Osaka University Knowledge Archive

Title	SIMS STUDIES ON ISOTOPIC ABUNDANCE ANOMALIES OF MAGNESIUM IN PRIMITIVE METEORITES
Author（s）	Nishimura，Hiroshi
Citation	大阪大学，1983，博士論文
Version Type	VoR
URL	https：／／hdl．handle．net／11094／24581
rights	
Note	

Osaka University Knowledge Archive ：OUKA
https：／／ir．library．osaka－u．ac．jp／

SIITS STUDIES ON ISOTOPIC ABUHDANCE ANOMALIES OF MAGNESIUM

IN PRIMITIVE METEORITES

BY

HIROSHI NISHIMURA
Institute of Geological Sciences
College of General Education
Osaka University

PREFACE

The origin of the solar system has been interesting historically for a long period of time. For the study of the early solar system, extraterrestrial materials such as meteorites play an important role, because some of them contain informations about the primordial solar nebula.

Recently, isotopic studies on meteorites have brought fruitful results, among which, the most striking is on the idea of the multi-component solar nebula. First evidence was found by Clayton et al. through the study of the Allende meteorite which fell in 1969. They found the excess of ${ }^{16}{ }_{0}$ in the meteorite, which was interpreted as the result of the injection of new component into the early solar nebula.

This paper describes results of study, which strongly supports the above mentioned idea, through the discovery of ${ }^{24} \mathrm{Mg}$ anomaly in the Allende and Yamato-74191 meteorites.

This paper consists of six sections and an appendix. Section one is a historical view and an introduction to the investigation of isotopic abundance anomaly of magnesium. Section two is a description of samples of meteorites and terrestrial minerals. Section three is a description of apparatus used in the present investigation, which are ion microprobe mass analyzers. In section four and section five, experimental procedures, results and discussion for magnesium isotopic abundance ratio measurements are described. Conclusion is stated in section six. In the appendix, computer programs developed by the author himself for a precise isotopic ratio measurement are listed.
PREFACE
ABSTRACT 1

1. HISTORICAL VIEW AND INTRODUCTION 2
2. SAMPLES 8
2.1 Meteoritic samples 8
2.1.1 Allende 9
2.1.2 Yamato-74191 10
2.1.3 Yamato-75028 10
2.2 Terrestrial samples 10
3. APPARATUS 12
3.1 Ion microprobe mass analyzer 12
3.2 Primary ion gun and focusing system 13
3.3 Sample holder 13
3.4 Cold finger 14
3.5 Electron spray 14
3.6 Mass spectrometer and pumping system 15
3.7 Detecting system 15
3.8 Computer controlling system 16
4. EXPERIMENTAL 18
4.1 Sample preparation 18
4.2 Examination of interferences 18
4.2.1 ${ }^{24} \mathrm{MgH}^{+}$and ${ }^{25} \mathrm{MgH}^{+}$ 19
$4.2 .2^{23} \mathrm{NaH}^{+}$and ${ }^{23} \mathrm{NaH}_{2}{ }^{+}$ 20
$4.2 .3{ }^{12} \mathrm{C}_{2}{ }^{+},{ }^{12} \mathrm{C}^{13} \mathrm{C}^{+},{ }^{13} \mathrm{C}_{2}{ }^{+},{ }^{12} \mathrm{C}^{14} \mathrm{~N}^{+}$, ${ }^{12} \mathrm{C}^{13} \mathrm{CH}^{+}$and ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}{ }^{+}$ 21
$4.2 .4{ }^{12} \mathrm{C}_{2} \mathrm{H}^{+}$ 23
$4.2 .5^{48} \mathrm{Ca}^{2+}$ 23
$4.2 .6^{48} \mathrm{Ti}^{2+}$ and ${ }^{50} \mathrm{Ti}^{2+}$ 23
$4.2 .7{ }^{50} \mathrm{Cr}^{2+}$ and ${ }^{52} \mathrm{Cr}^{2+}$ 24
4.2.8 Summary 24
4.3 Calibration curves for $\mathrm{Al} / \mathrm{Mg}$ and $\mathrm{Mg} / \mathrm{Si}$ concentration ratios 25
4.4 Magnesium isotopic analysis 25
4.4.1 Definition of the deviation of an isotopic ratio 26
4.4.2 Automation of isotopic measurement by a microcomputer 26
4.4.3 Analysis of terrestrial standard 27
4.4.4 Search for ${ }^{26} \mathrm{Mg}$ anomaly 31
4.4.5 Search for ${ }^{24} \mathrm{Mg}$ anomaly 32
5. RESULTS AND DISCUSSION 33
$5.1{ }^{26} \mathrm{Mg}$ anomaly 33
5.1.1 Àmoeboid whitish inclusion in ALO 33
5.1.2 Chondrule-like white inclusion in AL1 34
5.1.3 Large white inclusion in AL2 34
5.2 Al-correlated excess ${ }^{26} \mathrm{Mg}$ 35
5.2.1 ${ }^{26} \mathrm{Al}$ at the time of primordial
mineral crystallization 36
5.2.2 Chronology from the viewpoint of ${ }^{26} \mathrm{Al}-{ }^{26} \mathrm{Mg}$ 39
$5.3{ }^{24} \mathrm{Mg}$ anomaly 41
5.3.1 Yamato-75028 41
5.3.2 Allende 41
5.3.3 Yamato-74191 41
5.3.4 Excess ${ }^{24} \mathrm{Mg}$ 42
5.4 Consistent explanation of excesses of ${ }^{24} \mathrm{Mg}$ and ${ }^{26} \mathrm{Mg}$ 42
$5.5{ }^{20} \mathrm{Ne},{ }^{23} \mathrm{Na}$ and ${ }^{28} \mathrm{Si}$ 44
6. CONCLUSION 45
APPENDIX 47
ACKNOWLEDGMENTS 59
REFERENCES 60
TABLES 66
FIGURES 73
LIST OF PUBLICATIONS 110

ABSTRACT

Isotopic abundance ratios of magnesium have been measured in the Allende (C3), Yamato-74191 (L3) and Yamato75028 (H3) meteorites. Three Al-rich inclusions in Allende have been analyzed and excess ${ }^{26} \mathrm{Mg}$ due to the decay of now-extinct ${ }^{26}$ A1 has been found in the two of them. One of them has excess ${ }^{26} \mathrm{Mg}$ correlating with $\mathrm{Al} / \mathrm{Mg}$ ratio. The other one has excess ${ }^{26} \mathrm{Mg}$, but it is likely to diffuse out to the boundary layer by the heating after the specimen was formed. Al-correlated excess ${ }^{26} \mathrm{Mg}$ gives an estimate of ${ }^{26} \mathrm{~A} 1 /{ }^{27} \mathrm{Al}$ ratio of $(2.8 \pm 2.2) \times 10^{-4}$ at the time when the minerals in the inclusion crystallized. This leads to the estimate of a time interval between the nucleosynthesis of ${ }^{26}$ Al and the crystallization of the minerals of $\left(1.3 \begin{array}{l}+1.6 \\ -0.6\end{array}\right) \times 10^{6}$ years.

Excess ${ }^{24} \mathrm{Mg}$ has been discovered for Al -poor and Mg -rich matrix areas of both Allende and Yamato-74191. The excess ${ }^{24} \mathrm{Mg}$ is suggestive of the nucleosynthesis of almost pure ${ }^{24} \mathrm{Mg}$ and its injection into the pre-existed solar nebula. And this almost pure ${ }^{24} \mathrm{Mg}$ is expected to be synthesized in an explosive carbon burning process on the occasion of a supernova explosion.

These isotopic abundance anomalies of ${ }^{24} \mathrm{Mg}$ and ${ }^{26} \mathrm{Mg}$ experimentally found in this work together with ${ }^{\frac{1}{=}}{ }_{0}$ excess reported by Clayton et al. can be strong evidences to support the hypothesis that the primordial solar nebula was inhomogeneous and composed of at least two components.

1. HISTORICAL VIEW AND INTRODUCTION

Isotopic abundance anomalies in primitive meteorites play an important role in the understanding of the origin and the early history of the solar nebula.

Before 1960's it had been accepted that the primordial solar nebula was a single component and isotopically homogeneous. ${ }^{1-3)}$ Meanwhile, isotopic abundance anomalies had long been searched in meteoritic and terrestrial samples in conjunction with the production of nuclei by the irradiation of energetic particles in the early history of the solar system.

In 1960, Reynolds ${ }^{4}$) reported that the large excess of ${ }^{129} \mathrm{Xe}$ was ascribed to the radioactive decay of now extinct ${ }^{129}$ I whose half life is 1.7×10^{7} years. It was concluded that ${ }^{129}$ I still existed at the time of the solidification of the chondrite. The time interval between the solidification and the nucleosynthesis was calculated to be $(3.5 \pm 0.6) \times 10^{8}$ years for Richardton assuming that the ratio of ${ }^{129}$ I to ${ }^{127}$ I at the termination of nucleosynthesis, $\left({ }^{129} \mathrm{I} /{ }^{127} \mathrm{I}\right)_{0}$, is equal to unity. This time interval has been called "formation interval".

Magnesium isotopic anomalies have been investigated especially for the excess of ${ }^{26} \mathrm{Mg}$ due to the decay of now extinct ${ }^{26} \mathrm{~A} 1$ (half life $=7.2 \times 10^{5} \mathrm{y}$), since ${ }^{26} \mathrm{~A} 1$ was thought to be possible heat source in melting meteorite parent bodies. ${ }^{5)}$ In spite of the search for ${ }^{26} \mathrm{Mg}$ anomaly,
neither excess nor depletion exceeding statistical errors have been observed until 1972.

In 1964, Shima ${ }^{7}$) reported no variation of magnesium isotopic abundance for three terrestrial and one chondritic samples.

In 1970, Clarke et al. ${ }^{9)}$ reported that Bruderheim and Kohr Temiki chondrites had 4 to 6% excess in ${ }^{26} \mathrm{Mg}$. For the same samples, however, Schramm et al. ${ }^{10 \text {) } \text { observed no ano- }}$ maly of ${ }^{26} \mathrm{Mg}$ in 1970 .

The Allende meteorite, which fell in Mexico in 1969, ${ }^{11)}$ has brought an unexpected development in the investigation of the origin of the primordial solar nebula through isotopic anomaly studies. This meteorite has been classified into C3 carbonaceous chondrite, and much examined since its fall. It was confirmed mineralogically ${ }^{12,13)}$ and isotopically ${ }^{14-32)}$ to contain primordial materials. The isotopic evidence of primitiveness firstly found was the anomaly of ${ }^{16} 0$. The excess ${ }^{16} 0$ was observed for Ca-A1-rich white inclusions in Allende by Clayton et al. ${ }^{14 \text {) They have }}$ described that the excess ${ }^{16}$ O might be the result from the admixture of a component of almost pure ${ }^{16} 0$. They thought that this component might represent interstellar material with a separate history of nucleosynthesis. Furthermore, ${ }^{16}{ }_{0}$ anomalies have been found even in an ordinary chondrite ALHA- 76004 of the type LL3 by Mayeda et al. ${ }^{15)}$)

The attempts of searching for the excess ${ }^{26} \mathrm{Mg}$ which was a decay product from ${ }^{26}$ Al have been successively carried
out for Allende by several workers. Gray and Compston ${ }^{16)}$ showed in 1974 that the excess ${ }^{26} \mathrm{Mg}$ was found to be 0.41% in a chondrule with high Al/Mg ratio, and it was concluded to be due to the decay of ${ }^{26} \mathrm{Al}$. In the same year, Lee and Papanastassiou ${ }^{17)}$ reported the ${ }^{26} \mathrm{Mg}$ anomalies, but the anomalies did not correlate with A / Mg, and did not appear to be due to ${ }^{26} \mathrm{Al}$ decay. Lee et a1. ${ }^{18)}$ reexamined in 1976 a Ca-Al-rich inclusion of Allende and observed the enrichment of ${ }^{26} \mathrm{Mg}$ up to 1.3%. This excess has correlated with $\mathrm{Al} / \mathrm{Mg}$ ratio and would be due to the in situ decay of ${ }^{26}$ Al. From the extent of the excess and $\mathrm{Al} / \mathrm{Mg}$ ratio, the initial ratio of ${ }^{26} \mathrm{~A} 1 /{ }^{27} \mathrm{~A} 1$ at the time of the solidification of the inclusion was estimated to be about 6×10^{-5}. In 1979, Lee et al. further observed a larger excess of ${ }^{26} 6_{\mathrm{Mg}}$ up to 9.7 \% for anorthite mineral separates by using their direct loading technique. ${ }^{19,20)}$ Esat et al. also reported ${ }^{21)}$ highly fractionated Mg and the negative anomaly of ${ }^{26} \mathrm{Mg}$, which has been designated $F U N$ anomaly, for two Allende inclusions. Stegmann and Begemann reported in
 concentration, and ${ }^{26} \mathrm{Al} /{ }^{27} \mathrm{Al}$ ratio at the time of solidification was estimated to be 5.9×10^{-5}.

The investigation mentioned above have been performed by using the method of thermal ionization mass spectrometry.

An ion microprobe mass spectrometric technique has been also used for the investigation of magnesium isotopic
abundance anomaly. Bradley et al. ${ }^{23 \text {) reported the excess }}$ 26_{Mg} up to 40% in an anorthite grain picked out of the Allende meteorite with an ion microprobe. The excess has correlated with Al/Mg ratio. Hutcheon et a1. ${ }^{24 \text {) reported }}$ that two anorthite specimens in Allende had ${ }^{26} \mathrm{Mg}$ excess of $7-18 \%$. Shimizu et al. ${ }^{25}$) also reported that ca. 13% excess ${ }^{26} \mathrm{Mg}$ was observed in an anorthite inclusion and 16% excess in a hibonite inclusion from Leoville C3 carbonaceous chondrite. In 1979, Hutcheon et al. ${ }^{26}$) showed that melilite and hibonite crystals from Allende had distinct ${ }^{26} \mathrm{Mg}$ excesses.

These data have been obtained by the use of ion microprobe techniques.

The discoveries of ${ }^{16} \mathrm{O}$ and ${ }^{26} \mathrm{Mg}$ anomalies in Ca-Al-rich inclusions of the Allende and Leoville carbonaceous chondrites have led to the search for more anomalies of other elements in order to clarify the special features of the Allende chondrite. In both 1977 and 1978, isotopic abundance anomalies of such elements as $\mathrm{S},{ }^{27)} \mathrm{Ba}$ and $\mathrm{Nd},{ }^{28)} \mathrm{Ca},{ }^{29)} \mathrm{Sr},{ }^{30)} \mathrm{Sm}^{31)}$ and $\mathrm{Ag}^{32)}$ have been observed one after another in the Allende meteorite.

The excess of ${ }^{26} \mathrm{Mg}$ correlating with $\mathrm{Al} / \mathrm{Mg}$ ratio has been concluded to be due to the in situ decay of ${ }^{26} \mathrm{~A} 1$, and a view that ${ }^{26} \mathrm{Al}$ existed at the time when the minerals in the inclusion crystallized has been generally accepted. This ${ }^{26}$ Al has been thought to be synthesized shortiy before the crystallization because of the short half life
$\left(7.2 \times 10^{5} \mathrm{y}\right)$ of ${ }^{26}$ Al. The time interval between the synthesis of these isotopes and the crystallization has been estimated to be at most a few million years. ${ }^{19,33 \text {) This }}$ time interval is very much different from the ${ }^{129} \mathrm{I}-{ }^{129} \mathrm{Xe}$ formationn interval of ca. 2×10^{8} years observed for Allende inclusions. 34,35) In order to explain this difference consistently, it has been considered that ${ }^{26}$ AI has a separate origin from ${ }^{129}$ I. This idea led to a hypothesis as follows:

Two separate nucleosynthetic events were considered. One of them would be around 2×10^{8} years before the crystallization of minerals and the other, a few million years before. Both of the events have been considered to be supernova explosions, although these would have considerably different conditions. A supernova explosion which synthesized such r-process nuclei as ${ }^{129}$ I would be accompanied by larger amount of neutron flux, and another one which synthesized ${ }^{26} \mathrm{Al}$ and ${ }^{16} \mathrm{O}$ would be a supernova whose predominant nuclear process was an explosive carbon burning and the latter did not give so much neutron flux as ${ }^{129}$ I could be formed. Because, if the latter supernova formed enough ${ }^{129} \mathrm{I},{ }^{129} \mathrm{I}-{ }^{129} \mathrm{Xe}$ and ${ }^{26} \mathrm{~A} 1-{ }^{26} \mathrm{Mg}$ formation intervals should be essentially the same values.

If such a latter supernova as in the above mentioned idea had exploded, this would have synthesized ${ }^{20} \mathrm{Ne},{ }^{23} \mathrm{Na}$, ${ }^{24} \mathrm{Mg}$ and ${ }^{28}$ Si together with ${ }^{16} \mathrm{O}$ and ${ }^{26} \mathrm{~A} 1$, and these nuclei would be injected into the primordial solar nebula from the
theoretical considerations by Arnett ${ }^{37)}$ and Arnett and Truran. ${ }^{38)}$

As a result of the formation and injection of these isotopes, their remnants may be kept in the primitive meteorites as in the case of ${ }^{16} \mathrm{O}$ and ${ }^{26} \mathrm{Mg}$. The possibility led us to investigate not only ${ }^{26} \mathrm{Mg}$ isotopic abundance anomaly but also ${ }^{24} \mathrm{Mg}$ anomaly for primitive meteorites. We have investigated them with ion microprobe mass analyzers, because they are capable of an isotopic abundance measurement for a localized portion of the order of $100 \mu \mathrm{~m}$ size. This capability is essentially important for the study of such specimens as chondrites that are usually complex aggregates of various kinds of fine minerals.

In order to confirm the anomaly of ${ }^{26} \mathrm{Mg}$ and to obtain distribution of the anomaly on the sample surface, line analyses of magnesium isotopic ratios across three inclusions of the Allende meteorite have been carried out firstly. Secondly; : a search for an excess ${ }^{24} \mathrm{Mg}$, which has never been observed, was performed for many Al-poor and Mg-rich portions of matrix areas of a few primitive chondrites.

Meteoritic samples used for the present investigation of isotopic abundance anomalies of ${ }^{26} \mathrm{Mg}$ and ${ }^{24} \mathrm{Mg}$ are listed in Table 2.1. Ten specimens of terrestrial mineral samples were also used and the list is in Table 2.2 .

2.1 METEORITIC SAMPLES

Three meteoritic samples shown in Table 2.1 are chondrites. The classifications of those chondrites based on the categories proposed by Van Schmus and Wood ${ }^{39 \text {) are also }}$ listed in the second column of the table. C, L and H represent the classification based on $\mathrm{Fe} / \mathrm{Si}$ ratio and the degree of oxidation. The degree of oxidation becomes lower in this order. C corresponds to carbonaceous chondrite, L, ordinary chondrite of low iron group, H, ordinary chondrite of high iron group. There are two other groups of E (enstatite chondrite) and LL (low iron and low metal ordinary chondrite), although chondrites of these two groups were not used in the present work. The number after the group name, 3 in this case, means the petrologic type proposed by Van Schmus and Wood. ${ }^{39)}$ The petrologic type ranges from 1 to 6 (or recently 7) and represents the degree of metamorphism. The higher the number of petrologic type is, the more the metamorphism proceeds. A chondrite belonging to the petrologic type less than 3 is unequilibrated and is generally accepted to contain primordial
material, almost unaltered, although types 1 and 2 in H, L and LL groups have not been found.

2.1.1 Allende

A photomicrograph of a cut surface of the Allende (C3) carbonaceous chondrite is shown in Fig.2.1. Various kinds of inclusions, which are different in color, shape, size and texture, are embedded in black matrix. It has been reported that white inclusions are abundant in Al-rich refractory minerals, which are thought to have crystallized in the early stage of solidification from gaseous state ${ }^{42,43)}$ and to be primitive in case of the Allende chondrite. 12 ;13) Since white inclusions appear to have various thermal histories, judging from their profiles, the following three specimens with different shapes and textures were selected.

They are:
(1) an amoeboid whitish inclusion,
(2) a relatively small chondrule-like white inclusion surrounded by a ring-shaped boudary layer, and
(3) a large round white inclusion.

Photomicrographs of these specimens are shown in Figs. 2.2, 2.3 and 2.4 , respectively. The specimen 1 may have been heated and once melted from the amoeboid shape. The specimen 2 has a ring-shaped boundary layer which has a microscopically different texture from the central inclusion part. The specimen 3 is similar in size and texture to the specimen investigated by Phinney et al., ${ }^{44 \text {) }}$ which contain
refractory-rich inclusions. These three specimens are abbreviated as AL0, ALl and AL2, respectively, in this paper.

2.1.2 Yamato-74191

A photomicrograph of a cut surface of the Yamato-74191 (L3) chondrite is shown in Fig. 2.5. As is seen in the picture, most part of the surface is occupied by chondrules and there is a little matrix area which exists in the narrow portion among the chondrules.

This chondrule has been reported to be unequilibrated, 41,45) and to contain a large amount of trapped gases. ${ }^{46)}$ Thus it is expected to contain primordial materials. This chondrite is abbreviated as Y-74191....

2.1.3 Yamato-75028

A photomicrograph of a cut surface of the Yamato-75028 chondrite is shown in Fig. 2.6. This chondrite itself is reported to be a breccia of H 3 and L 3 matter with H 5 clasts. ${ }^{41)}$ A specimen of $H 3$ part of this chondrite was distributed by the National Institute of Polar Research. Since the petrologic type is 3 , this specimen is thought to be less metamorphosed. This is abbreviated Y-75028.

2.2 TERRESTRIAL SAMPLES
 Terrestrial mineral samples listed in Table 2.2 are all silicates. A forsterite in dunite from Ehime Pref., Japan was used as a laboratory standard. Four olivine samples in

lherzolite or spinel lherzolite were used as sub-standards. Using the samples of a hornblende, a vesuvianite, and a cordierite together with the forsterite, calibration curves for $\mathrm{Al} / \mathrm{Mg}$ and $\mathrm{Mg} /$ Si ratios were formed in secondary ion mass spectrometry. An anorthite and a feldspar samples were used for the examination of the interference of sodium in mass spectra. The details of the examination will be separately described in the later section.

For the investigation of ${ }^{26} \mathrm{Mg}$ isotopic abundance anomaly, three inclusions of Allende were analyzed. For the study of ${ }^{24} \mathrm{Mg}$ anomaly, matrix parts of the three chondrites were analyzed.

Two ion microprobe mass analyzers were used for magnesium isotopic analyses. One of them is a home-made apparatus and the other is a Hitachi IMA 2A apparatus.

3.1 ION MICROPROBE MASS ANALYZER

An ion microprobe mass analyzer has several merits. They are:
(1) Quantitative or semi quantitative elemental analysis of the localized portion of a solid sample is possible,
(2) Isotopic analysis is possible,
(3) No chemical treatment is necessary before the analysis except polishing and cleaning, and
(4) The consumption of a sample is extremely low compared with that by a wet chemical method.

These merits are expected to be advantageous to the isotopic analysis of chondritic materials, which are heterogeneous and are aggregates of various kinds of fine minerals, because the selection of analyzed area is quite easy.

Schematic diagrams of a home-made and a Hitachi's apparatus are shown in Figs. 3.1 and 3.2, respectively. These two apparatus are essentially the same constitutions. The apparatus consists of an ion source for producing primary ions, accelerating and focusing electrodes for primary ion beam, a sample holder and its moving device, accelerating and focusing electrodes for secondary ions, a double
focusing mass spectrometer, and pumping systems.
3.2 PRIMARY ION GUN AND FOCUSING SYSTEM

The primary ion gun is of a hollow cathode type. An example of the ion source of the home-made apparatus is illustrated in Fig. 3.3. Typical operating conditions of the ion guns of both apparatus are listed in Table 3.1.

The accelerating and focusing system for primary ion beam consists of a drawing out and accelerating electrodes, two sets of Einzel lenses (objective and condenser lenses) and deflecting electrodes.

Typical working conditions for magnesium isotopic analysis are tabulated in Table 3.2.

3.3 SAMPLE HOLDER

A sample mounting system of the home-made apparatus is illustrated in Fig. 3.4. A tantalum plate was used as a holder. Samples were mounted on the holder, and the surfaces of the samples were covered with a sheet of tantalum with a slit of about 2 mm wide and 20 mm long as shown in the figure. The holder was movable perpendicular to the primary ion beam in Z direction shown in Fig. 3.4. The incident angle of the primary ion beam to the surface of the sample was 45°, and the drawing out direction of the secondary ions was also 45° to the surface normal.

A sample mounting system of the Hitachi IMA 2A is shown in Fig. 3.5. Samples were mounted on a cylindrical holder
and, were covered with a sheet of tantalum with apertures of 3 mm in diameter, through which samples were bombarded by primary ions. The incident direction of the primary ion beam is perpendicular to the sample surface, and the drawing out direction of the secondary ions was 45° to the surface normal.

3.4 COLD FINGER

For the precise isotopic ratio measurement, it is a problem that molecular ions may overlap the subject mass peak at the same mass number. Large part of molecular ions which may interfere the isotopic ratio measurement are originated from volatile gas adsorbed on the sample surface. In order to remove the volatile gas in the sample chamber and to decrease the interferences, a liquid nitrogen cold finger was put aside the sample holder in both the apparatus. A schematic diagram of the installation is shown in Fig. 3.6. The details of the examination of interferences will be described in a later section.

3.5 ELECTRON SPRAY

When a sample is an insulator, charge-up effect due to the positive ion bombardment causes the instability of secondary ion current. In order to avoid the charge-up, an electron spray was utilized. As the result, enough stable secondary ion current could be obtained. A chart showing the stability of secondary ion current is shown in Fig. 3.7. In the figure, the peak top of ${ }^{24} \mathrm{Mg}^{+}$for a terrestrial
forsterite sample was recorded.for about one hour. A short period irregular fluctuation is found to be less than 0.4% in this case, although a slow variation with time is observed to, be about 1.5% for one hour. Since the slow variation can be corrected by a data acquisition procedure, there is no problem about the isotopic ratio measurement.

3.6 MASS SPECTROMETER AND PUMPING SYSTEM

The mass spectrometer is of a double focusing type. Radii and deflection angles of electric and magnetic sectors are listed in Table 3.3. Width of each slit under the usual working conditions are also shown in the table. Resolutions of these mass spectrometers used in the present work are shown in the same table.

Two pumping systems of the same constitutions are used in the home-made apparatus. It consists of an oil diffusion pump with a liquid nitrogen cold trap followed by a rotary pump.

In case of the Hitachi's apparatus, two systems of a turbomolecular pump with a liquid nitrogen cold trap followed by a rotary pump, an oil diffusion pump followed by a rotary pump, and an ion pump are used as shown in Fig. 3.6.

3.7 DETECTING SYSTEM

Mass-analyzed secondary ions were amplified by a secondary electron multiplier followed by an amplifier and a pen recorder.

The secondary ion intensity has been measured as a peak height of a mass spectrum.

3.8 COMPUTER CONTROLLING SYSTEM

A computer controlling system has been developed with a microcomputer for a precise isotopic ratio measurement. The control of mass scannings as well as the calculations of isotopic ratios and the statistical procedures can be performed. A block diagram of this controlling system is shown in Fig. 3.8.

A CPU used in this system is 8080 AFC . Interfaces constructed are:
(1) to operate a power supply of an electromagnet,
(2) to put on and off a recorder,
(3) to read the output DC voltage of an amplifier into computer as 3.5 digit BCD code,
(4) to control an AD converter,
(5) to switch sensitivities of detecting system by switching a feed back resistor of the amplifier, and
(6) to read out the data from the computer to a digital printer.

These interfaces are shown in Figs. 3.9, 3.10 and 3.11.

A software of this controlling system has been also developed by the author. This program consists of three parts. These are:
(1) a program of setting initial conditions which are re-
quired for the isotopic ratio measurement by the dialog between a computer and an operator through a CRT screen,
(2) a program of controlling the interfaces, and
(3) a prógram of calculating isotopic ratios and of a statistical procedure.

Programs (1) and (3) are written with BASIC and (2) is written with assembler. These programs are listed in Appendix.

The computer controlling system has been mainly used in Hitachi IMA 2A apparatus. The details of the working of this system will be stated in the later section.

4. EXPERIMENTAL

Isotopic abundance ratios of magnesium have been measured for the three chondritic samples comparing with those for terrestrial samples.

4.1 SAMPLE PREPARATION

Most samples shown in Table 2.1 and 2.2 were polished with emery papers and ultrasonically'washed and cleaned in acetone. For some samples, freshly spalled surfaces were used without polishing and cleaning procedures.

Those samples were set on a holder as shown in Figs. 3.4 and 3.5.

4.2 EXAMINATION OF INTERFERENCES

Molecular and multiply-charged ions are usually formed as secondary ions by ion bombardment of a sample surface. Among these, ionic species overlapping a subject mass peak interfere the isotopic ratio measurement. Possible interfering ionic species at mass 24,25 and 26 of subject ionic species of ${ }^{24} \mathrm{Mg}^{+},{ }^{25} \mathrm{Mg}^{+}$and ${ }^{26} \mathrm{Mg}^{+}$are listed in the second column of Table 4.1.

These overlaps can be avoided in principle by making a mass resolution high enough to resolve these interfering species from the subject mass peak. Resolutions necessary to resolve each interfering ionic species are listed in the third column of Table 4.1. However, even if a high resolu-
tion is attained, the interfering peaks are in most cases masked by a tailing of the subject mass peak and they can be hardly detected, since the intensity of almost all interfering species are expected to be less than 1×10^{-3} of the subject peaks in the present work. Adding this, it is necessary to take an ion intensity as high as possible to minimize an error due to the statistical fluctuation of the intensity.

Taking this situation into account, we have carried out the measurements with low resolution mode and extensively examined the contributions of the interferences in the following manner.
4.2.1 ${ }^{24} \mathrm{MgH}^{+}$and ${ }^{25} \mathrm{MgH}^{+}$

As described in the previous section, a liquid nitrogen cold finger was put aside the sample holder in order to decrease hydride ions. A remarkable effect of the cold finger was observed as shown in Table 4.2. The estimate was carried out according to eqs. (4.1) and (4.2) using the terrestrial forsterite and olivine samples.

$$
\begin{align*}
& \frac{I_{25}}{I_{24}}=\frac{A_{25}}{A_{24}}(1-\beta)+x \tag{4.1}\\
& \frac{I_{26}}{I_{24}}=\frac{A_{26}}{A_{24}}(1-\beta)^{2}+\frac{A_{25}}{A_{24}} x \tag{4.2}
\end{align*}
$$

where Im: secondary ion intensity at mass number m, Am: natural isotopic abundance of ${ }^{\mathrm{m}} \mathrm{Mg}$,

B: mass discrimination factor,
x : hydride ion formation ratio for Mg .
The values of x and β were obtained by solving these equations. The value of x is shown in Table 4.2 , which is the maximum value of $x^{\prime} s$ for the samples of a terrestrial forsterite and terrestrial olivines in four lherzolites. The value of β was 0.014 with a standard deviation of 0.002 .
4.2.2 ${ }^{23} \mathrm{NaH}^{+}$and ${ }^{23} \mathrm{NaH}_{2}^{+}$

The contribution of ${ }^{23} \mathrm{NaH}^{+}$to the peak at mass 24 was estimated from mass spectra obtained for a terrestrial sodium-rich feldspar sample in granodiorite from Hyogo Pref., Japan and an anorthite sample from Hokkaido, Japan. Since the peak at mass 24 essentially consisted of two components, ${ }^{24} \mathrm{Mg}^{+}$and ${ }^{23} \mathrm{NaH}^{+}$, in this case, ${ }^{23} \mathrm{NaH}^{+}$was evaluated by subtracting the contribution of ${ }^{24} \mathrm{Mg}^{+}$. $24_{\mathrm{Mg}}{ }^{+}$was estimated as follows. Neglecting x in eqs. (4.1) and (4.2), and after eq. (4.2) is devided by the square of eq. (4.1), we can get

$$
\begin{equation*}
\frac{\mathrm{I}_{26} \cdot \mathrm{I}_{24}}{\left(\mathrm{I}_{25}\right)^{2}}=\frac{\mathrm{A}_{26} \cdot \mathrm{~A}_{24}}{\left(\mathrm{~A}_{25}\right)^{2}} \tag{4.3}
\end{equation*}
$$

The right term of eq. (4.3) is constant. Therefore, if I_{25} and I_{26} are substituted into eq. (4.3), then we can get I_{24}.

In almost all cases, no residue of the subtraction of
$24 \mathrm{Mg}^{+}$from the peak at mass 24 existed and the maximum value of $\quad 23 \mathrm{NaH}^{+} / /^{23} \mathrm{Na}^{+}$was found to be 5×10^{-5}. While $23_{\mathrm{Na}}{ }^{+} /{ }^{24} \mathrm{Mg}^{+}$ratio was of the order of 1000 in . case of the feldspar and anorthite samples, and the ratio was less than 0.05 in the usual case of chondrites, then the contribution of ${ }^{23} \mathrm{NaH}^{+}$to ${ }^{24} \mathrm{Mg}^{+}$was estimated to be less than $2.5 \times$ 10^{-6}.

As for the contribution of ${ }^{23} \mathrm{NaH}_{2}{ }^{+}$, even if the peak at mass 25 was all due to ${ }^{23} \mathrm{NaH}_{2}{ }^{+}$for the sodium-rich feldspar, the ratio of the intensity at mass 25 to that at mass 23 was less than 2.5×10^{-4}, although most part of the peak at mass 25 is observed to be originated from an impurity magnesium in the feldspar judging from the peak at mass 26 $\left({ }^{26} \mathrm{Mg}^{+}\right)$. Thus, ${ }^{23} \mathrm{NaH}_{2}{ }^{+} /{ }^{25} \mathrm{Mg}^{+}$in case of chondrite analysis was eṣtimated to be much less than 1.5×10^{-4}.

$$
\begin{array}{ll}
4.2 .3 \quad{ }^{12} \mathrm{C}_{2}^{+},{ }^{12} \mathrm{C}^{13} \mathrm{C}^{+}, \quad{ }^{13} \mathrm{C}_{2}{ }^{+}, \quad{ }^{12} \mathrm{C}^{14} \mathrm{~N}^{+}, \quad{ }^{12} \mathrm{C}^{13} \mathrm{CH}^{+} \quad \text { and } \\
{ }^{12} \mathrm{C}_{2}^{\mathrm{H}_{2}}
\end{array}
$$

The contributions of these ionic species were estimated from mass spectra obtained for five carbon-rich samples. The samples used are all terrestrial and are listed in the first column of Table 4.3. The contribution of ${ }^{12} \mathrm{C}_{2} \mathrm{H}^{+}$ will be described in section 4.2 .4 .

Secondary ion intensities at masses 12, 12.5, 24, 25 and 26 were used for the estimate. The intensity of ${ }^{12} \mathrm{C}^{+}$ was evaluated by subtracting ${ }^{24} \mathrm{Mg}^{2+}$ estimated based on the intensity at mass $12.5\left({ }^{25} \mathrm{Mg}^{2+}\right)$ from the intensity at mass 12.

The diatomic ion formation ratio for carbon isotopes is evaluated as

$$
\begin{equation*}
{ }^{12} \mathrm{C}_{2}{ }^{+}:{ }^{12} \cdot \mathrm{C}^{13} \mathrm{C}^{+}:{ }^{13} \mathrm{C}_{2}^{+}=100: 2.2: 0.013 \tag{4.4}
\end{equation*}
$$

from the arithmetic combination of the isotopic abundances of carbon. Assuming that

$$
{ }^{12} \mathrm{C}_{2}^{+}:\left(^{13} \mathrm{C}_{2}^{+}+{ }^{12} \mathrm{C}^{14} \mathrm{~N}^{+}+{ }^{12} \mathrm{C}^{13} \mathrm{CH}^{+}+{ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}^{+}\right)=100: \mathrm{y}
$$

the following equations can be set up by neglecting the contributions of magnesium hydride ions as described in 4.2.1 and 4.2.2.

$$
\begin{align*}
& \frac{I_{25}-2.2 k}{I_{24}-100 k}=\frac{A_{25}}{A_{24}}(1-\beta) \tag{4.5}\\
& \frac{I_{26^{-}} y k}{I_{24}-100 k}=\frac{A_{26}}{A_{24}}(1-\beta)^{2} \tag{4.6}
\end{align*}
$$

where I_{m} : secondary ion intensity at mass m,
A_{m} : natural isotopic abundance of ${ }^{\mathrm{m}_{\mathrm{Mg}}}$,
B: mass discrimination factor,
k : proportional constant.
If we substitute the mass discrimination factor of 0.014 into β, which was obtained for the terrestrial forsterite sample, then the simultaneous equations (4.5) and (4.6). for the variables k and y can be solved. Using the obtained values of k and y, intensities of ${ }^{12} C_{2}{ }^{+}$, ${ }^{12} \mathrm{C}^{13} \mathrm{C}^{+}$and $\left({ }^{13} \mathrm{C}_{2}{ }^{+}{ }^{12} \mathrm{C}^{14} \mathrm{~N}^{+}+{ }^{12} \mathrm{C}^{13} \mathrm{CH}^{+}+{ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}{ }^{+}\right)$have been able to be evaluated. From the results, the molecular ion formation ratio of these ionic species to ${ }^{12} C^{+}$have been obtained as shown in the second and third columns in Table 4.3.

In cases of magnesium isotopic measurements for chondrite samples analyzed so far, the upper limit of the secondary ion intensity ratio of ${ }^{12} \mathrm{C}^{+} / /^{24} \mathrm{Mg}^{+}$was 7×10^{-4}. From this value and the maximum value among the ratios listed in Table 4.3, the maximum contributions of ${ }^{12} \mathrm{C}^{+},{ }^{12} \mathrm{C}^{13} \mathrm{C}^{+}$and $\left({ }^{13} \mathrm{C}_{2}{ }^{+}+{ }^{12} \mathrm{C}^{14} \mathrm{~N}^{+}+{ }^{12} \mathrm{C}^{13} \mathrm{CH}^{+}+{ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}{ }^{+}\right)$to the respective subject peak were estimated as shown in Table 4.1.
$4.2 .4^{12} \mathrm{C}_{2} \mathrm{H}^{+}$
From the mass spectra obtained for the carbon-rich samples listed in Table 4.3, even if the peak appearing at mass 25 were all ${ }^{12} \mathrm{C}_{2} \mathrm{H}^{+}$, the ratio of this intensity to ${ }^{12} \mathrm{C}^{+}$was estimated to be less than 2×10^{-3}. Thus ${ }^{12} \mathrm{C}_{2} \mathrm{H}^{+} /{ }^{25} \mathrm{Mg}^{+}$was estimated to be less than 1×10^{-5} for the chondrite analysis.
$4.2 .5^{48} \mathrm{Ca}^{2+}$
Calcium has six stable isotopes of masses 40, 42, 43, 44, 46 and 48. The doubly-charged ions of ${ }^{40} \mathrm{Ca}^{2+}$ appears at mass 20. The intensity ratios of ${ }^{40} \mathrm{Ca}^{2+} /{ }^{40} \mathrm{Ca}^{+}$was observed to be less than 0.015 for the chondrite samples used. Since ${ }^{48} \mathrm{Ca}^{2+} /{ }^{48} \mathrm{Ca}^{+}$would be equal to ${ }^{40} \mathrm{Ca}^{2+} /{ }^{40} \mathrm{Ca}^{+}$, the contribution of ${ }^{48} \mathrm{Ca}^{2+}$ to ${ }^{24} \mathrm{Mg}^{+}$was calculated to be less than 2×10^{-5} from the intensities at masses 24 and 48.
4.2.6 ${ }^{48} \mathrm{Ti}^{2+}$ and ${ }^{50} \mathrm{Ti}^{2+}$

Titanium has five stable isotopes of masses 46, 47, 48,

49 and 50. Doubly-charged ions of ${ }^{47} \mathrm{Ti}^{2+}$ and ${ }^{49} \mathrm{Ti}^{2+}$ appear at mass numbers 23.5 and 24.5 , respectively. In cases of the analyzed chondrites, no peaks exceeding the noise levels at those mass numbers were observed when the sensitivities at mass numbers 23.5 and 24.5 were 10^{3} times higher than that at mass 24. Therefore, the noise levels were taken as maximum intensities of ${ }^{47} \mathrm{Ti}^{2+}$ and ${ }^{49} \mathrm{Ti}^{2+}$. Thus, ${ }^{48} \mathrm{Ti}^{2+} /{ }^{24} \mathrm{Mg}^{+}$and ${ }^{50} \mathrm{Ti}^{2+} /{ }^{25} \mathrm{Mg}^{+}$were estimated to be less than 7×10^{-5} and 4×10^{-5}, respectively.
4.2.7 ${ }^{50} \mathrm{Cr}^{2+}$ and ${ }^{52} \mathrm{Cr}^{2+}$

Chromium has four stable isotopes of masses $50,52,53$ and 54. Doubly-charged ions of ${ }^{53} \mathrm{Cr}^{2+}$ appears at mass 26.5. No peak could be detected even with 10^{3} times higher sensitivity than that at mass 24. From the noise level at mass $26.5,{ }^{50} \mathrm{Cr}^{2+} /{ }^{25} \mathrm{Mg}^{+}$and ${ }^{52} \mathrm{Cr}^{2+} /{ }^{26} \mathrm{Mg}^{+}$were estimated to be less than 1×10^{-6} and 5×10^{-4}, respectively.

4.2.8 Summary

The estimate of the contribution of doubly-charged and molecular ions was done for the Hitachi IMA 2A apparatus as mentioned above. For the home-made apparatus, the same way of the estimate was used. The maximum contribution of these interfering ionic species to the subject peak are summarized in the fourth and fifth columns in Table 4.1. From the results, the extent of the interferences is found to beless than 1 permil as a whole for each subject peak of ${ }^{24} \mathrm{Mg}^{+}$, ${ }^{25} \mathrm{Mg}^{+}$and ${ }^{26} \mathrm{Mg}^{+}$.

4.3 CALIBRATION CURVES FOR A1/Mg AND Mg/Si CONCENTRATION RATIOS

In order to estimate the concentration ratios of $\mathrm{Al} / \mathrm{Mg}$ and $\mathrm{Mg} / \mathrm{Si}$ from the secondary ion intensity ratios of ${ }^{27} \mathrm{Al}^{+} /$ ${ }^{24} \mathrm{Mg}^{+}$and ${ }^{24} \mathrm{Mg}^{+} /{ }^{28} \mathrm{Si}^{+}$, calibration curves for these elemental concentration ratios have been prepared. Samples used were terrestrial forsterite, hornblende, vesuvianite and cordierite. These four minerals are all silicates and their localities are listed in Table 2.2. The concentrations of Mg , Al and Si determined by the analysis of atomic absorption spectrometry were tabulated in Table 4.4 with their chemical formulae.

Figures 4.1 and 4.2 are the graphs of secondary ion intensity ratios versus concentration ratios. Plotted points fall well on a straight line with the slope of unity. These lines can be used to determine concentration ratios of $\mathrm{Al} / \mathrm{Mg}$ and $\mathrm{Mg} / \mathrm{Si}$.

Al/Mg ratio can be a measure for aluminum concentration and $\mathrm{Mg} /$ Si ratio can be used in order to select a forsteriterich portion.

4.4 MAGNESIUM ISOTOPIC ANALYSIS

Magnesium isotopic analyses have been carried out for the chondritic samples described in section 2 . Mass scannings were repeated 40 to 90 times for one probed portion over the mass range from mass 24 to 26 . A peak at mass 27 has also been taken as a measure of $A 1$ concentration at
least once in a run. Examples of mass spectra are shown in Figs. 4.3 and 4.4. Figure 4.3 shows a mass spectrum obtained for the white inclusion of AL2 with the home-made apparatus, and Fig. 4.4, for a portion of the matrix of Y-74191 with the Hitachi IMA 2A apparatus.

Because the contributions of the interfering : peaks to mass 24,25 and 26 were found to be less than 1 permil as described in section 4.2 , and to be negligibly small, raw secondary ion intensity ratios of magnesium were calculated from the mass spectra.
4.4.1 Definition of the deviation of an isotopic ratio The deviation of an isotopic ratio of ${ }^{m_{M g}} /^{\mathrm{n}} \mathrm{Mg}$ for a sample from the ratio for a reference is usually defined as eq. (4.7).

$$
\begin{equation*}
\Delta_{\mathrm{m} / \mathrm{n}}=\left(\frac{\left({ }^{\mathrm{m}} \mathrm{Mg} / \mathrm{n}_{\mathrm{Mg}}\right)_{\mathrm{s}}}{\left({ }^{\mathrm{m}} \mathrm{Mg} /{ }^{\mathrm{n}} \mathrm{Mg}\right)_{\mathrm{r}}}-1\right) \times 1000 \tag{4.7}
\end{equation*}
$$

where m and n are mass numbers of magnesium isotopes, and subscripts s and represent "sample" and "reference", respectively.

The terrestrial forsterite (FO) in dunite from Ehime Pref., Japan was used to obtain the reference values of the isotopic ratios.
4.4.2 Automation of isotopic measurement by a microcomputer The isotopic ratio has been measured automatically by
using a microcomputer. The hardware of the measuring system has been already described in section 3.6. Therefore, the details of the working of the system will be stated here mainly as to the software.

The working contains:
(1) Switching the scan speed, slow or fast, at the peak top and bottom, independently. In the usual case, the top was scanned slowly and the bottom, fastly.
(2) Reading the data into the memory by ten-point running mean method.
(3) Evaluating the peak height by the calculation of a top value minus a bottom value.
(4) Correcting the slow intensity variation with time during the scannings.
(5) Calculating the peak height ratios and Δ values. The formula of the calculation was preset in the computer.
(6) Taking statistical procedures that are the calculation of a mean, a standard deviation (σ) and a standard deviation of a mean $\left(\sigma_{m}\right)$, the exclusion of data exceeding $\pm 2 \sigma$, the recalculation of a mean and errors, and the iteration of these procedures.
(7) Printing the data with a digital printer.

A flow chart of the procedure is shown in Fig. 4.5.

4.4.3 Analysis of terrestrial standard

In both the apparatus, the laboratory standard sample of terrestrial forsterite (FO) has been intermittently ana-
lyzed over about one year in order to check the reproducibility for magnesium isotopic ratio measurements in both the apparatus.
$\Delta_{25 / 24}$ and $\Delta_{26 / 24}$ values obtained with the home-inade apparatus are plotted in Fig. 4.6 in the chronological order. The weighted means of all the data of ${ }^{m} \mathrm{Mg} /{ }^{24}{ }^{\mathrm{Mg}}$ were evaluated to be 0.12495 for $m=25$ and 0.13666 for $m=26$, and these values were used as reference values in eq. (4.7). The reproducibilities were evaluated to be $\pm 3.5 \%$ for $\Delta_{25 / 24}$ and $\pm 5.5 \%$ for $\Delta_{26 / 24}$ as $\pm 2 \sigma$. These values are shown as error bars for the closed circles which correspond to the laboratory standard values mentioned above as weighted means.

In Fig. 4.7, are replotted these Δ values as a three isotope plot. A straight line with the slope of $1 / 2$ in the figure corresponds to the normal mass fractionation line. The plotted points are along the straight line. This means that the scattering of the data was originated by the normal mass fractionation, and that these data can be corrected by the normalization for the mass fractionation.

In Fig. 4.7, two points symbolized by a closed triangle and a closed square are also plotted. These two points correspond to the absolute isotopic abundance ratios of magnesium reported by Catanzaro et al.47) (CMGS 66) and Schramm et al. ${ }^{9}$ (STW 70).

The weighted mean of our data (closed circle) deviates from these two data points by about 13% in $\Delta_{25 / 24}$. This
deviation can be thought to be mainly due to a mass discrimination effects. It is not necessary to correct the mass discrimination in comparing the isotopic abundance ratios obtained by one apparatus under the same experimental conditions with each other.

In order to clarify the anomaly of $\Delta_{26 / 24}$, it had better be corrected for the normal mass fractionation. For the correction, the isotopic ratios for the laboratory standard of the terrestrial forsterite (FO) was used as a reference values. The following equations were used for the calculation of a normalized isotopic abundance ratio of $\left({ }^{26} \mathrm{Mg} /{ }^{24} \mathrm{Mg}\right)_{\mathrm{n}}$ and its deviation, $\delta_{26 / 24}$, from the reference value:

$$
\begin{align*}
& \left(\frac{{ }^{26} \mathrm{Mg}}{24_{\mathrm{Mg}}}\right)_{\mathrm{n}}=\frac{\left({ }^{26} \mathrm{Mg} /{ }^{24} \mathrm{Mg}\right)_{\mathrm{s}}}{(1-\alpha)^{2}} \tag{4.8}\\
& 1-\alpha=\frac{\left({ }^{25} \mathrm{Mg} /{ }^{24} \mathrm{Mg}\right)_{\mathrm{s}}}{\left({ }^{25} \mathrm{Mg} /{ }^{24} \mathrm{Mg}\right)_{\mathrm{r}}}=1+\frac{\Delta_{25 / 24}}{1000} \tag{4.9}\\
& \delta_{26 / 24}=\left(\frac{\left({ }^{26_{\mathrm{Mg}}} /^{24} \mathrm{Mg}\right)_{\mathrm{n}}}{\left({ }^{26} \mathrm{Mg} /{ }^{24} \mathrm{Mg}\right)_{\mathrm{r}}}-1\right) \times 1000 \tag{4.10}
\end{align*}
$$

where α is the mass fractionation factor. A subscript of n denotes "after normalization", s, "sample", and r, "reference".

The $\delta_{26 / 24}$ values for the same data as those plotted in Fig. 4.6 are plotted in Fig. 4.8 also in the chronological order. The reproducibility for $\delta_{26 / 24}$ was found to be $\pm 4.5 \%$ as $\pm 2 \sigma$.
$\Delta_{24 / 25}$ and $\Delta_{26 / 25}$ values obtained by the Hitachi IMA 2A apparatus are plotted in Fig. 4.9 in the chronological order. These data were also obtained by the analysis of the FO sample. From these data, weighted means of ${ }^{m g} /{ }^{25} \mathrm{Mg}$ values were calculated to be 8.0178 for $m=24$ and 1.0872 for $\mathrm{m}=26$. Error bars for the closed circles in the figure represent reproducibilities as $\pm 2 \sigma$. Those are $\pm 2.8 \%$ for both the Δ values as shown in the figure.

The absolute isotopic abundance ratios of ${ }^{24} \mathrm{Mg} /{ }^{25} \mathrm{Mg}$ and ${ }^{26} \mathrm{Mg} /{ }^{25} \mathrm{Mg}$ are 7.89702 and 1.10404^{9}), respectively. The weighted means of the ratios obtained with the Hitachi apparatus also deviate from the absolute ones. This is again caused mainly by mass discrimination effects. Although the correction for the mass discrimination is possible, it is not necessary to correct in the case that only the deviations of the isotopic ratios are compared with each other. It is enough to take a correction for the normal mass fractionation in the same sense as stated above.

Therefore, the values shown in Table 4.5 obtained for the sample of the FO were used as the reference values.

Moreover, four other terrestrial olivineṣ, SL45, SL46, MM and OK listed in Table 2.2 were analyzed as sub-standards with the Hitachi IMA 2A apparatus. The data normalized to the reference values for FO are plotted in Fig. 4.10. In the figure, a normal mass fractionation line whose slope is -1 through the origin is illustrated.

The plotted points for those terrestrial sub-standards
fall well along the normal mass fractionation line. These points deviate by 3 - 6% from the reference value. An explanation for the deviation guessed is as follows. The F0 sample was taken from a rock of dunite and the four olivine samples were picked out of rocks of lherzolite or spinel lherzolite, and the localities of the rocks are all different. Because the differences of the types and the localities of rocks, the extent of mass fractionation may differ from one to another.

If the data for four olivine samples are corrected for the normal mass fractionation, the corrected values become consistent with that of FO standard within errors.
4.4.4 Search for ${ }^{26} \mathrm{Mg}$ anomaly

In order to search for ${ }^{26} \mathrm{Mg}$ anomaly, three specimens in the Allende carbonaceous chondrite, AL0, AL1 and AL2, have been used. There are descriptions about these three specimens. They all contain.: white or whitish inclusions which are expected to be composed of Al-rich refractory minerals such as hibonite, melilite and spinel.

Sketches of these inclusions are illustrated. in Figs. 4.11, 4.12 and 4.13. The probed line for the magnesium isotopic analysis is shown in each figure. Photomicrographs of these inclusions have already been shown in section 2 .
$\Delta_{m / 24}$ values were calculated according to eq. (4.7) from raw secondary ion intensities. ${ }^{27} \mathrm{Al}^{+} /{ }^{24} \mathrm{Mg}^{+}$ratio was also calculated. Furthermore, in order to obtain the extent
of ${ }^{26} \mathrm{Mg}$ anomaly, the normal mass fractionation was corrected by using the isotopic ratio for FO sample as the reference value. This correction was done by eqs. (4.8), (4.9) and (4.10)
4.4.5 Search for ${ }^{24} \mathrm{Mg}$ anomaly

In order to search for ${ }^{24} \mathrm{Mg}$ anomaly, the specimens of AL, Y-74191 and Y-75028 have been used. A1-poor and Mg-rich portions of matrix areas were analyzed in order to avoid the contribution from excess ${ }^{26} \mathrm{Mg}$ due to the decay of ${ }^{26} \mathrm{Al}$. About 100 portions of matrix area were randomly analyzed for each specimen. An example of the probed portion is shown on the photograph in Fig. 2.1 by a red cross mark. Not only mass peaks at mass 24,25 and 26 but also those at masses 27 and 28 were recorded at every probed portion. .

$$
\Delta_{\mathrm{m} / 25} \text { values were calculated by eq. (4.7). }{ }^{27} \mathrm{Al}^{+} /
$$ ${ }^{24} \mathrm{Mg}^{+}$and ${ }^{24} \mathrm{Mg}^{+} /{ }^{28} \mathrm{Si}^{+}$ratios were also calculted. From A / Mg ratio, portions with low aluminum concentrations could be found, and from $\mathrm{Mg} / \mathrm{Si}$ ratio, forsterite-rich portions could be easily selected.

5. RESULTS AND DISCUSSION:

5.1 ${ }^{26} \mathrm{Mg}$ ANOMALY
$\delta_{26 / 24}$ values obtained for the inclusions in the three specimens (AL0, ALI and AL2) of the Allende chondrite are plotted in the chronological order in Figs. 5.1, 5.2, 5.3 and 5.4. The definition of the $\delta_{26 / 24}$ has appeared in the previous section and the ${ }^{26} \mathrm{Mg}$ / ${ }^{24} \mathrm{Mg}$ ratio for FO was taken as the reference value.

The data in Fig. 5.3 correspond to the line analysis along AA' of the AL2 specimen in Fig. 4.13, and the data in Fig. 5.4, along $B B^{\prime}$ in the same specimen. In the lower part of Fig. 5.3, the data obtained for a terrestrial hornblende (HO) and vesuvianite (VE) are also shown.

These data for Allende are replotted in Figs. 5.5, 5.6, 5.7 and 5.8 as a function of the probed portion. ${ }^{27} \mathrm{Al}^{+} /$ $24 \mathrm{Mg}^{+}$ratio for each probed portion is also shown as a measure of aluminum to magnesium concentration ratio.

5.1.1 Amoeboid whitish inclusion in ALO

As shown in Fig. 5.5, Al/Mg ratio is high in the area of this whitish inclusion. the anomaly of ${ }^{26} \mathrm{Mg}$ is not clear, although the mean value of $\delta_{26 / 24}$'s seems to be positive a little. The variation of $\delta_{26 / 24}$ does not correlate with that of $\mathrm{Al} / \mathrm{Mg}$ ratio. Therefore, it was concluded that the excess ${ }^{26}{ }^{M g}$ could be hardly detected for this inclusion.
5.1.2 Chondrule-like white inclusion in ALl

The excess ${ }^{26} \mathrm{Mg}$ was observed rather in the ring-shaped boundary layer than in the white inclusion. There seems to be an anticorrelation between variations of $\delta_{26 / 24}$ and $\mathrm{Al} / \mathrm{Mg}$ ratio except the data for the matrix area. From the variation of $\delta_{26 / 24}$ shown in Fig. 5.6 , it may be considered that the white inclusion particle with ${ }^{26}$ Al was firstly formed and after the formation of the particle, it was surrounded by the boundary layer. Then it was heated to enough high temperature not to melt but to recrystallize. During the recrystallization process, ${ }^{26} \mathrm{Mg}$ might be segregated toward the ring-shaped boundary layer. As the result of this seggregation, excess ${ }^{26} \mathrm{Mg}$ was thought to be concentrated in the boundary layer.

5.1.3 Large white inclusion in AL2

This large white inclusion was analyzed along two different probed lines approximately perpendicular with each other. In both the analyses, excess ${ }^{26} \mathrm{Mg}$ more than 20% was observed, and the data showed the correlation with the $\mathrm{A} 1 / \mathrm{Mg}$ ratio as shown in Figs. 5.7 and 5.8.

Figures 5.9 and 5.10 are three isotope plots of magnesium for the white inclusion along the probed lines of $A A^{\prime}$ and $B B^{\prime}$, respectively. The data for the matrix area are omitted in the figures. The ordinate represents $\Delta_{25 / 24}$, and the abscissa, $\Delta_{26 / 24}$, calculated according to eq. (4.7). In each figure, a normal mass fractionation line with the slope
of $1 / 2$ is illustrated through the origin which was determined from the data for the laboratory standard (FO). All the data are found to clearly fall in the right hand side of the normal mass fractionation line.

The deviation in the direction of the abscissa between each data point and the normal mass fractionation line corresponds to the $\delta_{26 / 24}$ value corrected for the normal mass fractionation. The deviation to the right side clearly shows the positive anomaly of ${ }^{26} \mathrm{Mg}$.

In order to quantify a correlation between the excess ${ }^{26} \mathrm{Mg}$ and $\mathrm{Al} / \mathrm{Mg}$ ratio, these data are replotted as shown in Fig. 5.11. The upper graph of $\Delta_{26 / 24}$ versus $A 1 / M g$ clearly shows the correlation that $\Delta_{26 / 24}$ increases with the increase of A / Mg ratio. On the contrary, $\Delta_{25 / 24}$ shows no systematic variation in whole range of $\mathrm{Al} / \mathrm{Mg}$ in this figure.
5.2 A1-CORRELATED EXCESS ${ }^{26} \mathrm{Mg}$
the Al-correlated excess ${ }^{26} \mathrm{Mg}$, which was observed in the large white inclusion in AL2 specimen of the Allende chondrite as shown in Fig. 5.11 , can be thought to be originated from the in situ decay of ${ }^{26}$ Al. Using the plot in Fig. 5.11, ${ }^{26} \mathrm{~A} 1 /{ }^{27} \mathrm{~A} 1$ ratio at the time of the crystallization of Al-containing minerals from the remnant materials of the exploded supernova as stated in sections 1 and 2 can be estimated.
5.2.1 ${ }^{26} \mathrm{Al}$ at the time of primordial mineral crystallization If the excess ${ }^{26} \mathrm{Mg}$ due to the in situ decay of ${ }^{26} \mathrm{Al}$ is written as ${ }^{26} \mathrm{Mg} *,{ }^{26} \mathrm{Mg}$ existed in a specimen can be expressed in the following equation.

$$
\begin{equation*}
\left({ }^{26_{M g}}\right)_{\mathrm{p}}=\left({ }^{26_{M g}}\right)_{\mathrm{o}}+{ }^{26} \mathrm{Mg}^{*} \tag{5.1}
\end{equation*}
$$

where subscript p represents "present", and o, "original" which means the initial magnesium originally existed.

When eq. (5.1) is devided by $\left({ }^{24} \mathrm{Mg}\right)_{o}$,

$$
\begin{equation*}
\frac{\left({ }^{26} \mathrm{Mg}\right)_{p}}{\left({ }^{24} \mathrm{Mg}\right)_{o}}=\frac{\left({ }^{26} \mathrm{Mg}\right)_{o}}{\left({ }^{24} \mathrm{Mg}\right)_{o}}+\frac{{ }^{26} \mathrm{Mg} *}{\left({ }^{24} \mathrm{Mg}\right)_{o}} \tag{5.2}
\end{equation*}
$$

Since $\left({ }^{24} \mathrm{Mg}\right)$. would be equal to $\left({ }^{24} \mathrm{Mg}\right) \mathrm{p}$ in this case, eq. (5.2) can be rewritten as

$$
\begin{equation*}
\left(\frac{26_{\mathrm{Mg}}}{24_{\mathrm{Mg}}}\right)_{\mathrm{p}}=\left(\frac{{ }^{26} \mathrm{Mg}}{\left(\frac{24_{\mathrm{Mg}}}{\sim}\right.} \mathrm{o}^{26}+\left(\frac{{ }^{26} \mathrm{Mg} *}{24_{\mathrm{Mg}}}\right)_{\mathrm{p}}\right. \tag{5.3}
\end{equation*}
$$

From eq. (5.3),

$$
\begin{equation*}
\frac{\left({ }^{26} \mathrm{Mg} * /^{24} \mathrm{Mg}\right)_{\mathrm{p}}}{\left({ }^{26} \mathrm{Mg} /^{24} \mathrm{Mg}\right)_{\mathrm{o}}}=\frac{\left({ }^{26} \mathrm{Mg} /{ }^{24} \mathrm{Mg}\right)_{\mathrm{p}}}{\left({ }^{26} \mathrm{Mg} /^{24} \mathrm{Mg}\right)_{o}}-1 \tag{5.4}
\end{equation*}
$$

is derived. The right side of eq. (5.4) is the same form as the definition of $\Delta_{26 / 24}$ and if this is put by $\left(\Delta_{26 / 24}\right)$ p, then

$$
\begin{equation*}
\frac{\left({ }^{26} \mathrm{Mg}^{*} /{ }^{24} \mathrm{Mg}\right)_{\mathrm{p}}}{\left({ }^{26} \mathrm{Mg} /{ }^{24} \mathrm{Mg}\right)_{o}}=\frac{\left(\Delta_{26 / 24}\right)_{\mathrm{p}}}{1000} \equiv\left(\Delta_{\left.26 / 24^{\prime}\right)_{\mathrm{p}} \ldots} \ldots\right. \tag{5.5}
\end{equation*}
$$

Since ${ }^{26} \mathrm{Mg}$ * was originally ${ }^{26} \mathrm{Al}$ at the time of the primor-
dial material crystallization,

$$
\begin{equation*}
{ }^{26} \mathrm{Mg}^{*}=\left({ }^{26} \mathrm{Al}\right)_{\mathrm{c}} \tag{5.6}
\end{equation*}
$$

where subscript c means "crystallization".
Using eqs. (5.5) and (5.6),

$$
\begin{aligned}
\left(\Delta_{26 / 24}\right)_{\mathrm{p}} & =\frac{\left({ }^{26} \mathrm{Al}\right)_{\mathrm{c}} /\left({ }^{24} \mathrm{Mg}\right)_{\mathrm{p}}}{\left({ }^{26} \mathrm{Mg} / /^{24} \mathrm{Mg}\right)_{\mathrm{o}}} \\
& =\frac{\left({ }^{26} \mathrm{Al} /{ }^{27} \mathrm{Al}\right)_{\mathrm{c}}\left(\left(^{27} \mathrm{Al}\right)_{\mathrm{c}} / \cdot\left({ }^{24} \mathrm{Mg}\right)_{\mathrm{p}}\right)}{\left(^{26} \mathrm{Mg} /{ }^{24} \mathrm{Mg}\right)_{\mathrm{o}}}
\end{aligned}
$$

Since ${ }^{27} \mathrm{~A} 1$ is constant, so $\left({ }^{27} \mathrm{~A} 1\right) \mathrm{c}=\left({ }^{27} \mathrm{~A} 1\right) \mathrm{p}$, then

$$
\begin{equation*}
\left(\Delta_{\left.26 / 24^{1}\right)_{p}}=\frac{\left({ }^{26} \mathrm{Al} /{ }^{27} \mathrm{Al}\right)_{c}}{\left({ }^{26} \mathrm{Mg} /{ }^{24} \mathrm{Mg}\right)_{o}} \times\left(\frac{{ }^{27} \mathrm{Al}}{{ }^{24} \mathrm{Mg}}\right)_{p}\right. \tag{5.7}
\end{equation*}
$$

As $\left({ }^{27} \mathrm{Al} /{ }^{24} \mathrm{Mg}\right)_{\mathrm{p}}$ can be expressed as $\left({ }^{27} \mathrm{Al} /{ }^{24} \mathrm{Mg}\right)_{\mathrm{s}}$, where subscript s means "specimen". Therefore eq. (5.7) becomes:

$$
\begin{equation*}
\left(\Delta_{26 / 24^{\prime}}\right)_{p}=\frac{\left({ }^{26} \mathrm{Al} /{ }^{27} \mathrm{Al}\right)_{c}}{\left({ }^{26} \mathrm{Mg} /{ }^{24} \mathrm{Mg}\right)_{o}} \times\left({ }^{24} \mathrm{Al}\right)_{\mathrm{Mg}}{ }_{\mathrm{s}} \tag{5.8}
\end{equation*}
$$

By the calibration curve in Fig. 4.1., the concentration ratio of $\left({ }^{27} \mathrm{Al} /{ }^{24} \mathrm{Mg}\right)_{s}$ can be related to the secondary ion intensity ratio as

$$
\begin{equation*}
\left({ }^{27} \mathrm{Al} /{ }^{24} \mathrm{Mg}\right)_{\mathrm{S}}=\left({ }^{27} \mathrm{Al}^{+} /{ }^{24} \mathrm{Mg}^{+}\right)_{\mathrm{S}} \times 0.71 \tag{5.9}
\end{equation*}
$$

When eq. (5.9) is substituted into eq. (5.8), we can get

$$
\begin{equation*}
\left(\Delta_{\left.26 / 24^{\prime}\right)_{p}}=\frac{\left({ }^{26} \mathrm{Al} /{ }^{27} \mathrm{Al}\right)_{c}}{\left({ }^{26} \mathrm{Mg} /{ }^{24} \mathrm{Mg}\right)_{\mathrm{o}}} \times\left(\frac{27 \mathrm{Al}^{+}}{24_{\mathrm{Mg}}{ }^{+}}\right)_{\mathrm{s}} \times 0.71\right. \tag{5.10}
\end{equation*}
$$

thus, using eqs. (5.5) and (5.10),
where $k=7.1 \times 10^{2}$.
In this equation, $k \times\left({ }^{26} \mathrm{Al} /{ }^{27} \mathrm{Al}\right) \mathrm{c} /\left({ }^{26} \mathrm{Mg} /{ }^{24} \mathrm{Mg}\right){ }_{\mathrm{o}}$ is the slope of the straight line in $\Delta_{26 / 24}$ vs $\left({ }^{27} \mathrm{Al}^{+} \rho^{24} \mathrm{Mg}^{+}\right)_{\mathrm{s}}$ plot of Fig. 5.11. If we put this slope g , then

$$
\begin{equation*}
\mathrm{g}=\mathrm{k} \times \frac{\left({ }^{26} \mathrm{Al} /{ }^{27} \mathrm{~A} 1\right)_{c}}{\left({ }^{26} \mathrm{Mg} /{ }^{24} \mathrm{Mg}\right)_{\mathrm{o}}} \tag{5.12}
\end{equation*}
$$

and we can get an equation

$$
\begin{equation*}
\left(\frac{26_{\mathrm{Al}}}{27_{\mathrm{Al}}}\right)_{\mathrm{c}}=\frac{\mathrm{g}}{\mathrm{k}} \times\left(\frac{26_{\mathrm{Mg}}}{24_{\mathrm{Mg}}}\right)_{0} \tag{5.13}
\end{equation*}
$$

where $\left({ }^{26} \mathrm{Mg} /{ }^{24} \mathrm{Mg}\right)_{o}$ means the absolute isotopic abundance ratio of magnesium, and this (${ }^{26} \mathrm{Mg} /{ }^{24} \mathrm{Mg}$) o can be replaced by the ratio reported by Catanzaro et a1.47) Then

$$
\begin{equation*}
\left(\frac{26}{27}{ }^{27}{ }_{\mathrm{Al}}\right)_{c}=\frac{0.13932}{7.1 \times 10^{2}} \mathrm{~g} \tag{5.14}
\end{equation*}
$$

can be given.
From Fig. 5.11, the slope of $\Delta_{26 / 24}$ vs ${ }^{27} \mathrm{Al}^{+} /{ }^{24} \mathrm{Mg}^{+}$ plot, g, is evaluated to be 1.4 ± 1.1 by the least square fit. The obtained straight line by the least square fit is illustrated in the upper graph of Fig. 5.11 with a solid line. In the figure, the upper and lower limits obtained from the error of standard deviation are also illustrated with dashed lines.

The value of g and eq. (5.14) give the result that

$$
\begin{equation*}
\left(\frac{26 \mathrm{~A} 1}{27}\right)_{\mathrm{A} 1}=(2.8 \pm 2.2) \times 10^{-4} \tag{5.15}
\end{equation*}
$$

Lee et al. ${ }^{18)}$ reported that $\left({ }^{26} \mathrm{~A} 1 /{ }^{27} \mathrm{Al}\right) \mathrm{c}$ is about 0.5×10^{-4}. This value is a little different from the present result, but in consideration of the error limit of our data, these two are barely consistent with each other.

If our 2.8×10^{-4} is valid for the white inclusion in AL2, it is about 4.5 times higher than that by Lee et al. A possible explanation for this discrepancy is that the minerals investigated at present had crystallized about 1.6×10^{6} years prior to the crystallization of the minerals for which Lee et al. have obtained their data.
5.2.2 Chronology from the viewpoint of ${ }^{26} \mathrm{AI}-{ }^{26} \mathrm{Mg}$

The result stated in section 5.2 .1 shows that ${ }^{26} \mathrm{Al}$ existed at the time of primordial mineral crystallization. Since the half-1ife of ${ }^{26} \mathrm{Al}$ is 0.72×10^{6} years, it can be considered that the time interval between the nucleosynthesis of ${ }^{26} \mathrm{Al}$ and the crystallization of Al-rich minerals was comparable with the half life. This time interval can be estimated by the same method as the case of ${ }^{129}$ I${ }^{129}$ Xe chronology.

If we denote ${ }^{26} \mathrm{Al} /{ }^{27} \mathrm{Al}$ ratio at the time of nucleosynthesis as $\left({ }^{26} \mathrm{Al} / /^{27} \mathrm{Al}\right)_{o}$, then

$$
\begin{equation*}
\left(\frac{26}{27}{ }^{27} \mathrm{Al}\right)_{c}=\left(\frac{26}{\left(\frac{\mathrm{Al}}{27}\right)_{\mathrm{Al}}} \exp (-\lambda \Delta t)\right. \tag{5.16}
\end{equation*}
$$

where λ : decay constant of ${ }^{26} \mathrm{Al}$
Δt : time interval between the nucleosynthesis and the crystallization.

From eq. (5.16), we can get the following equation:
$\Delta t=\frac{1}{\lambda}\left[\ln \left(\frac{.26}{27}{ }_{\mathrm{Al}}\right)_{o}-\ln \left(\frac{26_{\mathrm{Al}}}{27}\right)_{\mathrm{Al}}\right]$
($\left.{ }^{26} \mathrm{Al} /{ }^{27} \mathrm{~A} 1\right)$ o ratio has been reported by many workers based on theoretical considerations. The reported ratios are listed in Table 5.1 in the order of the year of publication.

Four recent reports give the ratios around 1×10^{-3}. These theoretical data have been obtained by the consideration of an explosive burning nucleosynthesis with various nuclidic composition., temperature and density. Assuming that $\left({ }^{26} \mathrm{Al} /{ }^{27} \mathrm{Al}\right)_{0}=1 \times 10^{-3}$, and substituting this value into eq. (5.17), Δt is evaluated as
$\Delta t=(1.3+1.6) \times 10^{6}$ years.
This time interval is of the order of 10^{5} to 10^{6} years anyhow, and differs from what is called formation interval of 2×10^{8} years estimated by ${ }^{129} \mathrm{I}-{ }^{129}$ Xe chronology. These two different time intervals suggest that at least two different nucleosynthetic events had formed those extinct isotopes. And they were injected into the primordial solar nebula.
5. $3 \quad{ }^{24} \mathrm{Mg}$ ANOMALY
5.3.1 Yamato-75028

Data for matrix areas of Y-75028 chondrite are shown in Fig. 5.12. These data were taken in portions where the concentration ratio of $\mathrm{Al} / \mathrm{Mg}$ was less than 0.13 in consideration that aluminum concentration is enough low to avoid the contribution of ${ }^{26} \mathrm{Mg}$ *. The plotted points concentrate around the origin and distribute near the normal mass fractionation line. From the results, it is judged there is no anomaly of magnesium.

5.3.2 Allende

Plot of $\Delta_{26 / 25}$ versus $\Delta_{24 / 25}$ for matrix portions of A1lende is shown in Fig. 5.13. Plotted points correspond to the data for the portions where the concentration ratio of $\mathrm{Al} / \mathrm{Mg}$ was less than 0.13 and $\mathrm{Mg} /$ Si ratio was in the range of 1.5 to 2.5. About 20 percent of the analyzed portions satisfied these ranges of concentration ratios.

Anomaly of $\Delta_{24 / 25}$ is distinctly shown in the figure. The maximum excess of ${ }^{24} \mathrm{Mg}$ is about 20%.

5.3.3 Yamato-74191

The data for $\mathrm{Y}-74191$ are shown in Fig. 5.14. These data were obtained for narrow matrix portions among chondrules, because the $\mathrm{Y}-74191$ chondrite is almost occupied with chondrules as shown in the picture of Fig. 2.5. $\mathrm{Al} / \mathrm{Mg}$ concentration ratios were less than 0.13 for all portions plotted as data. Two kinds of data are included based on the difference of $\mathrm{Mg} / \mathrm{Si}$ ratios. One of them is for the portions where $\mathrm{Mg} / \mathrm{Si}$ ratio is less than 1.3 and the other,
$\mathrm{Mg} / \mathrm{Si}$ ratio is higher than 1.5
Plotted points for the higher $\mathrm{Mg} / \mathrm{Si}$ portions show the clear excess of ${ }^{24} \mathrm{Mg}$. For lower $\mathrm{Mg} /$ Si portions, some points show the clear anomaly of ${ }^{24} \mathrm{Mg}$, but, as a whole, the anomaly is not remarkable compared with that for the higher $\mathrm{Mg} / \mathrm{Si}$ portions.

5.3.4 Excess ${ }^{24}{ }_{\mathrm{Mg}}$

The excess of ${ }^{24} \mathrm{Mg}$ observed for $\mathrm{Mg}-\mathrm{rich}$ and Al -poor portions of matrices in AL and Y-74191 can be explained in two ways. One of them is as the result of the addition of practically pure ${ }^{24} \mathrm{Mg}$ to the pre-existed solar nebula, the other is as the result of the depletions of ${ }^{25} \mathrm{Mg}$ and ${ }^{26} \mathrm{Mg}$ by nearly the same fractions. The latter case is considered to be less possible to happen, because any nuclear processes which decrease both ${ }^{25} \mathrm{Mg}$ and ${ }^{26} \mathrm{Mg}$ by the same fractions can be rarely expected. Therefore, only the former case will be discussed in the following.
5.4 Consistent explanation of excesses of ${ }^{24} \mathrm{Mg}$ and ${ }^{26} \mathrm{Mg}$ It is necessary to explain both excesses of ${ }^{26} \mathrm{Mg}$ in a white inclusion of Allende and of ${ }^{24} \mathrm{Mg}$ in matrix areas of Allende and Y-74191 consistently. As was described in section $5.2,{ }^{26} \mathrm{Al}$, which resulted in the excess of ${ }^{26} \mathrm{Mg}$, has been considered successfully to be formed in a nucleosynthesis on the occasion of a supernova explosion. And this supernova is estimated to have exploded a few million years prior to the crystallization of the primordial minerals based on the ratio of $\left({ }^{26} \mathrm{~A} 1 /{ }^{27} \mathrm{~A} 1\right)_{c}$ and the half life of ${ }^{26} \mathrm{Al}\left(7.2 \times 10^{5} \mathrm{y}\right)$.

The formation interval from ${ }^{129} \mathrm{I}-{ }^{129} \mathrm{Xe}$ was 2×10^{8} years, and for the same meteorite, ${ }^{26} \mathrm{Al}-{ }^{26} \mathrm{Mg}$ formation interval was $1-3 \times 10^{6}$ years. These two kinds of formation intervals are quite different with each other. If ${ }^{129}$ I was formed in the late nucleosynthetic event, these two formation intervals should be the same values. Therefore, ${ }^{129} \mathrm{I}$ was not expected to be synthesized at the same time as the formation of ${ }^{26} \mathrm{Al}$. The restriction leads to a prospect that neutron flux would be enough low in the case of the late nucleosynthetic event not to synthesize such r-process nuclei as ${ }^{129} \mathrm{I}$. On the contrary, the explosion event of the previous supernova had synthesized ${ }^{129} \mathrm{I}$ through r-process under a condition of high neutron flux.

From the existence of the excess ${ }^{24} \mathrm{Mg}$ discovered for the matrices of Allende and $Y-74191$, it is thought that almost pure ${ }^{24} \mathrm{Mg}$ has been synthesized and injected into the pre-existed solar nebula.

This almost pure ${ }^{24} \mathrm{Mg}$ would be estimated to be synthesized through an explosive carbon burning process at the late supernova explosion according to the theoretical consideration by Arnett. ${ }^{37 \text {) }}$ Possible conditions of the supernova is as follows:

Composition: $50 \%{ }^{12} \mathrm{C}, \quad 50 \%{ }^{16}$
Temperature: $1.8 \times 10^{9} \mathrm{~K}$
Density: $\quad 10^{7} \mathrm{~g} / \mathrm{cm}^{3}$
Among these conditions, temperature is the critical one. If the temperature is a little higher than this, for example $2 \times 10^{9} \mathrm{~K},{ }^{24} \mathrm{Mg},{ }^{25} \mathrm{Mg}$ and ${ }^{26} \mathrm{Mg}$ would have been formed in the abundances almost the same as the natural isotopic ones. Therefore, the discovery of the excess ${ }^{24} \mathrm{Mg}$ seems to rest-
rict the condition of the temperature of the late supernova. Moreover, the formations of almost pure ${ }^{24} \mathrm{Mg}$ and little ${ }^{25} \mathrm{Mg}$ and ${ }^{26} \mathrm{Mg}$ lead to the estimate that the late supernova explosion was of the type of low neutron flux, because the high neutron flux supernova must form not only ${ }^{24} \mathrm{Mg}$ but also ${ }^{25} \mathrm{Mg}$ and ${ }^{26} \mathrm{Mg}$.

This low neutron condition is consistent with the aspect that r-process nucleus, ${ }^{129} \mathrm{I}$, would not be synthesized in the late supernova explosion.
5.5 ${ }^{20} \mathrm{Ne},{ }^{23} \mathrm{Na}$, and ${ }^{28} \mathrm{Si}$

If the late supernova was exploded, ${ }^{20} \mathrm{Ne},{ }^{23} \mathrm{Na}$ and ${ }^{28} \mathrm{Si}$ wuold be also synthesized together with ${ }^{16} \mathrm{O},{ }^{26} \mathrm{Al}$ and ${ }^{24} \mathrm{Mg}$. Among the elements of Ne, Na and Si , isotopic abundance anomaly of Si has been examined for the sample of Allende inclusions by Clayton and Mayeda, 50) but only normal mass fractionations have been observed.

Since Na has only one stable isotope, it is impossible to detect the isotopic anomaly.

In case of Ne , it is possible to detect the anomalous ${ }^{20} \mathrm{Ne}$ in principle. But because the wide range variety of the abundance of ${ }^{20} \mathrm{Ne}$ has been observed in many chondrites, it would be much difficult to detect the anomalous ${ }^{20} \mathrm{Ne}$, which might be injected together with ${ }^{24} \mathrm{Mg}$ and ${ }^{16} \mathrm{O}$, of the order of permil. ${ }^{51)}$

6. CONCLUSION

The results stated in the previous section give the following points.
(1) Excess ${ }^{26} \mathrm{Mg}$ due to the in situ decay of now extinct ${ }^{26} \mathrm{Al}$ (half life $=7.2 \times 10^{5} \mathrm{y}$) has been detected in the A1rich white inclusion in the Allende chondrite. The excess correlates with the concentration ratio of $\mathrm{Al} / \mathrm{Mg}$, and from the correlation, the ratio of $\left({ }^{26} \mathrm{Al} /{ }^{27} \mathrm{Al}\right)_{c}$ at the primordial mineral crystallization could be determined. The value of $\left({ }^{26} \mathrm{Al} / /^{27} \mathrm{Al}\right) \mathrm{c}$ was found to be $(2.8 \pm 2.2) \times 10^{-4}$ for this inclusion.
(2) The initial ratio of $\left({ }^{26} \mathrm{Al} /{ }^{27} \mathrm{~A} 1\right)$ o at the time of nucleosynthesis was estimated to be approximately 1×10^{-3} based on the theoretical considerations by Arnett ${ }^{37 \text {), Truran }}$ and Cameron ${ }^{48)}$ and Arnett and Wefel.49) Using the ratios of $\left({ }^{26} \mathrm{~A} 1 /{ }^{27} \mathrm{~A} 1\right)_{c}$ and $\left({ }^{26} \mathrm{~A} 1 /{ }^{27} \mathrm{Al}\right)_{o}$, a formation interval between the nucleosynthesis and the crystallization of the minerals could be estimated to be $(1.3 \underset{-}{+1.6}) \times 10^{6}$ years. This value is distinctly different from the ${ }^{129} \mathrm{I}-{ }^{129} \mathrm{Xe}$ formation interval which is 2×10^{8} years.
(3) These results together with those reported by other workers on excess ${ }^{26}{ }_{\mathrm{Mg}}$ lead us to an explanation that at least two nucleosynthetic events had happened near the early solar nebula. The late event is considered to occur a few million years prior to the primordial mineral crystallization.
(4) The supernova explosion event would have formed ${ }^{16} \mathrm{O},{ }^{20} \mathrm{Ne},{ }^{24} \mathrm{Mg},{ }^{26} \mathrm{Al}$ and ${ }^{28} \mathrm{Si}$ through an explosive carbon burning process under a low neutron flux.
(5) Excess ${ }^{24} \mathrm{Mg}$ has been firstly found in Mg -rich and A1-poor portions in matrix areas of the Allende carbonaceous chondrite and the Yamato-74191 (L3) chondrite in the present work. The maximum excess of about 20% has been observed.in case of Allende.
(6) This excess of ${ }^{24} \mathrm{Mg}$ can be explained as the result of the addition of practically pure ${ }^{24} \mathrm{Mg}$ formed in the late supernova event to the pre-existed solar nebula.
(7) The excess of ${ }^{24} \mathrm{Mg}$ discovered in the present work, together with the excess of ${ }^{16} 0$ found by Clayton et al. and that of ${ }^{26} \mathrm{Mg}$ found by the author and the other workers, can be strong evidences which support the hypothesis that the primordial solar nebula was inhomogeneous and composed of at least two components.

APPENDIX

Software developed by the author himself for a precise isotopic ratio measurement is described. This software consists of three parts. One is for controlling a power supply of electromagnet, relays to switch high registers of an amplifier through interfaces. This is written by assembler. The second is for setting various initial conditions for measurement, and the third is for calculating isotopic ratios and for taking statistical procedures. These are written by BASIC. The lists of these programs are from the next page.

Disassembling list of the controlling program

6000	CDA467 MO	CALL	IPR	6080	320481		STA	SPFNT
6003	CDE767	CALL	IIF	6083	Ebof		ANI	OFH
6006	CDC267	call	ITM1	6085	FE07		CPI	O7H
6009	CD8062	CALL	Ofrec	6097	CA9960		JZ	R7
6000	CD7562	CALL	SLOW	608 A	FEOB		CFI	OBH
600F	AF	XRA	A	608 C	CAA160		J2	R8
6010	S20281	STA	SCCNT	6085	FEO9		CFI	O H
6013	210058	LXI	H, PHSAV	6091	CAA960		JZ	F 7
6016	221081	SHED	FHFNT	6094	FEOA		CFI	OAH
6019	210050	LXI	H, TMSAV	6096	CAE160		JZ	R10
601 C	221281	SHLD	TMFNT	6097	CD6663	F7	CALL	ON7
601 F	CDF167	CALL	ITM2	6095	1602		MVI	D, 02 H
6022	- CD7Ab2	CALL	ONREC	609 E	C3E660		JMP	TS
6025	1605	MVI	D, OS H	6091	CD6C63	R8	CALL	ONB
6027	3EOO TO	MVI	A, OOH	60 A4	1602		MVI	D, O 2 H
6029	CD7E6 3	call	TIM	60 Ab	CSE660		JMP	TS
602 C	15	DCR	D	6049	CD7163	F9	CALL	ON9
602 D	C22760	JNZ	TO	6OAC	1603		MVI	D, O 3 H
6030	CDD267 M1	CALL	IREG	6OAE	C 3 E666		JMP	T3
6035	AF	XRA	A	6081	CD7663	F10	CALL	ON10
6034	320381	STA	PKCNT	6084	1604	M2	MVI	D, O 4 H
6037	3A0281	LDA	SCCNT	6086	AF	TS	XRA	A
603 A	30	INR	A	6087	CD7E63		CALL	TIM
603 B	320281	STA	SCCNT	608A	15		DCR	D
603 E	CD5162	CALL	SCAON	60 BE	C28660		JNZ	T3
6041	उA0381 M11	LDA	FKCNT	608E	CD3762		CALL	ADHL
6044	उС	INR	A	6001	cdec62		CALL	BTE2O
6045	320381	STA	PKCNT	60 C 4	110800		LXI	D, 0008 H
6048	2A14日1	LHLD	MXFEG	6007	19		DAD	D
604 B	EB	XCHG		60 Ca	220481		SHLD	bargu
6045	2A16日1	LHLD	MNREG	60CB	CDD267		CALL	IREG
604F	CDDE62	CALL	INV	bOCE	AF		XRA	A
6052	19	DAD	D	60CF	320581		STA	UDFNT
6053	Eb	XCHG		6002	3A0481		LDA	SPPNT
6054	$2 \mathrm{AlO81}$	LHLD	FHFNT	60D5	E620		ANI	2 OH
6057	72	MOV	Ms, D	6007	cc7062		CZ	FAST
6058	23	INX	H	60DA	C47562		CNZ	SLDW
6059	73	MOV	M, E	60DD	SE07	M4	MVI	A. 07 H
605A	23	INX	H	60DF	320781		STA	COUNT
6058	221081	SHLD	PHPNT	60E2	CD3762	Ms	CALL	ADHL
605E	2A1881	LHLD	TMREG	60 E 5	cdec6 2		CALL	BTE20
6061	EB	XCHG		60 EB	CD1C63		CALL	MNMX
6062	2A1281	LHLD	TMPNT	60EE	EE		XCHG	
6065	72	MOV	M, D	GOEC	2AOAB1		LHLD	EARGU
6066	23	INX	H	60EF	CDDE62.		CALL	INV
6067	73	MOV	M, E	60F2	19		DAD	D
6068	23	INX	H	60FS	75		MOV	A, H
6069	221281	SHLD	TMPNT	60F4	E680		ANI	8 OH
606 C	3A0391	LDA	PKCNT	60F6	c2dD60		JNZ	M4
606F	6F	Mov	L:A	60F9	3A0781		LDA	count
6070	Ja0081	LDA	FKSET	60FC	3 D		DCR	A
6073	ED	CMF	L	60FD	320781		STA	count
6074	DAES61	JC	EO	6100	C2E260		JNZ	MS
6077	2680	MVI	H, BOH	6103	SE2O	M60	MVI	A, 20 H
6079	23	INX	H	6105	320781		STA	COUNT
607A	7E	Mav	A,M	6108	cD3762	Ms	CALL	ADHL
607E	320081	STA	SFFND	610 B	cdecta		CALL	ETEPO
607E	2 B	DCX	H	610 E	CDIC63		CALL	MInMx
607 F	7E	MOV	A.M	6111	EB		XCHG	

6218	CA2562		JZ	01	6276	OF		FRC	
621B	1606		MUI	D, 06H	6297	EGOF	ETEP	ANI	OFH
6210	AF	T1	XRA	A	6297	C2A562		JNZ	ETES
621E	CD7E6		CALL	TIM	6290	E4		ORA	H
6221	15		DCR	D	6290	E5		DRA	L
6222	C21D62		JNZ	T1	629E	CAB6G?		JZ	BTBS
6225	CD6162	01	CALL	SCADF	62 Al	AF		XRA	A
6228	3A0681		LDA	EFNT	62 A 2	CJAAG2		JMF	BTB4
622B	FEO1		CPI	O1H	62A5	FEOA	BTES	CPI	OAH
622 D	C48062		CNZ	OFREC	62 A 7	F2C662		JP	ETE6
6230	C9		RET		62AA	54	ETE4	MOV	D, H
6231	SAFE7D	KEEY	LDA	7DFEH	62AB	5 D		MOV	E, L
6234	E620		ANI	20 H	62AC	29		DAD	H
6236	C9		FET		62AD	29		DAD	H
6237	CD4362	ADHL	CALL	ADON	62AE	19		DAD	D
623A	SE10		MVI	A, 10 H	$62 A F$	29		DAD	H
623C	CD7B6		CALL	TIM	62 BO	85		ADD	L
623F	2A047C		LHLD	7 CO 4 H	$62 \mathrm{B1}$	6F		MOV	L.A
6242	C9		RET		$62 \mathrm{B2}$	7C		MOV	A, H
624.3	SEOE	ADON	MVI	A. OBH	62B3	CEOO		ACI	OOH
6245	32077C		STA	7807H	62 B 5	67		MOV	H, A
6248	cD8963		CALL	TIME	6286	F1	BTBS	FOF	PSW
624 E	SEOA		MVI	A, OAH	$62 \mathrm{B7}$	SF		CMC	
6240	52077C		STA	7 CO 7 H	$62 \mathrm{B8}$	D28E6?		JNC	ETE1
6250	C9		FEET		62 BB	41		MOV	B, C
6251	SEO9	SCAON	MVI	A, 09 H	62 BC	3D		DCF:	A
625.3	32037C		STA	7cosh	62BD	C28E62		JNZ	ETB1
6256	उE50		MVI	A, 50 OH	62 CO	F1		FOF'	FSW
6259	CD7E6 3		CALL	TIM	6201	57		STC	
625 B	SEOB		MVI	A, OBH	6202	SF		CMC	
6251	320375	SCA1	STA	7 COSH	62 CB	D1		POF	D
6260	C9		RET		62 C 4	C1		POF	E
6261	SEOE	SCADF	MVI	A, OEH	62 C 5	C9		RET	
6263	S2037C		STA	7 COSH	62C6	F1	ETES	FOF	FSW
6266	SESO		MVI	$\mathrm{A}_{3} \mathrm{SOH}$	$62 \mathrm{C7}$	F1		FOF	PSW
6268	CD7B6		CALL	TIM	63 CB	37		STC	
626 E	SEOA		MVI	A, OAH	62 C 9	D1		PDF	D
626 D	CS5D62		JMF	SCA1	62 CA	C1		FOP	E
6270	SEOD	FAST	MVI	A, ODH	62CB	C9		RET	
6272	CS5D62		JMF'	SCA1	62CL	C5	ETE2O	PUSH	E
6275	SEOC	SLOW	MVI	A. OCH	62 CD	7 C		MDV	A, H
6277	CS5D62		JMP	SCA1	62 CE	F5		PUSH	PSW
627A	SE09	ONREC	MVI	A, 09 H	62CF	Eb1F		ANI	1 FH
627C	52077C	REC 1	STA	7 CO 7 H	62D1.	47		MOV	E, A
$627 F$	C9		RET		$62 \mathrm{D2}$	4D		MOV	C.L
6280	3EO8	OFREC	MVI	$\mathrm{A}_{3} \mathrm{OBH}$	62 D 3	cD856?		CALL	ECTEI
6282	C37C62		JMF	FECC1	62 D 6	F1		FOP	F'SW
6285	C5	BCTBI	FUSH	B	$62 \mathrm{D7}$	E640		ANI	4 OH
6286	DS		FUSH	D	6207	CCDE62		CZ	INV
6287	FS		PUSH	FSW	62DC	C1		POF	B
6288	210000		LXI	$\mathrm{H}, \mathrm{OOOOH}$	62DD	C9		RET	
628 B	SEO2		MVI	A. O2H	62DE	37	INV	STC	
628D	37		STC		62 DF	SF		CME	
628E	F5	ETB1	FUSH	FSW	G2EO	7D		MOV	A:L
628 F	78		MOV	A, E	62 E 1	2F		CMA	
6290	D29762		JNC	ETE2	62 E 2	C601		ADI	O1H
6293	OF		FFic		62E4	6 F		MDV	L:A
6294	OF		RFiC		62E5	7C		MOV	A, H
6295	OF		RFE		62E6	$2 F$		CMA	

62 E 7	CEOO		ACI	OOH	6347	EB		XCHG	
62E9	67		MOV	$\mathrm{H}_{3} \mathrm{~A}$	6348	221481		SHLD	MXREG
62EA	69		FET		6.34 B	ЗE80		MVI	$\mathrm{A}, 8 \mathrm{OH}$
62E日	C5	SUM	FUSH	B	6.34 D	320F7C		STA	7 COFH
62EC	DS		FUSH	D	6550	SAOE7C		LDA	7 COEH
G2ED	210000		LXI	$\mathrm{H}, \mathrm{OOOOH}$	6 65S	6 F		MOV	L,A
62 FO	011081		LXI	B, TFRG1	6.554	SAOE7C		LDA	7COEH
62FS	SEOA		MVI	A, OAH	6.357	67		MOV	$\mathrm{H}_{3} \mathrm{~A}$
$62 F 5$	FS	SUM1	PUSH	PSW	6558	221881		SHLD	TMREG
62F6	OA		LDAX	E	6.55E	E1	MNMX2	POF	H
$62 F 7$	5F		MOV	$E_{5} A$	6.35 C	C 7		RET	
62FB	0 S		INX	B	6350	37	HALF	STC	
$62 F 9$	OA		LDAX	E	6S5E	3F		CMC	
62FA	57		MDV	$D ; A$	6S5F	7C		MOV	A, H
62FE	0.3		INX	E	6360	1 F		FAF:	
62FC	19		DAD	D	6361	67		MOV	H:A
62 FD	F1		POP	FSW	6362	7 D		MOV	A,L
62FE	3D		DCR	A	6.363	1F		FAR	
62FF	C2F562		JNZ	SUM1	6364	6F		MOV	L, A
6302	D1		FOF	D	6.565	C9		RET	
6303	C1		FOP	B	6366	SE00	ON7	MVI	A, OOH
6304	C9		RET		6.368	32007C	QN70	STA	7 COOH
6305	C5	FIOTRG	FUSH	E	636 E	C9		RET	
6306	DS		FUSH	D	6365	SEOS	ONB	MVI	A, OSH
6307	ES		FUSH	H	6.36 E	C.3686.	- .	JMP	ON70
6308	0612		MVI	$\mathrm{E}, 12 \mathrm{H}$	6371	SEOS	ONO	MVI	A, O5H
630 A	211 CB 1		LXI	H, TRRG1	6373	C.36863		JMF	ON70
6.500	$111 \mathrm{EB1}$		LXI	D; TRFG2	6376	3E09	ON10	MVI	$\mathrm{A}, \mathrm{O9H}$
6310	1 A	FOTR1	LDAX	D	6378	C.36863		JMF	ON70
6311	77		MOV	M, A	$6 \mathrm{S7B}$	C5	TIM	PUSH	B
6312	23		INX	H	637 C	47		MOV	E, A
6315	1.3		INX	D	6.370	OEOO		MVI	C, OOH
6314	05		DCR	E	637 F	OD	TIMO	DCR	L
6315	C21063		JNZ	ROTR1	6380	C27F6S		JNZ	TIMO
6318	E1		FOP	H	6.385	05		DCR:	E
6319	D1		FOF	D	6.384	C27F63		JNZ	TIMO
6 SIA	C1		FOF	E	6387	C1		POF	E
631 B	C9		RET		6.588	C9		RET	
6.310	E5	MINMX	PUSH	H	6389	3E80	TIME	MVI	A, BOH
6310	CDO56S		CALL	ROTFG	6388	3D	TIMEO	DCR	A
6320	222E81		SHLD	TFFGA	6.385	228B63		JNZ	TIMEO
6323	CDEE6 2		CALL	SUM	6.387	C9		FET	
6526	EB		XCHG						
6.327	2A1681		LHLD	MNREG					
632A	CDDE6?		CALL	INV					
$6 \mathrm{S2D}$	19		DAD	D					
$6 \mathrm{S2E}$	7 C		MOV	A. H					
6.32 F	E680		ANI	8 OH					
63.31	CASAGS		J Z	MNMX 1					
6534	EB		XCHG				. ${ }^{\text {. }}$		
6.55	221681		SHLD	MNFEG					
6358	E1		POP	H					
6.58	C9		FEET						
6.5.3A	2A1481	MNMX 1	LHLD	MXREG					
6.53 D	CDDEG?		CALL	INV					
6.340	19		DAD	D					
6341	75		MOV	A, H					
6.342	E680		ANI	8 OH					
6.344	C25863		JNZ	MNMX2					*

6GFC	$2 \mathrm{Al081}$	kO	LHLD	PHFNT	6775	C32F67		JMP	LFRI
66 FF	223081	K00	SHLD	PHTMF	677 F	3E11	DC1	MVI	A, 11H
6702	C9		RET		6781	CS2F67		JMF	LPRI
6703	2A1281	Lo	LHLD	TMPNT	6784	SE12	DC2	MVI	A, 12H
6706	CSFF66		JMF	k 00	6786	C32F67		JMF	LFRI
6709	2A3081	k1	LHLD	PHTMF	6789	SE13	DCS	MVI	A, 13H
6700	2B		DCX	H	6788	C32F67		JMP	LPRI
6700	7E		MOV	A, M	678 E	3E14	DC4	MVI	$\mathrm{A}, 14 \mathrm{H}$
670 E	323381		STA	FHTM2	6790	C32F67		JMF	LFRI
6711	2 B		DCX	H	6793	SE1E	ESC	MVI	As 1EH
6712	7E		Mov	A, M	6795	C32F67		JMF	LPRI
6713	323281		STA	FHTM1	6798	00		NOF	
6716	223081		SHLD	FHTMP	6799	00		NOP	
6719	c9		FET		679A	00		NOF	
671 A	FS	NOLF	FUSH	PSW	6798	00		NOF	
671 E	3A7984		LDA	FRFNT	6795	CD9367	ESCE	CALL	ESC
671 E	FEOD		CFI	ODH	6797	SE45		MVI	A, 45H
6720	CA2B67		JZ	NOLF 1	67 Al	C32F67		JMF	LPRI
6723	FEOA		CFI	OAH	67 A 4	211 A67	IFR	LXI	H, NOLF
6725	CA2B67		J2	NOLF 1	67 A7	SECS	I 1	MVI	A, CSH
6728	CD2F67		CALL	LFRI	67 A9	उ2ECB4		STA	84ECH
672E	F1	NOLF1	POF	FSW	67 AC	22ED84		SHLD	84EDH
672 C	C9		RET		67AF	211370		LXI	$\mathrm{H}, 7 \mathrm{C} 13 \mathrm{H}$
6720	SEOA	LFFR	MVI	A, OAH	6782	3681		MVI	M, 81H
672 F	320881	LFRI	STA	FRFN1	6784	3600		MUI	M, ODH
67.32	SA1270	FRINT	LDA	7C12H	6786	C9		RET	
6735	E604		ANI	04H	6787	3E81	I IF	MVI	A, 81H
6737	C23267		JNZ	FRINT	6789	320370		STA	7COSH
673 A	उA0881		LDA	FRFN1	678C	SE93		MVI	A,93H
673 D	321070		STA	7 ClOH	67 BE	320770		STA	7-07H
6740	3EOC		MVI	A, OCH	67 C 1	C9		RET	
6742	32137C		STA	7C13H	6752	210F7C	ITM1	LXI	H, 7 COFH
6745	3C		INF	A	6755	3634		MUI	$\mathrm{M}, 34 \mathrm{H}$
6746	32137C		STA	7C13H	6757	3674		MVI	$\mathrm{M}, 74 \mathrm{H}$
6749	C9		RET		67.9	3684		MVI	$\mathrm{M}, \mathrm{B4H}$
674 A	F5	HDCPY	PUSH	FSW	67 CE	C9		RET	
674B	उA7984		LDA	FRFNT	67 CC	214467	CHNG	LXI	H, HDCFY
674 E	FEOD		CPI	ODH	67 CF	C3A767		JMP	I1
6750	CA5667		JZ	HDCF 1	67 D 2	160A	IfEG	MVI	D, OAH
6753	CD2F67		call	LFRI	67 D 4	CDS762	12	CALL	ADHL
6756	F1	HDCF 1	POF	PSW	6707	CDCC62		CALL	BTE20
6757	C9		RET		67 DA	CD0563		CALL	ROTRG
6758	00		NOF		67 D	222E81		SHLD	trirga
6759	00		NOF		G7EO	15		DCF	D
675 A	00		NOP		67 E 1	C2D467		JNZ	12
675 B	00		NOF		67 E 4	CDEEG2		CALL	SUM
6750	3 E 07	EEL	MVI	A, 07 H	$67 E 7$	221481		SHLD	MXREG
675E	C32F67		JMF	LPRI	67 EA	21FFOF		LXI	H, OFFFH
6761	SEO日	ES	MVI	A, OgH	67 ED	221681		SHLD	MNREG
676.3	C.32F67		JMF	LPRI	67 F 0	C9		RET	
6766	3EOB	VT	MVI	A, OEH	67 F 1	210E7C	ITM2	LXI	H, 7 COEH
6768	C32F67		JMF	LFRI	67F4	AF		XRA	
676E	SEOC	FF	MVI	A, OCH	67F5	77		MOV	M, A
676 D	C.32F67		JMF	LPRI	67 F 6	77		MOV	M, A
6770	3EOD	CR	MVI	A, ODH	67 F 7	2B		DCX	H
6772	CS2F67		JMF	LFRI	67 FB	3632		MVI	M, 32H
6775	SEOE	50	MUI	A, OEH	67FA	77		MOV	M, A
6777	C32F67		JMF	LFRI	67 FE	28		DCX	H
677A	SEOF	SI	MVI	A, OFH	67 FC	77		MOV	M, A
					67 FD	3650		MVI	M, SOH
					67FF	C9		RET	

List of BASIC controlling program

	CALL 17A4H：CALL 17E7H DATA TI HOG5
20	DATA SI，TAB（7），3， $28,92.23,29,4.67,30,3.14,4.46,50,5.25$
	DATA MG，STW70，3，24，1，25，．12663，26，139805，CU，TAE（7）， $2,63,69.2,65,30$.
40	DATA NI，EAR73，5，58，68．274，60，26．095，61，1．134，62，3．593，64，．904
	DATA CR，ICABO，4，50，4．35，52，83．79，53，9．5，54，2．36
	DATA FE，JAM $79,4,54,5.8,56,91.77,57,2.15,58, .28$
	DATA GE，TAE（7），5，70，20．5，72，27．4，73，7．8，74，36．5，76，7．日
80	DATA MO，TAE（7）， $5,94,9.3,95,15.9,96,16.7,97,9.6,98,24.1$
	DATA AG，TAE（7），2，107，51．83，109，48．17，0T， $\mathrm{X}, 1,1,1$
	DIM $A(5), B(5), C(5), D(5), E(5), F(25), H(5), I(5), J(5), K(5), L(5), M(4,5)$
	DIM P $(25,5), 0(25,5), 5(5), T(25,5), 4(25,5), X(50,5), Y(50,5), Z(50,5)$
120	LET $A=1, B=0, \mathrm{D}=\mathrm{A}+\mathrm{A}$ ：CLEAR ：PRINT＂＜AUTO SCAN＞＂：PRINT
130	FRINT＂INITIAL＂：GOSUE 1460：IF A $=$＂Y＂THEN POKE $80 \mathrm{AOH}, \mathrm{B}$
	PRINT＂FOLARITY＂：PRINT＂SCAN SFEED＂：PRINT＂SENS．SWITCH＂：GOSUE 1460：IF
A禹く＞	
160	PRINT＂＂：INPUT＂DATE＂N\＄
	INFUT＂NAME＂Dt：if bs＝＂N＂THEN 930
180	INPUT＂ELEMENT＂Fक：RESTORE
190	
I：IF	E\＄＝＂OT＂THEN 230
200	IF E¢く「F\＃THEN 190
210	LET J1＝N
	CLEAR ：PRINT Gq：FOR I＝A TO N：PRINT J（I）；Fi，＂：＂，L（ 1 ）：NEXT I：gosub 146
O：IF	A $==$＂Y＂THEN LET $1=\mathrm{N}$ ：GOTO 260
230	
	INPUT＂FEAK NO．＂N：IF E\＄く＞＂OT＂THEN GOSUB 1880：GOTO 220
	FOR I＝A TO N：INFUT＂MASS＂J（I），＂AEUNDANCE＂L（I）：NEXT I：INPUT＂REF．＂G\＄：
TO 220	
260	INPUT＂NORMALIZED TO MASS＂T：FOR $\mathrm{I}=1$ TO $\mathrm{N}: ~ \mathrm{IF}$ T＝J（I）THEN
IF E ${ }^{\text {d }}$	＝＂T＂THEN 830
	PRINT＂SELECT FROM（7， $9,9,10)$＂：FOR $1=A$ TO N1
290	FRINT J（I）；E¢；：INFUT＂SENSITIVITY＝＂N：IF N $>=7$ THEN IF $\mathrm{N} \leqslant=10$ THEN 31
300	GOTO 290
310	LET $\mathrm{C}=32768+1, \mathrm{~A}(\mathrm{I})=\mathrm{N}:$ POKE C， $\mathrm{N}: ~$ NEXT

$$
\begin{aligned}
& \text { continued } \\
& 3 S 0 \text { LET } H \equiv=" * P E A K ": A 1=A: \text { GQSUE 1790: LET H } \#=" * B A S E ", A 1=D: \text { GOSUE } 1790
\end{aligned}
$$ 340 LET $C=C+A:$ FOKE $C, E:$ IF $B=" Z "$ THEN 830 350 INPUT＂SCAN NO．（ $1<\mathrm{N}<25$ ）＂N2：GQSUE 1460：IF A末＜＞＂Y＂THEN 350 360 LET $N=N 2+A:$ FOKE $8101 \mathrm{H}, \mathrm{N}:$ FOKE 8102 H ，B：IF B $\$=" X "$ THEN 830 370 INFUT＂RUN NQ．＂N5：

380 IF B $=$＂Y＂THEN 830
S90 FRINT＂INTERPD．AT＂：FOR I＝A TO N1：FRINT J（I）：E中：NEXT I：GOSUE 1490：FOR
 440 CLEAR ：GOSUB 1850：FRINT＂＂：FRINT＂－－START＂：GOSUB 1460：IF ADくり＂Y＂THEN 450 IF $V=B$ THEN LET NG＝A：GOTD 470
460 IF NG THEN LET NG $=N G-A$
470 IF $V<\triangle D$ THEN LET N4＝N4＋A：FDKE EOA
480 FOR $J=E$ TO N1：LET $X(N 4, J)=B, Y(N 4$ 470 IF $V \subset D$ THEN LET N4＝N4＋A：FOKE $B O A O H, N 4$
480 FOR $J=E$ TO N1：LET $X(N 4, J)=B, Y(N 4, J)=B: N$
560
 500 CALL 17CCH：GOSUB 1470：CALL 17A4H：FRINT＂（＂，G中，＂）＂：GOSUB 1480：IF N1＞D＋ 510 FRINT E\＄，＂＂：FOR I＝A TO N1：FRINT \＃9，L（I）：NEXT I：FOR I＝A TO N1：IF I＜
520 NEXT I：CALL XS：CALL XS：PRINT＂\＃＂：FOR I＝A TO N1：FRINT \＃9：J（I）：NEX

[^0]＂\＃F5：N5：GOSUB＂NS：IF $V=\mathrm{E}$ THEN CALL 1000 THEN POKE B102H，W：GOTO 650
continued
O PRINT＂＜R＞REPEAT＂：PRINT＂＜E＞EUFFERTNG＂：PRINT＂＜S＞STAT＂
 630 IF $V=B$ THEN 940
640 GOSUB 15OO：CALL $1030 \mathrm{H}:$ GOTO 600

6SO IF U\＆\triangle THEN PRINT＂\＆CDCONT
＂WHICH＂I生 08
 LET $N(N 4)=A:$ GOTO 830
 F E串＝＂E＂THEN
$L E A R:$ GOTD 660 IF V＜，EB THEN a2O IFVT MATO 820 690 FOR $\mathrm{Q}=\mathrm{A}$
 $\exists 7 \mathrm{~N} \exists \mathrm{H} \perp{ }^{\prime} \mathrm{B}_{1}=$ 事日 $\because \mathrm{I}$ OIL $N \exists H \perp$＂$X_{11}=\$ B=1$ OC 30 IF B $\ddagger=" Z "$ THEN 280 30 IF E串＝＂Z＂THEN 280
 $\mathrm{E} \phi=" \mathrm{~S}$
$\mathrm{~B} \phi=" \mathrm{THEN}$
THEN 180 OLE NヨHI：＂$\lambda_{11}=$ 中日
 OLET NEHD $\quad \Pi_{13}=\$ \mathrm{~A} \quad \mathrm{II}$ OESI NヨHL＂7＂＝蚰 $\exists \mathrm{I}$ IF E\＆＝＂E＂THEN STOP

NT
80 FRINT＂＜L＞LIST＂：FRINT＂＜U＞SUMMARY＂：FRINT＂くE＞END＂：INPUT 690 FOR $Q=A$ TD LEN（I虫）： NヨHL＂Sn＝中日 $\exists \mathrm{I}$ OSL LET E $\ddagger=M I D\left(I \phi_{0}, A, A\right): I F B(\phi=" C "$ THEN

－A：I）T（W，I）

> 900 FOR $I=A$ TO N1：LET $Q(W, I)=U(W, I) / U(W, E):$ NEXT $I, ~ I N T(U(W, I)+.5):$ NEXT I 920 FOR $I=A$ TO N1：IF IくSE THEN FRINT \＃12，0（W，I） 930 NEXT I：CALL X3：FOKE X4，56H：FETURN

> 940 IF NS＝B THEN 1310
> 900 FOR I＝A TO W：FOR J＝A TO N1：LET $F(I, J)=(0(I, J) / K(J)-A) * 1000:$ NEXT J：NEXT
continued

continued
1300 IF $\quad \mathrm{V}=\mathrm{A}+\mathrm{D}$ THEN 830 1310 IF NG：＝N5 THEN 820
1320 LET NG＝NG $\mathrm{L}, \mathrm{A}, \mathrm{V}=\mathrm{E}: \mathrm{FOKE} 8102 \mathrm{H}, \mathrm{B}:$ GOTO 470
1330．INPUT＂START \＃＂N9，＂END \＃＂N8：CALL 177AH：LET ES＝EO，P＝PO
：RETURN
1450 CAL

$$
\begin{aligned}
& 1460 \text { INFUT "くY/N〉"Aक: RETURN } \\
& 1470 \text { FOR I=A TO N1: PRINT J (I):E末:" }=10 \text { E":\#4;A(I): NEXT I: RETURN } \\
& 1480 \text { CALL 1784H: FOR I=A TO 13: FRINT "--*--": NEXT I: CALL XS: RETUFN } \\
& 1490 \text { INPUT "WHICH ONE"N: RETUFN } \\
& \text { 1500 LET W=FEEK (8102H): CURSOR 22,15: PRINT \#4,W: CURSOR 30,15: RETURN } \\
& 1510 \text { FFINT " MEAN ": RETUFIN } \\
& 1520 \text { FRINT "EFRDR ": RETURN } \\
& 150 \text { PRINT DELTA \% } \\
& \begin{array}{l}
1540 \text { LET } F=9 * N 1-A-D \\
1550 \text { FOR } G=A \text { TO } F
\end{array} \\
& 1560 \text { LET } \mathrm{C}=32768+\mathrm{I}, \mathrm{AS}=\mathrm{PEEK}(\mathrm{C}), \mathrm{BS}=\mathrm{AS}+\mathrm{N} * 16 \text { : } \mathrm{FDKE} \mathrm{C} \text {, } \mathrm{BS} \text { : RETURN } \\
& 1570 \text { FRINT N\$:"\#"N4:"(", D中:")": RETUFN } \\
& 1580 \text { FOR I=E TO } 12 * F \text { STEP P: PRINT 非1O, I-ES: NEXT I: CALL XZ: RETURN } \\
& 1590 \mathrm{FOR} J=A \text { TQ 13: FRINT "-+------": NEXT J: CALL X3: RETURN } \\
& \begin{array}{l}
1600 \text { LET } N=32785+I N T(10 *(2+E 3) / P+.5): \text { IF } N=32785 \text { THEN IF } N \leqslant=32917 \text { THEN FDKE } \\
N, C
\end{array}
\end{aligned}
$$

1610 RETURN
1620 GOSUB 1590：LET IO＝N9：FOR H＝N9 TO NB：LET $S=X(H, E), E S=Y(H, B):$ IF IO\＆ OH TH
＂：FOR I＝A TO D＋D：GOSUE 1530：FRINT＂$+\infty$＂：GOSUE 1520： F
$16 S 0$ FRINT＂＂\＃ FIINT
continued
1640 NEXT I: CALL X3: PRINT " ": FOR I=A TO S: IF I=ES THEN 1680 650 FRINT 1660 LET $F=1$
1670 OEXT 1350 X 3
"

"

[^1]
ACKNOWLEDGMENTS

The author expresses his sincere thanks to Professor J. Okano of Osaka University for his encouragement and invaluable discussion throughout the work.

He is grateful to Professor K. Ogata of Okayama University of Science for his encouragement. Thanks are also given to Professor N. Takaoka of Yamagata University and Dr. K. Nagao of Okayama University of Science for providing the Allende specimens and for the discussion about this study. He is indebted to Professor T. Nagata of National Institute of Polar Research for the permission to use the Yamato meteorite samples. The author thanks Professor M. Honda and Dr. M. Shima for their encouragement. The author also thanks Dr. I. Kaneoka of the University of Tokyo for providing the samples of terrestrial 1herzolites. He thanks Dr. Y. Uno for providing the terrestrial hornblende.

He 'is also much grateful to Professor H. Matsuda, Professor M. Date, Professor S. Miyamoto and Professor K. Katori for their useful advices and invaluable comments to prepare this paper.

He also thanks Miss M. Mizumoto for her help of preparing the manuscript.

REFERENCES

1) E.M. Burbidge, G.R. Burbidge, W.A. Fowler and F. Hoyle, Synthesis of the elements in stars, Rev. Mod. Phys., 29 (1957) 547-650.
2) W.A. Fowler, J.L. Greenstein and F. Hoyle, Nucleosynthesis during the early history of the solar system, Geophys. J., 6 (1962) 148-220.
3) J.A. Wood, On the origin of chondrules and chondrites, Icarus, 2 (1963) 152-180.
4) J.H. Reynolds, Determination of the age of the elements, Phys. Rev. Lett., 4 (1960) 8-10.
5) R.A. Fish, G.G. Goles and E. Anders, The record in the meteorites III. On the development of meteorites in asteroidal bodies, Astrophys. J., 132 (1960) 243-258.
6) H. Reeves and J. Audouze, Early heat generation in meteorites, Earth Planet. Sci. Lett., 4 (1968) 135-141.
7) M. Shima, The isotopic composition of magnesium in terrestrial samples, Bull. Chem. Soc. Japan, 37 (1964) 284-285.
8) N. Takematsu, S. Matsuo and S. Sato, Isotopic composition of magnesium in upper mantle materials and a meteorite, Geochem. J., 1 (1967) 51-54.
9) W.B. Clarke, J.R. DeLaeter, H.P. Schwarcz and K.C. Schane, Aluminum 26 - magnesium 26 dating of feldspar in meteorites, J. Geophys. Res., 75 (1970) 448-462.
10) D.N. Schramm, F. Terra and G.J. Wasserburg, The isotopic abundance of ${ }^{26} \mathrm{Mg}$ and limits on ${ }^{26} \mathrm{Al}$ in the early solar system, Earth Planet. Sci. Lett., 10 (1970) 44-59.
11) E.A. King, Jr., E. Schonfeld, K.A. Richardson and J.S. Eldridge, Meteorite fall at Pueblito de Allende, Chihuahua, Mexico: Preliminary information, Science, 163 (1969) 928-929.
12) U.B. Marvin, J.A. Wood and J.S. Dickey, Jr., Ca-Al rich phases in the Allende meteorite, Earth Planet. Sci. Lett., 7 (1970) 346-350.
13) L. Grossman, Petrography and mineral chemistry of Ca-rich inclusions in the Allende meteorite, Geochim. Cosmochim. Acta, 39 (1975) 433-454.
14) R.N. Clayton, L. Grossman and T.K. Mayeda, A component of primitive nuclear composition in carbonaceous meteorites, Science, 182 (1973) 485-488.
15) T.K. Mayeda, R.N. Clayton and E.J. Olsen, Oxygen isotopic anomalies in an ordinary chondrite, Meteoritics, 15 (1980) 330-331.
16) C.M. Gray and W. Compston, Excess ${ }^{26} \mathrm{Mg}$ in the Allende meteorite, Nature, 251 (1974) 495-497.
17) T. Lee and D.A. Papanastassiou, Mg isotopic anomalies in the Allende meteorite and correlation with 0 and Sr effects, Geophys. Res. Lett., 1 (1974) 225-228.
18) T. Lee, D.A. Papanastassiou and G.J. Wasserburg, Determination of ${ }^{26} \mathrm{Mg}$ excess in Allende and evidences for ${ }^{26}$ A1, Geophys. Res. Lett., 3 (1976) 109-112.
19) T. Lee, D.A. Papanastassiou and G.J. Wasserburg, Aluminum-26 in the early solar system: fossil or fuel ?, Astrophys. J., 211 (1977) L107-L110.
20) T. Lee, D.A. Papanastassiou and G.J. Wasserburg, Mg and

Ca isotopic study of individual microscopic crystals from the Allende meteorite by the direct loading technique, Geochim. Cosmochim. Acta, 41 (1977) 1473-1485.
21) T.M. Esat, T. Lee, D.A. Papanastassiou and G.J. Wasserburg, Search for Al effects in the Allende FUN inclusion C1, Geophys. Res. Lett., 5 (1978) 807-810.
22) W. Stegmann and F. Begemann, Al-correlated ${ }^{26} \mathrm{Mg}$ excess in a large Ca-Al-rich inclusion of the Leoville meteorite, Earth Planet Sci. Lett., 55 (1981) 266-272.
23) J.G. Bradley, J.C. Huneke and G.J. Wasserburg, Ion microprobe evidence for the presence of excess ${ }^{26} \mathrm{Mg}$ in an Allende anorthite crystal, J. Geophys. Res., 83 (1978) 244-254.
24) I.D. Hutcheon, I.M. Steele, R.N. Clayton and J.V. Smith, An ion microprobe study of Mg isotopes in two Allende inclusions, Meteoritics, 13 (1978) 498-499.
25) N. Shimizu, M.P. Semet and C.J. Allegre, Geochemical applications of quantitative ion microprobe analysis, Geochim. Cosmochim. Acta, 42 (1978) 1321-1334.
26) I.D. Hutcheon, G.J. MacPherson, I.M. Steele and L. Grossman, A petrographic and ion probe isotopic study of type A coarse-grained inclusions, Meteoritics, 14 (1979) 427.
27) C.E. Rees and H.G. Thode, $A{ }^{33}$ S anomaly in the Allende meteorite, Geochim. Cosmochim. Acta, 41 (1977) 16791682.
28) M.T. McCulloch and G.J. Wasserburg, Barium and neodymium isotopic anomalies in the Allende meteorite, Astrophys. J., 220 (1978) L15-L29.
29) T. Lee, D.A. Papanastassiou and G.J. Wasserburg, Calcium isotopic anomalies in the Allende meteorite, Astrophys. J., 220 (1978) L21-L25.
30) D.A. Papanastassiou and G.J. Wasserburg, Strontium isotopic anomalies in the Allende meteorite, Geophys. Res. Lett., 5 (1978) 595-598.
31) M.T. McCulloch and G.J. Wasserburg, More anomalies from the Allende meteorite: samarium, Geophys. Res. Lett., 5 (1978) 599-602.
32) W.R. Kelly and G.J. Wasserburg, Evidence for the existence of ${ }^{107} \mathrm{Pd}$ in the early solar system, Geophys. Res. Lett., 5 (1978) 1079-1082.
33) D.N. Schramm, Supernovae and the formation of the solar system, Protostars and Planets (ed. T. Gehrels) Univ. of Arizona Press, (1978) 384-398.
34) F.A. Podosek and R.S. Lewis, ${ }^{129} \mathrm{I}$ and ${ }^{244} \mathrm{Pu}$ abundances in white inclusions of the Allende meteorite, Earth and P1anet. Sci. Lett., 15 (1972) 101-109.
35) A. Zaikowski, I-Xe dating of Allende inclusions: antiquity and fine structure, Earth Planet. Sci. Lett., 47 (1980) 211-222.
36) A.G.W. Cameron and J.W. Truran, The supernova trigger for formation of the solar system, Icarus, 30 (1977) 447-461.
37) W.D. Arnett, Explosive nucleosynthesis in stars, Astrophys. J., 157 (1969) 1369-1380.
38) W.D. Arnett and J.W. Truran, Carbon-burning nucleosynthesis at constant temperature, Astrophys. J., 157
(1969) 339-365.
39) W.R. VanSchmus and J.A. Wood, A chemical-petrologic classification for the chondrites, Geochim. Cosmochim. Acta, 31 (1967) 747-765.
40) J.T. Wasson, Meteorites; Classification and Properties. Berlin, Springer, (1974), 316p. (Mineral and Rocks, Vol. 10) .
41) K. Yanai, comp. Catalog of Yamato Meteorites, lst ed. Tokyo, Natl. Inst. Polar Res., (1979), 188p.
42) M. Blander and J.L. Katz, Condensation of primordial dust, Geochim. Cosmochim. Acta, 31 (1967) 1025-1034.
43) L. Grossman, Condensation in the primitive solar nebula, Geochim. Cosmochim. Acta, 36 (1972) 597-619.
44) D. Phinney, B. Whitehead and D. Anderson, Li, Be and B in minerals of a refractory-rich Allende inclusion, Proc. Lunar Planet. Sci. Conf. 10th (1979) 885-905.
45) M. Kimura, K. Yagi and K. Onuma, Opaque minerals in the Yamato-74191 chondrite, Mem. Nat1. Inst. Polar Res., Spec. Issue (1980) 95-103.
46) N. Takaoka and K. Nagao, Neutron capture effects in Yamato-74191 and rare gas composition in Yamato-75258, Mem. Nat1. Inst. Polar Res., Spec. Issue (1980) 210-218.
47) E.J. Catanzaro, T.J. Murphy, E.L. Garner and W.R. Shields, Absolute isotopic abundance ratios and atomic weight of magnesium, J. Res. Nat1. Bureau Stds., 70A (1966) 453-458.
48) J.W. Sruran and A.G.W. Cameron, ${ }^{26}$ A1 production in explosive carbon burning, Astrophys. J., 219 (1978) 226229.
49) W.D. Arnett and J.P. Wefe1, Aluminum- 26 production from a stellar evolutionary sequence, Astrophys. J., 224 (1978) L139-L142.
50) R.N. Clayton and T.K. Mayeda, Isotopic fractionation of silicon in Allende inclusion, Proc. Lunar Planet. Sci. Conf., 9th (1978) 1267-1278.
51) K. Nagao and N. Takaoka, private communication.

Table 2.1 Meteoritic samples used in the present work with their classifications and abbreviations

Sample	Classification	Abbreviation
Allende	C3	AL0, AL1, AL2
Yamato-74191	L3	Y-74191
Yamato-75028	H3	$Y-75028$

Table 2.2 Terrestrial samples used in the present work with their localities and abbreviations

Sample	Locality	Abbreviation
Forsterite in Dunite	Ehime Pref, Japan	FO
Olivine in Lherzolite	Salt Lake, Hawaii	SL46
Olivine in Lherzolite	Oki Island, Japan	OK
Olivine in Lherzolite	McMurdo, Antarctica	MM
Olivine in Spinel lherzolite	Salt Lake, Hawaii	SL45
Hornblende	Fukui Pref., Japan	HO
Vesuvianite	Chihuahua, Hawaii	VE
Cordierite	Kyoto Pref., Japan	CO
Feldspar in Granodiorite	Hokkaido, Japan	AN

Table 3.1 Typical operating conditions of the hollow cathode ion gun

	Hitachi IMA 2A	Home-made
Ionic species	Oxygen	$0 x y g e n$
Discharge voltage	400 V	1600 V
Discharge current	75 mA	30 mA

Table 3.2 Typical working conditions for magnesium isotopic analysis

	Hitachi IMA 2A	Home-made
Primary ion		
Energy	12-17 keV	8-9 keV
Beam diameter	70-200 $\mu \mathrm{m}$	100-200 $\mu \mathrm{m}$
Beam current	0.2-2 $\mu \mathrm{A}$	0.2-0.8 $\mu \mathrm{A}$
Secondary ion		
Accelerating voltage	3 kV	1 kV
Pressure		
Ultimate	$3 \times 10^{-5} \mathrm{~Pa}$	$6 \times 10^{-5} \mathrm{~Pa}$
during measurement	$8 \times 10^{-5} \mathrm{~Pa}$	$2 \times 10^{-3} \mathrm{~Pa}$

Table 3.3 Geometric parameters of mass spectrometers and resolutions

	Hitachi IMA 2A	Home-made
Electrostatic sector		
Radius	15 cm	10 cm
Deflection angle	90°	63.6°
Magnetic sector		
Radius	12.5 cm	10 cm
Deflection angle	90°	90°
Slits	equal to beam dia.	$0.3 \times 4 \mathrm{~mm}^{2}$
Main slit	$0.5 \times 6 \mathrm{~mm}^{2}$	$1.0 \times 6 \mathrm{~mm}^{2}$
B slit	$0.5 \times 8 \mathrm{~mm}^{2}$	$0.5 \times 4 \mathrm{~mm}^{2}$
Collector slit	150	100
Resolution*		

* Resolutions shown here are those for magnesium isotopic analysis.

Table 4.1 Intrferences of possible molecular and doubly-charged ions to the subject ionic species

Subject ionic species	Possible interfering ionic species	Resolving* power	Maximum contribution to the subject peak	
			Home-made	Hitachi IMA
${ }^{24} \mathrm{Mg}^{+}$	$\begin{aligned} & { }^{12} \mathrm{C}^{2+} \\ & 23 \mathrm{NaH}^{+} \\ & 48 \mathrm{Ca}^{2+} \\ & 48 \mathrm{Ti}^{2+} \end{aligned}$	$\begin{aligned} & 1600 \\ & 1910 \\ & 2730 \\ & 2170 \end{aligned}$	$\begin{aligned} & 4 \times 10^{-4} \\ & 1 \times 10^{-6} \\ & 4 \times 10^{-4} \\ & 6 \times 10^{-5} \end{aligned}$	$\begin{aligned} 3 & \times 10^{-5} \\ 2.5 & \times 10^{-6} \\ 2 & \times 10^{-5} \\ 7 & \times 10^{-5} \end{aligned}$
${ }^{25} \mathrm{Mg}^{+}$	$\begin{aligned} & 12 \mathrm{C}^{13} \mathrm{C}^{+} \\ & 12 \mathrm{C}_{2} \mathrm{H}^{+} \\ & 23_{\mathrm{NaH}_{2}}{ }^{+} \\ & 50 \mathrm{Ti}^{2+} \\ & 50 \mathrm{Cr}^{2+} \\ & 24 \mathrm{MgH}^{+} \end{aligned}$	$\begin{aligned} & 1430 \\ & 1140 \\ & 1280 \\ & 1860 \\ & 1950 \\ & 3560 \end{aligned}$	$\left\{\begin{array}{l} 8 \times 10^{-5} \\ 3 \times 10^{-5} \\ 6 \times 10^{-5} \\ 1 \times 10^{-3} \end{array}\right.$	$\begin{aligned} 5 & \times 10^{-6} \\ 1 & \times 10^{-5} \\ 1.5 & \times 10^{-4} \\ 4 & \times 10^{-5} \\ 1 & \times 10^{-6} \\ 4 & \times 10^{-4} \end{aligned}$
${ }^{26} \mathrm{Mg}^{+}$	$\begin{aligned} & { }^{13} \mathrm{C}_{2}{ }^{+} \\ & 12 \mathrm{C}^{14} \mathrm{~N}^{+} \\ & 12 \mathrm{C}^{13} \mathrm{CH}^{+} \\ & { }^{12} \mathrm{C}_{2} \mathrm{H}_{2}^{+} \\ & 52 \mathrm{Cr}^{2+} \\ & 25 \mathrm{MgH}^{+} \end{aligned}$	$\begin{array}{r} 1080 \\ 1270 \\ 910 \\ 790 \\ 2110 \\ 2350 \end{array}$	$\left\{\begin{array}{l} 8 \times 10^{-5} \\ 5 \times 10^{-4} \\ 3 \times 10^{-4} \end{array}\right.$	$\left\{\begin{array}{l} 7 \times 10^{-6} \\ 5 \times 10^{-4} \\ 5 \times 10^{-5} \end{array}\right.$

* Resolving power necessary to resolve an interfering ionic species from the subject one.

Table 4.2 Hydride ion formation ratio in cases without and with a cold finger of liquid nitrogen aside the sample holder

Liq. N_{2}	$24 \mathrm{MgH}^{+} / 24 \mathrm{Mg}^{+}(=\mathrm{x})$	$24 \mathrm{MgH}^{+} / 25_{\mathrm{Mg}}{ }^{+}$
without with	$\sim 4 \times 10^{-3}$	
$<5 \times 10^{-5}$	$\sim 3 \times 10^{-2}$	
$<4 \times 10^{-4}$		

Table 4.3 Secondary ion formation ratios of ${ }^{12} \mathrm{C}_{2}{ }^{+} /{ }^{12} \mathrm{C}^{+}$ and $\left({ }^{13} \mathrm{C}_{2}{ }^{+}+{ }^{12} \mathrm{C}^{14} \mathrm{~N}^{+}+{ }^{12} \mathrm{C}^{13} \mathrm{CH}^{+}+{ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}{ }^{+}\right) /{ }^{12} \mathrm{C}^{+}$for five carbon-containing terrestrial samples

Sample	${ }^{12} \mathrm{C}_{2}{ }^{+} /{ }^{12} \mathrm{C}^{+}$	$\mathrm{Y} * /{ }^{12} \mathrm{C}^{+}$
Graphite	0.054	0.0013
Calcite	0.003	0.0001
Silicon carbide	0.016	0.0004
Dolomite	20	20
Charcoal	0.040	0.0010

* $\mathrm{Y}=\left({ }^{13} \mathrm{C}_{2}{ }^{+}+{ }^{12} \mathrm{C}^{14} \mathrm{~N}^{+}+{ }^{12} \mathrm{C}^{13} \mathrm{CH}^{+}+{ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}{ }^{+}\right)$
Table 4.4 Concentrations of Mg , Al and Si in four mineral samples
determined by atomic absorption analysis (wt.\%) and
chemical formulae of the minerals

Sample	Mg	Al	Si	Chemical formula
Forsterite	31.1	0.2	16.9	$\mathrm{Mg}_{2} \mathrm{SiO}_{4}$
Hornblende	6.2	7.3	18.4	$(\mathrm{Ca}, \mathrm{Na})_{2-3}(\mathrm{Mg}, \mathrm{Fe}, \mathrm{Al})_{5}\left[\mathrm{OH} \cdot(\mathrm{Si}, \mathrm{Al})_{4} \mathrm{O}_{11}\right]_{2}$
Vesuvianite	2.7	8.0	15.4	$\mathrm{Ca}_{10}(\mathrm{Mg}, \mathrm{Fe})_{2} \mathrm{Al}_{4}\left[(\mathrm{OH})_{4} \cdot\left(\mathrm{SiO}_{4}\right)_{5} \cdot\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right)_{2}\right]$
Cordierite	1.3	13.3	20.2	$\mathrm{Mg}_{2} \mathrm{Al}_{3}\left[\mathrm{AlSi}_{5} \mathrm{O}_{18}\right]$

Table 4.5 Isotopic ratios of magnesium obtained for the sample of terrestrial forsterite (FO) and used as the reference values

	Home-made	Hitachi IMA 2A
$\begin{aligned} & { }^{25} \mathrm{Mg} /{ }^{24} \cdot \mathrm{Mg} \\ & { }^{26} \mathrm{Mg} / /^{24} \mathrm{Mg} \end{aligned}$	$\begin{aligned} & 0.12495 \\ & 0.13666 \end{aligned}$	$\begin{aligned} & 0.12472 \\ & 0.13560 \end{aligned}$
$\begin{aligned} & { }^{24} \mathrm{Mg} /{ }^{25} \mathrm{Mg} \\ & { }^{26}{ }^{\mathrm{Mg}} /{ }^{25} \mathrm{Mg} \end{aligned}$	$\begin{aligned} & 8.0032 \\ & 1.0937 \end{aligned}$	$\begin{aligned} & 8.0178 \\ & 1.0872 \end{aligned}$

Table 5.1 ${ }^{26} \mathrm{Al} /{ }^{27} \mathrm{~A} 1$ ratio at the time of nucleosynthesis, $\left({ }^{26} \mathrm{Al} /{ }^{27} \mathrm{Al}\right)_{o}$, based on theoretical invesitgations

$\left({ }^{26} \mathrm{Al} / /^{27} \mathrm{Al}\right)_{0}$	Reference
$\begin{aligned} 1.2 & \times 10^{-3} \\ 3.3 & \times 10^{-4} \\ 6.6 & \times 10^{-6} \\ 9.0 & \times 10^{-4} \\ 1.3 & \times 10^{-3} \\ 0.4-2.0 & \times 10^{-3} \\ 1-2 & \times 10^{-3} \end{aligned}$	$\begin{aligned} & \text { R.A. Fish et al. }(1960)^{5)} \\ & \text { W.A. Fowler et al. }(1962)^{2)} \\ & \text { H. Reeves and J. Audouze }(1968)^{6)} \\ & \text { W.D. Arnett }(1969)^{37)} \\ & \text { W.D. Arnett }(1969)^{37)} \\ & \text { J.W. Truran and A.G.W. Cameron }(1978)^{48)} \\ & \text { W.D. Arnett and J.P. Wefel }(1978)^{49)} \end{aligned}$

1 mm

Fig. 2.1 Photomicrograph of a cut surface of the Allende carboanceous chondrite.

1 mm

Fig. 2.2 Photomicrograph of a cut surface of Allende including an amoeboid whitish inclusion.

1 mm

Fig. 2.3 Photomicrograph of a cut surface of Allende including a chondrule-like white inclusion surrounded by ring-shaped boundary layer.

1 mm

Fig. 2.4 Photomicrograph of a cut surface of Allende including a large white inclusion.

1 mm

Fig. 2.5 Photomicrograph of a cut surface of Yamato74191 (L3) chondrite.

Fig. 2.6 Photomicrograph of a cut surface of Yamato75028 brecciated chondrite. H3 part is taken in this picture.

Fig. 3.1 Schematic diagram of a home-made ion microprobe mass analyzer.

Fig. 3.2 Schematic diagram of a Hitachi IMA 2A ion microprobe mass analyzer.

Fig. 3.3 Schematic diagram of a primary ion gun and accelerating and focusing system for the primary ion beam and for the secondary ions.
(1) hollow cathode
(2) ferrite parmanent magnet
(3) intermediate electrode
(4) anode
(5) drawing out and accelerating electrode
(6) Einzel lens
(7) deflector
(8) sample holder

Fig. 3.6 Schematic diagram of the installation of a cold finger of liquid nitrogen, and pumping systems. RP: Oil rotary pump, DP: Oil diffusion pump, TMP: Turbomolecular pump, IP: I on pump
1

This
Fig. 3.7 Chart recording the peak top of ${ }^{24} \mathrm{Mg}^{+}$for a terrestrial forsterite sample.
shows the stability of secondary ion current.

'Fig. 3.8 Block diagram of a controlling system using a microcomputer.
μ COM: microcomputer with 8080AFC as CPU
EMT: secondary electron multiplier
MS: mass spectrometer

Fig. 3.9 Interfaces for a magnet power supply and a chart recorder.

Fig. 3.10 Diagram of connections between an AD converter and a microcomputer.

Fig. 3.11 Circuit for switching sensitivities of detecting system by switching a feed back resistor of an amplifier (K3021).

Fig. 4.1 Calibration curve for $\mathrm{Al} / \mathrm{Mg}$ ratio. Elemental concentration was measured by atomic absorption analysis. The localities and the chemical formulae of the minerals are shown in Tables $2: 2$ and $4: 4$.

Fig. 4.2 Calibration curve for $\mathrm{Mg} / \mathrm{Si}$ ratio. Elemental concentration was measured by atomic absorption analysis. The localities and the chemical formulae of the minerals are shown in Tables:2:2, and:4:4.

Fig. 4.3 Mass spectrum obtained for the white inclusion AL2 with the home-made apparatus. The sensitivities are shown in the upper part.

Fig. 4.4 Mass spectrum obtained for a portion of the matrix of Yamato-74191 chondrite with the Hitachi IMA 2A apparatus.

Fig. 4.5 Flow chart of obtaining isotopic ratios by using a microcomputer.

Fig. 4.6 Δ values obtained for the laboratory standard sample of terrestrial forsterite (FO). These data are plotted in the chronological order. The definition of Δ appears in the text. Values aside the closed circles are the weighted means of all these data, and these values were used as reference values in evaluating Δ values. Error bars for the closed circles represent twice the standard deviations.

Fig. 4.7 Three isotope plot of the data for the terrestrial forsterite (FO). A straight line with the slope of $1 / 2$ corresponds to the normal mass fractionation line. The absolute abundance ratios reported by Catanzaro et al. (CMGS 66) and Schramm et al. (STW 70) are also marked.

Fig. 4.8 Deviations, $\delta_{26 / 24}$, after the correction for the normal mass fractionation. These were obtained for the FO sample. The definition of $\delta_{26 / 24}$ appears in the text. These are plotted in the chronological order. The error bar for the closed circle represents the reproducibility.

Fig. 4.9: Δ values for the FO sample. These data are plotted in the chronological order. The definition of Δ appears in the text. Values aside the closed circles are the weighted mean values of all these data, and these values were used as reference values in evaluating Δ values. Error bars for the closed circles represent twice the standard deviations.

Fig. 4.10 Three isotope plot of magnesium obtained for four terrestrial olivines. These were analyzed as sub-standards. FO: forsterite (Ehime Pref.), SL46: olivine (Hawaii)

SL45: olivine (Hawaii), MM: olivine (Antarctica) OK: olivine (Oki Island)

Fig. 4.11 Sketch of the amoeboid whitish inclusion in AL0.

Fig. 4.12 Sketch of the chondrule-1ike white inclusion in AL1.

Fig. 4.13 Sketch of the comparatively large white incIusion in AL2.

'78 Jul.
 Aug.
 Sep.

Fig. 5.1 $\delta_{26 / 24}$ values obtained for ALO including the amoeboid whitish inclusion. The definition of $\delta_{26 / 24}$ appears in the text.

ALO(WI): whitish inclusion in ALO
ALO (M): matrix in ALO
FO: terrestrial forsterite (laboratory standard)

Fig. 5.2 $\delta_{26 / 24}$ values obtained for ALl including the chondrule-like white inclusion surrounded by the boundary layer. The definition of the $\delta_{26 / 24}$ appears in the text. AL1(WI): white inclusion in ALl

ALl(B): boundary layer surrounding the inclusion in ALl AL1 (M) : matrix in AL1

FO: terrestrial forsterite (laboratory standard)
'79

Fig. 5.3 $\delta_{26 / 24}$ values obtained for AL2 including the large white inclusion. The definition of $\delta_{26 / 24}$ appears in the text.

AL2-A(WI): white inclusion in AL2 (analysis along AA')
AL2-A(GI): dark gray part in AL2
AL2-A(M): matrix in AL2
FO: terrestrial forsterite (laboratory standard)
HO: terrestrial hornblende, VE: terrestrial vesuvianite

Fig $5.4 \delta_{26 / 24}$ values obtained for AL2 including the large white inclusion. The definition of $\delta_{26 / 24}$ appears in the text.

AL2-B(WI): white inclusion in AL2 (analysis along BB')
AL2-B(GI): dark gray part in AL2
AL2-B(M): matrix in AL2

Fig. $5.5 \delta_{26 / 24}$ and ${ }^{27} \mathrm{AI}^{+} /{ }^{24} \mathrm{Mg}^{+}$as a function of probed position along the probed line for the AL0. Symbols for the plot of $\delta_{26 / 24}$ are the same as shown in Fig.5.1.

Fig. 5.6 $\quad \delta_{26 / 24}$ and ${ }^{27} \mathrm{Al}^{+} /{ }^{24} \mathrm{Mg}^{+}$as a function of probed position along the probed line for the ALl. Symbols for the plot of $\delta_{26 / 24}$ are the same as shown in Fig.5.2.

Fig. 5.7 $\delta_{26 / 24}$ and ${ }^{27} \mathrm{Al}^{+} / /^{24} \mathrm{Mg}^{+}$as a function of probed position along the probed line AA' for the AL2. Symbols for the plot of $\delta_{26 / 24}$ are the same as shown in Fig.5.3.

Fig. 5.8 $\quad \delta_{26 / 24}$ and ${ }^{27} \mathrm{AI}^{+} /{ }^{24} \mathrm{Mg}^{+}$as a function of probed position along the probed line BB^{\prime} for the AL2. Symbols for the plot of $\delta_{26 / 24}$ are the same as shown in Fig.5.4.

Fig. 5.9 Three isotope plot of magnesium for the white inclusion in the AL2. These data
were obtained along the probed line AA'. A straight line with the slope of $1 / 2$ represents
the normal mass fractionation line.

Fig. 5.10 Three isotope plot of magnesium for the white inclusion in the AL2. These data were obtained along the probed line BB'. A straight line with the slope of $1 / 2$ represents the
normal mass fractionation line.

Fig. 5.11 $\Delta_{26 / 24}$ and $\Delta_{25 / 24}$ versus $A 1 / M g$ ratio showing the correlation between $\Delta_{26 / 24}$ and $A 1 / M g$. These data are the same as plotted in both Figs.5.9 and 5.10.

$-1087-$

Fig. 5.13 Three isotope plot of magnesium for the matrix portions of Allende. The data
were obtained for the portions where the concentration ratio of $\mathrm{Al} / \mathrm{Mg}$ is less than 0.13 .

Fig. 5.14 Three isotope plot of magnesium for the matrix portions of y-74.191. The data were
obtained for the portions where the concentration ratio of $\mathrm{A} 1 / \mathrm{Mg}$ is less than 0.13 .

LIST OF PUBLICATIONS

1) H. Nishimura and J. Okano, An ion microprobe analyzer, Japan. J. Appl. Phys., 8 (1969) 1335-1343.
2) H. Nishimura and J. Okano, Preliminary analysis of meteorites with an ion probe mass analyzer, Mass Spectroscopy, 18 (1970) 894-904 (in Japanese).
3) H. Nishimura, T. Fujiwara and J. Okano, Improvement of detectable limit of an ion probe mass spectrometer, mass Spectroscopy, 19 (1971) 205-212.
4) H. Nishimura and J. Okano, Isotopic ratio of lithium in chondrite measured by an ion probe mass spectrometer, Japan. J. App1. Phys., 10 (1971) 1613-1622.
5) H. Nishimura, T. Fujiwara and J. Okano, Element and Isotope analysis with ion probe mass spectrometer, Proc. 6th Int. Cong. on X-ray Optics and Microanalysis (ed. G. Shinoda et al.) (1972) 431-437.
6) H. Nishimura and J. okano, Isotope analysis on iron meteorites with ion probe mass spectrometer, Proc. 6th Int. Vacuum Cong., (Japan. J. App1. Phys. Supp1. 2) (1974) 399-401.
7) H. Nishimura and J. Okano, An oxygen ion source for the secondary ion mass spectrometer, Mass Spectroscopy, 23 (1975) 9-14.
8) H. Nishimura and J. Okano, Isotopic abundance of nickel in iron meteorites measured with a sputtering ion mass spectrometer, Adv. Mass Spectrom., 7A (1978) 569-572.
9) J. Okano and H. Nishimura, SIMS measurement of Mg isotopic ratio in chondrite, Secondary Ion Mass Spectrometry, SIMS II (eds. A. Benninghoven et al.) Springer Verlag, (1979) 216-218.
10) H. Nishimura, Application of SIMS to the fields of earth and planetary sciences, Mass Spectroscopy, 28 (1980) 41-52 (in Japanese).
11) H. Nishimura and J. Okano, SIMS measurements of magnesium isotopic abundance ratio in the Allende carbonaceous chondrite, Adv. Mass Spectrom., 8A (1980) 513-521.
12) H. Nishimura and J. Okano, SIMS measurement of magnesium isotopic ratios in chondrites, Mem. Natl. Inst. Polar Res., Special Issue (1981) 229-236.
13) H. Nishimura and J. Okano, SIMS measurement of magnesium isotopic ratios in chondrites, Meteoritics, 16 (1981) 368-369.
14) J. Okano and H. Nishimura, Distribution of Ni, Co, Ga and Cu in iron Meteorites, Secondary Ion Mass Spectrometry, SIMS III (eds. A. Benninghoven et al.) Springer Verlag (1982) 426-430.
15) H. Nishimura and J. Okano, SIMS measurement of magnesium isotopic ratios in Yamato-74191 and 75028 meteorites, Mem. Natl. Inst. Polar Res., Special Issue (1982) (in print).

[^0]: 530 PRINT J（I）：＂／＂：J（E）：IF J（I）＞09 THEN FRINT＂＂：gロTO 550
 550 NEXT I：CALL X3：CALL XS：POKE X4， $56 H$
 560 CLEAR ：GOSLE 1570：FRINT＂＂：GOSUE 1470：CLIRSOR 10，11：FRINT＂

[^1]: 1900 NEXT J: FRINT JO; "IS MISTAKE": GOTD 1890
 1910 NEXT I: RETUFN

