polyethylene crystal was treated
theoretically. Debye-Waller factor for elastic scattering
was calculated as ?W”=0.021|K]2 and 2Wl=0.03h|K[2 at 100°K,
which are in reasonable apreement with experimental values.

The diflfereuntial cross sections for one-, two- and three-
phonon down-scattering processes were calculated with the
method developed in the preceding chapter. In the calculated
phonon density, several prominant peaks at 560(/), 195(L,{),
145(L), 90(L) and weak shoulder at 50(L,/#) en™) are expected,
in pgood apreement with the experimental results. They are

due to the skeletal bending, the internal rotation, the
rotatory modes around the chaln axls, antiparallel translatory
vibratlons perpendicular to the chaln axls and that parallel
to the chain axls, respectlively.

Three broad peaks, observed at 240, 340, and 380 cm_l,

were shown to be assoclated with two-phonon scattering.

Accordingly all the observed peaks were reasonably asslgned.

The cross sectlon for up-scattering process was also
o]
calculated and phonon densitby curves were derived at 100°K

and 298°K. 'The calculated results are 1in pood apgreement
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with the observed results.
Peak position expected from the dispersion curves of

deuterated polyethylene agreed with the recent experimental

resultis,
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Table 1. Debye=Waller factor of hydrogen atom

1n'polyethylene crystal.

T=100"K T=298°K
(/1) (L) (n (L)
2W(K) 1intrachain 0.370 0.318 0.373 0.325
2W(K) interchain 0.243 0.683 0.543 1.726
2W(K) total 0.612 1.001 0.916 2.051
exp[-2W(K)] 0.54 0.37 0.40 0.13
K=k, -k, and k =k,=30meV
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Fig. 1 The calculated Debye~Waller factor, exp[»ZW(Kt)].
The final energy is fixed at 30 meV and the scattering

angle 1s set to be 900.
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“Fig. 3 The composite of the differential cross sectlons
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The histograms of dzo/dndE per frequency division

1

of 10 cm ~ are drawn against the energy transfer.’

The scale unit of ordinate is (s/bn).
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the upper flgure; the observed result7)(see text)

the lower flgure; the calculated results.
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Fig. 8 Comparison between the calculated and observed phonon

densitles.

the upper figure; observed result on unoriented samplej)

the lower flgure; calculated result
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CHAPTER VI

TEMPERATURE FACTOR FOR X-RAY DIFFRACTION

OF POLYETHYLENE CRYSTAL

VIE;i iNTBODUCTION

| X=ray Aiffraction utilizes the pefiodlcity of the atomic
poslition in crystals. If atoms rest at their equilibrium
posiﬁion, scattering-intenélty along Bragg angle would not
depend upon thé scatfering angle. 1In real crystals, thermal
vibrations disturb slightly the periodicity of the atomlc
position‘and decreagse of the'scatteriﬁg intensity 1s recog-
nized for large scattering aungles. This pheﬁomenon was

2)

studled theoretically by Debyel) and Waller and has been

incorporated Into X-ray diffraction analysié as a temperature
factor, The absolute vélue-of'the observed temperature factor
gives originally the thermal average of mean squared atomlc
displacement. However, the effects of varlous kinds of
crystal defects or disorder upon X-ray diffraction have not
been estgblished and therefore, the experimental value of
teﬁperature factor includes all the effeéts of the disturbauce
of the periodicity.

Prevlbusly, we have éreated the thermal vibrations of
polyethylene crystal with the interchain as well as intrachain
potentlial functlons. The atomlc displacements of hydrogen atoms
were calculated on many points of the reciprocal unit cell

and, from the thermal average of the mean squared atomic
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dlsplacement, differentlal cross section of neutron inelastic
scattering was derived. The calculated anisotropy and relatlve

Intenslty were 1ln close aggreement with the observed neutron
spectrum. Debye-Waller factor of hydrogen atom for the
elastic scattering of neutron was aiso calculated and 1t
agreed closely with the experimental results on its absolute
value and anlsotropy.

On the other hand, X-ray 1ls scattered by electron clouds
around the nuclel while neutron is scattered by hydrogen
nuclel. Then the scattering from carbon atom may be predominant
in X-ray diffraction of polyethylene crystal. Accordingly,
in the present study, theoretical value of temperature factor
for X-ray diffraction was calculated from the thermal average
of mean squared displacement of carbon atom and was compared with
the experimental results,.

VII-2 THEORY

Since the extent of electron cloud of individual atom is
as sgme order as the wave length of X-ray, scattered waves
from different part of isolated atom might possibly interfere
with each.other. However, Bragg reflectlon 1is based on the
interference of the scattered X-ray from other atoms, therefore
apparent cross sectlon of k-th atom for X-ray 1is simply

represented as fk. The intenslty of scattered X-ray 1ls written

3)

ag

_ * k* k
I = CEi'k'zik YR S exp[iK(ri,-ri)] (8.1)
where C 1s constant factor which 1is not concerned with the

k
i

of 1-th unit cell, and Kh is momentum transfer vector defined by

atomic displacement, v, 1s the position vector of k-th atom
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Kho= (k, - k)b (8.2)
where k1 and k, are wavervectors of incident and scattered
X-rgy, respectively.

Since the energy of X-ray 1ls extremely higher than the
vibrational energy, the absolute value of k, and k, are
almost equal unless atoms are electronically excited on the
scattering. If the wave lengths of incident and scattered
X~rgy are commonly equal to A, then the magnitude of momentum
transfer vector is glven by

IKl= 4nsin(e/2)/A (8.3)
where @ 1s scattering angle (twlce of diffraction angle).

The positlon vector of the atom may be decomposed into

k
1

where Bl 1s the position vector of the 1-th cell origin and

_ k
r, = B1 te tuy (8.4)
r, 1s the position vector of equilibrium position of the. k-th
atom from the cell origin. u? 1s the atomic displacement vector
of the k~th atom in the i-th unit cell due to thermal vibrations,
which 1s derived from Eqs(6.1) and (6.2) as

' k _ 3 a N ]

uf = (/M) § Ay s [Q5008(py,3) - Qlsin(e, B)

+BkJ[Q?sin(pik5) + Qgcostikﬁﬂ (8.5)

where M, is mass of k=th atom, N is total number of unit cell,

k
Py is the index vector of k-th atom of 1-th unit cell, and
8 1s phase difference vector. Q? and Q? are degenerate palr

of j=th normal coordinate, the polarizatlon vector of which
18’ represented as Akj and Bkj' Since real number normal
coordlnates are used, summation runs over all branches on

N/2 points of half of the first Brillouln zone.

227



k

Substitution of v, from (8.4) intc (8.1) provices

1
k* gk’ K
T =0C2 1 e20Fp Fy xexp[iﬁ(ﬁi,-ﬁiiLexp[iK(ui,mui)] (8.6)
where Fg 1s atomlc structure factor defined by
K _ o .. |
Fo = fkegp(lﬁrk)

The exponential function of (Kﬂi) becomes Laue function which
is nonvanishing only on the reciprocsl lattice point. The
expectation value of the final factor gilves rise to the

temperature factor. For harmonic vibratlons, the thermsl

average of exponential function of normel coordinate is
exactly equal to the exponertial function of thermal aversge
of Bquared normal coordinate, that is,

exp(Q))y = expld Ch >
where Q 1s normal coordinate. This relagtlion is derived fromn

i)

Bloch's theorem. Since the atomic dlsplacement is linear
combingtlon of normal coordinstes, Debye-Waller factor was
introduced originally from

<§xp(1Ku¥)>T = exp{-%(KKuE)Z>T}= exp[-W, (K)] (8.7)
where wk(x) 1s Debye-Wagller factor for k-th atom. However,

the expectation value of the final factor of (8.6) ig not
exactly equael to the product of two funstioms of (8,7), because
of the correlation among the atomlc displacement.

Since the atbmlc disgplacement ig relgtively small come

péred with the wave length of X-ray, the final function of

(8.6) is expanded into power series of (Kuf) as
<§xp[1K(ul,~u T) <@_+ iKui, -3 (Ku )2..‘.]
Ky2. ... 1\
Xl-iKu -J}(Ku
| .
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=[1 - Gl B[ - Dy ]
" ((xuli‘:)(xu‘i‘))T (8.8)

where )T.means the thermal average of the expectation value.

If there is no correlation in the atomic displacement,'the

second factor of (8.8) vanishes. Debye~Waller factor may

be regarded as the approximate value of the flrst factor
of (8.8).
k,2 -
1 -(%(Kui) )T . = egp[—wk(Kﬂ
Then the scattering intensity 1is represented as

1,k,21kF1(§*Fg'exp [, (K)] exp[-W, , (K)] exp[ 1K(R, )

I =2C3
+2y 'k'zikCFg*Fg'Q‘{u}i{) (Kuy, Dexp[1K(R, -8, )]
(8.9}
where the first term glves Bragg reflection and the second
term §1elds thermal diffuse scattering which may be observed
as the width of éragg reflection peak. The decregse of Bragg
reflectlon due to thermal vibratlons 1s compensated by the
increase of thermal diffuse séattering.

On the other hand, the representation of (8.1) 1is
eqﬁivalent to Born's first approximation incorporated on the
neutron scattering. Then the scattering intensity may be
derived in the same way with Chapter VI. The first term »
of (8.9) comes from the matrix element for elastic scattering
and the second term corresponds to single phonon inelastic
soatter;ng. Therefore, Debye~Wgller factor 1is obtalned in
the same way with (6.16),

2w, (K) = 3, (h/m N, ) [k, 02488, )2](14x,)/(1-x,)  (8.10)
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where iiéekp(éﬁﬁi/kT),tui‘is angular frequency of 1-th normal

vibratioh and summation,runs over all branches on N/2 points in
the rec}brOCal unit cell. Since 1n the X-ray diffraction

analysis, temperature factor tensor BQB 1s'def1ned‘by

2w, (K) = aEB ZBGB’[Bin(O/Z)/?\]Qﬁsln(e/Z)/?\]B - (8.11)
then BQB is represented as |
B 2 (8n 2t/ Ny ) [y ) (B y ) #(BL 4 ) (Byy ) g (14,0 /(1mx, )

(8.12)
On thévnumerical calculation, dynamical métrix was
diagbﬁalized about thé representative sets of phase differences
and'thehg with the uée of the interpolation method described
in (1.16), w,, A, and B , were obtalned at the interval of
1° of SG for every set of (Ba,Sb).
VII- 3 RESULTS AND DISCUSSIONS

~ Thus the mean squared atomlc dlsplacement of carbon
atom was calculated for about 120,000 modes below 700cm™
and collected in Fig. 1, where the histogram of amplitude
welghted frequency distribution are shoﬁn against the frequemncy

interval of 10 om™t

-and- 8011d llne represents the parallel
component of the atomlc displacement to the chain axis,
while the broken line represents the average of two compo-

" nents perpendicular to the chaln axis. Two prominent peaks

1 gna 190..,cm"1 in perpendicular case, which

‘appear at 90 cm”
are due to antlparallel tranqlgtory vibrations perpendicular
to the chain axis and the internal rotation, respectively.
The atomic displacement of carbon atom and hydrogen are
“1dentical in the traunslatory v;brationé whereés, in the

- rotatory modes around the chaln axis, the atomlc displacement
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' .of carbon atom is smaller than that of hydrogen atom.
-fTheréféré} the perpendicular peak at 150 cm™t which results
from dﬁeréll rotatory vibrations around the chaln axis, is

weak 1in thé case of carbon atom compared with the corresponding

peak of h&érogen atom. As for the parallel component, there

1

18 a peak at 560 cm™~, Which 18 assoclated with the skeletal

bending modes. The contribution of the skeletal bending

branch seems constant above 50 T may be éxpected

from the dispersion curves aiong Sc of Chapter IV, where

optical branches of the skeletal bending modes start almost

always from 50 cm™'. It is noticeable that, in the case of

“hydrogen atom, the peak of parallel compouent of the internal

rotation vibrgtlon 18 recognized at 190 cm'1 whereas there

1

1s no peak at 190 cm” = in the case of carbon atom.

In Fig. 2, the amplitude welighted frequency distribution

of ocarbon atom due to the intrachain vibrations are plotted

against the frequency ‘division of 20 em™t.  The perpendicular

1

. peak above 2800 cm” - 1is assoclated with C-H stretching

1

vibrations. - Near 1000 cm” ~ regiom, the perpendicular peaks

1 1

gre- weak and broad. Two weak peaks at 720 cm™ = and 1470 cm

are ‘due to methylene rocking and scissoring vibratione,

respécti?ely. As for the parallel case, four prominent peaksv

are recognized. The strong peaks at 970 and 1080 en™t are
assoclaﬁed with skeletal stretching vibration while the peaks

1

at 1430 'and 1490 cm™~ are mainiy due to methylene wagging and

scissoring vibrations. Vibratlonal displacement parallel to

the chain axis (solid line in Fig. 1 and Fig. 2) reduces the

intensity of Bragg reflection from the plane normal to the
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chain axis, whichvlé used for the determination of flber
prerlod of polymer single chain. _

Recent deveiopment of the growlng technlque of single
crystal would make 1t possible to observe each element of the
temperature factor temsor on polyethylene single crystal,
although the exact expérlmental value 1s not avallable yet.

Accordingly theoretical value of temperature factor teunsor
was calculated. The calculated results are shown in Table 1,
where a, b and ¢ mean the components of the scattering vector
(unit vector along momentum transfer vector) along the a, b
and ¢ axes, respectively.

 The value of temperature factor alonz the chaln axis 1sg
relatively small compared with the values perpendicular to the
chalin axis, in good agreement with the experimental results*ﬁ)
On the analyslis of X-ray diffraction from monoclinlc single

6) have obtalned the

crystal of C36H74, Shearer agnd Vand
isotropic temperature factor of B=3 82, at room temperature.
" Bunn has assumed the perpendicular components of temperature
factor as B =5 ﬂzon the structure analyeis of polyethylene,
Thefefore 1t 18 reasonable that the calculated value of the

2 .
temperature factor at room temperature is 3 2 for perpendicular

2
component and 1 8° ror parsllel compounent.

7) have investigated the temperature dependency

Chiba et al.
of the anisotropic temperature factor and found that the
. observed values lie on the stralght line, drawn between two
calculated values of 100°K and 298°K. Since, from the

expansion of (8.10) into power series of (hw/kT), Byg 18
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nearly proportional to T at higher temperatures, the experi-
ment proved that the anisotropy of the coefficient of the
calculgted temperature faotor against temperature well

reproduces the observed results at low temperature.

Y the other hand, the spaoe group of “the polyethylene
crystal includes mirror'perpendicular to the’chain akis,
therefore two cross Lerms of the temperature factor temsor,
Bac and Bbé; are always.zero; Then,'one of the pricipal
axes of the temperature faotor tensor 1s parallel to the chain
axis and other two axes are in the ab plane. As mentioned in

Chapter I1I, the setting angle of the skeletal plane to the a

axis is set to be hS therefore the calculated value of Baa

is almost equal to B_,. Numerical calculation about principal
akes led us to the result that one of the pricipal axen is
almost}ooinoioent with the normal of the skeletal plane and
the'other 1s in the skeletal plane. Two principal values
perpendioular to the ohain axls are given in Table 2, where
:out of—plane component of the princlipal values 1s larger

than the in-plane component. The result may be reasonable

because, among low frequency crystal vibrations, rotatory

vibrations around the chain axis contribute to out-of-plane
_oomponent'while only the translatory vibrations contribute to
:ineplane,oomponent. ln fact, the projection on (O,Q;l) plane
of contours of electroun density becomes more round as
-temperature 1s raisedB). | |

| In Table 3, the temperature factor is represented as

compoSite of the coutribution of each modes. The contribution

from acoustic branch 1s twice as large as the contribution from
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the antlparallel translatory vibrations. Since the lattice
modes vary with phase difference, the notation of the branch
1s not always exact.
With the use of Debye approximation, Debye-Waller factor
for isotropic monogtomic crystal 1s represented as
20, = (31K1%h%/m xep)[1/4 + (T/6))4(6,/T)] (8.13)

where M 1s mass of xth atém, 6, 1s Debye's characteristic

D
temperature and

#(z) = (1/2) [ Bas/[exp(p)-1] (8.14)

This approximatlon may be applied to more complex crystals Af
the frequéﬁcy of optlcal branch of lattice vibrations 1is so
high that the contributlon from optical braunch might be
neglected such as in graphlite. However, in polyethylene
crystal, the contribution from optical lattice vibratlons 1s
not negligible even at 100°K. BGB due to agacoustlic branches

are almost proportlongl to T as shown in Table 3, whereas the
temperature dependence of BaB assoclated with optlical lattice
vibrations depends upon individual mode. The contributlon from
intrachain vibrations above 700 v::m-1 may be disregarded in this
teﬁpérature region. Accordingly, the approximation of (8.13)

- may be insufficient when several optical modes of lattlice

vibrations lie below the cut~off frequency bf acoustlic modes.

SUMMARY
The temperature factor for X-ray diffraction of polyethylene
crystal'waé calculated from the thermal average of mean squared
atomic displacement of carbon atom. The calculated values at

room temperature 1s comparable with the experimental results.
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" The anisc‘;t’ropy and temperatuife‘ d‘epe:ndence ‘of the tsmpéfet;ture

factor WES'iﬁigééd*égreemeﬁtiﬁitﬁithe observed results.
The ampiiéﬁdéJWéighted‘freqdéncy'disﬁfibution oflcarbOn

atom was calculated and discussed in comparison with -that of

hydrogen afom;
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Table 1. Temperature factor tensor of polyethylene cryatal.(ﬂz)

100°k a b c 298°K & b c
a 1.1, =0.2, 0 a 3.31  =0.54 0
b -0.25 1.10 0 | b -0.54 3.0 0
c 0 0 0.37 c 0 0 0.8

Table 2. Principal values of the temperature factor tensor.(@z)

100°K 298°K
in-plane component 0.85 2.6
out of plane component 1.36 3.7

Table 3. The countribution of each branch.

mode Baa Bbb Bcc Bab
100°K rotatory 0.09 0.09 0 -0,08
trans.(l) acoustic 0.72 0.65 0.01 =0.11
trans.(l) optical 0.35 0.31 0.01 =0,01

trans.(/f) acoustic 0 0 0.17 0

trans.(/]) optical 0 0.01  0.11 0
intrachain modes 0.04 0.04 0.06 0.01
298°K rotatory 0.19 0.19 0 ~0.18
trans.(l) acoustic 2.26  1.94 0.03 ~0.31
trans.(l) optical 0.80 0.8fT 0.03 -0.07

trans.(//) acoustic 0.01 0,02 0.51 0

trans.(//) optical 0.01 0.01 0.26 0
intrachain modes 0.04 0.04 0.06 0.01
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