Osaka University Knowledge Archive

Title	CRYSTAL DYNAMICS AND RELATED SOLID STATE PROPERTIES OF POLYMERS
Author（s）	Kitagawa，Teizo
Citation	大阪大学，1969，博士論文
Version Type	VoR
URL	https：／／hdl．handle．net／11094／24578
rights	
Note	

Osaka University Knowledge Archive ：OUKA
https：／／ir．library．osaka－u．ac．jp／

CRYSTAL DYNAMICS AND RELATED SOLID STATE PROPERTIES OF POLYMERS

A Thesis
Submitted to Osaka University
in Fulfillment of the Requirements for the Degree
of
Doctor of Science

by
Teizo KItagawa
November, 1968

Title 1
Contents 11
Preface iv
Acknowledsements vii
List of Papers vili
Abstract x
Chapter I
Normal Vibrations and Related Physical Properties ofOrthorhombic Crystals.1
Chapter II
Normal Vibrations, Interchain Force Field,Frequency Distribution and Specific Heat ofPolyethylene Crystal.36
Chapter III
Acoustic Phonons and Low Temperature Specific Heat ofPolyethylene Crystal.74
Chapter IV
Symmetry of Crystal Vibrations, Dispersion Curves and Infrared Bands due to Combination Vibrations. 91
Appendix I
Irreducible Representations of Their Base Functions of k Groups of Polyethylene Crystad. 126
Compatibility Relations of Dispersion Curves. 1.35
Dispersion Curves of Deuterated Polyethylene Crystai 137
Chapter V
Elastic Constants of Polyethylene Crystal. 143
'hapter VI
A Refined Method for Treating One- and Multi-Phonon Incoherent-Scattering Cross Sections of Neutrons. 162
Appendix II
Proof for Matrix Element $I_{v, v+\lambda}$ 184
Chapter VII
Neutron Scatterinp by Crystal Vibrations of Polyethylene. 186
Chapter VIII
Temperature Factor for X-ray Diffraction of Polyethylene Crystal. 225
List of T'ables 240
List of Figures 244

PREFACE

Spectroscopic, thermodynamic, elastic, and crystallographic measurements have been carried out on polymer crystals. The basic theory for each measurement has been established, although of ten the theory is written for the simplest model such as monoatomic cubic crystal and is not quite applicable to polymer crystals. Accordingly, interpretations of individual data have been made but no consistent analyses have been carried out systematically with realistic structure models.

All these data, however, are related directly or indirectly with the force field of the crystal. Accordingly, in the present series of studies, available experimental data on the crystalline region of polyethylene were systematically analysed on the basis of the force field of the polyethylene crystal.

Before proceeding to numerical calculation, correlations of individual experimental data with the intrachain and interchain force field and/or normal vibrations were theoretioally treated with the real structure of polyethylene crystal. For most data, theories for polymer crystals were written out so as to be readily programmed for numerical calculations with electronic computers. It was also necessary to develop approximate method of calculations without affecting numerical values of interest.

In the present thesis studies, practical methods were finally worked out for systematically treating several
physical properties of polymer crystals, namely
Intrachain and interchain force fleld,
Infrared absorption and Raman scattering due to lattice vibrations or interchain vibrations,

Splitting of infrared bands and Raman lines due to intrachain vibrations,

Frequency distribution of crystal vibrations, Specific heat below $150^{\circ} \mathrm{K}$ and especially specific heat below $10^{\circ} \mathrm{K}$,

Elastic and inelastic neutron-scattering cross sections and their anisotropy,

Sound velocity and macroscopic elastic constants and Young's moduli,

Temperature factor tensor for x-ray diffraction intensity,
Symmetry of crystal vibrations and frequency dispersion curves,

Infrared bands due to combinations of crystal vibrations. The physical properties calculated, in the present studies, on the polyethylene crystal are in good agreement with corresponding experimental data. Various experimental data are now interpreted consistently on the basis of the intrachain and interchain potential functions. The present force field may also be used for estimating some new physical properties, for example, the frequency distribution curves of perdeuterated polyethylene crystal or elastic constants of polyethylene crystal.

In the present treatments, various physical properties were treated with harmonic force field. However, as forth. coming projects, thermal expansion or temperature dependency
of vibrational frequencies and elastic constants are still left for theoretical treatments on the basis of anharmonic force fields. Physical properties of aisordered part or amorphous region of polymer material are left for next higher stage of theoretical treatments.

Teizo Kitagawa

ACKNOWLEDGMENTS

The author wishes to express his sincere gratitude to Professor Tatsuo Miyazawa for his guidance and kind encouragement. The author is also grateful to Professor Masao Kakudo of Osaka University, Dr. Kunio Fukushima of Shizuoka University, and Dr. Tsuneo Takano of Osaka University for their help and encouragement. Thanks are also due to Mrs. Yoshiko Tanigawa, Mr. Hiromu Sugeta and all other members of the Professor Miyazawa's laboratory and Mr. Nobuo Tanaka of Tottori University for their help and discussions.

The author is indebted to Dr. Mitsuo Tasumi of the University of Tokyo for his stimulating discussions.

The author is grateful to Professor Akiyoshi Mitsuishi of Osaka University for the measurement of far infrared spectrum of polyethylene and to Professor Akira Odajima of Hokkaido University for his discussions.

A) PAPERS CONTAINED IN THIS THESIS

1) Crystal Vibrations, Specific Heat, and Elastic Moduli of the Polyethylene Crystal.
T. Miyazawa and T. Kitagawa
J. Polymer Sci., B2, 395 (1964).
2) Frequency Distribution of Crystal Vibrations and Specific Heat of Polyethylene.
T. Kitagawa and T. Miyazawa

Rept. Progr. Polymer Phys., Japan, 8, 53 (1965).
3) Inelastic Scattering Cross Section of Neutron by Crystal Vibrations of Polyethylene.
T. Kitagawa and T. Miyazawa

Rept. Progr. Polymer Phys., Japan, 10, 185 (1967).
4) Inelastic Scattering Cross Section of Neutron by Crystal Vibrations of Polyethylene.
T. Kitagawa and T. Miyazawa
J. Chem. Phys., 47, 337 (1967).
5) Interchain Potential, Frequency Spectrum, Specific Heat. and Root Mean Squared Displacement in Polyethylene Crystal.
T. Kitagawa and T. Miyazawa

Rept. Progr. Polymer Phys., Japan, 11, 219 (1968).
6) Crossmsection for Multi-phonon Scattering of Neutrons by Crystalline Polyethylene.
T. Kitagawa and T. Miyazawa
J. Polymer Sci., B6, 83 (1968).

B) REFERENCE PAPERS

1) Interchain Potential, Frequency Distribution and Specific Heat of Polyoxymethylene Crystal. .
T. Kitagawa and T. Miyazawa

Inter. Symp. Macromol. Chem., Tokyo (paper 2.5.04)(1966).
2) Interchain Potential, Frequency Distribution and Specific Heat of Polyoxymethylene Crystal.
T. Kitagawa and T. Miyazawa

Rept. Progr. Polymer Phys., Japan, 2, 175 (1966).
3) Thermal Expansion of Polyethylene Crystal in the Quasi Harmonic Approximation.
A. Odajima, T. Maeda, M, Sato, T. Kitagawa and T.Miyazawa

Rept. Progr. Polymer Phys. Japan, 11, 209 (1968).
4) Energy Difference between Rotational Isomers of Methyl Ethyl Ether.
T. Kitagawa and T. Miyazawa

Bull. Chem. Soc. Japan, 41, 1976 (1968).

ABSTRACI

Chapter I NORMAL VIBRATIONS AND RELATED PHYSICAL PROPERTIES OF ORTHORHOMBIC CRYSTALS.

The crystal vibrations are specified with phase-difference vectors of vibrational displacements, and accordingly Cartesian symmetry coordinates of orthorhombic crystals were derived in a general form. A practical method was derived for calculating the frequency distribution, specific heat and Young's moduli along the direction perpendicular to the chain axis.

As a preliminary study, polyethylene crystal was treated where methylene groups were regarded as single dynamy instSince the experimental specific heat of polyethylene obeys the T^{3} law below $10^{\circ} \mathrm{K}$, the coefficient of T^{3} was derived analytically and is found to be nearly proportional to $P^{-3 / 2}$, where P is proportional to the interchain force constants.

Chapter II NORMAL VIBRATIONS, INTERCHAIN FORCE FIELD, FREQUENCY DISTRIBUTION AND SPECIFIC HEAT OF POLYETHYLENE CRYSTAL.

In the refined treatment, vibrational displacements of hydrogen atoms as well as of carbon atoms were taken into account. The force field of Schachtschneider and Snyder was used as the intrachain potential function. Four hydrogen-hydrogen interaction terms as introduced by Tasumi and Shimanouchi were incorporated as the interchain potential function. The force constants were adjusted with reference to experimental data on the specific heat below $10^{\circ} \mathrm{K}$, the infrared-active lattice vibrations and band splitting of intrachain vibrations.

There are thirty-six branches of crystal vibrations, but only eight of them lie in the region below $700 \mathrm{~cm}^{-1}$. Therefore, a practical method was worked out for treatings
low-frequency crystal vibrations only. The computer-time was drastically shortened, although calculated frequencies were accurate within $3 \mathrm{~cm}^{-1}$.

The frequency distribution below $700 \mathrm{~cm}^{-1}$ was numerically calculated with the root-sampling method, for treating the specific heat of the crystalline region.

The calculated resujta of the ontinainyactive latticevibration frequencies, band splitting of intrachain vibrationa, Young's moduli, frequency distribution snd specific heat agree closely with corresponding experinental data.

Chapter III ACOUSTIC PHONONS AND LOW-TEMPERATURE SFECIFIC HEAT OR pOLYETHYLENE CRYGTAL.

The specific heat below $10^{\circ} \mathrm{K}$ depents primarily upon three acoustic branches of crystal vibrations. Accordingly, the dynamical matrix for three acoustic phonons were derived by the second order perturbation method. Interactions among acoustic modes were thus incorporated, and the constantfrequency surfaces were, in fact, distorted from ellipsoidal surfaces. From the volume surrounded by those surfaces, the frequency distribution was obtiained analytically and was found to agree well with the frequency distribution calculated from the root-sampling method. The specific heat calculated from the frequency distribution of the acoustic phonons agrees closely with the experimental data by Tucker and Reese.

Chapter IV SYMMETRY OF CRYSTAL VIBRATIONS, DISPERSION CURVES AND INFRARED BANDS DUE TO COMBINATION VIBRATIONS.

Frequency dispersion curves of the polyethylene cryatal were calculated on the surfaces of the first Brillouin zone. The symmetry properties of those branohes and the compatibility of the dispersion curves were derived on the basis of k group of the space group. The irreducible multiplier corepresentation developed by Maradudin was also applied to polyethylene crystal, and the degeneracy due to time reversal
symmetry was deduced. The theoretical degeneracy derived from the group-theoretical analyses coincides exactly with the results of numerical calculation of vibrational frequencies.

Combinations of crystal vibrations with $+\delta$ and of those with - δ may become infraredmactive. The symmetry of combination levels is derived from direot product of the irreducible representation of the k group. From the frequency distribution of combination vibrations, infrared bands are expected near 240,280 and $380 \mathrm{~cm}^{-1}$, in good correspondence with the bands observed near 240,280 and $340 \mathrm{~cm}^{-1}$.

Chapter V ELASTIC CONSTANTS OF POLYETHYLENE CRYSTAL.
Born's formulation of elastic constants is not necessarily convenient for treating molecular crystals. The matrix formulation by Shiro is much more useful for treating molecular crystals. Also symmetry consideration is readily applicable to matrix formulations.

For the orthorhombic crystal of polyethylene, the elastic constants of $c_{11}, c_{22}, c_{33}, c_{23}, c_{31}$, and c_{12} belongs to A_{g} species while c_{44}, c_{55}, and c_{66} belong to $B_{1 g}, B_{2 g}$, and $B_{3 g}$ species, respectively. These elastic constants of polyethylene were calculated from the force field of the polyethylene crystal.

Correlations of elastic constants with dispersion curves of acoustic phonons are discussed. The dynamical matrix for the elastic waves of three-dimensional continuum is equivalent to the dynamical matrix for the three acoustic phonons.

The Young's moduli along the a, b, and c axes of polyethylene were also calculated, in good agreement with the experimental results of the $X-\dot{r} a y$ diffraction measurement by Sakurada et al.

Chapter VI A REFINED METHOD FOR TREATING ONE- AND MULTIPHONON NEUTRON-SCATTERING CROSS SECTIONS.

In crystals containing hydrogen atoms, thermal neutrons are scattered primarily from hydrogen nuclei (incoherent scattering). For inelastic scattering, there is no selection rule related with symmetry properties of crystal vibrations, and accordingly the energy spectrum of inelastically scattered neutrons provides important informations on normal vibrations of crystals and polymer chains.

The basic theory of neutron scattering has already been established, although the model used is too simple to be applicable to vibrational analyses on polyethylene crystal.

In the present study, therefore, the differential cross sections for one-phonon and multi-phonon scattering processes were derived from Fermi's pseudo potential and Born's first approximation. The concept of transition probabilities was used and the equations for cross sections were written go as to be readily programmed for electronic computers.

Multi-phonon scattering cross sections derived here are essentially identical with those derived from time dependent correlation function, although the present formulation is much more convenient for numerical calculations.

Chapter VII NEUTRON SCATYERING BY CRYSTAL VIBRATIONS OF POLYETHYLENE.

As for polyethylene crystal, the differential cross sections of neutron-scattering have been measured at various temperatures with both of the up- and down-scattering techniques. The anisotropy of the scattering cross sections has also been observed for uniaxially oriented target of polyethylene crystal.

For theoretical analyses of these experimental data, the differential cross sections for one-, two- and threephonon processes were calculated from the vibrational frequencies and vibrational displacements of hydrogen nuciei involved in crystal vibrations of polyethylene.

The anisotropic cross sections and phonon density curves calculated for the up- and down-scattering experimental conditions are in accord with the experimental results on the scattering peak-intensities and anisotropy.

Chapter VIII TEMPERATURE FACTOR FOR X-RAY DIFFRACTION OF POLYETHYLENE CRYSTAL.

From the polyethylene crystal, x-ray is primarily scattered by electron clouds of carbon atoms. As the scattering angle is increased, intensities of diffraction peaks are lowered because of thermal vibrations of scattering atoms.

In the present study, the mean squared displacements of carbon atoms were calculated from the vibrational frequencies and vibrational displacements of carbon atoms involved in crystal vibrations of polyethylene.

The temperature factor tensor was calculated, in good agreement with the experimental data on the magnitude and anisotropy. From the numerical calculation, three principal axes of the temperature factor tensor were obtained; the first one is parallel to the chain axis, and the second and third ones are normal and parallel, respectively, to the skeletal plane.

CHAPTER I

NORMAL VIBRATIONS AND RELATED PHYSICAL PROPERTIES OF ORTHORHOMBIC CRYSTALS

I-1 INTRODUCTION

Physicochemical properties of polyethylene crystal have been investigated in various ways and it is significant, at present stage, to relate them with one another selfconsistently. Some of them are concerned with frequencies or atomic displacements of thermal vibrations and therefore may be treated systematically on the basis of the potential function of the crystal.

Wunderlich has measured the specific neat of polyethylene ${ }^{1)}$ and, referring to all the observed values ${ }^{2)}$, has obtained the specific heat of the crystal part of polyethylene with the use of extrapolation method. 3) It obeys T^{3} law at the lowest temperature and is almost proportional to T in the temperature region below $70^{\circ} \mathrm{K}$. Stockmeyer and Hecht ${ }^{4}$) have studied the specific heat of an anisotropic crystal and have derived it as function of atomic force constants where the an1sotropy has been taken into account through force constants assumed in a tetragonal lattice. Tarasov ${ }^{5)}$ has regarded chain polymers as elastic rods which have weak interactions between the nearest neighbors. He represented the specific heat of polymer crystals with two Debye temperatures, namely, θ_{1} and θ_{3}, which are one-dimensional and three-dimensional characteristic temperatures, respectively. By adjustins θ_{1} and θ_{3} suitably, the experimental values of the specific
heat of polyethylene crystal may be represented in fairly wide region of temperature. ${ }^{3)}$ However, the model used does not match the polyethylene crystal and the physical meaning of θ_{1} and θ_{3} is not always clear, because low-frequency optical modes of interchain vibrations lie velow the cut-off frequencies of acoustic branches and the frequency distribution might not be simple like Debye approximation.

On the other hand, the intramolecular force field of hydrocarbon molecules have been refined systematically. 6-9) Also the general theory of molecular vibrations of chain polymers have been already established. 10-11) Accordingly, it is now practical to treat the crystal vibrations of polyethylene on the basis of the intrachain and interchain potential functions.
 optical active vibrations of three dimensional crystal, 13) but Cartesian coordinate system is convenient for treating all vibrations including acoustic branches and optically inactive modes. Accordingly, in the present study, basic formulation of normal soordinate treatment and a practical method of calculating the frequency distribution and specific heat were provided. Since the frequency of the internal modes of methylene group lie above $700 \mathrm{~cm}^{-1}$ and they contribute little to the specific heat below $150^{\circ} \mathrm{K}$, methylene groups were regarded as single dynamic unit on the preliminary calculation about polyethylene crystal.

I-2. NORMAL COORDINATE TREATMENT
Normal modes of the orthorhombic crystals are specified
with a set of three phase differences, δ_{a}, δ_{b}, and δ_{c} which are phase differences of vibrational displacement between two adjacent unit cells along the a, b, and c axes, respectively. The travelling direction of a phonon is parallel to k vector (k_{a}, k_{b}, k_{c}) of the phonon, which is related with the phase difference vector as $\delta_{a}=a_{o} k_{a}, \delta_{b}=b_{o} k_{b}$, and $\delta_{c}=c_{o} k_{c}$ where a_{0}, b_{0} and c_{0} are latitice constants. For a given phase difference vector, there are $3 n$ modes of covstal vibrations where n is the number of atoms per unit cell. Accordingly $3 n$ Cartesian symmetry coordinates for a given phase difference vector were derived as

$$
\begin{equation*}
S(\delta)=U(\rho, \delta) X(p) \tag{1.1}
\end{equation*}
$$

where $S(\delta)$ is a Cartesian symmetry coordinate vector with $3 n$ components, $\mathrm{U}(\rho, \delta)$ is a unitary matrix for symmetry transiormation and $X(f)$ is a Cartesian displacement coordinate vector of p-th unit cell. The kinetic energy (T) and potential energy (V) of crystal are represented in a metrix form as

$$
\begin{align*}
& 2 T=\widetilde{\mathbf{S}}(\delta) M_{S} \dot{S}(\delta) \tag{1.2}\\
& 2 V=\widetilde{\mathbf{S}}(\delta) W_{S}(\delta) S(\delta) \tag{1.3}
\end{align*}
$$

where

$$
\begin{aligned}
& M_{S}=U(p, \delta) M_{X} \tilde{W}(\rho, \delta) \\
& F_{S}(\delta)=U(\rho, \delta) \widetilde{B}(\rho) F_{\mathrm{R}} B(p) \tilde{W}(p, \delta)
\end{aligned}
$$

M_{S} is $3 n$ dimensional diagonal matrix whose elements are mass of atoms, F_{R} is the potential energy matrix of orystal based on the internal coordinate system and $B(\rho)$ is a usual D matrix ${ }^{12)}$, that $1 s, \mathbb{R}=\sum_{\rho} B(\rho) X\left(e_{e}\right) . F_{S}(\delta)$ is the potential energy matrix based on the Cartesian symmetry coordinate system, dimension of which is $3 n$.

The Cartesian symmetry coordinates can be written as Inear combination of the normal coordinates, $Q(\delta)$, of the crystal.

$$
\begin{equation*}
\boldsymbol{S}(\delta)=\boldsymbol{L}^{0}(\delta) \mathbf{Q}(\delta) \tag{1.4}
\end{equation*}
$$

With the use of normal coordinates, the kinetic energy and potential energy are represented as

$$
\begin{align*}
& 2 T=\widetilde{\hat{Q}}(\delta) E \dot{Q}(\delta) \tag{1.5}\\
& 2 \mathrm{~V}=\widetilde{Q}(\delta) \wedge(\delta) Q(\delta) \tag{1.6}
\end{align*}
$$

where E is unit matrix and $\Lambda(\delta)$ is a diagonal matrix whose elements are eigenvalues $\left(\lambda_{11}=4 \pi^{2} c^{2} \nu_{1}^{2}\right)$. The equivalence of two types of representations, that is (1.2), (1.3) and (1.5) (1.6), leads us to the secular determinant,

$$
\begin{equation*}
\left|M_{S}^{-1} F_{S}(\delta)-\Lambda(\delta)\right|=0 \tag{1.7}
\end{equation*}
$$

The eigenvector matrix of $M_{S}^{-1} \mathbf{F}_{S}(\delta)$ is proved to be $L^{0}(\delta)$. Since a symmetric matrix is more convenient to treat, the dynamical matrix defined by (1.8) is used instead of $M_{S}^{-1} F_{S}(\delta)$,

$$
\begin{equation*}
D_{S}(\delta)=M_{S}{ }^{-\frac{1}{2}} \mathbf{F}_{S}(\delta) M_{S}^{-\frac{1}{2}} \tag{1.8}
\end{equation*}
$$

where $M_{S}{ }^{-\frac{1}{2}}$ is a diagonal matrix, the elements of which are inverse of square root of atomic mass. Then the eigenvector matrix of the dynamical matrix becomes unitary and is represented as $L_{S}(\delta)$.

$$
\begin{equation*}
\mathbf{L}_{S}(\delta)=M_{S}^{\frac{1}{2}} \mathbf{L}^{0}(\delta) \tag{1.9}
\end{equation*}
$$

The use of $\mathbf{S}(\delta)$ reduces the secular determinant of the crystal vibrations into the corresponding blocks of phase difference vector, each of which is 3n-dimensional symmetric matrix, called Fourier transformed dynamical matrix. The incorporation of the space symmetry of the crystal may reduce the dynamical matrix into smaller blocks.

I. 3 SYMMETRY COORDINATES

n atons in the unit cell can be classified into several $\operatorname{sets}\left(\beta=1,2, \cdots \cdots, n_{s}\right)$ of equivalent atoms on the basis of the space symmetry. For the $\beta-t h$ set with m_{β} equivalent atoms, $3 m_{\beta}$ symmetry coordinates may be constructed for $\delta=0$ and the same type of symmetry coordinates can be applied to other sets of atoms on the equivalent sites. On the other hand, under thermal vibrations, full symmetry of the space group is not always kept. The symmetry of crystal vibrations is generally characterized by k group ${ }^{14 \text {), which is a subgroup }}$ of the posit group of the space group. The dynamical matrix $D_{S}(5)$ of the oryetal vibrations may possibly be factorized into symmetry species of the k group. Usually, on the surface of the first Biillouin zone, some operations beside identity operation make the k vector invariant while, at the inner points of the zorie: only the identity operaition constitutes the k group. Accordingly, at the general points of the first Brillouin zone, symmetry transformations factorize the dynamical matrix no more and only numerical diagonalization yields the eigen-frequency of the crystal vibrations. Then the coordinates which take the shortest time for numerical diagonalization on general value of phase difference vector is the most suitable for the present treatment. Since the highest symmetry is satisfied at $\delta=0$, the dynamical matrix may be factorized into the smallest blocks with the symmetry transformation, each of which belongs to the irreducible representation of the point group of the space group. The compatibility relation shows that symmetry coordinates at $\delta=0$ also belong yet to one of symmetry species of k group
on the adjacent surface of the Brillouin zone. Besides, so-called time reversal degeneracy need not be considered for $\delta=0.15$) Accordingly, the symmetry coordinate at $\delta=0$ is used through whole the δ space, which are derived below.

A symmetry operation, R_{1} of the space group consists of rotation, α_{1} and nonprimitive translation $\boldsymbol{\tau}_{1} \cdot \alpha_{1}$ is three dimensional orthogonal matrix and τ_{1} is index vector. Both of p and τ are represented as the set of a coefficient with regard to the lattice constants. Supposing $\rho_{j}^{\beta}(L)$ and $\eta_{j}^{\beta}(L)$ $\left(j=1,2, \ldots m_{\beta}\right)$ are the index vector of $j-$ th atom of β th set of atoms in L-th unit cell and its atomic displacement vector, respectively, then

$$
\begin{equation*}
\eta_{j}^{\beta}(L)=(1 / N)^{\frac{1}{2}} \Sigma_{\delta} \xi_{j}^{\beta}(\delta) \exp \left[-1 \rho_{j}^{\beta}(L) \delta\right] \tag{1.10}
\end{equation*}
$$

where N is the total number of unit cells, $\xi_{j}^{\beta}(\delta)$ is the amplitude factor of $j-$ th atom of β th set and summation runs over N points in the region of $0 \leq\left|\delta_{a}\right|,\left|\delta_{b}\right|,\left|\delta_{c}\right| \leq \pi$. The inverse transformation of (1.10) provides

$$
\begin{equation*}
\xi_{j}^{\beta}(\delta)=(1 / N)^{\frac{1}{2}} \Sigma_{L} \eta_{j}^{\beta}(L) \cdot \exp \left[1 \rho_{j}^{\beta}(L) \delta\right] \tag{1.11}
\end{equation*}
$$

The irreducible representation of the point group (the k group at $\delta=(0,0,0)$) associated with orthorhombic system is always one dimensional. Supposing the operation R_{j} transforms p_{1}^{β} into p_{j}^{β}, the symmetry coordinate corresponding to μ-th irreducible representation is given by

$$
\mathbf{S}^{\mu}(\delta)^{\beta}=\left(m_{\beta} N\right)^{-\frac{1}{2}} \sum_{R_{j}}^{\beta_{L}} \sum_{\mathrm{L}} \boldsymbol{H}^{\mu}\left(\alpha_{j}\right) \alpha_{j} \eta_{j}^{\beta}(\mathbf{L}) \exp \left\{1\left[\alpha_{j} \rho_{1}^{\beta}(\mathbf{L})+\boldsymbol{C}_{j}\right] \delta\right\}
$$

where $\Gamma^{\mu}\left(\alpha_{j}\right)$ is the character of $\mu-t h$ irreducible representation of the point group of the space group for operation R_{j}. Thus derived $s^{\mu}(\delta)^{\beta}$ is complex-number coordinate while realnumber coordinate is more convenient for computation. The
corresponding real number coordinate may be derived mith standing wave as, 16-17)

$$
\begin{align*}
& \mathbf{S}^{\mu \mathrm{C}}(\delta)^{\beta}=\left(2 / \mathrm{m}_{\beta} N\right)^{\frac{1}{2}} \sum_{R_{j}} \sum_{\mathrm{L}} T^{\mu}\left(\alpha_{j}\right) \cdot \alpha_{j} l_{j}^{\beta}(L) \cos \left\{\left[\alpha_{j} \rho_{1}^{\beta}(\mathbb{L})+\tau_{j}\right] \delta\right\} \tag{1.13}\\
& \mathbf{S}^{\mu s}(\delta)^{\beta}=\left(2 / m_{\beta} N\right)^{\frac{1}{2}} \sum_{R_{j}} \sum^{\mu} T^{\mu}\left(\alpha_{j}\right) \cdot \alpha_{j} q_{j}^{\beta}(L) \sin \left\{\left[\alpha_{j} p_{1}^{\beta}(L)+\varepsilon_{j}\right] \delta\right\}
\end{align*}
$$

and then the atomic displacement vector becomes

$$
\eta_{j}^{\beta}(L)=(2 / N)^{\frac{1}{2}} \sum_{\delta>0} \xi_{j}^{\mathrm{c} \mathrm{\beta}}(\delta) \cos \left[\rho_{j}^{\beta}(L) \delta\right]+\sum_{j}^{\mathrm{S} \beta}(\delta) \sin \left[\rho_{j}^{\beta}(\mathrm{L}) \delta\right] \quad \text { (1.14) }
$$

where the sumation runs over $N / 2$ points in half of the first Brillouin zone. By this transformation, the order of the dynamical matrix is generally doubled as

$$
\left[\begin{array}{ll}
D_{1}(\delta) & D_{2}(\delta) \\
D_{2}(\delta) & D_{1}(\delta)
\end{array}\right]
$$

where $D_{1}(\delta)$ is symmetric matrix and $D_{2}(\delta)$ is skew symmetric matrix. 16) The method of diagonalizing the doubled dynamical. matrix has been estabilshed. ${ }^{16)}$

When center of inversion exists in the cryatal ($D_{2 h}$), the operation charuges η_{j}^{β} and δ into $-\eta_{j}^{\beta}$, and $-\delta$ without nonprimitive translation and therefore, both of $s^{\mu C}(\delta)^{\beta}$ and $s^{\mu \delta}(\delta)^{\beta}$ become either symmetric or antisymmetric to inversion on any value of δ. Accordingly, the existence of the center of inversion removes the cross terms $D_{2}(\delta)$ of two types of coordinates of $S^{\mu C}(\delta)$ and $S^{\mu s}(\delta)$. Then the dynamical matrix of doubled order is reduced to two identical real symmetric matrices of $3 n$ dimension.

I-4 SYMMETRY COORDINATES FOR POLYETHYLENE CRYSTAL
The crystal structure of orthorhombic polyethylene has been analysed by Bunn ${ }^{18)}$ with X-ray diffraction method. Two molecular chains pass along the c axis and there are four methylene groups per unit cell. Since methylene group
is regarded as single dynamic unit, all atoms are equivalent, that is, $n=4, n_{s}=1, m_{1}=4$. On the incorporation of freedom of hydrogen atoms, n_{s} would become 3. The symmetry of the unit cell is $P_{\text {nam }}$, isomorphous to point group $D_{2 h}$. Lattice constants at room temperature are $a_{0}=7.40, b_{0}=4.93$ and $c_{0}=2.54 \AA$ and valence angle of $C-C-C$ is 112°. The setting angle of the skeletal zigzag plane is reported to be 48.7° to the a axis.

As shown in Fig. 1, unit cells are specified with three integers, h, k, and 1 instead of vector L of preceding section. h denotes the index of the unit cell along the a axis, k along the b axis and 1 along the c axis, respectively. On the primitive transiation, one of the indexes varies by whole number. Two molecular chains in a unit cell are specified with the set of two indexes as (h, k) and ($h+\frac{1}{2}, k+\frac{1}{2}$). Two methylene groups in the same chain may be distinguished by the last index as $(1+1 / 4)$ and $(1-1 / 4)$. The index vectors of four methylene groups are as follows;

$$
\begin{array}{ll}
\rho_{1}(h, k, 1)=(h, k, 1+1 / 4) & \rho_{3}(h, k, 1)=\left(h+\frac{1}{2}, k+\frac{1}{2}, 1+1 / 4\right) \\
\rho_{2}(h, k, 1)=(h, k, 1-1 / 4) & \rho_{4}(h, k, 1)=\left(h+\frac{1}{2} \cdot k+\frac{1}{2}, 1-1 / 4\right)
\end{array}
$$

α_{1} and τ_{1} for eight operations of polyethylene crystal are given in Table Ai. The real symmetry coordinates derived in (1.13) are represented in Table 1 , where summation about n, k and 1 and factor $(2 N)^{-\frac{1}{2}}$ are omitted. Because of the summation, apparent difference of $s i g n$ of h, k, and 1 has no physical meaning. For instance, ($+\mathrm{h},+\mathrm{k},+1-1 / 4$) is equivalent to ($-h,-k,-1-1 / 4$) and ($h+\frac{1}{2}, k+\frac{1}{2}, 1-1 / 4$) is equivalent to $\left(h-\frac{1}{2}, k-\frac{1}{2}, 1-1 / 4\right)$. The components of ξ_{j} are written as x_{j}, y_{j} and z_{j} in Table 1. Thus derived twenty-four symmetry
coordinates (twelve for $\mathbf{s}^{\mu c}(\delta)$, and twelve for $\mathbf{S}^{\mu s}(\delta)$) are divided into two groups by center of inversion. After the operation of inversion, the following twelve coordinates are invariant; $S_{x}^{C}\left(A_{g}\right), S_{y}^{c}\left(A_{g}\right), S_{z}^{S}\left(A_{u}\right), S_{x}^{C}\left(B_{3 g}\right), S_{y}^{c}\left(B_{3 g}\right), S_{z}^{S}\left(B_{3 u}\right)$, $S_{x}^{S}\left(B_{1 u}\right), S_{y}^{S}\left(B_{1 u}\right), S_{z}^{C}\left(B_{1 g}\right), S_{x}^{S}\left(B_{2 u}\right), S_{y}^{s}\left(B_{2 u}\right), S_{z}^{C}\left(B_{2 g}\right)$, where the symbol in bracket denotes the symmetry at $\delta=0$. These are symmetric and the others are antisymmetric to inversion. In $D_{2 h}$ system, the irreducible volume of the first Brillouin zone is $1 / 8$ of the first Brillouin zone and therefore $0 \leq \delta_{a}, \delta_{b}, \delta_{c} \leq \pi$ is sufficient. $U(\rho, \delta)$ of (1,1) for the polyethylene crystal is given in Table 2.

I-5 POTENTIAL FUNCTION

Infrared spectrum and intrachain potential function or polyethylene have been studied in detail. 19-23) Normal frequencies of polyethylene single chain ${ }^{8)}$ and of the crystal ${ }^{24}$). have been calculated rigorously as function of δ_{c} by Tasumi. It deduces that the maximum frequency of the skeletal bending branch and the internal rotation branch lie near $500 \mathrm{~cm}^{-1}$ and $200 \mathrm{~cm}^{-1}$, respectively.

In the present study, three types of intermethylene potential terms, p_{1}, p_{2} and p_{3} in Fig. 2, which are relatively in close contacts, are incorporated as well as the intrachain potential function. The equilibrium distances and the number of potential terms per unit cell are shown in Table 3. The potential energy of the crystal is written in a quadratic form of displacement,

$$
2 \mathrm{~V}=\sum\left[\mathrm{K}(\Delta \mathrm{r})^{2}+\mathrm{H}(\Delta \phi)^{2}+\mathrm{F}(\Delta \mathrm{q})^{2}+\mathrm{Y}(\Delta t)^{2}+\mathrm{P}_{1}\left(\Delta \mathrm{p}_{1}\right)^{2}+\mathrm{P}_{2}\left(\Delta \mathrm{p}_{2}\right)^{2}+\mathrm{P}_{3}\left(\Delta \mathrm{p}_{3}\right)^{2}\right]
$$

where Δr is bond stretching, $\Delta \phi$ is skeletal bending, Δt is
internal rotation, and Δq is repulsion terms of nonbonded carbons in a chain. $\Delta p_{1}, \Delta p_{2}$ and Δp_{3} are change of intermethylene distance. K, H, Y, F, P_{1}, P_{2}, and P_{3} are their force constants. Summation runs over the crystal. The values of K, H, Y, and F were chosen so as to reproduce the $\nu-\delta_{C}$ curve closely which had been obtained in the complete treatment of polyethylene single chain. 8) The interchain force constants were adjusted on the basis of the specific heat below $10^{\circ} \mathrm{K}$, where in order to decrease the number of parameters, P_{1} is assumed to be equal to P_{2} because of nearly same distances.

I-6 LATTICE VIBRATIONS AND THE FREQUENCY DISTRIBUTION Dispersion curves of low frequency crystal vibrations are drawn apainst δ_{c} in Fig. 3, where δ_{a} and δ_{b} are set to be 0. If there is no interaction between adjacent molecules, all of these eight branches would approach to $0 \mathrm{~cm}^{-1}$ as δ_{c} approaches to 0 , and there would appear four doubly degenerate curves. At the limit of $\delta_{c}=0$, three of these curves would correspond to translations along three orthogonal axes and one of them would correspond to rotation around the chain axis. However, on account of interchain interactions the degeneracy is actually removed and the dispersion curves do not cross one another. Here, three of eight curves still approach to $0 \mathrm{~cm}^{-1}$ as δ_{c} approaches to 0 . They are acoustic branches of the crystal. The remaining five modes are optical lattice vibrations whose frequencies and symmetry species are shown in Fig. 4. $B_{1 u}$ and $B_{2 u}$ vibrations are antiparallel translatory vibrations along the b and a axes, respectively. They are infrared active modes.

There are two lattice vibrations of rotation around the chain axis. The mode, in which two chains rotate in the same direction, belongs to $\mathrm{B}_{3 g}$ while the other belongs to A_{g}. They are expected to be Raman active. The last mode, antiparallel translatory vibration along the c axis belongs to A_{u} which is inactive both in Raman and infrared spectrum. The experimental value of this frequency is expected to be observed only in neutron inelastic scattering.

For representative combinations of δ_{a}, δ_{b} and δ_{c}, $\mathrm{D}_{\mathrm{S}}(\delta)$ was derived and diagonalized. All these calculations have been carried out with NEAC-2201 electronic computer. As the representative values of δ_{a} and δ_{b}, nine values $\left(10^{\circ}\right.$, $30^{\circ}, 50^{\circ}, 70^{\circ}, 90^{\circ}, 110^{\circ}, 130^{\circ}, 150^{\circ}, 170^{\circ}$) were adopted. For every set of δ_{a} and δ_{b}, ten values of $\delta_{c}\left(0^{\circ}, 5^{\circ}, 10^{\circ}\right.$, $20^{\circ}, 40^{\circ}, 60^{\circ}, 90^{\circ}, 120^{\circ}, 150^{\circ}, 180^{\circ}$) were taken up. Variation of δ_{a} or δ_{b} provides small change of frequency whereas that of δ_{c} shows great change. It comes from the fact that the contribution of intrachain force field does not vary with δ_{a} or δ_{b} but varies with δ_{c}. For larger δ_{c}, all modes behave as the intrachain vibrations. When ν varies sensitively with δ, δ space should be divided more finely in order to obtain correct frequency distribution. For this reason the dispersion curves against δ_{c} were picked up for every set of δ_{a} and δ_{b}, and the frequencies were interpolated for intermediate values of δ_{c} with the use of cubic curve,

$$
\begin{equation*}
v=a+b \delta+c \delta^{2}+\mathrm{d} \delta^{3} \tag{1.15}
\end{equation*}
$$

The coefficients a, b, c and d are determined so as the curve passes through four successive standard points. On the
real computation of interpolation, frequencies were obtained at 20' intervals of δ_{c} with the use of (1.16), which is a practical expression of (1.15),

$$
\nu=\left(\begin{array}{llll}
\nu_{1} & \nu_{2} & \nu_{3} & \nu_{4}
\end{array}\right)\left[\begin{array}{llll}
1 & 1 & 1 & 1 \tag{1.16}\\
\delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} \\
\delta_{1}^{2} & \delta_{2}^{2} & \delta_{3}^{2} & \delta_{4}^{2} \\
\delta_{1}^{3} & \delta_{2}^{3} & \delta_{3}^{3} & \delta_{4}^{3}
\end{array}\right]^{-1}\left[\begin{array}{c}
1 \\
\delta \\
\delta^{2} \\
\delta^{3}
\end{array}\right]
$$

where $\nu_{1}, \nu_{2}, \nu_{3}$ and ν_{4} are the frequencies obtained from the diagonalization of the dynamical matrix corresponding to δ_{1}, δ_{2}, δ_{3}, and δ_{4}, respectively. As for the small values of δ_{c} $\left(0^{\circ}<\delta_{c}<5^{\circ}\right), v$ is assumed to be subject to even function of δ_{c} as

$$
\begin{equation*}
\nu=a \cdot+b \cdot \delta^{2}+c \cdot \delta^{4} \tag{1.17}
\end{equation*}
$$

where the coefficients were determined in the same way with (1.16). As shown in Fig. 3, dispersion curves are fairly complicated for small values of $\delta_{c}\left(\delta_{c}<60^{\circ}\right)$ whereas they are relatively monotonous on large δ_{c}. In order to reproduce delicate behavior of dispersion curves by interpolation, more points were taken as standard points for $\delta_{c}<60^{\circ}$. It was confirmed for arbitrary set of δ_{a} and δ_{b} that the interpolated frequencies are coincident with those obtained by diagonalization of the dynamical matrix within $\pm 1 \mathrm{~cm}^{-1}$ and therefore the method is justified.

Thus about 350,000 frequencies were calculated and collected. The frequency distribution below $600 \mathrm{~cm}^{-1}$ is shown in Fig. 5, where the fraction of the number of vibrations for frequency interval $5 \mathrm{~cm}^{-1}$ is plotted against the frequency. Two peaks appear about 500 and $190 \mathrm{~cm}^{-1}$. These two peaks
had been expected from the dispersion curves of polyethylene single chain. They correspond to cut-off frequency of skelem tal bending and internal rotation branch, respectively. The existence of these two peaks has been confirmed by the experiment of neutron inelastic scattering. ${ }^{25-26)}$

I-7 SPECIFIC HEAT

There are four methylene groups per unit cell and eight branches lie below $600 \mathrm{~cm}^{-1}$. Therefore, in the frequency distribution below $600 \mathrm{~cm}^{-1}$, two degrees of freedom are contained per methylene group. On the calculation of the specific heat per methylene group, the frequency distribution function is normalized to 2 , that is,

$$
\begin{equation*}
\sum_{\nu} g(\nu)=2 \tag{1.18}
\end{equation*}
$$

Since the specific heat due to the crystal vibrations is sum of the contribution of each oscillator, it is derived as

$$
\begin{equation*}
C_{v} / R=\sum_{\nu} g(\nu) x^{2} \exp (-x)[1-\exp (-x)]^{-2} \tag{1.19}
\end{equation*}
$$

where $x=h c \nu / k T$ and ν is regarded as the average frequency of the division of the frequency distribution. On the numerical calculation, the frequency distribution was derived at the frequency interval of $1 \mathrm{~cm}^{-1}$. The specific heat of the polyethylene crystal is shown in Fig. 6, where solid line is the calculated value and the open circles are experimental ones which had been extrapolated to 100% crystalilnity by Wunderlich ${ }^{3)}$. The contribution of the internal modes of methylene group is estimated as large as 0.002 at $100^{\circ} \mathrm{K}$ and 0.038 at $150^{\circ} \mathrm{K}$.

The specific heat below $10^{\circ} \mathrm{K}$ depends upon three acoustic branches which are concerned primarily with interchain force
constants. In order to adjust the interchain force constants from the observed value of the specific heat, the specific heat was derived as function of interchain force constants. Each element of the dynamical matrix is expanded into power series of δ_{a}, δ_{b} and δ_{c} where higher terms more than second power were neglected. Then the expanded dynamical matrix was subjected to similarity transformation with $\mathbf{L}_{S}\left(\delta_{0}\right)$ which is the eigenvector matrix of $D_{S}\left(\delta_{0}\right)$ for very small value of phase difference, δ_{0}. Since $D_{S}(0)$ is completely reduced to small blocks of each irreducible representation, the cross terms of $D_{S}(\delta)$ between different species are very small for small δ. Thereby, $D_{S}(\delta)$ is almost diagonalized with the similarity transformation of $\mathbf{L}_{S}\left(\delta_{0}\right)$ near $\delta=0$. A few terms which remain as off-diagonal terms after the transformation, are proportional to first power of phase differences and correspond to the interaction of acoustic branches and the overall rotational modes. They have effects of lowering the frequency of acoustic branches. Accordingly, the cross terms were incorporated to diagonal terms with the use of second order perturbation method. The resultant diagonal terms corresponding to three acoustic branches are represented as

$$
\begin{align*}
& 4 \pi^{2} c^{2} \nu_{1}^{2}=A_{1} \delta_{a}^{2}+B_{1} \delta_{b}^{2}+C_{1} \delta_{c}^{2} \\
& 4 \pi^{2} c^{2} \nu_{2}^{2}=A_{2} \delta_{a}^{2}+B_{2} \delta_{b}^{2}+C_{2} \delta_{c}^{2} \tag{1.20}\\
& 4 \pi^{2} c^{2} \nu_{3}^{2}=A_{3} \delta_{a}^{2}+B_{3} \delta_{b}^{2}+C_{3} \delta_{c}^{2}
\end{align*}
$$

The coefficients, A_{1}, B_{1} and C_{1} are given in Table 4 in the function of interchain force constants. $\quad \nu_{3}$ is associated with the translationalong the c axis to which the skeletal bending force constants contribute and C_{3} becomes large. But to the
eigenvalues of ν_{1} and ν_{2} modes, the contribution of the intrachain force field starts from δ_{c}^{4}, which is proved by expanding G matrix of the chain vibrations. For this reason, ν_{3} gets large sensitively in proportion to δ_{c} but ν_{1} and ν_{2} do not. In Table 4, the frequency of ν_{3} mode does not depend upon the force constant of P_{1}. Also P_{1} contributes to none of C_{1}, C_{2} and C_{3}, while P_{3} contributes to none of A_{1}, A_{2} and A_{3}. These results are reasonable from the following consideration. Since p_{1} is situated in the $a b$ plane as shown in Fig. 2, the stretching of the spring p_{1} is altered with neither the translation of the plane as a whole along the c axis nor the change of phase difference along the c axis, in the first order. As p_{3} is essentially on the bc plane, it is not concerned with the phase difference along the a axis.

On the other hand (1.20) states that the constant frequency surfaces of the acoustic branches are three dimensional ellipsoid in δ space. Since the allowed values of phase differences distribute uniformiy in the unit cell of reciprocal lattice under the cyclic boundary condition, ${ }^{27 \text {) }}$ the volume surrounded by the constant frequency surface is proportional to the number of acoustic phonons lying below the frequency. Supposing $V(\nu)$ is the volume surrounded by the surface corresponding to the frequency v and the first Brillouin zone- then it is derived as

$$
\begin{equation*}
V(\nu)=(4 \pi / 3) \sum_{i=1}^{3}\left(4 \pi^{2} c^{2} \nu^{2}\right)^{3 / 2}\left(A_{1} B_{i} C_{1}\right)^{-\frac{1}{2}} \tag{1.21}
\end{equation*}
$$

Since the total volume of the first Brillouin zone is $8 \pi^{3}$ where four methylene groups are contalned, the volume normalized to one methylene group is $V(\nu) / 32 \pi^{3}$. Then the fraction of number
of acoustic phonons between ν and $\nu+\alpha \nu$ per methylene group is $g(\nu) \mathrm{d} \nu$, where $g(\nu)$ is represented as

$$
\begin{equation*}
g(\nu)=\pi c^{3} \sum_{1}\left(A_{1} B_{1} C_{1}\right)^{-\frac{1}{2}} \nu^{2}=\rho \nu^{2} \tag{1.22}
\end{equation*}
$$

Then the T^{3} law of the specific heat is derived as

$$
\begin{equation*}
C_{v} / \mathrm{R}=\rho(\mathrm{k} / \mathrm{hc})^{3} \mathrm{~T}^{3} \int_{0}^{\infty} \mathrm{x}^{4} \exp (-\mathrm{x})[1-\exp (-\mathrm{x})]^{-2} \mathrm{dx} \tag{1.23}
\end{equation*}
$$

where $x=h c \nu / k T$. The dependency of the specific heat upon the interchain force constants is obtained by the substitution A_{1}, B_{1} and C_{1} from Table 4 into (1.22). It leads us to the result that C_{v} is nearly proportional to $P^{-3 / 2}$, where P is the interchain force constant.

On the other hand, the experimental values of the specific heat can be expressed approximately as follows.

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{v}} / \mathrm{R}^{1)}=1.90 \cdot 10^{-5} \mathrm{~T}^{3} \\
& \mathrm{C}_{\mathrm{v}} / \mathrm{R}^{28)}=1.68 \cdot 10^{-5} \mathrm{~T}^{3}
\end{aligned}
$$

Since Reese's value includes about 10% error ${ }^{28)}$, the force constants were adjusted to give rise to the intermediate value of two observed specific heat. Thus the analysis yields $P_{1}=P_{2}=0.025$ and $P_{3}=0.003 \mathrm{md} / \AA$ and the specific heat calculated from the set is

$$
\mathrm{C}_{\mathrm{V}} / \mathrm{R}=1.86 \cdot 10^{-5} \mathrm{~T}^{3}
$$

The contribution of each acoustic branch is estimated as

$$
C_{V}(a)=1.52, \quad C_{v}(b)=0.31, \quad C_{V}(c)=0.027 \quad\left(\times 10^{-5} \mathrm{RT}^{3}\right)
$$

where a, b and c mean that the vibrational displacement is parallel to the a, b and c axes, respectively. The acoustic phonons associated with the translation along the c axis contribute little to the specific heat. It comes from the fact that the constant frequency surface of that branch is very oblate ellipsold and the volume is much smaller than two
remaining ones. Above $10^{\circ} \mathrm{K}$ the experimental value of the specific heat deviates gradually from T^{3} law and then becomes nearly proportional to T. It means that the force field which controls the atomic motion is nearly three dimensional for lower frequency whereas it is really one dimensional for higher frequency modes. The excitation of intrachain vibrational modes makes C_{v} proportional to T.

I- 8 YOUNG'S MODULI

Young's moduli perpendicular to the chain axis depends upon the interchain potential. Then comparison of the calculated values of Young's moduli with the observed values is one of ways of examining the correctness of the interchain force constants.

The potential energy of the crystal is represented with three coordinates, which are totally symmetric displacement along the a and b axes $(\Delta a, \Delta b)$ and overall rotation around the chain axis (θ). The former two coordinates correspond to the external deformation and the latter corresponds to the internal deformation of the crystal under the condition of rigid molecules.

$$
\begin{equation*}
2 V=\widetilde{\beta} \mathbf{C} \beta \quad \tilde{\beta}=(\Delta a \Delta b \Delta \theta) \tag{1.24}
\end{equation*}
$$

When the unit cell is lengthened by Δa with the external force f_{a}, then at equilibrium state, f_{a} is balanced with $-(\partial V / \partial \Delta a)$. Accordingly the deformation of unit cell under arbitrary external force can be derived from (1.24) with the inverse matrix of \mathbf{C} as

$$
\left[\begin{array}{l}
\Delta a \tag{1.25}\\
\Delta b \\
\Delta \theta
\end{array}\right]=\left[\begin{array}{lll}
s_{11} & s_{12} & s_{13} \\
s_{21} & s_{22} & s_{23} \\
s_{31} & s_{32} & s_{33}
\end{array}\right]\left[\begin{array}{l}
\partial v / \partial \Delta a \\
\partial v / \partial \Delta b \\
\partial v / \partial \Delta \theta
\end{array}\right]
$$

where $s_{i j}$ is inverse matrix of \mathbf{C} and may be called as elastic compliance matrix. Since there is no external force corresponding to overall rotation of molecules, $\partial \mathrm{V} / \partial \Delta \theta$ is always zero. From (1.25), Young's moduli along the a and baxes are derived in accordance with the usual definition.

$$
\begin{align*}
& E_{a}=a_{0} /\left(b_{0} c_{0} s_{11}\right) \tag{1,26}\\
& E_{b}=b_{0} /\left(a_{0} c_{0} s_{22}\right)
\end{align*}
$$

where a_{0}, b_{0} and c_{0} are lattice constants. From the present potential they are calculated as $E_{a}=0.9, E_{b}=0.3\left(\times 10^{11} \mathrm{~d} / \mathrm{cm}^{2}\right)$, In good agreement with the observed value of $E_{a}=0.4$ and $E_{b}=0.3^{29)}$. Poisson's ratio is a ratio of relative deformation. Under the tension along the a axis, it is represented as

$$
\begin{equation*}
\left(\Delta a / a_{0}\right):\left(\Delta b / b_{0}\right): \Delta \theta=\left(s_{11} / a_{0}\right):\left(s_{21} / b_{0}\right): s_{31} \tag{1.27}
\end{equation*}
$$

and under the tension along the b axis, it is

$$
\begin{equation*}
\left(\Delta a / a_{0}\right):\left(\Delta b / b_{0}\right): \Delta \theta=\left(s_{12} / a_{0}\right):\left(s_{22} / b_{0}\right): s_{32} \tag{1.28}
\end{equation*}
$$

Usually the sipn of s_{11} and s_{21} or s_{22} and s_{12} are different from each other, because shortening appears in the perpendicular direction on pullins the crystal along one direction. I-9 DISCUSSIONS

On the estimation of intermethylene force constants, Lennard-Jones potential of methane gas ${ }^{30}$) was tried. The second derivative of the potential function is written as

$$
\begin{equation*}
d^{2} \mathrm{~V} / \mathrm{dr} r^{2}=2.008 \cdot 10^{9} r^{-14}-1.630 \cdot 10^{5} r^{-8} \quad\left(\mathrm{kcal} / \AA^{2}\right) \tag{1.29}
\end{equation*}
$$

where r is distance of two methane molecules (in \AA). Since the values at the equilibrium distances may be regarded as harmonic force constants, putting r of the corresponding intermethylene distances, $4.12,4.18$ and $4.51 \AA$ into (1.29) yields $P_{1}=0.018, P_{2}=0.015$ and $P_{3}=0.002 \mathrm{md} / \AA$, respectively.

The specific heat below $10^{\circ} \mathrm{K}$ calculated from these force constants is slightly larger compared with the observed value. It suggests that the estimation of intermethylene distances might not always be appropriate.

On the other hand, Tasum ${ }^{24)}$ has incorporated four types of interhydrogen potential in the normal coordinate treatment of polyethylene crystal and determined the force constants from the observed values of the band splitting of methylene rocking, twisting and scissoring vibrations. The force constants seem to lie nearly on the Buckingam's potential function for hydrogen atoms. odaj1ma ${ }^{31 \text {) has treated the }}$ elasticity of polyethylene crystal theoretically and found that de Boer's potential of $\mathrm{H} \cdots \cdots \mathrm{H}$ repulsion provides proper set of interchain force constants. The second derivative of de Boer potential ${ }^{33)}$ is written as

$$
\begin{equation*}
d^{2} v / d x^{2}=150 \exp (-3.53 x) \quad(\text { mayne } / \AA) \tag{1.30}
\end{equation*}
$$

where x is $\mathrm{H} \cdots \mathrm{CH}$ distance. When we apply these function to the present case, the intermethylene distances might be converted into the corresponding $H \cdots \cdot H$ distances of the same van der Waals' contacts. Supposing the real intermethylene distance is r then a tentative $H \cdots \cdot H$ distance, $r *$, which gives the equivalent contact to those two methylene groups, might be given by

$$
\begin{equation*}
r^{*}=\left(r_{\mathrm{H}} / \mathrm{r}_{\mathrm{CH}_{2}}\right) \mathrm{r} \tag{1.31}
\end{equation*}
$$

where r_{H} and $r_{\mathrm{CH}_{2}}$ are van der Waals' radil of hydrogen and methylene group, respectively. Pauling ${ }^{32 \text {). has estimated }}$ $r_{H}=1.2$ and $r_{C_{H}}=2.0 \AA$. Assuming $x=r^{*}$ gives rise to $P_{1}=0.024$, $P_{2}=0.022$ and $P_{3}=0.003 \mathrm{md} / \AA$ for the corresponding intermethylene
distances of $4.12,4.18$ and $4.51 \AA$, respectively. They agree closely with those of Table 2 which have been adjusted on the basis of the observed value of the specific heat below $10^{\circ} \mathrm{K}$. The agreement suggests that this kind of assumption may be applicable to calculating configulational energy of complex molecules.

Though the present calculation is preliminary, general feature of the frequency distribution became explicit. Two prominent peaks corresponding to the cut-off of the skeletal vibrations and a few weak peaks due to optical branches of lattice vibrations such as anti-parallel translational or overall rotational modes, are recognized. The cut-off of the skeletal bending branch is concerned mainly with the intrachain force field and $v-\delta_{c}$ curve, which depends little upon δ_{a} and δ_{b}, is almost straight line below $450 \mathrm{~cm}^{-1}$. It leads us to the result that frequency distribution is nearly constant near $300 \mathrm{~cm}^{-1}$ and the specific heat behaves as if Debye's onedimensional elastic continuum ${ }^{34)}$ at proper temperature region. Therefore Tarasov's characteristic frequency ν_{1} might physically correspond to the cut-off of the skeletal bending mode, whereas no peak is expected at ν_{1} from Tarasov's theory. The other characteristic frequency ν_{3}, below which the frequency distribution is proportional to ν^{2}, is not determined uniquely from Fig. 5, where several peaks due to optical lattice vibrations are found below $200 \mathrm{~cm}^{-1}$. Accordingly, the frequency distribution predicted by Tarasov is unlike that of polyethylene crystal.

Generally the specific heat is not always sensitive to fine structure of the frequency distribution, however, the
specific heat below $10^{\circ} \mathrm{K}$ is sensitive to the interchain potential function. Because it depends mainly upon three acoustic branches and little upon optical branches. Then low temperature specific heat may be used for the adjustment of intermolecular force constants.

Montroll et al. ${ }^{35)}$ have studied the frequency distribution of crystals analytically. In the case of one-dimensional crystal, the frequency distribution is proportional to $\left(\nu_{m}{ }^{2}-\nu^{2}\right)^{-\frac{1}{2}}$ near ν_{m} where ν_{m} is the cut-off frequency. While for two-dimensional crystal, the shape of peak is logarithmic, that is, proportional to $\nu^{-1} \log 4\left(3 \nu_{m}^{2}-\nu^{2}\right)^{-1}$. In threedimensional crystal, no peak appears but several discontinuities exist in the derivative of the distribution function. Therefore edges might be expected in the frequency distribution. ${ }^{35 \text {) The present calculation may be considered ns an }}$ experiment from the view of theoretical frequency distribution. Since the peaks at 500 and $200 \mathrm{~cm}^{-1}$ had been expected from normal coordinate treatment of isolated polyethylene chain, they correspond to one-dimensional case, in good agreement with the theoretical prediction. However, the theoretical prediction is not always reproduced below $180 \mathrm{~cm}^{-1}$ where the frequency distribution is expected to be associated with three-dimensional property of the force field.

The approximetion of regarding methylene group as single dynamic unit might induce some errors on the estimation of vibrational frequencies. In the incorporation of the freedom of hydrogen atoms, the frequency of rotational mode would increase whereas that of translational mode would decrease.

The difference of the two models in which the interchain potential works between two methylene groups or between two hydrogen atoms, appears in the effective force constants. On the rotation of molecules around the chain axis, change of inter-hydrogen distance is much larger than the change of inter-methylene distance. Then the energy increment due to the identical rotation is larger in the former under the same force constant. In other words, the effective force constants would become larger in the former. This effect overcomes the effect of increase of moment of inertia and in consequence the frequency of the vibrational mode would get higher, whereas for the translational modes, change of inter-hydrogen distance is smaller or, at most, equal to change of intermethylene distance.

On the other hand, if the electron clouds of hydrogen atoms were in van der Waals' contacts in equilibrium configuration, the potential energy of the two atoms might constitute the effective interchain potential function and acting point of the interchain forces really on hydrogen atom. Then the direction and magnitude of the interchain potential would vary from the present approximation. For instance, P_{3} is the smallest term in the present treatment whereas the corresponding term of $\mathrm{H} \cdots \mathrm{H}$ potential would become the largest term because of the smallest distance. For these reasons, comparisons of the calculated values with observed values were not carried out in detail in the present treatment. The calculated values which are not influenced by the present approximation were discussed, while for detailed discussion about numerical values, the improvement of model is indispensable.

However, from the present treatment, the way of treating the crystal vibrations and the related quantities systematically may be established.

SUMMARY

The symmetry coordinates of the crystal vibrations for arbitrary phase difference vector were derived in general form and were really confirmed by the application of them to polyethylene crystal. The lattice vibrations, dispersion curves, frequency distribution, the specific heat and Young's moduli of polyethylene crystal were treated in regarding methylene group as single dynamical unit. The specific heat below $10^{\circ} \mathrm{K}$ were derived as function of interchain force constants and it was shown that the specific heat is nearly proportional to $P^{-3 / 2}$ where P is proportional to interchain force constant. The interchain force constants adjusted from the specific heat below $10^{\circ} \mathrm{K}$ are $\mathrm{P}_{1}=0.025, \mathrm{P}_{2}=0.025$ and $P_{3}=0.003 \mathrm{md} / \AA$, which are in good agreement with the values obtained from modified de Boer potential.

In the present study, the practical method of treating crystal vibrations and the related properties were established but the improvement is necessary in crystal model; the incorporation of freedom of hydrogen atom.

REFERENCES

1) B.Wunderlich, J. Chem. Phys., 37, 1207 (1962).
2) F.S.Dainton, D.M.Evans, F.E.Hoare, and T.P.Melia, Polymer, 3, 277 (1962).
3) B.Wunderlich, J. Chem. Phys., 37, 1221 (1962); J. Polymer Sci., C-1, 41 (1963).
4) W.H.Stockmeyer and C.E.Hecht, J. Chem. Phys., 21, 1954 (1953).
5) V.V.Tarasov, J. Chem. Phys., (U.S.S.R), 24, 111 (1950); J. Am. Chem. Soc., 80, 5052 (1958).
6) T.Shimanouchi, Pure. Appi. Chem. 2, 261 (1962).
7) H.Takahash1, T.Shimanouchi, K.Fukushima and T.Miyazawa, J. Mol. Spectry, 13, 43 (1964).
8) M.Tasumi, T.Shimanouchi and T.Miyazawa, J. Mol. Spectry., 2, 261 (1962); 11, 422 (1963).
9) J.H.Schachtschneider and R.G.Snyder, Spectroch1m. Acta, 12, 117 (1963).
10) P.Higgs, Proc. Roy. Soc. (London) A220, 472 (1953).
11) T.Miyazawa, J. Chem. Phys., 35, 693 (1961); J. Polymer Sci., 55, 215 (1961).
12) E.B.W11son, J. Chem. Phys., Z, 1047 (1939); 2, 76 (1942).
13) T.Shimanouchi, M.Tsuboi and T.Miyazawa, J. Chem. Phys., 35, 1597 (1961).
14) J.C.Slater," Quantum Theory of Molecules and Solids" vol-2, McGRAW-HILL company, New York (1965).
15) A.A.Maradudin and S.H.Vosko, Rev. Mod. Phys., 40, 1 (1968).
16) T.Miyazawa, K.Fukushima and Y.Ideguchi, J. Chem. Phys., 38, 2709 (1963).
17) C.Kittel, "Quantum Theory of Solids" p.16, John Wiley Sons, New York (1963).
18) C.W.Bunn, Trans. Faraday Soc., 35, 482 (1939).
19) J.R.Nielsen and R.F.Holland, J. Mol. Spectry., 4, 488 (1960); 6, 394 (1961).
J.R.Nielsen and A.H.Woollett, J. Chem. Phys., 26, 1391 (1957).
20) R.G.Snyder, J. Mol. Spectry., 4, 411 (1960); Z, 116 (1961).
21) S.Krimm, C.Y.Liang, and G.B.B.M.Sutherland, J. Chem. Phys., 25, 543; 549 (1956).
22) R.G.Brown, J. Chem. Phys., 38, 221 (1963).
23) T.P.Lin and J.L.Koenig, J. Mol. Spectry, 2, 228 (1962).
24) M.Tasumi and T.Shimanouchi, J. Chem. Phys., 43, 1245 (1965).
25) H.R.Danner, G.J.Safford, H.Boutin, and M.Berger, J. Chem. Phys., 40, 1417 (1964).
26) J.L.Donovan, G.C.Summerfield and J.S.King, Bull. Am. Chem. Soc., II-9, 533 (1964).
27) M.Born and K.Huang, "Dynamical Theory of Crystal Lattices" Clarendon Press, Oxford (1954).
28) W.Reese and J.E.Tucker, J. Chem. Phys., 43, 105 (1965).
29) I.Sakurada, T.Ito and K.Nakamae, J. Polymer Sc1., C-15, 75 (1966).
30) I.Miyagawa. Nippon Kagaku Zasshi, 75, 1169, 1173, 1177 (1954).
31) A.Odajima and T.Maeda, J. Polymer Sci., C-15, 55 (1966).
32) L.Pauling, "The Nature of Chemical Bonds" Cornell University Press, Ithaca, New York (1960).
33) J. de Boer, Physica, 1, 363 (1942).
34) P.Debye, Ann. d Phys., 32, 789 (1912).
35) A.A.Maradudin, E.W.Montroll and G.H.Weiss, Solid State Phys. suppl. 3 (1963).

In this representation, the factor $(2 N)^{-\frac{1}{2}}$ and summation about h, k, and 1 are omitted.

Table-2 Transformation matrix for symetry coordinates, $0(f)$

	$x_{1}(h, k, 1)$	$x_{2}(h, k, 1)$	$x_{3}(h, k, 1)$	$x_{4}(h, k, 1)$
$s^{(1)}(\delta)$	u_{1}^{c}	u_{2}^{c}	u_{3}^{c}	u_{4}^{c}
$s^{(2)}(\delta)$	u_{1}^{c}	u_{2}^{c}	$-u_{3}^{c}$	$-u_{4}^{c}$
$s^{(3)}(\delta)$	$-u_{1}^{s}$	u_{2}^{s}	$-u_{3}^{s}$	u_{4}^{s}
$s^{(4)}(\delta)$	$-u_{1}^{s}$	u_{2}^{s}	u_{3}^{s}	$-u_{4}^{s}$

$u_{1}^{c}=\left[\begin{array}{ccc}\cos \left(\rho_{1} \delta\right) & 0 & 0 \\ 0 & \cos \left(\rho_{1} \delta\right) & 0 \\ 0 & 0 & -\sin \left(\rho_{1} \delta\right)\end{array}\right] u_{1}^{8}=\left[\begin{array}{ccc}\sin \left(\rho_{1} \delta\right) & 0 & 0 \\ 0 & \sin \left(\rho_{1} \delta\right) & 0 \\ 0 & 0 & -\cos \left(\rho_{1} \delta\right)\end{array}\right]$
$u_{2}^{c}=\left[\begin{array}{ccc}\cos \left(\rho_{2} \delta\right) & 0 & 0 \\ 0 & -\cos \left(\rho_{2} \delta\right) & 0 \\ 0 & 0 & -\sin \left(\rho_{2} \delta\right)\end{array}\right] u_{2}^{B}=\left[\begin{array}{ccc}\sin \left(p_{2} \delta\right) & 0 & 0 \\ 0 & -\sin \left(\rho_{2} \delta\right) & 0 \\ 0 & 0 & -\cos \left(\rho_{2} \delta\right)\end{array}\right]$
$u_{3}^{c}=\left[\begin{array}{ccc}\cos \left(\rho_{3} \delta\right) & 0 & 0 \\ 0 & -\cos \left(p_{3} \delta\right) & 0 \\ 0 & 0 & -\varepsilon \ln \left(p_{3} \delta\right)\end{array}\right] u_{3}^{B}=\left[\begin{array}{ccc}\sin \left(p_{3} \delta\right) & 0 & 0 \\ 0 & -\sin \left(p_{3} \delta\right) & 0 \\ 0 & 0 & -\cos \left(p_{3} \delta\right)\end{array}\right]$
$u_{4}^{c}=\left[\begin{array}{ccc}-\cos \left(\rho_{4} \delta\right) & 0 & 0 \\ 0 & \cos \left(\rho_{4} \delta\right) & 0 \\ 0 & 0 & -8 \ln \left(\rho_{4} \delta\right)\end{array}\right] u_{4}^{3}=\left[\begin{array}{ccc}-\sin \left(\rho_{4} \delta\right) & 0 & 0 \\ 0 & \sin \left(\rho_{4} \delta\right) & 0 \\ & & -\cos \left(\rho_{4} \delta\right)\end{array}\right]$

$$
\begin{array}{ll}
\rho_{1}=(h, k, 1+1 / 4), & \rho_{3}=\left(h+\frac{1}{2}, k+\frac{1}{2}, 1+1 / 4\right) \\
\rho_{2}=(h, k, 1-1 / 4), & \rho_{4}=\left(h+\frac{1}{2}, k+\frac{1}{2}, 1-1 / 4\right)
\end{array}
$$

x_{1}, X_{2}, x_{3} and X_{4} are Cartesian displacement coordinate vector of four atoms in the unit $\operatorname{cell}(h, k, 1)$. $(2 N)^{-\frac{1}{2}} \sum_{(h, k, 1)}$ is omitted in each term.

Table-4 The coefficlent or phete differences in the dynemical metrig for acoustice branches.

$y_{1}{ }^{\prime}{ }_{2}$ and v_{3} are acouctic branches along the $a_{0} b$ and c axea, xespectively.

Fig. 1 Representative atoms and their index vectors in the unit $\operatorname{cell}(h, k, 1)$

Fig. 2 The interchain potential in polyethylene crystal.

Fig. 3 Dispersion curves of vibrational frequency against the phase difference along the c axis.

$\left(\mathrm{cm}^{-1}\right)$
$A_{U} 47$

Fig. 4 Optical lattice vibrations of polyethylene crystal.

Fig. 5 The frequency distribution of polyethylene crystal. The number of vibrational modes per frequency interval of $5 \mathrm{~cm}^{-1}$ is plotted against the vibrational frequency.

Fig. 6 The specific heat of polyethylene crystal. Open circles are experimental values ${ }^{1)}$ and solid line shows the calculated values.

NORMAL VIBRATIONS, INTERCHAIN FORCE FIELD, FREQUENCY DISTRIBUTION AND SPECIFIC HEAT OF POLYETHYLENE CRYSTAL

II-1 INTRODUCTION

Polyethylene crystal is the simplest polymer crystal and the systematic treatment about the dynamical properties is of great interest since various kinds of the experimental results have been obtained. Wunderlich has deduced the specific heat of crystal part of polyethylene by the use of extrapolation method about the crystallinity referring to all the observed values measured by others. 2) Tucker and Reese have found that the specific heat of the polyethylene crystal is proportional to T^{3} below $9^{\circ} \mathrm{K}$ whereas that of amorphous part has excess heat capacity corresponding to $\theta_{E}=23^{\circ} \mathrm{K}$ even at the lowest temperature. 3) Afterwards Wunderlich has confirmed his presumptive value by measuring the specific heat of. single crystal of polyethylene. These values seem to lie nearly on the theoretical curve derived by Tarasov ${ }^{5}$) who regarded polymer chains as elastic rods with weak interactions between the nearest neighbors. However, Tarasov's model cannot be used for analyzing other physical properties particularly spectroscopic properties of polymer crystals.

On the other hand, infrared bands of methylene rocking and scissoring vibrations in normal hydrocarbon crystals show band splitting due to intermolecular interactions. 6-7) These band splitting have also been observed in high density
polyethylene and their polarizations have been investigated.
Now the intrachain potential functions about molecular vibrations have been systematically studied and reliable force constants are available. ${ }^{10 \text {) Especially for n-paraffin }}$ molecules, detailed analysis of spectroscopic data have been carried out. 11-13) The general theory of molecular vibrations of chain molecules has already been established. ${ }^{14-16 \text {) }}$ Accordingly, it is practical to treat dynamical properties of polyethylene crystal self-consistently on the basis of the interchain potential as well as the intrachain potential functions.

General method of treating crystal vibrations and related solid state properties has been studied ${ }^{17}$) and the method was confirmed in the preliminary calculation about polyethylene crystal, in the preceding chapter, where methylene groups were regarded as single dynamic unit. In the present treatment the Cartesian symmetry coordinates are applied to more realistic model and the frequency distribution, the specific neat, the lattice vibrations, the spiltting of the intrachain vibrations and Young's moduli are calculated with the intrachain and interchain potential functions. II-2 CRYSTAL STRUCTURE

The crystal structure of orthorhombic polyethylene crystal has been analysed by Bunn with X-ray diffraction method. ${ }^{18)}$ There are four methylene groups per unit cell and two molecular chains pass through a unit cell along the caxis. Symmetry of the unit cell is isomorphous to point group $\mathrm{D}_{2 \mathrm{~h}}$. The setting angle of the skeletal zigzag plane
with respect to the a axis (θ in Fig . 1) has been reported as 48.7° by Bunn ${ }^{18)}$ but the value seems uncertain. Teare ${ }^{19 \text {) }}$ has obtained 47.7° for orthorhombic single crystal of $\mathrm{C}_{36} \mathrm{H}_{74}$. Salem ${ }^{20)}$ has assumed 44° on the calculation of the cohesive energy about normal paraffin molecules. Shearer and Vand ${ }^{21)}$ has obtained $41^{\circ} 23^{\prime}$ for monociinic $C_{36} H_{74}$, while Smith ${ }^{22}$) got 42° analysing the structure of several single crystals of normal hydrocarbon molecules. Snyder has measured the intensity ratio of polarized infrared bands which are $B_{1 u}$ and $B_{2 u}$ components of the band splitting and concluded that θ should be smaller than $45^{\circ} .6$) This setting angle might depend upon temperature. Since, in the present study, the dynamical properties at low temperature are treated, the lattice constants at $-196^{\circ} \mathrm{C}$ obtained by Swan ${ }^{23)}$ were used and was assumed to be 45°. The structural parameters used are $a_{0}=7.155, b_{0}=4.899, c_{0}=2.547, d(c-c)=1.54$, and $d(C-H)=1.09$ A. The skeletal bond angle ($\angle C-C-C$) is usually larger than the tetrahedral angle in normal hydrocarbon crystals and $\angle C-C-C=111^{\circ} 4^{\prime}$, calculated from the lattice constants, was used while $\angle \mathrm{H}-\mathrm{C}-\mathrm{H}$ is assumed to be tetrahedral angle.

II-3 POTENTIAL FUNCTION
Schachtschneider and Snyder ${ }^{13)}$ has carried out the force field calculation of normal hydrocarbon molecules from $\mathrm{C}_{2} \mathrm{H}_{6}$ to $\mathrm{C}_{14} \mathrm{H}_{30}$ and $-\left(\mathrm{CH}_{2}\right)_{n}-$. They obtained the force constants for valence force field which can reproduce 270 frequencies of fundamentals within 0.25% of the standard deviation. Since five coordinates of six valence angles around carbon atom are

Independent, local symmetry coordinates were used. The definition is same with those used by Tasumi ${ }^{12 \text {) whereas the }}$ transformation matrix is slightly modified as shown in Table 1 on account of the departure of the skeletal valence angle from the tetrahedral angle. The coordinates are shown in Fig. 2. $\Delta r^{\mathrm{H}_{\mathrm{s}}}$ is CH_{2} symmetric stretching, $\Delta \delta$ is CH_{2} scissoring, $\Delta \gamma$ is skeletal bending, $\Delta \alpha^{W}$ is CH_{2} wagging, and Δr^{C} is skeletal stretching coordinates which are in-plane vibrations. $\Delta r^{H} a$ is CH_{2} antisymmetric stretching, $\Delta \alpha^{r}$ is CH_{2} rocking, $\Delta \alpha^{t}$ is CH_{2} twisting and Δt is internal rotation coordinates which are out-of-plane vibrations. The potential energy matrix for intrachain coordinates are shown in Table 2 which was transformed from the force constants of valence force field except for that of internal rotation. Since internal rotation vibration in normal paraffin molecules is so difficult to observe in spectroscopic measurements that the force constant is not definite. Accordingly the diagonal term of Δt was adjusted as $0.075 \mathrm{md} \AA$ with reference to the observed values of the specific heat near $60^{\circ} \mathrm{K}^{1}$).

Previously Tasumi and Shimanouch1 ${ }^{24)}$ have treated the lattice vibrations of $k=0$ modes of polyethylene crystal incorporating four types of $H \cdots \cdots$ interaction terms. The set of force constants, determined from the band splitting, can reproduce the frequency of the infrared active lattice vibration. They correspond to the force constants at room temperature. The specific heat below $10^{\circ} \mathrm{K}$ calculated from the potential is slightly small. On the other hand, the thermal expansion has been found appreciable along the a axis, therefore the interatomic distances at low temperature
are different from those at room temperature. Then the effective force constants will vary with temperature.

In the present study, the same interchain interaction terms were incorporated and the force constants were determined with reference to the observed values of the specific heat below $10^{\circ} \mathrm{K}^{3}$), infrared active lattice vibration ${ }^{25)}$ and band splitting at $-196^{\circ} \mathrm{C}^{6}$). Thus adjusted force constants and equilibrium atomic distance at $-196^{\circ} \mathrm{C}$ are shown in Table 3 . II-4 LOW FREQUENCY CRYSTAL VIBRATIONS

Derivation of basic equations for the crystal vibrations is provided in Chapter I and the same notation is used here without notice. A practical method of treating low frequency modes of crystal vibrations are derived here.

Crystal vibrations are specified with the set of δ_{a}, δ_{b} and δ_{c}, which are the phase difference of vibrational displacement between ddjacent unit cells along the a, b, and c axes, respectively. Since there are twelve atoms per unit cell, there are thirty-six vibrations for a given set of phase differences. Accordingly, thirty-six Cartesian symmetn coordinates were derived from

$$
\begin{equation*}
S(\delta)=\sum_{p} U(\rho, \delta) X(\rho) \tag{2.1}
\end{equation*}
$$

$\mathrm{U}(\rho, \delta)$ is an unitary matrix for symmetry transformation, which is given in Table 4 and explained later. The symmetry coordinates are represented as inear combination of real normal coordinates of crystal

$$
\begin{equation*}
\mathbf{S}(\delta)=M_{S}{ }^{-\frac{1}{2}} \mathbf{L}_{S}(\delta) \mathbf{Q}(\delta) \tag{2.2}
\end{equation*}
$$

$\mathbf{L}_{S}(\delta)$ is an eigenvector matrix of the dynamical matrix and is normalized to unity. The dynamical matrix and its eigenvalue matrix are given by (2.3) and (2.4), respectively.

$$
\begin{gather*}
\mathbf{D}_{S}(\delta)=M_{S}^{-\frac{1}{2}} \mathbf{F}_{S}(\delta) M_{S}^{-\frac{1}{2}} \tag{2.3}\\
\Lambda(\delta)=\widetilde{L}_{S}(\delta) \mathbf{D}_{S}(\delta) \mathbf{L}_{S}(\delta) \tag{2.4}\\
\tilde{\mathbf{L}}_{S}(\delta) \mathbf{L}_{S}(\delta)=\mathbf{E} \tag{2.5}
\end{gather*}
$$

Since the dimension of $D_{S}(\delta)$ is 36 , diagonalization of $D_{S}(\delta)$ for many values of δ requires excessively long computation hours. On the other hand, the preliminary calculation shows the vibrational frequencies change sensitively with δ_{c} whereas they vary little with δ_{a} or δ_{b}. It comes from the fact that the intrachain force constants are much larger than the interchain force constants, that is, from the large anisotropy of the force fleld of the crystal. Accordingly, the actual computation was carried out in two steps described below. At the first step, the dynamical matrix corresponding to the intrachain potential was diagonalized. Theh, at the second step, the interchain potential was incorporated and the corresponding dynamical matrix was diagonalized.

Supposing \mathbf{F}_{S}^{M} and $\mathbf{F}_{\mathrm{S}}^{\mathrm{C}}$ are the potential energy matrices of the intrachain and interchain potential, respectively, then F_{S}^{M} depends only upon δ_{c} while F_{S}^{C} depends upon δ_{a}, δ_{b} and δ_{c} : The dynamical matrices $D_{S}^{M}\left(\delta_{c}\right)$ and $D_{S}^{C}\left(\delta_{a}, \delta_{b}, \delta_{c}\right)$, corresponding to $\boldsymbol{F}_{S}^{M}\left(\delta_{c}\right)$ and $F_{S}^{C}\left(\delta_{a}, \delta_{b}, \delta_{c}\right)$, are derived in accordance with (2.3) as

$$
\begin{equation*}
D_{S}(\delta)=D_{S}^{M}\left(\delta_{c}\right)+D_{S}^{C}\left(\delta_{a}, \delta_{b}, \delta_{c}\right) \tag{2.6}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathbf{D}_{S}^{M}\left(\delta_{c}\right)=M_{S}^{-\frac{1}{2}} \mathbf{r}_{S}^{M}\left(\delta_{c}\right) M_{S}^{-\frac{1}{2}} \tag{2.7}\\
& \mathbf{D}_{S}^{C}\left(\delta_{a}, \delta_{b}, \delta_{c}\right)=M_{S}^{-\frac{1}{2}} \mathbf{F}_{S}^{C}\left(\delta_{a}, \delta_{b}, \delta_{c}\right) M_{S}{ }^{-\frac{1}{2}} \tag{2.8}
\end{align*}
$$

$D_{S}^{M}\left(\delta_{C}\right)$ is faotorized at least into four diagonal blocks $d_{k k}^{M}\left(\delta_{c}\right)(k=1 \ldots 4)$ each of which is a nine dimensional matrix
and is associated with the symmetry coordinate vector characterized by $\mathbf{S}^{k}(\delta)$ of Table 4 . Since the following relations are satisfied about $d_{k k}^{M}\left(\delta_{c}\right)$,

$$
\begin{aligned}
& \mathbf{d}_{11}^{M}\left(\delta_{c}\right)=d_{22}^{M}\left(\delta_{c}\right)=d_{33}^{M}\left(2 \pi-\delta_{c}\right)=d_{44}^{M}\left(2 \pi-\delta_{c}\right) \\
& d_{\alpha \beta}^{M}\left(\delta_{c}\right)=0 \text { for } \alpha \neq \beta,
\end{aligned}
$$

the calculation of ${ }_{S}^{M}\left(\delta_{c}\right)$, the eigenvector matrix of $D_{S}^{M}\left(\delta_{c}\right)$, is reduced quite simple. The matrix elements of $D_{S}^{C}\left(\delta_{a}, \delta_{b}, \delta_{c}\right)$ is relatively small and the eigenvectors of intrachain optical vibrations are little influenced by the interchain interactions, and therefore $\mathbf{L}_{S}^{M}\left(\delta_{c}\right)$ is almost identical with $\mathbf{L}_{S}\left(\delta_{a}, \delta_{b}, \delta_{c}\right)$ for twenty-four modes above $700 \mathrm{~cm}^{-1}$. However, the remaining eight modes (acoustic branches of single chain) are strongly influenced by $D_{S}^{C}\left(\delta_{a}, \delta_{b}, \delta_{c}\right)$. Accordingly, the eight columns corresponding to low frequency modes are picked up and brought into $L_{1}^{M}\left(\delta_{c}\right)$, a new matrix of 36 rows and 8 columns. The similarity transformation of $\mathbf{D}_{S}(\delta)$ with $\mathbf{L}_{1}^{M}\left(\delta_{c}\right)$ yields

$$
\begin{gather*}
\mathbf{H}_{S}\left(\delta_{a}, \delta_{b}, \delta_{c}\right)=\widetilde{\mathbf{L}}_{1}^{M}\left(\delta_{c}\right)\left[\mathbf{D}_{S}^{M}\left(\delta_{c}\right)+D_{S}^{C}\left(\delta_{a}, \delta_{b}, \delta_{c}\right)\right] \mathbf{L}_{1}^{M}\left(\delta_{c}\right) \\
=\Lambda_{1}^{M}\left(\delta_{c}\right)+\widetilde{\mathbf{L}}_{1}^{M}\left(\delta_{c}\right) \boldsymbol{D}_{S}^{C}\left(\delta_{a}, \delta_{b}, \delta_{c}\right) \mathbf{L}_{1}^{M}\left(\delta_{c}\right) \tag{2.9}
\end{gather*}
$$

where $\Lambda_{1}^{M}\left(\delta_{c}\right)$ is ati elpentalua matrix of low frequency intrachain vibrations. Thus dirived $\|_{S}\left(\delta_{a}, \delta_{b}, \delta_{c}\right)$ is a dynamical matrix for low frequency crystal vibrations. Supposing $L_{H}\left(\delta_{a}, \delta_{b}, \delta_{c}\right)$ is the eigenvector matrix of $H_{S}\left(\delta_{a}, \delta_{b}\right.$, $\left.\delta_{c}\right)$, then the corresponding eight columns of $L_{S}\left(\delta_{a}, \delta_{b}, \delta_{c}\right)$ are calculated from

$$
\begin{equation*}
\mathbf{L}_{S}^{1}\left(\delta_{a}, \delta_{b}, \delta_{c}\right)=\mathbf{L}_{1}^{M}\left(\delta_{c}\right) \cdot \mathbf{L}_{H}\left(\delta_{a}, \delta_{b}, \delta_{c}\right) \tag{2.10}
\end{equation*}
$$

where $L_{S}^{1}\left(\delta_{a}, \delta_{b}, \delta_{c}\right)$ is (36×8) submatrix of $\mathbf{L}_{S}\left(\delta_{a}, \delta_{b}, \delta_{c}\right)$ and $\Lambda_{H}(\delta)=\bar{L}_{H}(\delta) H_{S}(\delta) \mathbf{L}_{H}(\delta)$
$\widetilde{\mathbf{L}_{H}}(\delta) \mathbf{L}_{H}(\delta)=\mathbf{E}$

The coordinates, which are shifted by $\pi / 2$ in phase angle from the present symmetry coordinates, form depenerate pair with the present coordinates while the existence of center of Inversion removes $\mathrm{D}_{2}(\delta)$, the cross term between two types of coordinates in the doubled dynamioal matrix (section $I-3$). Therefore, in this oase, the Hermitian matrix (complex dynamical matrix) is transformed into two identical realnumber symmetrie matrices. The other symmetry coordinate vedtor of the derenerate palr may be riven by the symmetry transfomation $\bar{T}(f, \delta)$. Then the atomic displacement vector of atoms in pth unit cell is derived as

$$
\begin{equation*}
X(\rho)=\tilde{S}_{S} \tilde{J}(\rho, \delta) M_{S}^{-\frac{1}{2}}{ }_{S}(\delta) 0(\delta)+\widetilde{\tilde{U}}(\rho, \delta) M_{S}^{-\frac{1}{2}} \Gamma_{S}(\delta) \bar{Q}(\delta) \tag{2.13}
\end{equation*}
$$

Where $0(\bar{i})$ and $\bar{Q}(\delta)$ are derenerate pair of real normal coordinate vectors. In the present approximation, the atomic displacement due to low frequency crystal vibrations is represented as

$$
\begin{align*}
\partial(\rho)= & \ddot{Z} \tilde{O}(p, \delta) M_{S}^{-\frac{1}{2}} L_{1}^{M}\left(\delta_{0}\right) H_{H}(\delta) Q(\delta) \\
& +\widetilde{U}(\rho, \delta) M_{S}^{-\frac{1}{2}} M_{1}^{M}\left(\delta_{c}\right) L_{H}(\delta) \bar{Q}(\delta)_{H} \tag{2.14}
\end{align*}
$$

where $)(\delta)_{H}$ and $\overline{0}(\delta) H_{H}$ are derenerate pair of vectors of eirht normal coordinates corresponding to low frequency modes. The equation (2.14) is of great importance in treating the neutron seatterlnf cross sections and temperature factor of X-ray diffraction.

II-5 SYMMETRY COORDIAATES

Symmetry coordinates are constructed in accordance with the consideration of the preceding chapter (I-4). As $n=12$, $n_{S}=3, m_{B}=4\left(\beta=H_{1}, H_{2}, C\right)$ in this case, there are three set of twelve symmetry coordinates. Both of $\boldsymbol{S}(8)$ and $x(\rho) \ln (2.1)$ are vectors of order 36 and they are represented with subvectors $s^{k}(\delta)$ and $X_{j}(\rho)$ of ninth order, respectively

$$
\begin{equation*}
\widetilde{X}(p)=\left[\widetilde{X}_{1}(p){\widetilde{x_{2}}}_{2}(p){\widetilde{x_{3}}}_{3}(p){\widetilde{x_{4}}}_{4}(p)\right] \tag{2.16}
\end{equation*}
$$

$s^{\kappa}(\delta)_{i x}$ whion is a component ($(x=x, y, z)$ or $s^{k}(\delta)$, is dofined as three component subvector by
where β in $S^{k}(\delta)^{\beta}$ oharacterlzes the type of atoms in the unit cell as indicated in $H \mathrm{H}_{\mathrm{m}} 1$ and r_{i} denotes the type of symmotry coopdinates and x represents the Cartesian component. Ihe index if in $X_{j}(\rho)$ is fiven to each methylene froup and therefore $X_{j}(f)$ is nine component vector of Cartesian displacement coordinatos ol i-th methylene froup in ρ-th unit cell. I'he index vection ot' atoms in the ρ-th unit cell is written simply as f,

$$
\begin{array}{ll}
P_{1}=(h, k, 1+1 / 4) & P_{3}=\left(h+\frac{1}{2}, k+\frac{1}{2}, 1+1 / 4\right) \\
P_{2}=(h, k, 1-1 / 4) & P_{4}=\left(h+\frac{1}{2}, k+\frac{1}{2}, 1-1 / 4\right)
\end{array}
$$

X. (ρ) is reprosontod win throe subvectors as

$$
\begin{equation*}
X_{\mathrm{i}}(\rho)=\left[\wedge x_{\mathrm{j}}(\rho) \Delta y_{\mathrm{j}}(\rho) \wedge z_{\mathrm{j}}(\rho)\right] \tag{2.21}
\end{equation*}
$$

and the constituont subvertors are riven by

$$
\Delta r j(\rho)=\left[\begin{array}{ccc}
\Delta c H_{j}^{H_{1}} & \Delta\left(x_{j}^{H_{2}}\right. & \Delta\left(x_{j}^{C}\right.
\end{array}\right]
$$

$$
\begin{align*}
& s^{k}(\delta)-\left[\sigma^{k}(\delta)_{x} \widetilde{s^{k}}(\delta)_{\text {y }} \widetilde{s^{k}}(\delta)_{z}\right] \tag{2.18}
\end{align*}
$$

where $\Delta \alpha_{j}^{\mu}(\alpha=x, y, z)$ is the α component of atomic displacement vector of μ-th atom in the $j-t$ hethylene group. Each element of $\mathbf{U}(\rho, \delta)$ of Table 4 relates subvector $S^{k}(\delta){ }_{\alpha}$ with subvector $\Delta \alpha_{j}$, therefore each element denotes three dimensional constant matrix.

II-6 RESULTS

For the set of $\delta_{a}=\delta_{b}=\delta_{c}=0$, the symmetry coordinates belonf to one of the irreducible representations of point group $\mathrm{D}_{2 \mathrm{~h}}$. The symmetry property of $\mathbf{S}^{k}(0)_{\alpha}$ and its species are shown in liable 5. Prequencies of $k=0$ vibrational modes were obtained from $D_{S}(0)$ and the calculated band splittings are compared with the observed results ${ }^{6)}$ in Table 6, where branch rumber follows Tasumi's notation ${ }^{12 \text {). The calculated }}$ band splittinp, of CH_{2} scissoring, $\nu_{2}(\pi)$, and CH_{2} rocking, $\nu_{8}(\pi)$, are slightly smaller than the observed values at $-196^{\circ} \mathrm{C}$, since the observed value of the specific heat below $10^{\circ} \mathrm{K}$ has also been referred in the adjustment of the interchain force constants. ν_{5} is skeletal bendinp, branch and ν_{9} is internal rotation branch, both of which would be acoustic branches of an isolated chain. In the crystal, three of them, that is, $\nu_{5}(\pi), \nu_{9}(\pi)$ and $\nu_{5}(0)$ are the Imit of acoustic branches associated with three translations along the a, b and c axes, respectively. The remaining five modes are optical modes of lattice vibrations, whose calculated requencies and modes are shown in lifr. 3. Biu and $B_{2 u}$ are infrared active while A_{p} and $B_{3 r}$ are Raman active. A_{u} is optically inactive mode.

The dispersion curve's of vibrational frequency against phase difference show drastic change alons δ_{c} whereas they change little along δ_{a} or δ_{b}. As an example, the dispersion curves alons δ_{c} for $\delta_{a}=\delta_{b}=0$ is shown in Fig. 4. Since, on the varlation of δ_{c}, the elfht modes chanre from pure lattice vibrations to the intrachain vibrations such as skeletal bendine and internal rotation vibration, the dispersion curves along δ_{c} becomes similar to those of isolated chain. On the other hand, when $\delta_{c}=0$, the interchain potential does not contribute to lattice vibrations but the contribution of the interchain potential to lattice vibrations varies with δ_{a} or δ_{b}. Therefore, the dispersion curves alone, δ_{a} and δ_{h} are similar to those of molecular crystals ${ }^{26)}$. All of the dispersion curves alonf the special direction in the first Brillouin zone are calculated and described in Chapter IV.

Frequency distribution was made with the method described in section I-6. As the representative values of δ_{a} and δ_{b}, nine points $\left(10^{\circ}, 30^{\circ}, 50^{\circ}, 70^{\circ}, 90^{\circ}, 110^{\circ}, 130^{\circ}, 150^{\circ}, 170^{\circ}\right)$ and as those of δ_{0}, ten points $\left(0^{\circ}, 5^{\circ}, 10^{\circ}, 20^{\circ}, 40^{\circ}, 60^{\circ}\right.$, $90^{\circ}, 120^{\circ}, 150^{\circ}, 180^{\circ}$) were adopted. For each of these 810 points, ${ }^{1}(\delta)$ was derived and diasonalized. The vibrational frequencies at the intermediate points between the representative points, were interpolated at 20° intervals of δ_{c} with (1.16) and thus about 350,000 frequencies below $700 \mathrm{~cm}^{-1}$ were collected in the frequency distribution. In a histopram of lifr. 5, the fraction of number of vibrational modes is drawn afrainst the frequency division of $4 \mathrm{~cm}^{-1}$. Two prominent peaks at 560 and $190 \mathrm{~cm}^{-1}$ correspond to the
cut-off of the skeletal bending and the internal rotation vibrations, respectively. These peaks had been anticipated from the normal coordinates treatment of isolated chain. 12) from the present study, several new peaks are expected. The broad peak near $150 \mathrm{~cm}^{-1}$ arises fromin overall rotatory vibrations around the chain axis. The peak at $90 \mathrm{~cm}^{-1}$ is due to the antiparallel translatory vibrations perpendicular to the chain axis. 'lhe broad peak near $60 \mathrm{~cm}^{-1}$ is associated with the artiparallel translatory vibration alonf the chain axis which is really invariant on the change of δ_{a} and δ_{b} but varies rapidiy with δ_{c}. The existence of these peaks have been, in fact, contirmed by the energy spectrum of neutron inelastic scattering. 27) However, the cross section of neutron inclastic scatterini depends upon the atomic displacement besides frequency distribution, it is treated in detail In Chapter VI.

I'he specific heat below $150^{\circ} \mathrm{K}$ was calculated from (1.19) and the frequency distribution where the distribution function used is for every wave number and is normalized to 2 per CH_{2} ? proup in lif. 6, the calculated specific heat is compared with the observed values. Solid line denotes the calculated value and open circles represent the experimental values extrapolated to 100% erystallinity by Wunderlich ${ }^{1)}$. (jood agreement is obtained below $100^{\circ} \mathrm{K}$. Near $100^{\circ} \mathrm{K}$ the intrachain optical modes bepin to contribute to the specilic heat and it is shown in Tablc 7.

Younp,'s moduli perpendicular to the chain axis depends
primarily upon the interchain potential, because the force constants of the intrachain coordinates are much larger than those of the interchain coordinates. Young's moduli were derived in the preceding chapter ($1-8$) under the assumption of ripid molecule. From the present potential function, Youns:'s moduli perpendicular to the chain axis at $-196^{\circ} \mathrm{C}$ were calculated as

$$
E_{a}=7.0 \quad E_{b}=9.7 \quad\left(\times 10^{10} \text { dyne } / \mathrm{cm}^{2}\right)
$$

and Poison's ratio were calculated as follows;

$$
\begin{aligned}
&\left(\Delta a / a_{0}\right):\left(\Delta b / b_{0}\right): A=1.0:-0.4:-0.7 \\
&(\text { under tension along the a axis) } \\
&\left(\Lambda a / a_{0}\right):\left(\Delta b / b_{0}\right): \theta=-0.5: 1.0: 0.3 \\
& \text { (under tension along the } b \text { axis) }
\end{aligned}
$$

liron the Poison's ratio, the lempth of b axis becomes shorter ann the molecular chain rotates to the a axis when crystal is drawn alons, the a axis. Sakurada et al. ${ }^{28 a}$) have measured the Younf's moduls perpendicular to the chain axis with the use of X-ray diffraction technique. The observed values were $\mathrm{E}_{\mathrm{a}}=3.1$ and $\mathrm{E}_{\mathrm{b}}=3.8$. Recently the measurement has been carried out arain on less branched polyethylene sample and thus improved value is $\mathrm{E}_{\mathrm{a}}=5$. 0 while the diftraction spot was too weak for E_{b}, to be observed. ${ }^{28 \mathrm{~h})}$ Müller ${ }^{29 \text {) has measured }}$ the linear compressibility and obtained $E_{a}=10$ and $E_{b}=9.0$ for $C_{23}{ }^{11} 48$. As for the interchain potential, normal paraffin is almost identical with polyethylene and Müller's values are also applicable to polyethylene crystal. Younc's moduli calculated from the present potential is intermediate of
two obscrved values.

II-7 DISCUSSIONS

Remarkable development in the present study $11 e s$ on making use of $H_{S}(\delta)$, the dynamical matrix of low frequency arystal vibrations. Great oare was riven to get correct $\operatorname{L}_{S}^{M}\left(\delta_{c}\right)$ and to know the iimitation of the exactness of the calculated results. As one of the examinations of the present treatment, the eipenfrequency of crystal vibrations for arbitrary phase difference was obtained from the diaponalization or $D_{S}(\delta)$. The eifenfrequencies of $H_{S}(\delta)$ are compared with those from $D_{S}(\delta)$ in lable 8. As δ_{c} gets Larser, $\lambda_{1}^{M}\left(\delta_{c}\right)$ becomes larper and ther the perturbation by $D_{S}^{C}(\delta)$ has less effect upon $\lambda_{H}(\delta)$. The deviation of the eipenfrequency of $H_{S}(\delta)$ reom that of $\mathrm{D}_{\mathrm{S}}(\delta)$ was confirmed to be at most $3 \mathrm{~cm}^{-1}$. Since the frequency of lattice vibrations of $k=0$ modes is calculated directly from $D_{S}(0)$, it is exact thouph the peak position in the frequency distribution is justified within $3 \mathrm{~cm}^{-1}$.

The intrachain potential function obtained by Tasumi ${ }^{12 \text {) }}$ is very similar to Schachtschneider's potential except for the skeletal bendinf force constant. The former gives the cut-off of the skeletal bending branch near $500 \mathrm{~cm}^{-1}$ while the latter fives rise to the out-off at $560 \mathrm{~cm}^{-1}$. Schaufele ${ }^{30}$) has measured the frequency of accordion vibrations of various normal hydrocarbon crystals with laser haman spectrum and found the Faman 1 ines at 536 and $556 \mathrm{~cm}^{-1}$ for $\mathrm{C}_{94} \mathrm{H}_{190}$. I'herefore the cut-off of the skeletal bending branch might
be above $500 \mathrm{~cm}^{-1}$. Young's moduli along the chain axls calculated from Tasumi's potential is comparable with the observed value ${ }^{28 a}$) and that from Schachtschneider's is a Iittle larger. Since the complete single crystal is not used on the measurement of Young's moduli of polyethylene, the observed value mipht be the least limit. At the present stafe, the observed frequency of laser Raman spectrum seems more rellable than the Young's moduli, the intrachain potential function obtained by Schachtschneider ${ }^{13)}$ was adopted. The diag, nal term of Δt is commonly set to be $0.108 \mathrm{md} \AA$ for many hydrocarbon molecules. The vibration is optically inactive for planar zip,zap; structure and the presumptive value from $\mathrm{C}_{2} \mathrm{H}_{6}$ is not always appropriate to polyethylene crystal. On the other hand, the specific heat from $30^{\circ} \mathrm{K}$ to $70^{\circ} \mathrm{K}$ is fairly sensitive to peak position of internal rotation branch. Accordingly, the force constant was adjusted as $0.075 \mathrm{md} \AA$ so as to reproduce well the specific heat near $60^{\circ} \mathrm{K}$ with trial and error method.

The calculated specific heat deviates from the observed values above $120^{\circ} \mathrm{K}$. Thourh seven freedoms are left per one methylene proup, the contribution of methylene symmetric and anti-symmetric stretchine vibrations are negligible below $150^{\circ} \mathrm{K}$. Approprlate representative frequencies were picked up from the dispersion curves of isolated chain and their contribution to the specific heat was calculated. Thus estimated value is as large as 0.002 at $100^{\circ} \mathrm{K}$ and 0.038 at
$150^{\circ} \mathrm{K}$ which are mainly due to methylene rocking vibrations. Even if the contribution of optical branch is added to that of lattice vibrations, the calculated value is slightly smaller than the observed one. Anharmonicity of the potential function would induce the mutual interaction of normal coordinates and also make the separation of vibrational energy levels smaller. The additional heat capacity due to these two effects is proportional to T at relatively high temperature. Accordingly the incorporation of the anharmonicity might improve the calculated value of the specific neat. The lattice vibrations for $\delta_{a}=\delta_{b}=\delta_{c}=0$ depends upon the interchain force constants. The eigenvalues of five optical modes are given by

$$
\begin{align*}
& A_{u} \quad \lambda_{z}=0.1117 P_{1}+0.1260 P_{2} \\
& B_{1 u} \quad \lambda_{y}=0.4127 \mathrm{P}_{1}+0.1100 \mathrm{P}_{2}+0.0408 \mathrm{P}_{3} \\
& \mathrm{~B}_{2 \mathrm{u}} \quad \lambda_{\mathrm{x}}=0.0460 \mathrm{P}_{1}+0.3343 \mathrm{P}_{2}+0.2443 \mathrm{P}_{3} \tag{2.23}\\
& B_{3 g} \quad \lambda_{\text {rot }}=1.8032 \mathrm{P}_{1}+0.0303 \mathrm{P}_{2}+0.1365 \mathrm{P}_{3} \\
& \mathrm{~A}_{\mathrm{g}} \quad \lambda_{\mathrm{rot}}=0.0016 \mathrm{P}_{1}+0.9480 \mathrm{P}_{2}+0.4914 \mathrm{P}_{3}
\end{align*}
$$

where λ is $\left(4 \pi^{2} c^{2} \nu^{2} \times 10^{5} / N_{0}\right)\left(N_{0}\right.$; Avogadro's number) and P_{i} is the interchain force constant represented in (mayne/ R). When the settinf anple (θ in $l i f .1$) is altered, the coefficients in (2.23) chanpe a little. Schaufele ${ }^{31 \text {) }}$ has measured Raman effect of polyethylene with laser source and found two Raman 1 ines at 167 and $122 \mathrm{~cm}^{-1}$. They are not confirmed to be due to lattice vibrations of the crystal. The frequency of ${ }^{13} 3$, calculated from the present potential is in close agreement with one of the observed values $\left(122 \mathrm{~cm}^{-1}\right)$, whereas the other is not in so prod apreement. Infrared active
lattice vibrations are calculated at $73 \mathrm{~cm}^{-1}\left(\mathrm{~B}_{1 \mathrm{u}}\right)$ and $93 \mathrm{~cm}^{-1}$ $\left(\mathrm{B}_{2 \mathrm{u}}\right)$. One of them has been really observed at $73 \mathrm{~cm}^{-1}$ $\left(298^{\circ} \mathrm{K}\right)^{32)}$ and at $79 \mathrm{~cm}^{-1}\left(100^{\circ} \mathrm{K}\right)^{25)}$. It has been confirmed that the band comes from the crystal part of polyethylene ${ }^{25}$) and that the band shows reasonable shift by deutration ${ }^{33}$). The polarization of the band was measured to be parallel to the a axis ${ }^{3 / 4}$). Since $B_{1 u}$ inciudes dipole moment along the a axis, the assignment became confident. Dean and Martin ${ }^{351}$ has found the other band at $109 \mathrm{~cm}^{-1}$ at $2^{\circ} \mathrm{K}$. However, the band is so weak that it is not definite, at present stage, for the band to be due to $\mathrm{B}_{2 \mathrm{u}}$ lattice vibration. Though we have measured the far infrared spectrum of hiph density polyethylene at $70^{\circ} \mathrm{K}$ with thick sample, we could not find sharp absorption peak. Purther investifration is necessary, especially on the dependericy of the band intensity upon the crystallinity.

Tasumi and $\mathrm{Krimm}^{36)}$ has studied the reason of the weakness of the infrared band of $B_{2 u}$ lattice vibration. Ihe possibility that only 13 band borrows the band intensity from $B_{1 u}$ component of methylene rocking vibration was concluded to be unlike. The assumption that two bands overlap at $79 \mathrm{~cm}^{-1}\left(\right.$ at $\left.77^{\circ} \mathrm{K}\right)$ lead us to unreasonable set of force constants.

The dipole moment of methylene proup is so small that dipole-dipole interaction or -multipole interaction mipht not be sipnificant. lasumi and $\mathrm{Krimm}^{36)}$ has examined it theoretically and shown that the frequency of lattice
vibrations is little influenced with dipole interactions, though there was some amblguity about the position of dipolemoment of methylene group. Accordingly van der Waals' potential seems sufficient as for interchain $\| \cdots \cdots$ interaction. On the other hand, Harada and Shimanouchi ${ }^{37 \text {) have treated }}$ the lattice vibrations of benzene crystal, assuming several types of intermolecular potential between carbon-hydrogen and hydropen-hydrogen. . The force constants adjusted with reference to the observed values of band splitting and lattice vibration lie on the reasonable curve with repard to the atomic distances. From the curve, the force constant for C.... H coordinate in polyethylene is presumed to be at most $0.0028 \mathrm{md} / \AA$ for the shortest distance of 3.21 . As shown in Fig. 7, the atomic distances for $\mathrm{C} \cdots \mathrm{H}$ is relatively large. Accordinply the C...H potential might contribute little to the frequency of lattice vibrations.

In the present study, any analytical function is not used on the determination of the interchain force constants. In this sence, the force constants obtained here are experimental. On the other hand, theoretical potential function of nonbonded hydrogens have been studied in various way. ${ }^{38)}$ Since the force constant is the second derivative of the potential function, the values at the corresponding atomic distances in polyethylene crystal were estimated from these theoretical potential functions and are shown in Table 9. The band splittinf for methylene rockins and scissoring vibrations and the frequency of ${ }^{1} 1 u$ lattice vibration,
calculated from the force constants, are also shown in Table 9. The sets of theoretical force constants provide commonly large band splitting, for methylene rocking whereas small value for methylene scissoring vibration. 'lasumi's set of force constants gives rise to good fit to the observed values of band splittinss and $B_{1 u}$ lattice vibration but the specific heat below $10^{\circ} \mathrm{K}$ calculated from it is slightly small. The result sugpests that the unique set of interchain force constants is difficult to obtain and the least square method with reference to the reliable observed values mipht be practical.

In our treatment, the band splittinps of methylene rocking, vibrations for several values of $\delta_{c}{ }^{6}$) were incorporated into least square calculation by the use of first order perturbation method. Taking many points of δ_{c} for methylene rocking, leads to put high weipht on the vibration. 'lherefore the least square method involves some ambiguity about welghtinf. Repardiess of the welght, the analysis yields $\mathrm{P}_{2}<\mathrm{P}_{3}$ whereas the interatomic distance is contrary. Several reasons may be pointed out. First, the uncertainty of the experimental value of setting angle (θ) makes the $H \cdots \cdots$ distances obscure. For reference, the inter-hydropen distances at $-196^{\circ} \mathrm{C}$ for three settinp anples and those at room temperature for $\theta=42^{\circ}\left(\right.$ Smith's model ${ }^{22)}$) are shown in Table 10. It is obvious that the order of atomic distance depends upon temperature and the settinf anrle. Secondy, the electron cloud of composite atoms in molecular crystal is not always spherleal, and the potential curve of nonbonded atoms might
depend upon the direction ${ }^{39 \text {) : For instance, } P_{3} \text { term which }}$ is in outer side of methylene group might be more similar to usual spherical $H \cdots \cdots$ potential than P_{2} term which passes inner side of methylene group. Thirdly, extremely anisotropic thermal expansion is observed 23),40-41) along the a axis and the order of the atomic distances might change even below $77^{\circ} \mathrm{K}$.

On the other hand the thermal expansion and temperature dependency of infrared band of $B_{1 u}$ lattice vibration suggest that anharmonicity of the potential function is not disregarded at higher temperature. Theoretical development about the treatment of anharmonicity in crystal vibrations would be the urgent problem for the future improvement.

SUMMARY

The low frequency modes of lattice vibrations of polyethylene crystal were treated with the use of $H_{S}(\delta)$ matrix. The approximation makes computation time much shorter than the straightforward method and the result is correct within the imitation of $3 \mathrm{~cm}^{-1}$.

As the intrachain potential, the force constants obtained by Schachtschneider and Snyder were used where the force constants of internal rotation was adjusted as $0.075 \mathrm{md} \AA$ with reference to the observed specific heat near $60^{\circ} \mathrm{K}$. As for the interchain potential, four types of $\mathrm{H} \cdot \mathrm{OH}$ interaction terms were incorporated. The force constants were
adjusted from the observed values of the specific heat below $10^{\circ} \mathrm{K}$, the frequency of $\mathrm{B} 1 u$ lattice vibration and the band splitting of methylene rocking, and scissoring vibrations. Thus the frequency distribution below $700 \mathrm{~cm}^{-1}$, the specific heat below $150^{\circ} \mathrm{K}$, Young's modull perpendicular to the chain axis, the frequency of lattice vibrations for $k=0$ modes, and the band splittings of the intrachain vibrations were calculated, in good agreement with the corresponding observed values.

REFERENCES

1) B.Wunderiich, J. Chem. Phys., 37, 1203 (1962); 37, 1207 (1962). J. Polymer Sci., $\mathrm{C}-1,41$ (1963).
2) I.V.Sochara, DokI. Akad. Nauk. (U.S.S.R.), 130, 126 (1960), (data for I ${ }^{\prime}>17^{\circ} \mathrm{K}$).
F.S.Dainton, D.M.Evans, F.E.Hoare, and T.P.Meila, Polymer, 2, 277 (1962), (data for $\mathrm{T}>22^{\circ} \mathrm{K}$). L.L.Isaacs and C.W.Garland, J. Phys. Chem. Solid, 23, 311 (1962) (data for $1.85<\mathrm{T}<5.3^{\circ} \mathrm{K}$).
W.Reese and J.E.Tucker, J. Chem. Phys., 43, 105 (1965). (data for $1.0<T<4.5^{\circ} \mathrm{K}$ which are not included in ref.1).
3) J.E.Tucker and W.Reese, J. Chem. Phys., 46, 1388 (1967).
4) B.Wunderlich, J. Phys. Chem., 62, 2078 (1965).
5) V.V.Tarasov, J'. Am. Chem. Soc., 80, 5052 (1958).
6) R.G.Snyder, J. Mol. Spectry., 4, 411 (1960); 2, 116 (1961).
7) R.F.Holland and J.R.Nielsen, J. Mol. Spectry., 8, 383 (1962).
8) J.R.Nielsen and R.F.Holland, J. Mol. Spectry., 4, 488 (1960); 6, 394 (1961).
9) S.Krimm, C.Y.Lianf, and G.B.B.M.Sutherland, J. Chem. Phys., 25, 549 (1956).
10) T. Shimanouch1, Pure Appl. Chem., Z, 261 (1962).
11) H. Takahashi, 'T.Shimanouchi, K.l'ukushima and T.Miyazawa J. Mol. Spectry., 13, 43 (1964).
12) M.'Pasumi, 'l'Shimanouchi and I'.Miyazawa, J. Mol. Spectry., 2, 261 (1962); 11, 422 (1963).
13) J.H.Schachtschneider and R.G.Snyder, Spectrochim. Acta, 12, 117 (1963).
14) P. H1ges, Proc. Boy. Soc. (London) A220, 472 (1953).
15) T.Miyazawa, J. Chem. Phys., 35, 693 (1961).
16) T.Miyazawa, K.Fukushima and Y.Ideguchi, J. Chem. Phys., 38, 2709 (1963).
17) T.Miyazawa and T.Kitagawa, J. Polymer Sci., B-2, 395 (1964).
18) C.W.Bunn, Trans. Faraday Boc.s 25, 482 (1939).
19) P.W.Teare, Acta Cryst., 12, 294 (1959).
20) L.Salem, J. Chem. Phys., 27. 2100 (1962).
21) H.M.Sheare and V.Vand, Acta Cryst., 2, 379 (1956).
22) A.E.Smith, J. Chem, Fhys., 21, 2229 (1953).
23) P.R.Swan, J. Polymer Sci.: 56, 403 (1962).
24) M. Tasumi and T'Shimanouchi, i. Chem. Phys., 43 , 1245 (1965).
25) J.E.Bertile and (i.E.Whalley, J. Chem. Phys., 41: 575 (1964).
26) 'l. Miyazawa and M. Nakamura, Anmal Heetint of Chem. Soc. Japar, Osaka (1968).
27) H.R.Danner, (i.t.Safford, H.Boutin, and M.Berger.
J. Chem. Phys., 40 , 1417 (1964).
W.R.Myers, J.L. Donovan, and J.S.Kiny, J. Chem. Phys.,

42, 4299 (1965).
(Thore are many reports and these two are representative
measurements with up. scatterinr and down-scattering
techn!ques, respectively.)
28a) I.Sakurada, T.Ito and K.Nakamae, J. Polymer Sci., $0-15$, 75 (1966).

28b) I.Sakurada, K.Kaj1, K.Nakamae and E.Shikata, Symposium on Macro Molecules, 22fog, Matsuyama (1968).
29) A.Müller, Proc. Roy. Soc., A-154, 624 (1936); A-178, 227 (1941).

30 R.F.Schaufele and T.Shimanouchi, J. Chem. Phys., 47, 3605 (1967).
31) R.F.Schaufele, private communication.
32) R.V.McKnight and K.D.Möller, J. Opt. Soc. Am., 54, 132 (1964)
33) S.Krimm and M.I.Bank, J. Chem. Phys., 42, 4059 (1965).
34) S.Krimm and M.I.Bank, private communication.
35) G.D.Dean and D.H.Martin, J. Chem. Phys. Letters, 1, 415 (1967).
36) M.Tasumi and S.Krimm, J. Chem. Phys., 46, 755 (1967).
37) I.Harada and T.Shimanouchi, J. Chem. Phys., 44,2016 (1966).
38) C.A.Coulson and C.W.llaiph, Tetrahedron 19, 527 (1963).
39) A.Odajlma and T.Maeda, J. Polymer Sci., C-15, 55 (1966). 40) E.A.Cole and D.R.Holmes, J. Polymer Sci., 46, 147 (1960).
41) M.Kakudo and R.Ullman, J. Polymer Sci., 45, 91 (1960).

Tablem1 Matrix Element of Symmetry Transformation

	$\Delta \theta_{1+1 / 4}$	$\Delta \theta_{1+1 / 4}$	$\Delta a_{1+1 / 4}^{1}$	$\Delta \alpha_{1+1 / 4}^{2}$	$\Delta \alpha_{1+1 / 4}^{3}$	$\Delta a_{1+1 / 4}^{4}$
$\Delta S_{1+1 / 4}$	0.915317	-0.175597	-0.181218	-0.181218	-0.181218	-0.181218
$\Delta \delta_{1+1 / 4}$	0	0.888666	-0.229278	-0.229278	-0.229278	-0.229278
$\Delta \alpha_{1+1 / 4}^{\text {w }}$	0	0	0.5	0.5	-0.5	-0.5
$\Delta \alpha_{1+1 / 4}^{\text {r }}$	0	0	0.5	-0.5	0.5	-0.5
$\Delta \alpha_{1+1 / 4}^{t}$	0	0	0.5	-0.5	00.5	0.5
		$\Delta r_{1+1 / 4}^{\mathrm{H}_{2}}$				
$\Delta r_{1+1 / 4}^{\mathrm{H}}$	$(1 / 2)^{\text {d }}$	$(1 / 2)^{\frac{1}{3}}$				
$\Delta_{5}{ }_{1+1 / 4}^{H_{a}}$	$(1 / 2)^{\frac{2}{1}}$	$\cdots(1 / 2)^{\frac{1}{1}}$				

Table-2 The Intrachain Potential Energy Matrix of Polyothyleno


```
Table-3 The Interchain Potential of Polyethylene Crystal
```

	$\mathrm{d}(\AA)$	$\mathrm{P}(\mathrm{md} / \AA)$	n
P_{1}	2.879	0.004_{2}	8
P_{2}	2.712	0.010_{1}	8
P_{3}	2.505	0.006_{1}	4
P_{4}	2.502	0.011_{2}	4

d; inter-atonic distance at $-196^{\circ} \mathrm{C}$.
P; the force constant of the intermolecular potential.
n; the number of the potential terms per unit cell.

Table-4 Unitary matrix for symmetry transformation $U(p \delta)$
Table-4 Unitary matrix for symmetry transformation $U(\rho \delta)$.
$\mathrm{s}^{1}(\delta)_{x} \quad+c_{1} \quad 0 \quad 0 \quad-c_{2} \quad 0 \quad 0 \quad+c_{3} \quad 0 \quad 0 \quad c_{4} \quad 0 \quad 0$
$\begin{array}{lllllllllllll}\mathrm{s}^{1}(\delta)_{y} & 0 & +c_{1} & 0 & 0 & -c_{2} & 0 & 0 & -c_{3} & 0 & 0 & +c_{4} & 0\end{array}$
$\begin{array}{lllllllllllll}S^{1}(\delta)_{z} & 0 & 0 & -8_{1} & 0 & 0 & -_{2} & 0 & 0 & -8_{3} & 0 & 0 & -5_{4}\end{array}$
$S^{2}(\delta) x \quad+c_{1} \quad 0 \quad 0 \quad-c_{2} \quad 0 \quad 0 \quad-c_{3} \quad 0 \quad 0 \quad+c_{4} \quad 0 \quad 0$
$\begin{array}{lllllllllllll}\mathrm{s}^{2}(\delta)_{y} & 0 & +\mathrm{c}_{1} & 0 & 0 & -\mathrm{c}_{2} & 0 & 0 & 4 \mathrm{c}_{3} & 0 & 0 & -c_{4} & 0\end{array}$
$\begin{array}{lllllllllllll}\mathrm{S}^{2}(\delta)_{z} & 0 & 0 & -B_{1} & 0 & 0 & -\varepsilon_{2} & 0 & 0 & +\mathrm{B}_{3} & 0 & 0 & +\mathrm{S}_{4}\end{array}$

$\begin{array}{lllllllllllll}S^{3}(\delta)_{y} & 0 & -8_{1} & 0 & 0 & -8_{2} & 0 & 0 & +s_{3} & 0 & 0 & +s_{4} & 0\end{array}$
$\begin{array}{lllllllllllll}\mathrm{s}^{3}(\delta)_{z} & 0 & 0 & +c_{1} & 0 & 0 & -c_{2} & 0 & 0 & +c_{3} & 0 & 0 & -c_{4}\end{array}$

$\begin{array}{lllllllllllll}S^{4}(\delta)_{y} & 0 & -B_{1} & 0 & 0 & -\varepsilon_{2} & 0 & 0 & -B_{3} & 0 & 0 & -a_{4} & 0\end{array}$
$\mathrm{s}^{4}(\delta)_{2} \quad 0 \quad 0 \quad+c_{1} \quad 0 \quad 0 \quad \mathrm{c}_{2} \quad 0 \quad 0 \quad 0 \quad-c_{3} \quad 0 \quad 0 \quad+c_{4}$
c_{j} denotes three dimansional constent metrix of $\cos \left(p_{j} \delta\right)$.
B_{j} denotes three dimensional constant matrix of $\operatorname{ain}\left(\rho_{j} \delta\right)$.
Table-5 Symmetry propertiea of Cartesian bymmetry coordinates at $\delta=0$.

	E				$\mathrm{C}_{2}^{\mathrm{C}}$	1		σ_{8}	σ_{8}	speciea
$\mathrm{S}^{1}(\delta)_{x, y}$	1	1			1	1	1	1	1	${ }^{A}{ }_{B}$
$\mathrm{S}^{1}(\delta)_{z}$	1	-1	-		1	-1	1	1	-1.	${ }^{B} 30$
$\mathrm{S}^{2}(8){ }_{x, y}$	1	-1	-		1	1	-1	-1	1	${ }^{\text {B }} 38$
$\mathrm{S}^{2}(\delta) \mathrm{z}$	1	1			1	-1.	-1	-1	-1	${ }^{\text {A }}$
$s^{3}(\delta)_{x, y}$	1	1	-		-1	-1	-1	1	1	B_{14}
$\mathrm{S}^{3}(8){ }_{z}$	1	-1			-1	1	-1	1	-1	${ }^{1}{ }_{2 E}$
$s^{4}(\delta)_{x, y}$	1	-1			-1	-1	1	-1	1	${ }^{\text {B }} \mathrm{u}$
$\mathrm{s}^{4}(8){ }_{2}$	1	1	-		-1	1	1	-1	-1	B_{18}

Table-6 The Splitting of Intrachain Vibrations

branch	symm	etry and	wave	number	$\Delta \nu_{\text {cel }}$	$\Delta \nu_{\text {obs }}$
$\nu_{1}(0)$	A_{g}	2873	${ }^{\text {B }} 3 \mathrm{~g}$	2869	4	-
$\nu_{2}(0)$	A_{g}	1441	$\mathrm{B}_{3 \mathrm{~g}}$	1457	-16	(-24)
$\nu_{3}(0)$	$\mathrm{B}_{3 \mathrm{u}}$	1175	A_{u}	1183	-8	-
$\nu_{4}(0)$	A_{g}	1130	${ }^{8} 3 \mathrm{~g}$	1129	1	-
$\nu_{5}(0)$	$\mathrm{B}_{3 \mathrm{u}}$	0	A_{u}	54	-	-
$\nu_{6}(0)$	${ }^{\text {A }} \mathrm{g}$	2936	${ }^{8} 3 \mathrm{~g}$	2940	-4	-
$\nu_{7}(0)$	A_{g}	1167	${ }^{3} 3 \mathrm{~g}$	1168	-1	-
$\nu_{8}(0)$	$\mathrm{B}_{3 \mathrm{u}}$	1090	${ }^{\text {A }}$	1086	4	(6)
$\nu_{9}(0)$	A_{g}	146	${ }^{B} 3 \mathrm{~g}$	121	-	-
$\nu_{1}(\pi)$	B_{14}	2854	$\mathrm{B}_{2 u}$	2856	-2	0
$\nu_{2}(\pi)$	B_{14}	1482	${ }^{B} 2 u$	1472	10	13
$\nu_{3}(\pi)$	${ }^{1} 18$	1431	$\mathrm{B}_{2 g}$	1428	3	-
$\nu_{4}(\pi)$	${ }^{B_{1 g}}$	1079	$\mathrm{B}_{2 \mathrm{~g}}$	1073	6	-
$\nu_{5}(\pi)$	${ }^{B} 1 u$	0	${ }^{\text {B }}$ 2u	92	-	-
$\nu_{6}(\pi)$	${ }^{\text {B }} 1 \mathrm{u}$	2917	$\mathrm{B}_{2 u}$	2916	1	-
$\nu_{7}(\pi)$	${ }^{\mathrm{B}} 1 \mathrm{~g}$	1314	$\mathrm{B}_{2 g}$	1318	-4	-
$\nu_{8}(\pi)$	$\mathrm{B}_{1 \mathrm{u}}$	722	$\mathrm{B}_{2 \mathrm{u}}$	712	10	13
$\nu_{9}(\pi)$	$\mathrm{B}_{1 \mathrm{u}}$	72	${ }^{B} 2 u$	0	-	-

Table-7	The specific heat of polyethylene crystal		
Temp. $\left({ }^{\circ} \mathrm{K}\right)$	$\mathrm{C}_{\mathrm{v}} / \mathrm{R}($ obs. $)$	$\mathrm{C}_{\mathrm{v}} / \mathrm{R}$ (calc.) lattice	1ntrachain
10	0.0162		
20	0.1129	0.0953	
30	0.2548	0.2322	
40	0.4045	0.3895	
50	0.564	0.547	
60	0.703	0.692	
70	0.828	0.819	
80	0.939	0.929	
90	1.042	1.025	0.002
100	1.136	1.108	0.004
110	1.228	1.181	0.008
120	1.298	1.246	0.014
130	1.376	1.305	0.023
140	1.454	1.357	0.038
150	1.525	1.404	

Table-8 The eigen-froquoncy for $\delta_{a}=\delta_{b}=\delta_{c}=0.1 \quad\left(\mathrm{~cm}^{-1}\right)$

symmetry at $\delta=0$	ν from $D_{S}(\delta)$	ν from $H_{S}(\delta)$
A_{G}	146	147
$B_{3 g}$	122	122
$B_{1 u}$	72	73
$B_{2 u}$	6.0	6.1
$B_{3 u}$	36.3	36.3
A_{u}	65	65
$B_{1 u}$	4.6	4.6
$B_{2 u}$	92	93
$D_{S}(\delta)$ is the original dynamical matrix whose dimension 18 36.		
$H_{S}(\delta)$ is the dynamical matrix for low frequency lattice		
vibrations whose dimension in 8.		

Table-9 The Intermolecular Force Constants from the
Theoretical Potential Functions.

	P_{1}	P_{2}	P_{3}	P_{4}	$\Delta \nu_{\text {rock }}$	$\Delta \nu_{\text {bend }}$	$\nu\left(B_{1 u}\right)$
Barton	0.0021	0.0046	0.0120	0.0120	16	1	56
Hill	0.0006	0.0016	0.0053	0.0054	6	4	33
Eyring	0.0039	0.0080	0.0195	0.0197	26	3	75
Winstein	0.0018	0.0042	0.0118	0.0120	15	1	54
Hendrickson	0.0026	0.0055	0.0144	0.0145	19	2	62
Hendrickson	0.0026	0.0057	0.0152	0.0153	20	1	6.3
Bartell	0.0030	0.0066	0.0171	0.0173	22	2	81
Barton	0.0059	0.0117	0.0272	0.0277	37	5	91
Bartell	0.0061	0.0140	0.0397	0.0400	50	2	98
Maller	0.0057	0.0104	0.0210	0.0220	31	7	86
de Boer	0.0045	0.0133	0.0080	0.02	10	12	79
Tasumi	I	0.0038	0.0153	0.0120	0.02	11	11
Shimanouchi	II	0.0042	0.0101	0.0064	0.0112	10	10
Present Study	0.0	80					

| Table-10 | The Interatomic | Distances (8) | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| model | Temp. | P_{1} | P_{2} | P_{3} | P_{4} |
| $0=42^{\circ}$ | $298^{\circ} \mathrm{K}$ | 2.956 | 2.765 | 2.769 | 2.595 |
| $0=42^{\circ}$ | $77^{\circ} \mathrm{K}$ | 2.877 | 2.625 | 2.599 | 2.534 |
| $0=45^{\circ}$ | $77^{\circ} \mathrm{K}$ | 2.879 | 2.712 | 2.505 | 2.502 |
| $0=48^{\circ}$ | $77^{\circ} \mathrm{K}$ | 2.884 | 2.804 | 2.417 | 2.484 |

Fig. 1 Interchain potential in polyethylene crystal.

$\alpha_{1+1 / / 4}^{\prime=}\left\langle\mathrm{C}_{1-1 / 8} \mathrm{C}_{1+1 / 8}^{\mathrm{Hi}_{1}^{i+1 / 4}}\right.$
$\alpha_{i+1 / 4}^{2}<\mathrm{C}_{1-1 / 4} \mathrm{C}_{1+1 / \alpha_{2}} \mathrm{H}_{2}^{1+1 / \beta}$

Fig. 2 The internal coordinates for intrachain vibrations of polyethylene molecules

Fig. 3 Frequency and symmetry of optical modes of lattice vibrations $\left(\delta_{a}=\delta_{b}=\delta_{c}=0\right)$.

PHASE DIFFERENCE $\left(\delta_{c}\right)$
Fig. 4 Dispersion cirves of vibrational frequencies of lattice vibrations
along $\left(0,0, \delta_{c}\right)$

NOILつヤタ」

modes per 4 cm -1 is plotted agajnst the frequency．

Fig. 6 The specific heat of polyethylene crystal. open circles are observed values ${ }^{1)}$ and solld line shows the calculated specific heat per methylene group.

Fig. 7. The atomic distances of the interchain C.....H contacts at $-196^{\circ} \mathrm{C}$.

CHAPTER III

ACOUSTIC PHONONS AND LOW-TEMPERATURE SPECIFIC HEAT OF POLYETHYLENE CRYSTAL

III-1 I NTRODUCTI ON
There are three acoustic branches of crystal vibrations, the frequencies of which approach to $0 \mathrm{~cm}^{-1}$ as $|\delta|$ approaches to 0 . At the limit of $|\delta|=0$, the acoustic branches become overall-translations of the crystal alonf three orthogonal directions. In molecular crystals, the frequencies of acoustic vibrations depend primarily upon inter-molecular potential function.

On the other hand, for extremely small value of $|\delta|$, the period of atomic displacement becomes infinitely large and then the deformation due to acoustic vibrations would be reparded as homogeneous deformation. fror instance, the lonpitudinal acoustic vibrations alonf, the a, b and c axes correspond to σ_{1}, σ_{2} and σ_{3} of the elastic deformations, respectively. The atomic displacements in transverse acoustic vibrations are similar to those of σ_{4}, σ_{5} and σ_{6}. Accordingly, the frequencies of acoustic vibrations are represented with the macroscopic elastic constants.

The specifio heat at the lowest temperature depends primarily upon the acoustic vibrations. Since, in the polyethylene crystal, there is no free electron, the specific heat is proportional to r^{3} below $9^{\circ} \mathrm{K}$. ${ }^{1)}$ the coefficient is determined larpely from the interchain force constants. As
the experimental data are obtained from careful observations ${ }^{1 \text {) }}$, the data of the heat capacity are possibly used to adjusting the interchain force constants.

Debye's theory ${ }^{2)}$ on the specific heat assumes that the velocity of acoustic phonon does not depend upon the direction of travelling but depends on the type of modes, that is, transverse or longitudinal. This approximation is not valid for highly anisotropic crystal such as polyethylene. I'he velocity of the longitudinal mode travelling to the chain axis much higher than the velocity of longitudinal modes travelling perpendicularly to the chain axis. Previously Oda.j1ma has treated the elastic constants and low temperature specific heat, assuming de Boer type interchain potential, where the specific heat is calculated from Eq. (1.23) of Chapter I, and deviation of constant frequency surfaces of acoustic phonons from ellipsoid had been disregarded.

In the present study, the velocity of acoustic phonons is calculated for various directions of travelling, from which the frequency distribution for acoustic phonons and the specific heat below $9^{\circ} \mathrm{K}$ were calculated. The several sets of interchain force constants, deduced from the observed frequency of the $B_{1 u}$ lattice $v i b r a t i o n^{4}$) and the band splittinf of methylene rocking and scissorinp, vibrations ${ }^{5)}$, were examined and adjusted so as to reproduce the observed value of the specific heat below $9^{\circ} \mathrm{K}$. Thus obtained force constants are $P_{1}=0.0042, P_{2}=0.0101, P_{3}=0.0064$ and $P_{4}=0.0112 \mathrm{md} / \AA$. The constant frequency surfaces of
three acoustic branches are calculated under the incorporation of mutual interactions of the branches.

III-2 DYNAMICAL MATRIX FOR ACOUSTIC PHONONS
The dynamical matrix for three acoustic vibrations can be derived in two alternative ways; the perturbation method about the dynamical matrix of whole lattice vibrations and the equation for elastic waves of three dimensional elastic continuum. 6) The former has first been worked out in the present study and explained below in detail.

The matrix elements of $D_{S}^{M}\left(\delta_{c}\right)$ and $D_{S}^{C}\left(\delta_{a}, \delta_{b}, \delta_{c}\right)$ of (2.6) are expanded into power series of δ_{a}, δ_{b} and δ_{c} as

$$
\begin{align*}
& \mathbf{D}_{S}^{M}\left(\delta_{c}\right)=D_{m}^{0}+\sum_{1} D_{m}^{1}\left(\delta_{c}\right) \tag{3.1}\\
& D_{S}^{C}\left(\delta_{a}, \delta_{b}, \delta_{c}\right)=D_{c}^{0}+\sum_{1}^{1} D_{c}^{1}\left(\delta_{a}, \delta_{b}, \delta_{c}\right) \tag{3.2}
\end{align*}
$$

where D_{m}^{0} and D_{c}^{0} include constant terms and D_{m}^{1} and D_{c}^{1} include 1-th power of phase differences. Supposing the eigenvector matrix of $D_{S}^{M}\left(\delta_{c}\right)$ near $\delta_{c}=0$ is represented as

$$
\begin{equation*}
\mathbf{L}_{\mathrm{S}}^{\mathrm{M}}\left(\delta_{\mathrm{c}}\right)=\mathbf{L}_{\mathrm{m}}^{0}\left[\mathbf{E}-\mathbf{P}\left(\delta_{\mathrm{c}}\right)\right] \tag{3.3}
\end{equation*}
$$

where L_{m}^{0} is the eipenvector matrix of $\delta_{c}=0$ and E is unit matrix, then (3.4) is derived from the condition for $\mathbb{S}_{S}^{M}\left(\delta_{c}\right)$ to be eigenvector matrix of $D_{S}^{M}\left(\delta_{c}\right)$.

$$
\begin{align*}
& P\left(\delta_{c}\right)_{i 1}=0 \\
& P\left(\delta_{c}\right)_{j k}=-P\left(\delta_{c}\right)_{k j}=\left[\widetilde{C}_{m}^{0} D_{m}^{1}\left(\delta_{c}\right) \mathbf{L}_{m}^{0}\right]_{j k} /\left(\lambda_{j}^{0}-\lambda_{k}^{0}\right) \tag{3.4}
\end{align*}
$$

where λ_{j}^{0} and λ_{k}^{0} are eipenvalues of $D_{S}^{M}(0)$. Thus the dynamical matrix for low frequency lattice vibrations, $H_{S}\left(\delta_{a}, \delta_{b}, \delta_{c}\right)$ is obtained in explicit form of δ_{a}, δ_{b} and δ_{c} from

$$
\begin{equation*}
\boldsymbol{H}_{S}\left(\delta_{a}, \delta_{b}, \delta_{c}\right)=\left[\tilde{\mathbf{L}}_{m}^{0}-\widetilde{\mathbf{P}}\left(\delta_{c}\right) \tilde{\mathrm{L}}_{m}^{0}\right]\left[\mathrm{D}_{\mathrm{S}}^{M}\left(\delta_{c}\right)+\mathrm{D}_{S}^{C}\left(\delta_{a}, \delta_{b}, \delta_{c}\right)\right]\left[\dot{L}_{m}^{0}-\mathrm{L}_{\mathrm{m}}^{0} \mathbf{p}\left(\delta_{c}\right)\right] \tag{3.5}
\end{equation*}
$$

The interaction of acoustic branches with intrachain vibrations has already been incorporated through $\mathrm{P}\left(\delta_{\mathrm{C}}\right)$ and, in next place, the interaction of the acoustic branches with optical branches of low frequency lattice vibrations are introduced with the use of second order perturbation method. The matrix elements concerned with three acoustic branches are represented as

$$
\begin{aligned}
& H_{A}(\delta)_{\alpha \alpha}=A_{\alpha} \delta_{a}^{2}+B_{\alpha} \delta_{b}^{2}+C_{\alpha} \delta_{c}^{2} \quad(\alpha=a, b, c) \\
& H_{A}(\delta)_{\alpha \beta}=d_{\alpha \beta} \delta_{\alpha} \delta_{\beta}
\end{aligned}
$$

where α denotes the direction of the atomic displacement of the acoustic phonon and $\alpha_{\alpha \beta}$ is concerned with the mutual interaction of three acoustic phonons. The coefficients, $A_{\alpha}, B_{\alpha}, C_{\alpha}$ and $d_{\alpha \beta}$ are derived as function of the interchain force constants in Table 1. Since the potential term P_{4} is essentially on the bc plane, it does not contribute to the coefficient of δ_{a} at all. As the potential term of P_{3} is assumed in ab plane, it contributes neither to the translational mode alonf, the c axis nor to the coefficients of δ_{c}. Since the longitudinal mode alonf, the c axis includes the deformation of molecule, force constant of the skeletal bending coordinate contributes to C_{C} which is shown numerically in lable 1. Thus derived $H_{A}(\delta)$, the dynamical matrix for acoustic phonons, was confirmed to well reproduce the eigenfrequency of orifrinal dynamical matrix of the dimension 36. The left column of Table 2 represents the elpenfrequency obtained from the diagonalization of $\mathrm{D}_{\mathrm{S}}(\delta)$ and the right column represents that from $H_{A}(\delta)$, where phase
difference is set to be $\delta_{a}=\delta_{b}=\delta_{c}=0.1$ radian. The deviation is at most $0.2 \mathrm{~cm}^{-1}$ and therefore the present approximation is justifled.

On the other hand, macroscopic theory about elastic continuum leads to the identical dynamical matrix with acoustic branches. Supposing u, v and w are the atomic displacement alon; x, y, and z direction, respectively and X_{x}, X_{y} and X_{z} are external forces per unit volume along x direction on the surface normal to x, y, and z axis, respectively, then the equation of motion along x direction is represented as 7)

$$
\begin{equation*}
\rho \ddot{u}=\left(\partial x_{x} / \partial x\right)+\left(\partial x_{y} / \partial y\right)+\left(\partial x_{z} / \partial z\right) \tag{3.7}
\end{equation*}
$$

where ρ is density. The elastic deformation, defined by

$$
\begin{aligned}
& \sigma_{1}=\partial u / \partial x, \quad \sigma_{2}=\partial v / \partial y, \quad \sigma_{3}=\partial w / \partial z, \\
& \sigma_{4}=(\partial v / \partial z)+(\partial w / \partial y), \quad \sigma_{5}=(\partial u / \partial z)+(\partial w / \partial x) \\
& \sigma_{6}=(\partial u / \partial y)+(\partial v / \partial x)
\end{aligned}
$$

induces the restoring force which is in equilibrium with the external force. The external force, which does not give rise to overall-rotation of the crystal is represented as six component vector

$$
\begin{equation*}
\mathbf{F}=\mathbf{C} \cdot \boldsymbol{\sigma} \tag{3.8}
\end{equation*}
$$

where \mathbf{C} is the elastic constant matrix $\left(c_{1 j}\right)$. Then the equation of motion is rewritten as

$$
\begin{aligned}
& \rho \ddot{u}=c_{11}\left(\partial^{2} u / \partial x^{2}\right)+c_{66}\left(\partial^{2} u / \partial y^{2}\right)+c_{55}\left(\partial^{2} u / \partial z^{2}\right) \\
&+\left(c_{12}+c_{66}\right)\left(\partial^{2} v / \partial x \partial y\right)+\left(c_{13}+c_{55}\right)\left(\partial^{2} w / \partial x \partial z\right) \\
& \begin{aligned}
\rho \ddot{v}=c_{66}\left(\partial^{2} v / \partial x^{2}\right) & +c_{22}\left(\partial^{2} v / \partial y^{2}\right)+c_{44}\left(\partial^{2} v / \partial z^{2}\right) \\
& +\left(c_{12}+c_{66}\right)\left(\partial^{2} u / \partial x \partial y\right)+\left(c_{23}+c_{44}\right)\left(\partial^{2} w / \partial y \partial z\right)
\end{aligned}
\end{aligned}
$$

$$
\begin{align*}
\rho \ddot{w}=c_{55}\left(\partial^{2} w / \partial x^{2}\right) & +c_{44}\left(\partial^{2} w / \partial y^{2}\right)+c_{33}\left(\partial^{2} w / \partial z^{2}\right) \tag{3.9}\\
& +\left(c_{13}+c_{55}\right)\left(\partial^{2} u / \partial x \partial z\right)+\left(c_{23}+c_{44}\right)\left(\partial^{2} v / \partial y \partial z\right)
\end{align*}
$$

Under the cyclic boundary condition, the atomic displacements are represented as plane wave such as

$$
\begin{align*}
& u=u_{0} \exp (1 \omega t-1 \rho \delta) \\
& v=v_{0} \exp (1 \omega t-1 \rho \delta) \tag{3.10}\\
& w=w_{0} \exp (1 \omega t-1 \rho \delta)
\end{align*}
$$

where w is angular frequency, p is index vector and is phase difference vector. Substitution of u, v, and w from (3.10) into (3.9) yields the secular determinant for elastic waves.

The eigenvalue of (3.11) is pul and a_{0}, b_{0} and c_{0} are lattice constants. $\mathrm{T}_{\mathrm{a}}, \mathrm{T}_{\mathrm{b}}$, and T_{c} denote that atomic displacement is parallel to the a, b and c axes, respectively.

When reliable values of the elastic constants are avallable, the equation (3.11) is of preat use as it is, but when potential function is reliable and $e_{1 j}$ is not available as polyethylene crystal, the equation (3.6) may be applicable.

III-3 SPECIFIC HEAT BELOW $10^{\circ} \mathrm{K}$
With the use of spherical polar coordinate in' δ space ${ }^{8)}$, the phase differences are written as

$$
\delta_{a}=|\delta| \sin \theta \cdot \cos \phi, \quad \delta_{b}=|\delta| \sin \theta \cdot \sin \phi, \quad \delta_{c}=|\delta| \cos \theta
$$

where $|\delta|$ is length of phase difference vector. for very small values of phase difference vectors, the frequencies of acoustic phonons are proportional to the magnitude of phase difference vector, that is, $|\delta|$. Supposing ν_{01} is the frequency of $1-$ th branch at $\delta=\delta_{0}$, then the velocity of the phonon is given by $\nu_{01} c\left(\delta_{0 a}^{2} / a_{0}^{2}+\delta_{0_{b}}^{2} / b_{0_{c}}^{2}+\delta_{0_{c}}^{2} / c_{0}^{2}\right)^{-\frac{1}{2}}$ and the phase difference which gives ν_{1} is represented as

$$
\left|\delta_{\nu}\right|=\left(\nu / \nu_{01}\right)\left|\delta_{0}\right|
$$

Ihus the constant frequency surface corresponding to $\nu \mathrm{cm}^{-1}$ may be obtained from the diagonalization of the dynamical matrix for various direction of δ_{0}. In Fig. 1 , the constant frequency surfaces for $\nu=1.3 \mathrm{~cm}^{-1}$ of three acoustic phonons of polyethylene crystal is drawn in δ space, where the axis of δ_{c} is perpendicular to the paper and the iso-frequency contours for various values of δ_{c} are projected to $\delta_{a} \delta_{b}$, plane. The solid lines are drawn at 0.5° interval of δ_{c} and other lines are for intermediate values of δ_{C}, written beside the contour lines. One-eiphth of the volume $\left(0 \leq \delta_{a}, \delta_{b}, \delta_{c} \leq \pi\right)$ surrounded by the constant frequency surfaces is

$$
\begin{align*}
V(\nu) & =\sum_{i=1}^{3} \int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{\delta} \nu\left|\delta_{\nu}\right|^{2} \sin \theta \cdot \mathrm{~d} \delta \cdot \dot{\nu} \theta \mathrm{~d} \phi \\
& =\sum_{i=1}^{3} \int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{\nu}\left(\left|\delta_{0}\right| / \nu_{01}\right)^{3} \nu^{2} \mathrm{~d} \nu \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \tag{3.13}
\end{align*}
$$

Then the number of mode between ν and $\nu+d \nu$ is

$$
\begin{equation*}
g(\nu) \mathrm{d} \nu=[\partial v(\nu) / \partial \nu] \mathrm{d} \nu=\mathrm{a} \nu^{2} \tag{3.14}
\end{equation*}
$$

where the coefficient, "a" is calculated by replacing the integral in (3.13) with summation as (3.15)

$$
\begin{equation*}
a=\left(1 / 4 \pi^{3}\right) \sum_{1}^{3} \sum_{\theta}^{\frac{1}{2} \pi} \sum_{\phi}^{\frac{1}{2} \pi}\left(\left|\delta_{0}\right| / \nu_{01}\right)^{3} \sin \theta \Delta \theta \Delta \phi \tag{3.15}
\end{equation*}
$$

where the factor $\left(1 / 4 \pi^{3}\right)$ is introduced so as for $g(v)$ to represent the frequency distribution per methylene group, because the irreducible volume (one-eighth) of the first Brillouin zone is π^{3} in which four methylene proups are included. Then the specific heat is derived as

$$
\begin{equation*}
\left(C_{v} / R\right)=a(k / h c)^{3} T^{3} \int_{0}^{\infty} x^{4} \exp (x)[\exp (x)-1]^{-2} d x \tag{3.16}
\end{equation*}
$$

where $x=(h c \nu / k T)$. The upper limit of integral is conveniently regarded as infinite because the integrated value is almost constant at low temperature for proper ν_{m}.

Since the frequency is altered sensitively with δ_{c}, but little with δ_{a} or $\delta_{b}, \Delta \theta=\pi / 90$ and $\Delta \phi=\pi / 36$ were adopted on the calculation of (3.15). Finer division was confirmed to yield almost same value. The computation of the formation of the dynamical matrix from the interchain force constants and of its diagonalization, is short enough to examine several sets of the interchain force constants deduced from the least square analysis with refard to other observed values ${ }^{4-5}$). As described in $I-7$, the coefficient, "a" of (3.15) is nearly proportional to ($-3 / 2$) th power of the interchain force constants. The relation is also of use to adjust the interchain force constants. Thus determined values are

$$
P_{1}=0.0042, \quad P_{2}=0.0101, \quad P_{3}=0.0064, \quad P_{4}=0.0112 \mathrm{md} / \AA
$$

'Ihe speciric heat, calculated from above potential, is

$$
\begin{aligned}
& \left(C_{v} / R\right)_{a}=0.971 \cdot 10^{-5} T^{3} \\
& \left(C_{v} / R\right)_{b}=0.366 \cdot 10^{-5} T^{3} \\
& \left(C_{v} / R\right)_{c}=0.049 \cdot 10^{-5} T^{3} \\
& \hline C_{v} / R=1.386 \cdot 10^{-5} T^{3}
\end{aligned}
$$

where the suffices indicate approximate direction of atomic displacement in acoustic branches. Because of mixinf of modes, the definition is not always precise. The contribution of acoustic branch along the a axis is the largest in accordance with the largest volume of constant frequency surface in Fig. 1.

The most recent value of the observed specific heat ${ }^{1)}$ is

$$
\mathrm{C}_{\mathrm{v}} / \mathrm{R}=1.35 \cdot 10^{-5} \mathrm{~T}^{3}
$$

while Wunderlich's value ${ }^{9)}$ is $1.90 \times 10^{-5} \mathrm{~T}^{3}$ and Reese's previous value ${ }^{10)}$ is $1.67 \times 10^{-5} \mathrm{~T}^{3}$. Since the extrapolation to 100% crystallinity has not been carried out in the latter two experimental values, it is reasonable that the calculated value is in good agreement with the most recent value.

III-4 DISCUSSIONS

Prominent difference of the present treatment from Debyes theory lies on the representation of the frequency distribution. As lonf as frequency is proportional to phase difference in three dimensional crystal, the frequency distribution is proportional to ν^{2} and therefore F^{3} law is derived. However, in Debye theory, the coefficient, "a" of (3.14) is determined from normalization about freedom and the specific heat includes adjustable parameter ${ }^{\circ}{ }_{D}$,

$$
\left(C_{v} / R\right)=\left(9^{3} / \theta_{D}^{3}\right) \int_{0}^{\infty} x^{4} \exp (x)[\exp (x)-1]^{-2}
$$

whereas, in the present study, the coefficient is determined uniquely from the interchain force constants and the specific heat includes no adjustable parameter. Dependency of the specific heat upon T^{3} law is shown in Fip. 2 where open circles are observed values ${ }^{1) 9 \text {). Solid line denotes the }}$ coefficient of T^{3} calculated from (3.16) below $9^{\circ} \mathrm{K}$ and from (1.19) with the frequency distribution (Fig. 5) of the preceding chapter above $9^{\circ} \mathrm{K}$. As temperature is raised, one dimensional property of the dispersion curves of the crystal vibrations begins to take dominant effect upon the specific heat and deviation from T^{3} law becomes remarkable. Then the specific heat gets proportional to T and apparent magnitude of the coefficient of T^{3} becomes smaller. This tendency of the calculated results is in good agreement with the observed results.

For the calculation of the specific heat at the lowest temperature, the frequency distribution in the lowest frequency region is necessary. In this region, root sampling method does not provide sufficient frequency distribution unless a great number of points in δ space are incorporated. The frequency distribution from 14,580 points in δ space (about 120,000 modes below $700 \mathrm{~cm}^{-1}$) is shown in rifht histogram of Fig. 3. As the division of δ space gets finer, the frequency distribution approaches to the analytical one. The frequency distribution from $1,180,980$ points in δ space are drawn in left histomram of Fif . 3 where solid line is calculated from (3.15). Accordingly the specific heat calculated
from the frequency distribution of root sampling, method is smoothly connected with the value from the analytical expression of (3.16).

Since the intrachain potential contributes to $H_{A}(\delta)_{C C}$, but not to $H_{A}(\delta)_{b b}$ and $H_{A}(\delta)_{a a}$, the latter two diagonal terms are commonly small and therefore the off-diagonal term of $H_{A}(\delta)_{a b}$ becomes comparable with those diagonal terms. Though $H_{A}(\delta){ }_{a c}$ and $H_{A}(\delta)_{b c}$ are as large as $H_{A}(\delta) a b$, the effect Is small because of the large value of $H_{A}(\delta)_{c c}$ and the constant frequency surface of the translational mode along the c axis becomes apparently oblate ellipsoid alonf δ_{c}, the volume of which becomes small. While remarkable departure of the constant frequency surface from an ellipsoid is found in T_{a} and T_{b} modes, which results from the mutual repulsion of two acoustic modes which enters through $H_{A}(\delta){ }_{a b}$. As shown in Table 1 , the potential term of P_{4} does not contribute to $\mathrm{H}_{\mathrm{A}}(\delta)_{\mathrm{ab}}$ whereas, P_{1}, P_{2} and P_{3} contribute to $1 t$, thereby the repulsion is outstanding in the intermediate direction of δ_{a} and δ_{b} axes. The increment of volume of the lowest branch due to the interaction is larger than the decrease of the volume of other branches and the resultant specific heat becomes larger than the value obtained from the ellipsoid of diagonal terms which is estimated from (1.23) as

$$
\begin{aligned}
& \left(\mathrm{C}_{\mathrm{v}} / \mathrm{R}\right)_{\mathrm{a}}=0.587 \times 10^{-5} \mathrm{~T}^{3} .3 \\
& \left(\mathrm{C}_{\mathrm{v}} / \mathrm{R}\right)_{\mathrm{b}}=0.387 \times 10^{-5 \mathrm{~T}} 3 \\
& \left(\mathrm{C}_{\mathrm{v}} / \mathrm{R}\right)_{\mathrm{c}}=0.097 \times 10^{-5} \mathrm{~T}^{3} \\
& \hline\left(\mathrm{C}_{\mathrm{v}} / \mathrm{R}\right)=1.071 \times 10^{-5} \mathrm{~T} \mathrm{~T}^{3}
\end{aligned}
$$

In consequence it became evident that the mixing of acoustic modes has the significant effect upon the low temperature specific heat.

SUMMARY

The dynamical matrix for acoustic vibrations were derived with the use of perturbation method. The resultant matrix is equivalent to that derived from the elastic waves. On the calculation of low temperature specific heat, acoustic phononphonon interactions were incorporated, which led to larser specific heat than without the interaction. The frequency distribution derived from the constant frequency surface was in good agreement with that of root sampling method. From the present treatment, the interchain force constants were ad justed as $P_{1}=0.0042, P_{2}=0.0101, P_{3}=0.0064$ and $P_{4}=0.0112 \mathrm{md} / \AA$.

REFERENCES

1) J.E.Tucker and W.Reese, J. Chem. Phys., 46, 1388 (1967).
2) P.Debye, Ann. d. Phys., 22, 789 (1912)
3) A.Oda.j1ma, and T.Maeda, J. Polymer Sci., C-15, 55 (1966).
4) J.E.Bertie and G.E.Whalley, J. Chem. Phys., 41, 575 (1964).
5) R.G.Snyder, J. Mol. Spectry., 4, 411 (1960); 2, 116 (1961).
6) M. Born and K.Huang, "Dynamical Theory of Crystal Lattlces" Oxford Univ. Press, Oxford (1954).
7) C.Kittel, "Introduction to Solid State Physics", p.94. John Wiley Sons, New York (1953).
8) W.V.Houston, Rev. Mod. Phys., 20, 161 (1948).
9) B.Wunderlich, J. Chem. Phys., 37, 1207 (1962).
10) W.Reese and J.E.Tucker, J. Chem. Phys., 43, 105 (1965).

Table-1 The coefficients of δ for the acoustic branches
$\mathrm{A}_{\mathrm{a}} \quad 0.0029 \mathrm{P}_{1}+0.0209 \mathrm{P}_{2}+0.0153 \mathrm{P}_{3}$
$\mathrm{B}_{\mathrm{a}} \quad 0.0029 \mathrm{P}_{1}+0.0209 \mathrm{P}_{2}+0.0153 \mathrm{P}_{3}+0.0007 \mathrm{P}_{4}$
$\mathrm{C}_{2} \quad 0.0550 \mathrm{P}_{1}+0.0620 \mathrm{P}_{2}+0+0.0007 \mathrm{P}_{4}$
$\mathrm{A}_{\mathrm{b}} \quad 0.0258 \mathrm{P}_{1}+0.0069 \mathrm{P}_{2}+0.0026 \mathrm{P}_{3}$
$\mathrm{B}_{\mathrm{b}} \quad 0.0258 \mathrm{P}_{1}+0.0069 \mathrm{P}_{2}+0.0026 \mathrm{P}_{3}+0.0521 \mathrm{P}_{4}$
$\mathrm{C}_{\mathrm{b}} \quad 0.0258 \mathrm{P}_{1}+0.0291 \mathrm{P}_{2}+0+0.0683 \mathrm{P}_{4}$
$\mathrm{A}_{\mathrm{c}} \quad 0.0070 \mathrm{P}_{1}+0.0079 \mathrm{P}_{2} \quad 0$
$\mathrm{B}_{\mathrm{c}} \quad 0.0070 \mathrm{P}_{1}+0.0079 \mathrm{P}_{2}+0+0.0185 \mathrm{P}_{4}$
$\mathrm{C}_{\mathrm{c}} \quad 0.0083 \mathrm{P}_{1}+0.0102 \mathrm{P}_{2}+0.0+0.0068 \mathrm{P}_{4}+0.0775$
$\mathrm{d}_{\mathrm{ab}} \quad 0.0172 \mathrm{P}_{1}+0.0240 \mathrm{P}_{2}+0.0125 \mathrm{P}_{3}$
$\mathrm{d}_{\mathrm{ac}} \quad 0.0245 \mathrm{P}_{1}+0.0367 \mathrm{P}_{2}+0.0020 \mathrm{P}_{3}$
$\mathrm{d}_{\mathrm{bc}} \quad 0.0280 \mathrm{P}_{1}+0.0235 \mathrm{P}_{2}+0.0008 \mathrm{P}_{3}+0.0544 \mathrm{P}_{4}$

Table-2	Comparisons of the calculated frequency. $\left(\mathrm{cm}^{-1}\right)$	
mode	ν from $\mathrm{D}_{\mathrm{S}}(\delta)$	ν from $\mathrm{H}_{\mathrm{A}}(\delta)$
T_{a}	4.6	4.6
$\mathrm{~T}_{\mathrm{b}}$	6.0	6.2
$\mathrm{~T}_{\mathrm{c}}$	36.3	36.4

δ is set to be $\delta_{a}=\delta_{b}=\delta_{c}=0.1$.

Constant frequency surfaces of acoustic phonons of polyethylene crystal. The iso-frequency contours are projected on $\delta_{a} \delta_{b}$ plane.

Fig. 2. Dependency of the specific heat upon T^{3} law. o; observed values by Tucker ${ }^{1)}$ for $T<30^{\circ} \mathrm{K}$ and by Wunderlich ${ }^{9}$) for $T>30^{\circ} \mathrm{K}$.
-; calculated values.

Fig. 3: The frequency distribution of acoustic phonons of polyethylene crystal. Solid line is obtained from (3.15) and histograms are obtained from root sampling method.

GYMMEIRY OF CRYS'LAL VLBRATIONS, DISPERSION CURVES
AND INIRARED BANDS DUE 'IO COMBINAIIION VIBRATIIONS

IV-I INIRODUC'IION
Recause or the translational symmetry of the crystal, the wave functions of the orystal is expanded in fourler serles of reciprocal vectors, where two wave functions corresponding to different k vectors are orthofonal. 'lhen the llamiltonian of' the crystal is specified with k vector. When n atoms are contalned per unit cell, there are $3 n$ vibrations for a given k veotor, and thorefore there are $3 n$ branches of crystal vibrations.

In n simple crystal lattices these branches are approximately chassified with respect to atomic displacements. When the atomic displacement is parallel to k vector, the mode is called loneitudinal but when the displacement is perpendicular to the k vector, the mode are oalled transverse. I'his notation is of freat advantare to an isotropic ionic erystals such as NaCl, beamse photons (electromapnetio field) interact only with transverse modes. 1) However, for hiphly anisotropic polyethylene arystal, the transerso modes for a riven k vector are not always separable from the loneltudinal modes and the rlassliteation is not valid.

In the present study, the dispersion curves of $-\left(\mathrm{CH}_{2}\right)_{n^{-}}$ and $-\left(\mathrm{CU}_{2}\right)_{n}-$ polyethylene crystals were calculated alone the symmetry directions of the lirillouln gone and they are
classified in accordance with their symmetry properties. The dispersion curves of $-\left(\mathrm{CD}_{2}\right)_{\mathrm{n}}$ - crystal are expected to be obtained directly from the experiment of the coherent inelastic scattering of neutrons and, in fact, King et al. ${ }^{2}$) have recently observed the dispersion curve along δ_{c}. On the other hand, from the dispersion curves of $-\left(\mathrm{CH}_{2}\right)_{n}$ - crystal, infrared combination bands may be expected in the frequency range of $150-600 \mathrm{~cm}^{-1}$. Since polyethylene crystal is considered to be transparent for infrared radiation in this frequency region with respect to fundamental bands, thick samples were examined and several absorption bands were, in fact, observed.

IV-2 k GROUP
An ensemble of the space group operations which make k vector invariant is called k.group which is a subgroup of the point group of the space group. ${ }^{3)}$ The effect of the space group operation R_{h} upon exponential function is defined by

$$
\begin{equation*}
\mathrm{R}_{\mathrm{h}} \exp (1 \rho \delta)=\exp \left(1 \alpha_{\mathrm{h}} \rho \delta+1 t_{\mathrm{h}} \delta\right) \tag{4.1}
\end{equation*}
$$

where δ is phase difference vector and p is index vector. ${ }^{*}{ }_{h}$ and τ_{h} are the rotational operation and the relevant nonprimitive translation, respectively. Since α_{h} is an orthogonal matrix, $\left(\alpha_{h} \rho\right) \delta$ is equivalent to $\left.\rho\left(\alpha_{h}{ }^{-1} \delta\right) .5\right)$ Accordingly, the k group is defined as the ensemble of operations which satisfy

$$
\begin{equation*}
\alpha_{h}^{-1} \delta=\delta+2 \pi m \quad(m ; \text { inteper }) \tag{4.2}
\end{equation*}
$$

The space group of the polyethylene crystal is Pnam $\left.\left(D_{2 h}^{16}\right)^{4}\right)$ and the corresponding point group is $\mathrm{D}_{2 \mathrm{~h}}$. Symmetry operations of the polyethylene crystal are shown in Table A1 of Appendix I. For $\delta=(0,0,0)$, all of elpht operations setisfy Eq.(4.2) and
then the k group is $D_{2 h}$. When the value of δ_{a} varies keeping $\delta_{b}=\delta_{c}=0, E q .(4.2)$ is satisfied only with four operations which are $R_{1}=E$ (identity), $R_{2}=C_{2}^{a}$ (screw axis along the a axis), $R_{7}=$
 plane normal to the c axis). Accordingly the k group is $C_{2 v}$. While for $\delta=(\pi, 0,0)$, the remaining four operations which are $\mathrm{R}_{3}=\mathrm{C}_{2}^{\mathrm{b}}$ (screw axis along the b axis), $\mathrm{R}_{4}=\mathrm{C}_{2}^{\mathrm{c}}$ (screw axis along the c axis), $\mathrm{R}_{5}=1$ (inversion) and $\mathrm{R}_{6}=\sigma_{g}(\mathrm{bc})(\mathrm{glide}$ plane normal to the a axis), again satisfy Eq(4.2). It results from the equivalence of $(\pi, 0,0)$ and $(-\pi, 0,0)$. The k group again becomes $D_{2 h}$ but the irreducible representation is different from that for ($0,0,0$). All k groups of the polyethylene crystal are derived in the present study as shown in Table 1, where the symbol of the special point in the first Brillouin zone follows BSW notation. ${ }^{6)}$

For a given phase difference vector, the k group includes only identity operation and the crystal vibrations corresponding to the inner points of the first Brillouin zone are merely factorized into two groups, symmetric and antisymmetric to inversion. The real dynamical matrix of dimension $3 n 1 s$ not. endowed with any symmetry property, and is not reducible.

IV-3 IRREDUCIBLE REPRESENTAIIION OF k GROUP
Dispersion curves along the symmetry directions of phase difference vector belong to one of the irreducible representations of the k group. If the irreducible representation were anailable, the symmetry coordinates corresponding to each species could be constructed and the modes could be drawn schematically in terms of the atomic displacement. Slater ${ }^{3)}$ has derived the irreducible representation for 20 space groups but the Table for the space group $P_{\text {nam }}$ is not included. Accordingly the irreducible representations and base functions are derived with the use of Slater's method ${ }^{3)}$. On successive application of the point group operations to the wave function, the resultant effect is equivalent to one of the point proup operations, whereas for the space group operations the situation is different with regard to the effect of nonprimitive translations. Supposing R_{j} is operated on the exponential function after R_{h}, then

$$
\begin{align*}
R_{j} R_{h} \exp (1 \rho \delta) & =R_{j} \exp \left(1 \alpha_{h} \rho \delta\right) \cdot \exp \left(1 t_{h} \delta\right) \\
& =\exp \left[1 \boldsymbol{\alpha}_{h}\left(\boldsymbol{\alpha}_{j} \rho+\boldsymbol{t} \boldsymbol{t}_{j}\right) \delta\right] \cdot \exp \left(1 \boldsymbol{t}_{h} \delta\right) \\
& =\exp \left(1 \alpha_{h} \boldsymbol{\alpha}_{j} \rho \delta\right) \cdot \exp \left[1\left(\boldsymbol{\alpha}_{h} \boldsymbol{\tau}_{j}+\tau_{h}\right) \delta\right] \tag{4.3}
\end{align*}
$$

The multiplication table about α is identical with that of the point group operation. However, even though $\alpha_{h}{ }_{j} g$ is α_{k}, $\alpha_{h} \tau_{j}+\tau_{h}$ is not always equal to τ_{k}. With the use of $\boldsymbol{\tau}_{0}$ defined by

$$
\begin{equation*}
\alpha_{h} \tau_{j}+\tau_{h}=\tau_{k}+\tau_{0} \tag{4.4}
\end{equation*}
$$

the effect of two successive operations can be represented with one of the space group operations as

$$
\begin{equation*}
R_{j} R_{h} \phi_{0}=\exp \left(1 E_{0} \delta\right) R_{k} \cdot \phi_{0} \tag{4.5}
\end{equation*}
$$

where $\phi_{0}=\exp (1 \rho \delta)$. Thus the multiplication table for Pnam were derived as shown in Table A2, where the first operations are written in the first row and the second operations in the first: column. From the table, the irreducible representations and the base functions were derived. All the irreducible representations of the space group Pnam are shown in from Iable A3 to Table A20. Some of these are picked up and explained in detail here but tho remeining ones are proved in the same may. For $\delta=\left(\delta_{a}, O_{z} 0\right)$ we have four cperations, R_{1}, R_{2}, F_{7} and R_{8} which belong to k group. Multiplication iable for these are shown in Table 2. Since R_{2} and R_{7} are accompanied with phase factor, the rollowing type of base fiunctions ocour to our minds.

$$
\begin{equation*}
\phi_{1}=\left[\mathrm{R}_{1}+\mathrm{R}_{8}+\exp \left(-i \delta_{\mathrm{a}} / 2\right)\left(\mathrm{R}_{2}+\mathrm{R}_{7}\right)\right] \phi_{0} \tag{4,6}
\end{equation*}
$$

The application of the operators to ϕ_{1} leada us to

$$
\begin{aligned}
R_{1} \phi_{1} & =\left[R_{1} R_{1}+R_{1} R_{8}+\exp \left(-i \delta_{a} / 2\right)\left(R_{1} R_{2}+R_{1} R_{r}\right)\right] \phi_{0}=\phi_{1} \\
R_{2} \phi_{1} & =\left[R_{2} R_{1}+R_{2} R_{8}+\exp \left(-i \delta_{a} / 2\right)\left(R_{2} R_{2}+R_{2} R_{r}\right)\right] \phi_{0} \\
& =\left[R_{2}+R_{7}+\exp \left(-1 \delta_{a} / 2\right) \exp \left(1 \delta_{a}\right)\left(R_{1}+R_{8}\right)\right] \phi_{0}=\exp \left(1 \delta_{a} / 2\right) \phi_{1} \\
R_{7} \phi_{1} & =\left[R_{r}+R_{2}+\exp \left(i \delta_{a} / 2\right)\left(R_{8}+R_{1}\right)\right] \phi_{0}=\exp \left(1 \delta_{a} / 2\right) \phi_{1} \\
R_{8} \phi_{1} & =\left[R_{8}+R_{1}+\exp \left(-1 \delta_{a} / 2\right)\left(R_{7}+R_{2}\right)\right] \phi_{0}=\phi_{1}
\end{aligned}
$$

Then \varnothing_{1} is a base function for one dimenslonal representation Remaining three functions, derived from the regular reprem sentations, are as follows.

$$
\begin{aligned}
& \phi_{2}=\left[R_{1}+R_{8}-\exp \left(-1 \delta_{a} / 2\right)\left(R_{2}+R_{7}\right)\right] \phi_{0} \\
& \phi_{3}=\left[R_{1}-R_{8}+\exp \left(-1 \delta_{a} / 2\right)\left(R_{2}-R_{7}\right)\right] \phi_{0} \\
& \phi_{4}=\left[R_{1}-R_{8}-\exp \left(-1 \delta_{a} / 2\right)\left(R_{2}-R_{7}\right)\right] \phi_{0}
\end{aligned}
$$

and the resultant function after the application of symmetry operations are represented as

$$
\begin{array}{llll}
\mathrm{R}_{1} \phi_{2}=\phi_{2} & \mathrm{R}_{2} \phi_{2}=-\exp \left(1 \delta_{\mathrm{a}} / 2\right) \phi_{2} & \mathrm{R}_{7} \phi_{2}=-\exp \left(i \delta_{a} / 2\right) \phi_{2} & \mathrm{R}_{8} \phi_{2}=\phi_{2} \\
\mathrm{R}_{1} \phi_{3}=\phi_{3} & \mathrm{R}_{2} \phi_{3}=\operatorname{-xp}\left(1 \delta_{\mathrm{a}} / 2\right) \phi_{3} & \mathrm{R}_{7} \phi_{3}=-\exp \left(1 \delta_{a} / 2\right) \phi_{3} & \mathrm{R}_{8} \phi_{3}=-\phi_{3} \\
\mathrm{R}_{1} \phi_{4}=\phi_{4} & \mathrm{R}_{2} \phi_{4}=-\exp \left(1 \delta_{a} / 2\right) \phi_{4} & \mathrm{R}_{7} \phi_{4}=+\exp \left(1 \delta_{a} / 2\right) \phi_{4} & \mathrm{R}_{8} \phi_{4}=-\phi_{4}
\end{array}
$$

Thus one dimensional representation of the k group at \sum was derived and is summarized in Table A3, where $\phi_{1}, \phi_{2}, \phi_{3}$ and ϕ_{4} are base functions of $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}$ and Σ_{4}, respectively. With the use of the usual point group notation of $C_{2 v}, \Sigma_{1}$, Σ_{2}, Σ_{3}, and Σ_{4} correspond to A_{1}, B_{2}, A_{2} and B_{1}, respectively. The multiplication table for $\left(\delta_{a}, \pi, 0\right),\left(\delta_{a}, 0, \pi\right)$ and $\left(\delta_{a}, \pi, \pi\right)$ are proved to be identical with Table 2. Accordingly the irreducible representations for these points are common to that of $\left(\delta_{a}, 0,0\right)$. On the other hand, the nonprimitive translations accompanied witr C_{2}^{a}, C_{2}^{b}, and C_{2}^{C} are different from each other, therefore the irreducible representations for ($0, \delta_{b}, 0$) and $\left(0,0, \delta_{c}\right)$ are not simple permutation of δ_{a}, δ_{b} and δ_{c} in the representation for $\left(\delta_{a}, 0,0\right)$. For $\left(0, \delta_{b}, 0\right)$ and $\left(\pi, \delta_{b}, 0\right)$, the multiplication tables are common but different from those for $\left(0, \delta_{b}, \pi\right)$ and $\left(\pi, \delta_{b}, \pi\right)$. The irreducible representation of the former is one dimensional whereas that of the latter is two dimensional. The irreducible representations for ($0,0, \delta_{c}$) and $\left(\pi, \pi, \delta_{c}\right)$ are one dimensional but those for $\left(0, \pi, \delta_{c}\right)$ and $\left(\pi, 0, \delta_{c}\right)$ are two dimensional. As the example, $\left(0, \pi, \delta_{c}\right)$ is picked up. The multiplication table for $\left(0, \pi, \delta_{c}\right)$ is shown in Table 3, where R_{1}, R_{4}, R_{6} and R_{7} belong to the k group. Table 2. is symmetric about diagonal line whereas Table 3.
is not symmetric. In the same way with Eq(4.6), proper Inear combinations of regular representations such as

$$
\begin{equation*}
\phi_{1}=\left[R_{1}+R_{7}+\exp \left(-1 \delta_{c} / 2\right)\left(R_{4}+R_{6}\right)\right] \phi_{0} \tag{4.7}
\end{equation*}
$$

were constructed and subjected to symmetry operations. R_{1} and R_{4} give rise to the same type of the function, whereas R_{6} and R_{7} yield different type of function, ϕ_{2}, as

$$
\begin{align*}
\mathrm{R}_{6} \phi_{1} & =\left[\mathrm{R}_{6}\left(\mathrm{R}_{1}+\mathrm{R}_{7}\right)+\exp \left(-1 \delta_{c} / 2\right) \mathrm{R}_{6}\left(\mathrm{R}_{4}+\mathrm{R}_{6}\right)\right] \phi_{0} \\
& =\left[\mathrm{R}_{6}+\mathrm{R}_{4}-\exp \left(1 \delta_{c} / 2\right)\left(\mathrm{R}_{7}+\mathrm{R}_{1}\right)\right] \phi_{0} \\
& =\exp \left(1 \delta_{c} / 2\right) \cdot \phi_{2} \tag{4.8}
\end{align*}
$$

Accordingly, the irreducible representation becomes twodimensional.

On the surface of the first Brillouin zone, the k group is always C_{s} and the dynamical matrix is factorized into two blocks with the symmetry transformation. For the example of (π, δ, δ), the symmetry operations of the k group are R_{1} and $\mathrm{R}_{6}{ }^{\circ}$ As they are not points of high symmetry, there is no BSW symbol while the irreducible representations for these faces are shown in Tables A11-A13. At the corner of the zone, the symmetry becomes $D_{2 h}$ again and there appears degeneracy of the lattice vibrations. The corner of degeneracy does not always coincide with the dimensionality of the irreducible representation. Two typical examples of the irreducible representations for $D_{2 h}$ are derived below and the relation of the dimensionality with the degeneracy of energy level is treated later.

The multiplication table of the k group at $(\pi, \pi, 0)$ is represented as Table 4, where operations are rearranged from Table A2. Supposing that group of operations, A includes R_{1},
R_{4}, R_{5} and R_{8} while group B includes R_{2}, R_{3}, R_{6} and R_{7}, then the multiplication table is simply represented as

	A	B
A	A	B
B	B	$-A$

Where the operations in the first column are applied after those in the first row. If we select the base functions as $\phi_{1}=(A+B) \phi_{0}$ and $\phi_{2}=(A-B) \phi_{0}$, then the resultant functions after the symmetry operations are as follows;

$$
A \phi_{1}=\phi_{1} \quad A \phi_{2}=\phi_{2} \quad B \phi_{1}=-\phi_{2} \quad B \phi_{2}=\phi_{1}
$$

Therefore the representation is real and two-dimensional. For the group of order eight, there should be two types of two-dimensional irreducible representations. On the other hand, if we take complex functions such as $\phi_{1}=(A+i B) \phi_{0}$ and $\phi_{2}=(A-i B) \phi_{0}$, then the symmetry operations yield

$$
A \phi_{1}=\phi_{1} \quad A \phi_{2}=\phi_{2} \quad B \phi_{1}=-1 \phi_{1} \quad B \phi_{2}=1 \phi_{2}
$$

and the representation becomes one-dimensional. Since four independent inear combinations are possibly made within the group A or B, eight base functions can be constructed. Thus derived one-dimensional representation is shown in Table A17.

The situation of the k group for (π, π, π) is fairly different from $(\pi, \pi, 0)$. As shown in Table 5, multiplication table is neither symmetric nor skew symmetric. If the representation is written with real number, it becomes four dimensional, where the base functions are

$$
\begin{aligned}
& \phi_{1}=\left(\mathrm{R}_{1}+\mathrm{R}_{8}+\mathrm{R}_{2}+\mathrm{R}_{7}\right) \phi_{0} \\
& \phi_{2}=\left(\mathrm{R}_{1}+\mathrm{R}_{8}-\mathrm{R}_{2}-\mathrm{R}_{7}\right) \phi_{0} \\
& \phi_{3}=\left(\mathrm{R}_{5}+\mathrm{R}_{4}+\mathrm{R}_{6}+\mathrm{R}_{3}\right) \phi_{0}
\end{aligned}
$$

$$
\phi_{4}=\left(\mathrm{R}_{5}+\mathrm{R}_{4}-\mathrm{R}_{6}-\mathrm{R}_{3}\right) \phi_{0}
$$

On the other hand, theorem of group theory states that the sum of square of the dimension of the representation is equal to the number of operations ${ }^{7}$), therefore four dimensional representation is impossible for the group of order eight. Using complex number in the coefficients of base functions, we can obtain two-dimensional representations which are shown in Table A20.

IV-4 DEGENERACY OF ENERGY LEVEL
Dimensionality of the irreducible representation does not always coincide with the degree of degeneracy of the energy level. A transformation matrix corresponding to symmetry operations of the k group keeps the dynamical matrix invariant and then complex conjugate of the transformation matrix also commutes with the dynamical matrix. Supposing $T\left(\delta, R_{1}\right)$ is the transformation matrix of symmetry operation, R_{i}, and $T^{*}\left(\delta, R_{i}\right)$ is its complex conjugate, then

$$
\begin{align*}
& T\left(\delta, R_{1}\right) D_{S}(\delta)=D_{S}(\delta) T\left(\delta, R_{1}\right) \tag{4.9}\\
& T^{*}\left(\delta, R_{1}\right) D_{S}(\delta)=D_{S}(\delta) T^{\#}\left(\delta, R_{1}\right)
\end{align*}
$$

where $D_{S}(\delta)$ is dynamical matrix for arbitrary phase difference vector and satisfies the secular equation of

$$
\begin{equation*}
\mathbf{D}_{S}(\delta) \mathbf{L}_{j}(\delta)=\lambda_{j}(\delta) \mathbf{L}_{j}(\delta) \tag{4.10}
\end{equation*}
$$

where $\lambda_{j}(\delta)$ and $\mathbb{E}_{j}(\delta)$ are j-th eigenvalue and the corresponding eigenvector, respectively. Multiplying (4.10) from left by $T\left(\delta, R_{1}\right)$ and $T^{*}\left(\delta, R_{1}\right)$ yields

$$
\begin{align*}
& D_{S}(\delta) T\left(\delta, R_{i}\right) \mathbb{L}_{j}(\delta)=\lambda_{j}(\delta) T\left(\delta, R_{i}\right) \mathbb{L}_{j}(\delta) \tag{4.11}\\
& D_{S}(\delta) T^{*}\left(\delta, R_{i}\right) \mathbb{L}_{j}(\delta)=\lambda_{j}(\delta) T^{*}\left(\delta, R_{i}\right) \mathbf{L}(\delta)
\end{align*}
$$

It shows that both of $T\left(\delta, R_{1}\right) \mathbb{L}_{j}(\delta)$ and $T^{*}\left(\delta, R_{i}\right) \mathbb{L}_{j}(\delta)$ are eigenvector of $D_{S}(\delta)$. If $T\left(\delta, R_{1}\right)$ and $T *\left(\delta, R_{1}\right)$ are inequivalent
two eigenvectors becomes inequivalent and then two Inear independent vectors belong to the same eigenvalue. In other words, if $T\left(\delta, R_{1}\right)$ and $T^{*}\left(\delta, R_{1}\right)$ belong to different species, then extra degeneracy appears.

Maradudin and vosko ${ }^{8)}$ have studied the symmetry of crystal vibrations by the use of multiplier co-representation method and derived a simple rule about degeneracy due to time reversal symmetry.

$$
\begin{align*}
& \sum_{R} \phi\left(\delta, A_{0} R, A_{0} R\right) X^{S}\left(\delta, A_{0} R A_{0} R\right)=g \quad \text { a type (4.12a) } \\
& =-g \quad b \text { type } \tag{4.12b}\\
& =0 \quad \text { c type } \tag{4.12c}
\end{align*}
$$

$\phi(\delta, A, R)$ is a multiplier representation of the space group operation defined by $\mathrm{Eq}(4.13)$.

$$
\begin{equation*}
\phi(\delta, A, R)=\exp \left[-1\left(\delta+A^{-1} \delta\right) \cdot \tau(R)\right] \tag{4.13}
\end{equation*}
$$

R is an unitary type operation and A is an antiunitary type operation. For example at point $\Sigma, R_{1}, R_{2}, R_{7}$ and R_{8} are unitary type operations and $\mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5}$ and R_{6} are antiunitary type operations. A_{0} is an arbitrary operator of A type. In the case of the polyethylene crystal, it is convenient to regard A_{0} as inversion, because inversion acts always as antiunitary operator for all kgroups. $X^{S}\left(\delta, A_{0} R A_{0} R\right)$ is a character of $S-t h$ irreducible representation for the operator $A_{0} \mathrm{RA}_{0} \mathrm{R}$. When A_{0} is inversion, $\mathrm{A}_{0} \mathrm{RA}_{0} \mathrm{R}$ is always equal to identity operation for all. R in $\mathrm{D}_{2 \mathrm{~h}}$ system. Summation runs over all operators in k group where g is order of k group. Supposing the dimension of the irreducible representation is f_{S}, then energy level is f_{S}-fold degenerate for a type,
whereas $2 f_{S}-$ fold degenerate for b and c type. ${ }^{8)}$
In Table $6, \phi\left(\delta, A_{0} R_{1}, A_{0} R_{1}\right)$ are derived for all operators of the space group Pnam. At each point represented in Table 1 , the corresponding value of phase difference is substituted for δ_{a}, δ_{b} or δ_{c}. Thus the type of time reversal symmetry were derived and shown in Table 7. The extra degeneracy due to time reversal symmetry appears at points of A, C, E, G, Q, F, S, U, and R. At points of Q, S, and R, in particular, the dimension of the irreducible representation is two, therefore the resultant degeneracy of energy level becomes four-fold, which is rarely seen in the molecular vibrations. IV-5 DISPERSION CURVES AND COMPATIBILITY RELATIONS

Dispersion curves of the frequency of crystal vibrations were calculated and are shown in Fig. 1 - Fig. 8. The corresponding curve of $-\left(C D_{2}\right)_{n}$ - polyethylene crystal were calculated with the same force constants and are shown in Fig. A1-Fig. A6 of Appendix I. Since eight modes corresponding to low frequency lattice vibrations below $700 \mathrm{~cm}^{-1}$ were treated here, four curves appear for doubly degenerate cases and two curves appear for four-fold degenerate cases, In accord with the theoretical prediction of Table 7.

Along $\left(\delta_{a}, 0,0\right)$ there are eight lattice vibrations which are classified into four groups $\left(\Sigma_{1}, \Sigma_{2}, \Sigma_{3}\right.$, and $\left.\Sigma_{4}\right)$ in accordance with the symmetry property about the k group operations. Even for very small values of δ_{a}, the classification is valid and therefore the symmetry property of the wave function changes continuously on the change of phase difference
from $\left(\delta_{a}, 0,0\right)$ to $(0,0,0)$. Then the irreducible representation of the k group changes continuously with the change of phase difference. Substitution of $\delta_{a}=0$ for the irreducible representation of Table A4 shows how the base functions of \sum point behave at $(0,0,0)$. It is represented in Table 8 . When the element of Table 8 is identical with the character of the irreducible representation for $(0,0,0)$, these two species are compatible. For instance A_{g} and $B_{1 u}$ have identical characters with Σ_{1}, therefore lattice vibrations which belong to A_{g} or $B_{1 u}$ at $(0,0,0)$ are connected with Σ_{1} branch on $\left(\delta_{a}, 0,0\right)$. This relation is called compatibility relation which is derived from the characters of the irreducible representations, and thus derived compatibility diagram for polyethylene crystal is shown in Table-A21.

IV-6 COMBINATION BANDS OF THE INFRARED ABSORPTION
On the interaction of phonons with photons, total wave vector is always conserved. Since the wave vector of infrared radiation is extremely smali compared with the principal vector of the reciprocal space, a photon interacts with a phoncn of almost $k=0$. When a photon interacts with two phonons simultaneously, the conservation law requires that one phonon corresponds to $+\delta$ and the other to $-\delta$.

On the other hand, intensity of infrared absorption band depends upon both the number of infrared active combinations and the squared magnitude of each transition moment. Although a few combinations on the edge of the first Brillouin zone are deduced to be infrared inactive, all combinations on the inner
points of the zone are possibly infrared active and the number of modes is extremely larger inside of the zone than on the edges. Then the infrared spectrum might be qualitatively compared with the number of combination $v i b-$ rations. Accordingly, the frequency distribution of the binary combination modes were calculated and compared with infrared spectrum, observed at $77^{\circ} \mathrm{K}$, in Fig. 9. The infrared band at $79 \mathrm{~cm}^{-1}$ is $\mathrm{B}_{1 u}$ fundamental band which is associated with antiparallel translatory vibration perpendicuiar to the chain axis. 10-11) Three peaks are expected in the frequency distribution. The calculated peak at $230 \mathrm{~cm}^{-1}$ is primarily associated with the combination levels of the overall rotatory vibrations ($\sim 150 \mathrm{~cm}^{-1}$) with the antiparallel translatory vibrations perpendicular to the chain axis $\left(\sim 80 \mathrm{~cm}^{-1}\right)$. The peak at $280 \mathrm{~cm}^{-1}$ is due to the combination of two rotatory vibrations which really belong to infrared active combinations $\left(\Sigma_{1} \times \Sigma_{2}\right.$ or $\left.\Lambda_{1} \times \Lambda_{4}\right)$. The calculated peak near $380 \mathrm{~cm}^{-1}$ is associated with internal rotation branches. Since the combination of $\Delta_{1} \times \Delta_{3}$ belong to infrared inactive species, these peak might possibly be obscured in infrared spectrum, in good agreement with the observed results. Accordingly the observed bands below $400 \mathrm{~cm}^{-1}$ are reasonably explained as combination bands, however the band near $560 \mathrm{~cm}^{-1}$ is not assigned reasonably in terms of combination tones.

IV-7 DISCUSSIONS

As discussed in Chapter III, there is no infrared active fundamental band below $700 \mathrm{~cm}^{-1}$ except for $B_{1 u}$ and $B_{2 u}$ lattice vibrations. Dean and Martin ${ }^{12)}$ have measured the infrared spectrum at $2^{\circ} \mathrm{K}$ and found weak absorption at $109 \mathrm{~cm}^{-1}$. They have assigned it to the $B_{2 u}$ lattice vibration. Accordingly the weak absorptions observed in the region of $200-400 \mathrm{~cm}^{-1}$ are not due to fundamental lattice vibrations. Since the band intensity becomes stronger as temperature is lowered, the bands cannot be difference combination bands. On assigning these bands to combination tones, transition-moment associated with the transition has to be finite, which is equivalent to state that the product of the initial and final wave functions includes one of the symmetry species of dipolemoment. Supposing the crystal is initially at ground state and two vibrations $\phi_{\alpha}(\delta)$ and $\phi_{\beta}(-\delta)$ are excited by onequantum number on the interaction with photon, then the infrared absorption 1 a possible only when $\phi_{\alpha}(\delta) \phi_{\beta}(-\delta)$ includes one of the symmetry species of dipole moment, where $\phi_{\alpha}(\delta)$ is wave function of $\alpha-t h$ crystal vibration for δ. Since the $\phi_{\beta}(-\delta)$ is a complex conjugate of $\phi_{\beta}(\delta)$, the character of symmetry operation for $\phi_{\beta}(-\delta)$ is also complex conjugate of Tables represented in Appendix I. Thus symmetry of $\phi_{\alpha}(\delta) \phi_{\beta}(-\delta)$ is derived from the direct product of the symmetry species. In Table 9, the direct product analysis for $\left(\delta_{a}, 0,0\right)$ is shown as an example. This table is common for the point A, C, and E. In point group $C_{2 v}$, dipole moment along the a, b and c axes
belong to A_{1}, B_{2} and B_{1} species, respectively. Therefore the combination levels corresponding to $\Sigma_{1} \times \Sigma_{3}$ and $\Sigma_{2} \times \Sigma_{4}$ are infrared inactive. In the same way, the transitions to combination levels corresponding to $\Delta_{1} \times \Delta_{3}, \Delta_{2} \times \Delta_{4}, \Lambda_{1} \times \Lambda_{3}$, $\Lambda_{2} \times \Lambda_{4}$, and $F_{k} \times F_{k}$ are proved to be infrared inactive. For other combinations, direct product includes at least one of the infrared active species.

The frequency distribution for all the infrared inactive combinations was made and is shown in Fig. 10. The combination tones which are infrared inactive on the faces of the Brillouin zone would be weak even though δ is altered. Then combination bands corresponding to peaks in Fig. 10 might be weak even if they correspond to the peak in Fig. 9. In fact infrared absorption near $380 \mathrm{~cm}^{-1}$ is weak. However, for the quantitative discussions, band intensity has to be estimated theoretically. Maradudin ${ }^{13 \text {) }}$ has studied the infrared absorption of a defect or disordered crystal. He proved that the peak of frequency distribution is possibly observed as infrared absorption band in such crystals. Since there is a strong peak at $560 \mathrm{~cm}^{-1}$ in the frequency distribution of the polyethylene crystal, the infrared absorption band at $560 \mathrm{~cm}^{-1}$ might be associated with the skeletal bending mode, which appeared In the infrared spectrum because of the disorder. Theoretical development about the disordered crystal is hiphly desirable.

On the other hand, it is interestinp to confirm the existence of four-fold degenerate vibrations in terms of
symmetry coordinates which may be derived for the special value of δ from the base function represented in Appendix I. For convenience sake, σ_{1} defined by (4.14) was used instead of $R_{i} \exp (1 p \delta)$, where x_{j}, y_{j} and z_{j} are atomic displacenent of j-th methylene group.

$$
\begin{array}{ll}
\sigma_{1}=\left[\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right] \cdot \exp \left(1 \rho_{1} \delta\right) & \sigma_{2}=\left[\begin{array}{r}
x_{3} \\
-y_{3} \\
-z_{3}
\end{array}\right] \cdot \exp \left(1 \rho_{3} \delta\right) \\
\sigma_{3}=\left[\begin{array}{r}
-x_{4} \\
y_{4} \\
-z_{4}
\end{array}\right] \cdot \exp \left(1 \rho_{4} \delta\right) \\
\sigma_{4}=\left[\begin{array}{l}
-x_{2} \\
-y_{2} \\
z_{2}
\end{array}\right] \cdot \exp \left(1 \rho_{2} \delta\right) & \sigma_{5}=\left[\begin{array}{l}
-x_{2} \\
-y_{2} \\
-z_{2}
\end{array}\right] \cdot \exp \left(1 \rho_{2} \delta\right) \quad \sigma_{6}=\left[\begin{array}{r}
-x_{4} \\
y_{4} \\
z_{4}
\end{array}\right] \cdot \exp \left(1 \rho_{4} \delta\right) \tag{4.14}\\
\sigma_{7}=\left[\begin{array}{l}
x_{3} \\
-y_{3} \\
z_{3}
\end{array}\right] \cdot \exp \left(1 \rho_{3} \delta\right) & \sigma_{8}=\left[\begin{array}{r}
x_{1} \\
y_{1} \\
-z_{1}
\end{array}\right] \cdot \exp \left(1 \rho_{1} \delta\right) \\
\rho_{1}=(h, k, 1+1 / 4) & \rho_{3}=\left(h+\frac{1}{2}, k+\frac{1}{2}, 1+1 / 4\right) \\
\rho_{2}=(h, k, 1-1 / 4) & \rho_{4}=\left(n+\frac{1}{2}, k+\frac{1}{2}, 1-1 / 4\right)
\end{array}
$$

According to Table 7, the energy level is doubly degenerate at point U, though the dimension of the representation of k group is one. Substitution of σ_{1} for R_{1} in Table Aif provides symmetry coordinates for the k group at point U as

U_{1}	$x_{1}-x_{2}+i x_{3}-1 x_{4}$,	$y_{1}-y_{2}-i y_{3}+i y_{4}$
U_{2}	$x_{1}-x_{2}-1 x_{3}+i x_{4}$,	$y_{1}-y_{2}+i y_{3}-1 y_{4}$
U_{3}	$z_{1}+z_{2}-1 z_{3}-1 z_{4}$	
U_{4}	$z_{1}+z_{2}+i z_{3}+i z_{4}$	
U_{5}	$z_{1}-z_{2}-1 z_{3}+i z_{4}$	
U_{6}	$z_{1}-z_{2}+1 z_{3}-1 z_{4}$	
U_{7}	$x_{1}+x_{2}+i x_{3}+1 x_{4}$,	$y_{1}+y_{2}-1 y_{3}-1 y_{4}$
U_{8}	$x_{1}+x_{2}-1 x_{3}-1 x_{4}$,	$y_{1}+y_{2}+1 y_{3}+1 y_{4}$

Two coordinatesincluded in the pair of U_{1} and U_{2}, U_{3} and U_{4}, U_{5} and U_{6}, and U_{7} and U_{8}, are, in fact, degenerate. U_{1} and U_{2} correspond to rotational vibration around the chain axis and skeletal stretching modes. The former is connected with G_{1}, G_{4} branch along $\left(\pi, \delta_{b}, 0\right)$ as shown Fig. 1 and with A_{1}, A_{2} along $\left(\delta_{a}, \pi, 0\right)$ as shown in Fig. 2 while the latter lies above $700 \mathrm{~cm}^{-1}$ and is not treated. U_{3} and U_{4} are translatory vibration along the chain axis. The phase of ($h+\frac{1}{2}, k+\frac{1}{2}$) chain is forward or backward by $\pi / 2$ from (h, k) chain, and then the vibrational frequency for U_{3} and U_{4} should be identical. They are connected with G_{2}, G_{3} along ($\pi, \delta_{b}, 0$). or A_{3}, A_{4} along $\left(\delta_{a}, \pi, 0\right) . U_{5}$ and U_{6} are intrachain vibrations while U_{7} and U_{8} are associated with the translatory vibrations perpendicular to the chain axis.

On the other hand, at point R, the irreducible representations are two-dimensional. Substitution of σ_{1} for R_{1} in base functions represented in Table A20, yields the symmetry coordinates for (π, π, π).

$$
\begin{aligned}
& R_{1} \quad \phi_{1}=\left(z_{1}+1 z_{3}\right) \exp (1 \pi / 4) R_{2} \quad \phi_{1}=\left(z_{1}-1 z_{3}\right) \exp (+1 \pi / 4) \\
& \phi_{2}=\left(-z_{2}-1 z_{4}\right) \exp (-1 \pi / 4) \\
& \phi_{2}=\left(-z_{2}+1 z_{4}\right) \exp (-1 \pi / 4)
\end{aligned}
$$

The energy corresponding to ϕ_{1} of R_{1} and ϕ_{1} of R_{2} are equal for the same reason with the case of U_{3} and U_{4}. Then, four functions of (4.16) belong to the same energy level and the existence of four-fold degeneracy may be understood.

The functions, which provide the identical characters with Table A20 but different matrix elements, are also base
function of the k group. For instance, (4.17) and (4.18) are proved to be base functions of the irreducible representation of R_{1} and R_{2}.

$$
\begin{align*}
& \phi_{1}\left(\mathrm{R}_{1}\right)=\left(\mathrm{R}_{1}-1 \mathrm{R}_{2}-1 \mathrm{R}_{7}+\mathrm{R}_{8}\right) \exp (1 \rho \delta) \tag{4.17}\\
& \phi_{2}\left(\mathrm{R}_{1}\right)=\left(\mathrm{R}_{5}-1 \mathrm{R}_{6}-1 \mathrm{R}_{3}+\mathrm{R}_{4}\right) \exp (1 \rho \delta) \\
& \phi_{1}\left(\mathrm{R}_{2}\right)=\left(\mathrm{R}_{1}+1 \mathrm{R}_{2}+1 \mathrm{R}_{7}+\mathrm{R}_{8}\right) \exp (1 \rho \delta) \tag{4.18}\\
& \phi_{2}\left(\mathrm{R}_{2}\right)=\left(\mathrm{R}_{5}+1 \mathrm{R}_{6}+1 \mathrm{R}_{3}+\mathrm{R}_{4}\right) \exp (1 \rho \delta)
\end{align*}
$$

Substitution of σ_{1} from (4.14) into R_{1} from (4.17) and (4.18) leads us to the symmetry coordinates about x and y as

$$
\begin{array}{ll}
\phi_{1}\left(R_{1}\right)=\left(x_{1}+1 x_{3}\right) \exp (1 \pi / 4) & \phi_{1}\left(R_{1}\right)=\left(y_{1}-1 y_{3}\right) \exp (1 \pi / 4) \\
\phi_{2}\left(R_{1}\right)=\left(-x_{2}-1 x_{4}\right) \exp (-1 \pi / 4) & \phi_{2}\left(R_{1}\right)=\left(-y_{2}+1 y_{4}\right) \exp (-1 \pi / 4) \\
\phi_{1}\left(R_{2}\right)=\left(x_{1}-1 x_{3}\right) \exp (1 \pi / 4) & \phi_{1}\left(R_{2}\right)=\left(y_{1}+1 y_{3}\right) \exp (1 \pi / 4) \\
\phi_{2}\left(R_{2}\right)=\left(-x_{2}+1 x_{4}\right) \exp (-1 \pi / 4) & \phi_{2}\left(R_{2}\right)=\left(-y_{2}-1 y_{4}\right) \exp (-1 \pi / 4)
\end{array}
$$

Thus the conclusion from time reversal symmetry is really confirmed in terms of symmetry coordinates.

The dispersion curves of $-\left(\mathrm{CD}_{2}\right)_{\mathrm{n}}$ - crystal were calculated from the same force field with $-\left(\mathrm{CH}_{2}\right)_{n}$ - crystal and are showi in Appendix.

SUMMARY

Irreducible representation and base function of the k group of the space group, Pnam were derived with Slater's method. Dispersion curves of crystal vibrations of normal and deuterated polyethylene crystaln were calculated alonf the symmetry directions. The symmetry of combination tone was analysed on the basis of the symmetry of dispersion curves, and infrared absorption bands recognized at 240 and $280 \mathrm{~cm}^{-1}$
were assigned to combination bands. Simple rule about degeneracy of energy level due to time reversal symmetry, derived by Maradudin and Vosko, was applied to polyethylene crystal and the theoretical prediction was confirmed by the numerical calculations. Symmetry coordinates for point U and R were derived, and two-fold and four-fold degeneracy were really examined in terms of symmetry coordinates, respectively.

REPERENCES

1) M.Born and K.Huang, "Dynamical Theory of Crystal Lattices" Clarendon Press, Oxford (1954).
2) L.A.Feldkamp, G.Venkataraman and J.S.King, private communication.
3) J.C.Slater, "Quantum Theory of Molecules and Solid" vol.2, McGraw-Hill Comp. New York (1965).
4) L.Mariot, "Group Theory and Solid State Physics" (translated by A.Nussbaum).
5) L.P.Bouckaert, R.Smoluchowski and E.Wigner, Phys. Rev., 50, 58 (1936).
6) H.Eyring, J.Walter and G.E.Kımball, "Quantum Chemistry" John Wiley Sons, New York (1944).
7) A.A.Maradudin and S.H.Vosko, Rev. Mod. Phys., 40, 1 (1968).
8) R.V.McKnight and K.D.Möller, J. Opt. Soc. Am. 54, 132 (1964),
9) J.E.Bertie and E.Whalley, J. Chem. Phys., 41,575 (1904).
10) S.Krimm and M.I.Bank, J. Cnem. Phys., 42, 4059 (1965),
11) G.D.Dean and D.H.Martin, Chem. Phys. Letters, 1, 415 (19t7).
12) A.A.Maradudin, Solid State Physics, 12, 1 (1967).

poin	$\left(\delta_{a}, \delta_{b}, \delta_{c}\right)$	k group	operations
Γ	$(0,0,0)$	$\mathrm{D}_{2 \mathrm{~h}}$	$E, C_{2}^{a}, C_{2}^{b}, C_{2}^{c}, 1, \sigma_{g}(b c), \sigma_{g}(a c), \sigma_{g}(a b)$
Σ	$\left(\delta_{a}, 0,0\right)$	$\mathrm{C}_{2 \mathrm{v}}$	E, $C_{2}^{a}, \sigma_{g}(a c), \sigma_{g}(a b)$
A	$\left(\delta_{a}, \pi, 0\right)$	$\mathrm{C}_{2 \mathrm{v}}$	$E, C_{2}^{a}, \sigma_{g}(a c), \sigma_{g}(a b)$
C	$\left(\delta_{a}, 0, \pi\right)$	$\mathrm{C}_{2 \mathrm{~V}}$	E, $C_{2}^{a}, \sigma_{g}(\mathrm{ac}), \sigma_{g}(\mathrm{ab})$
E	$\left(\delta_{a}, \pi, \pi\right)$	$\mathrm{C}_{2 \mathrm{v}}$	E, $C_{2}^{a}, \sigma_{g}(a c), \sigma_{g}(a b)$
λ	$\left(0, \delta_{b}, 0\right)$	$\mathrm{C}_{2 \mathrm{v}}$	E, $C_{2}^{b}, \sigma_{g}(b c), \sigma_{g}(a b)$
G	$\left(\pi, \delta_{b}, 0\right)$	$\mathrm{C}_{2 \mathrm{~V}}$	$E, C_{2}^{b}, \sigma_{g}(b c), \sigma_{g}(\mathrm{ab})$
H	$\left(0, \delta_{b}, \pi\right)$	$\mathrm{C}_{2 \mathrm{~V}}$	$E, C_{2}^{b} ; \sigma_{g}(b c), \sigma_{g}(\mathrm{c} b)$
Q	$\left(\pi, \delta_{b}, \pi\right)$	$\mathrm{C}_{2 \mathrm{~V}}$	E, $C_{2}^{\text {b }}, \sigma_{g}(\mathrm{bc}), \sigma_{g}(\mathrm{ab})$
Δ	($0,0, \delta_{c}$)	$\mathrm{C}_{2 \mathrm{v}}$	E, $C_{2}^{c}, \sigma_{g}(b c), \sigma_{g}(a c)$
D	$\left(\pi, 0, \delta_{c}\right)$	$\mathrm{C}_{2 \mathrm{v}}$	$E, C_{2}^{c}, \sigma_{g}(b c), \sigma_{g}(a c)$
B	$\left(0, \pi, \delta_{c}\right)$	$\mathrm{C}_{2 \mathrm{~V}}$	$E, C_{2}^{C}, \sigma_{g}(b c), \sigma_{g}(a c)$
F	(π, π, δ_{c})	$\mathrm{C}_{2 \mathrm{~V}}$	$E, C_{2}^{c}, \sigma_{g}(b c), \sigma_{g}(a c)$
	$\left(\delta_{a}, \delta_{b}, \pi\right)$	C_{B}	E, $\sigma_{B}(a b)$
	$\left(\delta_{a}, \pi, \delta_{c}\right)$	C_{8}	E, $\sigma_{g}(\mathrm{ac})$
	$\left(\pi, \delta_{b}, \delta_{c}\right)$	C_{8}	$E, \sigma_{g}(\mathrm{bc})$
	$\left(\delta_{a}, \delta_{b}, 0\right)$	C_{8}	E, $\sigma_{g}(\mathrm{ab})$
	$\left(\delta_{a}, 0, \delta_{c}\right)$	C_{8}	E, $\sigma_{g}(\mathrm{ac})$
	$\left(0, \delta_{b}, \delta_{c}\right)$	C_{8}	E, $\sigma_{\mathrm{g}}(\mathrm{bc})$
X	($\pi, 0,0$)	$\mathrm{D}_{2 \mathrm{~h}}$	E, $C_{2}^{a}, C_{2}^{b}, C_{2}^{c}, 1, \sigma_{g}(b c), \sigma_{g}(a c), \sigma_{g}(a b)$
Z	$(0, \pi, 0)$	$\mathrm{D}_{2 \mathrm{~h}}$	E, $c_{2}^{a}, c_{2}^{b}, c_{2}^{c}, 1, \sigma_{g}(b c), \sigma_{g}(a c), \sigma_{g}(a b)$
Y	$(0,0, \pi)$	$\mathrm{D}_{2 h}$	E, $C_{2}^{a}, C_{2}^{b}, C_{2}^{c}, 1, \sigma_{g}(b c), \sigma_{g}(a c), \sigma_{g}(a b)$
U	($\pi, \pi, 0$)	$\mathrm{D}_{2 \mathrm{~h}}$	E, $C_{2}^{a}, C_{2}^{b}, C_{2}^{c}, 1, \sigma_{g}(b c), \sigma_{g}(a c), \sigma_{g}(a b)$
T	$(0, \pi, \pi)$	$\mathrm{D}_{2 \mathrm{~h}}$	E, $C_{2}^{a}, C_{2}^{b}, C_{2}^{c}, 1, \sigma_{g}(b c), \sigma_{g}(a c), \sigma_{g}(a b)$
S	($\pi, 0, \pi$)	$\mathrm{D}_{2 \mathrm{~h}}$	E, $C_{2}^{a}, C_{2}^{b}, C_{2}^{c}, 1, \sigma_{p}(b c), \sigma_{g}(a c), \sigma_{g}(a b)$
R	(π, π, π)	$\mathrm{D}_{2 \mathrm{~h}}$	$E, C_{2}^{a}, C_{2}^{b}, C_{2}^{c}, 1, \sigma_{g}(b c), \sigma_{g}(a c), \sigma_{g}(a b)$

Table-2 Multiplication table of $\&$ group operations for $\left(\delta_{8}, 0,0\right)$

	R_{1}	${ }^{\mathrm{N}_{2}}$	${ }_{7}$	${ }^{1} 8$
R_{1}	B_{1}	R_{2}	R_{7}	${ }^{\mathrm{R}} 8$
n_{2}	R_{2}	$e^{a_{R_{1}}}$	$e^{a^{1}}{ }_{8}$	B_{7}
R_{7}	R_{7}	$e^{a^{H_{8}}}$	$e^{a_{R_{1}}}$	R_{2}
R_{8}	k_{8}	R_{7}	B_{2}	R_{1}

Table-3 Multiplication table of is group operations $\operatorname{con}\left(0, r_{0} \delta_{c}\right)$

| | R_{1} | R_{4} | R_{6} | R_{7} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R_{1} | R_{1} | R_{4} | R_{6} | R_{7} |
| R_{4} | R_{4} | $e^{c_{R_{1}}}$ | $e^{c_{6} R_{7}}$ | R_{6} |
| R_{6} | R_{6} | $-e^{c_{1} \mathrm{R}_{7}}$ | $-e^{c_{R_{1}}}$ | R_{4} |
| R_{7} | R_{7} | $-\mathrm{R}_{6}$ | $-\mathrm{R}_{4}$ | R_{1} |

Table-4 Multiplication table of k group operations for $(\pi, \pi, 0)$

	R_{1}	R_{4}	R_{5}	R_{8}	R_{2}	R_{3}	R_{6}	R_{7}
R_{1}	R_{1}	R_{4}	R_{5}	R_{8}	R_{2}	R_{3}	R_{6}	R_{7}
R_{4}	R_{4}	R_{1}	R_{8}	R_{5}	R_{3}	R_{2}	R_{7}	R_{6}
R_{5}	R_{5}	R_{8}	R_{1}	R_{4}	H_{6}	R_{7}	R_{2}	R_{3}
R_{8}	R_{8}	R_{5}	R_{4}	R_{1}	R_{7}	R_{6}	R_{3}	R_{2}
R_{2}	R_{2}	R_{3}	R_{6}	R_{7}	$-\mathrm{R}_{1}$	$-\mathrm{R}_{4}$	$-\mathrm{R}_{5}$	mR_{8}
R_{3}	R_{3}	R_{2}	R_{7}	R_{6}	$-\mathrm{R}_{4}$	$-\mathrm{R}_{1}$	$-\mathrm{R}_{8}$	$-\mathrm{R}_{5}$
R_{6}	R_{6}	R_{7}	R_{2}	R_{3}	$-\mathrm{R}_{5}$	$\cdots \mathrm{R}_{8}$	mR_{1}	$-\mathrm{R}_{4}$
R_{7}	R_{7}	R_{6}	R_{3}	R_{2}	$-\mathrm{R}_{8}$	$-\mathrm{R}_{5}$	$-\mathrm{R}_{4}$	$-\mathrm{R}_{1}$

Table-5 Multiplicetion table of k group operations for (π, π, π)

	R_{1}	R_{8}	B_{2}	B_{7}	R_{5}	R_{4}	R_{6}	H_{3}
R_{1}	R_{1}	R_{8}	R_{2}	R_{7}	R_{5}	B_{4}	${ }^{8} 6$	R_{3}
R_{8}	R_{8}	R_{1}	R_{7}	R_{2}	$-\mathrm{R}_{4}$	$-\mathrm{R}_{5}$	$-\mathrm{R}_{3}$	${ }_{-1} \mathrm{R}_{6}$
R_{2}	R_{2}	R_{7}	$-\mathrm{R}_{1}$	$-\mathrm{H}_{8}$	${ }^{-R_{6}}$	$-\mathrm{B}_{3}$	R_{5}	R_{4}
R_{7}	R_{7}	B_{2}	$-R_{8}$	${ }^{-} \mathrm{R}_{1}$	H_{3}	R_{6}	$-\mathrm{R}_{4}$	$-\mathrm{R}_{5}$
R_{5}	R_{5}	H_{4}	R_{6}	A_{3}	H_{1}	R_{8}	n_{2}	R_{7}
R_{4}	R_{4}	R_{5}	R_{3}	i_{6}	$-\mathrm{F}_{8}$	$-\mathrm{R}_{1}$	${ }_{-E_{r}}$	${ }^{-R_{2}}$
R_{6}	R_{6}	R_{3}	$-\mathrm{R}_{5}$	\sim_{-14}	$-\mathrm{H}_{2}$	$-\mathrm{H}_{7}$	R_{1}	${ }^{1} 3$
B_{3}	R_{3}	R_{6}	$-\mathrm{R}_{4}$	$-\mathrm{H}_{5}$	R_{7}	R_{2}	$-\mathrm{H}_{8}$	$\sim \mathrm{R}_{1}$

Tablew Multiplier coreprodentation for space group $P_{\text {nom }}$

B_{1}	$\mathrm{A}_{0} \mathrm{R}_{1}$	\% $\left(A_{0} \mathrm{~B}_{1}\right)$	$\psi_{*}+\left(A_{0} \mathrm{P}_{1}\right)^{-1} \delta_{\delta}$		$g\left(k, A_{0} R_{1}, A_{0} R_{1}\right)$
E_{1}	R_{5}	(0,0,0)	$(0,0,0)$	0	1

$R_{3} \quad R_{7} \quad\left(2, \frac{1}{2}, 0\right) \quad\left(2 \delta_{a}: 0,2 \delta_{c}\right) \quad \delta_{a} \quad \exp \left(-1 \delta_{a}\right)$
$\mathrm{R}_{4} \mathrm{R}_{8} \quad(0,0,2) \quad\left(2 \delta_{\mathrm{a}}, 2 \delta_{\mathrm{b}}, 0\right) \quad 0 \quad 1$
$\mathrm{R}_{5} \quad \mathrm{R}_{1} \quad(0,0,0) \quad\left(2 \delta_{a}, 2 \delta_{b}, 2 \delta_{c}\right) \quad 0$
$\mathrm{R}_{6} \quad \mathrm{R}_{2} \quad\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) \quad\left(2 \delta_{a}, 0,0\right)$
σ_{a}, δ_{a}
$R_{7} \cdot R_{3}\left(\frac{1}{2}, \frac{1}{8}, 0\right) \quad\left(0,2 \delta_{b}, 0\right) \quad \delta_{b} \quad \exp \left(-1 \delta_{b}\right)$
 is a primitive tramalation.
$\%=\left[\delta+\left(A_{0} R_{1}\right)^{-1} \delta\right]$
$\phi\left(\xi, A_{0} R_{1}, A_{0} R_{1}\right)=\exp \left[-1 \delta \cdot \sigma\left(A_{0} R_{1}\right)\right]$

Tablam The degeneracy of dispersion curves due to time morersal aymatry.

point	5	$x^{3}(8, E)$	$\Sigma_{\mathrm{R}_{1} \phi\left(k, A_{0} \mathrm{R}_{1}, A_{0} \mathrm{R}_{1}\right) .}$	type	t_{3}	f_{6}	totsi
$\Gamma(0,0,0)$	8	1	8	a	1	1	1
V. $\left(\delta_{a}, 0,0\right)$	4	1	4	a	1	1	1
A $\left(\delta_{a}, \pi, 0\right)$	4	1	0	c	2	1	2
$\mathrm{C}\left(\delta_{\mathrm{E}}, 0, \pi\right)$	4	1	0	c	2	1	2
$E\left(\delta_{a}, \pi, k\right)$	4	1	0	c	2	1	2
$\lambda\left(0, \delta_{\mathrm{b}}, 0\right)$	4	1	4	a	1	1	1
G ($\left.\pi, \delta_{b}, 0\right)$	4	1	0	c	2	1	2
$H\left(0, \delta_{b}, \pi\right)$	4	2	2	a	1	2	2
Q ($\left.r_{0}, \delta_{0}, r^{2}\right)$	is	2	-2	b	2	2	4
A (0,0, 0_{c})	4	1	4	a	1	1	1
$\mathrm{B}\left(0, \pi, \delta_{c}\right)$	4	2	2	a	1	2	2
D ($\pi, 0, \delta_{c}$)	4	2	2	a	1	2	2
$F\left(\pi, \pi, \delta_{c}\right)$	4	1	0 -	c	2	1	2
$\mathrm{X}(5,0,0)$	3	2	4.	a	1	2	2
$2(0, \pi, 0)$	8	2	4	a	1	2	2
$Y(0,0, \pi)$	8	2	4	a	1	2	2
S ($\pi, 0, \pi$)	8	2	0	c	2	2	4
T $(0, \pi, \pi)$	8	2	4	a	1	2	2
$\mathrm{U}(\pi, \pi, 0)$	8	2	0	c	2	1	2
$\mathrm{R}(\pi, \pi, \pi)$	8	2	0	c	2	2	4

Pablea symmetry property of the base functions for \sum at ($0,0,0$).

| | R_{1} | R_{2} | R_{7} | R_{8} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Σ_{1} | 1 | 1 | 1 | 1 |
| Σ_{2} | 1 | -1 | -1 | 1 |
| Σ_{3} | 1 | 1 | -1 | -1 |
| Σ_{4} | 1 | -1 | 1 | -1 |

Table-9 Symetry of wave function of binary combinetion.

$\theta_{\beta}(-6) \cdot \theta_{\alpha}(+\hat{\theta})$	P_{1}	B_{2}	R_{2}	R_{8}	apeozes in C_{29}
$\Sigma_{1}^{*} \times \Sigma_{2}$	1	-1	1	~ 1	$\mathrm{E}_{2}{ }_{2}$
$\Sigma_{1}^{*} \times \Sigma_{3}$	1	1	-1	-1	A_{2}
$\Sigma_{1}^{*} \times \Sigma_{4}$	1	$\cdots 1$	± 1	1	B_{1}
$\Sigma_{2}^{*} \times \Sigma_{3}$	2	-1	-1	1	B_{1}
$\Sigma_{2}^{*} \times \Sigma_{4}$	1	1	-1	-1	${ }^{4} 2$
$\Sigma_{3}^{3} \times \Sigma_{4}$	1	-1	1	-1	B_{2}
$\Sigma_{j}^{*} \times \Sigma_{j}$	1	1	1	1	h_{1}

Fig. 1 Dispersion curves of frequency of crystal vibrations of normal
polyethylene along $\left(\delta_{a}, 0,0\right)$ and $\left(\pi, \delta_{b}, 0\right)$.

Fig. 2 Dispersion curves of frequency of crystal vibrations of normal
polyethylene along $\left(\delta_{a}, \pi, 0\right)$ and $\left(0, \delta_{b}, 0\right)$.

Fig. 7 Dispersion curves of frequency of crystal vibrations of normal polyethylene along $(\delta, \delta, 0)$.

Fig. 9 Comparison of infrared spectrum (at $77^{\circ} \mathrm{K}$) with the frequency distribution of binary combination tones.

Fig. 10 Frequency distribution of infrared inactive binary combination tones.

Table-A1 Space group operations of polyethylene crystal ($P_{\text {nam }}$)

R_{1}	E	$\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
R_{2}	$\mathrm{C}_{2}^{\mathrm{a}}$	$\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$

$\mathrm{R}_{3} \quad \mathrm{C}_{2}^{\mathrm{b}} \quad\left[\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$
R_{4}
c_{2}^{c}
$\left[\begin{array}{rrr}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\left(0,0, \frac{1}{2}\right)$
R_{5}
1
$\left[\begin{array}{rrr}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$
$(0,0,0)$
$\mathrm{R}_{6} \quad \sigma_{g}(\mathrm{bc}) \quad\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
($\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$)
R_{7}
$\sigma_{g}(\mathrm{ac}) \quad\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\left(\frac{1}{2}, \frac{1}{2}, 0\right)$
R_{8}
$\sigma_{g}(a b)$
$\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$
$\left(0,0, \frac{1}{k}\right)$
C_{1} is nonprimitive translation vector which is represented as the coefficient vector for primitive translation vector $\left(a_{0}, b_{0}, c_{0}\right)$ 。
Table-A2 Multiplication table of the space group operations for Pna

TablewA Irreducible representation of the \& group ($0,0,0$)

| | R_{1} | R_{2} | R_{3} | R_{4} | R_{5} | R_{6} | R_{7} | R_{8} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $I_{1}\left(A_{g}\right)$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $I_{2}\left(A_{u}\right)$ | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 |
| $I_{3}\left(B_{3 G}\right)$ | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 |
| $I_{4}\left(B_{3 u}\right)$ | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 |
| $I_{5}\left(B_{1 G}\right)$ | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 |
| $I_{6}\left(B_{14}\right)$ | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 |
| $I_{7}\left(B_{2 g}\right)$ | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 |
| $I_{8}\left(B_{2 u}\right)$ | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 |

Table-A4 Netrix 3 loments and characters of k group ($0<8<\pi$)

T8, 0	$, \pi, 0)\left(\delta_{a}, 0, \pi\right)\left(\delta_{a}, \pi, \pi\right)$			H_{1}	H_{2}	${ }^{8} 7$	${ }^{4} 8$	
Σ_{i}	A_{1}	C_{1}	E_{1}	1	${ }^{W}$	${ }^{3}$	1	0
\ddot{z}_{2}	A_{2}	C_{2}	E_{2}	1	\cdots	${ }^{-4} \mathrm{a}$	1	σ_{2}
Σ_{3}	A_{3}	C_{3}	E_{3}	1	${ }^{\prime}$	w_{a}	-1	6_{3}
Σ_{4}	A_{4}	C_{4}	E_{4}	1	$-\mathrm{W}_{\mathrm{a}}$	"a	-1	σ_{4}

$$
\begin{aligned}
& n_{a}=\exp \left(1 \delta_{a} / 2\right) \\
& \phi_{1}=\left[\left(R_{1}+R_{8}\right)+\exp \left(-1 \delta_{a} / 2\right)\left(R_{2}+R_{7}\right)\right] \cdot \exp (1, \delta) \\
& \phi_{2}=\left[\left(R_{1}+R_{8}\right)-\exp \left(-1 \delta_{a} / 2\right)\left(R_{2}+R_{7}\right)\right] \cdot \exp (19 \delta) \\
& \phi_{3}=\left[\left(R_{1}-R_{8}\right)+\exp \left(-1 \delta_{a} / 2\right)\left(R_{2}-R_{7}\right)\right] \cdot \exp (1 \rho \delta) \\
& \beta_{4}=\left[\left(R_{1}-R_{8}\right)-\operatorname{sex}\left(-1 \delta_{a^{\prime}} 2\right)\left(R_{2}-R_{7}\right)\right] \exp (1 \rho \delta)
\end{aligned}
$$

Table-A5 Matrix elements and characters of k group $\left(0<\delta_{0}<\pi\right)$

Table-A5 continued

$$
\begin{aligned}
& \phi_{1}=\left[\left(R_{1}+R_{8}\right)+\exp \left(-1 \delta_{b} / 2\right)\left(R_{3}+R_{6}\right)\right] \cdot \exp (1 \operatorname{en}) \\
& \phi_{2}=\left[\left(R_{1}-R_{8}\right)-\exp \left(-1 \delta_{b} / 2\right)\left(R_{3}-R_{6}\right)\right] \cdot \exp (1 p \delta) \\
& \phi_{3}=\left[\left(R_{1}-R_{8}\right)+\exp \left(-1 \delta_{b} / 2\right)\left(R_{3}-R_{6}\right)\right] \cdot \exp (1, \delta) \\
& \phi_{4}=\left[\left(R_{1}+R_{8}\right) \exp \left(-1 \delta_{b} / 2\right)\left(R_{3}+R_{6}\right)\right] \cdot \exp (1 \infty \delta)
\end{aligned}
$$

Table-A6 Matrix elements and charoctere of is group $\left(0<\delta_{b}<\pi\right)$

$\left(0, \delta_{0}, \pi\right)$	$\left(\pi, \delta_{b}, \pi\right)$	R_{1}	R_{3}	R_{6}	R_{3}
$\left(\mathrm{H}_{1}\right)_{11}$	$\left(Q_{1}\right)_{11}$	1	8	0	0
$\left(\mathrm{H}_{1}\right)_{21}$	$\left(Q_{1}\right)_{21}$	0	0	$\stackrel{-m b}{ }$	1
$\left(\mathrm{H}_{1}\right)_{1}$?	$\left(Q_{1}\right)_{12}$	0	0	w_{b}	1
$\left(\mathrm{H}_{1}\right)_{22}$	$\left(Q_{1}\right)_{22}$	1	$-W_{0}$	0	0
$\chi\left(\mathrm{H}_{1}\right)$	$(0$,	2	0	0	0

Table-A7 Matrix elements and characters of l group $\left(0<\delta_{c}<\pi\right)$

$\left(0,0, \delta_{c}\right)$	n_{1}	R_{4}	${ }_{6} 6$	87	
Δ_{1}	1	${ }^{n}$	${ }^{\mathrm{N}} \mathrm{c}$	1	σ_{1}
Δ_{2}	1	${ }_{-1 / 8}$	${ }^{1}$	-1	σ_{2}
Δ_{3}	1	${ }^{\prime}$	${ }^{-1 / 0}$	-1	σ_{3}
Λ_{4}	1	$-\mathrm{w}_{\mathrm{c}}$	$-\mathrm{w}_{\mathrm{c}}$	1	6_{4}

$$
\begin{aligned}
& w_{c}=\exp \left(1 \delta_{c} / 2\right) \\
& \phi_{1}=\left[\left(R_{1}+R_{7}\right)+\exp \left(-1 \delta_{c} / 2\right)\left(R_{4}+R_{6}\right)\right] \cdot \exp (1 p \delta) \\
& \left.\phi_{2}=\left[R_{1} \cdots R_{7}\right)-\exp \left(-1 \delta_{c} / 2\right)\left(R_{4}-R_{6}\right)\right] \cdot \exp (1 \rho \delta) \\
& \phi_{3}=\left[\left(R_{1}-R_{7}\right)+\exp \left(-1 \delta_{c} / 2\right)\left(R_{4}-R_{6}\right)\right] \cdot \exp \left(1_{4} 0 \delta\right) \\
& \left.\delta_{4}=\left[R_{1}+R_{7}\right)-\exp \left(-1 \delta_{c} / 2\right)\left(R_{4}+R_{6}\right)\right] \cdot \exp (10 \delta)
\end{aligned}
$$

Table-A8 Matrix elements and characters of k group $\left(0<\delta_{c}<\pi\right)$

$\left(\pi, 0, \delta_{c}\right)$	R_{1}	R_{4}	K_{6}	R_{7}
$\left(D_{1}\right)_{11}$	1	w_{c}	0	0
$\left(D_{1}\right)_{21}$	0	0	w_{c}	1
$\left(D_{1}\right)_{12}$	0	0	w_{c}	-1
$\left(D_{1}\right)_{22}$	1	$-w_{c}$	0	0
$\chi\left(D_{1}\right)$	2	0	0	0
$\phi_{1}=\left[\left(R_{1}+R_{7}\right)+\exp \left(-1 \delta_{c} / 2\right)\left(R_{6}+R_{4}\right)\right] \exp (1,0 \delta)$				
$\phi_{2}=\left[\left(R_{1}-R_{7}\right)+\exp \left(-1 \delta_{c} / 2\right)\left(R_{6}-R_{4}\right)\right] \exp \left(1 \rho_{p} \delta\right)$				

Table-A9 Matrix elements and characters of \& group $\left(0<\delta_{\mathrm{C}}<\pi\right)$

(0, π, δ_{c})	R_{1}	R_{4}	R_{6}	R_{7}
$\left(\mathrm{B}_{1}\right)_{11}$	1	w_{c}	0	0
$\left(\mathrm{B}_{1}\right)_{21}$	0	0	$-W_{c}$	1
$\left(B_{1}\right)_{12}$	0	0	w_{c}	1
$\left(B_{1}\right)_{22}$	1	$-w_{c}$	0	0
$\chi\left(B_{1}\right)$	2	0	0	0
$\begin{aligned} & \phi_{1}=\left[\left(R_{1}+R_{7}\right)+\exp \left(-1 \delta_{c} / 2\right)\left(R_{4}+R_{6}\right)\right] \cdot \exp (1 p \delta \\ & \phi_{2}=\left[\left(R_{1}+R_{7}\right)-\exp \left(-1 \delta_{c} / 2\right)\left(R_{4}+R_{6}\right)\right] \cdot \exp (1 p \delta \end{aligned}$				

Table-A10 Matrix elements and characters of k group $\left(0<\delta_{c}<\pi\right)$
$\left(\pi, \pi, \delta_{c}\right)$
F_{1}

F_{2}	1	$w_{c}-1 w_{c}$	-1	ϕ_{2}
F_{3}	1	$-w_{c}+1 w_{c}$	-1	ϕ_{3}
F_{4}	1	$-w_{c}-1 w_{c}$	1	ϕ_{3}
ϕ_{1}	$=\left[\left(R_{1}-1 R_{7}\right)+\exp \left(-1 \delta_{c} / 2\right)\left(R_{4}-1 R_{6}\right)\right] \cdot \exp (1 \rho \delta)$			
ϕ_{2}	$=\left[\left(R_{1}+1 R_{7}\right)+\exp \left(-1 \delta_{c} / 2\right)\left(R_{4}+1 R_{6}\right)\right] \cdot \exp (1 \rho \delta)$			
ϕ_{3}	$=\left[\left(R_{1}+1 R_{7}\right)-\exp \left(-1 \delta_{c} / 2\right)\left(R_{4}+1 R_{6}\right)\right] \cdot \exp (1 \rho \delta)$			
ϕ_{4}	$=\left[\left(R_{1}-1 R_{7}\right)-\exp \left(-1 \delta_{c} / 2\right)\left(R_{4}-1 R_{6}\right)\right] \cdot \exp (1 \rho \delta)$			

Table-A11	Characters of k group	$\left(0<\delta_{a}, \delta_{b}<\pi\right)$	
$\left(\delta_{a}, \delta_{b}, 0\right)$	R_{1}	R_{8}	base function
1	1	$\phi=\left(R_{1}+R_{8}\right) \exp (1 \rho \delta)$	
1	-1	$\phi=\left(R_{1}-R_{8}\right) \exp (1 \rho \delta)$	

Table-A12 Characters of k group $\left(0<\delta_{a}, \delta_{c}<\pi\right)$

Table-A13 Characters of k group $\left(0<\delta_{b}, \delta_{c}<\pi\right)$

$\left(0, \delta_{b}, \delta_{c}\right)$	R_{1}	R_{6}	base function
1	$W_{b c}$	$\phi=\left[R_{1}+\exp \left(-1\left(\delta_{b}+\delta_{c}\right) / 2\right) R_{6}\right] \exp (1 p \delta)$	
1	$-w_{b c}$	$\phi=\left[R_{1}-\exp \left(\cdots 1\left(\delta_{b}+\delta_{c}\right) / 2\right) R_{6}\right] \exp (1 p i \phi)$	
$W_{b c}=\exp \left[1\left(\delta_{b}+\delta_{c}\right) / 2\right]$			

Table-A14 Matrix elements and characters of k group at point X.

$(\pi, 0,0)$	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}	R_{8}
$\left(\mathrm{X}_{1}\right)_{11}$	1	0	1	0	0	1	0	1
$\left(\mathrm{X}_{1}\right)_{21}$	0	1	0	1	1	0	1	0
$\left(\mathrm{X}_{1}\right)_{12}$	0	-1	0	1	1	0	-1	0
$\left(x_{1}\right)_{22}$	1	0	-1	0	0	-1	0	1
R(X_{1})	2	0	0	0	0	0	0	2
$\left(\mathrm{x}_{2}\right)_{11}$	1	0	1	0	0	-1	0	-1
$\left(\mathrm{X}_{2}\right)_{21}$	0	1	0	1	-1	0	-1	0
$\left(\mathrm{X}_{2}\right)_{12}$	0	-1	0	1	-1	0	1	0
$\left(x_{2}\right)_{22}$	1	0	-1	0	0	1	0	-1
$x\left(x_{2}\right)$	2	0	0	0	0	0	0	-2
$\begin{aligned} & \phi_{1}\left(X_{1}\right)=\left(R_{1}+R_{3}+R_{6}+R_{8}\right) \cdot \exp (1 \rho \delta) \\ & \phi_{2}\left(X_{1}\right)=\left(R_{2}+R_{4}+R_{5}+R_{7}\right) \cdot \exp (1 \rho \delta) \end{aligned}$					$\phi_{1}\left(\mathrm{X}_{2}\right)=\left(\mathrm{R}_{1}+\mathrm{R}_{3}-\mathrm{R}_{8}-\mathrm{R}_{6}\right) \cdot \exp (1 p \delta)$			
					$\phi_{2}(\mathrm{X}$	(R_{2}	$-\mathrm{R}_{7}$).ex

Table-A15 Matrix elements and characters of k group at point Z.

$(0, \pi, 0)$	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}	R_{8}
$\left(Z_{1}\right)_{11}$	1	1	0	0	0	0	1	1
$\left(\mathrm{Z}_{1}\right)^{1}$	0	0	1	1	1	1	0	0
$\left(Z_{1}\right)_{12}$	0	0	-1	1	1	-1	0	0
$\left(\mathrm{z}_{1}\right)_{22}$	1	-1	0	0	0	0	-1	1
$\chi\left(z_{1}\right)$	2	0	0	0	0	0	0	2
$\left(z_{2}\right)_{11}$	1	1	0	0	0	0	-1	-1
$\left(Z_{2}\right)^{\prime}$	0	0	1	1	-1	-1	0	0
$\left(\mathrm{Z}_{2}\right)_{12}$	0	0	-1	1	-1	1	0	0
$\left(z_{2}\right)_{2}$	1	-1	0	0	0	0	1	-1
$x\left(\mathrm{z}_{2}\right)$	2	0	0	0	0	0	0	-2
$\begin{aligned} & \phi_{1}\left(Z_{1}\right)=\left(R_{1}+R_{8}+R_{2}+R_{7}\right) \exp (1 \rho \delta) \\ & \phi_{2}\left(Z_{1}\right)=\left(R_{3}+R_{6}+R_{4}+R_{5}\right) \cdot \exp (1 \rho \delta) \end{aligned}$								
$\phi_{1}\left(z_{2}\right)=\left(R_{1}-H_{8}+R_{2}-R_{7}\right) \exp (1 \rho \delta)$								

Table-A16 Matrix elements and characters of group at point Y.

$(0,0, \pi)$	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}	R_{8}
$\left(Y_{1}\right)_{11}$	1	1	0	0	0	0	1	1
$\left(Y_{1}\right)_{21}$	0	0	1	1	1	1	0	0
$\left(Y_{1}\right)_{12}$	0	0	1	-1	1	-1	0	0
$\left(Y_{1}\right)_{2}$	1	-1	0	0	0	0	1	-1
$X\left(Y_{1}\right)$	2	0	0	0	0	0	2	0
$\left(Y_{2}\right)_{11}$	1	1	0	0	0	0	-1	-1
$\left(Y_{2}\right)_{21}$	0	0	1	1	-1	-1	0	0
$\left(Y_{2}\right)_{12}$	0	0	1	-1	-1	1	0	0
$\left(Y_{2}\right)_{2}$	1	-1	0	0	0	0	-1	1
$\bar{\chi}\left(\mathrm{Y}_{2}\right)$	2	0	0	0	0	0	-2	0
$\begin{aligned} & \sigma_{1}\left(Y_{1}\right)=\left(R_{1}+R_{2}+R_{7}+R_{8}\right) \exp (1 \rho \delta) \\ & \phi_{2}\left(Y_{1}\right)=\left(R_{3}+R_{4}+R_{5}+R_{6}\right) \exp (1 \rho \delta) \end{aligned}$								
$\phi_{1}\left(Y_{2}\right)=\left(R_{1}+R_{2}-R_{7}-R_{8}\right) \cdot \exp (1 \rho \delta)$								

Table-A17 Matrix elements and characters of ir group at point U.

$(\pi, \pi, 0)$	R_{3}	R_{2}	R_{3}	H_{4}	R_{5}	${ }^{R_{S}}$	R_{7}	R_{8}
U_{1}	1	1.	1	1	1	1	1.	1
U_{2}	1	-1	-i,	1	1	-1	-1	1
U_{3}	1	1	1	3	-1	-1	-1	-1
U_{4}	1	-1.	-1.	1	-1	1.	1	-1
U_{5}	1	\pm	-i	-1	1	1	-1	-1
U_{6}	1	-1	1	-1	1	$\cdots 1$	1	-1
U_{7}	1	1	-1	-1	-1	-1	1.	1
U_{3}	1	-1.	1	-1	-1	1	\cdots	1
$\beta_{1}=\left(R_{i}-1 R_{2}-1 R_{3}+R_{4}+R_{5}-1 R_{6}-i R_{7}+R_{8}\right) \exp (1 p \delta)$								
$\phi_{2}=\left(\mathrm{R}_{3}+1 \mathrm{R}_{2}+3 \mathrm{R}_{3}+\mathrm{R}_{4}+\mathrm{R}_{5}+1 \mathrm{R}_{6}+1 \mathrm{R}_{7}+\mathrm{R}_{8}\right) \mathrm{exp}(108)$								
$n_{3}=\left(\mathrm{A}_{1}-1 \mathrm{R}_{2}-1 \mathrm{R}_{3}+\mathrm{R}_{4}-\mathrm{R}_{5}+1 \mathrm{R}_{6}+1 \mathrm{R}_{7}-\mathrm{R}_{8}\right) \exp (1 p 6)$								
$\oint_{4}=\left(\mathrm{R}_{1}+1 \mathrm{R}_{2}+1 \mathrm{R}_{3}+\mathrm{R}_{4}-\mathrm{B}_{5}-1 \mathrm{R}_{6}-1 \mathrm{R}_{7}-\mathrm{R}_{8}\right) \exp (1 p \delta)$								
$\phi_{5}=\left(\mathrm{R}_{1}-1 \mathrm{R}_{2}+1 \mathrm{R}_{3}-\mathrm{R}_{4}+\mathrm{R}_{5}-1 \mathrm{~S}_{6}+1 \mathrm{R}_{7}-\mathrm{R}_{8}\right) \exp \left(\mathrm{L}_{8} \delta\right)$								
$\phi_{6}=\left(\mathrm{R}_{1}+1 \mathrm{R}_{2}-1 \mathrm{H}_{3}-\mathrm{H}_{1}+\mathrm{R}_{5}+1 \mathrm{R}_{6}-1 \mathrm{H}_{7}-\mathrm{R}_{8}\right) \cdot \exp (18 \delta)$								
$p_{8}=\left(\mathrm{R}_{1}+1 \mathrm{R}_{2}-1 \mathrm{R}_{3}-\mathrm{R}_{4}-\mathrm{R}_{5}-1 \mathrm{R}_{6}+1 \mathrm{R}_{7}+\mathrm{R}_{8}\right) \exp (1 \rho \delta)$								

Table-A18 Matrix elements end characters of ts group at point T.

$(0, \pi, \pi)$	R_{1}	B_{2}	R_{3}	B_{4}	R_{5}	R_{6}	R_{7}	R_{8}
$\left(\mathrm{T}_{1}\right)_{11}$	1	1	0	0	1	1	0	0
$\left(\mathrm{T}_{1}\right)_{21}$	0	0	1	1	0	0	- -1	-1
$\left(\mathrm{T}_{1}\right)_{12}$	0	0	-1	-1	0	0	-1	-1
$\left(\mathrm{T}_{1}\right)_{2}$	1	1	0	0	- 1	- 1	0	0
n(T)	2	2	0	0	0	0	0	0
(T2) ${ }_{11}$	1	-1	0	0	1	-1	0	0
$\left(\mathrm{T}_{2}\right)_{21}$	0	0	-1	1	0	0	1	-1
$\left(\mathrm{T}_{2}\right)_{12}$	0	0	1	-1	0	0	1	-1
$\left(\mathrm{T}_{2}\right)_{22}$	1	-1	0	0	-1	1	0	0
XCH_{2}	2	-2	0	0	0	0	0	0
$\begin{aligned} & \sigma_{1}\left(T_{1}\right)=\left(R_{1}+R_{2}+R_{5}+R_{6}\right) \exp (1 \rho \delta) \\ & \sigma_{2}\left(T_{1}\right)=\left(R_{3}+R_{4}-R_{7}-R_{8}\right) \exp (1 \rho \delta) \end{aligned}$								
$\phi_{1}\left(T_{2}\right)=\left(\mathrm{R}_{1}-\mathrm{R}_{2}+\mathrm{R}_{5}-\mathrm{R}_{6}\right) \exp (1 \rho \delta)$								

TablewA19 Matrix elementa and characters of it group at point S.

$(\pi, 0, \pi)$	R_{1}	P_{2}	R_{3}	R_{4}	R_{5}	${ }^{8} 6$	R_{7}	${ }^{\text {R }} 8$
$\left(S_{1}\right)_{11}$	1	1	0	0	0	0	1	1
$\left(S_{1}\right)_{21}$	0	0	4	1	1	1	0	0
$\left(S_{1}\right)_{12}$	0	0	-1	-1	1	1	0	0
$\left(S_{2}\right)^{12}$	1	1	0	0	0	0	-1	-1
$x(S$,	2	21	0	0	0	0	0	0
(S $\left.{ }_{2}\right\}_{1 i}$	1	\cdots	0	0	0	0	-1	1
$\left(S_{2}\right)^{1}{ }^{1}$	0	0	-1	1	1	-1	0	0
$\left(S_{2}\right)_{12}$	0	0	1	-1	i	-1	0	0
$\left(\mathrm{S}_{2}\right)^{2}$	1	-1	0	0	0	0	1	-1
$\pi\left(S_{2}\right)$	2	-21	0	0	0	0	0	0

Tableatizo hourix eiciaents and chardoters of a group ot point R.

(π, π, π)	R_{1}	R_{2}	R.	F_{1}	2	R	E_{7}	${ }^{1}$
$\left(\mathrm{R}_{1}\right)_{11}$	1	-1	0	0	0	0	1	± 1
$\left(\mathrm{a}_{1}\right)_{21}$	0	0	1	-1	1	-1	0	0
$\left(\mathrm{R}_{1}\right)_{12}$	0	0	1	1	1	1	0	0
$\left(\mathrm{H}_{1}\right)_{2}$	i	2	0	0	0	0	1	1
$\chi\left(\overline{\mathrm{n}}_{1}\right)$	2	6	0	0	0	0	21	0
$\left(\mathrm{R}_{2}\right)_{11}$	1	1	0	0	0	0	-1	-1
$\left(\mathrm{R}_{2}\right)_{21}$	0	0	-1	-1	1	1	0	0
$\left(\mathrm{R}_{2}\right)_{12}$	0	0	-1	1	1	-1	0	0
$\left(\mathrm{R}_{2}\right)^{2}$	1	-1	0	0	0	0	-1	1
$x\left(\mathrm{n}_{2}\right)$	2	0	0	0	0	0	-21	0
$\begin{aligned} & p_{1}\left(R_{1}\right)=\left(R_{1}+1 R_{2}=1 R_{7}-R_{8}\right) \exp (1 \rho \hat{1}) \\ & \phi_{2}\left(R_{1}\right)=\left(R_{5}+1 R_{6} \cdots 1 R_{3}-R_{4}\right) \exp (1 \rho \sigma) \end{aligned}$								
$\begin{aligned} & g_{1}\left(R_{2}\right)=\left(R_{1}-i R_{2}+1 R_{7}-R_{8}\right) \exp (1 \rho \delta) \\ & \omega_{2}\left(R_{2}\right)=\left(R_{5}-i R_{6}+i R_{3}-R_{4}\right) \cdot \exp (1 \rho \delta) \end{aligned}$								

Table A21
The compatinilitig relations of the alspersion curvers of the lattice vibrations

Fig. A2 Dispersion curves of frequency of crystal vibrations of deuterated
polyethylene crystal along ($\left.\delta_{a}, \pi, 0\right)$ ana $\left(0, \delta_{b}, 0\right)$.

polyethylene crystal along ($\pi, 0, \delta_{c}$) and ($0, \pi, \delta_{c}$).
Fig. A4

 polyethylewe arystal along $\left(\delta_{a}, \pi, \pi\right)$ and $\left(0, \delta_{b}, \pi\right)$.

ELASTIC CONSTANTS OF POLYETHYLENE CRYSTAL

V-1 INTRODUCTION
Elasticity is a macroscopic feature of dynamical properties of crystal, which also originates in interatomic potential function. The observation of elastic constants provides good informations about the atomic force constants. Born and Huang have accomplished the basic formulation about elastic property of crystal. ${ }^{1)}$ The theory has been successfully applied to crystals of high symmetry such as diatomic ionic crystals.

In molecular crystals, elastic constants depends primarily upon intermolecular potential function. The experimental information about the intermolecular potential may be obtainable from the measurements of elasticity as well as optical spectrum, specific heat and neutron scattering cross section. On studying the force field of the crystal, it is advantageous to refer to all the experimental results. Shiro has improved the Born's formulation and incorporated the elastic constants into the least square analysis of force constants on treating normal coordinate problem of inorganic crystals. ${ }^{2)}$ The method is characterized with the application of the direct product representation to external deformation which would enable us to use the point group symmetry of crystal easily. Although the experimental values
of elastic conatants are not obtained yet on polyethylene crystal, it is significant to calculate them from the present potential funotion, which reproduces other kinds of observed values in good fit.

Accordingly, in this chapter, the elastic constants are treated generally with the use of the Cartesian symmetry coordinates derived in (2.1) and then $c_{1 j}$ of polyethylene crystal is represented explicitly in terms of the interchain force constants. Also the relation of elastic constants with the frequency of acoustic phonons is derived. The elastic constants calculated from proper dispersion curves of crystal vibrations are in good agreement with those from the straightford calculation.

V-2 THEORY

When crystal lattice is subjected to arbitrary external force, the unit cells are assumed to take homogeneous deformation. Supposing $r(l, k)$ and $\Delta r(1, k)$ denote the equilibrium position and the displacement from it of the $k-t h$ atom in the l-th unit cell, respectively; then the external deformation $\Delta r(1, k)$ is represented with tensor $\left\{u_{\alpha \beta}\right\}$ as ${ }^{11}$

$$
\Delta r(1, k)=\left[\begin{array}{l}
\Delta x(1, k) \tag{5.1}\\
\Delta y(1, k) \\
\Delta z(1, k)
\end{array}\right]=\left[\begin{array}{lll}
u_{x x} & u_{x y} & u_{x z} \\
u_{y x} & u_{y y} & u_{y z} \\
u_{z x} & u_{z y} & u_{z z}
\end{array}\right]\left[\begin{array}{l}
x(1, k) \\
y(1, k) \\
z(1, k)
\end{array}\right]
$$

which may be rewritten in the form of direct product ${ }^{2)}$ as

$$
\begin{equation*}
\Delta r(1, k)=W(1, k) \cdot U \tag{5.2}
\end{equation*}
$$

where matrix $W(1, k)$ and column vector U are defined as

$$
W(I, k)=\left[\begin{array}{ccccccccc}
x(1 k) & y(1 k) & z(1 k) & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & x(1 k) & y(1 k) & z(1 k) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & x(1 k) & y(1 k) & z(1 k)
\end{array}\right]
$$

$$
\begin{equation*}
\widetilde{\mathbf{U}}=\left(u_{x x} u_{x y} u_{x z} u_{y x} u_{y y} u_{y z} u_{z x} u_{z y} u_{z z}\right) \tag{5.3}
\end{equation*}
$$

In the case of mono-atomic unit cell, this deformation is all which appears. However, if there are several atoms contained per unit cell, the external deformation is not the most stable deformation and it is assumed that, after the external deformation, the constituent atoms further change their relative position in the unit cell so as to minimize the energy increment due to the external deformation. Thus, $\rho(k)$, the atomic displacement associated with the internal deformation, is represented as a vector measured from the atomic position after the external deformation. Therefore, $p(k)$ depends only upon the type of atoms but does not depend upon the cell number. Then the ensemble of $p(k)(k=1,2, \cdots, n)$ is common to all unit
 crystal vibrations for $8=0$. Total Cartesian displacement coordinate vector of ($1, k$) atom is sum of displacement due to two types of deformations, that is,

$$
\left.x(I, k)=\rho(k)+\Delta r^{i} l, k\right)
$$

Since the external defornation may be considered as superposition of limiting modes of acoustic phonons to $\delta=0$, the displacement $X(1, k)$ alsc corresponds to the atomic displacement of $\delta=0$. Accordingly, the Cartesian displacement vector is transformed into internal displacement coordinate vector with the use of \mathbb{B} matrix ${ }^{3)}$ corresponding to $\delta=0$.

$$
\begin{equation*}
\mathbf{R}=\Sigma_{1, k} B(1, k) X(1, k)=\Sigma_{1, k} B(1, k) p(k)+D \cdot U \tag{5.5}
\end{equation*}
$$

where

$$
\begin{equation*}
D=\sum_{1, k} B(1, k) W(1, k) \tag{5.6}
\end{equation*}
$$

and R is internal displacement coordinate vector for $\delta=0$. Since the external deformation parameter includes the rotation of crystal as a whole, pure elastic deformation $(\boldsymbol{\sigma})$ is separated from the rotation (w) by

$$
\left[\begin{array}{l}
\sigma \tag{5.7}\\
\omega
\end{array}\right]=2 u
$$

where \mathcal{E} is an orthogonal matrix and the inverse transformation provides U in terms of σ and

$$
u=Z^{-1}\left[\begin{array}{l}
\sigma \tag{5.8}\\
\omega
\end{array}\right]
$$

The individual elements are represented as follows;

$$
\begin{array}{lll}
u_{x x}=\sigma_{1} & u_{x y}=\left(\sigma_{6}+\omega_{z}\right) / 2 & u_{x z}=\left(\sigma_{5}-\omega_{y}\right) / 2 \\
u_{y y}=\sigma_{2} & u_{y x}=\left(\sigma_{6}-\omega_{z}\right) / 2 & u_{y z}=\left(\sigma_{4}+\omega_{x}\right) / 2 \\
u_{z z}=\sigma_{3} & u_{z x}=\left(\sigma_{5}+\omega_{y}\right) / 2 & u_{z y}=\left(\sigma_{4}-\omega_{x}\right) / 2
\end{array}
$$

The second term of (5.5) denotes the internal displacement induced by the external deformations and is written as
$D U=D Z^{-1}\left[\begin{array}{l}\sigma \\ \omega\end{array}\right]=D_{\sigma} \sigma+D_{\omega} \omega$
Since there is no internal displacement due to the rotation of the crystal, D_{w} becomes null matrix.

Supposing w is the energy increment per unit volume on the elastic deformation, then

$$
\begin{align*}
& w=(1 / 2 v)\left(\widetilde{B} \rho+\widetilde{D_{\sigma} \sigma}\right) \cdot \mathrm{F} \cdot\left(\mathrm{~B} \rho+\mathrm{D}_{\sigma} \sigma\right) \\
& =(1 / 2 v)(\tilde{\rho} \sim \tilde{\sigma})\left[\begin{array}{cc}
\widetilde{B}_{R} B & \widetilde{E}_{R} D_{\sigma} \\
\widetilde{D}_{\sigma} F_{B} & \widetilde{D}_{\sigma} F_{R} D_{\sigma}
\end{array}\right]\left[\begin{array}{l}
\rho \\
\sigma
\end{array}\right] \tag{5.10}
\end{align*}
$$

Where F_{R} is a potential energy matrix for $\delta=0$ and v is the volume of the unit cell. Since both of the internal and external deformations satisfy the symmetry at $\delta=0$, they are classified in accordance with the point group of the space group. With the use of Cartesian symmetry coordinate vector defined by (2.1), as

$$
s(\delta)=T(k, \delta) \rho(k)
$$

then (5.10) is transformed into

$$
w=(1 / 2 v)(\widehat{\mathbf{S}}(0) \tilde{\sigma})\left[\begin{array}{ll}
\mathrm{H}_{\rho \rho} & \mathbf{H}_{\rho \sigma} \tag{5.11}\\
\mathbf{H}_{\sigma \rho} & \mathbf{H}_{\sigma \sigma}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{S}(0) \\
\sigma
\end{array}\right]
$$

where

$$
\mathrm{H}_{\rho \rho}=\mathrm{T}(k, 0) \widetilde{\mathrm{B}}(k) \mathrm{F}_{\mathrm{R}} \mathrm{~B}(k) \widetilde{\mathrm{T}}(k, 0)
$$

which is equivalent to $\mathrm{E}_{\mathrm{S}}(0)$ of $\mathrm{Eq}_{\mathrm{q}}(1.3)$ and

$$
H_{\rho \sigma}=\mathrm{m}(k, 0) \widetilde{\mathrm{B}}(k) \mathbf{F}_{\mathrm{R}} D_{\sigma}
$$

Supposing M_{k} is the mass of the k-th atom, the matrix elements of $H_{\rho \rho}$ are easily obtained from the dynamical matrix $D_{S}(\delta)$ of (2.8) as

$$
\begin{equation*}
\left(H_{\rho \rho}\right)_{k k},=\left(M_{k} M_{k}\right)^{\frac{1}{2}} D_{S}(0)_{k k} \tag{5.12}
\end{equation*}
$$

As described in Chapter $I, D_{S}(0)$ has already deen completely factorized into symmetry species of $D_{2 h}$. On the other hand, from the definition of σ_{i} provided in Chapter III, the symmetry of σ_{1} is isomorphous to the symmetry of the product of two translations of the crystal.

$$
\begin{array}{ll}
I\left(\sigma_{1}\right)=\Gamma(x) \times \Gamma(x) & \Gamma\left(\sigma_{4}\right)=\Gamma(y) \times \Gamma(z) \\
\Gamma\left(\sigma_{2}\right)=\Gamma(y) \times I(y) & I\left(\sigma_{5}\right)=\Gamma(z) \times \Gamma(x) \\
\Gamma\left(\sigma_{3}\right)=\Gamma(z) \times \Gamma(z) & I\left(\sigma_{6}\right)=\Gamma(x) \times \Gamma(y)
\end{array}
$$

$\Gamma\left(\sigma_{1}\right), I(x), I(y)$, and $\Gamma(z)$ are characters of group operations
for σ_{1}, x, y, and z, respectively. In $D_{2 h}$ system $I(x), I(y)$ and $I(z)$ are all one dimensional and therefore $I\left(\sigma_{1}\right)$ is irreducible. In other words σ_{1} is symmetry coordinate as it is. In polyethylene crystal, σ_{1}, σ_{2} and σ_{3} belong to A_{g} species and σ_{4}, σ_{5} and σ_{6} belong to $B_{1 g}, B_{2 g}$ and $B_{3 g}$, respectively. $H_{\rho \sigma}$ which results from the correlation of the internal and external deformation, has finite value only when S and σ belong to the same symmetry species. Accordingly (5.12) is represented as sum of small matrices which belong to each irreducible representation, as

$$
w=(1 / 2 v) \Sigma_{\mu}\left(\widetilde{\mathbf{S}}^{\mu}(0) \widetilde{\boldsymbol{\sigma}}^{\mu}\right)\left[\begin{array}{ll}
\mathbf{H}_{\rho \rho}^{\mu} & \mathbf{H}_{\rho \sigma}^{\mu} \tag{5.13}\\
\mathbf{H}_{\sigma \rho}^{\mu} & \mathbf{H}_{\sigma \sigma}^{\mu}
\end{array}\right]\left[\begin{array}{l}
\mathbf{S}^{\mu}(0) \\
\boldsymbol{\sigma}^{\mu}
\end{array}\right]
$$

When a crystal has center of inversion, elastic deformation is always symmetric to inversion whereas the translation of the crystal as a whole is always antisymmetric to inversion. Therefore, in such crystals, $H_{\rho \rho}^{\mu}$ of gerade species has unique inverse matrix.

On the other hand, the external force per unit volume, f_{k}, which caused the external deformation σ_{k} is now balanced with the restoring force $-\left(\partial w / \partial \sigma_{k}\right)$, and atoms have already been displaced so as to have no internal stress inside the unit cell, that is, $f_{k}=\left(\partial w / \partial \sigma_{k}\right)$, and $\left(\partial w / \partial S_{j}\right)=0$. If the external force per unit volume is represented as f, the six component column vector, then the condition of equilibration is written as

$$
\left[\begin{array}{l}
\mathbf{0} \tag{5.14}\\
\mathbf{f}
\end{array}\right]=(1 / v)\left[\begin{array}{ll}
\mathbf{H}_{\rho \rho} & \mathbf{H}_{\rho \sigma} \\
\mathbf{H}_{\sigma \rho} & \mathbf{H}_{\sigma \sigma}
\end{array}\right]\left[\begin{array}{l}
\mathbf{S}(0) \\
\boldsymbol{\sigma}
\end{array}\right]
$$

In polyethylene crystal, there is center of inversion and with regard to the symmetry species concerned with elastic constants, the coefficient matrix of (5.14) has unique inverse matrix. The inverse transformation of (5.14) yields

$$
\left[\begin{array}{l}
\mathbf{S}(0) \tag{5.15}\\
\boldsymbol{\sigma}
\end{array}\right]=\mathrm{v}\left[\begin{array}{ll}
\mathbf{H}_{\rho \rho} & \mathbf{H}_{\rho \sigma} \\
\mathbf{H}_{\sigma \rho} & \mathbf{H}_{\sigma \sigma}
\end{array}\right]^{-1}\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{f}
\end{array}\right]
$$

The submatrix of (5.15) gives rise to σ in terms of \hat{f}_{k} as

$$
\begin{equation*}
\sigma_{j}=\sum_{k} s_{j k} f_{k} \quad\left(s_{j k}=s_{k j}\right) \tag{5.16}
\end{equation*}
$$

where $s_{j k}$ is elastic compliance constant. In orthorhombic system, all terms except for $s_{11}, s_{22}, s_{33}, s_{44}, s_{55}, s_{66}$, s_{12}, s_{23}, and s_{31} are zero. Young's moduli along α direction ($x ; x, y, z$) is a ratio of the external force to the elastic deformation which is represented as

$$
\begin{equation*}
E_{\alpha}=\left(f_{\alpha} / \sigma_{\alpha}\right)=\left(1 / s_{\alpha \alpha}\right) \tag{5.17}
\end{equation*}
$$

The deformation, realized in the measurement of Young's moduli, is different from σ_{1}, σ_{2} and σ_{3} on the allowance of shortening in the direction perpendicular to the external tension. Poisson's ratio is a ratio of deformation, which is derived as

$$
\begin{align*}
& \left(\Delta a / a_{0}\right):\left(\Delta b / b_{0}\right):\left(\Delta c / c_{0}\right)=\left(s_{11} f_{a}+s_{12} f_{b}+s_{13} f_{c}\right): \\
& \left(s_{21} f_{a}+s_{22} f_{b}+s_{23} f_{c}\right):\left(s_{31} f_{a}+s_{32} f_{b}+s_{33} f_{c}\right) \tag{5.18}
\end{align*}
$$

where a_{0}, b_{0} and c_{0} are lattice constants and f_{a}, f_{b} and f_{c} are the a, b, and c axis component of the external tension, respectively.

The elastic stiffness constant matrix is given with the inverse transformation of $\mathrm{Eq}(5.16)$ as

$$
\begin{equation*}
E=\mathbf{C} \sigma \tag{5.19}
\end{equation*}
$$

The elements, $c_{1 j}$, are directly derived from Eq(5.14) as

$$
\begin{equation*}
c_{i j}^{\mu}=\left(\mathbf{H}_{\sigma \sigma}^{\mu}-H_{\sigma \rho}^{\mu} H_{\rho \rho}^{\mu}{ }^{-1} \mathbf{H}_{\rho \sigma}^{\mu}\right)_{i j} \tag{5.20}
\end{equation*}
$$

V-3 RESULTS AND DISCUSSIONS
From the present potential, Young's moduli along the a, b and c axes are calculated as

$$
E_{a}=6.9, \quad E_{b}=9.6, \quad E_{c}=316 \quad\left(\times 10^{10} \text { dyne } / \mathrm{cm}^{2}\right)
$$

When polyethylene molecule is assumed to be rigid, E_{a} and E_{b} may be given by $E q(1.26)$ and thus calculated values are $E_{a}=7.0$ and $E_{b}=9.6$ which agree with the values obtained from above. Thereby the Young's moduli perpendicular to the chain axis, in fact, depends upon the interchain potential.

Sakurada et al.4) have observed the Young's moduli of polyethylene crystal with the X-ray diffraction method. The observed values at room temperature are $E_{a}=3.1, E_{b}=3.8$ and $E_{C}=235$. On the other hand, recently the measurement has been reexamined on more crystaline polyethylene and the observed value is revised to $\left.E_{a}=5.0,5\right)$ which became closer to the calculated value. Because of weakness of diffraction spot, E_{b} could not be observed. Since the present potential function corresponds to that at low temperature, the calculated Young's moduli may be compared with the observed value of low temperature. It is reasonable that the present calculated values are slightly larger than the observed values of room temperature. Müller ${ }^{6 \text {) }}$ has measured the linear compressibility of $\mathrm{C}_{23} \mathrm{H}_{48}$, from which Young's moduli are derived as $E_{a}=10$ and $E_{b}=9$.

The elastic stiffness constants are calculated from the present potential as

$$
\begin{array}{llllc}
c_{11}=8.38 & c_{22}=11.6 & c_{33}=317 & c_{44}=4.69 & c_{55}=3.45 \\
c_{66}=4.69 & c_{12}=4.10 & c_{13}=1.48 & c_{23}=2.81 & \left(\times 10^{10} \mathrm{dyne} / \mathrm{cm}^{2}\right)
\end{array}
$$

The symmetry of $c_{i j}$ and the intrachain potential terms associated with it are shown in Table 1. c_{33} is particularly large in polyethylene crystal. It results from the fact that the deformation corresponding to σ_{3} is accompanied with deformation of molecule itself. Since the force constants of $\mathrm{C}-\mathrm{C}$ stretching is so large that $\mathrm{C}-\mathrm{C}-\mathrm{C}$ valence angle undertakes the deformation. Then c_{33} depends primarily upon the force constant of skeletal bending potential. While c_{11} and c_{22} depend mainly upon the inter-molecular potential.

Elastic deformations are partly realized in the acoustic phonons travelling along special direction. The dynamical matrix for three acoustic branches was derived as (Chapter III)

where a_{0}, b_{0} and c_{0} are lattice constants and T_{a}, T_{b} and T_{c} mean that the atomic displacement is parallel to the a, b, and c axes, respectively. The eigenvalue of above dynamical matrix is $\rho \omega^{2}$ where ρ is density and w is angular frequency. As shown in Fig. 1, the atomic displacement in the mode of $T_{a}\left(\delta_{a}, 0,0\right)$ is equivalent to σ_{1} of the external deformation,
and the eigenvalue of $T_{a}\left(\delta_{a}, 0,0\right)$ is given by $\rho \omega^{2}=\left(c_{11} \delta_{a}^{2} / a_{0}^{2}\right)$. $P_{b}\left(0, \delta_{b}, 0\right)$ is the longitudinal vibration along the b axis and its eigenvalue is derived from (5.21) as $\rho \omega^{2}=\left(c_{22} \delta_{b}^{2} / b_{0}^{2}\right)$. The dispersion curves of $\mathrm{T}_{\mathrm{a}}\left(\delta_{a}, 0,0\right)$ and $\mathrm{T}_{\mathrm{b}}\left(0, \delta_{b}, 0\right)$ are Σ_{1} and Λ_{1} of acoustic branches in Fig. 1 and Fig. 2 of Chapter III, respectively. In Fig. 2, some of transverse acoustic modes are drawn schematically. $T_{a}\left(0, \delta_{b}, 0\right)$ indicates that phonon travells along the b axis and the atomic displacement is parallel to the a axis. The eigenvalue is derived as $\rho w^{2}=\left(c_{66} \delta_{b}^{2} / b_{0}^{2}\right)$ from (5.21). $\mathrm{T}_{b}\left(\delta_{a}, 0,0\right)$ is transverse mode in which phonon travells along the a axis and the atomic displacement is parallel to the b axis. The dispersion curve corresponds to Σ_{2} of $F i g$. 1 of preceding chapter and the eigenvalue is given by $\rho w^{2}=\left(c_{6} 6_{a}^{\delta_{a}^{2}} a_{0}^{2}\right)$. Since both eigenvalues are commonly associated with the elastic constant, ${ }^{c} 66$, the similarity of the modes are expected. In Fig. 2, the atomic displacement in the shear deformation of σ_{6} was also shown. $T_{a}\left(0, \delta_{b}, 0\right)$ and $T_{b}\left(\delta_{a}, 0,0\right)$ seem to compose the one side of the elastic deformation. Therefore, the dependence of the eigenvalues upon c_{66} is reasonable. However, homogeneous deformation is not a simple superposition of acoustic branches since $\mathrm{T}_{\mathrm{a}}\left(0, \delta_{b}, 0\right)$ and $\mathrm{T}_{\mathrm{b}}\left(\delta_{a}, 0,0\right)$ cannot be realized simultaneously. The mixing of T_{a} and T_{b} is possible only when phonon travells to the intermediate direction of the a and b axes. In the case of $\delta_{c}=0$ and $\left(\delta_{a} / a_{0}\right)=\left(\delta_{b} / b_{0}\right)=k_{0}$, the eigenvalues of T_{a} and T_{b} modes are
given by

$$
\rho w^{2}=\left\{\left(c_{11}+c_{22}+2 c_{66}\right)+\left[\left(c_{11}-c_{22}\right)^{2}+4\left(c_{12}+c_{66}\right)^{2}\right]^{\frac{1}{2}}\right\} k_{0}^{2} / 2
$$ which shows that the eigenvalues depend upon c_{12}, c_{11} and c_{22} besides c_{66}. Therefore, the atomic displacement is not exactly identical with σ_{6}. Accordingly, it may be stated that the eigenvalues of transverse modes along the a, b, and c axes depend upon shear modulus such as c_{44}, c_{55} and c 66 , whereas the elastic deformation cannot be exactly realized by acoustic vibrations.

On the other hand, for small value of phase difference, the frequency of acoustic vibrations is nearly proportional to phase difference. If arbitrary dispersion curves were observed in the experiment of inelastic coherent scattering of neutrons, the experimental values of the elastic constants would be obtained. Accordingly the coefficient of $v-|\delta|$ IIne was derived for individual case and is summarized in Table 2. Since the theoretical dispersion curves are avallablo the elastic constants were calculated from the incilnation of those curves shown in the preceding chapter. Thus obtained values are as follows;

$$
\begin{array}{lllll}
c_{11}=8.4 & c_{22}=11.2 & c_{33}=317 & c_{44}=4.7 & c_{55}=3.5 \\
c_{66}=4.7 & c_{12}=3.2 & c_{23}=? & c_{13}=3.2 & \left(\times 10{ }^{10}\right. \text { dyne/cm }
\end{array}
$$

The diagonal terms agree closely with those obtained directly from the potential function. Although c_{12}, c_{23} and c_{13} are to be calculated from the dispersion curves alonf ($\delta, \delta, 0$), $(0, \delta, \delta)$ and $(\delta, 0, \delta)$, respectively, these off-diagonal terms actually cannot be determined precisely from dispersion curves.

Because these terms influence on the eigenvalues of acoustic phonons in second order together with shear modulus.

The partial derivative of elastic constants with respect to force constants are derived in general form, ${ }^{7}$ which may be of great use especially for inorganic crystals. Regarding to the polyethylene crystal, the intrachain potential is fairly reliable and contributes little to the elastic constants except c_{33}. Accordingly the elastic constants were derived as function of the interchain force constants with the use of second order perturbation method described in chapter III, and are shown in Table 3. Thus calculated elastic constants are as follows;

$$
\begin{array}{lllll}
c_{11}=8.44 & c_{22}=11.1 & c_{33}=314 & c_{44}=4.73 & c_{55}=3.53 \\
c_{66}=4.80 & c_{12}=3.88 & c_{13}=2.04 & c_{23}=2.82 & \left(\times 10^{10} \mathrm{dyne} / \mathrm{cm}^{2}\right)
\end{array}
$$

If the experimental values of the elastic constants were available, the force constants of interchain potential would become more definite.

The measurement of the velocity of sound wave also provides the experimental values of the elastic constants. The velocity of longitudinal acoustic phonon which travelis along $\left(\delta_{a}, 0,0\right)$ is equal to $\left(c_{11} / \rho\right)^{\frac{1}{2}}$ while the velocity of transverse acoustic phonon along the a axis are given by $\left(c_{66} / \rho\right)^{\frac{1}{2}}$ and $\left(c_{55} / \rho\right)^{\frac{1}{2}}$. Since the experiments about the sound velocity or coherent scattering of neutron requires fairly large single crystal, elastic constants have not been obtained yet on polyethylene crystal. However, it is very
desirable to obtain the exact experimental value of elastic constants for the study of inter-molecular potential.

SUMMARY

Elastic constants are derived in the proper form to molecular crystals with the Cartesian symmetry coordinates. The relation of frequency of acoustic phonons with elastic constants were derived and the elastic constants were calculated from the dispersion curves of the preceding chapter. The elastic donstants were derived as function of the interchain force constants. The calculated values from these three methods are in good agreement with each other.

The Young's moduli along the a, b and c axes were also calculated, in reasonable agreement with the observed values.

REFERENCES

1) M.Born and K.Huang, "Dynamical Theory of Crystal Lattices" Clarendon Press, Oxford, (1954).
2) Y.Shiro, Symposium on Molecular Structure, 3C5, Sapporo (1967).
3) E.B.Wilson, J. Chem. Phys., 2, 1047 (1939); 2, 76 (1942).
4) I.Sakurada, T.Ito and K. Nakamae, J. Polymer Sci., C15, 75 (1966).
5) I.Sakurada, K.Kaj1, K.Nakamae and E.Shikata, Symposium on Macromolecules, 22F09, Matsuyama (1968).
6) A.Müller, Proc. Roy. Soc., A154, 624 (1936); A178. 227 (1941)
7) Y.Shiro and T.Miyazawa, To be published.

Table-1 Symmetry of the elastic constants and the associated intrachain potential terms.

symmetry	${ }^{1} 1 \mathrm{j}$	N_{σ}	N_{ρ}	R
A_{g}	c_{11}, c_{22}, c_{33}	3	6	CH_{2} sym.str. CH_{2} scissor.
	$\mathrm{c}_{12}, \mathrm{c}_{23}, \mathrm{c}_{13}$			C-Cstr. CH_{2} antisym.str.
				CH_{2} rock. $\mathrm{C}-\mathrm{C}-\mathrm{C}$ bend.
$\mathrm{B}_{1 \mathrm{~g}}$	${ }^{\text {c }} 44$	1	3	CH_{2} wag. CH_{2} twist. C-Cstr.
$\mathrm{B}_{2 \mathrm{~g}}$	${ }^{\text {c }} 55$	1	3	CH_{2} wag. CH_{2} twist. $\mathrm{C}-\mathrm{Cstr}$.
${ }^{\text {B }} 3 \mathrm{~g}$	${ }^{\text {c }} 66$	1	6	$\mathrm{CH}_{2} \text { sym.str. } \mathrm{CH}_{2} \text { scissor. }$
				$\mathrm{CH}_{2} \text { rock. }{ }^{*} \mathrm{C}-\mathrm{C}-\mathrm{C} \text { bend. }$

N_{σ} is the dimension of $H_{\sigma \sigma}^{\mu}$.
N_{ρ} is the dimension of $H_{\rho \rho}^{\mu}$.
R is the internal coordinate. (sym.str.=symmetric stretching, antsym.str.=antisymmetric stretching, str.=stretching, scissor. $=$ scissoring, rock. $=$ rocking, twist. $=$ twisting, wag. = wagging, and bend.=bending)

The coordinates marked with * do not contribute to D_{σ}.

Table-2 The inclination of $v-\delta$ curve at the limit of $181 \rightarrow 0$

direction	symmetry	mode	inclinstion
$\left(\delta_{a}, 0,0\right)$	Σ_{1}	$\mathrm{~T}_{\mathrm{a}}(\mathrm{LA})$	$(1 / 2 \pi \mathrm{c})\left(\mathrm{c}_{11} / \rho \mathrm{a}_{0}^{2}\right)^{\frac{1}{2}}$
	Σ_{2}	$\mathrm{~T}_{\mathrm{b}}(\mathrm{TA})$	$(1 / 2 \pi \mathrm{c})\left(\mathrm{c}_{66} / \rho \mathrm{a}_{0}^{2}\right)^{\frac{1}{2}}$
	Σ_{4}	$\mathrm{~T}_{\mathrm{c}}(\mathrm{TA})$	$(1 / 2 \pi \mathrm{c})\left(\mathrm{c}_{55} / \rho \mathrm{a}_{0}^{2}\right)^{\frac{1}{2}}$
$\left(0, \delta_{\mathrm{b}}, 0\right)$	Λ_{1}	$\mathrm{~T}_{\mathrm{b}}(\mathrm{LA})$	$(1 / 2 \pi \mathrm{c})\left(\mathrm{c}_{22} / \rho \mathrm{b}_{0}^{2}\right)^{\frac{1}{2}}$
	Λ_{2}	$\mathrm{~T}_{\mathrm{c}}(\mathrm{TA})$	$(1 / 2 \pi \mathrm{c})\left(\mathrm{c}_{44} / \rho \mathrm{b}_{0}^{2}\right)^{\frac{1}{2}}$
	Λ_{4}	$\mathrm{~T}_{\mathrm{a}}(\mathrm{TA})$	$(1 / 2 \pi \mathrm{c})\left(\mathrm{c}_{66} / \rho \mathrm{b}_{0}^{2}\right)^{\frac{1}{2}}$
$\left(0,0, \delta_{\mathrm{c}}\right)$	Δ_{1}	$\mathrm{~T}_{\mathrm{c}}(\mathrm{LA})$	$(1 / 2 \pi \mathrm{c})\left(\mathrm{c}_{33} / \rho \mathrm{c}_{0}^{2}\right)^{\frac{1}{2}}$
	Δ_{2}	$\mathrm{~T}_{\mathrm{a}}(\mathrm{TA})$	$(1 / 2 \pi \mathrm{c})\left(\mathrm{c}_{55} / \rho \mathrm{c}_{0}^{2}\right)^{\frac{1}{2}}$
	Δ_{4}	$\mathrm{~T}_{\mathrm{b}}(\mathrm{TA})$	$(1 / 2 \pi \mathrm{c})\left(\mathrm{c}_{44} / \rho \mathrm{c}_{0}^{2}\right)^{\frac{1}{2}}$

(LA) means longitudinal acoustic mode and (TA) means transverse acoustic mode.

Table-3 Explicit representation of the elastic constants with interchain force constants.

c_{11}		
$\begin{aligned} c_{22} \rho N_{0} b_{0}^{2} .10^{-13} & \left(2.579 \mathrm{P}_{1}+0.688 \mathrm{P}_{2}+0.255 \mathrm{P}_{3}+5.212 \mathrm{P}_{4}-0.46 \mathrm{P}_{1}^{2}-74.4 \mathrm{P}_{2}^{2}\right. \\ & -14.3 \mathrm{P}_{3}^{2}-0.35 \mathrm{P}_{4}^{2}-11.7 \mathrm{P}_{1} \mathrm{P}_{2}+5.12 \mathrm{P}_{1} \mathrm{P}_{3}+0.80 \mathrm{P}_{1} \mathrm{P}_{4} \\ & \left.+65.3 \mathrm{P}_{2} \mathrm{P}_{3}+10.3 \mathrm{P}_{2} \mathrm{P}_{4}-4.5 \mathrm{P}_{3} \mathrm{P}_{4}\right) \end{aligned}$		
$\mathrm{c}_{33} \rho \mathrm{~N}_{0} \mathrm{c}_{0}^{2} \cdot 10^{-13}\left(0.829 \mathrm{P}_{1}+1.024 \mathrm{P}_{2}+0.027 \mathrm{P}_{3}+0.681 \mathrm{P}_{4}+7.74 .5\right)$		
$\mathrm{c}_{44} \rho \mathrm{~N}_{0} \mathrm{c}_{0}^{2} \cdot 10^{-13}\left(2.579 \mathrm{P}_{1}+2.908 \mathrm{P}_{2}+6.832 \mathrm{P}_{4}\right)$		
$\mathrm{c}_{55} \rho \mathrm{~N}_{0} \mathrm{a}_{0}^{2} \cdot 10^{-13}\left(0.698 \mathrm{P}_{1}+0.787 \mathrm{P}_{2} \overline{+0} .008 \mathrm{P}_{4}\right)$		
$\begin{aligned} { }^{c_{66} \rho N_{0} b_{0}^{2} \cdot 10^{-13}}(& \left(0.287 \mathrm{P}_{1}+2.090 \mathrm{P}_{2}+1.527 \mathrm{P}_{3}+0.067 \mathrm{P}_{4}-59.2 \mathrm{P}_{1}^{2}-7.23 \mathrm{P}_{2}^{2}\right. \\ & -23.8 \mathrm{P}_{3}^{2}+41.4 \mathrm{P}_{1} \mathrm{P}_{2}+75.0 \mathrm{P}_{1} \mathrm{P}_{3}+1.04 \mathrm{P}_{1} \mathrm{P}_{4}-26.2 \mathrm{P}_{2} \mathrm{P}_{3} \\ & \left.-0.66 \mathrm{P}_{3} \mathrm{P}_{4}-0.36 \mathrm{P}_{2} \mathrm{P}_{4}\right) \end{aligned}$		
${ }^{c_{12}}{ }^{+c_{6}} 66 \quad \rho \mathrm{~N}_{0} \mathrm{a}_{0} \mathrm{~b}_{0} \cdot 10^{-13}\left(1.722 \mathrm{P}_{1}+2.397 \mathrm{P}_{2}+1.249 \mathrm{P}_{3}\right)$		
$\mathrm{c}_{13}+\mathrm{c}_{55} \quad \rho \mathrm{~N}_{0} \mathrm{a}_{0} \mathrm{c}_{0} \cdot 10^{-13}\left(2.447 \mathrm{P}_{1}+3.673 \mathrm{P}_{2}+0.202 \mathrm{P}_{3}\right)$		
$\mathrm{c}_{23}+\mathrm{c}_{44} \quad \rho \mathrm{~N}_{0} \mathrm{~b}_{0} \mathrm{c}_{0} \cdot 10^{-13}\left(2.804 \mathrm{P}_{1}+2.352 \mathrm{P}_{2}+0.082 \mathrm{P}_{3}+5.439 \mathrm{P}_{4}\right)$		

N_{0} is Avogadro's number.
$c_{1 j}$ is represented in (dyne/ cm^{2}). If the force oonstants are given in (mayne/ R), lattice constants in (A) and ρ in (g / cm^{3}).

Fig. 1 The atomic displacement in two longitudinal acoustic vibrations. $T_{a}\left(\delta_{a}, 0,0\right)$ and $T_{b}\left(0, \delta_{b}, 0\right)$ correspond to Σ_{1} and Λ_{1} of dispersion curves, respectively.

Fig. 2 The atomic displacement in two transverse acoustic vibrations and shear deformation $\sigma_{6} \cdot T_{a}\left(0, \delta_{b}, 0\right)$ and $T_{b}\left(\delta_{a}, 0,0\right)$ correspond to Λ_{4} and Σ_{2} of crystal vibrations, respectively.

A REFINED METHOD FOR TREATING ONE- AND MULTIPHONON NEUTRON-SCATTERING CROSS SECTIONS

VI-1 INTRODUCTION

Recent development of neutron scattering has made it possible to measure the inelastic scattering cross section and to determine the dispersion curves of crystal vibrations experimentally. ${ }^{1)}$ Energy analysis of incoherently scattered neutrons from hydrogeneous compounds has also been current subject because of no selection rule for neutron specroscopy. The basic formulae about the scattering cross section of neutrons nave already been derived ${ }^{2-4)}$ and up to date, the observed results have been commonly explained on the basis of the theory. However, the object of that theory are monoatomic crystal lattices such as metal crystal, and the observed results from molecular crystals have not been always analysed sufficiently. Although the use of time dependent correlation function ${ }^{5)}$ provides the straightforward representation of the scattering cross section, the concept of correlation function regarding to atomic displacement, does not necessarily lead us to concrete image of its physical meaning.

On the other hand, the scanning region of far infrared spectrometer has been extended to fairly long wavelength and also laser Raman technique has been developed considerably. Now the optical spectrum is of great use to investigate the

まathtace vibrations. Also theopetical treatment of molecular vibrations has been advanced ${ }^{6)}$ and the assignment of vibrational frequency obtained from the infrared and Raman spectrum became rellable. ${ }^{7)}$ Generally the resolution is higher in infrared and Raman spectram than in neutron spectrum. However, the information from neutron spectroscopy is unique on the observation of the frequency distribution. Therefore, on the study of lattice vibrations, both experimental results of optical and neutron spectram should be reasonably referred.

The scattering cross section of neutron by crystal vibrations may be derived on the basis of stationary state and the formulation would be easier for spectroscopists to get acquainted with neutron spectrum. Accordingly, in the present study, the incoherent scattering cross section of neutrons is derived in general form on the basis of transition probability. The result is same with that from the time dependent correlation function, while the present derivation would have analogy to that of optical spectrum and is relatively convenient for numerical computation with electronic computer, especially for multiphonon scattering cross section. The present result has been successfully applied to the analysis of the experimental results from polyethylene crystal, which would be described in next chapter. VI-2 THE CONCEPT OF TRANSITION PROBABILITY

For arbitrary phase difference vector δ, normal vibrations are doubly degenerate and therefore, the atomic displacement associated with crystal vibrations are represented with degenerate pairs of two real normal coordinates as

$$
\begin{equation*}
u_{\mu}=\left(2 / N M_{\mu}\right)^{\frac{1}{2}} \sum_{i, \delta}\left[E_{\mu 1}^{a}(\delta) Q_{1}^{a}(\delta)+C_{\mu 1}^{b}(\delta) Q_{1}^{b}(\delta)\right] \tag{6.1}
\end{equation*}
$$

where u_{μ} is the atomic displacement vector of μ-th atom ${ }^{8)}$, N is total number of unit cells in the crystal, M_{μ} is the mass of μ-th atom and $\mathbb{E}_{\mu i}$ is the polarization vector of μ-th atom due to i-th branch of lattice vibrations. Summations runs over all branches on $N / 2$ values ${ }^{9}$) of in half of the first Brillouin zone. Because of the symmetry, the irreducible volume of the first Brillouin zone is reduced to $1 / 8$ of the first Brillouin zone in the case of polyethylene crystal, that is

$$
(0,0,0) \leq\left(\delta_{a}, \delta_{b}, \delta_{c}\right) \leq(\pi, \pi, \pi)
$$

With the use of the matrix elements of symmetry transformation matrix, $\mathbf{U}(\rho, \delta)$ of $E q(2.1)$, the polarization vector is written as

$$
\begin{align*}
& \mathbf{L}_{\mu 1}^{Z}(\delta)=A_{\mu 1} \cos \left(\rho_{\mu} \delta\right)+B_{\mu 1} \sin \left(p_{\mu} \delta\right) \tag{6.2}\\
& \mathbb{L}_{\mu 1}^{b}(\delta)=-A_{\mu 1} \sin \left(p_{\mu}^{\delta}\right)+B_{\mu 1} \cos \left(p_{\mu}^{\delta}\right)
\end{align*}
$$

where ρ_{μ} is the index vector of μ-th atom and $A_{\mu 1}$ and $B_{\mu 1}$ are vectors of order three which is subvector of eigenvector of the dynamical matrix. Numerical value of $A_{\mu i}$ and $B_{\mu i}$ are calculated with $E q(2.13)$ from the corresponding eigenvector of 1 -th branch.

In nonmagnetic crystals, the interaction of neutron with crystal lattice has been represented as sum of Fermi's pseudo potential. 10-11) For the scattering of low energy neutron from nuclei, Born's first approximation is practical. Then the differential cross section for incoherent scattering is represented as

$$
\begin{equation*}
(\alpha \sigma / \partial \Omega)_{1 n c}=\left(\left|k_{2}\right| /\left|k_{1}\right|\right)(1 / 4 \pi N) \sum_{\mu} s_{\mu}\left|M_{12}^{\mu}\right|_{T}^{2} \tag{6.3}
\end{equation*}
$$

$$
\begin{equation*}
M_{12}^{\mu}=\left\langle\psi_{2}^{*}\right| \exp \left[1\left(\mathbf{k}_{1}-\mathbf{k}_{2}\right) \mathbf{u}_{\mu}\right]\left|\psi_{1}\right\rangle \tag{6.4}
\end{equation*}
$$

where k_{1} and k_{2} are wave vectors of incident and scattered neutrons, respectively, and s_{μ} is the bound atom incoherent cross section ${ }^{12)}$ of $\mu-$ th atom and $\left|M_{12}^{\mu}\right|_{T}^{2}$ is temperature average of transition probability for the crystal vibrations to change from ψ_{1} to ψ_{2} together with the change of wave vector of neutron from k_{1} to k_{2}, where ψ_{1} and ψ_{2} are the initial and final wave functions of the crystal vibrations, respectively. Under the harmonic approximation, the wave function of the crystal vibrations is written as product of wave function of each normal coordinate as

$$
\begin{equation*}
t=\phi_{v_{1}}\left(Q_{1}\right) \phi_{v_{2}}\left(Q_{2}\right) \cdots \phi_{v_{1}}\left(Q_{1}\right) \cdots \cdots \tag{6.5}
\end{equation*}
$$

where, for simplicity, the suffix 1 distinguishes both of phase differences and branch number. (then $1=1,2,3, \ldots, 3 n N / 2$). This independency of normal coordinate lets the matrix element of $\mathrm{Eq}(6.4)$ be represented as product of the matrix element of each normal coordinate as

$$
\begin{equation*}
M_{12}^{\mu}=\prod_{1}\left\langle\phi_{v_{1}}\left(Q_{1}\right)\right| \exp \left(1 F_{\mu 1} Q_{1}\right)\left|\phi_{v_{1}}\left(Q_{1}\right)\right\rangle \tag{6.6}
\end{equation*}
$$

where v_{i} and v_{i} are initial and final quantum number of $1-t h$ normal coordinate and $F_{\mu i}$ is a scalar product of the atomic displacement vector of $\mu-$ th atom due to Q_{1} by the momentum transfer vector of neutron. Since each component of the degenerate pair of 1 -th normal coordinate is mutually linear 'independent, the wave function $\varnothing_{v_{1}}\left(Q_{1}\right)$ is againly expressed as the composite of two wave functions.

$$
\phi\left(Q_{1}\right)=\phi\left(Q_{1}^{a}\right) \cdot \phi\left(Q_{1}^{b}\right)
$$

$F_{\mu 1}$ of $E q(6.6)$ is derived from $E q s(6.1)$, (6.2) and (6.4) as

$$
\begin{align*}
-F_{\mu 1}^{a} & =\left(2 / M_{\mu}{ }^{N}\right)\left(k_{1}-k_{2}\right)\left[A_{\mu 1} \cos \left(\rho_{\mu} \delta\right)+B_{\mu 1} \sin \left(\rho_{\mu} \delta\right)\right] \\
F_{\mu 1}^{b} & =\left(2 / M_{\mu} N\right)\left(k_{1}-k_{2}\right)\left[-A_{\mu 1} \sin \left(\rho_{\mu} \delta\right)+B_{\mu 1} \cos \left(\rho_{\mu} \delta\right)\right] \tag{6.7}
\end{align*}
$$

Supposing $I_{v+\lambda, v}$ is the matrix element of $\exp (i F Q)$ with regard to two quantum states, v and $v+\lambda$, where Q is arbitrary nondegenerate normal coordinate, then $I_{v+\lambda, v}$ is derived in general form as ${ }^{2}$)

$$
\begin{equation*}
I_{v+\lambda, v}=\sum_{r=0}^{v}[(v+\lambda)!v!]^{\frac{1}{2}} \frac{\left(t^{2} / 2\right)^{r+\lambda / 2} \cdot \exp \left(t^{2} / 4\right)}{(v-r)!(r+\lambda)!r!} \tag{6.8}
\end{equation*}
$$

where $t=1 \gamma^{-\frac{1}{2}} \mathrm{~F}, \gamma=\omega / \hbar$ and ω is the angular frequency of Q. The proof of $\mathrm{Eq}(6.8)$ is given in Appendix II.

Then the thermal average of transition probability for the normal coordinate is given by

$$
\begin{equation*}
J_{v+\lambda, \lambda}=\sum_{v=0} w_{v} I_{v+\lambda, v}^{*} I_{v}+\lambda, v \tag{6.9}
\end{equation*}
$$

where w_{v} is the occupancy probability at initial state, $\phi_{\mathrm{v}}(Q)$, which results from Bose-statistics.

$$
\begin{equation*}
w_{v}=(1-x) \cdot x^{v} \tag{6.10}
\end{equation*}
$$

where

$$
x=\exp (-\hbar \omega / k T)
$$

Then the transition probability of the crystal, $\left|M_{1 d}^{\mu}\right|_{T}^{2}{ }^{1 s}$ represented as product of $J_{v+\lambda, v}$ of the constituent normal coordinates.

VI-3 THE TRANSITION PROBABILITY FOR ELASTIC SCATTERING
In the elastic scattering, momentum of neutron changes without the change of energy. Crystal accepts the momentum transfer of $\left(k_{1}-k_{2}\right) \hbar$ whereas quantum number of crystal vibrations is not altered at all. The corresponding matrix
element is

$$
\begin{equation*}
I_{v, v}=\exp \left(t^{2} / 4\right) \cdot\left[1+v t^{2} / 2+v(v-1) t^{4} / 16+\cdots\right] \tag{6.11}
\end{equation*}
$$

and the thermal average of the square of the $I_{v, v}$ is approximately represented as

$$
\begin{equation*}
J_{v, v}=\sum_{v}^{\infty}(1-x) x^{v} \cdot I_{v, v}^{*} \cdot I_{v, v}=\exp \left[t^{2}(1+x) / 2(1-x)\right] \tag{6.12}
\end{equation*}
$$

Since the vibration is degenerate, the transition probability for 1 -th pair of normal coordinate is written in the product of two terms corresponding to Q_{1}^{a} and Q_{1}^{b}, as

$$
\begin{equation*}
J_{v, v}\left(Q_{1}\right)=\exp \left[\left(t_{a}^{2}+t_{b}^{2}\right)\left(1+x_{1}\right) / 2\left(1-x_{1}\right)\right] \tag{6.13}
\end{equation*}
$$

where $t_{a}=1 \gamma^{-\frac{1}{2}} F_{\mu 1}^{a}$ and $t_{b}=1 \gamma^{-\frac{1}{2}} F_{\mu 1}^{b}$. From (6.7) and the definition of t, the exponent of $E q(6.13)$ is transformed into

$$
\begin{equation*}
t_{a}^{2}+t_{b}^{2}=\left(-2 \hbar / M_{\mu} N \omega\right)\left[\left(K_{0} A_{\mu i}\right)^{2}+\left(K_{0} B_{\mu i}\right)^{2}\right] \tag{6.14}
\end{equation*}
$$

where $K_{0}=k_{1}-k_{2}$, is momentum transfer vector for elastic scattering. Then the transition probability of the crystal is

$$
\begin{equation*}
\left|M_{12}^{\mu}\right|_{T}^{2}=\exp \left[-2 W_{\mu}\left(K_{0}\right)\right] \tag{6.15}
\end{equation*}
$$

where $2 W_{\mu}\left(K_{o}\right)$ is Debye-Waller factor of μ-th atom and represented as

$$
\begin{equation*}
2 W_{\mu}\left(K_{0}\right)=\sum_{1}\left(\hbar / M_{\mu}^{N} w_{1}\right)\left[\left(K_{0} A_{\mu 1}\right)^{2}+\left(K_{0} B_{\mu 1}\right)^{2}\right]\left(1+x_{1}\right) /\left(1-x_{1}\right) \tag{6.16}
\end{equation*}
$$

where summation runs over all branches for $N / 2$ points in half of the first Brillouin zone. Thus derived Debye-Waller factor is used in terms of the temperature factor for X-ray diffraction.

Accordingly when momentum transfer vector is parallel to the atomic displacement, the transition probability for no energy transfer diminishes and the peak intensity of elastic
scattering cross section becomes low. In other words, under such circumstances energy is also apt to be transferred besides momentum.

VI-4 THE TRANSITION PROBABILITY FOR INELASTIC SCATTERING
A) SINGLE PHONON PROCESS

On the collision of neutron with crystal, neutron may lose (down-scattering) or gain (up-scattering) energy corresm ponding to the separation of vibrational energy levels, or to the contrary, the crystal gets or emitts the corresponding energy. These inelastic scatterings are conveniently classified in accordance with the transferred phonon number.

When a-th component of j-th normal coordinate is excited from v to $v+1$ (down-scattering), the energy, E_{t} and momentum, $K_{t} \hbar$ which neutron gives to crystal is

$$
\begin{align*}
& E_{t}=\left(\left|k_{1}\right|^{2}-\left|k_{2}\right|^{2}\right) \hbar^{2} / 2 m=\hbar \omega, \tag{6.17}\\
& k_{t}=k_{1}-k_{2} \tag{6.18}
\end{align*}
$$

where m is mass of neutron, ω_{j} is the angular frequency of Q_{j}^{a}. The transition probability associated with this process is represented as

$$
\begin{equation*}
\left|M_{12}^{\mu}\right|_{T}^{2}=J_{v+1, v}\left(Q_{j}^{a}\right) \prod_{i \neq j_{a}} J_{v, v}\left(Q_{1}\right) \tag{6.19}
\end{equation*}
$$

From $\operatorname{Eqs}(6.8)$ and (6.9), the transition probability about Q_{j}^{a} is derived as

$$
\begin{align*}
J_{v+1, v}= & \sum_{v}^{\infty} \frac{1}{2}(1-x) x^{v} \cdot(v+1) \cdot \exp \left(t_{a}^{2} / 2\right) \\
& \quad \times\left[t+v t^{3} / 4+v(v-1) t^{5} / 48+\cdots \cdot\right]^{2} \tag{6.20a}
\end{align*}
$$

$$
\begin{equation*}
=J_{v, v} \cdot t_{a}^{2} / 2(1-x) \tag{6.20b}
\end{equation*}
$$

Substitution of $J_{v+1, v}\left(Q_{j}^{a}\right)$ from $E q(6.20 b)$ into $E q(6.19)$ yields

$$
\begin{equation*}
\left|M_{12}^{\mu}\right|_{T}^{2}=\left[t_{a}^{2} / 2\left(1-x_{j}\right)\right] \prod_{1} J_{v, v}\left(Q_{i}\right) \tag{6.21}
\end{equation*}
$$

For the b-th component of j-th normal coordinate, the same amount of energy and momentum is transferred. Accordingly the transition probability of j-th degenerate pair of $v i b-$ rations becomes sum of the constituent terms, which is derived as

$$
\begin{equation*}
\left|M_{12}^{\mu}\right|_{T}^{2}=\left(\hbar / M_{\mu} N \omega_{j}\right)\left[\left(K_{t} A_{\mu j}\right)^{2}+\left(K_{t} B_{\mu j}\right)^{2}\right] \exp \left[-2 W_{\mu}\left(K_{t}\right)\right] /\left(1-x_{j}\right) \tag{6.22}
\end{equation*}
$$

where $2 W_{\mu}\left(K_{t}\right)$ is Debye-Waller factor for μ-th atom and represented as

$$
2 W_{\mu}\left(K_{t}\right)=\sum_{1}\left(\hbar / M_{\mu} N \omega_{1}\right)\left[\left(K_{t} A_{\mu 1}\right)^{2}+\left(K_{t} B_{\mu 1}\right)^{2}\right]\left(1+x_{1}\right) /\left(1-x_{1}\right)
$$

In the case of up-scattering of the same energy transfer, the corresponding term $J_{v-1, v}$ is derived $a s$

$$
J_{v-1, v}\left(Q_{j}\right)=x_{j} J_{v+1, v}\left(Q_{j}\right)
$$

and the transition probability becomes

$$
\begin{equation*}
\left|M_{12}^{\mu}\right|_{T}^{2}=\left(\hbar / M_{\mu} N \omega_{j}\right) \cdot\left[\left(K_{t} A_{\mu j}\right)^{2}+\left(K_{t} B_{\mu j}\right)^{2}\right] \cdot \exp \left[-2 W_{\mu}\left(K_{t}\right)\right] \cdot x_{j} /\left(1-x_{j}\right) \tag{6.24}
\end{equation*}
$$

The factor x_{j} results from the lower population of phonons at higher state and therefore, at low temperature, up-scattering cross section becomes much smaller than the corresponding down-scattering cross section.
B) TWO PHONON PROCESS

Two phonon scattering includes all transitions in which vibrational quantum numbers are changed simultaneously by two units on single collision. The cross section is classified in accordance with the notation of spectroscopy, that is,
overtone, summation combination and difference comb nation. The transition probability for overtone band is derived as

$$
\begin{align*}
J_{v+2, v} & =\sum_{v=0}^{\infty}(1-x) x^{v} \cdot(v+1)(v+2) \cdot \exp \left(t^{2} / 2\right) \\
& x\left[t^{2}+v t^{4} / 6+v(v-1) t^{6} / 96+\cdots \cdot\right]^{2} \\
= & J_{v, v} t^{4} / 8(1-x)^{2} \tag{6.25}
\end{align*}
$$

For the up-scattering process, the corresponding transition is $v \rightarrow v-2$ and the transition probability is derived as

$$
\begin{equation*}
J_{v-2, v}=x^{2} J_{v+2, v} \tag{6.26}
\end{equation*}
$$

Because of low population proportional to x^{2}, overtone peak is rarely seen in the up-scattering cross section.

Combination-tone corresponds to the process in which vibrational quantum numbers of two different oscillators are changed simultaneously by one unit on single collision. For summation combination, both of j-th and k-th nondegenerate normal vibration change from v to $v+1$ and the corresponding transition probability is

$$
\begin{equation*}
\left|M_{12}^{\mu}\right|_{T}^{2}=J_{v+1, v}\left(Q_{j}\right) J_{v+1, v}\left(Q_{k}\right) \prod_{1 \neq j, k} J_{v, v}\left(Q_{1}\right) \tag{6.27}
\end{equation*}
$$

and for difference combination, it is

$$
\begin{equation*}
\left|M_{12}^{\mu}\right|_{T}^{2}=J_{v-1, v}\left(Q_{j}\right) J_{v+1, v}\left(Q_{k}\right) \prod_{1 \neq j, k} J_{v, v}\left(Q_{1}\right) \tag{6.28}
\end{equation*}
$$

where j-th vibration is assumed to change from v to $v-1$.
Because of degeneracy of each normal coordinate of crystal, overtone of $j-t h$ normal coordinate includes three types of transition

1) $v \rightarrow v+2$ for Q_{j}^{a}
2). $v \rightarrow v+2$ for Q_{j}^{b}
2) $v \rightarrow v+1$ for Q_{j}^{a} and $v \rightarrow v+1$ for Q_{j}^{b}

The energy transfers are common to these transitions and given by

$$
E_{t}=\left(\left|k_{1}\right|^{2}-\left|k_{2}\right|^{2}\right) \hbar^{2} / 2 m=2 \hbar \omega_{j}
$$

The difference combination of Q_{j}^{a} and Q_{j}^{b} gives no energy transfer and it does not contribute to inelastic scattering at all. From $\operatorname{Eqs}(6.20)$ and (6.25),

$$
\begin{align*}
& J_{v+2, v}\left(Q_{j}^{a}\right) J_{v, v}\left(Q_{j}^{b}\right)+J_{v+1, v}\left(Q_{j}^{a}\right) J_{v+1, v}\left(Q_{j}^{b}\right)+J_{v, v}\left(Q_{j}^{a}\right) J_{v+2, v}\left(Q_{j}^{b}\right) \\
& =J_{v, v}\left(Q_{j}^{a}\right) J_{v, v}\left(Q_{j}^{b}\right) \cdot\left(t_{a}^{4}+2 t_{a}^{2} t_{b}^{2}+t_{b}^{4}\right) / 8\left(1-x_{j}\right)^{2} \tag{6.29}
\end{align*}
$$

Accordingly the transition probability in the crystal is represented as

$$
\begin{equation*}
\left|M_{12}^{\mu}\right|_{T}^{2}=\frac{1}{2}\left(\hbar / M_{\mu} N \omega_{j}\right)^{2}\left(1-x_{j}\right)^{-2}\left[\left(K_{t} A_{\mu J}\right)^{2}+\left(K_{t} B_{\mu j}\right)^{2}\right]^{2} \exp \left[-2 W_{\mu}\left(K_{t}\right)\right] \tag{6.30}
\end{equation*}
$$

Regarding to the summation combination of $j-t h$ and k-th vibrations, there are four types of combinations; $\left(Q_{j}^{a}, Q_{k}^{a}\right)$, $\left(Q_{j}^{a}, Q_{K}^{b}\right),\left(Q_{j}^{b}, Q_{k}^{a}\right)$, and $\left(Q_{j}^{b}, Q_{k}^{b}\right)$ which gives common energy transfer

$$
\begin{equation*}
E_{t}=\left(\omega_{j}+\omega_{k}\right) \hbar \tag{6.31}
\end{equation*}
$$

With Eqs(6.20) and (6.27), the transition probability of the crystal is derived as

$$
\begin{equation*}
\left|M_{12}^{\mu}\right|_{T}^{2}=\frac{\hbar^{2}\left[\left(K_{t} A_{u j}\right)^{2}+\left(K_{t} B_{u, j}\right)^{2}\right]\left[\left(K_{t} A_{u k}\right)^{2}+\left(K_{t} B_{u k}\right)^{2}\right]}{M_{\mu}^{2} N^{2} w_{j} w_{k}\left(1-x_{j}\right)\left(1-x_{k}\right)}\left[-2 w_{i}\left(K_{t}\right)\right] \tag{6.32}
\end{equation*}
$$

As for difference combination, in which Q_{j} changes from v to $\mathrm{v}+1$, there are also four types of transitions. The transition probability is derived from Eqs(6.24) and (6.28)

$$
\begin{equation*}
\left|M_{12}^{\mu}\right|_{T}^{2}=\frac{x_{j} \hbar^{2}\left[\left(K_{t} A_{\mu j}\right)^{2}+\left(K_{t} B_{\mu j}\right)^{2}\right] \cdot\left[\left(K_{t} A_{\mu k}\right)^{2}+\left(K_{t} B_{\mu k}\right)^{2}\right]_{\mu}}{M_{\mu}^{2} N^{2} w_{j} w_{k}\left(1-x_{j}\right)\left(1-x_{k}\right)} \exp \left[-2 w_{\mu}\left(K_{t}\right)\right] \tag{6.33}
\end{equation*}
$$

and the corresponding energy transfer is given by

$$
\begin{equation*}
E_{t}=\left(\left|k_{1}\right|^{2}-\left|k_{2}\right|^{2}\right) \hbar^{2} / 2 m=\left(w_{k}-w_{j}\right) \hbar \tag{6.34}
\end{equation*}
$$

In the same way, the transition probability for overtone of down-scattering is derived as

$$
\begin{equation*}
\left|M_{12}^{\mu}\right|_{T}^{2}=\left(x_{j} \hbar / M_{\mu} N \omega_{j}\right)^{2}\left(1-x_{j}\right)^{-2}\left[\left(K_{t} A_{\mu j}\right)^{2}+\left(K_{t} B_{\mu j}\right)^{2}\right] \exp \left[-2 W_{\mu}\left(K_{t}\right)\right] \tag{6.35}
\end{equation*}
$$

C) THREE PHONON PROCESS

On this scattering process, vibrational quantum number changes by three units simultaneously on single collision. When three different normal soordinates, Q_{j}, Q_{k} and Q_{1} participate in the scattering, the transition probability is derived in analogy with the combination tones of twophonon scattering as

$$
\begin{equation*}
\left|M_{12}^{\mu}\right|_{T}^{2}=\left(\hbar / M_{\mu} N\right)^{3} \prod_{K=j, k, 1}\left[\left(K_{t} A_{\mu K}\right)^{2}+\left(K_{t} B_{\mu K}\right)^{2}\right] \exp \left[-2 W_{\mu}\left(K_{t}\right)\right] / \mu_{K}\left(1-K_{k}\right) \tag{6.36}
\end{equation*}
$$

and the corresponding energy transfer is

$$
\begin{equation*}
E_{t}=\left(w_{j}+w_{k}+w_{1}\right) \hbar \tag{6.37}
\end{equation*}
$$

In the case of difference combination, in which p-th normal vibration changes from v_{p} to $v_{p}-1, E q_{q}(6.36)$ has to be multiplied by the population factor of x_{p}.

When two different normal coordinates take part in the scattering, the transition probability is represented as the product of the corresponding terms of overtone process by the term for single phonon process, that is,

$$
\left|M_{12}^{\mu}\right|_{T}^{2}=\frac{\hbar^{3}\left[\left(K_{t} A_{\mu j}\right)^{2}+\left(K_{t} B_{\mu j}\right)^{2}\right]^{2}\left[\left(K_{t} A_{\mu k}\right)^{2}+\left(K_{t} B_{\mu k}\right)^{2}\right]_{\mu}}{2 M_{\mu}{ }^{3} N^{3}\left(1-x_{j}\right)^{2} w_{j}^{2}\left(1-x_{k}\right) w_{k}}\left[-2 W_{\mu}\left(K_{t}\right)\right]
$$

where Q_{y}. is assumed to perform overtone process.
When one pair of degenerate normal vibrations are
concerned with three phonon scattering, the composite transition of eight sets of combinations are possibly classified Into four types of the set; $\left(Q_{j}^{a}, Q_{j}^{a}, Q_{j}^{a}\right), 3\left(Q_{j}^{a}, Q_{j}^{a}, Q_{j}^{b}\right)$, $3\left(Q_{j}^{a} ; Q_{j}^{b}, Q_{j}^{b}\right)$, and $\left(Q_{j}^{b}, Q_{j}^{b}, Q_{j}^{b}\right)$. From $\operatorname{Eqs}(6.8)$ and (6.9), Jv, v is derived as

$$
\begin{align*}
J_{v+3, v}= & \sum_{v=0}^{\infty}(1-x) x^{v} \cdot(v+1)(v+2)(v+3)\left(t^{2} / 2\right)^{3} \exp \left(t^{2} / 2\right) \\
& {\left[1 / 6+v t^{2} / 48+v(v-1) t^{4} / 960+\cdots \cdots\right]^{2} } \\
= & J_{v, v}\left(t^{2} / 2\right)^{3} / 6(1-x)^{3} \tag{6.39}
\end{align*}
$$

Then the transition probability for three phonon process of one pair of degenerate normal vibrations is represented as

$$
\begin{align*}
\left|M_{12}^{\mu}\right|_{T}^{2}=(1 / 6)\left[\hbar / M_{\mu} N\left(1-x_{j}\right) w_{j}\right]^{3} & {\left[\left(K_{t} A_{\mu j}\right)^{2}+\left(K_{t} B_{\mu j}\right)^{2}\right]^{3} } \\
& x \exp \left[-2 W_{\mu}\left(K_{t}\right)\right] \tag{6.40}
\end{align*}
$$

In the case of three phonon up-scattering, the population factor x_{j}^{3} is multiplied with $\operatorname{Eq}(6.40)$.
VI-5 SETTLEMENT OF THE REPRESENTATION
So far the transition probability in one- two- and three. phonon scattering processes has been derived with regard to individual normal coordinate. In the crystal, there are so large number of normal vibrations that several transitions give rise to almost same amount of energy transfer. On the computation of the scattering cross section, it is more convenient to represent the transition probability regarding to the energy transfer. Accordingly, new function $H(K, \omega)$ is defined by

$$
\begin{equation*}
H_{\mu}\left(K_{t}, w_{j}\right)=\sum_{\Delta \omega_{j}}\left(\hbar / M_{\mu} N \omega_{j}\right)\left(1-x_{j}\right)^{-1}\left[\left(K_{t} A_{\mu j}\right)^{2}+\left(K_{t} B_{\mu j}\right)^{2}\right] \tag{6.41}
\end{equation*}
$$

where summation is performed for all the normal coordinates within the frequency division of Δw, which could be taken
arbitrarily in accordance with the experimental resolution or the number of points taken up in the first Brillouin zone.

Then the differential cross section of μ-th atom for one phonon transition is represented as

$$
\begin{equation*}
d^{2} \sigma / d \Omega d E=(1 / 4 \pi N)\left(k_{2} / k_{1}\right) \sum_{\mu} s_{\mu} H_{\mu}\left(K_{t}, w_{j}\right) \exp \left[-2 W_{\mu}\left(K_{t}\right)\right] \tag{6.42}
\end{equation*}
$$ where $2 W_{\mu}\left(K_{t}\right)$ is Debye-Waller factor, obtained from Eq(6.23). K_{t} is momentum transfer for the scattering angle e which is given by

$$
\begin{equation*}
\left|k_{t}\right|^{2}=\left|k_{1}\right|^{2}+\left|k_{2}\right|^{2}-2\left|k_{1}\right| \cdot\left|k_{2}\right| \cos \theta \tag{6.43}
\end{equation*}
$$

and the corresponding energy trangfer is

$$
\begin{equation*}
E=\left(\left|k_{1}\right|^{2}-\left|k_{2}\right|^{2}\right) \hbar^{2} / 2 m=\hbar \omega_{j} \tag{6.44}
\end{equation*}
$$

For two phonon process of down-scattering, the differential cross section of overtone is united with that of summation combination as

$$
\begin{equation*}
d^{2} \sigma / d \Omega d E=(1 / 4 \pi N)\left(k_{2} / k_{1}\right) \sum_{\mu}^{\frac{1}{2}} s_{\mu} H_{\mu}\left(K_{t}, w_{j}\right) H_{\mu}\left(K_{t}, w_{k}\right) \exp \left[-2 W_{\mu}\left(K_{t}\right)\right] \tag{6.45}
\end{equation*}
$$

where the energy transfer is

$$
\begin{equation*}
E=\left(\left|k_{1}\right|^{2}-\left|k_{2}\right|^{2}\right) \hbar^{2} / 2 m=\left(w_{j}+w_{k}\right) \hbar \tag{6,46}
\end{equation*}
$$

The down scattering cross section for difference combination is represented as

$$
\begin{equation*}
d^{2} \sigma / d \Omega d E=(1 / 4 \pi N)\left(k_{2} / k_{1}\right) \sum_{\mu} s_{\mu}\left(x_{j} / 2\right) H_{\mu}\left(k_{t} w_{j}\right) H_{\mu}\left(K_{t} w_{k}\right) \exp \left[-2 W_{\mu}\left(k_{t}\right)\right] \tag{6.47}
\end{equation*}
$$

where ω_{k} is assumed to be larger than ω_{j}. The corresponding energy transfer is

$$
\begin{equation*}
E=\left(\left|k_{1}\right|^{2}-\left|k_{2}\right|^{2}\right) \hbar^{2} / 2 m=\left(w_{k}-w_{j}\right) \hbar \tag{6.48}
\end{equation*}
$$

On the up-scattering process, the population factor $x_{j} x_{k}$ is multiplied with $\mathrm{Eq}(6.45)$ as same with $\mathrm{Eq}(6.35)$.

The differential cross section for three phonon downscattering process is a composite of the following three types of energy transfer.

For energy transfer of $E=\left(w_{j}+w_{k}+w_{1}\right) \hbar$

$$
\begin{gather*}
d^{2} \sigma / d \Omega d E=(1 / 4 \pi N)\left(k_{2} / K_{1}\right)(1 / 3!) \sum_{\mu} H_{\mu}\left(K_{t} \omega_{j}\right) H_{\mu}\left(K_{t} \omega_{k}\right) \tag{6.49}\\
\times H_{\mu}\left(K_{t} \omega_{1}\right) \exp \left[-2 W_{\mu}\left(K_{t}\right)\right] \tag{6.50}
\end{gather*}
$$

For energy transfer of $E=\left(w_{3}+w_{k}-w_{1}\right) \hbar$

$$
\begin{gather*}
d^{2} \sigma / \partial \Omega d E=(1 / 4 \pi N)\left(k_{2} / k_{1}\right) \sum_{\mu} s_{\mu}\left(x_{1} / 3!\right) H_{\mu}\left(K_{t} u_{j}\right) H_{\mu}\left(K_{t} \omega_{k}\right) \tag{6.51}\\
x H_{\mu}\left(K_{t} \omega_{1}\right) \exp \left[-2 W_{\mu}\left(K_{t}\right)\right] \tag{6.52}
\end{gather*}
$$

For energy transfer of $E=\left(w_{j-m}-j_{k}-\mu_{1}\right) \hbar$

$$
\begin{gather*}
d^{2} \sigma / d \Omega d E=(1 / 4 \pi N)\left(k_{2} / k_{1}\right) \sum s_{\mu}\left(x_{k} x_{1} / 3 l\right) H_{\mu}\left(K_{t} w_{j}\right) H_{\mu}\left(K_{t} w_{k}\right) \tag{6.53}\\
\times H_{\mu}\left(k_{t} w_{1}\right) \exp \left[-2 W_{\mu}\left(K_{t}\right)\right] \tag{6.54}
\end{gather*}
$$

VI-6 DISCUSSIONS
In evaluating multi-phonon scattering cross section, Placzeck ${ }^{13 \text {) }}$ has used the expansion about M_{μ}^{-1} because of its rapid convergence. Since the $H_{\mu}\left(K_{t}, w\right)$ includes factor M_{μ}^{-1}, the expansion is essentially same with the present treatment, however present expression provides the coefficient of M_{μ}^{-n} in explicit form.

With the use of time dependent correlation function ${ }^{5}$)

$$
G_{S}(r, t)=\left\langle\exp \left[1 K \mathbf{C}_{q}(t)\right] \exp \left[1 K \mathbf{C}_{q}(t)\right]\right\rangle_{T}
$$

where C is polarization vector of normal vibration and $q(t)$
is time part of normal coordinate, the differential cross
section for energy transfer of E is represented as ${ }^{4}$)

$$
\begin{equation*}
\left.d^{2} \sigma / d \Omega d E=\sum_{\mu}\left(s_{\mu} / 4 \pi N\right)\left(k_{2} / 2 \pi k_{1}\right) \exp [-Z(0)]\right]_{-\infty}^{\infty} \exp [-i E t+Z(t] d t \tag{6.55}
\end{equation*}
$$

where

$$
\begin{equation*}
z(t)=\sum_{j}\left(K C_{\mu}\right)^{2} \hbar\left(e^{-1 \omega_{j} \hbar t}+x_{j} e^{i \omega_{j} \hbar t}\right) / 2 M_{\mu} \mu_{j}\left(1-x_{j}\right) \tag{6.56}
\end{equation*}
$$

$Z(0)$ is Debye-Waller factor which is coincident with $E q(6.23)$. When $\exp [Z(t)]$ is expanded into power series of $Z(t)$, the first term provides elastic scattering cross section while the second term yields one-phonon scattering cross section. The second power of $Z(t)$ gives rise to the two-phonon scattering and third power of $Z(t)$ contributes to three-phonon scattering cross section. Since $Z(t)$ has time part in the exponential function, thus expanded Eq(6.55) includes Dinacor δ function about energy transfer. If nonwanishing terms of Eq (6.55) with regard to the δ function were ploked up, they are exactly coincident with the present result. The equation (6.55) seems apparently simple, however the numerical evaluation is fairly complicated because of the δ function. Accordingly the representation introduced in the section VI-5 is realistic, at least, on the estimation of two- and three-phonon scattering cross section.

In X-ray crystallography as well as neutron diffraction study, Bloch's theorem is generally applied to estimate Eq(6.6), that 1s,

$$
\begin{equation*}
\langle\operatorname{expQ}\rangle_{T}=\exp \left\{\frac{1}{2}\left\langle Q^{2}\right\rangle_{T}\right\} \tag{6.57}
\end{equation*}
$$

where Q is an arbitrary non-degenerate normal coordinate and $\left\rangle_{\mathrm{T}}\right.$ means the thermal average of the expectation value. Debye-Waller factor was classically introduced from $E_{q}(6,57)$. Certainly, the thermal average of $I_{n, n}$ from $\operatorname{Eq}(6.8)$ is exactly transformed into

$$
\begin{gather*}
\sum_{v=0}^{\infty} \sum_{r=0}^{v}(1-x) x^{v}\left(t^{2} / 2\right)^{r} \exp \left(t^{2} / 4\right) v!/(v-r)!r!r! \\
=\exp \left[t^{2}(1+x) / 2(1-x)\right] \tag{6.58}
\end{gather*}
$$

and Eq(6.57) is derived. If the elastic scattering intensity were proportional to $I_{n, n}$, the application of Bloch's theorem might simplify the calculation. However, the transition probability is proportionsl to square of matrix element, and thermal average of $\left|I_{v, v}\right|^{2}$ has to be treated.

On the other hand, when the left side of $\mathrm{Eq}(6.12)$ was transformed into simple function such as right side, appropriate approximation was adopted. To examine the correct.ness of the approximation, the left side was numerically calculated with incorporation of v till 84 at $100^{\circ} \mathrm{K}$. Arbitrary polarization vector of hydrogen atom in the acoustic branch of polyethylene crystal was picked up and fixed through the frequency range. The result is shown in Fig. 1 where solid line denotes the exact value of $E q(6.12)$ and open circles denote the right side of Eq(6.12). Small deviation is found below $15 \mathrm{~cm}^{-1}$. As represented in $\mathrm{Eq}(6.23), 2 W(K)$ is an intacic. quantity of all vibrations and the number of vibrations below $15 \mathrm{~cm}^{-1}$ is much less compared with the total number of crystal vibrations. Accordingly the approximation incorporated at Ea
 ethylene crystal has been carried out with fixed final energy of 30 meV of neutron, the same type of calculation was carried out for the optical branches with varying temperature and initial energy and is summarized in Table 1. As temperature is raised, the approximation becomes worse especially for higher initial energy. However, for low initial energy, the right side of $E q(6.12)$ well reproduces the exact value.

On deriving the transition probability, a proper approximation was incorporated between Eqs (6.20a) and (6.20b). The calculated values from $\mathrm{Eq}(6.20 a)$ are compared with those from $E q(6.20 b)$ in Fig. 2, where solid line denotes $E q(6.20 a)$ and open circles denote $\operatorname{Eq}(6.20 \mathrm{~b})$. On the exact calculation of $\operatorname{Eq}(6.20 a)$, v was incorporated $t 11184$, where the experimental conditions of $\mathrm{k}_{2}=30 \mathrm{meV}, \theta=90^{\circ}$ and the polarization vector of hydrogen atom in the acoustic branch of polyethylene crystal were used. On account of the approximation, the inelastic scattering cross section is estimated to be relatively small below $18 \mathrm{~cm}^{-1}$. It results from the fact that, for low frequency motion, F defined by $\mathrm{Eq}(6.7)$ becomes so large that higher terms in power series of $\mathrm{Eq}(6.20 \mathrm{a})$ influence the results. On the other hand, the experimental resolution is not sufficient for separating the inelastic scattering of such amall energy transfer as $E=20 \mathrm{~cm}^{-1}$ from the elastic scattering. Generally this region is treated as the quasi-elastic scattering for which the incorporation of proper analytical functions ${ }^{1}$) might be suitable. The same type of examination was carried out on optical branches. The result is shown in Table 2, which suggests that the approximation is sufficient for optical branches.

Accordingly, the present formulation is justified unless very small energy transfer becomes the subject of discussion.

SUMMARY

Incoherent scattering cross section of neutrons was treated on the basis of transition probability. Thus derived result is coincident with those derived previously from time dependent correlation function.

From the atomic displacement due to crystal vibrations of polyethylene, Debye- Waller factor was derlved as function of momentum transfer. The approximation, included in the present derivation, was examined numerically and confirmed to be allowable.

To calculate the transition probability for arbitrary energy transfer, new function $H(K, w)$ was defined, with which one- two- and three-phonon scattering cross sections were represented in convenient form to computation.

REFERENCES

1) R.A.Egelstaff ed. "Thermal Neutron Scattering" Academic Press, New York (1965).
2) R.Weinstock, Phys. Rev., 65, 1 (1944).
3) L.S.Kothari and K.S.Singwi, Solid State Phys., 8, 109 (1959).
4) A.C.Zemach and R.J.Glauber, Phys. Rev., 101, 118 (1956)
5) L.Van Hove, Phys. Rev., 25, 249 (1954).
6) E.B.Wilson, J.C. Decius, and P.C.Cross, "Molecular Vibrations" McGraw-Hill, New York (1955).
7) T.Shimanouchi, Pure Appl. Chem. 7, 261 (1962).
8) In (2.13) the atomic displacement vector of atoms in $\rho-$ th unit cell is represented as $X_{\rho} . u_{\mu}$ is a subvector of X_{ρ}. The elements of $\widetilde{\mathbf{U}}(\rho, \delta) \mathbf{L}_{S}(\delta)$ and $\widetilde{\mathbf{U}}(\rho, \delta) \mathbf{L}_{S}(\delta)$ from Eq_{q} (2.13) correspond to $\mathbb{C}_{\mu i}^{a}(\delta)$ and $\mathbb{L}_{\mu i}^{b}(\delta)$ of $E_{q}(6.1)$, rerIn this expression, Q^{a} and Q^{b} are treated as scalar and therefore, $\mathcal{L}_{\mu 1}^{a}(\delta)$ and $\mathbb{L}_{\mu i}^{b}(\delta)$ are three component vector.
9) E.Fermi, Ricerca Sci., 2, 13 (1936).
10) G.Breit, Phys. Rev., 21, 215 (1947).
11) C.G.Shull and E.O.Wollan, Solid State Phys., 2, 138 (1956)
12) G.Placzek, Phys. Rev., 86, 377 (1952).
13) P.Debye, Ann. d. Physik, 43, 49 (1914).
14) I.Waller, Z. f. Physik, 17, 398 (1923); 51, 213 (1928)
15) W.Myers, G.C.Summerfield and J.S.King, J. Chem. Phys., 4_{2}, 184 (1966).

Table 1. Comparisons of the approximate values of Eq(6.12) with exact values.

$\mathrm{k}_{1}=30 \mathrm{meV} \quad(\lambda=1.65 \AA)$		$\mathrm{T}=100^{\circ} \mathrm{K}$		$\mathrm{T}=298^{\circ} \mathrm{K}$	
mode	$\nu\left(\mathrm{cm}^{-1}\right)$	left	right	left	right
rot.	146.4	0.936	0.935	0.861	0.857
trans. (1)	91.4	0.973	$0.973{ }^{\circ}$	0.912	0.910
trans.(//)	54.3	0.918	0.916	0.791	0.779
$k_{1}=104 \mathrm{meV} \quad(\lambda=0.888)$					
		$\mathrm{T}=100^{\circ} \mathrm{K}$		$\mathrm{T}=298^{\circ} \mathrm{K}$	
mode	$\nu\left(\mathrm{cm}^{-1}\right)$	left	right	, left	right
rot.	146.4	0.863	0.861	0.727	0.708
trans. (L)	91.4	0.942	0.941	0.818	0.810
trans. (11)	54.3	0.829	0.822	0.617	0.572

Table 2. The examination of Eq(6.20b)

		$\mathrm{T}=100^{\circ} \mathrm{K}$		$\mathrm{T}=298^{\circ} \mathrm{K}$	
mode	$\nu\left(\mathrm{cm}^{-1}\right)$	$(6.20 \mathrm{a})$	$(6.20 \mathrm{~b})$	$(6.20 \mathrm{a})$	$(6.20 \mathrm{~b})$
rot.	146.4	0.0556	0.0556	0.0886	0.0884
trans. (\perp)	91.4	0.0229	0.0229	0.0521	0.0520
trans. (11)	54.3	0.0549	0.0549	0.1106	0.1098

Final energy is set to be 30 meV .

Fig. 1 Comparison of the approximate value of $\mathrm{Eq}(6.12)$ with exact value. Solid Ine represents the left side and open circles represent the right side of Eq(6.12).

Fig. 2 Comparison of numerical results from Eq.(6.20b) with that of $\mathrm{Eq}(6.20 \mathrm{a})$. Solid 11 ne represents $\mathrm{Eq}(6.20 a)$ and open circles represent $E q(6.20 b)$.

Appendix II

Proof for
$\left.\left\langle\phi_{v+\lambda} \exp (i F Q) \phi_{v}\right\rangle=\left[\frac{1}{(v+\lambda)!v!}\right]_{r=0(v-r)!(\lambda+r)!r!}^{\frac{1}{2}} \sum^{v} \frac{(v+\lambda)!v!}{2}\right)^{r+\lambda / 2} \exp \left(+\frac{t^{2}}{4}\right)$
$\phi_{\mathrm{V}}(Q)$; wave function of normal coordinate, Q, at quantum state, v.
$\gamma=(\omega / \hbar), \omega$; angular frequency of normal coordinate.
Since the wave function of normal coordinate is represented with Hermite polynomial of $z=\gamma^{\frac{1}{2}} Q,{ }^{1)}$ the integral is written as

$$
\begin{align*}
I_{v+\lambda, v} & =\int_{-\infty}^{\infty} \phi_{v+\lambda}(Q) \exp (i F Q) \phi_{v}(Q) d Q \\
& =\left(\frac{1}{\pi \cdot 2^{v+\lambda}(v+\lambda)!2^{v} v!}\right)^{\frac{1}{2}} \int_{-\infty}^{\infty} \exp \left(-z^{2}\right) H_{v+\lambda}\left(z^{2}\right) H_{v}(z) \exp \left(1 \gamma^{-\frac{1}{2}} F z\right) d z \\
& =\left(\frac{1}{\pi \cdot 2^{v+\lambda}(v+\lambda)!2^{v} v!}\right)^{\frac{1}{2}} \int_{-\infty}^{\infty} \exp \left(-z^{2}+t z\right) H_{v+\lambda}(z) H_{v}(z) d z \quad(A-2) \tag{A-2}
\end{align*}
$$

where $t=1 \gamma^{-\frac{1}{2}}$ F. With new variable, y, defined by (A-3),

$$
\begin{equation*}
y=z-(t / 2) \tag{a-3}
\end{equation*}
$$

the exponential part of $(A-2)$ is written as

$$
\begin{equation*}
\exp \left(-z^{2}+t z\right)=\exp \left(-y^{2}+t^{2} / 4\right) \tag{A-4}
\end{equation*}
$$

and the integral of $(A-2)$ becomes

$$
\begin{equation*}
\exp \left(+t^{2} / 4\right) \int_{-\infty}^{\infty} \exp \left(-y^{2}\right) H_{v+\lambda}(y+t / 2) H_{v}(y+t / 2) d y \tag{A-5}
\end{equation*}
$$

With the use of the generating function of Hermite polynomial, the Hermite polynomial of order v is a coefficient of v-th power of variable x.

$$
\begin{equation*}
\exp \left[-x^{2}+2 x(y+t / 2)\right]=\sum_{v=0} H_{v}(y+t / 2) x^{v} / v! \tag{A-6}
\end{equation*}
$$

After development of left side of (A-6) into power series of x, putting the coefficient of v-th power of x to be equal to right side yields

$$
\begin{equation*}
H_{v}(y+t / 2)=\sum_{r=0}^{\infty} H_{v-r}(y) t^{r} v!/(v-r)!r! \tag{A-7}
\end{equation*}
$$

Substituting of $H_{v}(y+t / 2)$ and $H_{v+\lambda}(y+t / 2)$ from ($\left.A-7\right)$ into ($\mathrm{A}-5$) lead us to

$$
\exp \left(+t^{2} / 4\right) \sum_{s=0}^{v+\lambda} \sum_{r=0}^{v} \frac{(v+\lambda)!v!}{(v+\lambda-s)!s!(v-r)!r!} t^{s+r} \int_{-\infty}^{\infty} e^{-y^{2}} H_{v+\lambda-s}(y) H_{v-r}(y) d y
$$

Orthogonality of Hermite polynomials of (A-9),

$$
\begin{equation*}
\int_{-\infty}^{\infty} \exp \left(-y^{2}\right) H_{n}(y) H_{m}(y) d y=2^{n} n!\pi^{\frac{1}{2}} \delta_{n, m} \tag{A-9}
\end{equation*}
$$

simplifies ($\mathrm{A}-8$) into ($\mathrm{A}-10$)
$\sum_{r=0}^{v} \frac{(v+\lambda)!v!}{(v-r)!(r+\lambda)!r!} \exp \left(+t^{2} / 4\right) t^{2 r+\lambda} 2^{v-r^{\frac{1}{2}}}$
Substituting ($\mathrm{A}-10$) for the integral part of (A-2) lead us to the final equation and the proof is completed.

$$
\left.I_{v+\lambda, v}=\left[\frac{1}{(v+\lambda)!v!}\right]_{r=0}^{\frac{1}{2}} \sum_{(v-r)!(\lambda+r)!r!} \frac{(v+\lambda) v!}{(2}\right)^{r+\lambda / 2} \exp \left(t^{2} / 4\right) \quad(A-11)
$$

1) E.B.Wilson, Jr, J.C.Decius and P.C.Cross,"Molecular vibrations" McGRAW-HILL, New York (1955).
2) H. Margenau and G.M.Murphy, "The mathematics of physics and chemistry" D. VAN NOSTRAND COMPANY (1943).

CHAPTER VII

NEUTRON SCATTERING BY CRYSTAL VIBRATIONS
OF POLYETHYLENE

VII-1 INTRODUCTION

Since high density flux of thermal neutrons became available, great interest has been taken in the observation of frequency spectrum of polymer crystals. ${ }^{1)}$ Especially on polyethylene, many experimental results have been accumum lated up to date, which is summarized firstly.

Danner et. al. ${ }^{2)}$ have measured time of flight of neutrons and obtained the frequency spectrum of normal hydrocarbon crystals as well as polyethylene by the use of up-scattering of cold neutron. King et al. 3) have applied down-scatterine technique of warm neutrons to the same sample of polyethylene with Danners, ${ }^{2)}$. The frequency distribution, obtained from two different types of experiments, were like each other. Two prominent peaks near $550 \mathrm{~cm}^{-1}$ and $200 \mathrm{~cm}^{-1}$, which had been expected from the normal coordinate treatment of polyethylene single chain ${ }^{4)}$, were assigned to the cut-off of the skeletal bending and internal rotation branch, respectively. Besides these two peaks, there were several weak peaks, which were ascigner to lattice vibrations with reference to the calculated frequency distribution of polyethylene crystal. ${ }^{5)}$ Summerfield ${ }^{6)}$ has pointed out that the peak intensity of the neutron spectrum depends upon the amplitude weighted frequency distribution and thereby, Myers ${ }^{7}$) has measured the
anisotropy of scattering cross section on the stretch oriented polyethylene sample by the use of triple axis crystal spectrometer. When momentum transfer vector of neutron is parallel to the chain axis (parallel case), two peaks were recognized near $190 \mathrm{~cm}^{-1}$ and $525 \mathrm{~cm}^{-1}$. When the momentum transfer vector is perpendicular to the chain axis (perpendicular case), the additional peak was found near $150 \mathrm{~cm}^{-1}$ while the peak at $525 \mathrm{~cm}^{-1}$ was not found. The peak intensity of $190 \mathrm{~cm}^{-1}$ of parallel case was almost one half of that of perpendicular case. Trevino ${ }^{8)}$ has also measured the anisotropy of the scattering cross section independently by the use of time of flight spectrometer, and confirmed the result previously obtained by Myers: The observed anisotropy were qualitatively in good agreement with theoretical expectations ${ }^{5}$). However, the quantitative discussions were postponed to future study and two peaks at 240 and $340 \mathrm{~cm}^{-1}$ as well as the shoulder at $380 \mathrm{~cm}^{-1}$ were left unassigned because existence of these peaks was not deduced straightforwardly from the frequency distribution of the crystal vibrations.

On the other hand, the intrachain potential 4,9) and interchain potential ${ }^{10-11)}$ of the polyethylene crystal has been studied in detail and general method of treating the chain vibrations ${ }^{12-13)}$ and crystal vibrations ${ }^{14)}$ has been established. A practical method of calculating the incoherent scattering cross section of neutron from hydrogen atom by crystal vibrations has been developed in the preceding chapter. It is now practical to analyse the observed neutron spectrum on the basis of the theoretical treatment
of the crystal vibrations. And also
thorough calculation about the polyethylene crystal not only provides the assignment of the observed neutron spectrum of polyethylene but also will serve the analysis of other experimental results with regard to estimation of the relative intensity of the multiphonon scattering and its anisotropy. Accordingly, in the present study, the differential cross sections for one-, twom, and three-phonon scattering were computed with the method described in the preceding chapter. The calculation was carried out on two cases in which the momentum transfer vector is parallel and also perpendicular to the chain axis.

VII-2 RESULTS
A) DOWN $-S C A T T E R I N G$

On the measurement of anisotropy of scattering cross section, Myers ${ }^{7}$) has applied down-scattering technique to the uniaxially oriented polyethylene kept at $100^{\circ} \mathrm{K}$, where final neutron energy was fixed at 30 meV and scattering angle was set to be 90°. Since the scattering from hydrogen atom is predominant in polyethylene crystal, the differential cross sections of two types of hydrogen atoms (H_{1} and H_{2} in Fig. 1 of Chapter II) were calculated.

When momentum transfer vector is parallel to the chain axis (parallel to the z axis), z component of \hat{n} and j contributes to the scattering. The function $H\left(K_{t}, w\right)$ defined by (6.41) for parallel case is represented as

$$
\begin{equation*}
H^{\prime \prime}\left(K_{t}, w\right)=\sum_{\Delta \omega_{j}}\left(\hbar_{i} / N M \omega_{j}\right)\left(1-x_{j}\right)^{-1}\left|K_{t}\right|^{2}\left(A_{j z}{ }^{2}+B_{j z}{ }^{2}\right) \tag{7.1}
\end{equation*}
$$

$$
\begin{equation*}
2 W^{\prime \prime}\left(K_{t}\right)=\sum_{1}\left(\hbar / M N \omega_{1}\right)\left|K_{t}\right|^{2}\left(A_{1_{z}}^{2}+B_{1_{z}}^{2}\right)\left(1+x_{1}\right) /\left(1-x_{1}\right) \tag{7.2}
\end{equation*}
$$

where N is total number of unit cell in the crystal, M is mass of hydrogen atom, ω_{j} is the angular frequency of j-th normal coordinate and $x_{j}=\exp \left(-\hbar \omega_{j} / \mathrm{kT}\right)$. On the calculation of one- and two-phonon scattering cross section, $\Delta \omega j$ was taken to be $1 \mathrm{~cm}^{-1}$ while on the three-phonon scattering cross section, $\Delta \omega$, was taken to be $5 \mathrm{~cm}^{-1}$ to shorten the computation time. Summation about 1 runs over all branches on $N / 2$ points in the unit cell of reciprocal lattice. $D_{2 h}$ symmetry of polyethylene crystal reduces the independent sets of phase differences to

$$
(0,0,0) \leq\left(\delta_{a}, \delta_{b}, \delta_{c}\right) \leq(\pi, \pi, \pi)
$$

Since the sample material is uniaxially oriented along the chain axis, random configuration of micro crystals around the chain axis has to be averaped. Supposing the direction of momentum transfer vector is along, β from x axis, fixed in the micro crystal, then

$$
(K A)^{2}=|K|^{2}\left(A_{x}^{2} \cos ^{2} \beta+A_{y}^{2} \sin ^{2} \beta+2 A A_{y} \sin \beta \cos \beta\right)
$$

and the averape of random distribution of β leads us to

$$
\begin{equation*}
(K A)^{2}=|K|^{2}\left(A_{x}^{2}+A_{y}^{2}\right) / 2 \tag{7.3}
\end{equation*}
$$

where A_{x} 'and A_{y} are x and y component of polarization vector, respectively. Then, $H\left(K_{t}, w\right)$ corresponding to perpendicular case is represented as

$$
\begin{align*}
& H^{\perp}\left(K_{t}, \omega_{j}\right)=\sum_{\Delta \omega_{j}} \frac{1}{2}\left(\hbar / M N \omega_{j}\right)\left(1-x_{j}\right)^{-1}\left|K_{t}\right|^{2}\left(A_{j_{x}}^{2}+A_{j_{y}}^{2}+B_{j_{x}}^{2}+B_{j_{y}}^{2}\right) \tag{7.4}\\
& 2 W^{\perp}\left(K_{t}\right)=\sum_{1}\left(\hbar / 2 M N \omega_{1}\right)\left|K_{t}\right|^{2}\left(A_{1_{x}}^{2}+A_{1_{y}}^{2}+B_{i_{x}}^{2}+B_{1_{y}}^{2}\right)\left(1+x_{1}\right) /\left(1-x_{1}\right) \tag{7.5}
\end{align*}
$$

A_{1}, B_{1} and w_{1} were calculated for number of representative points of space, and also the interpolation of \mathbb{A}_{1}, B_{1} and ω_{1} were performed with the use of equation (1.15) at the interval of 1° of δ_{c}. Since the scattering angle is fixed at 90°, the momentum transfer is given by

$$
\begin{equation*}
\left|k_{t}\right|^{2}=2 k_{2}^{2}+2 m c v_{l}^{\prime} h \tag{7.6}
\end{equation*}
$$

where m is neutron mass, c is light velocity and ν is wave number corresponding to the energy transfer. In this experiment, final energy is fixed at 30 meV .

The calculated Debye-Waller factor for above experimental condition is shown in Fig. 1 , where $\exp \left[-2 W\left(K_{t}\right)\right]$ is plotted against the energy transfer. The solid line represents parallel case while broken line denotes perpendicular case. The contribution from iatrachain vibrations is also included. As energy transfer gets larger, $2 W\left(k_{t}\right)$ becomes larger and therefore, the transition corresponding to higher energy transfer is suppressed in proportion to $\exp \left[-2 W\left(\mathbb{K}_{t}\right)\right]$. Experimentalists ususilly assume $\exp \left[-2 W\left(s_{t}\right)\right]$ to be equal to unity on the analysis of neutron spectrum. However, this assumption is misleading the relative intensity. As $2 \mathrm{~W}\left(\mathrm{~K}_{\mathrm{t}}\right)$ is nearly proportional to temperature, scattering intensity becomes smaller as temperature is raised. It is, in fact, confirmed in the recent. experiment. ${ }^{15)}$

Eq(6.15) states that the peak intensity of elastic scattering depends primarily upon Debye-Waller factor. Accordingly, $2 W\left(K_{t}\right)$ and $\exp \left[-2 W\left(\mathcal{K}_{t}\right)\right]$ for the elastic scattering are shown in Table 1 , where 'interchain' and 'intrachain' mean the contribution of the crystal vibrations below $700 \mathrm{~cm}^{-1}$ and
of chain vibrations above $700 \mathrm{~cm}^{-1}$, respectively. The contribution from the intrachain vibrations cannot be neglected even at $100^{\circ} \mathrm{K}$. The perpendicular component of $2 \mathrm{~W}\left(\mathrm{~K}_{\mathrm{t}}\right)$ due to interchain vibrations is especially large because the frequencies of the acoustic branches whose atomic displacements are perpendicular to the chain axis, are relatively low and the mean squared atomic displacement gets large compared with the acoustic branch along the chain axis. Therefore, the perpendicular component of total value of $2 W\left(K_{t}\right)$ is larger than that of parallel component. In fact, the observed peak intensity of elastic scattering is reported to be weaker in perpendicular case than in parallel case ${ }^{7}$.

The differential cross sections for one-, two- and three-phonon scattering processes were calculated with the use of Eqs (6.47)-(6.54). The calculated results are shown in Fig. 2. The one-phonon cross section for perpendicular case is so large below $200 \mathrm{~cm}^{-1}$ but so small above $200 \mathrm{~cm}^{-1}$ that the contribution of two-phonon scattering is recognizable above $200 \mathrm{~cm}^{-1}$. To the contrary, the one-phonon cross section for parallel case is relatively small below $200 \mathrm{~cm}^{-1}$ but not so small above $200 \mathrm{~cm}^{-1}$, that the contribution of two-phonon scattering is not remarkable. The three-phonon scattering cross section is recognized above $400 \mathrm{~cm}^{-1}$ only for perpendicular case whereas it makes no distinct peak. Accordingly, the three-phonon scattering might appear weakly as a back ground for perpendicular case.

The composite differential cross section is shown in Fig. 3, where histograms of values of ($d^{2} \sigma / d \Omega d E$) per
frequency division of $10 \mathrm{~cm}^{-1}$ are drawn against the energy transfer and the scale unit of the ordinate is ($\mathrm{s} / 4 \pi$) (s; bound atom incoherent cross section of hydrogen atom). This figure may correspond to the intensity distribution directiy observed from the neutron spectrum.

Since the experimental results are represented as phonon-density defined by

$$
\begin{equation*}
G(\omega)=(4 \pi N / s \hbar) \omega(1-x)\left(k_{1} / k_{2}\right)\left|K_{t}\right|^{-2}\left(d^{2} \sigma / d \Omega d E\right) \tag{7.7}
\end{equation*}
$$

Originally, in the formal representation of $G(w)$, DebyeWaller factor was canceled from the cross section. However, on the transformation of the observed cross section to $G(\boldsymbol{w})$, Debye-Waller factor is usually assumed to be unity. Then the real quantity is equivalent to (7.7) and therefore $G(\omega)$ includes Debye-Waller factor. And also ($\alpha^{2} \sigma / d \Omega d E$) might include multi-phonon scattering. Accordingly, the resultant phonon density function may not always represent the amplitude weighted frequency distribution.

The calculated $G(w)$ is compared with the experimental one in Fig. 4, where solid lines represent parallel case while broken ines represent the perpendicular case. The calculated histograms of the lower figure of Fig. 4 may be compared with the experimental curves as given in Fig. 4 of ref. 7. However, the experimental curves for parallel and perpendicular cases have been tentatively adjusted ${ }^{7}$) to provide equal peak heights at $195 \mathrm{~cm}^{-1}$. The true experimental curves may be obtained from the published curves by multiplying the ordinate of the parallel curve by 56%.

These experimental curves, which are reproduced in the upper figure of Fig. 4, may be compared with our calculated results. The perpendicular peak calculated at $195 \mathrm{~cm}^{-1}$ is twice as high as the corresponding parallel peak, and the peak near $560 \mathrm{~cm}^{-1}$ is almost completely parailel whereas the peak at $150 \mathrm{~cm}^{-1}$ is almost perpendicular, in good agreement with the experimental results. These peaks originates from onephonion process of the internal rotation, skeletal bending and overall rotatory vibrations around the chain axis, respectively. The weak perpendicular peak calculated at $90 \mathrm{~cm}^{-1}$ is recognized as the fine structure of the experimental curve, which is due to optical branches of the translatory vibrations perpendicular to the chain axis.

Two weak perpendicular peaks calculated near 240 and $340 \mathrm{~cm}^{-1}$ are associated with the summation combination tones of the antiparallel translatory vibrations ($\sim 90 \mathrm{~cm}^{-1}$) plus the overall rotatory $v i b r a t i o n s\left(\sim 150 \mathrm{~cm}^{-1}\right)$ and the internal rotation ($\sim 190 \mathrm{~cm}^{-1}$) plus the overall rotatory vibrations around the chain axis ($\sim 150 \mathrm{~cm}^{-1}$), respectively. The perpendicular cut-off calculated at $380 \mathrm{~cm}^{-1}$ corresponds to the overtone of the internal rotation branches. The relative intensity and anisotropy of these three peaks, associated with two-phonon scattering, agree closely with the experimental results.

The differential cross section due to the intrachain vibrations were also calculated. As shown in Fig . 5, two prominent parallel peaks are expected at $1080 \mathrm{~cm}^{-1}$ and
$1320 \mathrm{~cm}^{-1}$ while one perpendicular peak is expected at $720 \mathrm{~cm}^{-1}$. Because of large $2 W\left(K_{t}\right)$ for perpendicular case, the perpendicular cross section is strongly suppressed and therefore no peak seems to exist at $1470 \mathrm{~cm}^{-1}$.

One-, two- and three-phonon scattering cross sections at $298^{\circ} \mathrm{K}$ were calculated as shown in Fig. 6. As temperature is raised, the scattering intensity through one-phonon process decreases whereas two- and three-phonon scattering increases, especially in their difference combinations. The resultant cross section seems to get larger for small energy transfer but smaller for large energy transfer as shown in Fig. 7. It may be expected that apparent peak width of the elastic scattering becomes broad on account of the increase of inelastic contribution of small energy transfer at higher temperature. Besides $1 t$, the peak of inelastic part becomes relatively obscure compared with that of low temperature(Fig.3). This tendency agrees with the recent experimental results ${ }^{15}$) in which the measurement has been performed at $4.2^{\circ} \mathrm{K}, 77^{\circ} \mathrm{K}$ and $300^{\circ} \mathrm{K}$ with the use of the time of flight down-scattering technique. Previously, King et al. ${ }^{3)}$ have measured the differential cross section of unoriented polyethylene at $298^{\circ} \mathrm{K}$ with the same experimental condition with Myers'. The result is reproduced in the upper figure of Fig. 8 for comparison. The average of two calculated histograms of the lower figure of Fig. 8 may be compared with the experimental results.

B) UP-SCATTERING
Since the combination of beryllium crystal for monochromatizing filter plus time of flight analyser utilizes neutron beam most efficientiy, many experiments on neutron spectrum have been performed by the use of the time of flight spectrum. Beryllium crystal kept at $77^{\circ} \mathrm{K}$ has fairly sharp cut-off at 5 meV , therefore the measurement has been carried out about the neutrons accelerated by the crystal vibrations. Trevino ${ }^{8)}$ has used time of flight method to measure the dichroism of neutron spectrum of polyethylene but the assignment explained there is not always appropriate. To make definite assignment of the observed spectrum, we have calculated the one-, two-, and three-phonon up-scattering cross sections, using the equivalent condition with the experiment, that is $\mathrm{T}=298^{\circ} \mathrm{K}, \theta=90^{\circ}$ (scattering angle), $\mathrm{k}_{1}=5.2$ meV. The calculated Debye-Waller factor is shown in Fig. 8, where $\exp \left[-2 W\left(K_{t}\right)\right]$ is plotted against the energy transfer. Because of small energy of the incident neutron, the elastic cross section is expected to be relatively large compared with Myers' experiment.

The calculated one-, two-, and three-phonon differential cross sections are shown in Fig. 10 (a), (b) and (c). The composite differential cross section is compared with the experimental results in Fig. 11. The calculated histogram is plotted against the frequency division of $10 \mathrm{~cm}^{-1}$ of energy transfer whereas the experimental results is published as time of flight spectrum, in which the division of energy
transfer is based on neutron velocity and is getting larger in proportion to $E_{t}{ }^{\frac{1}{2}}$. Therefore, apparent intensity of time of flight spectrum seems stronger than the corresponding differential cross section for large energy transfer. The contribution of two-phonon scattering is expected for perpendicular case above $200 \mathrm{~cm}^{-1}$ and is, in fact, recognized in the time of flight spectrum.

Phonon density from up-scattering cross section is defined by

$$
G(\omega)=(4 \pi N M / s \hbar) \omega(1-x) x^{-1}\left|K_{t}\right|^{-2}\left(k_{1} / k_{2}\right)\left(d^{2} \sigma / d \Omega \alpha E\right) \quad \text { (7.8) }
$$

From the calculated differential cross section, the phonon density curve was derived and shown in Fig. 12. The average of two histograms may be compared with Fig. 4(b) of ref.2, in good agreement with the experimental results, where the peak height at $550 \mathrm{~cm}^{-1}$ is almost one half of the peak height at $200 \mathrm{~cm}^{-1}$ and the shoulder due to two-phonon scattering is observed near $250 \mathrm{~cm}^{-1}$.

The composite of one-, two- and three-phonon upscattering cross sections calculated at $100^{\circ} \mathrm{K}$ is shown in Fig. 13 and the corresponding phonon density curve is derived in Fig. 14. As temperature is lowered, $\exp \left[-2 W\left(K_{t}\right)\right]$ becomes larger whereas the population of the phonons at excited level becomes smaller, and therefore the resultant cross section gets smaller. Since the measurement by Danner et al: ${ }^{2)}$ was carried out on polycrystalline sample, the average of two historrams in F 1 g . 14 may be compared with Fig. 3(b) of ref. 2. Two peaks calculated at $150 \mathrm{~cm}^{-1}$ (over-
all rotatory $v i b r a t i o n s)$ and at $195 \mathrm{~cm}^{-1}$ (internal rotation) are, in fact, resolved in the experimental curve. The contribution of two-phonon scattering is expected to be centered at $300 \mathrm{~cm}^{-1}$ while pretty definite peak is recognized in the experimental results. The calculated peak intensity at $560 \mathrm{~cm}^{-1}$ is weaker than that of $190 \mathrm{~cm}^{-1}$ whereas the intensity ratio of observed peaks is the opposite. On the other hand, Trevino et al ${ }^{16 \text {) have attempted to }}$ obtain the frequency spectrum of intrachain vibrations of polyethylene and measured the anisotropy of the cross section for large energy transfer ($k_{1} ; 234 \mathrm{meV}$). They have found one peak at $760 \mathrm{~cm}^{-1}$ for perpendicular case while two peaks at $1080 \mathrm{~cm}^{-1}$ and $1320 \mathrm{~cm}^{-1}$ for parallel case. For comparison, the amplitude welghted frequency distrlbution was calculated and shown in Fig. 15, where solid line is assoclated with the parallel component of the mean squared atomic displacement, and broken line is for perpendicular components. The perpen.dicular peak calculated at $720 \mathrm{~cm}^{-1}$ is due to methylene rocking vibration, while two parallel peaks calculated at 1080 and $1320 \mathrm{~cm}^{-1}$ are associated with methylene twisting vibrations. These three peaks are in close apreement with the experimental results. 16) The perpendicular poak expected at $1470 \mathrm{~cm}^{-1}$ is due to methylene scissoring vibration which is not recognized in the experimental results.

VII-3 DISCUSSIONS
Experimental estimation of Debye-Waller factor includes some ambiguities because the observed cross section of the
elastic scattering is not apparently separated from that of the inelastic scattering. Summerfield et al. 17) have evaluated the elastic scattering cross section by subtracting the extrapolated inelastic cross section from the apparent elastic cross section and obtained $2 W^{\prime \prime}=0.024|K|^{2}$ and $2 W^{\perp}=0.027|K|^{2}$ at $77^{\circ} \mathrm{K}$. Myers ${ }^{15)}$ has estimated $2 W^{\prime \prime}=0.0153|K|^{2}$ and $2 W^{\perp}=0.021|K|^{2}$ at $77^{\circ} \mathrm{K}$ W1th the same extrapolation method. From the present treatment, they are calculated as $2 W^{\prime \prime}=0.021|\mathrm{~K}|^{2}$ and $2 W^{\perp}=0.034|\mathrm{~K}|^{2}$ at $100^{\circ} \mathrm{K}$ which might be within the limit of the uncertainty of the experimental values. The ratio of $2 W^{\prime \prime} / 2 W^{\perp}$ of the calculated value $1 s 0.61$ while the experimental value is 0.73 from Myers' and 0.89 from Summerfield's. Since the crystallinity of the sample used is $80 \sim 90 \%$ and besides the orientation of the chain axis by stretching is not complete, it is reasonable that the calculated anisotropy is a little larger than the observed values.

The weak peaks observed at 240 and $340 \mathrm{~cm}^{-1}$, which were not expected from the frequency distribution of crystal vibrations of polyethylene, were considered as due to the disordered part such as 3-5 methylene groups of planar zigzag structure between two gauche linkages. ${ }^{2)}$ Recently Safford has given again the same explanation to these peaks. ${ }^{1)}$ To investigate it experimentally, Boutin et al. ${ }^{18 \text {) have }}$ measured the inelastic cross section of the single crystal grown from solution. It became confident that these two peaks are associated with crystal part of polyethylene. Then, Trevino ${ }^{8)}$ has assipned the peak at $240 \mathrm{~cm}^{-1}$ to one of
two cut-off frequencies of the split branches of the internal rotation vibrations. On the other hand, from the dispersion curves shown in Chapter IV, the splitting may be expected certainly in the dispersion curves along ($0,0, \delta_{c}$) whereas no splitting is found in the dispersion curves along: $\left(\pi, \pi, \delta_{c}\right)$. The magnitude of the splitting varies continuously with δ_{a} and δ_{b}, therefore only one peak, in the frequency distribution, is expected as the cut-off of the internal rotation branches. The peak width may depend upon the magnitude of the splitting.

The relative intensity and anisotropy of the two peaks, calculated from the present study, are in good agreement with the experimental results. Therefore these peaks are reascnably assigned to the multi-phonon scattering. 19)

Recently the identical assiprment was proposed by Summerfield, who made the amplitude weiphted frequency distribution taking simply 200 points on the dispersion curve along $\left(0,0, \delta_{c}\right)^{17)}$. Because of the limited number of vibrations incorporated, the relative intensity of the frequency distribution may include somewhat uncertainties. For instance, the antiparallel translatory vibration alonf the chain axis does not make definite peak from the dispersion curve of ($0,0, \delta_{c}$) while the peak is expected at $50 \mathrm{~cm}^{-1}$ from the dispersion curves alonp δ_{a} and δ_{b}. I'he perpendicular peak near $50 \mathrm{~cm}^{-1}$ in the scattering, cross section (Fig. 3) results from the acoustic branches whose atomic displacements are perperidicular to the chain axis. These peaks are expected from the dispersion curves along $\left(\pi, \delta_{b}, 0\right)$ and $\left(\delta_{a}, \pi, 0\right)$. I'wo overall rotatory
vibrations around the chain axis splits into 147 and $122 \mathrm{~cm}^{-1}$ at $(0,0,0)$ whereas they are degenerate on $\left(\pi, \delta_{b}, 0\right)$ and $\left(\delta_{a}, \pi, 0\right)$. Since the derivative of the vibrational frequency with repard to phase difference ($\partial \nu / \partial \delta$) approaches to zero near zone boundarles, the dispersion curves along the edge of the first Brillouin zone is most sipnificant to estimate the peak intensity of the frequency distribution.

Chaner, and Summerfield ${ }^{20)}$ have measured the multi-phonon scattering, cross section with high energy incident neutrons (191 meV). The contribution of multi-phonon process to the inelastic scattering is fairly large at higher temperature, which may be probable, because $\|\left(K_{t}, w\right)$ becomes larger in proportion to $\left|K_{t}\right|^{2}$ and hirher terms of power series of $H\left(K_{t}, w\right)$ contribute to the cross section. In such a situation, the approximation incorporated in Eqs (6.12) and (6.20) becomes poor and then the present type of calculation would not be advantapeous to analyze the the inelastic cross section.

Safford et al. ${ }^{21 \text {) have measured the neutron spectrum }}$ with higher resolution and found peaks at $550,200,167,147$, 114,67 and $39 \mathrm{~cm}^{-1}$. In addition to them, ten weak peaks were found at $620,445,360,330,310,285,255,230,140$ and $95 \mathrm{~cm}^{-1}$, which were left unexplained. Unfortunately the number of points, taken in the first Brillouin zone in the present study, is not enouph to decompose the broad peaks of the ealculated phonon density curve into their component peaks. However, the existence of these weak peaks are not always confident, since Myers et al ${ }^{15 \text {) }}$ could not find them even in the careful experiment with the use of time of flight
plus down-scattering technique at $4.2^{\circ} \mathrm{K}$.
There is a discrepancy among the reported frequencies about the peak position of the neutron spectrum. Danner et al. ${ }^{2)}$ observed five peaks at $570,340,200,130$ and $60 \mathrm{~cm}^{-1}$ at $100^{\circ} \mathrm{K}$. Although King et al. 3) used the 1dentical sample, the reported frequencies are slightly different as 500, 340, 275, 200, 160, 95, 66 and $50 \mathrm{~cm}^{-1}$. Myers et al. ${ }^{\text {() have }}$ reported in their first paper the peaks at 550(11), 195(1, /1) and $150(\perp)$ about stretch oriented polyethylene. Boutin et al. ${ }^{18)}$ has obtained six peaks, from the analysis of sinfle crystal of polyethylene, at $500,300,200,120,80$ and $40 \mathrm{~cm}^{-1}$ while Trevino ${ }^{8)}$ has found two peaks at $530(/ /)$ and $250(1) \mathrm{cm}^{-1}$ about the oriented polyethylene. Myers ${ }^{15)}$ has performed the measurement at $300^{\circ} \mathrm{K}, 77^{\circ} \mathrm{K}$ and $4.2^{\circ} \mathrm{K}$. The observed frequencies at $77^{\circ} \mathrm{K}$ are $524^{*}, 201^{*}, 186,161,133,119^{*}, 97^{*}, 79$ and $45^{*} \mathrm{~cm}^{-1}$ for the parallel case and 387, 340, 197*, 165, 125*, $97^{*}, 73,52^{*}$ and $32 \mathrm{~cm}^{-1}$ for the perperidicular case, where the mark * indicates the frequency of fairly definite peak. These frequencies are not always coincident with those reported by Safford ${ }^{21)}$. Accordinriy, the comparison between the calculated and observed spectram with regard to details is meaninfriess till the definite frequenoy of the neutron spectrum will be provided.

Myers ${ }^{15)}$ has discussed, from the experimental results from neutron spectrum, that the out-off of the skeletal. bending branch is not hiprher than $536 \mathrm{sm}^{-1}$. However, Schaufele ${ }^{22)}$ has, in fact, found Raman lines due to accordion vibration of $C_{94}{ }^{11} 190$ at 536 and $556 \mathrm{~cm}^{-1}$ In the laser excited

Raman spectrum. It suggests that the cut-off of the skeletal bending branch lies above $550 \mathrm{~cm}^{-1}$ and therefore supports the present calculated results.

Since the bound atom incohereht cross section of carbon atom ($C^{12} ; 0.01, C^{13} ; 1.0$ barn) is much smaller than that of hydrogen atom (80 barn), the scatterinf, from carbon atom is not recognized except for the case in which the peak intensity of amplitudeweighted frequency distribution of hydrogen is extremely weak whereas that of carbon is fairly strong. As the amplitude welghted frequency distirbution of carbon given in the following chapter, is similar to that of hydropen atom, any peak due to carbon atom would not be expected in the neutron scatterinp, of polyethylene.
 deuterated polyethylene. T'wo prominent peaks are found at $165 \mathrm{~cm}^{-1}$ and $105 \mathrm{~cm}^{-1}$. From the dispersion curves riven in Appendix, the peak due to internal rotation branch is expected near $160 \mathrm{~cm}^{-1}$ from the curves alons. $\left(0, \delta_{b}, \pi\right)$ or $\left(\delta_{a}, 0, \pi\right)$ and the peak due to the overall rotatory modes is expected near $105 \mathrm{~cm}^{-1}$ from the curves alonp $\left(\delta_{a}, \pi, 0\right)$ and $\left(\pi, \delta_{b}, 0\right)$, In rood apreement with the observed results. The broad peak observed at $270 \mathrm{~cm}^{-1}$ inirht be combination-tone of the internal rotation ($165 \mathrm{~cm}^{-1}$) and the overall rotational modes ($105 \mathrm{~cm}^{-1}$). The cut-off of the skeletal bendin, mode is expected at $500 \mathrm{~cm}^{-1}$ while the experimental phonon density curve is avallable only below $440 \mathrm{~cm}^{-1}$. The woak shoulder obscrved at $70 \mathrm{~cm}^{-1}$ might be associated with the translatory vibrations perpen-
dicular to the chain axis.
Recently, King et al. ${ }^{23)}$ has observed the dispersion curve itself along $\left(0,0, \delta_{c}\right)$ from the analysis of coherent scatterinf of neutron fromdeuterated polyethylene. The. maximum frequency of bending branch lies relatively low compared with the calculated dispersion curves.

SUMMARY

Neutron scattering of polyethylene crystal was treated theoretically. Debye-Waller factor for elastic scatterinp, was calculated as $2 W^{\prime \prime}=0.021|K|^{2}$ and $2 W^{\perp}=0.034|K|^{2}$ at $100^{\circ} \mathrm{K}$, which are in reasonable apreement with experimental values.

The differential cross sections for one-, two- and threephonon down-scatterinf processes were calculated with the method developed in the precoding chapter. In the calculated phonon density, several prominant peaks at 560(//), 195(1, /1), 145(1), go(1) and weak shoulder at $50(\perp, / /) \mathrm{cm}^{-1}$ are expected, in pood apreement with the experimental results. They are due to the skeletal bendinf, the internal rotation, the rotatory modes around the chain axis, antiparallel translatory vibrations perpendicular to the chain axis and that parallel to the chain axis, respertively.

Three broad peaks, observed at 240,340 , and $380 \mathrm{~cm}^{-1}$, were shown to be associated with two-phonon scatterinf. Accordingly all the ohserved peaks were reasonably assipned.

The cross section for up-scattering process was also calculated and phonon density curves were derived at $100^{\circ} \mathrm{K}$ and $298^{\circ} \mathrm{K}$. 'I'he calculated results are in pood apreement
with the observed results.
Peak position expected from the dispersion curves of deuterated polyethylene agreed with the recent experimental results.

REFERENCES

1) G.J.Safford and A.W.Naumann, Adv. Polymer Sci., 5, 1 (1967).
S.Trevino and H.Boutin, J. Macromol. Sci., A1, 723 (1967).
2) H.R.Danner, G.J.Safford, H.Boutin and M.Berger, J. Chem. Phys., 40, 1417 (1964).
3) J.S.King and J.L.Donovan, Bull. Am. Phys. Soc., II-2, 623 (1964).
W.R.Myers, J.L.Donovan and J.S.King, J. Chem. Phys., 42, 4299 (1965).
4) M.Tasumi, T.Shimanouchi, and T.Miyazawa, J. Mol. Spectry., 2, 261 (1962); 11, 422 (1963).
5) T.Kitapawa and T.Miyazawa, Rept. Propr. Polymer Phys. Japan, 8, 53 (1965).
6) G.C.Summerfield, J. Chem. Phys., 43, 1079 (1965).
7) W.Myers, G.C.Summerfield, and J.S.King, J. Chem. Phys.. 44, 184 (1966).
8) S.F.Trevino, J. Chem. Phys., 45, 757 (1966).
9) J.H.Schachtschneider and R.G.Snyder, Spectrochim. Acta., 12, 117 (1963).
10) M.Tasumi and T'.Shimanouchi, J. Chem. Phys., 43, 1245 (1965).
11) T.Kitarawa and T.Miyazawa, Rept. Propr. Polymer Phys., Japan, 11, 219 (1968).
12) P.Higrs, Proc. Roy. Soc.,(London) A22.0, 472 (1953).
13) T.Miyazawa, J. Chen. Phys., 35, 693 (1961).
14) T.Miyazawa and T. Kitapawa, J. Polymer Sci., B2, 395 (196! …
15) W.R.Myers and P.D. Randolph, J. Chem. Phys., 49, 1043 (1968).
16) W.E.Moore, G.J.Kirouac and S.F.Trevino, private communication.
17) J.E.Lynch,Jr, G.C.Summerfield, L.A.Feldkamp, and J.S.King, J. Chem. Phys., 48, 912 (1968).
18) H.Boutin, H.Prask, S.F.Trevino and H.R.Danner, Inelastic Scattering of Neutrons, Solids, Liquids, Proc. Symp. Vienna, 1964 vol-2, 407 (1965).
19) T.Kıtagawa and T.M1yazawa, J. Polymer Sci., B6, 83. (1968).
20) Y.I.Chanf and G.C.Summerfield, private communication.
21) G.J.Safford, A.W.Naumann and F.T.Simon, J. Chem. Phys., 45, 3787 (1966).
22) R.F.Schaufele and I'.Shimanouchi, J. Chem. Phys., 47 , 3605 (1967).
23) L.A.Feldkamp, G.Venkataraman and J.S.King, private communication.

Table 1. Debye-Waller factor of hydrogen atom in polyethylene crystal.

	$\mathrm{T}=100^{\circ} \mathrm{K}$		$\mathrm{T}=298^{\circ} \mathrm{K}$	
	$(1 /)$	(1)	$(I I)$	(1)
$2 W(K)$ intrachain	0.370	0.318	0.373	0.325
$2 W(K)$ interchain	0.243	0.683	0.543	1.726
$2 W(K)$ total	0.612	1.001	0.916	2.051
$\exp [-2 W(K)]$	0.54	0.37	0.40	0.13
$K=k_{1}-k_{2} \quad$ and $k_{1}=k_{2}=30 \mathrm{meV}$				

Fig. 1 The calculated Debye.-Waller factor, $\exp \left[-2 W\left(K_{t}\right)\right]$. The final energy is fixed at 30 meV and the scatterlne angle is set to be 90°.

Fig. 2 The calculated differtatal cross sections for one-, two pas threemphon scattering

Fig. 3 The composite of the differential cross sections for one., two-, and threemphonon acattering. The histograms of $d^{2} \sigma / d \Omega d E$ per frequency division of $10 \mathrm{~cm}^{-1}$ are drawn against the energy transfer. The scale unit of ordinate 18 ($s / 4 \pi$).

Fig. 4 Comparison between the observed and calculated phonon densities.
the upper figure; the observed result ${ }^{7}$ (see text) the lower figure; the calculated results.

Fig. 5 The calculated differential cross section for intrachain vibrations. ($d^{2} \sigma / d \Omega d E$) per frequency division of $20 \mathrm{~cm}^{-1}$ on Myers' experimental condition ${ }^{7}$) are drawn against energy transfer.

Fig. 6 The calculated differential cross sections for onew, two-, and three-phonon scattering on the experimental condition of $k_{2}=30$ تeV, $0=90^{\circ}$, and $9=299^{\circ} \mathrm{K}$, Wave number (em^{-1})

Fig. 7 The composite of the differential cross sections for one-, two-, and three-phonon scattering. The histograms of ($d^{2} \sigma / d \Omega d E$) per frequency division of $10 \mathrm{~cm}^{-1}$ are drawn against the energy tranafer. The ordinate scale is (s/4) .

Fig. 8 Comparison between the calculated and observed phonon densitles.
the upper figure; observed result on unoriented sample ${ }^{3)}$ the lower figure; calculated result

Fig. 9 The calculated Debye-Waller factor; $\exp [-2 W(K)]$. the incident neutron energy; 5.2 meV the scattering angle; 90°

Fig. 10a The calculated differential cross section for one phonon scattering process.
The incident neutron energy is set to be 5.2 meV and the scattering angle is 90°.

Fig. 10b The calculated differential cross section for twophonon up-scattering process.
the upper figure; difference combination.
the lower figure; summation combination.

Fig. 10c The calculated differential cross section for threephonon up-scattering process.

```
the lower figure; summation combination, (6.50).
the upper figure; difference combination, (6.52)+(6.54).
```


Fig. 11 Comparison between the calculated and observed cross sections.
the upper figure; observed time of flight spectrum. the lower figure; calculated differential cross section.

Fig. 12 The calculated phonon density from the up-scattering cross section.

Fig. 13 The composite of the differential cross sections for one-, two-, and three-phonon up-scattering processes. The incident neutron energy is set to be 5.2 meV and the scattering angle is 90°.

Fig. 14 The calculated phonon density from up-scattering cross section at $100^{\circ} \mathrm{K}$.

Fig: 15 The amplitude weighted frequency distribution of intrachain vibrations of polyethylene.

VIII-1 INTRODUCTION

X-ray diffraction utilizes the periodicity of the atomic position in crystals. If atoms rest at their equilibrium position, scattering intensity along Bragg angle would not depend upon the scattering anfle. In real crystals, thermal vibrations disturb slightiy the periodicity of the atomic position and decrease of the scattering intensity is recognized for large scattering angles. This phenomenon was studied theoretically by Debye ${ }^{1)}$ and W^{\prime} aller ${ }^{2)}$ and has been incorporated into X-ray diffraction analysis as a temperature factor. The absolute value of the observed temperature factor gives originally the thermal average of mean squared atomic displacement. However, the effects of various kinds of crystal defects or disorder upon X-ray diffraction have not been established and therefore, the experimental value of temperature factor includes all the effects of the disturbance of the periodicity.

Previously, we have treated the thermal vibrations of polyethylene crystal with the interchain as well as intrachain potential functions. The atomic displacements of hydrogen atoms were calculated on many points of the reciprocal unit cell and, from the thermal averape of the mean squared atomic
displacement, differential cross section of neutron inelastic scattering was derived. The calculated anisotropy and relative intensity were in close agreement with the observed neutron spectrum. Debye-Waller factor of hydrogen atom for the elastic scattering of neutron was also calculated and it agreed closely with the experimental results on its absolute value and anisotropy.

On the other hand, X-ray is scattered by electron clouds around the nuclei while neutron is scattered by hydrogen nuclei. Then the scattering from carbon atom may be predominant in X-ray diffraction of polyethylene crystal. Accordingly, in the present study, theoretical value of temperature factor for X-ray diffraction was calculated from the thermal average of mean squared displacement of carbon atom and was compared with the experimental results.

VIII-2 I'HEORY
Since the extent of electron cloud of individual atom is as same order as the wave lenpth of X-ray, scattered waves from different part of isolated atom might possibly interfere with each other. However, Bragg reflection is based on the interference of the scattered X-ray from other atoms, therefore apparent cross section of k-th atom for X-ray is simply represented as f_{k}. The intensity of scattered X-ray is written as ${ }^{3)}$

$$
\begin{equation*}
I=C \Sigma_{i}, k, \Sigma_{i k} f_{k}^{*} f_{k}, \exp \left[i k\left(\mathbf{r}_{i}^{k},-r_{i}^{k}\right)\right] \tag{8.1}
\end{equation*}
$$

where C is constant factor which is not concerned with the atomic displacement, \mathbf{r}_{1}^{k} is the position vector of $k-t h$ atom of 1 -th unit cell, and k is momentum transfer vector defined by

$$
\begin{equation*}
k \hbar=\left(k_{1}-k_{2}\right) \hbar \tag{8.2}
\end{equation*}
$$

where k_{1} and k_{2} are wave vectors of incident and scattered X-ray, respectively.

Since the energy of X-ray is extremely higher than the vibrational energy, the absolute value of k_{1} and k_{2} are almost equal unless atoms are electronically excited on the scattering. If the wave lengths of incident and scattered X-ray are commonly equal to λ, then the magnitude of momentum transfer vector is given by

$$
\begin{equation*}
|K|=4 \pi \sin (\theta / 2) / \lambda \tag{8.3}
\end{equation*}
$$

where θ is scattering angle (twice of diffraction angle).
The position vector of the atom may be decomposed into

$$
\begin{equation*}
\mathbf{r}_{1}^{k}=\mathrm{R}_{1}+\mathbf{r}_{k}+u_{1}^{k} \tag{8.4}
\end{equation*}
$$

where R_{1} is the position vector of the $1-t h$ cell origin and r_{k} is the position vector of equilibrium position of the k-th atom from the cell origin. u_{1}^{k} is the atomic displacement vector of the k-th atom in the 1 -th unit cell due to thermal vibrations, which is derived from Eqs (6.1) and (6.2) as

$$
\begin{align*}
\mathbf{u}_{1}^{k}=\left(2 / M_{k} N\right)^{\frac{1}{2}} \sum_{j} A_{k j} & {\left[Q_{j}^{a} \cos \left(p_{i k} \delta\right)-Q_{j}^{b} \sin \left(p_{1 k} \delta\right)\right] } \\
& +B_{k j}\left[Q_{j}^{a} \sin \left(p_{i k} \delta\right)+Q_{j}^{b} \cos \left(p_{i k} \delta\right)\right] \tag{8.5}
\end{align*}
$$

where M_{k} is mass of k-th atom, N is total number of unit cell, $\rho_{1 k}$ is the index vector of k-th atom of i-th unit cell, and δ is phase difference vector. Q_{j}^{a} and Q_{j}^{b} are degenerate pair of j-th normal coordinate, the polarization vector of which is represented as $A_{k j}$ and $B_{k j}$. Since real number normal coordinates are used, summation runs over all branches on $\mathrm{N} / 2$ points of half of the first Brillouin zone.

Substitution of x_{1}^{k} from (8.4) into (8.1) provises

$$
\begin{equation*}
I=C \Sigma_{1}, k \cdot \Sigma_{1 k} F_{0}^{k^{*}} F_{0}^{k} \times \exp \left[1 K\left(R_{1},-R_{i}\right)\right] \exp \left[1 K\left(u_{i}^{\prime},-u_{1}^{k}\right)\right] \tag{8.6}
\end{equation*}
$$

where F_{0}^{k} is atomic structure factor defined by

$$
F_{0}^{k}=f_{k} \exp \left(1 k r_{k}\right)
$$

The exponential function of (K_{i}) becomes Lave function which is nonvanishing only on the reciprocal lattice point. The expectation value of the final fector gives rise to the temperature factor. For harmonic vibrations, the thermal average of exponential function of normal coordinate is exactly equal to the exponeritial function of thermal average of squared normal coordinate, that is,

$$
\langle\exp (Q)\rangle_{\mathrm{T}}=\exp \left\{\frac{1}{2}\left\langle\mathrm{Q}^{2}\right\rangle_{\mathrm{T}}\right\}
$$

where Q is normal coordinate. This relation is derived fron Bloch's theorem. 4) Since the atomic displacement is Inear combination of normal coordinates, Debye-Waller factor was introduced originally from

$$
\begin{equation*}
\left\langle\exp \left(1 K u_{1}^{k}\right)\right\rangle_{T}=\exp \left\{-\frac{1}{2}\left\langle\left(K u_{1}^{k}\right)^{2}\right\rangle_{T}\right\}=\exp \left[-W_{K}(K)\right] \tag{8.7}
\end{equation*}
$$

where $W_{k}(K)$ is Debye-Waller factor for k-th atom. However, the expectation value of the final factor of (8.6) is not exactly equal to the product of two functions of (8.7), becruse of the correlation among the atomic displacement.

Since the atomic displacement is relatively small com pared with the wave length of X-ray, the final function of (8.6) is expanded into power series of $\left(K u_{1}^{k}\right)$ as

$$
\begin{aligned}
\left\langle\exp \left[1 K\left(u_{1}^{k},-u_{1}^{k}\right)\right\rangle_{T}=\langle[1\right. & \left.+1 K u_{1}^{k},-\frac{1}{2}\left(K K u_{1}^{k}\right)^{2} \ldots\right] \\
& \left.x\left[1-1 K u_{1}^{k}-\frac{1}{3}\left(K u_{1}^{k}\right)^{2} \cdots\right]\right\rangle_{T}
\end{aligned}
$$

$$
\begin{gather*}
=\left[1-\left\langle\frac{1}{2}\left(K u_{1}^{k^{\prime}}\right)^{2}\right\rangle_{T} \cdots \cdot \cdot\right]\left[1-\left\langle\frac{1}{2}\left(K u_{1}^{k}\right)^{2}\right\rangle_{T} \cdots\right] \\
+\left\langle\left(K u_{1}^{k},\right)\left(K u_{1}^{k}\right)\right\rangle_{T} \tag{8.8}
\end{gather*}
$$

where $\left\rangle_{T}\right.$ means the thermal avarage of the expectation value. If there is no correlation in the atomic displacement, the second factor of (8.8) vanishes. Debye-Waller factor may be regarded as the approximate value of the first factor of (8.8).

$$
1-\left\langle\frac{1}{2}\left(K u_{1}^{K}\right)^{2}\right\rangle_{T} \cdots=\exp \left[-W_{k}(K)\right]
$$

Then the scattering intensity is represented as

$$
\begin{align*}
& I=C \Sigma_{1} h^{\prime}, \Sigma_{i k} F_{0}^{K^{*}} F_{0}^{k^{\prime}} \exp \left[-W_{k}(K)\right] \exp \left[-W_{k}(K)\right] \exp \left[1 K\left(R_{i},-R_{i}\right)\right] \\
& \left.+\Sigma_{1}{ }^{\prime}, \Sigma_{i k} C F_{0}^{k^{*}} F_{0}^{k^{\prime}}\left\langle\left(K u_{1}^{k}\right)\left(K u_{1}^{k^{\prime}}\right)\right\rangle\right\rangle_{T} \exp \left[i K\left(R_{1}, \mathcal{R}_{1}\right)\right] \tag{8.9}
\end{align*}
$$

where the first term gives Bragg reflection and the second term yields thermal diffuse scattering which may be observed as the width of Bragg reflection peak. The decrease of Bragg reflection due to thermal vibrations is compensated by the Increase of thermal diffuse scattering.

On the other hand, the representation of (8.1) is equivalent to Born's first approximation incorporated on the neutron scattering. Then the scattering intensity may be derived in the same way with Chapter VI. The first term of (8.9) comes from the matrix element for elastic scattering and the second term corresponds to single phonon inelastic scattering. Therefore, Debye-Waller factor is obtained in the same way with (6.16),

$$
\begin{equation*}
2 W_{k}(K)=\sum_{1}\left(\hbar / M_{k} N \omega_{1}\right)\left[\left(K A_{k 1}\right)^{2}+\left(K B_{k 1}\right)^{2}\right]\left(1+x_{1}\right) /\left(1-x_{1}\right) \tag{8.10}
\end{equation*}
$$

where $\dot{x}_{1}=\exp \left(-\hbar \omega_{1} / \mathrm{KT}\right), \omega_{i}$ is angular frequency of 1 -th normal vibration and summation runs over all branches on $N / 2$ points in the reciprocal unit cell. Since in the X-ray diffraction analysis, temperature factor tensor $B_{\alpha \beta}$ is defined by

$$
\begin{equation*}
2 W_{k}(K)=\sum_{\alpha \beta} 2 B_{\alpha \beta}[\sin (\theta / 2) / \lambda]_{\alpha}[\sin (\theta / 2) / \lambda]_{\beta} \tag{8.11}
\end{equation*}
$$

then $B_{\alpha \beta}$ is represented as

$$
\begin{equation*}
B_{\alpha \beta}=\sum_{1}\left(8 \pi^{2} \hbar / M_{k} N \omega_{1}\right)\left[\left(A_{k 1}\right)_{\alpha}\left(B_{k 1}\right)_{\beta}+\left(B_{k 1}\right)_{\alpha}\left(B_{k 1}\right)_{\beta}\right]\left(1+x_{1}\right) /\left(1-x_{1}\right) \tag{8.12}
\end{equation*}
$$

On the numerical calculation, dynamical matrix was diagonalized about the representative sets of phase differences and then; with the use of the interpolation method described in (1.16), $\omega_{1}, A_{k i}$ and $B_{k i}$ were obtained at the interval of 1° of δ_{c} for every set of $\left(\delta_{a}, \delta_{b}\right)$.

VIII- 3 RESULTS AND DISCUSSIONS
Thus the mean squared atomic displacement of carbon atom was calculated for about 120,000 modes below $700 \mathrm{~cm}^{-1}$ and collected in Fig. 1, where the histogram of amplitude weighted frequency distribution are shown against the frequency interval of $10 \mathrm{~cm}^{-1}$ and solid Ine represents the parallel component of the atomic displacement to the chain axis, while the broken line represents the average of two components perpendicular to the chain axis. Two prominent peaks appear at $90 \mathrm{~cm}^{-1}$ and $190 \mathrm{~cm}^{-1}$ in perpendicular case, which are due to antiparallel translatory vibrations perpendicular to the chain axis and the internal rotation, respectively. The atomic displacement of carbon atom and hydrogen are 1dentical in the translatory vibrations whereas, in the rotatory modes around the chain axis, the atomic displacement
of carbon atom is smaller than that of hydrogen atom. Therefore, the perpendicular peak at $150 \mathrm{~cm}^{-1}$ which results from overall rotatory vibrations around the chain axis, is weak in the case of carbon atom compared with the corrosponding peak of hydrogen atom. As for the parallel component, there is a peak at $560 \mathrm{~cm}^{-1}$, which is associated with the skeletal bending modes. The contribution of the skeletal bending branch seems constant above $50 \mathrm{~cm}^{-1}$. It may be expected from the dispersion curves along δ_{C} of Chapter IV, where optical branches of the skeletai bending modes start almost always from $50 \mathrm{~cm}^{-1}$. It is noticeable that, in the case of hydrogen atom, the peak of parallel component of the internal rotation vibration is recognized at $190 \mathrm{~cm}^{-1}$ whereas there is no peak at $190 \mathrm{~cm}^{-1}$ in the case of carbon atom.

In Fig. 2, the amplitude weighted frequency distribution of oarbon atom due to the intrachain vibrations are plotted against the frequency division of $20 \mathrm{~cm}^{-1}$. The perpendicular peak above $2800 \mathrm{~cm}^{-1}$ is associated with C-H stretching vibrations. Near $1000 \mathrm{~cm}^{-1}$ region, the perpendicular peaks are weak and broad. Two weak peaks at $720 \mathrm{~cm}^{-1}$ and $1470 \mathrm{~cm}^{-1}$ are due to methylene rocking and scissoring vibrations, respectively. As for the parallel case, four prominent peaks are recognized. The strong peaks at 970 and $1080 \mathrm{~cm}^{-1}$ are associated with skeletal stretching vibration while the peaks at 1430 and $1490 \mathrm{~cm}^{-1}$ are mainly due to methylene wagging and scissoring vibrations. Vibrational displacement parallel to the chain axis (solid line in $F 1 g .1$ and $F i g .2$) reduces the intensity of Bragg reflection from the plane normal to the
chain axis, which is used for the determination of fiber period of polymer single chain.

Recent development of the growing technique of single crystal would make it possible to observe each element of the temperature factor tensor on polyethylene single crystal, although the exact experimental value is not available yet. Accordingly theoretical value of temperature factor tensor was calculated. The calculated results are shown in Table 1 , where a, b and c mean the components of the sattering vector (unit vector along momentum transfer vector) along the a, b and caxes, respectively.

The value of temperature factor along the chain axis is relatively small compared with the values perpendicular to the chain axis, in good agreement with the experimental resulta. 5) On the analysis of X-ray diffraction from monoclinic single crystal of $\mathrm{C}_{36} 6^{\mathrm{H}} 74$, Shearer and Vand ${ }^{6)}$ have obtalned the 1sotropic temperature factor of $B=3 A^{2}$, at room temperature. Bunn has assumed the perpendicular components of temperature factor as $B=5 \AA^{2}$ on the structure analysis of polyethylene. Therefore it is reasonable that the calculated value of the temperature factor at room temperature is $3 \AA^{2}$ for perpendicular component and $1 \AA^{2}$ for parallel component.

Chiba et al. ${ }^{7}$) have investigated the temperature dependency of the anisotropic temperature factor and found that the observed values lie on the straight line, drawn between two calculated values of $100^{\circ} \mathrm{K}$ and $298^{\circ} \mathrm{K}$. Since, from the expansion of (8.10) into power series of $(\hbar \omega / \mathrm{kT}), B_{\alpha \beta}$ is
nearly proportional to T at higher temperatures, the experiment proved that the anisotropy of the coeficicient of the calculated temperature factor againgt temperature well reproduces the observed results at low temperature.

On the other hand, the space group of the polyethylene crystal includes mirror perpendicular to the chain axis, therefore two cross terms of the temperature factor tensor, $B_{a c}$ and $B_{b c}$, are always zero. Then, one of the pricipal axes of the temperature factor tensor is parallel to the chain axis and other two axes are in the ab plane. As mentioned in Chapter II, the setting angle of the skeletal plane to the a axis is set to be 45°, therefore the calculated value of B a is almost equal to B_{bb}. Numerical calculation about principal axes led us to the result that one of the pricipal axen is almost coincident with the normal of the skeletal plane and the other is in the skeletal plane. Two principal values perpendicular to the chain axis are given in Table 2 , where out-of-plane component of the principal values is larger than the in-plane component. The result may be reasonable because, among low frequency crystal vibrations, rotatory vibrations around the chain axis contribute to out-of-plane component while only the translatory vibrations contribute to in-plane component. In fact, the projection on ($0,0,1$) plane of contours of electron density becomes more round as temperature is raised ${ }^{8)}$.

In Table 3, the temperature factor is represented as composite of the contribution of each modes. The contribution from acoustic branch is twice as large as the contribution from
the antiparallel translatory vibrations. Since the lattice modes vary with phase difference, the notation of the branch is not always exact.

With the use of Debye approximation, Debye-Waller factor for isotropic monoatomic crystal is represented as

$$
\begin{equation*}
2 W_{K}=\left(3|K|^{2} \hbar^{2} / M_{K} k \theta_{D}\right)\left[1 / 4+\left(T / \theta_{D}\right) \phi\left(\theta_{D} / T\right)\right] \tag{8.13}
\end{equation*}
$$

where M_{k} is mass of κ th atom, θ_{D} is Debye's characteristic temperature and

$$
\begin{equation*}
\phi(z)=(1 / z) \int_{0}^{z} \beta \alpha \beta /[\exp (\beta)-1] \tag{8.14}
\end{equation*}
$$

This approximation may be applied to more complex crystals if the frequency of optical branch of lattice vibrations is so high that the contribution from optical branch might be neglected such as in graphite. However, in polyethylene crystal, the contribution from optical lattice vibrations is not negligible even at $100^{\circ} \mathrm{K}$. $\mathrm{B}_{\alpha \beta}$ due to acoustic branches are almost proportional to T as shown in Table 3, whereas the temperature dependence of $B_{\alpha \beta}$ associated with optical lattice vibrations depends upon individual mode. The contribution from intrachain vibrations above $700 \mathrm{~cm}^{-1}$ may be disregarded in this temperature region. Accordingly, the approximation of (8.13) may be insufficient when several optical modes of lattice vibrations lie below the cut-off frequency of acoustic modes.

SUMMARY

The temperature factor for X-ray diffraction of polyethylene crystal was calculated from the thermal average of mean squared atomic displacement of carbon atom. The calculated values at room temperature is comparable with the experimental results.

The anisotropy and temperature dependence of the temperature factor was in good agreement with the observed results.

The amplitude weighted frequency distribution of carbon atom was calculated and discussed in comparison with that of hydrogen atom.

1) P.Debye, Ann. d. Physik, 43, 49 (1914).
2) I.Waller, Z. f. Physik, 17, 398 (1923); 51, 213 (1928).
3) I.Nitta ed. "X-ray Diffraction Analysis", Maruzen, Tokyo (1961).
4) F.Bloch, Z. Physik, 24, 295 (1932).
5) C.W.Bunn, Trans. Faraday Soc., 35, 482 (1939).
6) H.M.Shearer and V.Vand, Acta Cryst., 2, 379° (1956).
7) Y.Aoki, A.Chiba and G.Kaneko, Annual Meeting on Polymer Science, 24B22, Tokyo (1968).
8) N.Kasal and M.Kakudo, Rept. Progr. Polymer Phys. Japan, 11, 145 (1968).

Table 1. Temperature factor tensor of polyethylene crystal. (\AA^{2})

$100^{\circ} \mathrm{K}$	a	b	c	$298^{\circ} \mathrm{K}$		a	b
a	1.1_{1}	-0.2_{0}	0	a	3.31	-0.54	0
b	-0.2_{0}	1.10	0	b	-0.54	3.00	0
c	0	0	0.37	c	0	0	0.84

Table 2. Principal values of the temperature factor tensor. $\left(\mathbb{R}^{2}\right)$

	$100^{\circ} \mathrm{K}$	$298^{\circ} \mathrm{K}$
In-plane component	0.85	2.6
out of plane component	1.36	3.7

Table 3. The contribution of each branch.

	mode	$\mathrm{B}_{\text {aa }}$	B_{bb}	B_{cc}	$\mathrm{B}_{a b}$
$100^{\circ} \mathrm{K}$	rotatory	0.09	0.09	0	-0.08
	trans.(1) acoustic	0.72	0.65	0.01	-0.11
	trans.(1) optical	0.35	0.31	0.01	-0.01
	trans.(/I) acoustic	0	0	0.17	0
	trans.(/) optical	0	0.01	0.11	0
	intrachain modes	0.04	0.04	0.06	0.01
$298{ }^{\circ} \mathrm{K}$	rotatory	0.19	0.19	0	-0.18
	trans. (1) acoustic	2.26	1.94	0.03	-0.31
	trans.(1) optical	0.80	0.81	0.03	-0.07
	trans.(/) acoustic	0.01	0.02	0.51	0
	trans.(/) optical	0.01	0.01	0.26	0
	intrachain modes	0.04	0.04	0.06	0.01

Fig. 1 The distribution of mean squared atomic displacement of carbon atom, for low frequency crystal vibrations.

1900

9
8.8
8.8

(2) $30{ }^{23}$
45
Fig. 2 The distribution of mean squared atomic aisplacement of carbon atom for

> - suotzexata ufeuoexqut ouf

LIST OF TABLES

CHAPTER I

Table-1 Symmetry coordinates in real number space 27
Table-2 Transformation matrix for symmetry coordinates, $U(p, \delta)$ 28
Table-3 Force constants and the equilibrium distance 29
Table-4 The coefficient of phase differences in the dynamical matrix for acoustic branches. 29
CHAPTER II
Table-1 Matrix element of symmetry transformation. 60
Table-2 The intrachain potential energy matrix of polyethylene 61
Table-3 The interchain potential of polyethylene crystal. 62
Table-4 Unitary matrix for symmetry transformation $\mathbf{U}(\rho, \delta)$ 63
Table-5 Symmetry properties of Cartesian symmetry coordinates at $\delta=0$ 63
Table-6 The splitting of intrachain vibrations 64
Table-7 The specific heat of polyethylene crystal. 65
Table-8 The eigen-frequency for $\delta_{a}=\delta_{b}=\delta_{c}=0.1$ 65
Table-9 The intermolecular force constants from the theoretical potential functions 66
Table-10 The inter-atomic distances 66
CHAPTER III
Table-1 The coefficients of δ for the acoustic branches. 87
Table-2 Comparison of the calculated frequency 87
CHAPTER IV
Table-1 k group of the polyethylene crystal 111
Table-2 Multiplication table of k group operations for $\left(\delta_{a}, 0,0\right)$ 112
Table-3 Muitiplication table of k group operat ${ }^{*}$ for $\left(0, \pi, \delta_{c}\right)$ 112
Table-4 Muitipilcation table of kroup operaions for ($\pi, \pi, 0$) 112
Table-5 Multiplication table of k group opere sions for (π, π, π) 113
Table-6 Multiplier co-representation for space group $P_{\text {nam }}$ 113
Table-7 The degeneracy of dispersion curves due to time reversal symmetry 114
Table-8 Symmetry property of the base functions for \sum at $(0,0,0)$ 115
Table-9 Symmetry of wave function of binary combination. 115
APPENDIX 1
Table-A1 Space group operations of polyethylene crystal ($P_{\text {nam }}, D_{2 h}^{16}$) 126
Table-A2 Multiplication table of the space group for $P_{\text {nam }}$ 127
Table-A3 Irreducible representation of the k group $(0,0,0)$ 128
Table-A4 Matrix elements and characters of kroup. 128
Table-A5 Matrix elements and characters of k group $\left(0, \delta_{b}, 0\right),\left(\pi, \delta_{b}, 0\right)$ 128
Table-A6 Matrix elements and characters of k group $\left(0, \delta_{b}, \pi\right),\left(\pi, \delta_{b}, \pi\right)$ 129
Table-A? Matrix elements and characters of k group $\left(0,0, \delta_{c}\right)$ 129
Table-A8 Matrix elements and characters of group $\left(\pi, 0, \delta_{c}\right)$ 130
Table-A9 Matrix elements and characters of k group $\left(0, \pi, \delta_{c}\right)$ 130
Table-A10 Matrix elements and characters of k group $\left(\pi, \pi, \delta_{c}\right)$ 130
Table-A11 Characters of k group $(\delta, \delta, 0)$ 131
Table-A12 Characters of k group $(\delta, 0, \delta)$ 131
Table-A13 Characters of k group $(0, \delta, \delta)$ 131
Table-A14 Matrix elements and characters of group at point $X(\pi, 0,0)$ 131
Table-A15 Matrix elements and characters of k group at point $Z(0, \pi, 0)$ 132
Table-A16 Matrix elements and characters of k group at point $Y(0,0, \pi)$ 132
Table-A17 Matrix elements and characters of kg group at point $U(\pi, \pi, 0)$ 133
Table-A18 Matrix elements and characters of k group at point $T(0, \pi, \pi)$ 133
Table-A19 Matrix elements and characters of k group at point $S(\pi, 0, \pi)$ 134
Table-A20 Matrix elements and characters of k group at point $\mathrm{R}(\pi, \pi, \pi)$. 134
Table-A21 The compatibility relations of the dispersion curves of the lattice vibrations. 135
CHAPTER V
Table-1 Symmetry of the elastic constants and the associated intrachain potential terms 157
Table-2 The incilnation of $\nu-\delta$ curve at the limit of $|\delta| \rightarrow 0$. 158
Table-3 Explicit representation of the elastic constants with interchain force constants 159
CHAPTER VI
Table-1 Comparisons of the approximate values of Eq(6.12) with exact values 181
Table-2 The examination of $\mathrm{Eq}(6.20 \mathrm{~b}$) 181
CHAPTER VII
Table-1 Debye-Waller factor of hydrogen atom in polyethylene crystal 207
CHAPTER VIII
Table-1 Temperature factor tensor of polyethylene crystal 237
Table-2 Principal values of the temperature factor tensor. 237
Table-3 The contribution of each branch. 237

LIST OF FIGURES

CHAPTER I

Fig. 1 Representative atoms and their index vectors in the unit cell ($h, k, 1$) 30
Fig. 2 The interchain potential in polyethylene crystal 31
Fig. 3 Dispersion curves of vibrational frequency against the phase difference along the c axis 32
Fig. 4 Optical lattice vibrations of polyethylene crystal 33
Fig. 5 The frequency distribution of polyethylene crystal 34
Fig. 6 The specific heat of polyethylene crystal. 35
CHAPTER II
Fig. 1 Interchain potential in polyethylene crystal 67
Fig. 2 The internal coordinates for intrachain vibrations of polyethylene molecule 68
Fig. 3 Frequency and symmetry of optical modes of lattice vibrations $\left(\delta_{a}=\delta_{b}=\delta_{c}=0\right)$ 69
Fig. 4 Dispersion curves of vibrational frequencies of lattice vibrations along ($0,0, \delta_{c}$) 70
Fig. 5 Frequency distribution of crystal vibrations 71
Fig. 6 The specific heat of polyethylene crystal 72
Fig. 7 The atomic distances of the interchain C $\cdots \cdot \mathrm{H}$ contacts at $-196^{\circ} \mathrm{C}$ 73
CHAPTER III
Fig. 1 Constant frequency surfaces of acoustic phonons of polyethylene crystal 88
Fig. 2 Dependency of the specific heat upon T^{3} law. 89
Fig. 3 The frequency distribution of acoustic phonons of polyethylene crystal. 90

CHAPTER IV

Fig. 1 Dispersion curves of frequency of crystal vibrations of normal polyethylene along $\left(\delta_{a}, 0,0\right)$ and ($\left.\pi, \delta_{b}, 0\right)$ 116
Fig. 2 Dispersion curves of frequency of crystal vibrations of normal polyethylene along $\left(\delta_{a}, \pi, 0\right)$ and ($\left.0, \delta_{b}, 0\right)$ 117
Fig. 3 Dispersion curves of frequency of crystal vibrations of normal polyethylene along $\left(0,0, \delta_{c}\right)$ and (π, π, δ_{c}) 118
Fig. 4 Dispersion curves of frequency of crystal vibrations of normal polyethylene along ($\pi, 0, \delta_{c}$) and ($0, \pi, \delta_{c}$) 119
Fig. 5 Dispersion curves of frequency of crystal vibrations of normal polyethylene along $\left(\delta_{a}, \pi, \pi\right)$ and ($0, \delta_{b}, \pi$) 120
Fig. 6 Dispersion curves of frequency of crystal vibrations of normal polyethylene along $\left(\delta_{a}, 0, \pi\right)$ and (π, δ_{b}, π) 121
Fig. 7 Dispersion curves of frequency of crystal vibrations of normal polyethylene along $(\delta, \delta, 0)$ 122
Fig. 8 Dispersion curves of frequency of crystal vibrations of normal polyethylene along (δ, δ, π) 123
Fig. 9 Comparison of infrared spectrum with the frequency distribution of binary combination tones 124
Fig. 10 Frequency distribution of infrared inactive binary combination tones 125
APPENDIX I
Fig. A1 Dispersion curves of frequency of crystal vibrations of deuterated polyethylene along $\left(\delta_{a}, 0,0\right)$ and ($\pi, \delta_{b}, 0$) 137
Fig. A2 Dispersion curves of frequency of crystal vibrations of deuterated polyethylene along $\left(\delta_{a}, \pi, 0\right)$ and $\left(0, \delta_{b}, 0\right)$ 138
Fig. A3 Dispersion curves of frequency of crystal vibrations of deuterated polyethylene along $\left(0,0, \delta_{c}\right)$ and (π, π, δ_{c}) 139
Fig. A4 Dispersion curves of frequency of crystal vibrations of deuterated polyethylene along $\left(\pi, 0, \delta_{c}\right)$ and ($0, \pi, \delta_{c}$) 140
Fig. A5 Dispersion curves of frequency of crystal vibrations of deuterated polyethylene along $\left(\delta_{a}, 0, \pi\right)$ and ($\left.\pi, \delta_{b}, \pi\right)$ 141
Fig. A6 Dispersion curves of frequency of crystal vibrations of deuterated polyethylene along $\left(\delta_{a}, \pi, \pi\right)$ and ($\left.0, \delta_{b}, \pi\right)$ 142
CHAPTER V
Fig. 1 The atomic displacement in two longitudinal acoustic vibrations 160
Fig. 2 The atomic displacement in two transverse acoustic vibrations and shear deformation $\sigma_{6} \ldots 161$
CHAPTER VI
Fig. 1 Comparison of the approximate value of $\mathrm{Eq}_{\mathrm{q}}(6.12)$ with exact value. 182
Fig. 2 Comparison of numerical results from Eq(6.20b) with that of Eq(6.20a) 183
CHAPTER VII
Fig. 1 The calculated Debye-Waller factor, $\exp \left[-2 W\left(K_{t}\right)\right]$ (down scattering). 208
Fig. 2 The calculated differential cross sections for one-, two- and three-phonon scattering on Myers' experimental conditions. 209
Fig. 3 The composite of the differential cross sections for one-, two-, and three-phonon scattering 210
Fig. 4 Comparison between the observed and calculated phonon densities 211
Fig. 5 The calculated differential cross section for intrachain vibrations 212
Fig. 6 The calculated differential cross sections for one-, two-, and three-phonon scattering 213
Fig. 7 The composite of the differential cross sections for one-, two-, and three-phonon scattering.... 214
Fig. 8 Comparison between the calculated and observed phonon densities. 215
Fig. 9 The calculated Debye-Waller factor, $\exp \left[-2 W\left(K_{t}\right)\right]$ (up scattering) 216
Fig. 10a The calculated differential cross section for one-phonon scattering process 217
Fig. 10b The calculated differential cross section for two-phonon scattering process 218
Fig. 10c The calculated differential cross section for three-phonon up-scattering process 219
Fig. 11 Comparison between the calculated and observed cross sections 220
Fig. 12 The calculated phonon density from the up-scattering cross section. 221
Fig. 13 The composite of the differential cross sections for one-, two-, and three-phonon up-scattering processes 222
Fig. 14 The calculated phonon density from up- scattering cross section at $100^{\circ} \mathrm{K}$. 223
Fig. 15 The amplitude weighted frequency distribution of intrachain vibrations of polyethylene 224
CHAPTER VIIIFig. 1 The distribution of mean squared atomic displace-ment of carbon atom, for low frequency crystalvibrations238

Fig. 2 The distribution of mean squared atomic displacement of carbon atom for the intrachain vibrations. .239

