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ORIENTED AND WEAKLY COMPLEX BORDISM
ALGEBRA OF FREE PERIODIC MAPS

BY

KATSUYUKI SHIBATA

ABSTRACT. Free cyclic actions on a closed oriented (weakly almost complex,
respectively) manifold which preserve the orientation (weakly complex structure)
are considered from the viewpoint of equivariant bordism theory. The author gives
an explicit presentation of the oriented bordism module structure and multiplica-
tive structure of all orientation preserving (and reversing) free involutions. The
odd period and weakly complex cases are also determined with the aid of the no-
tion of formal group laws, These results are applied to a nonexistence problem
for cértain equivariant maps.

Inlmduction. As the oriented analogue of the free equivariant unoriented bor-
dism theory % X, A, 7) of Stong [12], K. Komiya and C. M. Wu have respectively
defined the free equivariant oriented bordism theories Q (X, A, 7) and Q (x,A, 0
for involutions (X, A4, 7) (Komiya [9]), and Q,(X, A, 7) for maps of odd prime per-
iod (X, A, 7) (Wu [17]).

The main object of the present paper is to apply Komiya’s theories to the geo--
metrical determination of the oriented bordism algebras Q: (Zz) of all orientation-
preserving free differentiable involutions and Q (ZZ) of all orientation-reversing
free differentiable involutions. (Compare with the semi-geometric methods in Stong
(11, Chapter vIII]).

We also remark in this paper that the equivariant oriented and weakly complex
theories of Wu, together with Miscenko’s theorem {10, Appendix 1], give rise to a
simple proof of the structure theorem for Q,(Z ) {21, v, (Z ), UMz ) (35, 51, [6]
[7]) and K%(L™m)) [8]. These results are apphed to the nonexistence problem for
equivariant maps. R R

In $1, we define the bordism groups Q:(X, 7) and Q5 (X, 7), and then intro-
duce the external product and the Pontrjagin product in these theories.

In $32 and 3, we give two kinds of direct sum decompositions of Q;(S", a)

and 6:(5 ", a) into isomorphic copies of ﬁ; (s', a). Deviating slightly from the
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method in [11], we show explicitly how to construct the elements of §+(S" a) and
Q (s™, a) from those of Q (s1, @). This permits us to deduce the multiplicative
structures of Q (Z ) and Q (Z Y in 5.

And in §4, the Q calgebra structure of Q7(S1, @) is explicitly presented. It
was known to be isomorphic as a Z -algebra to Wall’s subalgebra ﬁ‘)* of R [16].

§5 is devoted to the study of Q salgebra structures of Q) (Z ) and Q (z )
with respect to the Pontr]agm product. We present minimal sets of algebra genera-
tors for ) (Z ,) and Q7(Z)) together with some explicit multiplication formulas.

In §6 we treat the odd period and weakly complex cases in parallel. We com-
bine the technique of $2 with Kamata’s idea in [7] of applying MiScenko series to
U L™(m)). We also remark that the multiplicative structures of Q*(Zk) (& > 3, odd)
and USZ ) (m > 2) with respect to the Pontrjagin products are trivial.

Finally, in §7, we apply the results on UJ{L™m)) obtained in the preceding
section to a nonexistence problem for some equivariant maps considered in [15].

The author is indebted to Professor Fuichi Uchida, Mr. Katsuhiro Komiya and
Professor Ching-Mu Wu for many suggestions concerning these ideas. And the
author wishes to express his gratitude to Professors Minoru Nakaoka and Akio
Hattori for valuable suggestions and constant encouragements. Thanks are also
due to Professor Robert E. Stong and the referee who informed me of many known

results in this field which permitted improvements in the presentation, especially
of 62

1. Free equivariant oriented bordism groups. A free equivariant orientation-
preserving bordism class of (X, r), where X is a topological space and r: X — X
is a continuous map such that %2 = id, is an equivalence class of triples (M, w f)
with M a closed oriented differentiable manifold, p: M — M a fixed-point free
differentiable involution which preserves the orientation of M, and f: (M, p) —
(X, 7) a continuous equivariant map (rof=fopu). Two triples (M, g, /) and
(M, p', /) are equivalent, or bordant if there is a triple (W, v, g) such that W is
a compact oriented differentiable manifold with W =M U M), v:W—Wisa
fixed-point free, orientation-preserving differentiable involution restricting to p
on M and p' on M', and g: (W, v) — (X, 7) is a continuous equivariant map
(rog=gov) restrictingto f on M and " on M".

The set of free equivariant orientation-preserving bordism classes (X, 7) be-
comes a graded ,rmodule in the usual fashion and we denote this module by
Q(x, 7 (9], [12D.

A similar graded ) module is obtained by replacing orientation-preserving
everywhere in the above definition by orientation-reversing. This module one de-
notes Q5 (X, 7) [9].

Letting X be a point and 7 the identity map, this reduces to the oriented
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analogue of the situation studied by Conner-Floyd [2]. Thus we write Q0 (z ,) for
Qf(pt, 1) and Q (z,) for Q (pt, 1), combining the notations of Conner- Floyd
[2] and Stong [12].

For every involution (X, 7), there is the obvious equivariant map X, n —
(pt 1), inducing the homomorphism e: Q+(X 7) —»Q+(pt 1) and e Q7 (X, 7) —
Q (pt, 1). We call both of them the equivariant augmenlatzon bomomorpbzsm

Remark. We will hereafter use the notations like e: {2 (X 7 —Q (pt 1) to
avoid repeating two formulas which are identical except for the signs.

Let (X, 7) and (Y, 0) be involutions. Then both 7x 1 and 1 x o induce the

same involution on X x Y/7x a.

Lemma 1.1. The pairings
A: (Al*i(X, r) @, ﬁf(Y, o) — ﬁf(X x Y/rx 0, 1x 0)

sending M, p, 1 ® [N, v, gl to IMx N/ux v, 1 xv, [ x g/ux vl are well-defined
Q-module homomorphisms which are natural with respect to equivariant maps b:

X,n) = (X', ) and b': (Y, 0) = (Y', 0).

The proof of the lemma is straightforward. So we omit the proof. We call the
above pairings the external products.

Let (X,7 ) be an involution. Then 7 induces a Z, x Zy-action on X x X by
frxrrx1,1x7,1x1}and also on X via the addition homomorphism Z,xZ,
—Z, and by *.

Definition 1.2. In case there is a continuous map ¢: X x X — X which is
equivariant with fespect to the above-mentioned Z, x Z,-actions, we call ¢ a
multiplication map with respect to 7. Notice that ¢ induces a Z ,-equivariant
map ¢: (X x X/rx7,1x7) = (X, 7). Associative and commutative multiplication
maps and multiplication maps with unit are to be considered in the usual sense
and we omit their detailed definition,

Examples 1.3. (1) The constant map $p: bt x pt —pt is an associative and
commutative multiplication map with unit with respect to the trivial involution.

(2) Let S! ={Z € C; |Z| = 1} be the unit sphere in C and a: S! — §! be
the antipodal involution: a(Z) = -Z. Then the map p: S! x S' — §! defined by
£z, 2'Y'=Z + Z' is an associative and commutative multiplication map with unit
with respect to a.

Definition 1.4. Let ¢: X x X — X be a multiplication map with respect to an

involution (X, 7). The composites of the external products of 2.1 by the induced
Q,-module homomorphisms &,

Qix, 7 ®Q*Q:(X,T)—'ﬁi(XXX/TX rn1xn—QL(X,7)
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give rise to product operations in Q (X 7} and Q (X, 7). We call them the Pon-
trjagin product with respect to the multiplication map ¢. In this case, Q (X 7)
and Q;(X, r) become graded algebras over .

2. First direct sum decompositions. Let (N, r) be a free involution. Suppose
(L, 7|L) is an invariant subspace of (N, 7) with a given finite dimensional C*-
manifold structure on L making 7| L differentiable and with an invariant neigh-
bourhood which is equivariantly homeomorphic to (L x [-1, 1], 7| L x (1)) and
L x {0} =

Proposition 2.1. There is an exact triangle of () -module homomorphisms

QX(N, 7 QXL 7| L)

i, [5%a]

QXN - L, r|N- L)

where A denotes the map sending [M, p, {1 with { t-regular on L to [f_l(l_:),
pl UL, 11/~ YL, i, the bomomorphism induced by the inclusion and X[S°, a)

the map sending M, p, f] to [M x dl-1, 1], px (<1), co(f x1)] with «: L x dl-1, 1]
CLxI[-1,1]CN.

We call A the Smith homomorphism. This proposition is a variant of the
Smith exact sequence in [9], [12] and the proof is analogous. It was pointed out
by the referee that the exact sequence of the pair (N, N~ L) together with a Thom
isomorphism Qi SN, N=L,7) = QXL, 7| L) given by t-regularity supplies an

alternative proof.

Let (X, 7) be an involution. Denote by E™X the n-fold unreduced suspension
of X, i.e.

E"X =D"x X/(s, x) ~ (s, x'): sedD” x, x' €X,
and define E™(r): E"X — E™X by E™7)d, x] = [a(d), d(x)], where a is the anti-

podal map. Let (M, 1, f) be a representation of a class in Q,:(X, 7). Let us define
D™*(M), D"(y) and D™(f) as follows:

D*"(M) = D" x M/(s, x) ~ (s, u(x)): s €dD?, x €M,
D™p): D™(M) — D™(M) is defined by D™(u)ld, x] = [a(d), (x)] and D”(f): D™(M)
—E”"X by D"()d, x] = [d, {(x)].

Proposition 2.2, The map D": -ﬁ;(X, 7) — ﬁi—l)n“(E"X, E™(7)) sending
M, p, /1 to [D"(M), D™(u), D™({)] is a well-defined Q,-homomorphism of degree n.
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In case (X, 1) is a free C™-involution on a {inite dimensional C™-manifold and
n=1 or in case (X, 7) = (S?, @) and n > 1, we bave A °oD" = D"~ ! (n > 1), where
A is the Smith homomorphism of 2.1 with respect to (E®~1X, E"~1(r)) C (E"X,
E™1)).

The proof is straightforward from the definition. We call D" the n-fold sus-
pension of the first kind. This notion is due to Uchida.

Corollary 2.3, Let r: L — L be a differentiable involution on a finite dimen-
sional C%-manifold. L. (1) There is a split short exact sequence of 1, -homomor-

phisms

0 -~ ~
0—Q BESTI QJ(EL, El(r))il*ﬂ;(L, ) — 0.

)]
(2) There is an exact sequence of (U bomomorphisms

2 0 - ~
o, %2 o, Bl §-p11, £ 45 8L, 9 £ 20, —o0.

E

Here the [So, a) denote the composite maps

Q, =~ QX5 o) —— QX(ELL, EY()
with i(+1) = [+1, x] and i(-1) = [-1, x] and p is the map sending [M, p, {1 to [M].

Proof. The fact that Image p = 2Q, was proved in [2]. Since (E!L - L, E!(r)

is equivariantly homotopy equivalent to (5%, a), the rest follows from 2.1 and 2.2.

Lemma 2.4, (1) Let (X, 7} be a fixed-point free involution. The map 7:
Q (X 1) — Q(X/7) sending M, u, f] to [M/p, {/u) is a well-defined isomorphism
of Qmodules.

(2) Let (L, 0) be a fixed-point free differentiable involution on a finite dimen-
sional C™-manifold. The map

n oD QZ(L, o) = QNE'L, EY0) o O (EL/EN0)
is a well-defined Qisomorphism onto 6*(EIL/E1(0)).

Part (1) is well known and (2) is a result of Atiyah in [1]. The proof of (1)
is completely analogous to that of Theorem 19.1 in [2]. To see that the image of
noD! lies in Q (ElL/El(a)) one has only to observe that D!(M) bounds D3(M) =
{ld, x] € D?(M); d € D? N H2}. Then part (2) is a paraphrase of 2.3(1).

Now, as an analogue of Theorem 3 and 4 (3) of Wu [17], we obtain the follow-
ing exact sequence.

Proposition 2.5. (See Stong [11, p. 175).) There is a split short exact se-
quence of -modules, for each n > 2:
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A i, a2
0— Q7 (sY, @) == Q7 (5", @) ==Q_(5""2, a) — 0.
D2

Proof. The equality A20p2=id follows from 2.2. The exactness at
Q;(s", a) is easily proved geometrically as in [17]. The fact that i, is monomor-
phic can be seen by utilizing the preceding lemma together with the collapsibility
of the bordism spectral sequence for RP(n) '[2, Theorem 15.2].

From this proposition and 2.3(1), we obtain the direct sum decompositions of
Q:(S", a) such as

ﬁ;(SZ"H, A= &b DZiﬁ;(Sl, a).
nziz0
But we prefer another kind of decompositions which we will present in the next
section.

3. Second direct sum decompositions. For the sake of the description of

multiplicative structures in Qi(ZZ), we give another kind of suspension operators

in this section.
Regard $27+! as the unit sphere in the complex (n + 1)-space C"*+!, and let
$27 and $27-1! denote the submanifold of $27+! defined by

S U(Zy, Zys e Z)e S 2y s reall,

s,

2 2ntl .
S n:{(ZO, Ziseees Zn)eS | Z, is real},

- 2n+l
$2-V = l(Zg Zypeens 2)e ST Z = 0L

Let p: §2n+l 5 g1 — §27+1 be the map defined by MZoy Zys---s Zn), Z) =
(z,2, 2,2, -+-, Z,Z). Then, p induces an equivariant map f: ($2+1x sV/a x a,
ax1)— (s2"*! 4) which is t-regular on §27=€(¢ =0, 1), and ﬁ_l(Sz"_l)
=(§27-1x §1/a x a) (Uchida [14]). R

Definition and notation 3.1. (1) For an element x in Qi(s", a), we also de-
note by x the element in ﬁ,f(S"*, a) for k> 1 which should be denoted by i{x).
And denote by [$7, 4l the element which should be denoted by [s?, a, id].

(2) For each # > 0, define an Q,module homomorphism
B2 Q7 (S, @) — Q7 (s, a)

of degree 2n by letting E?™(x) be the image of [§2", a] ® x mapped by the com-
posite {[1] (S(Z)" x Sax ), o(@xid/ax a),°\:

.6,;(32", a)@Q* Q;(Sl, a) -—*Q;(SZ” x SYaxa, ax 1)

— Q;(S(Z)" x $V/ax a, ax 1)-’9;(52"+1, a),
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where A is the external product and 6: (§27, a) — (S(z)", a |Sg”) is the equivariant
diffeomorphism defined by O(ZO, Zl’ s Z Z") = (Zn, Zystes Z v ZO).

Obviously, E® = id and E?"[s°, a] = [$27, a].
(3) For each 7> 0, define an {2,smodule homomorphism

7 —

E27*1 Q=(s1, o) - QF(s7*2, a)

of degree 2n + 1 by E27+l1 = A o E27+2, Obviously, E27+1[$0, 4] = [§27+1, 4].
Lemma 3.2. Ao E?=fg"-1 (n > 1)

Proof. It suffices to prove AZo E?" = E2"=2 for n> 1. This follows from

the fact that 1 ~1(§27-1) = (5§27~ 1 x §1/a x a) and the definition of E2” and
E2n—2_

Corollary 3.3.

1 Q-(527*L &) = @ EQI(sY, a)
n>i>0
(2) Qs(5%7, a) = @ E20(sY, a)§ ® Q{{ls?", alil.
n-1>i>0
(3) Q7 (2,) = Q7 (s°, @) - @0 EXQZ(s1, a).
2

ﬁ:(52”+1, a)

4) ® E2i+1§;(51, a)

n-12i20

=Qiflz, z i & ® Q,H{Is27*, ali}.

(5) ﬁ;‘(SZ",u)=9*u[zz,z2mea§ ® 52“16;(51,@2.

n-1>i>0

(6) fz,j(zz) = 0 (s®, @ = iz, Z,1 & ;EB EZQ-(s?, a)E.

i>0

Here QUL ™1} denotes the Q,-free module generated by a class [*] and
[ZZ’ Zz] is the class of the action of Z, on itself by the addition homomorphism.

Proof. From 2.5 and 3.2, (1) and (2) are easilx obtained by induction on n.
Then (4) and (5) follow from 2.3(1) and 3.2. Now Q,f(Zz) o~ Q:f(S"", a) is a para-
phrase of [2, (19.1)). Therefore

0%z = ﬁf( U (s, a)) - Dir. Lim QX(s%, a).

i>0 i

Recalling that [§% al = E{$Y, al, (3) and (6) follow from (1), (2) and (4), (5).
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4. Determination of ﬁ;(Sl, a@). In this section, we determine the ( -algebra
structure of Q;(S!, a). In view of Corollary 3.3, this determines completely the
Q,-module structures of QXs”, a).

Let &, = ZIXop 1o Xyps k£ 2%, (X_)?) be the polynomial subalgebra of Ny
defined by Wall in [16]. Regard Q;(S!, a) as a ring via the Pontrjagin product with
respect to the multiplication map p of 1.3(2).

Lemma 4.1 (Wall [16], Stong [11]). The map 7: ﬁ;(Sl, a) — R, sending
(M, s /] to [M/p], is a ring isomorphism onto ZE*.

Proof. It is clear by definition that 7 is a well-defined ring homomorphism.
From the definition of &, in [16], it is also clear that 7 is an epimorphism onto
®,. _ Considering the orientation covering of an unoriented manifold, one sees that
Noo? Q5 (8%, @) — Ny, defined by 7n_[M, g, /1 = [M/p] is a bijection. Therefore
1 =1, ©i4 is monic since i, is so by 3.3(3).

Now we proceed to the description of Q;(51, @) as an Q,-algebra.

Notation 4.2 (cf. [16]). (1) Let # denote the set of all partitions w = (a,,

Ay, v e, ar) with unequal parts a; none of which is a power of 2. And let lw| =1
be the length of w.

(2) For partitions w, o €m let @ Ne' € 7 be their intersection i.e. the
partition whose parts belong to both @ and w'. Also w © @' € 7 be their
symmetric difference, i.e. the partition whose parts belong to either w or ' but
not to both.

(3) For a partition w = (a P @Byttt ar), let w; denote the partition obtained
from @ by omitting a.

With these notations, Wall’s result on €1, can be stated as follows.

Theorem 4.3 (Wall [16)). (1) The ring structure of Q, can be described by

the following polynomial presentation:
0 g Zgai Zga 'gwi; lwl 23, (2 :bminw' gaz.gwl.ea)’> = 8u8u!
. i - N
1 1

LZ[lJ‘ik;kZO,gw;wen]z‘—vQ*—bO,

where Z[---] denotes the polynomial ring over Z with generating set {-- -},
4[---] the ideal generateaA" by {---3, x the natural inclusion and X is the quo-
tient homomorphism. (For representing manifolds of g, see {16).)

(2) The generators of Q, given above are irredundant and the relations are

independent.

Definition 4.4. For each partition w € 7, define an element Ww in
Q;”w"(sl, a) by W, = 77'1(X[), where 7 is the isomorphism of 4.1,
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X, =X

@ 2ay

@,+a,+---+a . For convenience, let Wy imply [s? a] and hg=1.

o Xzar for w = (al, @y toey ar) is as defined in [16] and |w| =

Theorem 4.5. (1) The structure of ﬁ;(Sl, a) as an Q,-module is described
by the following Q-free presentation:
0— Q2[s% al, 2w _, A_; |o| > 2, B

w,w’}

w @ €alt L Q=51 a) o,

—lbﬂ*{{[SO, al, W
where Q4. denotes the free Q module with generating set {.--}, Q. f...}
the Q. -submodule generated by {+.+}, i the natural inclusion, i the quotient

bomomor[;bism and the symbols A, B, ' Stand for the following.

A=Y g, W, -g,ls" dl
i 1 1
and

Bw,a)’ = wair\w’ gaiwmi@w’ -~ 8wWor-
7

(2) The Q,-module generators given above are irredundant and the relations
are inde pendent.
(3) The Pontrjagin products in QZ(S1, @) are described as follows:
(a) [SO, al serves as the identity.
by W W, = bwﬂw’ Wwew' » in particular, W, = W(al)W(aZ) ae W(a’)

for each w= (al’ Aoy *oosy a,) € 1

Proof. (1) It suffices to prove the exactness of the sequence in the theorem,
and that is easily derived from 4.1 except for the assertion that ker j CImage 1.
So we only prove that part, which requires a cumbersome argument. The verifica-
tion of the remaining parts are left to the reader.

Denote by4 A, the polynomial ring Z[b“a; k>0,g,; ® € 7l given in 4.3 and
let A df---}} denote the free A, module with generating set {---}. The ring
epimorphism A: A, — Q, of 4.3 induces a A,;module epimorphism Az Adl---H
— Qil---ll, where Q, is regarded as a Asmodule via A. Define a Az homomor-
phism A: AIS®, al, W; @ € nl} — A, by AlS%, al= 0 and AW ) = g,. Simi-
larly, let A': Q*{{[SO, al, W,; @ € 7}l — Q, be the O, homomorphism defined by
A'[S9, 4l =0 and AI(W,{") = g, By definition, A OK =A"o), and Aoj= [ZZ] °
A', where [Z,): Q, — Q5% a) is the isomorphism sending [M] to Miz,, z,}
and [Zz’ ZZ] is as defined in 3.3.

Now suppose j(x) = 0 for some homogeneous element x. Take an element
% in A IS, 4, W,_; @ € m}} such that LG = x Then,N)\ oA () = A o), (x) =
A'(x) = 0 because [Zz] oA'(x) = Ao j(x) = 0. Therefore A(X) is in Image « by
4.4, i.e.
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A =Yoa, 2,+ X Bw<Zga gw>

w lw 23

&)&)’ i

‘ + Z }/w w! gz(bw ﬂw’ga gwew') gwgw'§

for some a , B, and yf‘\’,’,w' € A,.
Define an element x ' in A{{[S°, 4, W, o € i} by

¥ =3a, 2w, + 2 Bw<2ga W, ~g,ls% a]>

w Iw|23 F2

+ Z )/ww’ 3Z(bwnw'ga wea)’ gmww’$'

w,w’ z

Then

(4.6) K('J\c"\ =X(';) and )\*(?c") € Image 1.

Now x - x ' in A*{{[SO, al, W,; @ € 7}l can be uniquely expressed as
~ g

¥ -x' = afs0 a] + Ew(ZLg)O) + Lg))Ww, where a, LS‘)O) and Li}l) are polyno-

mials in A* such that each monomial in LS) has coefficient one or zero. Then,

S ELO LDy AE-F)=0
w
and so

1
L%, =2X L Mg,
w w

Since g, is a polynomial generator of A, for each w € w, the above equality
implies that, if Lfdl)gw contains a monomial ';_' €. (@ € A,) with coefficient one,
there should exist an ®' such that ©' £ w and that L(l)' g.' contains the same
monomial with coefficient one. This implies that a=5b" g,,' for some monomial
? in A, and that L1 )' contains the monomial b g, With coefficient one. By
+his correspondence b g 1 e b - g, (not necessarily unique), we can pair all
the terms in EwL(w)Ww as EwL“a? Wo=2 Kw’w' (g W' +g,'W,) for some

o' €A

Defme an element x " in A% al, W ;0 € nll by " =

2 #wl Kw,w' (gmwa)l +gw’ Ww_—hwﬂw' ga)@m’ [SO’ a])' Then’

@
(4.7)
)t*(x") = Z )\*(Kw,w’) <bwﬂa.>' Aw@w’ - Bw,w’ - Bw',a) + Z b(wnw')igai(zwwew')>
w*w' i

€ Image i.
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It follows that

2= L) = A + A LO0eW,) « A G
(4.8) @
+ (z\*(a) + 2 )\*(Kw'w,) B ot gw@w') [s° al.

w=w!

By (4.6), (4.7) and (4.8),

(A*(a) + Z A*(Kw’wl) bwnwl gwew:> [So, al = ](x) =0

w#w!

in Q-(S1, a). This implies, by 2.3(2), Ala)+ 2 s )‘*(Kw.w')bwnw’ 8oy =
2[M] for some [M] in Q*. So that last terms in (4.8) can be expressed as [M] *
2[89, a]. Therefore x € Image i and this completes the proof of (1).

(2) is clear from (1).

(3) Part (a) is clear from the definition. Part (b) is proved by 4.1 as follows:
qW W) =X X0 =X2 00" Xoay =1 yng W) since rlb,) = X2 for
o € 7 [16]. This completes the proof of the theorem.

5. Multiplicative structures of Q;(Zz) and Q.(Z,). For the calculation of
the multiplicative structures of Q,:(Zz) and Q.(Z)) with respect to the Pontrjagin

products, we need the following two lemmas.

Lemma 5.1. The following sequences are exact for k> 0:

~ 2 .
m 0 z) 200 (z) -2,
and
) 0 — 0(Z,) — N,(Z)).

Proof. The lemma is a direct consequence of the equivariant version of the
generalized Rochlin type exact sequence in [9], letting (X, A, D be (pt, ®, id).
Notice that 2° Q.(Z)) = 0 by 3.3 and 4.5(1).

Lemma 5.2. r.(Ww) =(0 1Xw)[Sl, .a]z + Xw[SO, a]z in ?R*(Zz), where 81 =
r 063 [16] and [S?, a]2 implies [S?, a]).

Proof. Let A, denote the ordinary Smith homomorphism mk(z J—R,_(Z)

[12] and ¢ be the equivariant augmentation homomorphism. Since A, oW ) =
rocoAW,)=rodg, 17, Z,) = (3, X ), al,,

r(W,) = 9,x )sL, al, + [MILSC, al,
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for some [M] € R, [2]. But

(M) = e, (M) - [S° al ) = ¢, 07 (W) = (9,X,) c, (ST, al,)
=W, )= (d,x,) - [P (R, =x,-0=X,,
where 77 is the isomorphism of 4.1. This proves the lemma.

Theorem 5.3. The set {[S°, 4, [S?’, al; i > 1, W(k)’ k£ 27} supplies a mini-
mal set of generators [or the commutative and associative (L -algebra with unit
Q- +(Z,). The multiplicative relations in Q (Z)) are as follows:

(n W, w.r = hwﬂw' Wa)ewl » in particular, W = W‘“1>W<“z) .. W(a) for w =
(al,az,-..,a)E'n (Here Wy, =[5% 4] and b = b, ’

(2) E2”W =[s27, a} - W, for each n >0 and ® € 7.

(3) The products of the /'orm [s27, 4] - [52" , a] are calculable in theory by
5.1, 5.2 and the results of Uchida [14] on W*(Zz). For example, [S?", d]? =
[P (ONLs®, a] and [S?, a} - [$*, a] = (S5, a) + W ,,

Proof. From 1.3, 6;,(22) becomes a commutative and associative (,-algebra
with unit via the Pontrjagin product with respect to ¢ . Part (1) follows from
4.5(3), part (2) follows from the definition of E?" and part (3) is clear. The
assertion that the set stated in the theorem generates ﬁ"(Z ) as an ) -algebra is
easily proved from parts (1), (2), (3) of the theorem and from 3.3, 4.5, 5.1, 5.2
together with the fact that A2"+2" (Ls2, al, [52" , aly) = ("*") [s°, al, [13).
The irredundancy of the generators [P, a] and [Szi, al (i > 1) is clear from parts
(1), (2), (3) and the result on %*(Zz) mentioned above. The irredundancy of W(k)
(k £ 27) is derived from that of sz in {X 2k} k>0, X k£ 2 >0), k> 3}

as a set of polynomial generators for N,. We leave the details to the reader.

Theorem 5.4. The set {[Zz, Zz]’ [s2i+1, 4] i>0, EZi+1¥Vm; w € mi> 0}
supplies a minimal set of generators for the commutative and associative (-alge-
bra with unit Q: (Z,). The multiplicative relations are as follows:

(1) [s%+1, a] - [S%+1, gl = 0 (4, j > O).

(2) The products of the form [S¥*+1, al * EZI+IW and (E2*+1W WEZ+1W 1)
can be calculable in theory as in the case for Q;(Zz). .In particular, (E2i+lle)2
=0 for w € m, i>0.

The proof is analogous to that of 5.3. So we omit it.

6. The odd period cases and weakly complex cases. In this section we con-
sider the free equivariant oriented (weakly complex, respectively) bordism group
Q,X, ) WX, 7)) of Wul17] for a pair (X, 7), where X is a topological space
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and 71 X — X is a continuous periodic map with odd period p > 3 (with period

m > 2). Its definition is completely analogous to that of ( ) given at the be-
ginning of $1, only to replace involution by map of odd period p > 3 (map of per-
iod m > 2, and orientation by weakly complex structure).

As in §3, regard S2"*! as the unit sphere in C"*!, For each integer m > 2,
lee T SZ”+1 — §27+1 be the free periodic map defined by T, )(ZO, cen, Z) =
()\( )Zo’ . )\( )Z") where )t m) = exp(27i/m).

Analogously to 2.5, we can easily modify Theorem 3 and 4(3) of Wu [17] as

follows. The proof is omitted.

Theorem 6.1. (1) For each integer m > 2, the sequence
~ e o+
N 1 1 ntl
0TS, Ty T U(ST, T i) —— 52, 7,
A (e2n-1 \
AU, s T v

"H, T(m)) is the natural inclu-

is exact for each n > 1, where i: (S, T(m)) C (s2
sion, ?i*(szﬁl, T(m)) is the kernel of the ordinary augmentation homomorphism
U*(Szi+l, T(m)) —s U*(Szi+l/T(m)) — U, and A is the Smith bomomorphism
analogous to that of 2.1.

(2) In case m is an odd integer > 3, analogous results hold in the oriented

case: one can replace U.() of (1) by Q,().

Now denote the quotient spaces $27*1/T(m) by L™m) and the complex pro-
jective spaces by CP(n). Let [L"7(m), i] be the weakly complex bordism class
inUsy(, _ e 1(L"(m)) represented by the r:natural inclusion map i: L=D(m) C
L™m), and D: U, ., (L™m)) — U? L"(m)) be the Atiyah-Poincaré duality
[1}. And denote by 7 the canonical complex line bundle over CP{(n), 7: L™m)

— CP(n) the natural projection, and ¢ ,(£) the first Chern class of a complex vec-

tor bundle ¢ in U%-cobordism theory in the sense of Conner-Floyd [4].

Theorem 6.2 (Kamata [7]). With the notations as above, it bolds that
DIL"=1(m), 7] = {cl(rr WY form>2, n>1 and j>O0.

As in [7], [10], let F(X, Y) be the formal group law defined in UMLX, Y1
characterised by the property that ¢ (£ ® £') = Flc (8, ¢ (') for complex line
bundles & and &' over the same CW-complex. For each integer m > 2, define
a formal power series [m]o(X) € U*[[X]] by [21p(X) = F(X, X) and [m + 1} o(X) =

F(X, [ml o(X)). Then [ml.(x) is uniquely expressed as m]L(X) =
DN V(”’)Xk+1 with V("‘) € U~ 2k, Hereafter we identify U, with U* via D

and denote by V(”') the element D~ 1\V(”’)) in U,.
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Now set a,, ;= [S25+1 T(m), i € U,y (SZ""'1 T(m)) (n >k > 0) and
Bogir= EOsisle Ve m) i Qoiee Let ReU,—Q, and R U LS T(m)) — Q52 T(m))

(in case m is odd) be the homomorphism forgetting a weakly complex structure.

Theorem 6.3 (cf. Conner-Floyd [2], [3], tom Dieck [5], Giffen [6], Kamata [7]).
(1) For each integer m > 2, ?/*(SZ"‘”I, T(m)) (n > 0) is isomorphic as a U,module
to the quotient of the free U -module generated by Qpp Qgy ey Ay g by the sub-
module generated by 3, Bireoes By, e

(2) In case m is an odd integer > 3, analogous results bold in the oriented
case: one can replace U ) a, and ,8 of (1) by Q*, R(a) and R(ﬁ) respectively.

(3) Let [S27+! Z ,1x T(m) ¢l be the equivariant bordzsm class in

)1 (SZ"+1 T(m)) represented by the equivariant map which is the restriction of
p: Sntt ol — 5204l gefined in §3. Then [52"+1 xZ_, 1x T(m), p} = = Bonsrr
Equivalently, the bordism class [S?"+}, ] €U (L"(m)) represenled by the

standard m-fold covering map of S*"*! onto L™m) i's expressed as

(s 7 1= 32 viALiGm, i in UL (o).
0<jsn
(4) UNL™(m)) = A, DLt 1)) & U*[le D/C*Y, (M) (e ), where [pt, i) €
U (L"(m)) is the class of an inclusion map of a point /\ *( ) is the exterior alge-
bra over UF ,Cp=¢ (77 * 1]) and (* %) denotes the 1deal generated by the set

te, %1

Outline of Proof. The proof has nothing new than those of the oriented cases
for involutions although there exists no splitting homomorphism as D? here.

(1) 1t is easily seen that U (S1, T(m)) is a free U, -module generated by .
Then, the Smxth homomorphism argument shows that a, . generates a free U,-
submodule in U (SznH T(m)) and that Qs Qgyeees

U (SZ’“’1 T(m)), applying 6.1(1). By the duahty in 6.2,

D83, 41 = > V(”’) 17 7= 1"1’k< > Vﬁ"’)CJ'lH)— i~ - ml e )

0<j<k 0<j<k

Q,,+) 8enerates

for 0 <k<»n-1. But [m]F(cl) = cl({n*n}’") = Cl(lc) =0. So '32k+1 =0 for
0<k <n- 1. The assertion that all the module relations are generated by [3,,
Bss <+ B, is easily proved by induction on 7, applymg 6.1(1).

(2) From part (1), R('BZk 1) =0(0<k<n-1) in Q (SZ"+1 T(m)) when m
is odd > 3. The rest of the assertions are proved in the same way as part (1),
applying 6.1(2).

(3) Let ?]_: U*(52"+1, T(m)) — U*(L"(m)) be the natural isomorphism taking

orbit spaces.
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In case =0, ’77([‘31) =[st, ”m] is clear by considering the evaluation homo-
morphism U (L1(m)) — H LL™m); Z).

Assume that part (3) holds for # — 1. Then Als27*l, 7 ] [s27-1, 7 1=
n(ﬁz,,_l) in U (L"—l(m)) So A([s27*1, 7 ]— 7]([32 +1)) —0 and, by 6. 1(1)
[SZ"H, ﬂm] = U(anﬂ) + [M] 7 (al) for some [M] € U2n’ But 1 om : §2ntl —
L™(m) C L"*Ym) bounds Di"” c§n*3 — 17*1(y), and so i*[52"+1, ﬂm] =0 in
U, (L"*1(m)), which implies M17(a,) = 0 in U (L™ (m)) and M] € mU,.
Therefore [M]'T}‘(al) =0 holds also in U,(L™(m)), and this completes the proof of
the induction step.

(4) Part (4) directly follows from part (1), applying the duality in 6. 2,

Remark 6.4. (1) The U,- (Q,-) module structure of U(Z ) for m > 2 (Q*(Zp)
for odd integer p > 3) follows from the above theorem by taking direct limit. Im-
posing a complete and Hausdorff topology on U (Z ) [5], the cobordism algebra
Utz ) is determined from 6.3{4) by taking inverse hm1t which deletes the exter-
ior algebra part of U™(L"™(m)).

(2) The Pontrjagin products in U, (Z ) and Q,(Z )(p odd integer > 3) are
trivial in the sense that x + y =0 for any elements in U (Z ) (and Q +Z .

This follows from the dimensional reason and the fact that [L"(m)] =0 in Ug.

(3) In case m=2, U($?", a) and U*(52", a) are easily determined by 6.3,

using the cofibration (RP(2n), RP(2n-1)).

Corollary 6.5 (cf. Kambe [8]). Let m > 2 be an integer.

(1) KUL™(m)) = zllo1)/(™*!, (1 + 6)™ = 1), where 0 =n'p - 1.

(2) The Todd genus Todd[V(:.")] is equal to the binomial coefficient
(~ D™ ). In particular, ToddlVi™ 1=0 for i>m - 1.

Proof. Let CEK)( ) be the ith Chern class in K*-theory defined in [4] and
G(X, Y) € K*pt)l[X, Y]] be the formal group law characterized by the property
C(If)(f ®&) = G(C(If)(f), C(Il<)(-f')) for line bundles & and &' over the same
CW-complex. It is well known that G(X, Y) = X + Y = XY. Then, [m];(X) =
1 (1 = X)™. Part (1) follows from 6.3(4) by considering the natural transformation
[T U*() = K*() defined in [4). It is easily seen that ,lLC(Cl) =~ 0. Part (2)
follows from the fact that g : U, = U, (pt) — K*pr) = Z is given by the corre-
spondence of Todd genus [4).

Lemma 6.6, Let p > 2 be a prime integer and k> 1, j > 1 be integers. Then
every Chern number of CP(kp? = 1) is divisible by p.

, ; im1
Proof. It is easily seen by induction on j > 1 that (1 + )P = (1 +xP)77 " 4

p F( )(x) for some polynomial F.\(x) with integer coefficients. Therefore the
total Chern class of CP(kp! — 1) is expressed as (1 L) 2 {Q +up)p1 p’F @)},
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where u € HZ(CP(kpj ~1); Z) is the first Chern class of 7. So the Chern class

c (CP(kp? ~ 1)) is divisible by p7 if i is not a multiple of p. Since kp’ -1 is
not a mulriple of p, any monomial in ¢y, «--, € epiol of dimension kp’ - 1 should
contain some ¢, with i nota muluple of p. Therefore the lemma follows.

Proposition 6.7 (cf. [2], [3], [5], [6), [7]). Let p>2,7r>1,a> 1 be integers
such that p is prime and (r, p) = 1. Put m = p°r,

(1) All Chern numbers of V('") (i > 0) are divisible by m.

(2) Under the conditions tbat 0<i<p?-1and 0<g<a, V(" e p*-w*
if and only if p2 1 ti+ 1. In particular, V(’") =m, V(”') =p~Hm - m?)CP(p - 1)]
mod (decomposables in U*) Np2°U* and St [V( ) (P fmt”[CP(pJ Nl =
So the classes V;") y are Milnor base elements for U /pU

(3) In U (L") (and QL™m)) when m is odd) with n > 1, the order of the
class [L(m), i} (0<j<n)is p%'m where d is the integer determined by
2d(p -1 <2 +1<2d + 1)p = 1) and 1’ is the integer with (+', p) = 1 which is

determined analogously as d from the prime decomposition of r. Moreover we have

P4 m [L4e 1 m), i]= (- 1¥p2~ 1 [CP(p — DIZ[LYm), 7.

Proof. Let g(X) € U*® QlIX1] be the logarithm of the formal group law
F(X, Y), i.e. g(F(X, Y)) = g(X) + g(Y). MisZenko’s theorem [10, Appendix 1]
asserts that g(X) = 0<k (lcP®V/(k + DIXE*L. Comparing the coefficients of X?
in the equation (Hls i ) g([m] (X)) = (H1< < . j)mg(X), we obtain V('") =m and,
for i > 2,

IT v+ Guvg™ - vim)= ( I1 ]>(m—~ m)[CP (i - D),
1<j<i 1<jgi-1
, vim)

where G(i)(° -+) is a polynomial in the V(’é‘), 73 with coefficients in u*

and each monomial in G(i)(' -+) is an integer multiple of the form

( II j)[CP(k— Dyl .oyl
1<j<isjk 22 1 Tk
with j, + .« +7, > 0. Part (1) and (2) easily tollow from the above equation and
6.6 by induction.

Now we prove part (3) by induction on j (0 <j <n) It is easily derived from
the reduced bordism spectral sequence ({21, [7)) that the order of [L%m), ] is
m as asserted.

Suppose the assertion is proved for 0, +-+,j ~ 1 (j > 1). We prove the asser-
tion for j dividing cases.

(i) In case p — I4j. By 6.3(1) we have
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/32].+1 =m[LiGn), i1+ ++- + V;’Z)I[Lj""ﬂ(m), iJ4+.00=0,

Multiplying pdr', we obtain pdr'm[Lj(m), il = 0 by the induction hypothesis and
part (2).

Let A: U (L"(m)) — U*_Z(L"(m)) be the ordinary Smith homomorphism. Then
by the induction hypothesis, A(p?~ r'mlLi(m), i]) = p?=1r'mlLi=Um), i1 £ 0 as
desired.

In case j=d(p-1) for some d > 1. As in case (i), we have

P mIL AT ), ]y p? VI LA DO D), 1] 4 - <
But by the induction hypothesis and part (2), this reduces to

pd—l - [Ld(p—l)(m) 1 ~p?=2'm cp(p - D= 1)(p—1)(m)’ il.

The assertion follows directly from this.

This completes the proof of the theorem.

Remark 6.8. Since we now know the structure of U, (L"(m)), the method of
Conner-Floyd [2, Theorem 40.1], permits us to generalize a result in [3]and [18]
concerning the fixed point sets of a weakly complex involution to the case of a
semifree weakly complex periodic maps of arbitrary period whose fixed point set
is a k-dimensional manifold (for some fixed k) with trivial normal bundle in the
sense of [2, $40). (See also Kasparov [19].)

7. An application to equivariant maps. Let m, g >2 be integers. Consider
the periodic map T(mq): $2"*1 — §27*1 defined in the preceding section. Since
(T(mg))? = T(m), T(mq) induces a free periodic map T(q) $20*1 /T (m) = L™(m)

— L™(m) of period ¢ sending [ZO, R Zn] to D\(mq)Zo, cee, )\(mq)Zn] where
Mmgq) = exp(2ni/mq).

Let Alg): M2E*L  M2E*L Lo o free differentiable periodic map of period g

ona (2k + 1)-d1mensmnal C®-manifold M2k*1, Suppose there exists an equivar-

iant map f (L"(m), T(q)) - (MZkJr1 A(g)). Taking the orbit space, / induces a -
map

[ L™m)/T(q) = L™(mq) -~ "2%*1/A(q)

"o
and [/ becomes a homomorphism of principal Zq-bundles over f. Let Yma* Yo’ fq
be the complex line bundles associated to the principal Z -, Z - Z -bundles

g2l 52n+1/7~(mq), L™(m) —+L"(m)/7"(q), M2RTL f—»A12 1/A(q), respecuvely.
* ~ m
Lemma 7.1. ¢ fq ~ (qu) .
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Proof. It is clear from the definition of an induced bundle and an associated
bundle that [, =y, = (y, )™

By the naturality of the cobordism Chern classes, it follows from 7.1 that
/*cl(fq) = cl({qu}m) = [m]F(Cl(qu)). Since M2%*1/A(g) isalso a (2% + 1)-dimen-
sional C®-manifold, cl(fq)kﬂ =0 in U*(MZ’CH/A(q)) for the dimensional reasons.

So we obtain the following.

Lemma 7.2, If {lm]g(c,) MR L0 in U*(L”(mq)) where ¢, =c (y ) then
there does not exist an equivariant map (L™(m), T(q)) — (M2k*1 , Alg ))

Theorem 7.3. Let p > 2, r> 1 be integers such that p is prime and that
(ryp) = 1. Andlet a>1, k>0 be integers.

Q) {lp%) e P =0 in U (L") implies n <kp%

(i) If r=1 in (i), then the converse holds, i.e. n < kp® implies
p e D =0 in UL,

Theorem 7.4. Let p > 2 be a prime integer and 7, r' > 1 be integers such that
(py7) =(p,r') = 1. Furtherlet a, b>1 and k>0 be integers.

Suppose there exists an equivariant map
{2 (L™p%), T (por") — M2%*L, A (pbr'))

for some smooth periodic map A(p®r") on a smooth (2k + 1)-manifold MY Then
(i) <k if ak — b <~ 1 and this is the best possible result.
(ii) n <kp® if ak — b > 0 (Munkbolm-Nakaoka).

“Remark 7.5, This is a generalization of a result of Vick 115]. In the original
manuscript of this paper, the statement of Theorem 7.4 was weaker than the
present one. While revising this article, I was informed by M. Nakaoka that, re-
placing the formal group in cobordism theory in Lemma 7.2 by that of K-theory
and applying a number theoretic argument of Munkholm, On the Borsuk-Ulam
theorem for Zpa actions on S*" 1 and maps §22=1 , R™ (Osaka J. Math. 7
(1970), 423—441), he has obtained the result stated in Theorem 7.4 (ii). This
inspired me to carry out the detailed calculation below in cobordism theory to ob-
tain Theorem 7.3. I also learned from Nakaoka that (M?**1, A(p%r") need only
be a continuous free periodic map on a finite CW-complex thanks to the theory
of co-index. '

The rest of this section is devoted to the proof of 7.3 and 7.4.
For a partition w = (i pigreees iq) of nonnegative integers, let r(i, w) be the

occurrence of i in w, and let
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(]')_ 0 if lo| >j
w i!/{n(r(i. w)!)}(j—lml)!if o] < j.

1<i

Define 3,V %% € U* ® Q for j > 0 by

a atl a
IV = (1/pve” )y,
51 V(p r) af—lv(p r) [CP () Z <j+ 1>V(pa+1r)
TF 1
770 elmirs]ell=i-j \ @
where V(pa+1 V(.paﬂ’) e V.(paﬂ’)-.
i1 ig
Put UP*D = 9ly e (=91 Py e® ) o L), Let (91V0%) | and U™
Fyper) .. givisa,) (p97) (par)
be respectively 5PV(1.1 3PV1,2 7) and Uil; ... Uiz )
Lemma 7.6. In U*(Lk?¢ H(Paﬂr)), we have that
a E+ 1
Si[paT]F(Clnk'*l _ Spar(V(paa’))kc}i'p +1 + Z ( )Sugar)clllw” +E+1
- |w|=k+1 @

for a suitable integer s > 1 such that (s, p) =1 and sU(Sa') eU*CU*®Q (lo] =
E+1, lof +&+1<kp®+1)

Proof.

{[pa’]p(cl”k +1_ z Z V;.pa')leJrl}k +1 Z (k + l> V(Par)clll“’” 1

0<j |w]=k+1 \ @ ©

> (’“) pri ¥ k+1-f>v<pa,>cnwu+k+1_
O<i<k+l d = @ © !

fwl=t+1-i;040
By 6.3, we have in U(L*?“ *1(p3*1})) that

+1, .
7.7) (pd'*’lr)cl = - % Z v](pa r)C]1+12.

1<j
From 6.7 we know that V;.Pa’) e pati-iy* !

for p'71 - 1<j<p'-1 and
0<i<a.

So it is easily deduced that we can apply the formula (7.7) to
(p“r)iVﬂza')cT i times repeatedly to obtain

—1\i-l/%
oo ittt =] T Gea(Z2) T (7 e isagpetowen-if st
1<isk+1 p i P -1 p%~1

DD <k+1_1)(11>V£f’,a”"v§,"a”cli°’"+”°"””“1,
0<igkt] w,0' P @ @

- . . [} . . .
the last summation being taken over all partitions @ and @ of positive integer
. . k) .
components with |w| =% + 1 ~i and |0’| =1i.
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+1
Notice that the order of lepaﬂ = D—I[Lo(paﬂr), il is pa+1r, Vﬁ.pa _
p(v (e 3%y 2) and agv;t;“_'i € pU*% So

i-1{k 4+ 1 1, . a —i Ep?

-1 -1
1<isk+l ’ b _ P

a
E+1 _  k*1 %)k kD1 _ pa (y0°r) )k kp%H1
= p%r([(x = D7 - x ]x=1)(Vpa_l) s p r(VDa_l) c

Analogously,

~1\ifk+1-i\[1i atl a, “w““’“w'“*k‘*l
Z,<—p=>< . )@vg, il

_CpE Y (k + 1>(agv<pa,>)w, Jotleen

|w'|=k+1 o'

We carry out this kind of transformation of formulas inductively

k4 1\ .
t.s Z < >(32V(pa'))wcll|w”+k+l =S

i7i of=as1 \ @

k+ 1\, .: a ol +k+1

o Z (oFH1ye r))wclll I

i+ |ofrs1 \ @ b
. ‘+1 a

with (t]., p) = (s]., p) =1, S+ =15 and sj+l(a;>+ vl ’))w e U™

So, after sufficiently many iterations, this formula stabilizes to

E+1
< Z( )Ug,“f)cllwll*k*l

lof=t+1 } @

This proves the lemma.
Proof of Theorem 7.3. Define afuﬁ.f’“') eU*® Q by

ou N -y,
I3 1

aiugﬂur) _gi-lyn _ w > (’ * 1) v(alja') G>0,

i ]+ 1 lwl_=j+l;uw”=i—f @

and define (afu(l’“”)w as (ajll(l."la’)) v (3jU§Zar))- We remark that GJ.US."“') =0
for j greater than or equal to i by virtue of MiSCenko’s theorem. (See the proof
of 6.7(1), (2).)

Analogously as in the proof of Lemma‘7.6, we can find a suitable integer
S].' > 1 for every j > 1 such that (s].‘, p) =1 and that
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> (k ’ 1>sluwr>cuwn o
jw 1

ol 1\ @

= 2 MG, W 2 <m)(afu‘ﬂ“")w c}

(k+1)/G+1)sm<k+1 |oo] =m \©
!
m a

+ 2 NG| X2 <,)U§f, et
@

m'>k+1 |w’|=m’

where [M(j, m)], [N, m")] are polynomials in U*® 0 such that [M(j, m)](ajug’a')),
NG, m')]Uff'a') eUCcU*® Q. Therefore, for sufficiently large j, we have

g (7 ugmadete
j w 1

Tlol=kr \ @

(7.8) ,
m a
= X WG=M X ( ,>U§j’, D)k,
m'>k+1 la)'l—"m' @
We can perform the same procedure for every m' in the right side of (7.8) to ob-

tain

m" a
Z [N’(]'" m’)] Z <w”>Ug’” r) c#;r-

mi>k +2 |m”|=m"

After sufficiently many iterations of this procedure, all partitions appearing in
the right side of (7.8) are made to have their length as large as we please. So
the right side of (7.8) becomes zero since U%pa') =0 and c'i =0 for { greater
than kp% + 1. Consequently, for a suitable s > 1 with (s, p) = 1, we have

7.9 s{[p“r]F(Cl)}k'*l - s(par)(v(t;ar)l)kclipaﬂ
b -

in U*(Lkpaﬂ([)aﬂ_f)). Since cﬁpa” = D7 UL%%*Yy, )], the theorem easily
follows from (7.9) by virtue of 6.7(2), (3).
Proof of Theorem 7.4. (i) {[p”r]F(cl)}kH = (p"r)k“c:'§"+l in UR(LEY1(p2*or")).
‘By the hypothesis, (par)kﬂff’pa%rr' and so {[p“r]F(cl)}l€+1 #£ 0, which implies
n <k by 7.2. .
Conversely, if n <k, there exists the equivariant map f: (Lk(m), T(g)—
(52%*1, T(4q)) defined by

/([ZO,-.o,zk])_—_ T (z’g,---,zkm).
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(ii) It suffices to prove the case for b =r' = 1, which follows immediately
from 7.2 and 7.3.
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