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SUMD&ER¥

This paper treats the Vinogradov's spectral sequence E
of differential equations ([V1]) in the framework of Gelfand's
formal differential geometry ([Gel), and gives new interpretations
of E generalizing formally the secondary characteristic classes
and the Bott's vanishing theorems in the foliation theory.

We describe some part of E and the Lie algebra of the
symmetries in a way useful for actual calculations.  This
description yields a quantitative formulation of the Noether
theorem as a by-product.

The geometric language adopted here produces also a simple
class of correspondences between the soluﬁions‘of differential

equations, which includes the usual Bicklund transformations.
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INTRODUCTION

0.1. In.Nice 1970, Gelfand intfoduced the idea of "formal
Vdifferential geometry" and suggested its usefulness in |
investigations of problems involving jets ({Ge]). He ahd his
collaborators réalized this in their studies of the Hamiltonian
structures asscciated to Korteweg-de Vries equation ([GD]),
the secondary characteristic classes of foliations ([FGG]) and
combinatorial formulas for Pontﬁjagin classes ([GGL]).

The double complexes introduced in [FGG], called the

variation-bicomplexes, play important roles in their works

explicitly or implicitly.

: On the other hand, Vinogradov introduced in [V1] spectral
sequences for differential equations and announced various
interesting results. He uses however algebro-geometric and
categorical lahguage which seéms to obscure the simple aspects
of these spectral sequences, although his'definition hag the
gregt advantage of being valid for very general classes of
differential equations.

This paper constructs these naturally from the variation
bicomplexes associated to differential equations.
| This construction gives new interpretations of these
speétral sequences not mentioned in [V1]. 1In fact, these
permit one to generalize formaliy the basic tools of the
quantitétive studies of foliation,rsuch as secondary character-

istic classes and Bott's vanishing theorems, etc.



However to make this generalization substantial, one must
compute the spectral sequences, for which there are no system-
atic methods at presents. For example in the case of the

integrability equation of G-structures, there arises the problem
of computing various cohomologies of Gelfand-Fuks type not %

treated before.

The detailed contents are as follows.
0.2. For a differential equation R on a manifold M, the basic
geometric object in this paper is its infinite prolongation

R —M (§2.2) and a natural flat connection H on it (82.4).

R
It is a subbundle TR, of rank n = dim M,

This pair (R_, H is a good subtitute for the solution

wr HR)
space (Eé;(R): It provides us "differential calculus"-on
Q%i;(R) and also geometric intuition to the general notions
aboﬁt differential equations.
| By splitting the de Rham complex on R_ - with respect to

- % %
H one obtains the variation bicomplex QR ! of R, where

R’
QP d = TPy @ A%,)  (52.5). fThe filtration P =@ , 80"
- generates the spectral sequence E(R) = {Eg’q(R), dr} (§2.;)
mentioned above.
T
o Caereteees 0w
" 0.3. The E;=r E,- and Ew—te'ms have various meanings (5§4).
The complexe {E;’q, dl} Hq(M,'g?-valued "de
Rham dompléﬁ qnl'éél(R)" (§4.2). 1In particular‘an element of
Egrq; gives us a HI(M, R)-valued function on _géin), which

may be called a characteristic class of solutions of R~ (84.5).



This unifies the concept of the conserved currents of evolution
equations and that of the secondary characteristic classes of
foliations. Further Ei'q. measures how a one-parameter family

of solutions varies (§4.6).

There is a natural map Eg’q——,\Hp('SZ)_i?(R) r R)® g9(M, R)
(§4.2). In particular, d;eEg'qigives us a constant on each
connected component of ﬂ?gl(R) (§4,7). This generalizes the
rigid characteristic classes of foliations.

Finally, E_-terms produce potential topological obstruc-
tions to the deformability of formal solutions to real ones

(§4.4, 4.8). This is a formal generalization of Bott's

vanishing theorem [Bot] in the foliation theory.

0.4. The computation of E(R) 1is generally difficult. This
,paper-treats only the trivial equations R = N (§5) and the
"determined systems" (§7).

Section 5 computes it when R is trivial. The results
coincide with these already announced by Vinogradov [v1]. As
rby—prodﬁcts, various useful facté follow about the Euler-
Lagrange operators, which are however more or less well-known.

Section 7 rewrites Ei’n—l (n = dim M) as the solution

sPaée,of a linear differential operator @;, when R 1is

‘a Cauchy-Xowalevsky svstem in a weak sense. This yields a new
method of computing the conservation laws of wave equations, the
Korteweg-de Vries egquation and BBM equation (§7.6).

When R '1s overdetermined, there are at present no

systematic methods of computing Eg’q, nor of constructing



nontrivial elements of Ei’q (cf£.83.6),

0.5. The connection H allows us to define also the Lie

R

algebra of “"vector fields on égy(R)".
A vertical vector field X on R_—M "pieserves"
the graphs of solutions if [X, IHR]C;IHR. The space of all

such X's form a Lie algebra :‘L(R), which is called the Lie
i

algebra of symmetries of R (§6.1). An element of (i(R) is

. . - l
sometimes called a Lie-Backlund transformation [AI]. |
X I

Following [V1,2], section 6 expresses ;@(R) as

the solution space of a linear differential operator _pRA

associated to R (§6.6). This expression is valid for any R
in contrast to the similar one for Ei’n—l mentioned in §0.4.

Then we get an'effective method of computing the Lie
algebra of contact transformations or bundle automorphisms

leaving R invariant (§6.7).

0.6. When R is both an Euler-Lagrange equation and a
Cauchy-Kowalevsky system in a weak sense, the expressions for

Ei’n_l and QL(R) mentioned above coincide and give us a

quantitative expression for the Noether Theorem:
0

Elln-l C E

1l,n-1

1 = L(R)

(Theorem 8.1).

By péraphrasing the result of [Mar],§8.2 characterizes i

a practical way the image of Eg’n—lC;'Q(R), whose elements are

called the-Noether éymmétries of R, For n =1, this is given

n .,



in [GD]. For general n, this is essentially obtained in [Mar].

0.7, Seétion 9 proposes a simple class of correspondences
generalizing the usual Bﬁcklﬁnd transformations. In this class
neither of two equations concerned plays a predominant role in
contrast to ﬁhose definitions of Backlund transformations given
by varioﬁs people.

Further we remark that the Whalquist-Estabrook method of
conétructing Bicklund transformations ([WE]) can be concisely

summarized by the language developed in §1-2.

0.8. Finally Section 10 gives remarks about motivation and

terminologies of this paper and raises some problems.



0.9, General terminological and notational conventions are as
follows.
Whén a set X has an equivalence relation on it,
[x] (xeék) denotes the equivalence class represented by x.
The set of nonnegative integers and the field of real
numbers are denoted respectively by \y_ and R. For a<b,
Z(a,b) stands for the set of integers in [a,bl].
For i€zZ(l1,n), (i) denotes the element of ‘Nn which
has 1 in the i-th component and zero in the others.
Let I,J€N" (I = (I}, «vey 1), T = (Jg, ooay T))
I+ J€5Nn has Ikv+ Jk in the k-th component kéi? (1,n) .
<

I<J means I, <J (k€z(l,n)). When I 2 J,

. where (;) = 1i!/jt(i-j)!. For Ié}Nn and a set of letters

I . I
X = (xl, ooy xn), xI stands for (xl) i .o (xn) 1 For

a,be-zﬁl,n) with a<b, -Na,b denotes the set of ZIG£§1 such

‘that I, =0 for k€3z(1, a-1)Uz(b+l,n).

k
The dual space of a vector space V 1is denoted by V*.
If '(xl,,..., xn) is a basis of V, _A?V is also denoted by

_Ap[xi]. All the tensor products @ are taken over hB unless
otherwise stated.

The word smooth will mean C . Everything will be con-
sidered in the;smoothrcategory. Manifolds are always assumed
to be connected and with countable basis. When M is a

mahifold,'the~algebra of functions on M (i.e. smooth maps:



<:;he_cotangent bundle :
M-—#R), the tangent bundle,\fhe Lie algebra of vector fields and

~

P

the de Rham complex are denoted respectively by Q@M,

*
and {Q M, dl.

n

'Rz stands for with the standard linear coordinate

denoted by x = (xl, ooy xn). Qf(x) stands for 'igi.' The
forms dxl ... dx" and _(—l)i-ldxl oo é;i ... dx" are
abriviated as dx and dxi respectively.

Finally the decimal system is adopted for the reference
numbers of paragraphs, theorems, etc.. The integral part
denotes the section number and the fractional parts are arranged

in each section according to their magnitude. For example

Lemma7.341 precedes Proposition7.4l since 7.341<7.41.
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&. Jet bundles

This section recalls some basic definitions and properties

of the jet bundles, and fixes notations.

1.1. Finite je£ bundles. Let p:N—M be a bunéle, i.e., a
surjective map everywhere of rank=dim M. * The space of
sections is denoted by I'N.

| Let pk:Nk——+M be the k-th jet bundle (k>1) (cf.[Bou]).

Put N0=N. The k-th extension of s €I'N will be denoted by Sy

(EI'Nk).

If M is a point, we put Nk=N (V,k).

1.2. Infinite jet bundles. Denote the projective limits of {Nk},

{ka} and {sk} (s €TN) by N_,IN_ and s_ respectively. The
.projegtions Nw——+Nk;——+b4 will be denoted by T (k;O),_ﬁ
respectively;
| It is easy to show the following
Proposition 1.21. TN —N is an affine bundle. 1In

particular, T is a homotopy equivalence.

The usual smooth objects can be naturally and easily
'_ generalized for this infinite-dimensional manifold N_. For
example, a function on N_ is smooth if and only if it is in
P N V] * . '
BRI (ENy ( kEN) . Pufc me—Unk FNy and consider \FNkCE‘Nm.
For more details, see [BR]. The sections 1.4 and 1.5

~ express smooth objects using local coordinates on N, .
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1.3. Standard local coordinates. Let M=§§, N(n,m)=MXR$. Put

u?)':ul and define u; €FN(n,m)_ (i€2(1,m),I€ Nn—{o}l by
) R W

s *u% ='(3/3x)I(uibs)

©

for sE€IN. Then (x',uj ; i€2z(1,n), j€2(1,m, IEN") is called

the standard coordinates on N(n,m) .
Suppose p:N—M is a bundle. @ Each point y of N has a
neighbourhood W such that pIW:W——7p(W) is isomorphic to

N(n,m)—>R" (n=dim M, m=dim N - n),whence there is a

diffeomorphism f:ﬂo_lw——7N(n,m)w. Denote the pull-backs by £

of x's and u%'s by the same letters and put U=n0— W.

(xl,u%;U) is called a standard local chart of N,. This will

be used frequently throughout this paper.
Following [GM], we write E[x,u]=F(xl,u%) and denote its

element as fx,ul].

1.4. Vector fields. The tangent bundle TN_ of N_ is by definition

L 4

O A e e e e

’ * ' -
the projective limit of {nk TNk}. The space LN_ of the sections
of TN_ is by definition the projective limit of {fk}, wherekfk is

e s . 2, * -9
the injective limit of {F((wk) TNk)~’ >k}, Here Ty Nz——%Nk
is the natural projection.

-LNm acts on ‘FN_ as derivations in the obvious way and

hence carries a natural Lie algebra structure.

Let (xl,u% i U) be a standard local chart of N_ . Then

an element of -LU , i.e., a vector field on U, is expressed -

uniquely as an infinite sum: Zfia/axl + ij Ié/Bu% , where

Fir £y,p GElxad
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R ) *
"}:ﬁ. Differential forms. The bundle of p-forms A?T N_ is

- %

*
the injective limit of {pk APT Nk}. The space Qme of its

sections, i.e., the space of p-forms, is the injective limit

P
of {Q Nk}'

Let (xl,u% ; U) be a standard local chart of N_. Then

oPu has the expression:
ePu = Fu @ AP[du], ax™].

Hence, a p-form is a finite sum of such expression as

3 3 i i
£lx,uldu TA- - - Adu SAdx TA---Adx ©
1 - s -7

(s+t=p, £ ej.?[x,u] ).

*
Note that there is natural pairing T N_ x TN —>N_ x R,

. . v
where T N_ = A

a—

*
T N_ is the cotangent bundle.

1.6. The connection HN. Now we introduce a flat connection HN
[VS W V8 P N ,

on N_—+M, which will play a fundamental role ‘throughout this

paper.
For each y €N_, define a linear subspace HY of TyNw

~as follows: Choose s EjN such that y=s_(z) (z=7(y)), which is

possible obviously, and put
H =Imd.s_,
vy = A

where - dvs : T M—T N is the differential.
: 27w "7z Ty e ;



+ Lemma .’

(1) HQ does not

(ii) Hy =\jHY is a subbundle

éfbof;

J .

(i) Let (xl,uI 7

depend_on_the choice of s.

-of TN_.

U) be a standard local chart.

Choose s E&TN such that y=s_(z). Then

for iE"Z (1,n).

(ii) P

(1.61)

This is a vec

is given by

3/9
-a/ax

dzsm(a/axi)

-B/BX

Thus X. 1is i
i

Hy = lijoy,n R-%5-

ut

8; = a/axt + 2

tor field on U a

(1.61). These ai

o+ Z(a/axi)z(uiesm)a/au%

+ Jud gy (s, (Z))B/Bu%

I+(
+ ZuI+(l)(y)3/8uI /

ndependent of s and so is

nd {al,---,an} spans HNLU

by (i). Hence Hy is a subbundle of TN_. 0,E.D.

: The connection Hy 1lifts X€EIM up to .i’erHNC__iNm .
Denote thisiby (j:(@M——+ﬁN . Note that ¥ is uniquely
characterized by

(1.62) Xf-s_=X(fos ) , s €TN, £ €EN_,
For a standard local chart (x%, u%.; U, 93; = (3/3x )"

's will appear frequently later.

13
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1.7. Flatness of‘HN. Now we prove H=Hg is flat.

L _\j L m*
Let H = HVCT N_ be the conormal bundle, where

for y €N_.

- Let (xl, u% ; U) Dbe a.standard local chart. Put

= du3 J i

(1.71) . su 3 = Lic1, a0 (5)ax

J
I
(j €2(1,m, IENT).

Lemma 1.72. H'|; is_spanned by ({éuy ; j€z(l,m), IEN'].

g

e e 1 s *
Proof. Obviously {dxl, Gu%} is a frame of T U. Since

Sud (5.) = ; i _ IR
G_uI(‘ai) 0 (lé.vZ.(l,n)), dx (Bj) 5ij' HY is spanned

J
by {(SuI)y}. _ Q.E.D.

Propos:.tlon 1 73. H is flat, i.e.,
VTV NAAL SN N ~ R

drEt = 0 (mod. THV).
'iProof: It suffices to prove the assertion on a standard
local chart (x ’ u%, u).
We have
d = j
dc§uI Z duI+(l) A dx
- uJ k i J
= _Zi,k I+(i)+(k)dx A dx \mo_gi R. 6uI+(1))

= 0.

Hence by the previous lemma, we have

R - L L
dre=|, = 0 (mod. TH™[,) .
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The flatness of H has another expression:

Proposition 1.74. .f:(@M——4LNm is a Lie algebra

homomorphism.
Proof. Let X, YELM, s €TN, £ E&FN_. . Then by (1.62)

[¥,¥1£-s_ = (XY - ¥Xe)es_
= (XY - YX) (£es_)

=[X,Y] £:s_.

' Hence [%,%] = [X,Y]m. : 0.E.D.

Corollary 1.75. The ai's defined by (1.61) commute

with each others.

1.8. E}gt sections. A section - s-’éI‘N°° is called flat if

[

s (M) is tanggnt to HN’ i.e., Ts(M)C:HN{

CESRE

Propostion %.81. For s €IN_, the following conditions
WA ST AN, PRARNS bl - = s R R
are mutually equivalent.
(i) s is flat,

(ii) s*:j,‘H; =0,

(iii) s = (noos)p .
 JProofl  (i)e=>(ii)e=(iii) is obvious from the definitions.
Proof of  (ii)=> (iii). Let (x7, u% : U) be a standard

~local chart..v Then - (ii) implies

* R . . > 3
io_ o3 j i_
| s éul = ds) __ZisI+(i)dx 0,
3o .3 |
whg;e S; = ujes. Hence



Jad _ 3
Bsy/3x" = S1y(q)¢

and we obtain
s% = aIIIsJ/axI,
=) Thus (Ty>s), = s, on wU, whence (iii)

0°
follows. Q.E.D.

where s

~Remark -1,82. In contrast to the case of the flat

=% 0T

connections on finite-dimensional bundles, HN has infinitely

many flat sections passing through each point of N_.

16
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2. Variation bicomplexes

- WS

This section introduces the variation bicomplex for each

differential equation.

2.1. Differential equations. Let p:N—M be a bundle and put

n =§dim M, n +m =dim N.

A differential equation of order <k on N is a

subbundle ﬁ of Nk;—>M. Here "subbundle” just means that
R 1is a closed submanifold of an open subset of,Nk..and
Py R:R——*M is also a subbundle.

An sGQ:N is a_solution of R if and only if sk(M)C:R.
The set of all the solutions of R will be denoted by ié;iiR).

For convenience's sake the case ‘dim M = 0 is not

excluded.

" Remark. This definition of R is general enough for
actual applications. The more general one admitting singularities
of R arouses unnecessary technical and terminological

complication, which seems to obscure the points.



18

_2#2. Prolongation. We introduce here the infinite prolongation

R, of R, which is so to speak the jet space of the solutions of

By definition, R is a closed
R . (\submanifold of an open set  UCN,.

Let R CNk

be a differential equation;J\Let Ikcxﬁu be
the defining ideal of R . Define ‘;; to be the ideal bf(%Kﬂ;lU)

-~

_ generated by \J2>kjii’ where

= {¥£; xewm, £e1y) (i > k).

Iin

‘The zero set of I  is called the infinite prolongation of R

and will be denoted by R_.

Proposition 2.2. For s€TN, s is a solution of R if

and oniy if s _(MCR_.

[Proof. Since -jf:i;r sm(M)C_Rw implies s is a

solution. Conversely suppose s 1is a solution. Since by
1.6 *I. = 0 impli * h "1, = v
(1.62) S,T; = implies SwIi+l' we have Smli =0 ("1i).
: -
. Hence s I. = 0. : Q.E.D.
Remark 2.21. If 7w|R_ is not surjective, R is called
incomplatible. Then Propostion 2.2 implies (ggi(R) = ¢.

Remark 2.22. An s €rR_ will be called a formal solution

of R. This is a suitable name since R —R is in many cases an
affine bundle, and hence a homotopy equivalence (cf.Proposition

1.21).

Remark 2.23. When R_ 1is finite-dimensional, R is

called maximally overdetermined . or holonomic. - In this case, the

equation is essentially a system of ordinary differential

equations, and hence /SOI(R) % a fiber of R —M.

—_——
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2.3. A basic assumption of R. We assume throughout this paper
= - — e VAV

[P e v

that R satisfies the following

Conditipn_2:3, R ,—"M is a subbundle of N —M.

e v s -

» Here "subbundle" means that ;izRé——+M-is a subbundle of
N, —M (Vs > k).
Then, as in §1.2, we can define naturally the usual smooth

objects on R_. Put A(R) =FR_ , A (R) = F(T,R,) (% 2 k).

By definition A(R) =\Ua, w.

Remark 2.31. Given a concrete R, it is usually easy to

check this condition using standard local chart of N_ (see §3,
§7.1). It is really satisfied by many differential equations in

differential geometry and mathematical physics.

Remark 2.32. Theoretically the involutiveness of R

o m—

implies the validity of Condition 2.3. Thus, the prolongation
theorems [Kur,Mat] give a definite procedure to check Condition 2.3

for general R, although it seems rather complicated to carry it

out actually.



20

2.4. The flat connection HR' The bundle R -——M inherits a flat

connection from N_—M.

. e O D '
Put Hp = H|lp - Since TH I CT , we have Hp CTR,.

Proposition 2.41. Hp is flat.

P;pof. Let 1i: Ra';’Nm be the inclusion. Since
K N N .y . o, .
M, = 1 PHN, Proposition 1.73 implies

R
a 1 L x
THy = i dI‘H;"

= i Fret = +
=0 (?od. i FHN = FHR).

As for the flat sections of Hp, Proposition 1.81 implies

Propostion 2.42. For s &€TR_, the following conditions

IR N VL U i

are mutually equivalent:

(i) s is flat,
P * 1
(ii) s FHR =0,
(iii) s = ("o°s)m’
Thus, éqi(R) can be identified with the set of flat

sections of R ——M with respect to Hp. o

Remark 2.43. The pair (R_, HR) is a good substitute for

'iégi(R). It can express many important formal aspects of R

concisely. For example, an intermediate integral is just a

" subbundle R' of Rw such that HR[R,CLTR'.
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2.5. The variation bicomplex. Let VR be the subbundle of the
vertical tangent vectors of R _—*M. Then ,TRw = VR(3 HR

and hence

o C Prq.
52 Rco - ®p+q=r SZR

P,q .=' Py,* q.Xy - . .
where QR := T (A VR<® A HR). Since HR is flat, d4d has

only (1,0) and (0,1l) components, which will be denoted by

§ and (-1)P3 on Qg’q , respectively. d2 = 0 impliss then

§2 = 3% =63 - 36 = 0.

. . *'*.
Thus we obtained a bicomplex {QR’ = (aﬂg'q , 8, 31},

which is the variation bicomplex of R.

The flatness of an s €T'R_ can be expressed, using the

variation bicomplex, as follows:

Proposition 2.5. For s €TR_ the following conditions_are

[ RN U N N L N LN W

mutually equivalent.

(1) s is flat,
T s L +,%* p,*
(ii) s Qp’ =0, where Qp° = p>OQR '
* .
(1i1) s ez'T =0 (3qez0,n-1)
_ % _
vy sTegr® =0,
: * % YV e .
(v) ds £ = s of (VY £€a(R)).
Proof. ‘Let i R.,—>N. be the inclusion. Then s éme
is flat if and only if i.s ¢I'N_  is flat. Moreover, it is easy -
to see i*ﬂg’q’=.ﬂg'q. Thus, it suffices to prove the assertion

~ when R=N.



put QP’9 = Qg'q for brevity. Since .£H§'='Q ,

Proposition 1.81 implies (i)e=(iv). Obviously (ii)=>(iii),
Vo

—(iv) =»(v). Thus it remains to show (iii)=p (iv)=>(ii)

and (v) .é’.(iv) .

Il
ool
[
0
t

Obviously we may assume N = M x R M

. [P

(xl, u%) be the standard coordinates on N_.

‘. . *.1,q9 3
Suppose (iii) holds, i.e., s Q@ ' =0 ( qEEz(o,n—l)).

* 5 .
: J _ J k
Put s Suj __zk=l,n s7 xdx -  Then
* 3 v
S (Gu:j[‘_A_dxlA_-ooAkal.\;.-.A—dxq.*-l) - O
2 * 3
implies S% k 0. Hence s Gu% =0 and (iv) follows.
,k
Suppose (iv) holds, i.e., S*Ql'O = 0. Then S*(Su% =0,

‘whence s*(Gu% An) =0 (vr|éQ*Nw), i.e., (ii) is wvalid.
Finally, suppose (v) holds. Then
J - ax(and - ayd
s*GuI s (duI auI )

3 *J - * J=
ds ug . s auI g,

whence s*@}'o = 0. , Q.E.D.

22
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~% %
.2.6. Modifications of QR' . According to the nature of problems

\

e -

% %
concerned, it is necessary to modify the definition of @ r,
Fi;st suppose a group G acts on R preserving HR'
P .
Then the G-invariant elements of ’QR’ form a subbicomplex of

Qr*, which is denoted by Q.'.
R y wWhlcC 1ls enotce Y R,G-

Furthermore, suppose there is a G-invariant subalgebra B -
of A(R). Suppose that the vector bundles HR and VR have
systems of local frames whose transformation matrices have

-k *k
components in the sheaf of the germs of B. Then :QR’ has a

-k % .
subspace QR,B consisting of those with coefficients in B with
£ £ t; £ * ok * ok Kk Kk

respec o ese local frames. Put QR,G,B —-QR,G{\QR,B'

Wh : Q*'* _ Q*’*
when = “r,G,B

* * - ] - ) .
-Q_’, is then called the G-invariant variation bicomlex of R

is a subbicomplex, B is called admissible.

with coefficients in B. 3 —

(;;:;;ard local coordinates of N_. J
Examgle 2.6. Let M =YR§' N = M><R§. Let (xl,u%) be th;i\

(i) The vector group G =‘R? acts on N by the translation:
Ax, (y,u))—> (x + y, u) (x,vy eRn, u €R™M), on I'N by its action
. vy e -

* *
on graphs, and thus on N_.- Then QR'G consists of
L4

Zféu%_]}_. ..AdxIA.:.'s such that £ = f[u]l. We denote this
- .7 . * %
. L *,
bicomplex by QQN(n,m),d.f.‘
ii G.= (1) sut B = Rlull Th [N S
(ii) Let G._.=. . Pu = Rluil. en R.G,B - R.B

is a bicomplex. Its elements are written as :Zf§u%A...Adx¥§...,

where f's are differential polynomials.

. See also . 83.2.
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’ kK * %
2.7. The spectral sequence. Let .@ ' = Q.'. 5. The filtration
— — . N rer

NSt 0

- %
F on © R_ defined by

_pl *
> Q.. ’.

P —
F R =&
S_Z () Op'=p

is compatible with d and inducesa spectral sequence

E(R,G,B) = {EE’q;vdr}.' This is the one mentioned in the

introduction, and called the G-invariant spectral sequence of

the egquation R with coefficients in B.

gﬁpggk; The spectral sequence associated to the other
natural filtration reduces to the usual one for the fibering

.Rm——+M when G = (1), B = A(R).
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We consider various concrete differential equations and
describe their variation bicomplexes using local coordinates.

We also recall a few known results about their spectral sequences.

3.1. Trivial equations. First consider the trivial
" equation R = N, where N = M X ARm M = Rn Put Qp,q = Qg’q.
Let (xl, u%) be the standard coordinates. Define

.
Ri

Bi‘:-'.'\'Nm and Gu%EQI'O by (1.61) and (1.71) respectively.

Put A = A(N) =f§‘_[x,u] .~ Then
oP'? = A @ APrsud] @ AF[ax’],

" and the differentials are characterized by

3f = V.

i
Li=1,n Bif & dx ,

£

i

j j
_ZI,j Bf/auI & 6uI ,

‘ for £ €A.

The spectral sequence will be calculated in §5 (Theorem 5.1).

3.2. Riemannian metrics. Let M be a manifold and

A

N = SZT*M, the symmetric product. Let RCN be the subspace
of the positive definite symmetric bilinear forms.  Then
{Sol(R) = TR 1is Jjust the space of the riemannian metrres on M.

'The group G = Diff(M) acts on R in the obvious way, which

R
subalgebra of A(R) generated locally by _ﬁM, (a/ax)Igi. '
l * * %

I _ _ , - . .
.(ie}.:..(gij) . Let Q@ ' = QR:G,B . E=E(R,G,B). The following

induces an action on R, Ppreserving H Let B be the
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theorem is suggested by Gelfand ([Ge]) as a specimen of topics

in his "formal differential geometry".

?pgqﬁg@_([Gi]). E-'9 >~ pont? for g £ n-1,

NOMHO

r9 ~ pont? for q <

A
o

E

where Pont* means the free graded commutative algebra generated

by p;'s (i 21, degp, = 4i).

This is proved by Gilkey as a by-product of his character-

ization of the Pontrjagin forms.

Note that if G = (1) and B = A(R), then E 1is T"trivial"

(cf. Theorem 5.1).

¢ e et o~

3.3. Gelfand-Fuks cohomology. Let M be a manifold and

© put

*
spanns TXM}

- . * o0 -
N {(ml""’mn)éz(TxM)_'w1'°"’mn

“UxeM

) : . * R
(n=dim M), which is an open set of (:&ng M. Define R(:N1 by

‘R =7{(m)l(x);xé§M and w = (ml,...,wn) is a local
section of N near k .such that

dml = L. = dwn = 0} .

'Rm- may be considered as the infinite jet space of the local

charts of M. -
The group G = Diff(M) acts on R and hence on R,

preserVing Hp. - It is easy to identify the total complex of

”§* * V 3 . . A | »
'&%jG with the standard cochain complex C*(w_ :; R), where W_  is

Y 4 s [P ) » .
the topological Lie algebra of formal vector fields on n variables

"and R 1is the trivial wn-module. Its cohomology H*(Wn; R)
v . i
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was calculated by Gelfand and Fuks and called by their
names . They also determined E = E(R,G) in their calculations:

?georem 3.3.([GFl).

(1) Eglq ~ Aan,
W
Eg’q = (0) .for g <n, p>0.

(ii) For r 22,
Ei'q = (0) if g #n and (p,q)#0,
EP,n . ﬁn+P(WA’ 3).

r

3.4. Wave equation. Let M = 3? (n>2), N=M£xR. Let R

Vs

- be the wave equation, i.e.,

= C
0w, .

—

R = {uy 9y = 1520,n Y2(9)

Then (I_ (cf. §2.2) is generated by {uI+2(l) -.Zj=2, n Yr+2(5)7

IENT). Thus R_ is a submanifold of N with
Voo

i . .
{x7, uj,J ; 1.€z(l,n), j=0,1, J e§2,n}

as a global coordinates, where u, = In
J.J

U451y +alr_ -
"particular Condition 2.3 is satisfied.
1

A global frame of Hp is given by {Guj’J; j=0,1, J65§2,n},

where ;éuj’J = 6uj(l)+J|Rco . Using the above coordinates on R_,

- _ _ 1 . ]
uy 5 = duO,J uy gdx Zj=2,n Uy g4 (5) 8%

' 1
Suy; 5= du 5 - (Zj=z,n uO{J+2(j))dx
3

“15=2,n Y1,3+(5) &



Then
P2 = aA(rR) ® AP[8u. ] ® r9raxty.
R —_ 3.Jd -

The 1ift 9; of a/axl is characterized by

jo _ .
<8ir dx > = §i, and <3i, §uj,J> =0, i.e.,
5
aix = ai,j
Y9, = V1,5
3,u = J._ u .
171,3 L£9=2,n 70,J+2(3)
aiuj,J = uj,J+(i) for 1 > 2,
The differential § is characterized by x*——+0,
i i , i
uj’J——+6uj,J* *anq 3 by g f—+dx , ug,f—_*2i=l,n aiuj'de .
The Q_' has a subbicomplex Q. with
R R,B |
B .= R[u. .JCA(R) (cf. Example 2.6 ). Its g0l opg glenl
Yy J IJ l 1

can be calculated using the result of §7 (cf.[T1).

The following (0,n-1)-form represents a non-zero class

0,n-1_

in El

2 2 -
(.41 (93 g * Ljoa,n B0, (5)) %1 7 2Lye2,n Y1, 0%, () %y

See Remark 4.51(ii).
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3.5. Korteweg-de Vries equation. Let N =M x R M= 52

Rdhat e Yo'

and (xk, u; j) the standard coordinates on N_, where
4

., . = u(i e Let R be the Korteweg-de Vries eguation, i.e.,
. r’

i,3

R = {K := u3’0 + uul’o + uO,l = Q}(:N3.

Let 3, be the lift of 3/8x" (i = 1,2) on N_. Then

I_ 1is generated by {%IK ; I€5N2}. Since {xl, uj 0’ i=1,2,

- , ~. ,

j €N} {3k ; Iék{z} is a global chart on N_

(cf. Proposition 7.12), R "is a submanifold with (xl, uj)

as a global chart where u., = u, . Hence Condition 2.3
g ’ 3 j,0 l R, | :

is satisfied.

Let 3; = %iIR . This is tangent to R_ and characterized
J - - = ] '
by aix = ai,j ’ aluj uj+l , and azuj al(uul + u3).
Then H; is spanned by {Suj ; J €N}, where
- _ i
6uj 2= duJ’OIR duj Zi=lr2 alujdx ,

andvthus

08’9 = a(r) ®_ff’[5uj] ®_Q_q[dxi] )

The differential iﬁi is determined by xlr—+0, uf——+5uj and

i i i
PPy Xdh, ugelidyegde . .
.~ The vector group G = R" acts on. N, as in Example 2.6(i).

B Kk _*
. . s . ; ’ .
Obviously R, 1s G-invariant. The subcomplex..S';?,R,G is
described as

Pr/q _ A% P . 9.1
QR,G = C (uk) ® A [Guj] ® A*[dx7].

' =k k )
Note that if dx2 is put to zero in SBR’G, then we obtain
. . . 14
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(:

Q

* * : . o

r .

x(1,1),d4.¢. (c-f. Example 2.6(i)). Moreover, 3, acts on
»'-‘*’* . d . t. Th ;.5*,* b l ed

Q
’ * %
. s . . . ’

without losing any information by the pair (QN(l,l),d.f.’ 82),

where only 32 depends on R. This is used in [GD], where

’ * %
the bicomplex QR'G is implicitly used.
14
Eg'l(R) is essentially calculated in [MGK,KMGZ]. See also

§7.62 and Example 6.72.
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3.6. Integrability of connections. A linear connections on the

line_bundle M = Rg'—*L =\B§Tl

(x' = (xz,"',xn)) is given

uniquely by a 1l-form ® = dxl - Zi—z nul(x)dxl. Its
. —~Ll=4,

integrability condition is dw = 0 (mod.w), i.e.,

(3.61) K.. = ur - ul + ujul - ulu]J_ =0 , i, j€z(2,n),

where u;-= Bul/axj.
Let R be the submanifold of Nl defined by (3.61).
n-1 ( i

Here N = M X Bu ’ u%) is the standard

u = (uz'o.o'un)), (X

coordinate and u% = ut, .
3 (3)

It is easy to see that R, is a submanifold of N_ with

i j . :
,{X p ug. ; :L_EZ.(J_,n), j&€z(2,n),J eNl,j} as a global chart.
j
J

The variation bicomplex is described as

Here u quRmf

ﬁprq = aA(R) & AP[GU%](S)AS[dXi]' é

3 =T i
- where
u§+(i) for i < j
3iu3 =1
SJ(u§ + ujui-— uiui) for j < i

\

( JEzZ(2,n)). Note that the right hand side for the case j < i
has meaning since Jieyl,jC;Nl,i’
It is easy to see that

= [ . W iyedpank
©= 15 3ez(2,n) Ieez (1,0 915 (1) + (1) 8% Adx-Adx
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is 9—-closed in 99’3. When n > 4, it can be proved that

0,3
1 - _
class of foliations ([GV]). See Remark 4.51(iii).

~[w] is non-zero in E This corresponds to the Godbillon-Vey
Note that this equation is typical among the overdetermined
systems that arise in the pfoblems of integrability in differential

geometry.

3.7.Foliations. Let M be a manifold of dimension n. Let

R

N = GrpM be the Grassmann bundle of p—élanes, where
pfii(l,n-l). Define RCN; to be the equation of integrability
of ;—planexfields on M. {Eé}(R) is just the space of foliations
of codimension @ on M (g = n-p).

The space R_ can be expressed as follows. Let G(n)
be the group of the infiﬁite jets of germs of diffeomorphisms of
‘E? preserving the origine, and G(n,p) the subgroup consisting
' of those éreserving the foliation xi = constant (iefi(p+l,n)).

Let PM be the infinite frame bundle of M. .This is a principal

>G(n)—bundle and identical with the R_ of $§3.3.

Then ~ R_ = PM/G(n,p).

The group @ G = Diff(M) acts on R 1in the obvious way.
put @ " = it E = E(R,G)
Vu ' =8p'c = /G) .

- Since PM is G-homogeneous, we can describe the total

. * * -
‘complex Q* ={Q-’ , 63} algebraically. Let L. o be the

subalgebra of Wn (cf. §83.3) spanned by

' ' of o e i _ _p+¥i
. {.Zi=l,p £, (x)9/0x" + .Z-j=l,q g5 (v)3/3y }, where y= =x

(if?z(l,q)) and fi’ gj are formal power series without the

" constant terms. Then Q% = C*(W_, L p; R), where
o - N E - ’ (S



32

the right hand side is the relative continuous cohomology

(c£.[HS]), a subcomplex of C*(Wn; R) . The filtration of .Q*
. N . i

corresponds to the restriction of that on C*(Wn; R) induced

by the subalgebra [. . LR-3/3x".
-——— r v~

3;8. Complex structures; LetrM be an oriented manifold of
dimension 2n. Let N be the bundle of complex structures on
the tangent spaces compatible with the orientation. IN is the
space of almost complex structures on M. The integrability
condition is given by a subbundle R(:Nl. ;éé}(R) is the space

of complex structures on M.

The space R, can be described as follows. Let G+(2n)
- and Gg(n) be the subgroups of G(2n) consisting of orientation
preserving ones aﬁd bihomolomorphic ones on gn =’§?n respectively,
The infinite jet space P*M of local chérts compatible with #he

orientation is a principal G+(2n)—bundle. Then R_ = P+M/G¢(n).

The group G = Diff+(M) of the orientation preserving

diffeomorphisms acts on R 1in the obvious way. Put
gt =gt E = E(R,G)
e . R’G r - r . V |
_— * % .

As in §3.7, Q* = {Q " , 623} is isomorphic to the relative
Gelfand-Fuks cohomology C*(Wzn, Lg; R), where L§= is the
subalgebra of holomorphic vector fields on qn = R2n vanishing
at the origine.

, v e
= 2 * A Il * .
ggggg& 3.81. | Neither H (Un, Ln,p’=R) nor H (W2n' L7 R)
- seems to have been calculated completely. However it is not
- difficult to show Hl(Wz, L§~; 3) = R (i=0), B? (i=6), (0) (i#Q,G).

'See Remark 4.82 and (10.35).
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4. Interpretations of the spectral sequences

Aa%4 PR —— — e ee o= A

Fix N—M and RC_Nk satisfying Condition 2.3. Put

* % * *
Q" = QR’ , E =E(R). This section gives some interpretations

of the El-, E2- and E -terms. Roughly, they give us formél

differential calculus on the space :'iégi‘-.(R) .

4.1. Solution manifolds. A map ¢ from a manifold X to TIN is

called 5@991_:}}_ if the map o: X X M—3N defined by ?f(x,y)=o_(x) (y)
(x€¢X, yEM) is smooth.

A map G;X—+$\c3§.,_(R) is called smooth if its composition with
the inclusion ,;S—o“i(R)*——-rI‘N is smooth. A smooth map

c:X-—k_é@(R) is called a solution manifold.

A solution manifold o:X—*’jS_é)ﬂi(R) induces a smooth map
G_:X x M—R_ defined by §_(x,y) = (0(x))_(y) (x€X, yeM).
Let o* :‘»Q*Rm——»'n*(x x M) Dbe the induced map. Q* (X x M) has an

’ * %
obvious underlying bicomplex structure {Q ' (X x M), dx, dM}.

_Propoéition 4.11. . b’f is a bicomplex map.

N e = .

Proofl Let (x,y)€X x M, z = glx,y). Let T:T X@TM—

TR =V @H (V=V., H=H) be the differential of ¥
4 z z R R - @

at  (x,y).

We have TTyM = H by definition. On the other hand

z
T X CVZ ‘since .7 B’m is the projection X x M—M. Thus

-]
. O

=PI C P Yx x My, ' 0.E.D.

We call Go* the characteristic map of the solution manifold

—

0:X —S501(R) .
. N——
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4.2. Characteristic maps. Let {‘Eg’q ' 'dr} be the spectral

[

, s
sequence induced by the filtration 'FP =(:%,ZPQP (X x M),

Recall that
'Efi’q = oPx® 89, Rr),
- VW'
'e5'? = P x, ) @8, ®),

_ . :
and {'El’q,"dl} is isomorphic to the Hq(M, R) ~valued de

Rham complex on X.

Since o* preserves the filtrations, we obtain a spectral

: ; . jgPrgd p,q7 . :
sequence homomorphlsm.{cr}. {Er' }-——+fEr' j - In particular,
o induces o;: EP'T—0Px @ %, R), 0,: BRI —EP(x, RIGEI(M,R),

*
and a homomorphism from {El’q, dl} to the HI(M, R)-valued

de Rham complex of X.

We call these also the characteristic maps of ¢,

4;3, Homotopy invariance. Let 0:X—5S0l(R) be a solution

‘manifold and f:Y—=X a smooth map. Then Agef:Y——+§51(R) is

a solution manifold. Obviously we have

Q;dposition 4.31.

g e Nl G o B

(ge£)* = (£ x idy)*-0*,

(gef), = (£*& id)ea, .
Let d',o":X;ffggiKR) be solution manifolds. c' and o”

are called homotopic 1f there is a solution manifold

- e - _ — 0
g:X X (0,3)——ﬁ§3}(R) §uch that UIXX{l} =o0g', OlXX{Z} = g",

The above bproposition implies




35

Corollary 4. 32 Suppose §',}§":X-—f§2;(R) are homotopic.

Vvt aim e e el ot

Then qé = 0; (r > 2).

Corollary 4.33. Suppose a solution manifold 1§:X-—+So%1R)

induces a nonéero map d,, then ;} is not homotopic to a
constént map.

Thﬁs Eg’q detects nonzero elements of [X, égi(R)], the
space of homotopy class of solution manifolds. In this way
* %

Ez' provides a potential tool for studying the homotopy structure

of Sol(R)
‘\"
* % .
4.4, Topologlcal obstructions. The space E_’ also provides a

useful tool for the study of R.
Let d:X——érR& be smooth, i.e., the associated map
{%:X x M—R, 1is smooth. - When can we deform G to the }w

- of a solution manifold T:X——{Soi(R)?

Suppose @ can be deformed to a %m. Sipce;E*Fp+lQ* =0
(p = EIE.X‘), we have —*Fp+lH*(Rm, R) = 0, where
FP*lax (R, R) = Im(m* (PP lax) —mxgH),

Since t* = g*: H*(R_, R)—H*(X, R) @ H*(M, R), we obtain the

following

Prop051tlon 4 4. Suppose a smooth map B:X———»FR°°

induces a nonzero map 6*:Fp+lH*(Rm, R) —H* (X, R) & H*(M, R)

(p = dim X). Then o can not be deformed to_a sblution_manifold.

Thus C}p,>pEp"* = Fp+1H*(Q ; R) givés usvpotential
obstructlons to the deformability of a formal solution manifold

of dimension p to a solution manifold. (.See §4.8.)
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4.5. Characteristic classes. From now, we specialize to the

\ Y -

_case p = 0, and relate the notions of §4.2-4 with the usual

ones.
———

Consider séiéoi(R) as a solution manifold S: {s}—+$oi(R).
By 8%4.2, S induces El: Eg’q———»Hq(M, g). This map is

. o . 0,9 _ ., ,.0,%
also given simply as follows. Since El = H*({Q 31 ),

0
E1
S;w = [sZw']. Note that by Proposition 2.5 ds*w' = s*3w' = 0.

Thus cueEg

'qam is represented by a 3-closed ' éﬂo’q; Then

'?  gefines a map w :;égi(R)——+Hq(M, R) . We call

w(s) the w-characteristic class of sfésgi(R).

. A
Remark 4.51. The elements of Eg’ appeared mainly in three

different contexts.
(i) The Pontrjagin classes of Riemannian metrics (cf. §3.2).

(ii) When R 1is an ordinary differential equation,

-Eg'o is the space of constants of motions. When R is an
evolution eguation, Eg’n_l (n =z§iﬁ_M) is the space of

conserved currents of R.

Suppose for example M = Rn, N =M X_Rm and RCNk
satisfies Condition 2.3. Then an element of Eg'n_l is
represented by a d3-closed @fiﬁo'n_l, which we write as
w =_§i=l,n Jidxi (Jié-A(R)). Then ©J-closedness is equivalent

. A _ . _ - i . —
to alJl +.i_+aan = 0. Thus, if u({x) = (u (x))éfﬁf}(R),

then  J;[u] := u*JiE{§M satisfies, by (1.61),

83 [ul/axt = - (33, 0a) /ox” ++ -4 33 [ul/ox™) .

“Thus 1if »Ji[u]'s decay rapidly at infinity, the integral
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f J [u]dxz---dxn does  not depend on x* i.e., it is a
Rn—l 1 r

conserved quantity. For example, the class represented by

‘(3.41) corresponds to the conservation of energy for the

wave eguation.
(iii) When R 1is as in §3.7, there is a map
H*(W_,o_; R) —*Eo'*
q’ q’ 1 ,
of orthogonal vector fields, These are the secondary

(g = n-p), where oq is the subalgebra

characteristic classes of foliations on M. See also §3.6
for the particular case g = 1.

H*(W_,o_: R) was first calculated in [GF] (cf §3.3).

9 q
Remark 4.52, Nontrivialty of é's is difficult to
show in general. In foliation theory, this was one of

the main problems in the quantitative theory, which was settled
- affirmatively by Fuks([Fll) and Petro (cf.[St]) independently

. for foliations without any structures on the normal direction.
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, ‘ -~
4.6. Deformation of solutions. Let 'ag: (-g, €)—S0l1l(R)
— = — — —— . —

Aar s - L he me W e -

(¢ >0) be a solution manifold, which is also called a

deformation of s = 8(0)65301(R).
" - ~—

Let 316Ei'q. - By 6§4.2, we have an element
gy (n) 691(—é, e) @ 59(m, R). - Define n(o) = (a/at._lf;l(n)) It=0
€ Hq(M, R), where t 1is the standard coordinate on (-g, €).

We call n(o) the n-characteristic class of the deformation ©

of s.

—

Let u)GEg'q. Then

Proposition 4.6.  3/3t(w(o(t))) leco = d;0(0).

N

iProof. By Proposition 4.31, w(o(t)) = dl(m)(t), where

51(9)6_90(—5, £) @in(M, R) 1is regarded as a Hq(M,_g)—valued
function on (-e, €). Since _dl corresponds: to dt = d(—s,€ X

we have

d,w(o) = 3/3toy (dyu) |,

3/9td 04 (@) |4

(3/3816; @) | g

(3/3t)wlo () | _,-

= Q.E.D.
o . . 0,9 1l,qg .
Thus the differential dl:El ——9El describes the

"universal differentiation" of the characteristic classes of

solutions. - -

Remark 4.61. An example of characteristic classes of

— ————a
T e e

" deformations of soiutions is the characteristic classes of

variations of foliations (df;[GFF,He]). See also 10.35(ii).
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4.7. Rigid classes. Let cEEg'q =5Kefkd1:Eg’q——*Ei’q). By

N wams 1y

Proposition 4.6, tr+——g(o(t)) is constant for any solution

manifold d:(—e,s)——*éol(R), and so a may be called a

rigid characteristic class.

Remark 4.71. Rigid characteristic classes have appeared
in foliation theory by the same name and in ([AI] as "weak
Lagrangeans" of a differential equations. Note however that
when R 1is the Euler-Lagrange equation of a Lagrangean L

[+2]

_hdmogeneous in u%'s, then the class [L|R dx] 1s necessarily

-zero by virtue of the Galindo-Martinez formula (5.43).

Remark 4.72. Even if cé?Eg’q is not rigid, it can be
constant for deformations of solutions. In fact the
variability of non-rigid classes is difficult to show in general.

In foliation theory, Fuks established this in [F2].

. Remark 4.73. Each EGHq(Rm,‘R) defines é:éEi(R%——+Hq(M,B)

by é(s) = s*g. Let .}:Hq(Rw, B)——+E2’q be the projection,
and ig:Eg’q:aEg’q. Then E = pA(£) obviously and ‘E is rigid.
In foliation theory, elements in {égkuk) are often called the
‘primary characteristic ciasses, whereas those not in ;ft(gi)_

the secondary characteristic classes. Note that up) 1is neither

injective nor surjective generally. _gefuk = FlHq(Rm, R) has

an important meaning as is shown by Proposition 4.4. See also

the next paragraph.
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4.8. Bott's vanishing theorem. Because of its importance, we

V.

rewrite Proposition 4.4 for the case p = 0.

Proposition 4.8. Let AGEEEE'Q (p > 0) be represented by

w' € FPEPYY (g , R). Suppose a formal solution £ €TR_ satisfies
=) . L RSE 9T

f£*w' # 0. Then there is no solution g such that g_ is

homotqp}g to £.

Example 4.81. Let R be as in §3.7., i.e., the
integrability equation of plane fields of codimension q.
Let F—N be the tautological vector bundle: Fx( X EN) is the

-p-plane in T <M corresponding to x. Put v = p*TM/F, the

universal normal bundle. Let v_= mg*vy and denote by P;
the i-th Pontrjagin class of v . Then it is easy to see
p, € FIEN (R, R) for 4i > 2q.

Lét ferIN, i.e., a plane field. Since R_—R and
R—>»N are both affine bundles, there is a lifting ¥ € IR
‘such that i@O% = f. Obviously _%*pi is the i-th Pontrjagin
class of the normal bundle of f. Thus if pi(f) # 0 for
some i > gq/2, then £ is not homotopic to an integrable one,

i.e., a foliation. This is just the Bott's vanishing

theorem.

-gemark 4.82. The Bott's vanishing theorem and its

et
——— e

variants ([Botl) are the only cases where some nonzero elements
+ % p*
of E' =& _5 E°’ were constructed.
S p>0 "= ~ _
: *
- It seems intereting to calculate E:’ for the R of
§3.8, i.e., the integrability equation of almost complex structures.

In contrast to the case of foliations, we cannot get universal
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obstruction by taking G = Diff(M). 1In fact, with this G, we

+,%

have E_ = H+(W ’ Lg; R). But it is not difficult to see
2n n’ =

* .
that f*Eif (€ 'R,) can be expressed by Chern classes of £,
Then they must be identically zero, because of the independency
of the Chern classes of complex manifolds.

_ * :
However for G = (1), E:’ may not be zero. Note that

* .
in this case E:’ of an M can differ from that of another M.
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.Véf Trivial equations
We‘calculate the spectral sequence of the trivial equation
R = N. Most of the results of this section have been obtained
by Vinogradov in ' [V1l] where he relates {Er} with the Spencer
.cohomologies. We give here a‘self—contained proof which
-uses only a simple fact about the Koszul complexes. The results
produce some.useful facts about the Euler-lLagrange operators,

which are now more or less well-known.

* * * %
In this section R = N—M will be fixedand Q ' =_QR’ '
E = E(R). Put n =dim M, m = dim N - n.
5.1. Statement of Theorems.
Ve
Theorem 5.1. Suppose n > 1.
(i) For r > 1,
Eg'q = HI(N, R) if g < n-1,
P,q ;
Er' = (0) . if p >0, g # n.
(ii) For r > 2,
eP/? = w" P, R).
We specialize to the case N = N(n,m).
Let V = Rn_/and S,V the symmetric algebra. The abelian
Lie algebra V. acts on S,V, on R® ® S,V and then on

Wp =.AP(Rm(D S;V). This induces an action of the algebra S,V on

W .. Put B =W /V.W . Note that B, = R".
P p PP i«
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N(n,m) as follows.

Theorem 5.1 can be refined for N
"See §3.1 for the notations.

Theorem 5.11. Suppose M = Bn, R=N=Mx R Then

L

NN A, | e S e

(i) For r > 1, E_ ' = R P E?'q = (0) ( q # n,

(p,q) # (0,0)).
(i) For r>2 EX'® = (0) if (p,@ # (0,0).

s os 0,n _
(iii) E1 = A/31A+- +3nA,

(iv) E]'" =2a®B,, for p> 0.
(v) The map a:Am;—*Ei’n defined by d(fl,--k,fm) =

[Zfiéuféﬂx] induces the isomorphism of (iv) (p = 1).

Corollary 5.12. An element Zfi ISu;AdX of Ql,n is
o N (U Gy S —— e b ’ - —
uniquely expressed as Zfiau;Adx modulo_ sgl'n_l, where

I
£, =] (-3) £, L.
b T1en” ot

‘Proof: of Coréiiéii‘5.12. Uniqueness follows from  (v) of

the theorem. It suffices to show then that

' 1 B -1 1,n-1
Zfi,IduIAdx _z_fiéu Adx €3Q .

This follows from

Lemma 5.121. For £f£€n1,
semma >.l2sL ror

(£6u> .. = (=3 )e---(-3_)Efsu’)ndx
17" % “1 %k —
= 0{J._q (-3 )eee(-3  )Esul Adx T},
£4=1,k ; oy @43 @ypq° ey oy
. _ i — apd
~ where al,-f-,aké'g(l,n), 1.€§fl,m) and 6u“l°°'ak = 6ug

(T = ‘a1)+-f~+(ak))-

This can be easily verified, whence the Corollary 5.12. Q.E.D.
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5.2. Proof of Theorem 5.1 assuming Theorem 5.ll: Since E

VAAS

converges to H*(N_, R), which is equal to H*(N, R) by
v .

'Proposition 1.21, it suffices to show Eg’q =0 for p>0
and q ;.n—l.
. Fix p>0 and put ¢ =0P'9,  Let c* be the sheaf of
complexes on N_ corfesponding to C* =:$Cq.
Let 8* be the presheaf of complexes over N defined

lU, C*). Obviously C* is a fine sheaf on N

by U—T(m,
and hence we have a spectral sequence 'E converging to

H*T (N, 6*)'=.H*C* such that

([ God]l) . Here ;Hga*denotes the cohomology sheaf of C*. But by
Theorem 5.11, ?{qch* =(0) if q < n-1. Hence 'Eglq =0

if q £ n-1. Thus Hqc* =0 (@ < n-1). 0.E.D.



:é;é; ?roof 9£ Theorem Sjl;. Befére proving Theorem 5.11,
We cite a simple result on the cohomologies of the abelian Lie
algebras.

Let V = R" be the abelian Lie algebra and W a V-module.
Let{C*(V;W), d} be the standard cochain complex: CP(V;W)fA?V*gW

and

i+l - ~
) (-1) Xiw(xl""’xi""’xp+1)

do Xy, = li=1,p41

’xp+l

~ for m€§Cp(V,W), xiesv. This is isomorphic to the usual
Koszul complex associated to the V-module W.n Note that
g*(V; W) = W/V.¥ by definition.

Let S,V be the V-module of §5.1. Then it is not

difficult to see

ggqposition 5.31. HPc* (v; s,V) ={0 for p #n
R for p = n.

(c£. [Kol).

et W be a V-module. W is then also an S,V-module.

Proposition 5.31 implies

Cgrollary 5.32. Suppose a V-module - W is free as an

N et S S

'S,V-module. Then for p # n HPc* (v;w) = 0.
Hence in particular

Corollary 5.33. Suppose_a V-module W is as an S,V-module,

PR T T el N PR

aidirect summaﬁd of a free module, _then

: 0 | for p#n
HPC* (viwW) =

W/V.W for p = n.
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Proof of Theorem '5.11. The notations are as in §3.1.
The assertion (iii) 1is obvious.
Since N, is contractible, it suffices for the proof of

(i), (ii) and (iv) to show Eg'q = (0) (g < n-1), EE'n = A<2>Bp
(p > 0).
) *

Fix p > 0 and denote by {C*, d} the complex {Eg' , do}.

Let Fk be the subspace of C* spanned over A by

fou (1 pe e nsut (Pl papd (Mg ipged (@ 5

I(1)*= I(p) Ly=1,plT ] < a-k}.

Then {Fk} is a decreasing filtration on C* compatible with d.
Let {Ei’t, 5;} be the associated spectral sequence.
Obviously, the complex {EO’ 56} is isomorphic to A ® C*,

where C* is the subcomplex of C* defined by

cr = APrsul] @ Axfax'y.

Lemma 5.34. HC* =0 (i #n), B_ (i =n).

WA AT e L e p

e eee—y

Proofl Obviously C* = C*(V; Wp), where Wp is the
V-module introduced in §5.1. Since WP is a direct summand of
the free §,V-module &P (R™ ® s,V), Corollary 5.33 implies the

assertions.

i n

“Thus El =0 (1i# n), El = A @:Bp. Hence the spectral
sequence degenerates: Er= Ei, and so Eg’q = E% =0) (g £ n-1),
Ei’n,= E? = A @)Bp. Hence (i), (ii) and (iv) are proved.

The assertion (v) 1is now easily verified. Q.E.D.
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5.4. Kernels of Euler-Lagrange operators.

We give now some

applications of Theorem 5.11.

Let M =R", N=M x R".

The notations are as in §3.1,
Define sj:A——*A (3 6}(1, m)) by
s.£=1 (=) Tag/oui.
| 1 “rew |
Often 'Ej is also denoted by a/auj.

By Leﬁma 5.121, we have

Lemma 5.41.  For £€a,

§(£ax) = J._; _s.foulpdx + dug

Here
A

| J o
(5.411) wp = Jo o (-3 a£/3uD)8u3 1y L1 ()85 ) 7

where j€2(1, m), IEN" ¢= |I], k €2(1, 2), J

= (i(a
; La=1,x-1 ()
and an expression of I as I = (i(1))+-..-+(i(2)) is fixed.

By Corollary 5.12, §3 = 3§ implies

§59;£ = 0, for i€3(l, n), j €z(1,m) f£EA.

Thus together with (iii).and (v) of Theorem 5.11, we

obtain the following commutative diagram:

~ B

A = >Eg’n
l - l )
m c=l,n

A = /El

where K=,.A/.81A+-~o+anA, B([£]) = [fdx] and &([£]) = (&£, ,6 ).
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= 0,n

Since, for n > 1, E:e-r(dlel ——»El,n) = EO,n = (0) by

1 2

(1) of Theorem 5.11, so ;_8 is injective, i.e.,

Proposition 5.42. For £&A, fdx Gfiﬁ_a, if and only

T e i e S

if 54€ =0 (jc—“z_(i, m) .

This also follows from the following useful variant of

the Taylor formulas proved in [GM]:

= 31
(5.43) £0x,u] = f[x’0]+ZIENnZ§I(u [o(84 1) [x,tuldt)

where

_ I+Ty oy J j
(5.44) Gj'If __ZJ;() ( I ) (-3) 8f/8uI+J.

VNote that 6. = §.. Usually 6j I is denoted as “G/Gu:j[.
r

j.,0 J
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5.5. Ranges of Euler-Lagrange operators. Define for £ €A,

LY A

linear operators D(uj)f:Aﬁ—+A by

() e)g = 1 éNn(af/aug) o'g,  3€z(Lm.

Let D(uJ)+f be its adjoint:

Hh*ng =] (-2 (gat/eud).

"IeN_n

Then E%’n = 0 can be rewritten as follows:

Proposition 5.5. For ij'A (j € 2(1,m)), there exists

—

an £€A such that £, = 6,f ( JEZ(1,m) if and only if

. (5.51) .D(uj)fi=D(ui)+fj for. i,j €z(l,m).

Remark 5.52. The "only if" part was given in [ Man].

— e -
o

Before the proof, we extend the operators 'Eﬁ, D(u™) £

1 * %
and D(ul)+f to Q' Since they are compositions of multipli-

cation by elements of A, 3., and a/au%, it suffices to extend
i

. * * .
Bi and .a/au% from A to @ " ! They are extended to be the

o . i 3o el
derivations characterlzed"by aidx 0, 3;8uz 6uI+(i)’

(a/au%)dxl = 0 and (a/au%)aug = 0. Note that 315uJ = 5u%.

; T = I J i, o i g
‘We define then &, = [(-3)" 3/3uj, D(uh)f -_z_af/aqu . etc..

Lemma 5.52:

—

(3 - - -." =O,
(i) , [6J 1
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P

Proof. (i). It suffices to show [a/au%, 8] =0

and . [-Bi, 8] = 0. The former is obvious. The latter follows

immediately from

-
, . . 3/3111_ (k) (I 2 (k))
(5.54) [B/Bu%, 8,1 = :

(otherwise) .

(ii) It suffices to show Gj(ain_A_dx) = 0 for j €%(1,m),

. o . %0
1:?(1,n) and neq !
6j (ainﬁéx) '

= 1 (-3)Ta/0ud (5, naax)

Z(—S)I(B/Su%)aingdx

={_Z_I(-8)Iai(a/au%)h + _ZI(_B)I-!-(i) (a/ag%)ﬁ}_@dx

=0,

where we used again (5.54). 0.E.D.

Suppose fj =§ f (J€z(1l,m))
— J VL\/
I _

for some £fC€A. Note that if qu = ij 1 9 (j €2(1,m),
. r Liagd

: fj,Ie A) satisfies Zj=1,m¢j<6u3Adx> = 0, then o5 = 0

(j€z(1,m)). Thus it suffices to show
wer

(5;55)'»zizl’m(n(u3)+fi)(§u{§dx) = Iio1,n (D@D £,) (Suthdx).

‘The left hand side 1is
© oy I joi
.ZJ_'-,I( 3) (?fi/SuI(_Su Adx)

v oI j i
= I;(=3)7(3/3up) (};£; 6u"Adx)
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-1,n-1

=$jhﬂfmn + 3g;) ' (Bgfe_ )

= ajsfdx' | o (by Lemma 5.53 (ii))
= aaj (£dx) | (by Lema 5.53 (1))
= stdjf)dx

= ‘d(fjdx)

= _zillafj/auiéuil_\_dx '

which is the right hand side of (5.55). (This proof is a direct

' generalization of the one given in [GMS] for n = 1.)

Conversely suppose (5.51) holds. Then
§().£f .dujAdx
» (Zj 5 Adx)

_ ic,i, a3
[3f;/3uzsurAsu’ Adx

-

Zi'j(D(ul)fjdul)Aduqﬁdx

= I; séuam@h ¥ sulrax (mod. 3g°"™™H
=1, ﬁéu¥én(u3)fisujgdx (by (5.51))
—_— a
= -1, j(D(uJ)fi)quAGufédx
= -8 (J; £, 6u”Adx) .
Hence :‘_é(zjfjdujidx) 63_92’n_l. Since E]2"n = 0, there are
fEA and _u')te,'n—l such that

ijauiﬁdx = S A dx + Jw.

Then Corollary 5.12 and Lemma 5.41 show fj = (.ij (jé?(l,m)).
Q.E.D.
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1)

emark 5.56. There are various conditions for £, 's to be
= _ o i ;

written as-ij (E€n). The following follows immediately from

(5.43).

Proposition 5.561([GM]). For ijEA (j€e2(1,m)), put
~ - - ) LI

- jrl
z = Zj=l,mu fofj[x,sq]ds.

—~—

Then - £, = §,f (j€2(1,m)) for some £E€A if and only if

£, = 6.2 (j€z(l,m).

f = uO,l + uul’0 + u3’0 (ui’:J = u(i,j))°
D(u)f = 8. + ud. + u, ~ + 3.3
2 1 1,0 1
+ N 3
D(u) £ = —32 - ual - 81 .

Thus féﬁi@ﬁ/éu. However by introducing a potential

w= fudxl, we have
£lul = glwl = wy | + Wy oWy o+ Wy o
Then
D(w)g = D(w)+g = 8182 + wl,Oal + wz'oal 4 81
ahd in fact

g = (1/6)5/5w(w(3w1'l + 2wl’0w2,0 + 3w4,0))'
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S.Q. Parameters. .In actual situations, some of the independent
variables often behave as parameters. Correspondingly then
we must modify the variation bicomplex. |

Spécifically,_ let p:N—M be:a bundle and P a manifold,
“which is the parameter space. Put P:N =N x P—M =M x P and
- let g: M x P—M be the ﬁaturél projection. Let R.Cfﬁl be
the image of a:q*N;—*N, defined by aly,s;(x)) = (g*s),(x,y)
(€M, ye€P, s€&€TIN), where q*serﬁ is defined by f{g*s)(x,y)=s(x).

: * %
Let Q ' be the variation bicomplex of R. This includes

. - - % 1
6- and 9d-closed ideal .I  generated by ' (CE>091P), where

—

T is the composition of R_——M—+P. We put

* % * %
Q" <P> =Q ' /I and call it the variation bicomplex of N with

2N Mol

the parametor space P.

m m'

Example 5.61. Suppose M = Rz, N =M x Bu and P = By .
..* *--—-* *
Then @ o= QN’ <P> 1is described as follows:

eP'9d = Z ® APsud; 1w @ A% (ax]
where A& ={§Ix,y,u], and

-

- J gl
§£ = J3f/3ugsuy

3f =}, -1, nalfdx

@u)

j
1fj I I+(1)3/3u1 for i<z(1,n)). Thus

(3

* k T -
- e = 2y C%WX,u)F(x,y,u).



54-1

~% *
Let E be the spectral sequence of ‘QN’ <Pz We can show
just as in the case of Theorem 5.1 the following

iheorgm 5162.'

(i) For r > 1,

e2'? = 5%(v, R) ®@FP if q < n-1
Eg’q=(0)_ : if p> 0, g # n.

(ii) For r 2 2,
EP'" = aP(n, R) @ Fo.

Corresponding to Theorem 5.11, we have, using the

notations of Example 5.61, the following

Theorem 5.63. Suppose M = Rn, N =M x 3@ and P =_B$ .
Then
(i) For r 2 1,
v for (p,@) = (0,0), |
Eplq:
r
0y for (p,q) # (0,0), 9 #n. |
|

(ii) For r 2> 2, E?’q = (0) if (p,q) # (0,0).

s 0,n _ = = -

(;1%) El = A/81A+ +8nA. .

(iv) The correspondence (fy,--,f )—[f;§u"Adx] defines
an isomorphism At i,n.
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¢Rizs3)

This enables us to generalize Proposition 5.5 immediately.

Define D(uj), D(uj)+ and -§j as in §5.5. Then

P;opositioq_§:§§. For fj €A (j€z(1l,m)), there

exists f£€A such that £, = 8;F (jE2(1,m)) if and only if

phe; = owh*e, (1,3€z,m).
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6. Symmetries

.

Let N—M be a bundle and. RCZNk a differential equation
satisfying Condiﬁion 2.3.

This section defines symmetfies of R, which might be
considered as "vector fields" oniggi(R), and expresses the
space :é(R) of symmetries as the kernel of a certain linear
" differential operator.

The notations are as in §2. Put H = HR’ Q. —,QR .

6.1. Definition of symmetries. Let {iRu fTRa be the Lie

[V

algebra of the smooth vector fields on Rw.' Define its subalgebras

by
L(H) = {XELR; [X, TH]CTIH},
-V :
Since iH is an ideal of -L(H), we obtain a Lie algebra

L(R) = L(H)/TH.

The elements of iiXR) are called the symmetries of R.

Obﬁiously we have
(6.11) ‘L(H) =LY (H) @ rH,
whence, as Lie algebras,

(6.12) L(R) = LV (H).
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Remark 6.13. To see that the above definition is
appropriafe, consider the situation of foliations. Let (M;f)
be a foliated manifold and TfCZT the leaf tangent bundle.
Then the Lie algebra of the vector fields preserving leaves are
_;(E) := {X€ 1M; [X, I'TF]C TTF}.  Its ideal I'TE consists of those
 vector fields fixing the leaves. Thus the quotient Lie algebra
é(?)/TTE is the Lie algebra of infinitesimal transformations on
the space of the leaves of ?. Since H corresponds to TEL we

see that the definition of L(R) above is natural.

Remark 6.14. The equality (6.12) is quite useful.

===

This enable us to discard the horizontal part of symmetries,
making the situation very simple, for example in the Noether

theorem. This was first remarked explicityly in [R].

Remark 6.15. L(R) is generally very small. The

soliton equations have the remarkable property that {EKR) have

'~

infinite dimension.

gggégg_G.lG.. Whereas E(R) is useful to obtain solutions
from one known solution, TH sometimes helps us to constiuct
solutions. In fact the Chauchy characteristics of R‘can be
considered as a subbundle C(ﬁ) of H such that
V[FC(Hf,_;C(H)]C:;C(H) and that through each poinf p ER_passes
uniéue subméhifold of dimension = Trank C(H). Thus, once we
have constructed an integrable submanifold X of H whose tangent
space spanhs  H]x modulo C(H), there is a unigue maximal
integrablevsubmanifbld ‘ﬁz i.e.; a solution of R, ccntaining X.
“Wevnote that:thé second.geometric condition for C (H) can be

rewritten infinitesimally.
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6.2. Computation of f. (N) . We determine /L (R} for R =N

-

=M x R—M = _Rn. The notations are as in §3.1.

Let Xe&IvV. Then obviously XG:QV(H) is equivalent to

_ : . — Tye j
[x, ai] el‘H. (1 €2(1,n)). Put X _Z_Xj'Ia/BuI (Xj’Ie‘A). Then

' _ _ 3
[X,3;1 = (X3 144y ~ 3;%5,7)3/%u3-

Thus, [x,’ai] €TH if and only if

X5,14(4) 31Xj,i' jez(l,m), IeN.

Hence XE—LV(H) if and only if
- 51 3
X = za xja/auI, |

 where Xj = Xj 0° By (6.12), we have proved
14

Proposition 6.21., For N =M x Bm—*M = Bn, the map

N A 2N W

I 3 . . . m = o
) ier,m™ ()39 fja/auI] defines an isomorphism A"-—=-L(N).
WVep

(£ _

The above argument shows also the following

Proposition 6.22. For general N—M, X €eTv _{g}_&i@y(H)

Nt N o N At SV @ Y e—am

if and only if (%, ¥1 =0 (eim.

[Proot. Since the problem is local, we may assume
N =Mx R" M = Bn. Then as is shown in the derivation of
L v L. . )

Proposition 6.21, we have X& I}V(H) if and only if [X, ai] =0
. _ -
(i€2(1,n)). But I[X, 1£;9;1 = J£.[x,3,1 for £, €EM.  Thus
(x,0,1 =0 (i) if and only if (x, ¥ =0 (veim.

Q.E.D.
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6 3 Cartan formulas. We recall some of the Cartan formulas on

'R, and prove two basic facts about the subalgebra ,"f.Y(HR) of

LR, .

Firsf, “note thaf as in the finite—_dimerisional case,
weaP = QpRoo can be regarded as an alternating map from
-"I_.me -+xLR_  (p-times) to A multilinear over A. The

exterior differentiation can be expressed as

..I‘ — l+l \' .llv . e e
u(Xy, e cpXpq) = LD TR Ky et Xy K )

i+ hd b
fZ(-l) J@([Xi’xj]f Xll...lx"...IX'I.‘.pr+l

for (_n€'$'2p, X; € LR_.

For w€ QP and X ELR_, define i(X)u}éQp_l by

l(X)m(xll"'rxp_l) = w(X'Xl’...’Xp-l)

(X, E'linw) .

- Define L, = i(X)d + di(X) (X€LR,). 1Ly is a derivation
of @* commuting with 4 and coincides with X on A =_.§0.

Lemma 6.31. If XE&L'(H), then L, = i(X)§ + 8i(X),
. N A A s N - d
and 1i(X)3 = 23i(X).

"Proof. Since, for tBGQp’q, L)éu = (i(X)8 + i (X) +

-DPEX) s - 3i(xX) Do, Lx(f) has (p,g) component (i (X) S+<Si(X))w_

and ‘(p—l,q+lr) component (-)P{i(x)s - 3i(X) ko . It suffices to
show that Lxm does not have (p-1, g+l)-component. Since

' ' ' * *
L is a derivation and Q is generated locally by Ql'o and

X
0,1 it sufflces to show (J.) L QO 1z Qo'l and (ii) LXQl’Q C
1 O

14
' 1,0

Q
Q! '(i) is tr1v1al Now let mE’Q and Yé_f‘H.
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Then ,
(Lyw) (Y) = (i(X)dw + di(X)w) (¥)
= dw(X,Y) + ng(x)‘
= Xw(Y) - Yu(X) - u([X,¥Y]) + Yo(X) =0,
since [X,Y] €TH. Thus Loweq '’. Q.E.D.

Lemma 6.32. If YELM, then i(¥)§ + §i(¥) = 0

N e

cand 1y = (-DP{iHa - i H on P9

‘Proof. First note that [¥, TviC Iv. In fact, for
fcFM and Xx€Tv, [¥,X]f = ¥xf - X¥f = -X(¥f) = 0. Thus
[%, X]EEfV. Then the same argument as in the proof of the

previous lemma shows L%Qp'qC.Qp'q,' which implies the assertion

immediately. ' Q.E.D.

We can show the following weaker version of Proposition 6.22.

Proposition 6.33. - For XG?QV(H)_ggg Y €LM, x, ¥1 = o.

W e, e e e T

[Proof. For fe€aA,

o’

XYE = i(X)6i(Y)af
= -i(x)i(Y)saf (by Lemma 6.32)
= i(¥)i(X)9sE
= i(Y)0i(x)6f " (by Lemma 6.31)

= YXF. | 0.E.D.

Propositégg 6.34. For XE?LV(H), [LX, 3] = [LX, §] = 0,

-k K * % ’ . .
i.e., L_: Q@' —Q ' is a bicomplex homomorphism.

X* ool St

Proof. Obvious from Lemma 6.31. Q0.E.D.
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R |
Remark 6.35. This proposition implies that the Lie alg%bra

{EIR) “acts on the spectral sequence E(R). In the case of

ordinary differential equations, this action is explicitly

" calculated in [Kh] for some examples.

L)

(R) integrable

6,4. Bundle automorphisms. Call an elementrof {
Cif it is represented by an integrable vector field X on R_.
Here a vector field is called integrable if it generates a local
one-parameter group of loéal diffeomorphisms of R_.
In general, elements of }(N) is not integrable. But

there are integrable ones in @(N) which are represented by

the liftings of vector fields LN and (if m = 1) of the
contact vector fields on Ny .

First we consider ‘LN in this paragraph.

Lemma 6.41. For XEIN, there is a unique X€ L(H)
[P SN —_— 7 prelu sty byl o

such that X = X on A, =LfN.

[Proot. First we prove the uniqueness. Let Yéﬁi(H)

satisfy Y.AO = 0. Let (xl, u%; U) be a standard local chart

(cf §1.3). Then by (6.11) we can write YIU = ZYiai + X',

where Yié-f[x,u], Y'E?ﬂV(H]U). But Y.AO = 0 implies Yi': 0

* = 0. Then Proposition 6.21 implies Y'| = 0.

1
and Y'u u

Hence Y = 0.
By virtue of the unigqueness, we may assume M = Rn,

¥
.

N = M x ET in constructing X. Write X =‘2Xi3/8xl + ZYjB/BuJ

(Xi,AYj € FN) . Define then
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' N I - j J
(6.411) X = inai +Y5 (Yj xiu(i))a/aul.

—

Then obviously %c&ﬁ(H) and

-
Xxt = x.,
i
%l J ]
X = X.u7y., + Y. - a7, = Y.,
u L£71i7(1) J _.Z.Xl (1) 3
'\l B
Hence X = X on AO. , Q.E.D.
Remark 6.42. X can be constructed more geometrically as

—_———u"

follows: let ¢t be the local one parameter diffeomorphism

group generated by X. Then roughly ét' acts on _fN and
hence on N_. The induced vector fields is X.

Define o :LN—TL(N) by a(X) = [X].

Lemma 6.43. o:LN—T(N) is a Lie algebra homomorphism.

M e e s e, — -

'Proof. Let X, Y€ IN. Since [¥,¥] = [x,¥Y]1" on 3,

At it

and [%,%]Eﬁi(HN), the uniqueness implies [%,%] = [X,Y]m.
' Q.E.D.
Suppose N =M X'Bm——+M = R?. Then by Proposition 6.21
there is an isomorphism ?:iﬁN)——+Am. (6.411) implies then
> i 3y = - 3
(6.44) Yo (lxia/ax + _ija/au ) | (¥ _Zi=l,nu(i)xi)

(X;, Y, €80 .
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6.5. Contact transformations. Suppose now m = 1. Ny has a

canonical contact structure defined by the line subbundle Lc:T*Nl‘

. . i _
which is 1ocally generated by du - Zi=l,nuidx (ui = u(i)).

1l
of Ny is called a contact transformation if ¢*L = L. The

X €IN is called contact if foLCZIL. A diffeomorphism ¢

) space of all the contact vector fields obviously form a Lie

which is denoted by ;iCtN .

‘subalgebra of LN 1

ll

Lemma 6.51. . For Xiiﬁ?tNl, there is a unique ¥ GingN)

such that X = X on A, = FN

Proof. Uniqueness can be proved in the same way as in
the proof of Lemma 6.41. So we may assume M =‘§n, N=MXx B
in constructing X.

ExXpress XEEle as X = Zi=l,nxia/ax + Y3/3u + Zizl’nzia/aui

ﬁ(Xi, Y, ZiéiAl). Then a calculation shows

1

iy - _ i
Ly (du - _z_uidx ) = _Zi(BW/ax + uiBW/au‘ z,)dx

-rzi(aw/aui + X;)duy
i : _ _ =cC
modulo du —.Ziuidx , where W =Y Zj=l,nujxj' Thus X€L tNl
- if and only if

BW/Bxl

N
I

+ uiaw/au,
(6.511)

>
1l

-BW/Bui,
“ hold. A
| Define for thiCtNl>

N I
X = ][,X,9, + J(37W)3/du,.
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Then

i
¥u = TX.u. + W=1Y = Xu, .
L7iTi
" ,
Xu, = J.X.u.. + 3.W
i 7 L3755 i
i
= ).X.u.. + W/3Ix™ + u,9W/su +.u..sW/su.
Ly¥gugy * oW/ u; 3w/ _Z’ulja /31
=z, | _ (by (6.511))
= Xu..
Thus X = X on A Q.E.D.
Corollary 6.52. 1In the case N =M x R, M =R", the
- map ;u;L;tNl——+Al defined by up(X) =W (X = ZXia/axl + Y3/3%u +
_Zzia/aui, W=yY —_Zuixi) is an_isomorphism.
[Proof. By (6.511) and Y =W + )._ u.X., we can
—_ =3=1,n"3"7
reconstruct X from W, i.e., ﬁ_is surjective. The injectivity
is obvious. : ' Q.E.D.
. ~ctN z s _ k : .
Define .B:L: l——+Q(N) by B(X) = [XI]. Then the following
can be proved just as Lemma 6.43.
:Lemma 6.53. B is a Lie algebra homomorphism.
LGP AN C. o~ e e e e e

In the case M = Rn, N =M x R, the.- relation'between

A: L(N)——+A 'of Prop051t10n 6.21, a of Lemma 6.43, and B, u of

this section is as follows.
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Pr09051t10n 6.54. The following diagram commutes

I N T L i

i

where — Vv(]X,3/9x" + ¥3/3u) =Y - J. u.X, (X;, YEA,,

Li=l,n i1

-1 i

W= _Zi(—BW/aui) 3/9xT + (W ~ _Ziuiaw/aui) 3/3u

+Zi(3W/8xi + uiBW/au)B/aui '(WGEAl)

The notations

-
-

6.6. Description of TL(R). Let M = Rn, N =M x
NN S ; - b

are as in §3.1. Suppose R = {Fl =eee= Fk = 0} (FjEZA)

satisfies Condition 2.3.

Define ¢:A™—a® by (Q?f)i=_z_j(D(uj)fi)fj (1€32(1,K)).

Since i§(§2)c:;@£ (I : the defining ideal of R_), ® - induces

” @R . A(R)"—a(r)¥.

Theorem 6. 6. The > correspondence A™ —T(TN_|R_) defined

W e e P S o ————— s s

by a(fy,ecc,£) = (3 fj)3/3u3|R (£.€ A) induces an

isomorphism -§§;~QR = ( ) .

Remark. This is announced in [v2].- See also [IS1,2].

——

HVBefore the proof we need two lemmas.
Fix X&€T, (d ‘
N

Let v; = uI[R . Put fi = Xv1€1URJ. Choose %iélA such

that %iIRn = fi’ which is always possible. By Proposition 6.21,

_eaI j L.V
X = s %ja/»auI €L’ (Hy) .
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Lemma 6.61. X is _tangent to R_ and its restriction ."on

R ST N

R_ coincides with X.

Proof. It suffices to show that for all y€R_ %Y.= Xy'

This will follow from ¥ ul = x ut (Vi, I). Since X is
i yI y I Yy

quI vaI (XvI)(y). Thus we_have only

to show p(%ui)‘= XV;, where p:A——A(R) 1is the projection.

tangent to Rw,

Denote BiIRm also by 39;. Then 3, commutes with p.
Thus p(%u;) = p(%&lul), which is by Proposition 6.22 equal to

al(pkul) = BI(p%i) = GI(fi) = aIle, which is by Proposition 6.33

equal to XBIVl = Xv;. Hence p(% u;) =,Xv;. Q.E.D.

Lemma 6.62. Let g = (g;)€A". Then X5 = Jatg,a/3u]

is tangent to R_ 1if and only if @(g)Gﬁii.

—

Proof. Since ‘I is generated by {aIFj; j€2(1,k), Ié%ﬂn},
Xg is tangent to R_ if and only if XgBIFjEE§; for all I,j.

But X 3 F. = 3iX F. by Proposition 6.33. Since {;& is

g J ' g 3] .
Bi—closed, we see Xg is tangent to R_ if and only if XgFjEfié.

The assertion follows finally from

I i -
X F. = Yo%q.oF./3ut = (dg)..
gF3 137g; J/_ I (_9)3.

Q.E.D.

|Proof of Theorem. 6.6. Define d{ﬁéf@——ﬁ?jR) by

alg) = XglRm. This is well-defined by Lemma 6.62. By Lemma

6.61,“§ is sﬁrjectivé. Suppose a(g) = 0, i.e., Xg|R& = 0.

This implies gj = XguJ (j€z(l,m)) is zero on R ., i.e., gwaim.

. ,- ) e . . x . . . . — . . _m
- Hence ggra<112. "Eince obviously Ii(:ggxa , we have_Egrq =TI_.

The assertion then follows from TKEEQR =;§é§¢/12. Q.E.D.



66

6,7. Contact transformations of R. Theorem 6.6 gives a

method of computing the Lie algebras of vector fields on N and
if m = 1 of contact vector fields on N1 which leave R

~ invariant.

Specifically let R be as in §6.6 and put
Ly(R) = {(¥]; x€1n, ¥ is tangent to R},

and for m=1

L (rR) = (1¥1: xe ’I.?tNl, ¥ is tangent to RL}.

Put further

A = ® o 3 F—3 _v j
Ay = {(Ey,-+,£ ) |R: £5 = Y57li-1,n%:05 ¥y X; € A, (N)].

Then

Theorem 6.?,

N N e A e o e

(i)  Ly(R) = EjNKexdy,

(i1) if m = 1, 1% (R) = A, N\KeFo,.
| LRSS

Proof. (i) Let X€L,(R). By definition X = [¥] for

some YELN. Write Y = ina/axl + ija/auJ and put

B _ G . . v o
fy= ¥y - i qui% (G€Z(L, m).  since X, ¥ - [x;9; is
‘also tangent to R_, Lemma 6.62 implies @(fj)G-Ii, ‘ Thus

(fj)lRmE-Xb[\geiQR{' This correspondence Xr-9(fj)|Rco is
obviously bijeqtive;

(ii) can be proved similarly. Q.E.D.
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Example 6.72. Let R be as in §3.5, i.e., the Korteweg-
2aTRLE _ :

- !

de Vries equation. The notations are as in §3.5.

Here we have

» _ 3
of = (32+ual+al +ul)f ' fea

and

A ﬁ-i(xl,xz,u,ul,u3) C a.

1

A little calculation shows that iKéfé(\Al is spanned by

. 2 1 -2
{-ul,A (u3 +uuy), 1 - x u;, -xu; + 3x (uy + uul) - 2ul}.

These corresponds to Xl = a/axl, X2 = 8/3x2, X3 = xza/axl + 3/3u

and X, = xla/axl + 3x28/8x2 - 2ud3/3u LN respectively. Their

finite forms are

: 2
-d)l,t(Xl,Xz,U.) = (Xl + t, X, u),
: 1 2 1 2
_¢2't(x , X u) = (x7, x° + t, u),
¢ (xl,xz,u) = (xl + txz, x2, u +.t),
3,t
i, 2 -
¢4’t(xl,x2,u) = (etxl, e3tx , e 2tu)

(t@\fi) . Their commutators are [xl’XZ] = [Xl,X3] = 0,
~[X1’X4] = [X2,X3] = xl’ [X2,X4] = 3X2 and [X3,X4} = —2X3.
In short

Proposition 6.721. The correspondence

B i A
—

84 23 1
' 1o 3a 0 a
—z.f a.X.F— 4 21 -
Li=1"1""1
- B 0 0 -2a, a,

is a Lie algebra injection of ff?t(R) =-é0(R)~ into é;%w;
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-~

Remark 6.73.  Elements of (@b(R) and {LCt(R) are integrable

by definition. When R = N, these are the only ihtegrable ones,

which is a classical result by Backlund ([B3]) . ‘This is wvalid

for equations provided they satisfy certain conditions. .. However

for general R, there can be integrable ones not in (gb(R) nor

Lt (m).

"
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7. Cauchv-XKowalevsky svstems
AV - s T
This section gives a useful description of - Eg’n—l and
E]"n-l of R which is Cauchy-Kowalevsky system in a weak

1
sence (Pseudo CK system in short). .

In this section M = Bn, N =M X‘Rm and the notations

of §83.1 are used. | Put A = A(N).

7.1. Pseudo CK systems. RCZNk

R = {Kl=---=Km = 0}’

=ul . - F.CEA, wi
where Kj. ukj(l) FjE:Ak w1#h kj> 0 and

(7.11) aFj/Bu;:' =0, i€z(l,m, IENGE),
where N(i) = {IEan; I, 2 ki}.

Obviously we have

Proposition 7.12. If R = {K; =--- =K =0} is a

pseudo CK system, then N_ admits the following system of global

coordinates: {BIKj} 3 ﬁg(l,m), Ié?Nn}\j{xl, u% ;i szlgn),

o n .
jezam, TN with I, £k - 1).

This implies

e et e mim . —. . — ——

NN Nt e

Coroliary 7.13. A Qggudo CK system satisfies Condition 2.3.

Remark 7.14. If ki =k (i€2(1,m)) and KjE-ENk, R is

- - . . M . ‘
a Cauchy-Kowalevsky system in the usual sense.

Remark 7.15. In [Mar], a pseudo CK system is called a normal’

system.
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7.2. Statement of theorems. Define linear differential operator
?+:Am——+Am by
+ _ | i,+ .
(27£); = Iy RHE, , 1€2(A,m), f,€A .

.Here D(ul)+Kj is the operator defined in §5.5. Since

§+(i2)CLI§, ¢%  induces @; : A(R)M—am)™.

Theorem 7.21. Suppose R = {K; =---=K = 0} is a pseudo

CK system.  Then

. 1,n-1 +
(1) EJ (R) = Ker@R
(1) if nz2, . E'%m =r IR = (0) (g n-2,

(p,q) # (0,0)).

Corollary 7.22. Suppose R is a pseudo CK system.

e A — S N v S

(1) If n 2 2, then Eg'n"l(R) =0, i.e.,
t-dl:Eg'n_l(R)——+Ei’n-l(R) is injective.
(i1) If n=1, then E'°(R) =R, i.e.,

0,0 1,0

’ 0——f3——+El’ (R)——-*El (R)

is exact.

(iii) E%'n_l(R) = (0).

‘PTO6f.  Put Ep'q = Ei’q(R). By Theorem 7.21(ii), we

A s e

have Ep'™1 = gl/P" a1 E" 1 (R,, R), which yields (i) and (ii),
since Rm~‘is contractible by Proposition 7.12. Furthur
l n-1 . El n- IC:C) i, ~ " (R, R) = (0), whence (iii). Q.E.D.
. l+j n ©
Remark 7;23.‘ Thus we can compute the space of conserved

© e e— e

currents by solving the linear differential equation ¢ £

. . B -
(f E.Am) . The criterions for £¢C Kerd to correspond to an
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element of Eg’n*l will be given in §7.5-6.

Remark 7.24. For the case m =.1, Theorem 7.21 is

 stated in [V1]. For m=n = 1, it is already in [GD].

7.3. Proof of Theorem. 7,21. There are two proofs—the intrin-

sic and the extrinsic ones. The latter uses coordinates on N_

and makes clear the meaning of o , but is a little long. So we
~give the intrinsic proof using coordinates of R_ .
7.31. Lemma 7.11 gives the following coordinate on R :

(xt, ..., PIJIvE _; i€2(1,m), §€2(0,k.-1), JEN, _}, where
’ j.J . X 3 ~2,n

i i : i i :
. = u. . . = V. . T
Vi3 = 95140 | R, Put  vj 3,0 hen
i i

The derivations aj of A(R) is characterized by

aix3 = a]_7j ,

a.vj = vj <y 4 12> 2

i E,J k{J+(1) =

3 - J -
' 29I . ko= k.-1 .
J
Here FJ = FJ | R_ .
: * % * *
Put t = Xl, x' = (x2, ces o xn), ,Q o= QR’ '

gP/d _ gP/4
EL =E_ (R)
' *
7.32, Fix p 20 and let 'F be the filtration of QP
’ : * . *
defined by YFQ = pr ’ 'Fl = P’ A_dt, 'F2 = (0). Obviously
'F is compatible with 3. Let {pE]S:’t , d} be the induced

, . L A *
spectral sequence yhich converges to 1 .
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It is easy to see

Lemma 7 321

Nmea e e e

1) Pegrtzam @A (evi 1@ Attaxt

— , - i
dg = L5 ,(3;, ®1 +1@3;) @ax",
* *
(ii) {pE%’ , do} =~ {pEg’ ’ do} as complexes,

IH

*
(iii) 'Pz-:g' =0 , s

v
N

(See §6.3 for the definition of the Bi‘s action on 4?[8V§ J].)
14

Obviously then we have (cf. Example 5.61)

SUUIE
Lemma 7.322. {pEg’ ' do} is isomorphic to the-complex

-— *
{Eg' » 4, } of the variation bicomplex of
N =M x R M = Rn_l (m = L. k.) with R_ -as the parameter
v =j=1,n 3 : o ———

- space.

7.33. ~Proof of Theorem 7.21 (ii)- for p =0, Lemma 7.322,

W\ Weew

and Theorem 5.63 yield the following commutative diagram:

00,0 ¢

where ="&‘l(f.) = [f] , 87l (£) = [£at) (fE—iﬁ(t)CA).

Thus we have OEg’O = R, GE%’O = (0) .
. : V..
On the other hand, Lemmas 7.3211;nd Theorem 5.63 also
7.322
yleld
0v,w _, )
E =(0) = (1 xw < n-2)

Hence



= R for (v,w) = (0,0),

(0) for v+wé€ Z___(l,n-Z) .

This proves (iji) for p = 0 .

Lemma 7.321, 7.322 and Theorem 5.63, we have for all v

pE‘{’W =(0) for w < n-2,
whenc_e
pEX'w =(0) for v+w < n-2.

This proves (ii) for p > 0 .

J.35, ~Proof of Theorem~7321~(i}-,

Denote the elements of A(R)m (m=Z._ k.) as
=j=1l,m j

£= (£, ) with j€z(1,m) , k€Z(0,k;-1) .

ik -—
Define a linear endomorphism Y of A(R)m by

."Y(f_ ) = (gj,k) r

Q-EoDc

j.k
where - for if‘\?.(l,m) ’
= 3. f, . +% BF Fo)f
9i,0 17,0 7 Fa=l,m'=i,00a’'"a k-1 !
and, for jE€z(1, k.-1),
: Ve . L
= 3. f, . + f + I (D .F)f
93,5 T-%1%4,5 i,3-1 7 ®a=l,m'i,ja’"ak L.

‘Here (D} JG :A(R)—A(R) (i€2(1,m), jEZ(0,k,-1), GEA
rJ . W o

(R))
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is defined by putting for £ €A(R)

J i
(-23) (_fBG/avj'J)v .

w2,n
Define a:A(R) ——>-l ;)_’ n-1 and ‘B:A(R)m—élEi’n_l

i':espectively by

alf, ) = I i,3

B(E, .) = [ .5vji._4dx] .

£, .avjl. Adx']
£,
1,] 1,3

le~1: e~
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Then b.y Theorem 5.63 (iv) and Lemma 7.322, o« and ‘B are

isomorphisms.

Lemma 7.351, The following commutes:

A(R)ﬁ—ﬂ 1"

l? ld
1
w B 1 n-1

AR — Ei'

“Proof. By definition, dla(f. j) is represented by

" 4

Z5=1,m%1 Ex=o, ey -153,% RSV A ax
- J J
= 21 miZkoo, ey 12155, x5V * I kj.zfj,k‘S K+l
_j r
tlr,s,5%5 k10 /2, 5075, g A A

' s . - PO o
Since the. third term represents [(Dr st)f K. lcSv A dx]

follows dlon(fl J) is represented by B (fl J)

-y . ) ’

it
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Lemma 7.352. ~The-map ?‘A(R)m-—*A(R)m.‘defined\by
N te 0 . e - ——ﬁ--—v« - - ~

| v (£. ,) = (fi,k.-l)icfz(l,m) induces an isomorphism
Eer v —*Ker@ .

Proof By induction, we can easily show that @Kfi ) =

if and only if
(7.353) fi 5 = Z (D ;jégjo,ki—Z) ’

+
i, 0 a

,3+l a)Qa

(D] oK) :

(g = £ ka_l) for i€ 2z(l,m) . Here

} =3 k+ -
Di,s%a 10178 T 2k €32(0,k, —1—3)( =99)7D; x44Fa v

. Note that (Za(DZ,OKa)¢a) = @R(¢a) i

Thus y induces ¥ : KefW-f+Kef§;. (7.353) shows vy

is bijective. ' Q.E.D.
Hence lEg’n_l = Kéi@; . Since lEg’t =0 (t€2(0,n-2)),

o ~ _1,n-l _ 1_s,t ' '
(7.354)  E] = @,y .1 Ea

1.0,n-1

1 0,n-1 . =+

= E2 Ker@R .
Thié completes the proof of Theorem 7.21, Q.E.D,
o : N 0,n-1 -+ .

7.4, ~First description of E C Zerd_. Because of its

“ ol - ftt hiebet g | R

'_impértance in applications; this and the next paragraphs give

two explicit descriptions of the composition A of

Eg’n‘%;—aEi'n‘¥__;ﬁé;@+ , ImA and 71, ]

The first one uses the facts in §7.35.



befine a; : A(R)—A(R) (1€2(1,m), j€Z(0,k;-1)) by
- . Ve Ve,
i . oy J i
§; £ = -)-:-JENZ (-3)“of/avy o .
/h

Define for £,g&A(R) ,

o i \J
(E, .f)g = §J€5N2 naf/avlea g,
VT Ly

| (—a)J(gaf/avglJ) i

i
"
(o]

I

. %
,j ~J6N2
Then

Prop051tlon 7.41.

B AN

(1) Suppose _);i_l'nJidxi (JiE?A(R)) represents
Ly
0,n-1 _ _ o1
GE . Then Aw= (¢l ; eee 1 ¢ ) , where ¢i = Ski—lJl'

(ii) For ¢= (¢1 r eee 3 ¢ )E?Ker ®R' defiﬁe
GA(R) (lezu m), j€2(0,k;-1)) by (7.353). Then

¢ eIm A if and only if

E, .£., ., = E., .,f. .
i,j7i',3 i'y3'i, 3
forall i, i, 3, 30 .

Proof. (i) Obviously under the isomorphism

El,n-—l - lEO,n—l of (7.354), d,w corresponds to

1 -T2 1

' = iogod :
(87, Adx'] = [5;33,/3v; ;ov5 5 Aax']

[1(s39,) 6v5 hax']

which immediately implies the assertion.

76



76-2

(ii) Let 0E and lE be the spectral sequences

lE be the homomorphism

introduced in §7.32. Let '{ﬁg'q}:oE——%
. - 0.% 1, % . )
induced by é6:{Q"’ ,3}—{Q"" ,31}. Consider the following
commutative diagram:

d

0____>0Eg,'n 1__>0Eg -1 71,0, :lL ,n-1
lag,nfl l§0’n;l lsl,n—l

0 —lgdim-l__ 100" 1_d_1>1E1 n-1
S!J/a Sll SIJ/

0——>Ker ¥ ———— A(R) ﬁA(R) '

where the horizontal maps are exact, a and B are as in

Lemma 7.351. Note that Gi'n—l (i=0,1) are described by the

commutative diagram:

0_i,n-1 o~ —0 n-1
—=>E

i1,n-1
lsl' J/d
1l i,n—l facd Ei ;D1 ,

where E is the spectral sequence of Lemma 7.322. In particular

fSi’n_l is injective by Theorem 5.63(ii).
By Proposition 5.64, there is a J E}A(R) such that :ﬁg'n-l
maps u; = [J dx'] EOEO n=lg n = Z A'v dx' ]El 0,n=1

By Lemma 7.352 and the assumption: ¢<§K¢r Q , we have
= g¥aln = 0.

Hence

€
I
ol

3]



VThus dlw = 0 and we have

0,n-1

(£;,5) € Im as, .

r

This implies the assertion since there is the following

commutative diagram:

- Cc - -
Ei’n l——::—?lEg’n l———é}—>Ker Y — Ker ?é
with A = bacd. and b(f, .) = 6. Q.E.D.
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This is essen-

Second description of :

7.5.
tially due to Martinez [Mar].
as a subalgebra of A by the substitutions:

Consider A(R)

i i . - . _

Vj,J = uj(l)+J (i c%_’(l,m) r 3 E\‘%.(O,ki 1), Jé.Nzin) . Then
A(R) @iw . Denote the projection

Propositcn 7.12 implies A =
A—A(R) by fr——Ff .
To avoid confusion denote by 31 the derivation 3, of
=3. (i >
Bi (1 >2) .

A(R) . ©Note that ailA(R)
Let ¢ = (by s --- & gsm)éA(R)m . Then

Theorem 7.5.

¢ €Im\ if and only if
(T8 8(Ey Ly #K;) =0 (j€2(Q,m), where §; is
defined in §5.4.
Remark. This is a precise rephrase of the content of
(5.43) the

[ R].
This implies then by Proposition 5,42 and

following
Then

Let ¢ = (¢gr---r0) €Im A.

Corollary 7.52.
-»1—1¢ is represented by the restriction on R_ of such
In particular it is

. 1
+ fgif[x,oldx ,

by

(k= Ji1 mi%s) -
J. = &
1= %

dw = kdx

6 €a) ™ as

reppesented"by' ZiJilRdei where

and J, = d. (i > 2). Here

——— l l —3 —s‘. -

3 o I j_l :

i ijzIEN 3 (u f éj,I+(i)K[x,su]ds).
: 1,i 0

: ' Sk ok k%
Consider Q ' C:QN’ by the maps A(R)C A,
_ S , _ .
by §

%
Denote the differentials of Q ' $ and

~ i . -3
§vy, 57895 (1y4g-

3.
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Proof .of _Theorem!/7.5 . Let éfEA(R)m . Suppose

0,n-1
1

Then 55 =0, i.e.,

¢ = (ﬂmEE ) . Represent é by @':__z‘;iJidxi (JiGA(R)CA).

_ ~
:= BlJl + ... + aaneym .

(7.53) £
Since aiJi = EiJiGFA(R) (L >2), £ is thé{f;—component of

alJl , 1.e.,

J

£= lZJC-NZ 9J /aVk -1,3% K5 »
S 2,n
By an obvious ananolgue of Lemma 5.121,
. G
By Proposition 7.41, ¢i = 5k -191- Hence by (7.53) and
(7.54)
Ziog, mPiKi €02+ oo+ 3R,

which is equivalent to (7.51) by Proposition 5.42.

Suppose now conversely ¢€A(R)™ satisfies (7.51).

By Proposition 5.42, there is an w =~§i=l nJ dx GEQO -l
such that ,Q9 = §j¢jKj . bPut w= 21—1 nJ dxl . Then W is
9-closed. By (7.54) -

—j =1,m w K - Ei=l,naiJi6 9T + oo * OT, -

.where jf)\: (Lp;\l 7 eee g ;’I_Bm) =5\ ([E)_]). Since Ji = Eiéijm I

we have
(7.55')7 —§j=1,m(?j - Epi)'KjGBlIm + ...+ 3 I

Lemma 7.56  ([Marl). If a = (ai)E'A(R)m

S A e -



-

satisfies I, a.kK. GBI + ... +9 I , then a = 0.
==—-—————-—lm1 n «

T Proof. By assumption, there are £; : IGA such that
. 14 14

' I
(7.57 Z.a.kK, = (Z. z £, . L97K.)
) ~i7i"i —-J. .‘L =j=1, m_IGNn i,j.I |

I+(i)Kj) .

= 5. . .f..aK3+f.a
. —l,j,I(al i,J3,1I _ i,3.1

By Propos:.tlon 7.12 we can consider ({x, V%‘ J ! BIKJ;} as
14
a system of global coordinates on N_ . Defferentiate (7.57)

with respect) 2 Kj and put 9 Kj =0 (Y35, 1) . Then

(to: T -
ai = bi,O Jfor i€2(1,m) ,
b, _=0 ,for i€z(1l,m), IEN"-{0} ,
1,I Y
where
b. . =75%. 3. f + £, . _ . )
i, I —z-3=l,n(ajfj,11 fj,l,I—(j))
Here fk,l I- (k) =0 if Ik = 0 .
_Then
al = bi,O
= I
= I (-9) " b.
IC—}v‘_n i,I
— I — — —
= (-2 o.f :
—llj\ ) ( J J'l,I J’l,I-(J))
515 7 5 I+(3) 7
=3z, .((-3)"92.£f. . + (-2 £. . = 0. .E.D.
Iy, TRE L+ (D) 55,1 0

Thus - (7.55) implies q)J = \Uj . In particular

(¢.) = [@] , which completes the prdof of Theorem 7.5.

L= '
Il

79
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7.6. Applications

7.61. Wave equatlon. Let R be as in 83.4 and use the

N -

notations there. R is defined by

K= 4509y = Zip nlq) =0 -
Then @E : A(R)—A(R) is
Foo a2 2
Ppf = (8 = Z5., 0% )F -

By Theorem 7.21, Ei’n_l(R) = KéE@; . It is shown in [T1]

that if n > 3 and £ 1is a differential polynamial, then

a+ 19,1 JEN2 JAi,0%,3 where

a, a; JEER . Proposition 7.41 then determlnes those
[4 hdad

@;f = 0 if and only if £

conserved currents expressible by differential polynomials. See
0,n-1

B

- the case n = 2 . Both treat general linear differential

[AG,0] for other methods to compute (R) . [AG] covers

equations.

7.62, Korteweg-de Vrles equatlon._ Let R be as in §3.5.

Since (@R = D(u) K = - 32 - ual - Bi '

Liligy = (£ GF(xi,u-J;) P (3, +udy + 30)E = 0} .

Put W = Ker@Rrjg(xl, uj ; J £m). It is easy to show

&i;m,wm+i ;;g;mwm + 1 . This implies immediately that even in

the space of C° conservation laws, those found in [MGX] is

independent and spanns Ei’l(R) .

9. 63 Benjamln —Bona- Mahony equation ([BBM]) . Let M =1R

e ~—
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N=M X\Bu and R = {K = u2’l - uO,l + uul’o = O}CN3, where

u Note that by a linear change of coordinates

% IR € % D
~of \_R_ , R can be transformed to a pseudo CK system and we

can apply the resultgof this section to R. We have
+, 2 :
D(u) K = Bl 82 - 8, + ud;.
' s S . SR 2 -
In [T2] it is proved that Ker@, ¥R with 1, u, u” + 2u; 4
v 14
- as a basis. Moreover it is easily verified that E?_’l"-: Ei'l.

Thus the equation R has only three independent conservation laws.
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8. Noether theorem
v - - -

The results of 85-7 imply a quantitative version of the

classical Noether theorem.

- Let M = R® s N = M?XARm . The notations are as in §3.1

and §85.4.

8.1. OQuantitative version

L

Theorem 8.1. Let R be the Euler-Lagrange equation with
A I L T g

I

the Lagrangean FEFN_ , i.e., R ='{81F = e §ﬁ; =0} .

Suppose 'R is a pseudo CK system. Then

(1) BN =T .
(i) d; : ES'" N (R—E]"™N(R) is injective for n 2 2,

and

0,
1

0 —R—E

Y(m)—El" ')

“is exact for n=1.

0,n-1.
1

of R (cf. Remark 4.51(ii)).

‘Recall that E is the space of conserved currents

“Proof. (ii) is Corollary 7.22.
By Proposition 5.5, we have ¢ = & , whence @R = ég .

‘Then by Theorem 6.6 and Theorem 7.21

1,n-1 .
EJ (R) —_EetéR
= Két@R
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8.2. Explicit version. Let R = {:SjF = 0} be as in

P [ P g P

Theorem 8.1, i.e.,

- ’___j _
S5F “kj(l) 5

with F €A satisfying (7.11).

O,n-1__ < e s
Let u: El ——+:~L_.,(R) be the composition of
‘dl : Eg'nflﬁEi’n_l and the isomorphism of Theorem 8.1 (i).

The elements of Im M are called the Noether symmetries of R .

Indentify L(R) with Ker?,CA(R)" by Theorem 6.6,
regard. A(R)CA as in §7.5 and use notations of §7.31.
" Then Theorem 7.5 and Corollary 7.52 implies the following

direct and inverse Noetheor theorems.

'I‘heofem 8.2.

TN e S——

0,n-1

(1) U maps [giJidxi] € El to
T . m . rO _ayJ i ,

(ii) ¢ = (¢1 ; *°° , q)m) €A(R) is a Noether synu_rl_gtg

if and only if

5;(25858,F) =0, i€z(1L,m .

(iii)  If \_d) is a Noether symmetry, ﬁ_l(b E-E(l)'n—l is

: 1 . :
= 3‘1 + f}g K[x,O]dxl, J. = J.

represented by } J.dx. (J i i

i=l,n 1771 1l

(1 > 2)), where

|
n _ B J J
5 = lsen, Zymim? J 85,3+ (1) K Ix,sulds),
7 ' 1,1 0
with . $5,5 defined by (5.44) apd « = [,y ;66 F.
Reinar]j;_ 8.21. (i) and (ii) are given essentially in

[Mar].



8.3. Classical version. Finally we write the condition of

N~ -

$ EL(N) to be tangent to R_ and induce a Noether symmetry.
' Let R be as in §8.2. 1Indentify @@(N) = A" by
‘Proposition 6.21.

-

Theorem 8.3. Let ¢ = (¢; , =+ , ¢ ) EL(N) . Then ¢

R ——

is tangent to R and _[élkz]GEL(R) is a Noether symmetry if

and only if

1

L, (Fax) € 300"~

¢

Proof. By definition

L¢(Fdx) = i ($)8(Fdx) .

By Lemma 5.41, there is an neqtnl

N such-that

§(Fdx) = 9n + 8.F6u’A dx .

By Lemma 6{31, we have

Ly (Fdx) = 1(¢) (n + §,Féu’p dx)
= 3i(¢)n + _Z_ji(cb)iSjFéuJ_/}_dx .
Since o = QBIij/au% , we obtain
L (Fdx) = z.¢.8.Fd§< (mod. 3?7 ™1
¢ =3%3°3
Thus L, (Fdx) €Imd if and only if

- 0,n-1
T.6.8.Fdx £3Q '
"J¢J J ,XE !

which is equivalent éf{jﬁﬂ by Theorem 8.2. » ' Q.E.D.
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This proof shows also the following

Corollary 8.31. Suppose f@ = (él PR §m)€¥£}N)

O,n:I
N

85

pu——

§atisfies‘1w(Fdx) = 3w (‘SdiEKZ ) . Then ;$|R is a Noether
- Sl . - L — '

hgymmggry and corresponds to

. O,n—.l
[(w = i(o)op) | TEE;" (R,

l,n-1
where Wp = QN

is defined by (5.411).
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9. B&cklund correspondences

[V <

The flat connection -H defines a class of correspondence
between solutions of differential equations. This includes the
usual Bicklund transformation.

Focus our atfention’on the following aspect of the usual
Bdcklund traﬁsformations: Let R énd R' be two differential
equations. A Bicklund transformation T transforms solutions
~0of R and R' to holonomic equations whoée solutions are those
of R' and R respectively (cf. Remark 2.23 for the meaning
of "holonomic"). In other words solutions of R and R'
allows us to obtain families of solutions of R' and R res-

pectively by integrating ordinary differential equations. Thus

T defines a point to finite-dimensional submanifold correspond-

—,

ence between iggg(R) and §§1(R').

This aspect, which seems to be essential, is not lost by
the followiﬁg generalization.

Let p': N'—M, p": N'—>M be bundleé and suppose
R'EN!, and R"CN}';,.
submanifold R(ZNk (N = N' x MN") a Bicklund correspondence

satisfy Condition 2.3, We call a

between R' and R" if and only if R = R, N(R! x'MR;) is a
‘subbundle of N_ and q'|R and g"|R have finite-dimensional

fibers, q', g" being the natural projectidns N_-—N ,—N".

Here N = N' x "= Uy',y") EN'X N"; p'y' = p"y"} is the
fiber product and we identified N_ = N X MN; in the obvious
way.

Note that neither R' nor R" plays a special role in::
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" this definition.
Let R be a Backlund correspondence between R' and R".

For s' E.j’Sa-(R') , let R(s')CR! be the pull-back of the bundle

E-—->R; by sl:
R(s') = {y"€R" ; (s (7" (yM) , y") € &},

where 'm": N7—M is the projection. By definition, R(s')—M

is a finite-dimensional bundle.

Proposition 9.1. R(s"'") i_s»_gap__j._ntegn_e_d_i_@__i_:_eintegral of

. e — e e e

R" (cf. Remark 2.43), i.e. TR(s')DHp.|R(s").

Proof. Let y"&R(s'). By definition y = (y',y") Gﬁ,
where y' = sl(x), x = w"(y"). '
: v o, '
Let XETM. Let X €(Hy , ¥ €(Hy,),, and |
" G(HN,,)y,, be its horizontal 1lifts. Obviously X' = q,‘ﬁ,

" =q;§. Since H's are tangent to R, Rc'o and R!, we have

Pa2 - B2 - K

GTyRm, i'GTy,RO'O and 9('"6 Ty,,R;. Hence
* ’{' — ’il' \ 11] ] | " = ’il
X = (X', ¥ JE T, (R, X RIOTR, T K.
1

v - : n
Moreover we have XéTy(q' st (M)), since X' = s!,X. Hence

X" T (' Tts ) = TuR(s)

Since (H ")y" is spanned by (X")'s, the assertion follows. Q.

Remark 9.2. Given R', it is important to construct

Bdcklund correspondences between R' and other equations.

There are two methods known, Hirota's [Hi] and Whalquist-

Estabrook's [WE]. The main part of the latter is to construct
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a Lie algebra g, and a @-valued l1-form jﬂ)' g‘-@;ﬁof 1 such that
(9 & o 2R

3(9_ - [U-‘r w] = 0,
where [I.X. ® o>, I¥. ® n3] = F[X., Y.] ® w*
L X; r LY IIXy, Yl @u

' aQ i3 0,1
XiIYJE%I w ln GQRI .

hA_=n3 for
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10, ~Concluding remarks
».\ e W - -

}Q:}. \Motivatidns: The motivation of this paper is in
Proposition 4.8, which came naturally from an effort to unite
the two important aspects of differential forms: they define
cohomology classes and differential systems.

This proposition aroused the probleﬁ of'computing Eg’q(R),
- which turnéd.out to be connected with various problems such as
characteristic classes of foliations (Remark 4.51(iii)),
symmetries(36), Gelfand-Fuks cohomologies (§3.3) etc.. Thus the
»descriptibn of Eg’n—l(R) Afor determined systems R (Theorem
7.21), which is useless viewed from thé original motivation, is
not insignificant and actually gives us a method of computing
the conserved currents of various differential equations (37.6).

However at present the knowledge about E?’q(R) is quite

unsatisfactory, especially for overdetermined systems.

%8;3: }??ggéggﬁt Manin says in [Man] there are three equivalent
languages for the formal study of differential egquations —
classical, differential-algebraic, and geometric, This paper
uses the geometric one in develbping the basic notions and the
classical_one, which uses the Standard coordinate on ©N_(§1.3),
'in the proofs and examples.

Note that the languages used in [Man] is "extrinsic", i.e.,
comsider the pair (N_, (L)) (§2.2) the basic object, whereas
- [V1] and this paper use intrinsic languages, i.e., the manifold

R, is considered as the basic object (cf. Remark 2.43).



90

- Further note that [V1] uses differenﬁial-algebraic,
algebraic-geometric, and categorical terminologies to define
various concepts including Eg’q(R), whereas this paper uses
only'differential-geometric ones. In fact oﬂly one basic
notion, the flat connection HR (§2.4), is enough for theoreti-
calrdevelopment, with a little-loss of generaiity of R

however.

10.3. Problems. In spite of the simplicity of their definitions,

Lt e

* % * *
the invariants H Q. and Er’ (R) of R have many non-

R ' R
trivial problems related to them. .
Here are some, which seem to deserve further investigations.
~10.31. Describe the theory of characteristics of R by
Hp (cf. Remark 6.16 for the Caﬁchy characteristics). This may
need to rephraze the usual Cartan-Kdhler theory in terms of HR ’
which might enable us to define the "Monge characteristics"”
purely geometrically.
10.32. When Fdim M = 2, dim N = 3, RCN, , state the
applicability to R of the Darboux's method of integration

([Goﬁ])in terms of Eg’O(R) . This seems to clarify the geo-
‘metric background of this method and to enable us to generalize
it to general equations.

10.33. Develop the theory of Biacklund correspondences
~along the lines in .§9. Unite it with the Whalquist-Estabrook
method ([WEl, cf. Remark 9.2). This might give us a method of

constructing elements of Es'q(R) (cf. [wsKk]l).
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~10s34. Calculate E2’3(R) for the Yang-Mills equation on

I

R% [Gs] constructs 15 independent elements. Since R has

soliton solutions, it can be infinite-dimensional.

i,6—i(

<

~10.35. (i) Compute (££>0 E
. 14

———

R) for the equation
R éf integiability of almost complex structures (§3.8) on
M = 86 . |

(ii) 1Is it possible to use Eg'q(R) of §3.8 for
the deformation theory of complex structures (c£.54.6)°

b(iii) Coﬁpute H*(W2n , Lg ;.g) (cf. Remarks 3.81,

4.82). - prlH* might ﬁeasures Im(ﬂp §§1(R)-—+ FP(PR) = ﬁp(FN)).

(cf. Proposition 4.4). Note that UP(FBU ® gR 1is "calculable"

algebraically by the Sullivan theory-([Su]).

OSAKA UNIVERSITY
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