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SUMMERY 

This paper treats the Vinogradov's spectral sequence E 

of differential equations ([VI]) in the framework of Gelfand's 

formal differential geometry ([Ge]), and gives new interpretations 

of E generalizing formally the secondary characteristic classes 

and the Bott's vanishing theorems in the foliation theory. 

We describe some part of E and the Lie algebra of the 

symmetries in a waY,useful for actual calculations. This 

description yields a quantitative formulation of the Noether 

theorem as a by-product. 

The geometric language adopted here produces also a simple 

class of correspondences between the solutions of differential 

equations, which includes the usual Backlund transforQations. 
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INTRODUCTION 

0.1. In Nice 1970, Gelfand introduced the idea of "formal 

differen'tial geometry" and suggested its usefulness in 

investigations of problems involving jets ([Ge]). He and his 

collaborators realized this in their studies of the Hamiltonian 

structures associated to Korte"leg-de Vries equation ([GD]), 

the secondary characteristic classes of foliations ([FGG]) and 

combinatorial formulas for Pontrjagin classes ([GGL]). 

The double complexes introduced in [FGG], called the ---
variation-bicomplexes, play important roles in their works 

explicitly or implicitly. 

On the other hand, Vinogradov introduced in [VI] spectral 

sequences for differential equations and announced various 

interesting results. He uses however algebro-geometric and 

categorical language which seems to obscure the simple aspects 

of these spectral sequences, although his definition has the 

great advantage of being valid for very general classes of 

differential equations. 

This paper constructs these naturally from the variation 

bicomplexes associated to differential equations. 

This construction gives new interpretations of these 

spectral sequences not mentioned in [VI]. In fact, these 

permit one to generalize formally the basic tools of the 

quantitative studies of foliation, such as secondary character-

istic classes and Bott's vanishing theorems, etc. 
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However to make this generalization substantial, one must 

compute the spectral sequences, for which there are no system-

atic methods at presents. For example in the case of the 

integrability equation of G-structures, there arises the problem 

of computing various cohomologies of Gelfand-Fuks type not 

treated before. 

The detailed contents are as follows. 

0.2. For a differential equation R on a manifold M, the basic 

geometric object in this paper is its infinite prolongation 

R~M (§2.2) and a natural flat connection H on it (§2.4). 
. 00 R 

It is a subbundle TRoo of rank n = dim M. 

This pair (Roo ' HR) is a good subtitute for the solution 

space (Sol(R): It provides us "differential calculus" on 
'---

(Sol(R) and also geometric intuition to the general notions 
,--_ ... -
about differential equations. 

By splitting the de Rham complex on R with respect to 
00 

- * * HR' one obtains the variation bicomplex nR ' of 

.:nP,q = i(~_PvR* ® AqHR*) (§2.5). The filtration 

R, where 

FP = @ .nP ',* 
p'~ R 

generates the spectral sequence E(R) = {EP,q(R) d} 
r ' r 

(§2.7) 

mentioned above. 

~ related to ~ . 
.P.3. The El -, E2 - and E --;::C'rns have various meanings (§ 4) . 

The complexe {E~,q, :l} Hq(M, R) - valued "de 
"'\ ~". 

Rham complex on 'Sol(R)" (§4.2). In particular an element of 

E~,qf gives us a Hq (M, R)-valued function on .§?~(R), which 

may be called a characteristic class of solutions of R -- (§4.5). 



This unifies the concept of the conserved currents of evolution 

equations and that of the secondary characteristic classes of 

foliations. Further Ei,q measures how a one-parameter famil.y 

of solutions varies (§4.6). 

There is a natural map E~' q----+HPC~!'(R) , .g) ® Hq (M, ,g) 
- 0 q • 

( § 4.2). In particular, w E E2 ' - g~ ves us a constant on each 

connected component of '-So"i (R) ( § 4. 7). This generalizes the 
"---

rigid characteristic classes of foliations. 

Finally, Eoo-terms produce potential topological obstruc

tions to the deformability of formal solutions to real ones 

(§4.4, 4.8). This is a formal generalization of Bott's 

vanishing theorem [Bot] in the foliation theory. 

0.4. The computation of E(R) is generally difficult. This 

paper treats only the trivial equations R = N (§5) and the 

"determined systems" (§7). 

Section 5 computes it when R is trivial. The results 

coincide with these already announced by Vinogradov [VI]. As 

by-products, various useful facts follow about the Euler-

Lagrange operators, which are however more or less well-known. 

Section 7 rewrites EI,n-1 (n = dim M) 
I 

space of a linear differential operator + 
<PR' 

a Cauchy-~owalevsky system in a weak sense. 

as the solution 

when R is 

This yields a new 

nethod 0= co~!?uting the conse:!:"vation la~lS of \-lave equations, the 

Korteweg-de Vries equation and BBM equat~on (§7.6). 

When R "is overdetermined, there are at present no 

systematic methods of computing nor of constructing 
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nontrivial elements of EP,q (cf.§3.6>' 
r 

0.5. The connection HR allows us to define also the Lie 

algebra of "vector fields on Sol:(R)". 
"-/ 

A vertical vector field X on R ---7-M "preserves" 
00 

the graphs of solutions if [X, fHR]CJHR. The space of all 

such X's form a Lie _algebra ':;L (R), which is called the Lie 

algebra of syrnmetries of R (§ 6.1). An element of (!. (R) 

sometimes called a Lie-Backlund transfornation []I..!]. 
i 

-Following [Vl,2], section 6 expresses :_~ (R) as 

the solution space of a linear differential operator ~R 

associated to R (§6.6). This expression is valid for any R 

in contrast to the similar one for El,n-l mentioned in §0.4. 
1 

Then we get an effective method of computing the Lie 

algebra of contact transformations or bundle automorphisms 

leaving R invariant (§6.7). 

0.6~ When R is both an Euler-Lagrange equation and a 

Cauchy-Kowalevsky system in a weak sense, the expressions for 

Ei,n-l and l.L (R) mentioned above coincide and give us a 

quantitative expression for the Noether Theorem: 

EjO,n-l C El,n-l :::: .i.(R) 
1 1"',--

(Theorem 8.1). 

By paraphrasing the result of [Mar] ,§8.2 characte=izes in 

a practical way the image of EO,n-1 4 'L(R}, whose elements are 
1 -

called the'Noether syrnmetries of R. For n = 1, this is given 
w.< •• " 
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in [GD]. For general n, thi,s is es'sentially obtained in [Mar]. 

o.~ Section 9 proposes a simple class of correspondences 

generalizing the usual Backlund transformations. In this class 

neither of two equations concerned plays a predominant role in 

contrast to those definitions of Backlund transformations given 

by various people. 

Fu~ther we remark that the Whalquist-Estabrook method of 

co~structing Backlund transformatio~s ([WE]) can be concisely 

summarized by the language developed in §1-2. 

0.8. Finally Section 10 gives remarks about motivation and 

terminologies of this paper and raises some problems. 

7 



0.9. General terminological and notational conventions are as 

follows. 

When a set X has an equivalence relation on it, 

[x] (x E: X) denotes the equivalence class represented by x. 

The set of nonnegative integers and the field of real 

numbers are denoted respectively by Nand R. For a<b, 
\~" -. 

Z(a,b) stands for the set of integers in [a,b]. 

For i E Z (1, n) , (i) denotes the element of Nn which 
" 

has 1 in the i-th component and zero in the others. 

Let I,J E Nn Cl = (I
I

, . . . , I ), J = (Jl , . . . , I n )) n 

I + J E-Nn has Ik + J k in the k-th component kE= Z (l,n) 
" . 

I < J means I < J k (k E-z (1 ,n») . When I > J, = k= = 

where l~) = i!/j! (i-j)!. For lE Nn 
and a set of letters 

1 n 
x = (x , ••• , x ), 

a,bf Z (l,n) 

that I = 0 
k 

with 

for 

Xl stands for 

a<b, N denotes the set of . a,b 

k E Z (1, a-l)V Z (b+l,n) . 

. 

such 

The dual space of a vector space V 

1 n APv (x , ••• , x) is a basis of V, H 

is denoted by V*. 

If is also denoted by 

AP[xi ]. All the tensor products ® are taken over R unless 

otherwise stated. 
00 

The word smooth will mean C. Everything will be con-

sidered in the'smooth category. Manifolds are always assumed 

to be connected and with countable basis. When M is a 

manifold, ·th~ .algebra of functions on M (i.e. smooth maps: 
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.---
Ghe cotangent 

M ---?'R), the tangent bUndlei\the Lie algebra of vector 

the de Rham complex are denoted respectively by dfM, 
* and {~M, d}. 

fields and 

TMX!M 
c!:9 

stands for 

1 
x = (x , 

with the standard linear coordinate 

denoted by 

forms dx
l 

11".0-" 

. . . , n - - n 
x ). '.!' (x) stands for . ~.¥.x. The 

(-1) i-ldxl ......... i n ••. dx ••. dx are 

abriviated as dx and dx. respectively. 
l. 

Finally the decimal system is adopted for the reference 

numbers of paragraphs, theorems, etc •. The integral part 

denotes the section number and the fractional parts are arranged 

in each section according to their magnitude. For example 

Lemma7.341 precedes Proposition7.41 since 7.341<7.41. 
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1. Jet bundles 
'1"0-

This section recalls some basic definitions and properties 

of the jet bundles, and fixes notations. 

1.1. Finite jet bundles. Let p:N--+M be a bundle, i.e., a .... 

surjective map everywhere ofrank=dim M. The space of 

sections is denoted by rN. 

Let Pk:Nk--+M be the k-th jet bundle (k~l) (cf.[Bou]). 

Put NO=N. 

( E rN
k

) . 

The k-th extension of s ErN will be denoted by sk 

If M is a point, we put Nk=N (V k) . 

1.2. Infinite jet bundles . 
.,..,',;".- -.. _.... .. '. .'-

{[Nk } and {sk} (s ErN) by 

Denote the projective limits of tNk }, 

Noo,rNoo and Soo respectively. The 

projections Noo --7-Nk , - M will be denoted by .iTk (k~O), iT 

respectively. 

It is easy to show the following 

Proposition 1.21. iTO:Noo~N is an affine bundle. In 

particular, CiT 0 is a homotopy equivalence. 

The usual smooth objects can be naturally and easily 

generalized for this infinite-dimensional manifold Noo . For 

example, a function on Noo is smooth if and only if it is in 

Put iNoo=V~k*FNk and consider _FNkCFNIX). 

For more details, see [BR]. The sections 1.4 and 1.5 

express smooth objects using local coordinates on N~ . 

10 
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1.3. Standard local coordinates. Let M=~.xn, N (n ,m) =HxR
m

• 
~ , ... u Put 

(i E Z (1, m} , r E Nn - { o}} by 
"-",,.; "'"-...... 

i i i -uO=u and define u r E-.,E.:N (n,m)co 

r i = (a/ax) (u cs) 

for s ErN. i j n 
Then (x ,ur ; i E- Z (l,n), j E •. ~ (I,m), I E~. 1 is called 

the standard coordinates on N(n,ml • . . - co 

Suppose p:N~M is a bundle. Each point y of N has a 

neighbourhood W such that p1w:W--7p(W) is isomorphic to 

n N (n,m)--rR 

diffeomorphism 

(n=dim M, m=dim N - n) ,whence there is a 

-1 
f:TIO W--7N(n,m)co Denote the pull-backs by f 

of xi,s and uj,s by . r 
-1 the same letters and put U=TI O W. 

(xi,u~;U) is called a standard local chart of Nco. This will 

be used frequently throughout this paper. 

Following [GM], we write and denote its 

element as f[x,u] • 

1.4. Vector fields. The tangent bundle TN of N is by definition co co 
........... ~ - -- -- -. --. 

* the projective limit of {TI
k 

TN
k

}. The space LN of the sections 
- "-- 00 

of TN is by definition co 

the injective limit of 

the projective 

!l, * { r ( (TI k ) TNk ) .; 

limit 

!l,2:,k} • 

of {r-
k

}, where .,r k is 
.!l, 

Here TIk : N!l,--7Nk 

is the natural projection. 

LN acts on \FN as derivations in the obvious way and 
-~ Cl) - (X) 

hence carries a natural Lie algebra structure. 

Let i j (x ,ur ;~U ) be a standard local chart of N 
co 

an element of LU, i.e., a vector field on U, is expressed 

uniquely as an infinite sum: 

f i , fj,r El[x,U] .. 

If.a/3x
1 + If. r3/3urj , where 

1 _ J I 

Then 
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1.5. Differential forms. 
/00·00'-

The bundle of p-forms 

the injective limit of The space nPN of its 
- ex> 

sections, i.e., the space of p-forms, is the injective limit 

Let i j (x ,ur ; U) be a standard local chart of N()o. Then 

nPu has the expression: 

Hence, a p-form is a finite sum of such expression as 

jl js i l it 
f[x,u]du A···Adu Adx A···Adx r - - r-1 s 

(s+t=p, ff=:FJ[x,u]). 
'-

* Note that there is natural pairing T N x TN ----7- N x 
00 00 00 

R, 
V.o

• 

Now we introduce a flat connection HN 

on N ~M, which will play a fundamental role -throughout this 
00 

paper. 

For each y ~N , define a linear subspace 
00 

H of T N Y Y 00 

as follows: Choose s &fN such that y=soo(z) (z=~(y» I which is 

possible obviously, and put 

H = lm d s y z 00 

where d s T M ----7T N is the differential. z 00 z _ y 00 



, Lemma~' Ci >. 
" . 

Proof'. (i 1 i j Let (x ,ur ; U1 be a standard local chart. 

Choose s ErN such that y=s (zl. 
00 

Then 

Xi := dzs oo (a/axil. = %x
i 

+ 1 (a/axil z (u~o Scxl) a!au~ 

=o!ox i 
+ lU~+(il'(SCXl(Z) la/aui 

=%x
i + lui+ Ci} (y) o!au~ , 

for iE Z (l,n). Thus X. is independent of s and so is 
1. 

Hy = li=l,n ~:Xi· 
(ii) Put 

(1.61) 

This is a vector field on U and { a ,..., a } 
1 n 

by (i). Hence ~ is a subbundle of TN. 
cxl 

The connection lifts 

spans HN+U 

Q,E.D. 

Denote t~y tf: ~~LN . 
map 

Note that 
,.,; 

X is uniquelY 

characterized by 

,.., 
(1.62 ) Xfos =X(fos } 

cxl 00 
, s ErN, f E: FN • 

- cxl 

For a standard local chart 

is given by (1.6l). These o. 's will appear frequently later. 
1. 

..... --

13 
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1.7. Flatness of.HN. Now we prove H=HN is flat. 

= VH.l... eT * N be the conormal bundle, where y co 

for y eN . co 

Let (x i uj 
, I 

(1.71) 

(j E Z (I,m), I E:Nn) . 

Lemma 1.72. " .. ~ .. ' 

Hi. 
Y 

wlH = a}, - y 

U) be a standard local chart. 

du j \ u j dxi 
I - l.i=l,n I+(i) 

Put 

14 

Obviously i j * {dx , OUI } is a frame of T U. Since 

. j . 
~ u 1 ( a i ) = 0 (1. ~ .Z ( I, n) ) , i Hl. dx (a.) = o .. , is spanned 

J 1.J Y 

by {(Ou~)y}. Q.E.D. 

Proposition 1.73. H is flat, i.e., 
\,'\, .. ~, ............. • ....... • .. 0 _. \,"\' ' ••• -

drH.L == 0 

It suffices to prove the assertion on a standard 

i j 
local chart (x , u I ' U). 

We have 

d~U~ = -lidu~+(i) A dx
i 

. k 
- -Li,kui+(i)+(k)dx 

= o. 

Hence by the previous lemma, we have 

. L 
drH Iu == 0 

Q.E.D. 
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The flatness of H has another expression: 

Proposition 1.74 • .... - "- .' . 

hom01l}9rp~ism. 

·Proof .. Then by (1.62) 

= ()(~f - ~)(f)cs 
00 

=(XY - YX) (fcs ) 
00 

IV = [X, Y] f.o S • 
00 

Hence 
IV IV IV 

[X, Y] = [X, YJ • Q.E.D. 

CorollCl_ry 1. 75 . The a. 's defined by (1.61) commute 
~ 

with each others. 

1.8. Flat sections. A section- s'~rN is called flat if 
00 , ...... " " .. 

s (M) is tangent to ~, i.e., Ts (M) C HN. 

~7"?J:.~':..,~~()~ ~J:'~~. For s EfN001 the fol1o~.~ng .condi:t~_o21_~ 

are mutually equivalent. 
~---"-.----- .--. -_ ....• - .... 

(i) ~. is flat, 

co 0) * ..1. 0 ~~ s JHN = , 

(iii) s = (1TO
o s) 00 

·lproofl. (i)<=?(ii)~ (iii) is obvious from the definitions. 

Proof of (ii)=9 (iii). Let (xi, u~ ~ U) be a standard 

local chart. Then' (ii) implies 

where s~ =U~os. 

* ° s 6uJ 
.' I 

Hence 



and we obtain 

where sj = s~. Thus 

j 
sI+{i)' 

. I II' I sJ = a SJ/aX , 
I 

(~O~s)m = sm on ~U, whence (iii) 

follows. Q.E.D. 

-...Remark-l ... 82. In contrast to the case of the flat 

connections on finite-dimensional bundles, ~ has infinitely 

many flat sections passing through each point of N
oo

• 

16 
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2. Variation bicomplexes 
.... .? 

This section introduces the variation bicomplex for each 

differential equation. 

2.1. Differential equations. Let p:N-M be a bundle and put 
.... ' ... " 

n = dim M, n + m = dim N. 

A gifferential equation of order ~ k on N is a 

subbundle R of Nk~M. Here "subbundle" just means that 

R is a closed submanifold of an open subset of Nk . and . _ :. 

is also a subbundle. 

is a solution of 
----~.- ... - '. - ... 

R if and only if 

The set of all the solutions of R will be denoted by (j3oL(R) . 

For convenience's sake the case :dim M = 0 is not 

excluded. 

Remark. This definition of R is general enough for 

actual applications. The more general one admitting singularities 

of R arouses unnecessary technical and terminological 

complication, which seems to obscure the points. 
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2.2. Prolongation. 
'0'".'" ..... ---""'-----

We introduce here the infinite prolongation 

Roo of R, which is so to speak the jet space of the solutions of 

R • 
By definition, R is a closed 

~ submanifold of an open set' U CNk . 

Let R CNk be a differential equation. Let Ik qt.u be 
,,- -1 

the defining ideal of R. Define :.~~ to be the ideal 'of ~"(1fco U) 

generated by where 

I i +l = dtf; X E LM, f El.} 
1. 

(i > k). 

The zero set of I~ is called the infinite prolongation of R 

and will be denoted by R . co 

Proposition 2.2. For s E- rN, s is a solution of R. if 

and only if s (r,1) CR. co co 

s (M) C R implies s is a co co 

solution. Conversely suppose s is a solution. Since by 

we have S*I. = 0 (Vi). * ", * (1.62) sco'+i = 0 implies scoIi+l' co·l. 

Hence Q.E.D. 

~e;mark 2.21. If .. :~ I Rco is not surjective, R is called 

incomplatible. Then Propostion 2.2 implies (Sol eR} = cp. 
...... - .. - --

Remark 2.22. An s ErR will be called a formal solution .----. .. 00 ~.r~-----_-

of R. This is a suitable name since R~R is in many cases an co 

affine bundle, and hence a homotopy equivalence (cf.Proposition 

1.21) • 

Remark 2.23. = :-:-:.-:. --- - When R is finite-dimensional, R is co 

called ~aximally overdeternined. or holonomic. In this case, the 

equation is essentially a system of ordinary differential _. 
-' . 

equations, and hence 'Sol(R) 
- --~.; 

~ a fiber of R --+M. co 
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2.3. A basic assumption of R. We assume throughout this paper 
\0"\.""'-"" ••• """''' 

that R satisfies the following 

Condition 2.3. 
\1\. .... '\. .... a • 

R ~M is a subbundle of N ~M. 
~ ~ 

-
Here "subbundle" means that.1T R,Rco---+M- is a subbundle of 

NR, -M (VR, > k). 

Then, as in §1.2, we can define naturally the usual smooth 
--

objects on R~. Put A (R) = ,FR~ , AR, (R) = _~(1T R,~) (R, > k). 

By definition A(R) =VAR, (R) . 

Remark 2.31. Given a concrete R, it is usually easy to = ====.:.::.. .... 

check this condition using standard local chart of N (see §3, 
co 

§7_.l) • It is really satisfied by many differential equations in 

differential geometry and mathematical physics. 

Remark 2.32. _._-_ .. -------.- Theoretically the involutiveness of R 

implies the validity of Condition 2.3. Thus, the prolongation 

theorems [Kur,Mat] give a definite procedure to check Condition 2.3 

for general R, although it seems rather complicated to carry it 

out actually. 

• - '". • ••• ~ > • 
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~.: ~. The flat connection HR . The bundle R ----11 inherits a flat 
(X) 

, , 

connection from N ~M. 
(X) 

Put 

?roposition 2.41. 

-

Since 
-, i\ _ 

rH =r cr '-- N - (X) -(X)' 

H is flat. R ----_._ .. -. 

we have 

Proof. Let i: R ~N be the inclusion. Since 
(X) (X) 

Proposition 1.73 implies 

drHl. * dr~ = i 
R 

(inod. * rH.i- ..L 
- 0 i 

N - rH
R

) . 

Q.E.D. 

As for the flat sections of HR' Proposition 1.81 implies 

Propostion 2.42. 
*" """"""""'-- "- "-... .... .... 

For s ErR , 
(X) 

the following conditions . -- -- --- ~. - - - . -... -. --

are mutually eg_~~ya1:~nt: 

(i) 

(ii) 

-" 

s is :{.lat, 

* ~ s rHR = 0, 

Thus, Sol-eR) can be identified with the set of flat 

sections of Roo~M with respect to HR. 

Remark 2.43. The pair (Roo ' HR) is a good substitute for 

'.Sol(R) . - --
It can express many important formal aspects of R 

concisely. For example, an intermediate integral is just a 

subbundle R' of Roo such tha t HR I R' C TR' . 

-~. .' '," . 
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2.5. The variation bicomp1ex. Let VR be the subbund1e of the 

vertical tangent vectors of R ~M. 
00 

and hence 

where Since HR is flat, d has 

only (1,0) and (0,1) components, which will be denoted by 

and (-l)Pa on respectively. impl.i:s then 

Thus we obtained a bicomplex {Q;'* = ~Q~,q , 9, a}, 

which is the variation bicomplex of R. 

The flatness of an s erR can be expressed, using the 
00 

variation bicomplex, as follows: 

Proposition 2.5. For s ~rR the followinq conditions are 
~'----"''''''--'' ....... ~ ... " ... , .. -

mutually equivalent. 

(i) s is flai:J. 

(ii) 

(iii) 

(iv) 

(v) 

* + * s Q ' = 0, 
R 

*n1 ,q = 0 s ~'R 

*n1 ,0 = 0 
s ~'R ' 

* * ds f = s af 

00 -----------------:------ --.-------

where Q+'* =~ QP'* 
--- - . R p> 0 R ' 

(=:Iq E Z {O ,n-l»), 

('v'fEA(R». 

Proof· Let i: ~--7N~ be the inclusion. Then s ETR 
"-." co 

is flat if and only if 

to see i*Q~,q:= .Q~,q. 

when R=N. 

io s ErN is flat. 
00 

Moreover, it is easy 

Thus, it suffices to prove the assertion 

.' . '-." : ~.".' ... 



Put for brevity. Since tH..L = -ill, 0 
~_ N - I 

Proposition 1.81 implies Obviously (ii)~(iii) I 

L_ -- (iv) --..;. (v) . Thus it remains to show (iii)=?(iv)~(ii) 

and (v) =9 (iv) . 

Obviously T.tle may assume N = M x Rm 

(xi u j ) be the standard coordinates on N . 
I I IX) 

n 
M = R • 

'w\ '-". 
Let 

Suppose (iii) holds, i.e., s*nl,q = 0 (::JqEz(o,n-l». 

Put 
* . . k 

s Qui = Lk=l,n si,kdx. Then 

j * QU j implies sI,k = O. Hence s = 0 and (iv) follows. I 

Suppose (iv) holds, i.e., s*nl,O = O. Then s*6u j = 0, I 

whence s*(Qu j 
A n) = 0 ( V n E-n*N ), i. e. , (ii) is valid. I - IX) 

Finally, suppose (v) holds. Then 

= s*(du j 
- au j 

I I 

= dS*U~ - s*au~ = 0 I 

whence s*~.~' 0 = O. Q.E.D. 

22 
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-* * 
. ,.~.:. 6 •. Modifications of nR ' • According to the nature of problems 

" ... -... ....,- -~ * * 
concerned, it is necessary to modify the definition ofgR' • 

First suppose a group G acts on Roo preserving HR" 

Then the 

* * 

.. * * .G-invariant elements of :n ' 
R 

n
R

' , which is denoted by 

form a subbicomplex of 

Furthermore, suppose there is a G-invariant subalgebra B 

of A (R) • Suppose that the vector bundles HR and VR have 

systems of local frames whose transformation matrices have 

-* * components in the sheaf of the germs of B. Then .·nR' has a 

consisting of those with coefficients in B with 

respect to these local frames • 

* * When . * * n ' = n ' R,G,B is a subbicomplex,. B is called admissible. 

* * n' is then called the G-invariant variation bicomlex of R 

with coefficients in B. 

~~Elg 2.6. Let 

(i) The vector group 

-ndard local 

M = Rn N = r.! X R
m • 

x' - u 
G = Rn acts on 

m 

coordinate~ ~ 
Let (x ,ur ) be the~ 

N by the translation: 

. (x, (y, u) ) t-7 (x + y, u) 
n 

(x,y ER , u cR ), on rN by its action 
V-I ":..\'. ~ 

* * n ' consists of - R,G on graphs, and thus on N • - Then 
CD 

1 f~U~A • •• l.dxj_lf_. : • 's such that f = f [u] . We denote this 

* * bicomplex by (nN '( ) d f • " n,m,.. 

Put 

is a bicomplex. rts elements are written as 

where f's are differential polynomials. 

See also. 83.2. 
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'. * * * * 2.7. The spectral sequence. 
v'./-" 

Let . n' n' 
a = ~'R,G,B' The ~iltration 

-* 
F on .~ Roo defined by 

- p' * FPn*R = ffi n' 
00 p'~ - . 

is compatible with d and inducesa spectral sequence 

This is the one mentioned in the 

introduction, and called the G-invariant spectral seguence of 

the equation R with coefficients in B. 

Remark. = .. ~.'::-.:..- . The spectral sequence.associated to the other 

natural filtration reduces to the usual one for the fibering 

R ---M 
00 

when G = (1), B = A(R). 
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3 • Examples 
V·-. 

We consider various concrete differential equations and 

describe·their variation bicomplexes using local coordinates. 

We also recall a few known results about their spectral sequences. 

3.1. Trivial equations. First consider the trivial 

equation R = N,where N = M x Rm n 
M = R • Put Qp,q = Q~,q. 

Define Let (x i u j ) be the standard coordinates. , I 
1"-', 

ou~ E- Ql, 0 a. ':::LN 
00 

and by (1.61) and (1.71) 
~ ,-

respectively. 

Put A = A(N) = .p [x,u] . Then ._. 

and the differentials are characterized by 

af =I· 1 a.f ® dx
i 

_~= ,n ~ 

of = lI,j af/au~ ~ ou~ , 

for f EA. 

The spectral sequence will be calculated in §5 (Theorem 5.1) • 

3.2. Riemannian metrics. Let M be a manifold and 

N = s2T*M, the symmetric product. Let RC N be the subspace 

of the positive definite symmetric bilinear forms. Then 

~~(R) = rR is just the space of the riemannian metr.ics on M. 

The group G = Diff(M) acts on R in the obvious way, which 

induces an action on Roo preserving HR' Let 

subalgebra 

--- -1 'det(g .. ) . 
----- ~J 

of -A(R) generated locally by FM, 

Let - * * Q ' * * = Q ' R,G,B 
, E = E(R,G,B). 

B be the 

I 
(a/ax) gij' 

The following 
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theorem is suggested by Gelfand ( [ Ge] } as a specimen of topics 

in his "formal differential geometry". 

Theorem ( [Gi]) . EO ,q ...., 
1 -- Pontq 

".-. "- .'"-.... -.-.-.- . 

p. IS 
~ 

(i > 1, = 

EO,q 
2 

=. Pontq 

. deg p. = 4 i) . 

.-- ~ 

for q < n-l, -

for q < n, -

This is proved by Gilkey as a by-product of his character-

ization of the Pontrjagin forms. 

Note that if G = (1) and B = A(R), then E is "trivial" 

(cf. Theorem 5.1) • 

3.3. Gelfand-Fuks cohomology. .,"- .. " _"_0_°_. -'" Let M be a manifold and 

put 

- n * (n~~. M), which is an open set of G;)i=l T M. Define R eNl by 

R =: {(w) 1 (x) ixE M and w = (011 , •.. ,w
n

) is a local 

section of N near x .such that 

= ••• = dw = O} 
n 

Roo- may be considered as the infinite jet space of .the local 

charts of M. 

* T M} x 

The group G = Diff (H) acts on R and hence on Reo 

preserving HR.' It is easy to identify the total complex of 

,- * * :S2' with the standard cochain complex C*(W i R), where W is 
-·R,G n vv_- n 

the topological Lie algebra of formal vector fields on n variables 

and R is the trivial 
~', '.' 

vI -module. n 

'"" 

Its cohomology H* (W i R) 
n \.~';. 



was calculated by Gelfand and Fuks and call€d by their 

names. They also determined E = E (R, G) in their calculations: 

Theorem 3.3.([GF]). 

(i) 

(ii) For r >2, 

EP,q = (0) 
1 for q < n, P:> O. 
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CO) if q ~ n and (p,q)~O, 

Hn
+

p n\T~, _~~. 

~_~4_: Wave equation. Let M = ~n (n > 2), 

be the wave equation, i.e., 

N = M x R. 

R = {u2 (1) - Ij=2,n u 2 (j) = O} C N2 . 

Let R 

Then . (cf. § 2.2) is generated by { u I + 2 (1) - lj = 2, n u I + 2 (j) i 

Thus R is a submanifold of N with 
00 00 

as a global coordinates, where In 

particular Condition 2.3 is satisfied . 

where 

.l
A global frame of HR 

:'6u 0 = 0 u 0 (1) +J I R --),J ) 00 

dUl,J -

-Lj=2,n 

is given by {OUo Ji j=O,l, J6-N2 }, 
), -- ,n 

Using the above coordinates on Roo' 

, 
(Lo-2 Uo J'2(O»dx-_)-,n , -r ] 

Ul,J+(j)dx
j

. 



Then 

The lift a. of a/axi is characterized by 
~ 

< a ., dx
j

> = a. . and < d ., au. J> = 0, i . e . , 
~ -1.,) 1. - ), 

a.x j = a .. 
1. 1.,) 

u l J , 
= Ij=2,n u O,J+2(j} 

a .u. J = 
1. ), U j ,J+ (i) for i > 2. 

= 

The differential a is characterized by i x--o, 
i i U --+au and a by x --+dx , j ,J j ,J u. J--+L'-l d.U. Jdx

i
• ), _1.- ,n 1.), 

* * * * The .nR' has a sUbbicomplex QR'B with , 
B = R[u. JJCA(R) (cf. Example 2.6 ). 

...... , ), 
Its EO,n-l and El,n-l 

1 1 

can be calculated using the result of §7 (cf. [T]]). 

The following (O,n-l)-form represents a non-zero class 

in E~,n-l: 

(3.41) 2 2 
Cul,O + L' 2 Uo (.»dxl - 2L'-2 UlOUO (.)dx .. _J= ,n ,.) . _)- ,n , ,J J 

See Remark 4.51(ii) . 

28 
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3.5. Korteweg-de Vries equat·ion. Let N = M x R 
~ .. -"\.-.. -- ". -0"._", _ -.;-.-\-

and k (x , u .. ) the standard coordinates on N , where 
~, J co 

Let R be the Korteweg-de Vries equation, i.e., 

R = {K := u 3 ,a + uU1 ,a + u a,l = a}e N3 • 

Let 'a'. be the 
~ 

lift of a/ax i (i = 1,2) on N . Then 
co 

{~IK I EN
2 }. Since {x i i 1,2, i u. a = ,,"' ..... , 

J , 
I is generated by 

co 

j EN} V{~IK ; I E- N
2 } is a global chart on 

~f' • -:-. 

N 
co 

(cf. Proposition 7.12), R 
co 

i 
(x , u.) 

J 
is a submanifo1d with 

as a global chart, where Hence Condition 2.3 

is satisfied. 

IV 
Let a. = a. IR • This is tangent to R and characterized 

~ ~ • co 
co 

by a i
xj = 0i,j' aluj = u j +1 ' and a 2u

j = -ai(uul + u 3 )· 

Then H~ is spanned by {ou j i j E-~}, where 

cSU. : = ou. a I R 
J ] , co 

and thus 

i = duo - '. 1 2 a.u.dx , ] !:.~=, ~ J 

The differential Co is determined by i 
x ~a, u.~;Su. 

] . J 
i i i a by x J-----+dx, u . ~ L . a . u . dx • 

and 

_____ ._. J -~ ~ ] 
The vector -·~;~u;- G"--':-·Rn --~cts on· N~ as in Example 2. 6Tf) : .. -

. * * 
Obviously Reo is G-invariant. The subcomplex ;.~:G is 

described as 

Note that if dx 2 -- * * is put to zero in S2R: G, then we obtain 



* * Q '(1 1) d f (c.f. Example 2.6(i». 
N" • • 

Moreover I d 2 acts on 

.--* * 
- Q ' as a derivation. N(l,l) ,d.f. 

* * without losing any information by the pair {S3N (l, 1) ,d.f.' d2 ), 

where only d2 depends on R. This is used in [GD] , where 

the bicomple.x 

EO,l(R) 
1 

* * 0R;G is implicitly used. 

is essentially calculated in 

§7.62 and Example 6.72. 

[MGK,KMGZ] • See also 



3.6. Integrability of connections. A linear connections on the 

line bundle 

uniquely by a 

M = Rn -L = Rn : l (x' = (x2 , ••• ,xn) ) . x v··x 

I-form ·.w = dxl \" i i 
.f.i=2,nu (x)dx 

integrability condition is dw - 0 (!Ilod.~) , i.e., 

where 

(3.61) K Ui. - u j + ujui 
ij = J i 1 

i u. 
J 

= aui/ax j . 

is given 

Its 

i , j E- Z t2 , n) , 
'.,-." 

Let R be the submanifold of NI defined by (3.61). 

30 

Here N = M x .. ~~-l (u = (u2 , ••• ,un»), (xi, u~) is the standard 

coordinate and 

It is easy to see that Roo is a submanifold of Noo with 

{xi, uE- ; iE:~(l,n), j EZ(2,n) ,J E-Nl,j} as a global chart. 

Here uE- = UE-IRoo . 

The variation bicomplex is described as 

af \" a.fdxi 
= .fi=l, n 1. ' . 

where 

r j 
uJ+(i) for i < j 

for j < i 

jEZ(2,n». Note that the right hand side for the case j < i 

has meaning since J eNl .' eNl .. 
Y; , J . . ,1. 

It is easy to see that 

t: _.' ' ~ : ' 
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is a-closed in hO,3. When n > 4, it can be proved that 

Lw] ;s non-zero 1."n Eo
l

,3 Th" d t th G db"ll V • 1.S correspon s 0 e 0 ~ on- ey 

class of foliations ([GV]). See Remark 4.51(iii). 

Note that this equation is typical among the overdetermined 

systems that arise in the problems of integrability in differential 

geometry. 

3.7.Foliations. Let M be a manifold of dimension n. Let 

N = Gr M 
p 

be the Grassrnann bundle of p-planes, where 

pEZ(I,n-l). Define to be the. equation of integrability 

of p-plane. :fields on M • !~~L(R) is just the space of foliations . _. 
of codirnension q on M (q = n-p) . 

The space Roo can be expressed as follows. Let G (n) 

be the group of the infinite jets of germs of diffeomorphisms of 

Rn preserving the origine, and G(n,p) the subgroup consisting 

of those preserving the foliation i x = constant (i Ez (p+l,n» . 
'.,.. . 

Let PM be the infinite frame bundle of M. . This is a principal 

G(n)-bundle and identical with the R of §3. 3. 
00 

Then R = PM/G(n,p) . 
00 

The group G = Diff(M) acts on R in the obvious way. 

.* * - * * Q , 
= Q ' E = -E (R,G) . 

.~ R,G , Put 

Since PM is G-homogeneous, we can describe the total 

* * complex .~* ={Q.' , ~±a} algebraically. Let L be the 

subalgebra of W 
n 

{Ii=l,p fi(x)a(ax
i 

+ 

(cf. §3.3) spanned by 

I.- l g.(y)a/ayj~, where 
---J- ,q J J 

n,p 

i p+i 
Y = x 

(iE-Z(l,q» and f., g. are formal pmver series without the 
~ ~ J 

-
constant terms. Then Q* = C*(W , L . R), where n n, p' ,' .. 



the right hand side is the relative continuous cohomology 

(cf. [HS] ) , a subcomplex of C* (W ; R). The filtration of _o~ 

corresponds to the restriction of 

by the subalgebra li=l,n:::" d/dx
i . 

n \;'.'. --
that on C*(W; R} induced 

n """"' 

3.S. Complex structures. Let M be an oriented manifold of v ..... 

dimension 2n. Let N be the bundle of complex structures on 
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the tangent spaces compatible with the orientation. rN is the 

space of almost complex structures on M. The integrability 

condition is given by a subbundle R eN
l

. 

of complex structures on M. 

Sol(R) is the space 
-------

The space R~ can be described as follows. 

and C G·--(n) be the subgroups of G (2n) consisting of orientation 

. db' h I h' n 2n . preserv~ng ones an ~ omo omorp ~c ones on ~ = ~_ respect~vely. 

The infinite jet space P+M of local charts compatible with ~he 

orientation is a principal + G (2n)-bundle. Then 
+ . C 

R = P M/G (n). 
en -,v.-

The group G = Diff+(M) of the orientation preserving 

diffeomorphisms acts on R in the obvious way. Put 

, __ -n * , * _ n * , * 
~, - .. aR,G , E = E{R,G). 

* * As in §3.7, -n* = to ' , O±d} is isomorphic to the relative 

Gelfand-Fuks cohomology C* (W2n ' L~; _~), where L~- is the 

subalgebra of holomorphic vector fields on en = R2n vanishing 

at the origine. 

Remark 3. SI. -- Neither H* eN L . R) ::: =-~--. n ' n , p , 
nor H* (W2n ' L~: ~) 

seems to have been calculated completely. However it is not 

difficult to show Hi (W2 , Li-; .R} ~ ~ (i=O), R2 (i=6), (0) (itO,6). 

See Remark 4.S2 and (10.35). 
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4. Interpretations of the spectral sequences 
"""'" c....... __ ... _" .... _. __ "_ _ _ _ .... _ . _ 

Fix N----M and RCNk satisfying Condition 2.3. Put 

* * n ' * * = n .I 
R 

E = E(R} • This section gives some interpretations 

Roughly, they give us formal 
.. -. 

differential calculus on the space (Soi(R). '---
4.1. Solution manifolds. A map a from a manifold X to rN is 

called smooth if the map 
.... -.. " ... - .-

~ ~ a: X XM~N defined by q(x,y}=~(x) (y) 

(xf-x, yE-M) is smooth. 

A map a:X--+Sol(R} is called smooth if its composition with '--' ". 

the inclusionSol(R}~rN is smooth. A smooth map 
, --:--. 

a: X--7 SoL(R} is called a solution manifold. 
'",,"",--_ .. ' 

A solution manifold a:x--+~oi(R} induces a smooth map 

~ ~ 
:.a : X x M --+-R defined by a (x, y) = (a (x)) (y) 
_m 00 '-. CD 00 

(x E:-X, yE-M). 

Let be the induced map. n*(x x M} has an 

* * obvious underlying bicomplex structure {n' (X x M), d x , dM}. 

Proposition 4.11 . . ~,..,~~--

;Proof!. Let (x,y)E X x M, Z =~(x,y). Let T:T X (f) T M ~ '.. x y 

~ (V HR) be the differential of 
~ 

T R = V H = V
R

, H = '0-
Z Z Z _00 

at (x, y) . 

We have TT M = H by definition. On the other hand 
y Z 

t-rT X Cv . since ~ 
is the projection X M~M. Thus :1T oa x 

.... x Z ... 00 , 00 

Q.E.D. 

We call a* the characteristic map of the solution mnnifold 

~ : X ---~i.( R} • 
'-.--
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4.2. Characteristic maps. Let {lEP,q Id} be the spectral 
r ' r v ... "--

sequence induced by the filtration 'FP = r.:p, riP', * (X x Ml • vp ~_ 

Recall that 

= nPx @ Hq (M, R), 
"", 

and { 'E*,q Id} 
1 ' 1 

is isomorphic to the Hq(M, R)-valued de 

Rharn complex on X. 

Since a* preserves the filtrations, we obtain a spectral 

sequence homomorphism.{a }: {EP,ql---~ftEP,q)l ~ In particular, r r~' r 

a induces .a 1: Ei' q -nPx @ Hq (M, R), a 2: E~' q-HP (X, ,R)@Hq (M, .~) , 

* q q and a homomorphism from {El' , d l } to the H (M, .. ~1-valued 

de Rharn complex of X. 

We call these also the characteristic maps of a. 

4.3. Homotopy invariance. Let a:X-Sol(R) be a solution 
..... ....--r. 

manifold and f:Y--+X a smooth map. 

a solution manifold. Obviously we have 

Proposition 4.31 • 
• '.·-.-... _··~-.'·\"'\ ... l _ .. _ ...... \#"t~"' ... ,.- .. 

(0" f) * = (f x i~) *c C!*~ 

(?"ef) 2 = (f*QD id) 0 a 2 

- .----Let ~', a":X ~~J.'(R) be solution manifolds. 

are called homotopic if there is a solution manifold 

a' and a 

a:X x (O,3)--{Ei:(R) such that 'aIXx{l} = C!', aI Xx {2} = a". 

The above proposition implies 
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Corollary 4.32. Suppose 
.-" , 
:: ' 

.- ,~ 
"(j":X -SO~(R) 

..... '-"," 
are homotopic. 

Then 

v_·., ... "',,- .................. _ . __ .• ~ ... 0"' .-._-

a' = (j" r r (r > 2). 

Corollary 4.33. Suppose a solution manifold . er : X ~SoJ:(R} '- "--.- .-' 

induces a nonzero map _(j2' 

constant map. 

:then"~ is not homotopic to a 

Thus E~,q detects nonzero elements of [X, Sol(R)], the 
",---' 

space of homotopy class of solution manifolds. In this way 

* * E2 ' provides a potential tool for studying the homotopy structure 

of Sol(R} . 

4.4. Topological obstructions. The space * * E ' 
co 

also provides a 
~ ",-,--" .. "-

useful tool for the study of R. 

Let (j:X~rR. be smooth, i.e., the associated map 
" 00 

!V . 
l(j:X x M ~RoO 
" .. - is smooth. When can we deform (j to the 

of a solution manifold 1" :x~s~i (R)? 
'-" 

'" 1" 
- 00 

Suppose ~ can be deformed to a . - p+l 
Slnce~*P n* = 0 

..:----- : 
(p = _di':::' X j> , we have l1FP+l H*(Rco , R) = 0, where 

_. I, 

R) = );m(H* (pp+ln*) -H*n*) . 
. " 

Since i* '" = (j*: H*(R , R)--+H*(X, R) @ H*(M, R), 
co ........ 

we obtain the 

following 

Proposition 4.4. 
~---.~ ~ ..... ,. "- ... ~-.. ---.-. 

Suppose a smooth maE. cr:X--+iR 
00 

a* :pp+lH* (R , R) ---+-H* (X, R) ® H* (M, R) 
00 , ". .. 

(p = "dim X) • Then.. (j can not be deform~SL!-9_~~.9).uti9n manifold. 

Thus ~ EP ',* = pp+lH*(R , R) gives us potential 
\.:!/ p • > p co 00 v.'. 

obstructions to the deformability of a formal solution manifold 

of dimension p to a solution manifold. (See §4.8.) 
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4.5. Characteristic classes. From now, we specialize to the 
"",./,-' 

case p = 0, and relate the notions of §4.2-4 with the usual 

ones. 
. .. ----.. .- .. , 

Consider s E Sol (R) as a solution manifold s: {s}-+Sol(R). 
'--' \.--~ .. -

By 94.2, 

also given 

- . d - O,q Hq(M ) s ~n uces sI: El ---+ ,~. 

simply as follows. Since EO,q = 
1 

This map is 

Hq({no'*,a} ), 

is represented by a a-closed w' EnO,q. ° a E '-3w 1 
Then 

Note that by Proposition 2.5 ds*w' = s*aw' = o. 
co co 

Thus w E E~,q defines a map w ::801 (R)-Hq (M, R). '- '. .. \" 
We call 

w(s) the w-characteristic class of s ESol(R) . 

R~J;'k 4.51. 
=--

The ele~ents of EO,* appeared mainly in three 
1 

different contexts. 

(i) The Pontrjagin classes of Riemannian metrics (cf. §3.2). 

(ii) When R is an ordinary differential equation, 

E~'O is the space of constants of motions. When R is an 

evolution equation, is the space of 

conserved currents of R. 

Suppose for example M = Rn, N = M x Rm and RC Nk 

satisfies Condition 2.3. Then an element of EO,n-l 
1 - ° n-l represented by a a-closed wEn' ,which we write as 

is 

·01· = L' 1 J . dx . _:1-=,n ~"~ 
(J. e A (R) ) • 

~ 
Then a-closedness is equivalent 

to 

then 

"i ---. 
a]?l +···+anJn = 0. Thus, if u(x) = (u (x»e-Sol(R), 

J. [u] := u*J.E(~M satisfies, by (1.61), 
~ ~ ,-," 

1 
aJl[u](ax 

Thus if J. [u] 's decay rapidly at infinity, the integral 
" ~ 
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I 2 n 1 n_1Jl[u]dx ···dx does not depend on x , i.e., it is a 
R 

c'onserved quantity. For example, the class represented by 

-(3.41) corresponds to the conservation of energy for the 

wave equation. 

(iii) When R is as in §3.7, there is a map 

o * H*(Wq,Oq; R) --+El' (q = n-p), where is the subalgebra 

of orthogonal vector fields. These are the secondary 

characteristic classes of foliations on M. See also §3.6 

for the particular case q = 1. 

H*(Wq,Oq;~) was first calculated in [GF] (cf §3.3). 

~~~~~ 4.52. Nontrivialty of w's is difficult to 

show in general. In foliation theory, this was one of 

the main problems in the quantitative theory, which was settled 

affirmatively by Fuks([Fl]) and Petro (cf.[S~) independently 

for foliations without any structures on the normal direction. 



4.6. Deformation of solutions. 
V~~·J'- '.1 .. __ -. _ ....... ___ _ " .... _~.. '" .. '." .. 

Let "a: 
"~ 

---... 
(-e:,e:) ~SoL(R) 

"" '--0'" 

(E >0) be a solution manifold, which is also called a ",-
deformation of s = a (0) E 'So1.(R) • -" ---./ 

Let n eEi Iq. 

1 " 
al(n)En (-e:, e:)@ 

By §4.2, 

Hq (M, R). 

we have an element 

Define 

E Hq(M, R), where t is the standard coordinate on (-~,~), 

We call ~(a) the n-characteristic class of the deformation a 

of s. 

Then 

Proposition 4.6 • 
.... *'..,., ....... - ........ _- ... - "._-.- .. 

a/at(w(a(t») It=o = d l w(q). 

38 

---~ 

; Proof. 
~ .. - By Proposition 4.31, w(a(t» = Crl(W) (t), where 

- c. 0 q 
.01 (~) \::" ~ (-e:, e:) ® H (M, ~) is regarded as a Hq(M, R)-valued 

function on (-e:, e:). Since corresponds to 

we have 

dlw(cr) = a/at..J a l (dl w) I t=O 

= a/at-1dt a l (w) I t=O 

= (a/at) crI (w) I t=O 

= (a/at) ~(a (t» I t=O. Q.E.Ii. 

Thus the differential dl:E~,q--7Ei,q describes the 

"universal differentiation" of the characteristic classes of 

solutions. 

Remark 4.'61. An example of characteristic classes of ---_ .. ., =,---
deformations of solutions is the characteristic classes of 

variations of foliations (cf. [GFF,He]). See also lO.35(ii). 
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O' q 1---.' 0 q 1 q 
~.:_7· Rigid classes. Let ~ EE2 ' =Ker (dl :El ' ~El' ). By 

Proposition 4.6, t ~~(cr(t» is constant for any solution 
. . 

manifold cr:(-s,s)--7Sol(R), and so ~ may be called a 

rigid characteristic class. 

Remark 4.71. Rigid characteristic classes have appeared 

in foliation 'theory by the same name and in [AI] as "weak 

Lagrangeans" of a differential equations. Note however that 

when R is the Euler-Lagrange equation of a Lagrangean L 

,homogeneous in then the class is necessarily 

zero by virtue of the Galindo-Martinez fo~ula (5.43). 

Remark 4.72. .:: ---~ ... Even ;f r L EO , q. t" d • ~~ 1 ~s no r~g~ , it can be 

constant for deformations of solutions. In fact the 

variability of non-rigid classes is difficult to show in general. 

In foliation theory, Fuks established this in [F2]. 

Remark 4.73. 
::;.';::-~ 

Each ~fHq(R, R) defines 
co . , 

by ~(s) = s*~. _ co Let ~:Hq(R R)--+EO,q 
'.' co' '.. co 

be 'the projection, 

and ('.EO '~EO ,q 
:~. co 1· Then f = llA(~) obviously and 'I is rigid. 

In foliation theory, elements in :Im(llA) are often called the 

. primary characteristic classes, whereas those not in':tm(u~) 

the secondary characteristic classes. Note that llA is neither 

injective nor surjective generally. 

an important meaning as is shown by Proposition 4.4. See also 

the next paragraph. 
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4.8. Bott's vanishing theoreM. Because of its importance, we 

rewrite Proposition 4.4 for the case p = O. 

Proposition 4.8. 
\ __ ... __ .0" •• '... ••.• 0. 

Let§ E E~'~ (p )' 0) be represented by 

Suppose a formal solutioA f e£R~ satisfies 

f*w' ~ o. Then there is no solution g such that is 

Let R be as in §3.7., i.e., the 

integrability equation of plane fields of codimension q. 

Let F -7>N be the tautological vector bundle: F ( x f- N) is the 
x 

p-plane in T M px corresponding to x. Put v = p*TM/F, the 

universal normal bundle. Let 

the i-th Pontrjagin class of voo. 

v = 1T g*V 
00 ' 

and denote by 

Then it is easy to see 

for 4i > 2q. 

p. 
~ 

Let f€ rN, i.e., a plane field. Since R --+R and 
00 

R-+N are both affine bundles, 

such that 3o'f = f. Obviously 

class of the normal bundle of f. 

there is a lifting 'f ErR ._ 00 

1:*P. 
-~ 

is the i-th Pontrjagin 

Thus if p.Cf) t- 0 for 
~ .. 

some i > q/2, then fis not homotopic to an integrable one, 

i. e. , a foliation. This is just the Bott's vanishing 

theorem. 

Remark 4.82. The Bott's vanishing theorem and its 

variants (IBot]) are the only cases where some nonzero ele@ents 

of E + ,* = ffi . EP , * \'lere 
00 p>O 00 

constructed. 

It seems intereting to calculate for the R of 

§3.8, i.e., the integrability equation of almost complex structures. 

In contrast to the case of foliations, we cannot get universal 
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obstruction by taking G = oi££(M). In fact, with this G, we 

have E:'* = H+(W2n , L~; ~). But it is not difficult to see 

that f*E:' * (f E rR.,.,) can be expressed by Chern classes of f. 

Then they must be identically zero, because of the independency 

of the Chern classes of complex manifolds. 

HO\>Tever for G = (1), E+'* may not be zero. 
IX) 

Note that 

in this case E+'* of an M can differ from that of another M. 
IX) 
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5. Trivial equations 
. "" ... 

We calculate the spectral sequence of the trivial equation 

R = N. Most of the results of this section have been obtained 

by Vinogradov in [VI] where he relates {Er} with the Spencer 

.cohomologies. We give here a self-contained proof which 

uses only a simple fact abQut the Koszul complexes. The results 

produce some useful facts about the Euler-Lagrange operators, 

which are now more or less well-known. 

* * * * 
In this section R = N~ will be fixed and 11' = 1"2R' , 

E = E(R}. Pu t n = dim M, m = dim N - n. 

5.1. Statement of Theorems. 
v-._--

Theorem 5.1. SuPyos~ n > 1. 
'1,.'-' ........ ,,,""" ......... _,. , ..... "_e = 

(i) For r > 1, 
-

EO ,q = Hq(N, R) r ~.~ .. / . 
if q < n-l, 

EP,q = (0) 
r if P > 0, q f n. 

(ii) For r > 2, 
= 

EP,n = Hn+p(N, R) . r 

We specialize to the case N = N(n,m) . 

Let V = Rn and S*V the symmetric algebra. The abelian 

L · 1 b V t S V on Rm 
tC\x S*v le a ge ra ac s on *' ~ and then on 

W = AP(RmQ S~V). This induces an action of the algebra S*V on 
p - ,--

W .. Put B = w /V.W. Note that Bl = RTI. p p p p 



Theorem 5.1 can be refined for N = N(n,m} as follows. 

See §3.l for the notations. 

Theorem 5.11. 
"" ............ ~-. ---... --
( i) For r > 1, 

(p,q) t- (0,0». 

(ii) For r > 2 

Suppose 

EO,O = R 
r -.. : .... 

EP,q = (0) 
r 

(iii) EO,n ~ A/a A+·--+a A, 
1 1 n 

(iv) Ei ' n ~ A ® Bp' for 

EP , q ~ ( O) ( q :j. n, 
r 

if (p,q) t- (0,0). 

p > O. 

Then 

(v) Th Am El,n e map a: ~ 1 defined by <i (f l' - - - , f m) = 

(p = 1) • 

Corollary 5.12. 
... -.........-..~""'--- .... - ........ "" ... 

uniquely expressed as 

f. = I (-a) If. 
1. -I E Nn 1. , I 

An element 
. i 

If. IouI~dx _ 1., 

modulo ""l,n-l 
o~, , 

is 

where --"._--

-=---. ---- - .. 
:Proo£of Corolla~y 5.12. Uniqueness follows from (v) of 

the theorem. It suffices to show then that 

\f 1: iAd \f.iuiAdxE:"I"l,n-l. 
l. i,IuuI- x - l! 1. u _ a~, 

This follows from 

Lemma 5.121 . 
. ~ ....... 

For f E A, 

(foui - (- a ) - - - (-a ) fou i ) Adx 
. aI- - -'1c a l a k 

= a{I· 1 kc-a ) - - 0 (-a )fou
i 

Adx 1, 
-J=., .. 0.1 aj_l aj+lo 0 oak- aj 

where and 

(I = (a )+~ 00+(0. ». 1 k 
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This can be easily verified, whence the Corollary 5.12. Q.E.D. 



5.2. Proof of Theorem 5.1 assuming Theorem 5.11. 

converges to H*(Noo ' ~~), which is equal to H* (N, R) 

Proposition 1.21, it suffices to sho\,T 

and q < n-l. 

EP,q = 0 
1 

' .. "". 
for 
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since E 

by 

p > 0 

Cq __ np,q. Fix p > 0 and put u Let C* be the sheaf of 

complexes on N 
00 

corresponding to C* = 0&. 
Let 

A 

C* be the presheaf of complexes over N defined 

by -1 
U I----7r (IT 0 U, C*). Obviously 

". 

C* is a fine sheaf on N 

and hence we have a spectral sequence 'E converging to 
.1\ 

H*r(N, C*) = H*C* such that 

([ God]). Here :H~ denotes the cohomo1ogy sheaf of 
.A 

C*. 

Theorem 5.11, if 

if q < n-l. 

q 2. n-l. Hence 

(q < n-l). 

'EP,q = 0 
. 2 

Q.E.D. 

But by 
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v-----.'. 
5.3. Proof of Theorem 5.11. Before proving Theorem 5.11, 

We cite a simple result on the cohomologies of the abelian Lie 

algebras. 

Let V = Rn be the abelian Lie algebra and W a V-module. 

Let{C*(ViW), d} be the standard cochain complex: CP(V;W)=APV*gw 

and 

for wE-CP(V,W), X.E::V. 
~ 

This is isomorphic to the usual 

Koszul complex associated to the V-module W. 

Hn(V; W) = WjV.N by definition. 

Note that 

Let S*V be the V-module of §5.l. Then it is not 

difficult to see 

proposition 5.31. 
"'--~'-'-" --- for p t- n -

for p = n. 

(cf. [Ko]). 

Let W be a V-module. W is then also an S*V-rnodule. 

Proposition 5.31 implies 

Corollary 5.32. 
............. ~ .... ~--

Suppose a V-mo~ule W is free as an ---------
S*V-module. Then 

Hence in particular 

Corollary 5.33. 
"--"-'- ... _,,---- "---.,;.----

a direct summand of a free ~odule, then 

. . {O 
HPC*(V~W) = 

WjV.W 

for p t-- n 

for p = n. 
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The notations are as in §3.l. 

The assertion (iii) is obvious. 

since N is contractible, it suffices for the proof of 
00 

(i) , (ii) and (iv) to show EP,q = (0) (q < n-l) , EP,n = A0B 1 = 1 P 
(p > 0) • 

Fix p > 0 and denote by {C*, d} the complex {EP ,* 
o ' dO}. 

Let Fk be the subspace of C* spanned over A by 

{6ui(1)A···A6ui{p)Adxj{1)A· •• Adxj(q)·~" II{]") I < q-k}. 
I(l) - - I(p)- --- - '..f]=l,p = 

Then {Fk} is a decreasing filtration on C* compatible with d. 

Let 

where 

U:s, t 
r ' 

er } 
r 

Obviously, 

C* is the 

Lemma 5.34. 
"'""-''.J'-''''''''' ......... _ ........ __ 

be the associated spectral 

the complex {EO' do} is 

sUbcomplex of C* defined 

(i ~ n) , B 
P 

sequence. 

isomorphic to A ® C*, 

by 

(i = n) • 

Obviously C* = C*(V; w ), where W is the 
p p 

V-module introduced in §5.1. since W is a direct summand of p 

Corollary 5.33 implies the 

assertions. 

-Thus -i 
El = 0 ( i ~ n) , Hence the spectral 

sequence degenerates: E!= E~, and so El,q = Ef =(0) (q ~ n-l) , 

Ep ,n _ -En IC'_ 
1 - 1 = A ~ Bp. Hence (i), (ii) and (iv) are proved. 

The assertion (v) is now easily verified. Q.E.D. 



5.4. Kernels of Euler-Lagrange operators. We give now some 

applications of Theorem 5.11. 

Let n m M = R , N = M x R • The notations are as in 

Define o. :A--A :(j E-Z (1, mll by 
J . \ 

I . 
o.f = I (-a) af/au~. 

J -I cNn 
'.' 

Often '0. is also denoted by %u j . 
J 

By Lemma 5.121, we have 

, ... ~ ... "" " ... '._" 
For fE-A, --Lemma 5.41. 

o (fdx) 

Here 
;\ 

§3.1. 

where j~v~.(l, m), IE-N
n 

i= Ill, k~.ZCl, il, J = la=l,k_lCiCa» 

and an expression of I as I = (i(J.»+ ... +(i(i» is fixed. 

By Corollary 5.12, oa = ao implies 

o.a.f = 0, 
J ~ 

for if- Z (1, n), j E-z (I,m) fE-A. 

Thus together with (iii) and (v) of Theorem 5. 11 , we 

obtain the following commutative diagram: 

,v B > EO,n A 
~ 

1 0 r d1 
a 

Am >El,n 
~ 1 

47 

-,..v 

where A = A/a A+·· ·+a A B ([ f] ) = [fdx] and o Uf]) = (elf,···,omf ). . 1 n ' 
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-
(i) of Theorem 5.11, so 0 is injective, i.e., 

Proposition 5.42. """" ." .. __ .. _°._
0

• ____ - •• -_ .... 

For f:: A, fdx E-:lma if and only 

o . f = 0 (j E- Z (1, m». 
J 

This also follows from the following useful variant of 

the Taylor formulas proved in [GM]: 

(5.43) f[x,u] = f[X,O]+~ nl~~ujf~(o. If) [x,tuJdt) 
_. IEN ~~ J I 

where 

(5.44) 
_ \ I+J _ J j 

0j ,If - ~J~O ( I ) ( a) af/auI +J • 

Note that O. 0 = 0 J , j . Usually 0j,I is denoted as ~/ou~. 



5.5. Ranges of Euler-Lagrange operators. Define for f EA, . 

linear operators D(uj)f:A--+A by 

Then 

an 

. I' 
(D(UJ)+f)g = L <-a) (gaf/aui) . 

-r E-Nn 

El,n = 0 can be rewritten as follows: 
2 

j E- Z (1 ,ro) • 
\- ..... 

~roposi~~on 5.5. For f . e- A {j E- Z (1 ,ro) ), there exists J ·r~· ------.-

fE- A such that ----------

(5.51) 

Remark 5.52. - .- .. --. =.-.".---_. 

fj = OJ f ( j E- Z (1 ,ro» if ~~~ .. _9nly_J%. 

;P£'. i, j E- Z (1 ,m) •. 
v.'.' 

The "only if" part ~7as given in [ !'1an] . 

Before the proof, we extend the operators 

49 

and * * n ' Since they are compositions of multipli-

cation by elements of A, 

ai and a/au~ from A to 

a. and 
1. 

* * n ' " 

a/au~, it suffices to extend 

They are extended to be the 

derivations characterized by a.dx j = 0 a.ouj = ouj 
1. '1.- I l+(i)' 

(a/au~)dXi = 0 and (a/au~)ou~ = O. Note that alou
j 

= ou~. 

We define then OJ = L<-a)l a/au~, D(ui)f =~af/au~dJ, etc .. 

Lemma 5.53. 

(i) [<5 • , 
J 

0] = 0, 

o.aw 
1. 

= 0 for .w6nP ,n-l. 



Pro_of. (i) . 

and [ a ., 0 ] = O. 
~ 

immediately from 

(5.54) 

50 

It suffices to show [a/au~,o] = 0 

The former is obvious. The latter follows 

a/au~_(k) (I ~ (k» 

o (otherwise) . 

(ii) It suffices to Shovl o. (a. nl\.dx) = 0 
J ~-

for j E z (1 ,m) , 

i t- z (1 , n) and _ ("\ * ,0 
nt:"a 

o. (a. nl\.dx) . 
J ~-

I . 
= L(-a) (a/aui)ain~dx 

={lI(-a)Iai (a/dU~)n + JI(-a)I+(i) (a/aU~)n}~dx 

= 0, 

w~ere we used again (5.54). Q.E.D. 

rProof of PrOposition'· 5.5. Suppose f. = 0 f (j E: Z (1 ,m) ) J _. j \-, ..... 

for some fE A. Note that if <t>. = L f. I a I (j E- Z (1 ,ro) , 
J _J, I~· 

f. IC A) satisfies 
J , 

(j E- z (1 ,m) ) • Thus 

The left hand side is 

'. 1 ~. (oujAdx) = 0, then ~. = 0 .f.J= ,m'!'J - _'!'J 

it suffices to show 



= o . {o (fdx) 
J 

= o.ofdx 
J 

= 00. (fdx) 
J 

= o(o.f)dx 
J 

= o(f.dx) 
J 

+ a~} 

\ i i 
= l' Iaf./auIouI~dx I 
-~, J 

51 

(by Lemma 5.53 (ii» 

(by Lemma 5.53 (i» 

which is the right hand side of (S.SS). (This proof is a direct 

generalization of the one given in [G:1S] for n = I.} 

Conversely suppose (5.51) holds. Then 

o (L.f .0ujAdx) 
. -J J -

\ i i j = l.af./auIouIAou Adx -J J --

= L' . (D (u
i

) f . oui) Aou
j 

Adx 
.~,J J - --

= \. .- cS u i A D (u j ) f . 0 u j A dx 
!:.~,J- - . ~ -

... i 
= -0 (li fi ou /lc.x) 

Hence -.6 (L.f .0ujAdx) E-an 2 ,n-l. 
- -J J -. 

fE-A and ~Enl ,n-l such that 

Since 

·2 n-l 
(m<?~. an' ) 

(by (5.51) 

El,n = 0 there are 2 ,. 

L f . 0 u j A dx = 0 f -A. dx + . a w • _ J -

Then Corollary 5.12 and. Lemma 5.41 show f. = o.f (jE-Z(l,m». 
J . J \' .... 

Q.E.D. 
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ReI!lark 5.56. 
~.:==.=..=. 

There are various conditions for f.'s to be 
J 

written as 5.f 
J 

(ft:: A) • The following follows immediately from 

(5.43) • 

Proposition 5.56l([GM]). .... For f.EA 
J 

. 1 
Z = r._l uJfOf. [x,su]ds. 

-J- ,m J . 

Then -.- f j = 0 j f (j E- Z (1 ,m» ~9_~ .. ~g~~ 

fj = 0jZ (j E Z (I,m» • 

(j E Z (I,m) ) , 
\, .•.. 

Let n = 2, m = 1. Suppose 

f = (u. . = u (. . ) ) • 
~,J ~,J 

Then 

Thus f~"Iri1%u. However by introducing a potential 

1 
W= fudx, we have 

Then 

D(w)g 

and in fact 

g = (1/6)%w(w(3w1 ,1 + 2w1 ,ow2 ,O + 3w4 ,o»· 

. '. 
. . ~ .... ~ ". .~ .. 

put 
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5.6. Parameters. In actual situations, some of the independent 

variables often behave as parameters. Correspondingly then 

we must modify the variation bicomplex. 

Specifically,. let p:N~M be a bundle and P a manifold, 

. which is the parameter space. Put 15 : N = N x P ~ M = M x P and 

let q: M x P~M be the natural projection. Let RC NI be 

the image of a.:q*Nl--:>-Nl 
defined by a.(y,sl(x» = (q*s) I (x,y) 

(x E- M, Y £: P, s E- rN) , where q*s E rN is defined by iq*s)(x, y) =s (x) • 

* * Let n' be the variation bicomplex of R. This includes 

0- and - * i a-closed ideal . ~_ generated bY·_1T I (@i>On P), where 

1Tl is the composition of R ~M---+P. 
00 

We put 

* * * * n ' <P> = n ' I.I and call it the variation bicomplex of N with 
-N 

the parametor space P. 

Example 5.61. 
;:.-.'"';~ .. ~.:...: Suppose M = Rn N = M x RID 

x' ····u 
--* * * * Then n·' = n ' <P> 

N 
is described as follows: 

~ 

where A ={F[x,y,u], and 
v 

,..-----.. 

~9. . 
(d i ~Jlj'Iui+(i)dldui 

of = laf/au~ou~ 

af L' 1 a.fdx 
i 

= 
_~= ,n ~ 

for iEZ(I,n». Thus 

* * . -* * n ' = nN '. C8f(x,u)F(X,y,u). 

;.'.- ,." -.. -

and m 1 

P = R 
.'y 
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Let E be the spectral sequence of We can show 

just as in the case of Theorem 5.1 the following 

Theorem 5.62.· 
"4 '. 

(i) For r > 1, = 

EO,q Hq(N, R) 
r 

= ®:FP r './ 
if q < n-l 

EP,q = (0) r if P > 0, q ~ n. 

(ii) For r > 2, -

EP,n = HP+n(N, R) ® FP. r ~ 

Corresponding to Theorem 5.11, we have, using the 

notations of Example 5.61, the following 

Theorem 5.63. Suppose 
",",~~"""'-' .... -'-""- --

Then 

(i) For r > 1, -_. 
{t(YJ 

EP,q= 
r 

(0) ,. 

n 
M = R , 

for 

for 

(p ,q) 

(p ,q) 

and 
·i.~· 

= (0,0) , 

~ (0,0) , 

(ii) For r > 2, E~,q = (0). if (p,q) =f ·(0,0). 

(iii) E~,n = A/olA+ ••• +onA . 

(iv) The_<:9_rr~~E.~9~~e 

an isomor~~!~~ Am~Ei,n. 

q 

m' P == R ,·.c y 

j n. T 
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(~~ I~;;) 

This enables us to generalize Proposition 5.5 immediately. 

Define and o. 
- J 

as in §5.5. Then 

Proposition 5.64. For f. E A (j e-Z (I,m», there 
J .... - ~ .. . ...... -.... ~ . __ .... 

exists f E= A such that f. = o.f (j eZ (I,m» if and only if 
J J 

D(uj)f. = D(ui)+f. (i J'EZ(1 m» 
~ J". 
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6. Symmetries 

Let N--+M be a bundle and RC:Nk a differential equation 

satisfying Condition 2.3. 

This section defines symmetries of R, which might be 
.--

considered as "vector fields" on :.Sol(R) I and expresses the 

space .-i(R) of symmetries as the kernel of a certain linear 
~-

differential operator. 

The notations are as in §2. Put 

.,. 
6.1. Definition of symmetries. Let :LR", = 

v .............. -

algebra of the smooth vector fields on R . 
00 

by 

rTR 
00 

* * Q I 
-* * = Q ' R 

be the Lie 

Define its subalgebras 

L(H) = [X, rH] C rH} I 

Since !H is an ideal of -~(H), we obtain a Lie algebra 

L(R) = L(H)/rH. 

The elements of ;-t".(R) are called the symmetries of R. 
:,_1· 

Obviously we have 

(6.11) ,t (H) !:= -t. Y (H) (f) rH, 

whence, as Lie algebras, 

(6.12) 
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Remark 6.13. To see that the above definition is 

appropriate, consider the situation of foliations. Let 

be a foliated manifold and TFC:T the leaf tangent bundle. 

Then the Lie algebra of the vector fields preserving leaves are 

L (F) := {XE LM; [X, rTP] C rTF} • _. -_I 

vector fields fixing the leaves. 

Its ideal.rTf' consists of those 

Thus the quotient Lie algebra 
-
~(~}/rTF is the Lie algebra of infinitesimal transformations on 

-
T~~, the space of the leaves of F. Since H corresponds to we -

see that the definition of L(R) above is natural. 

~~mark 6.14. The equality (6.12) is quite useful. 

This enable us to discard the horizontal part of symmetries, 

making the situation very simple, for example in the Noether 

theorem. This was first remarked explicityly in [R]. 

.-
Remark 6.15. L(R) is generally very small. The 

soliton equations have the remarkable property that 'L(R) have 

infinite dimension. 

Remark 6.16. Whereas L(R) is useful to obtain solutions -----
from one known solution, rH sometimes helps us to con::;l.i:i.lct 

solutions. In fact the Chauchy characteristics of R can be 

considered as a subbundle C(H} of H such that 

[rc (H), rc (H)] C rc (H) and that through each point p eRa:> passes 

unique submanifold of dimension = rank C(H). Thus, once we 

have constructed an integrable submanifold X of H whose tangent 

space spanns Hlx modulo C(H), there is a unique maximal 
...-.../ 

integrable submanifold X, i.e., a solution of R, containing x. 

We note that the second geometric condition for C(H) can be 

rewritten infinitesimally. 
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6.2. computation of 'L(N) • ... ~.... --
We determine (L (R) 

'-_.I 
for R = N 

.... -~ .. .--
m n 

=MxR--M=R. The notations are as in §3.l. 

Let x Erv. Then obviously is equivalent to 

[X, ao] E-rH (iE-Z(l,n». 
1. 

Put X = Ix 0 Ia/aulj (x 0 lE- A) • Then 

Thus, [X I a 0] E rH if and only if 
1 

- ], ], 

jEZ(l,rn), 
',,--. 

Hence XELV(H) if and only if 

where By (6.12), we have proved 

Proposition 6.21. For 
~"-.-""""""",,,,,,,,-' .. ''''''-.-.'''-'-. 

m n N = M x R --+M = R, the map 
, .... , .... ". 

I 0 

(f.) 'LZ(l )t--?[r a f.a/auI]] 
]]c- ,ID ._ ] 

defines an isomorphism Am~~(N). 
. --.---------.-.----- ---.-.---- - . -. --J 

"'-r 

The above argument shows also the following 

LProo:(. Since the problem is local, we may assume 

N=MxR
m Then as is shown in the derivation of 

V,', 

Proposi tion 6.21, we have X~ iY (H) if and only if [X, a.] =0 
1 

(iEZ(l,n». 

[X,a.]=0 
1 

But 

cV i) 

-' 
[X, rf.a.] = rf.[X,a o] 

_11 _1 1 

if and only if [X, 
'\, 
y] = 0 

/-

for f. E- FM. Thus 
1 ~ 

('\I y ELM) • 
--' 

Q.E.D. 



6.3. Cartan formulas. We recall some of the Cart an formulas on 
. " .......... 

R~ and prove two basic facts about the subalgebra ~~(HR) of 

LR~. 

First, note that as in the finite-dimensional case, 

we nP = nPR can be regarded as an alternating map from 
~ 

'LR x •• ·xLR (p-times) to A multilinear over A. The 
~ ~ 

exterior differentiation can be expressed as 

for wE nP , x. E LR • 
1 "~ 

For wE nP and X ~LR , define i (X) w E nP- l by 
~ 

(X.E"LR ). 
1. J' ~ 
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"Define Lx = i(X)d + di(X) (X E LR ) . 
~ 

of n* commuting with d and coincides with X 

LX is a derivation 
~o 

on A = n . 
" .. -

Lenuna 6.31. If 
,..v 

X E-rL (H), 
"-" 

then LX = i(X)5 + 5i(X), 
~,-

and i(x)a = ai(X). 

Since, for wE-nP,q, Llf = (i(X)o + oi(X) + 

(-l)P{i(X)a - ai(X)})w, Lxw has (p,q) component (i(X)5+5i(X»w 

and (p-l,q+l) component (-l)P{i(X)a - ai(X)~. It suffices to 

show that LXw does not have (p-l, q+l)-component. Since 

is a derivation and n*'* is generated locally by nl,O and 

it suffices to show (i) LxnO,I~nO,l and (ii) Lxnl,O C 

(i) is trivial. 
- " I 0 -

Now let wEn' and YE-fH. 
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Then 

(LXW) (Y) = (i (X) dw + di (X) w) (Y) 

= dw(X,Y) + Yw(X) 

= Xw (Y) - Yw (X) - ~ ( [X, Y] ) + Yw (X) = 0, 

since [X,Y] E rH. Thus LxW E:-nl, 0 • Q.E.D. 

Lemma 6.32. If YELM, then i(~)6 + oi (~) = 0 
v'- ..... '-". -. .... .. ..... 

and L~ = (-l)P{i(~)a - ai{~)} on nP,q. 

·Proof. First '" note that [Y, rv] C rv. In fact, for 

f E:FM and X ~ rv, '" '" '" [y,X]f = YXf - XYf = -X(Yf) = O. Thus 
,~ 

"" [Y, xl E rv. Then the,same argument as in the proof of the 

previous lemma shows which ~plies the assertion 

immediately. Q.E.D. 

i.e., -

We can show the following weaker version of Proposition 6.22. 

Proposition 6.33. 
~",,"'-"w .... ~. ___ . ~,,- ... __ ._ .-

For X E-'~v (H) and Y E'LM, 
J 

'" [X, YJ = O. 

TProof. For fE A, . . 

'" XYf = 

= 

= 

= 

= 

Proposition 6.34 • 
.... "': .... '" ........ _._ .. -- .... --...... ~ ........ -- . 

. * * * * LX: n ' ----+n ' 

i (X) oi (~) af 

-i(X)i(~)oaf (by Lemma 6.32) 

i(~)i(X)aof 

i (~) ai (X) of (by Lemma 6.31) 

'" YXf. Q.E.D. 

For XELv(H), [LX' a] = [LX' 8] = 0, 

is a bicomplex homomorphism. 
.. _--- ---'~'-------- "'-"" --.--.-.----

Obvious from Lemma 6.31. Q.E.D. 
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Re=ark 6.35. 
I 

This proposition implies that the Lie alg~bra 
! 

r· 

(~"(R) acts on the spectral sequence E(R). In the case of 

ordinary, differential equations, this action is explicitly 

calculated in [Kh] for some examples. 

6.4. 
-.. ..,..,' 

if it is represented by an integrable vector field X on R. 
00 

Here a vector field is called integrable if it generates a local 

one-parameter group of local diffeomorphisms of R. 
00 

In general, elements of L(N) 
"/ 

is not integrable. But 

there are integrable ones in L(N) which are represented by 

the liftings of vector fields LN and (if m = 1) of the 

contact vector fields on NI. 

First we consider 'LN in this paragraph. 

Lemma 6.41. For 
~,--,,-, 

such that ~ = X on Aa ="FN. 

I Proof;. First we prove the uniqueness. Let yei(H) 

satisfy Y.AO = O. 

(cf §1~3). Then 

where 
-

Y.E-F[x,u], 
1. _.' 

-"-/ 

Let be a standard local chart 

by (6:11) we can write Ylu = IY.a. + Y', _ 1. 1. 

Y' E-~V (H I u) . But Y.A
O 

= 0 imolies Yi "= 0 

and i Y'u = o. Then Proposition 6.21 implies Y'l u = o. 

Hence Y = O. 

By virtue of the uniqueness, we may assume 

'r •. ~ 

(X. , Y . E FN) • 
. 1. J. 

in .constructing 

Define then 

'V 
X. 

+ .-•• ' 

, ... .", .. " ."":- -~ 

Write 
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Then obviously "" 0 X E-L:(H) 
,../0 

and 

"" . XX~ = X., 
~ 

ieu
j 

= LX. u J(' .) + Y. -' LX. u J(' .) = Y .• 
-~ ~ J -~ ~ J 

"" Hence X = X on AO' Q.E.D. 

Remark 6.42. ----_ ... ie can be constructed more geometrically as 
---'---

follows: let ~t be the local one parameter diffeomorphism 

group generated by X. Then roughly o~t acts on rN and 

hence on N. The induced vector fields is ~. 
(Xl 

Define CL :LN--L (N) by CL (X) = [ie].' 

Lemma 6.43 . 
..... _ •• _",-, __ 0'° __ -.-

,-
\Proof'. Let --

and "" "" -[X , Y] E~ (~) , 

X, Y E LN. Since [~,~] = [X,Y]"" on Aa 

the uniqueness implies [~,~] = [X,y]"". 

Q.E.D. 

Suppose m n N = M x R --+M = R . Then by Proposition 6.21 
~'''. . 

there is an isomorphism 
- .- m 
y:L(N)~A . (6.411) implies then , 

L' 1 u J
(' ')X') 

_~=,n ~ ~ 

(X., Y. eFN) . 
~ J v 

., . 
.. , 
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6.5. Contact transformations. Suppose now m = 1. has a 
I 

canonical contact structure defined by the line subbundle Le. T*N 
1 

which is locally generated by du - I· 1 u.dx
i 

_~= ,n ~ 

A diffeomorphism ~ 

of NI is called a contact transformation if ~*L = L. The 

space of all the contact vector fields obviously form a Lie 

subalgebra of LN
l

, which is denoted by 'i.ctN
l

. 

Lemma 6'-51. 

--
Proof. Uniqueness can be proved in the same way as in 

the proof of Lemma 6.41. So we may assume n M = R , N = M x R 
VV. "' ..... 

in constructing ~. 

Express XE ~Nl as X = li=l,nXi a/ax
i 

+ ya/au + li=l,nZi a/aui 

Then a calculation shows 

LX(du - Iu.dx
i

) = I. (aw/ax
i + u.aw/au - Z.)dx

i 
- ~ -~ ~ ~ 

modulo du - I.u.dxi , 
~ ~ 

if and only if 

(6.511) 

hold. 

1" I. (aw/au. + x. )du. 
-~ ~ ~ ~ 

where w = Y - I· 1 u.X .. 
-J= ,n J J 

Z. = aw/ax i + u. a~'l/au, 
~ ~ 

X. = -aN/au., 
~ ~ 

Thus 



Then 

'" Xu. 
l. 

}&i = X. = Xxi, 
l. 

~u = Ix.u. + w = y = Xu, _ l. 1. 

I·x.u .. = 
-J J J l. 

I .x.u .. = 
.-J J J 1. 

= z. 
l. 

= Xu .. 
l. 

+ 

+ 

a .w 
l. 

aw/ax 
i + u. aw/au +~u .. aw/au. l. _ l.J J 

(by (6.511)) 
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Thus ~ = X on Al. Q.E.D. 

Corollary 6.52. 
.J- ............ _"-" ........ - ___ .• ,_ ''" .... __ 

In the case N = M x R, .,.. 

.!!@E. .ii :'LF~ -+A define? by II (X) = w (X = LX. a/axi + ya/au + . ./ . .../ 1 1 _l. 

Iz.a/au., W = Y - Lu.X.) is al!2:~_<?~C?rp~~~m .. _ l. l. ..:-. l. l. 

IProo~: By (6.511) and Y = W + I· 1 u . X . , we can 
-J= ,n.J J 

reconstruct X from W, i.e., II is surjective. The injectivity 

is obvious. Q.E.D. 

~ct. _ ,. 
Define :S:~· rJl-~(N) Then the following 

can be proved just as Lemma 6.43. 

Lemma 6.53. 
~'~"""""" 

'S is a Lie algebra homomorphism. ----- ---------

In the case n M = R , N = M x R, the_relation between 
\r',,'. 

~:L~(N)--+A of .Proposition 6.21, CL of Lemma 6.43, and Sf II of 

this section is as follows. 



where -_. 

Proposition 6.54. The followi!1.g_q.i'?.9~_commutes 
. --........ " ........ 0 ........ _. -. __ - ._- .-- .... 

, 

vO:x.a/ax
i + ya/au) = y - I· 1 U.X. (x1." YEAO)' _ 1. _ 1.= , n 1. 1. 

-1 = 1..1 'V. 

~-lW = I. (-aw/au.)a/axi + (w - I.u.aw/au.)a/au _1. 1. _1. 1. 1. 

+I. (aw/axi + u.aw/au)a/au. _1. 1. 1. 
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I'. 6.6. Description of'L(R). Let n 
M = R , N = M x Rm. The notations "'.",........,-..- . 

are as in §3.l. Suppose 

satisfies Condition 2.3. 

(F. E A) 
J 

Define ~:Am~Ak by (<pf). = I. (D(Uj)F.) f. 
. 1. -J 1. J 

(iE-Z(l,k». 

Since /~ (im) C a:k 
\...,." __ 00 '_ 00 

(r: : the def ining ideal of 
.,00 

A(R)m~A(R)k. 

Theorem 6.6. 

~Ker ~ = (r: (R) • 
----.-.. R -.. ' 

(f. E A) 
1. 

R ), ~ 
00 

induces 

defined 

induces an 

Remark. This is announced in [V2].· See also [151,2]. 

"-:--:~B~fore the proof, 
F 1.X X f.:.Lp\H. . .. 

----- 1. 1.1 . Let vI = u I Roo' 

that ~ ·1 I\x, = f., which 1. 1. 
I . V 

}c = I a ~. a / a u i E- L (H
N
). 

- J 

we need two lemmas. 

Put 

is always possible. 

Choose ~. 'E- A such 1. 

By Proposition 6.21, 



65 

Lemma 6.61. Rand its restriction _ -. on 
co 

R coincides with X. 
(Xl ------. -

Proof. It suffices to show that for all yER ~ = X . co y Y 
This will follow from ~ i i (\I . I). Since X is yUI = XYUI 1, 

i 
y 

i i tangent to R 
co' XYUI = XyVI = (Xv I) (y) . Thus we have only 

to show p ()eu~) i = XVI' where p:A __ A(R) is the projection. 

Denote a.IR also by a.. Then a. commutes with p. 1 co 1 1 

Thus P()eu~) = p(~dlui), which is by Proposition 6.22 equal to 

aI(p~ui) = aI(p~.) = aI(f.) = alxvi , which is by Proposition 6.33 
1 1 

I . i . i 
equal to xa v

1 = XVI' Hence p(~ u~) = XVI' Q.E.D. 

X is 
g 

Lemma 6.62. Let g = (g.)'E-Am. Then 
1 ---' V' ~ .......... '-.... . 

if and only if <I> (g) ~'ik. 
• ..".00 

R 
co 

Ipr0.2~ . 
.,.. I Since /I is generated by {a F.; _/co J 

tangent to R if and only if X aIF. Er' 
co g J~co 

X g 

I . 
= La g. a/auI

1 
_ 1 

j E- Z(l,k), I E-Nn}, 
.... ;. ""', 

for all I,j. 

But X ~IF. = ~IX F. b P 't' 6 33 a a y ropos1 10n . • 
g J g J 

Since (I. is 
< • ../"'" 

a.-closed, we see X is tangent to R if and only if 
1 g co 

The assertion follm-ls finally from 

I . 
X F. = La g.aF./au~ = (<I>g) .. 

g J 1 J - J 

Q.E.D. 

----_._--._--
IProof of Theorem. 6.6. Define by 

a{g) = X IR . g co 
This is well-defined by Lemma 6.62. By Lemma 

6.61,' a is surjective. Suppose a{g) = 0, i.e., X IR' = O. g co 

This implies g. = X u
j 

J g 

.-
(jcZ(l,m» is zero on R, i.e., g.EI . 

,'_ _ 00 J _co 

Hence -Kera cim. Since obviously imCKera we have 'Kera = rm . 
•• __ •• Cl) co ___, _. - co 

. --- ._.,._-- m 
The assertion then follows from KerQ = Ker<I>/I . Q.E.D. '" R "-. .. co 



.". ..... 6.7. Contact transformations of R. Theorem 6.6 gives a 

method of computing the Lie algebras of vector fields on Nand 

if m = I of contact vector fields on NI which leave R 

-invariant. 

Specifically let R be as in §6.6 and put 

3t is tangent to R}, 
co 

and for m = I 

~ct {'V ~fct_ 
,L (R) = _ [Xl; xe~_ -NI' 3t is tangent to R~}. 

Put further 

= Y.-L:. I x.u~ J _l.= ,n l. l. 

Then 

Theorem 6.7. 
,-,".,--'-~-""'.- ~ "'-....... . 

(ii) if m = I, ii, ct (R) = 

jProof:. (i) Let X f'~a (R) • By definition X = [~] for 

+ Iy j a/8u
j 

and put some YE-LN. Write 

f. = Y. - L' I u~x. J - J _l.= ,n l. l. 

also tangent to Reo' 

(f.)' IRe Aa 1\ Kei'~R. J co I I--

obviously bije~tive. 

Y = LX. a/ax i 
_ l. 

(j E Z (I, m». 
Lemma 6.62 

Since Xf = ~ - Ixia i is 

k implies ~(f.)E I . Thus 
J co 

This correspondence Xri(f·)IR 
J co 

is 

(ii) can be proved similarly. Q.E.D. 
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Ex~~~e: 6.72. Let R be as in §3.S, i.e., the Korteweg-
I 
\ 

de Vries equation. The notations are as in §3.S. 

Here we have 

fEA 

and 

A little calculation shows that J~er~nAl is spanned by 

2 1 ·2 "{-ul ' -(u3 + uul ) , 1 - x u l ' -x u l + 3x (u3 + UUl ) - 2u}. 
. 1 2 2 1 

These corresponds to Xl = a/ax, X2 = a/ax, X3 = x a/ax + a/au 

and X4 = xla/axl + 3x2 a/3x2 - 2uaj3u E.:r.N respectively. Their 

finite forms are 

<Pl,t(x 
1 2 ,u) (x 1 + t, 2 u) , ,x = x , 

- 1 2 1 2 
.~2, t (x ,x , u) = (x , x + t, u) , 

<P3,t(x 
1 2 , u) (x 1 + tx 2 2 u +.t), ,x = , x , 

~4,t(x 
1 2 ,u) ( t 1 3t 2 -2t u) ,x = e x , e x , e 

(tE I.~. Their commutators are [Xl ,X2] = [Xl ,X3 ] = 0, 

[Xl ,X4] = [X 2 ,X3 ] = Xl' [X2 ,X4 ] = 3X2 and [X3 ,X4] = -2X3 · 

In short 

proposition 6.721. The correspondence 
".~,","-...... """"- -.,. .. --........ ~ ............... - ,.- ,_. 

a 4 a 3 0 a
l 

-I . 41 a . X . r-.? 
0 3a4 0 a 2 

-~= ~ ~ 0 0 -2a a 3 4 

0 0 0 0 

is a Lie algebra injection of :~~t(R) - bo(R) 
-' 

". '". ". , . 
' .. "., . " 

into 
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k 6 73 El t f h-L" (R) and 1.~L~ct (R) ~em.~.!' . .: . • "" emen s 0 ~O are integrable 

by definition. When R = N, these are the only integrable ones, 

which is a classical result by Backlund ([Ba]). This is valid 

for equations provided they satisfy certain condition!";. ". However 

for general R, there can be integrable ones not in (f1(R) nor 

~~t(R) . 
"--" 



7. Cauchy-Kowalevsky systems 
.._-' 

This section gives a useful description of EO,n-l 
1 

Ei,n-l of R which is Cauchy-Kowalevsky system in a weak 

sence (Pseudo CK system in short) . 

and 

In this section n 
M = R , and the notations 

of §3.l are used. Put A = A(N). 
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7.1. Pseudo CK systems . is called a pseudo CK system if 
. ~ ~. . 

where 

where 

R = {K =···=K = o}, 
1 m 

j -
K. = uk . (1) - F. t- AI\: with k . > ° 

J J J ~ J 
and 

(7.11) iE-Z(l,m), IE-N(i), 

N(i) = {lE- Nn ; 
' .. ~ .. ' 

Obviously we have 

Proposition 7.12. ~ __ ."""-__ r"-

> k.}. 
~ 

If R = {Kl = ••• = Km = O} is a 

coordinates: 
I . 

j fZ(l,m), I E- Nn} \j {x i , u j 
{a K.; I J \;' .. ;,". 

j E-Z(l,m), lE: Nn with Il < k. - lJ. 
" ........ : ..•. ---- = J 

This implies 

Corollary 7.13. 
'-''-'''-'-A_____ __' __ . _ 

_ R.emark 7.14. If k. = k (ifZ(l,m)) and K.E-FNk , R is 
~ J J 

I 
a Cauchy-Kowalevsky s1'ste!!l in the usual sense .. 

Remark 7.15. In [Mar], a pseudo CK system is called a normal· 

system. 
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7.2. 
V/·~· 

Statement of theorems. Define linear differential operator 
c 

+ i + (q, f). = L.(D(U ) K.)f. , 
1 -J ] J 

iE Z(l,m), 

is the operator defined in §S.S. 

induces q,+ 
R 

A(R)m---+-A(R)m. 

f. EA. 
J 

Since 

.... ~ .. . Supp?~e.. R = Theorem 7.21. = ••• = K = O} 
m 

is a pseudo 

CK sy.~."!:~~ . Then 

(i) El,n-l (R) ' .. + 
.:::::.. Kerq, . 

1 R' 

(ii) if n > 2, EO,O (R) = R, EP ,q (R) (0) (q < n-2, 
1 1 -

(p,q) ~ (0,0». 

Corollary 7.22. ~?!'P.~~. R i~ .§'-.. P~.~~d9 f.I5 _~y_sj:§~ .. 
....,........~--~ ...... , ... "- .... 

(i) If n > 2,~.he~ Eg,n-l(R) = 0, i.e., 

dl:E~,n-l(R) --+Ei,n-l(R) is !~j~ctiye. 

(ii) If n = 1, then Eg,O(R) = R, i_~_~, 

is exact. 

(iii) E~,n-l(R) = (0). 

By Theorem 7.2l(ii), we 

have 'EO,n-l 
2 . 

which yields (~) and (ii), 

since R is contractible by Proposition 7.12. 
00 

Furthur 

El,n-l = El,n-lC<±) .. Ei,j ~ Hn(R , R) = (0), whence (iii). Q.E.D. 
2 00. l+J=n 00 00 ~ .. 

Remark 7.23 . .. -_.-- .. --""_&_. 
Thus we can compute the space of conserved 

currents by solving the linear differential equationq,+f =0 

The criterions for fe'ierq,+ to correspond to an 
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eiliement of E~,n~l will be given in §7.S-6. 

Remark 7.24. For the case m = 1, Theorem 7.21 is 
-:=. --=. :: ....... : 

stated in [vi]. For m = n = 1, it is already in [GD]. 

7.3. Proof of Theorem. 7.21. There are two proofs--the intrin-

sic and the extrinsic ones. The latter uses coordinates on N 
co 

and makes clear the meaning of <1>+, but is a little long. So we 

give the intrinsic proof using coordinates of R 
CD 

7.31, Lemma 7.11 gives the following coordinate on 

1 {x , 

i 
v. J J, 

••• , xn}\.J{v~ J ; 
J, 

= u~(l)+J I RCD 

iEZ(l,m), j E-Z(O,k.-l), 
J 

i i 
Put v. = v. O. Then 

J J, 

A(R) 
", i i 

= ·F(x , v. J) 
J, 

The derivations a. of A(R) is characterized by 
J 

a .xj 
= 0.. , 

~ 7J. j - v J i > 2 aivk,J - k,J+(i) , 
= 

alv~ . -l v j , k < k.-2 
,J :- --k+~,~ = J 

aJFJ , k = k.-l 
J 

Here -j Fj I R F = 
CD 

* * * 1 2 n Put t = x Xl = (x X ), n , 
= nR , , . . . , 

EP,q = EP,q(R) 
r r 

* , , 

7.32. Fix p ~O and let IF be the filtration of 
'--~--

R 
CD 

defined by 'F~ = nP '* , I F2 = (0). Obviously 

IF is compatible with a. Let {PE~,t, d} be the induced 

spectral seauence which converges to Ei'* 
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It is easy to see 

Lemma 7.321. 
",,-... _-.. - ...... - -'.-

(See §6.3 for the definition of the a. 's action on 
~ 

p - i 
A. [ov. J].) - J, 

Obviously then we have (cf. Example 5.61) 

p 0 * } Lemma J. 322. {EO' , do is isomorphic to the" complex 

{Eb'* , dO} of the variation bicomplex of 

N = H x RID M = Rn - l ( k)' h h ID = r. 1 . w~t Ras t e' parameter -J = ,n J '-,. t ~---.;..--O-=~~~ 

space. 

Z.: ~.~. ,,:pi'oo'f of Theorem '7.21 (ii) ,.~ p = 0. Lemma 7.322, 

and Theorem 5.63 yield the following commutative diagram: 

where .&-1 (f) = [f] , 
Thus we have 

-
°EO,O 

CL 
~ p·(t) 

1 ::: i a/at t d l 
B 

°El,o ~ 'p/(t) 
1 ::: 

a-I (f) = [fdt] (f f- F. (t) CA) • 

R , 
v' . 

CEl,O::: (0) • 
2 

On the other hand, Lemmas 7.32l~nd Theorem 5.63 

yield 
(7.32£) 

(1 "< w ~ n-2). 

Hence 

also 



for 

for 

This proves (ii) for p = 0 • 

(v,w) = (0,0), 

v+w E Z (1 ,n-2) . 

7.34. Proof of--~Theorem~;'7.21 (ii) for p > O. By , 

Lemma 7.321, 7.322 and Theorem 5.63, we have for all v 

-for w < n-2, 

whence 

for v+w 2. n-2. 

This proves (ii) for p > 0 • 

Denote the elements of A(R)m (m = E. 1 k.) as 
-J= ,m J 

f = (f. k) wi th j c z (1, m) , k E- Z (0 ,k . -1) • J, ... J _ 

Define a linear endomorphism ~ of A(R)m by 

where, for iE-Z(l,m), 
\'\'. 

-+ -
g. 0 = d1f;, 0 + E 1 (0:. oFa) f k-1 
~, ..... -a= ,m --~, a , a 

. and, for je-Z(l, k.-1), 
........ .~ 

Q.E.D. 

g. . = d1f. . + f. . 1 + E 1 (D::.F) f k 1 
~/J- ~,J ~,J- -a= ,m ~~,J a a, a-·. 

Here 
~+ 

(D. .G: A (R) -;.-A eR) 
,-.~, J . 

(i E Z (I,m) , jEZ(0,k.-1), 
,'. ~ 

G EA (R) ) 
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is defined by putting for fEA(R) 

-+ J i 
CDi,jG)f = ~oEN (-d} (fdG/dv. J) 

.... ~2,n J, 

Define a:A(R}rn---7-lE~,n-l and }3:A(R}In---71Ei,n-1 
. 
respectively by 

a (f. .) 
~,J 

f3 (f. .) 
~,J 

\ i = [L. f. . OV .~dx I] , 
~,J. J 

= [L f. . OV~ Adxj • 
~,J J-

Then by Theorem 5.63 (iv) and Lemma 7.322, a and'S are 

isomorphisms. 

Lemma 7.351. The following commutes: 
"', 

By definition, d
1
a(f .. } 

~,J 
is represented by 

E '-1 dl (Ek- O kIf,. kovk
j

) A dx -J - , m - - , j.... J. t-

j ~ j 
= lj=1,m{fk=o,kj-1d1fj,kOVk + ~k=O,kj~2fj,kOVk+l 

\ -j r r 
+L. Jf. k _l dP /dV JOv J~dx}. -r, s , J, j' s, s , 

Since the third term represents [(D:+ F.) f. k l';Svr A dx] it --r, s J J, . - - s - . 
J 

follows dl~(f .. ) . is represented by f3~(f .. ) • 
. ~,J ~,J 

Q.E.D. 
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Lemma 7.352. ·'The. 'map 
\.~"'" . ' .. 

Y (f. .) 
~,J 

.-

75 

. m m 
y:A (R) -A (R) .' defined---by 

. .. 

P~oQf. By induction, we can easily show that 'Y{f. .) = ° . ~,J 

if and only if 

(7.353) 

<9>a:= fa k -1) for iE Z(l,m) • Here 
, a 

4-
D: .K 
~,J a 

Note that 

Thus 

U: a (Dr, OKa) <pa) 

y induces y 

is bijective. 

j E.~ .. (0 ,ki -2) , 

(7.353) shows y 

Q.E.D. 

Hence lEO,n-l 
2 

Since ° (tEZ(O,n-2», 

(7.354) El,n-l 
1 

= lEO ,n-l _ . -",+ 
2 - Ker"'R 

This completes the proof of Theorem 7.21'. 

7.4. ·'First description .. o n-l - + 
. of. El' CJ~er~R· 

Q.E.D. 

Because of its 

importance in applications; this and the next paragraphs give 

two explicit descriptions of the composition A of 

E· O,n-l El,n-J- -K· ",+ . I "\ 
1 ~ 1 ~~'" I m;/\ 

and '-1 
A • 

The first one uses the facts in §7.35. 



"i J i 
cS; f = 1.J L..N (-a) af/av. J 
- ".J I:::"" 2, n ] , 

Define for f, g E- A (R) , 

Then 

(E. . f) g 
~,J 

+ (E. . f) g 
~,J 

i J 
= ~JE-N af/avj,Ja g , 

~-2 ,n 

= ~J EN" (-a) J (gaf/av~ J) 
2,n ], 

Proposition 7.41. 
:. ~ .. --..... '- ..... -......... -.. ~.- -
(i) Suppose ~. I" J. dx. (J. E- A (R) ) 

-~= ,n ~ ~ ~ 
represents 

wE-Eo,n-l 
-" 1 

Then AW= (<PI ' •.• , <Pm) , where 

(ii) For <P= (<PI ' ••• , <Pm) E"~~er 

f .. EA(R) (iE Z(l,m), j EZ(O,k.-l)} by 

"~;, define 

~,J '"' ~-
(7.353). Then 

~ E.!!!' .. :). if and only if 
=" 

for all i, . , 
~ , 

E .. f., ., 
~,] ~ }J 

j, j' . 

+ 
= E., . If .. 

~,] ~,J 

~roof. (i) Obviously under the isomorphism -"--" 
(7.354), dlw corresponds to 

= [~JaJl/av~ JcSv~ J ~dx'] - J, J, 

= [I(cS~Jl}ov~ !ldx'] _ J ." J 

which immediately implies the assertion. 

.... ~-
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(ii) Let °E and lE be the spectral sequences 

introduced in §7.32. Let· {op,q}: °E --"7
1E be the homomorphism 

·r 

induced by o-dnO'*,a}~{nl'*,a}. Consider the following 

commutative diagram: 

, 

where the horizontal maps are exact, a and S are as in 

Lemma 7.351. Note that .1'i,n-1 (. ° 1) u
l 

~= , are described by the 

commutative diagram: 

where E is the spectral sequence of Lemma 7.322. 

:'is l ,n-1 is injective by Theorem 5.63(ii). 

In particular 

· .. 1 

By Proposition 5.64, there is a J l E A(R) such that 
-- 0, n-l 

·_°1 
- [J 1 dx '] E ° E~ , n-l = ~f .. dV~dx'] EIE~,n-l. maps w = to n _ ~,J J 

By Lemma 7.352 and the assumption: et> E_I5.~r q,+, we have 

Hence 

·.1'1,n-1d .u 1 1 w 
= d .1'O,n-l lU l w 

= dIn = o. 



Thus d w z: ° 1 
and we have 

(f .. ) E Im aoo
2
,n-l. 

~,J 

This implies the assertion since there is the following 

commutative diagram: 

EO,n-l 
1 - °EO,n-l 

) 2 

1 d l 
c 

to~,n-l 

El,n-l )lEO,n-l a - b 4>+ >Ker '¥ > Ker 1 2 -- -R 

with A = bacd
1 

and b (f. .) = cp. 
~, J 

76-3 
(~'i:'ltl=r) 

Q.E.D. 



7.5. On-le· - + 
Second description of ... ~l~ .... _. . _~~r~R 

tial1y due to Uartinez . [Mar] . 

77 

This is essen-

Consider A(R} as a suba1gebra of A by the substitutions: 

i i 
vj,J = u j (l}+J (i C Z(l,m), j E,,~(O,ki-1}, JE,N2 ;n) • Then 

Propositcn 7.12 implies A = A(R} (B·!cn. Denote the projection 

A-;,A (R) by f ~f . 

To avoid confusion denote by a. 
1 

the derivation d. 
1 

A(R) • Note that d.IA(R} == a. (i > 2) • 
1 1 

Theorem 7.5. Let 

4> e I~A if and only if 

(7.5l) o.(r. 1 4>.K.} = 0 
] 1= ,m 1 1 

defined in 55.4. 

, cl> ) f A(R} m 
·m 

Then 

where o. - ] 

Remark. This is a precise rephrase of the content of 
.==-.=--:..-

[ R]. 

of 

is 

This implies then by proposition 5.42 and (5.43) the 

following, 

Corollary 7.52. 
~ .. ~ ... --' ----.... 

Then 

.. ). -lp i~..§p~e.se!.!.~~ .. .?_y __ the restriction on R of such 
'- . 

~ En~' n-l .R..?_ dW = Kdx 

repr.esented..by 

and J. 
1 

= ':\i J. 
1 

. (i > 2). 

co 

- I 'fl ~. =I·IIEN d (u], o. I+C·)K[x,su]ds). 
1 ;-]. l,i 0]' 1 

Consider 

- i· . i 
ov. Jt-7 ou. Cl} +J. .. ] , ] 

~* * * * n ' en' N 
by the maps A (R) CA, 

-* * 
Denote the differentials of n' by 0 and a. 
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"" - ---- ~--------~ 

Proof ___ o:l; Theorem j 7 • 5 • Let ~ EA(R)rn • Suppose 

cp = AW rwE E~,n-l). 
Then aw = 0, i.e., 

Represent _~ by w = 1:.J.dx. (J. EA{R) CA). -- -~ ~ ~ ~ 

" (7.53) 
r-"" .•. + d J t=-:IJ • n n ~co 

Since d.J. = a.J. E-A(R) (i > 2), f is the !i: -component of 
1. 1. ~ ~ = "_~ co 

By an obvious ananolgue of Lemma 5.121, 

(7.54 ) + •.. + d ri n co 

By proposition 7.41, Hence by (7.53) and 

(7 .54) 

1:. 1 ~ . K. E alA + •.. + a A , 
-1.= ,rn~1. 1. n 

which is equivalent to (7.51) by Proposition 5.42. 

By 

Suppose now conversely ~ E- A (R) m satisfies (7.51). 

Proposition 5.42, there is an o n-l w = 1:. 1 J . dx. E S'2
N

' 
-1.= I n ~ 1. -" 

-such that aUl = 1:.cp .K)· 
-J J 

Put w = 1:. 1 J. dx . Then "w 
-1.= ,n 1. 1. 

a-closed. By (7.54) 

1:. 1 ~ . K. - 1:. 1 a . J. E a 2"I +... + -J= Im] J -1.= ,n 1. 1. _co 

where :"~ = (tP-~ I 

we have 

, :~~ ) =-~ ( [w]) • 
!rn Since J. -J.for I 1. 1._co 

(7.55) 1:. 1 (~. - "") K . E- a 1 i +... + a I" 
-J= Im:) ~1. . J co n co 

Lemma 7.56 
./.- .-... _ ... ---....- .-.-. If a = (a.) E-A(R}m 

~ 

is ., 



.-" 
satisfies E. 1 a . K. E a I.'I + •.. + a I , then a = o. 

-~= ,m ~ ~ "~go n go 

(7.57) 

By assumption, there are f. . lE A such that 
~,J , 

I 
E . a . K . = J: . a. (~ . -1 ~ f.. I a K .. .) 
-~ ~ ~ ~ ~ J- ,m IE=Nn ~",J, J 

' .. v-. 

~ (~ f ~ IKj + f. . "I + ( i) K . ) • = L.. • I a. • • la la 
-~,J, ~ ~,J, ~,J, J 

By proposition 7.12 we can consider i I 
{x, v. J ' a K J J, J 

as 

a system of global coordinates on Ngo Defferentiate (7.57) 

'" I with respec~J a K j and put 

~""; 

a I K . = 0 (V j , I) • 
J 

Then 

where 

Here 

a. = b. 0 ,for if Z(l,m) } 
~ lo, 

b. I=O ,forieZ(l,m), IE-Nn-{O}, 
~, 

fk,i,I-(k) = 0 

Then 

a. = b. 0 
~ ~, 

if 

- I --
= E .. {-a) (a.f. '"I + f .. I (.» 
-~,J" J J,~, J,~, - J 

Thus (7:.55 ) implies cI>. = 1/1. • 
J J 

In particular 

Q.E.D. 

cl> = (cI>.) =A[W] , which completes the proof of Theorem 7.5. 
~ . 

79 



7.6. Applications 
\/.'-. -'. . .. _. 

7.61. Wave equation. Let R be as in §3.4 and use the 

notations there. R is defined by 

Then ~+ 
R 

A (R) ---t-A (R) is 

~R+f = (d1
2 - E. 2 d~)f. 

-~= ,n ~ 

By Theorem 7.21, Ei,n-l(R) = Ker~;. It is shown in [Tl] 

that if n > 3 and f is a differential polynamial, then 

·.~;f = 0 if and only if f = a + li=Ol ~J E N a i JUi J where 
, '.- 2,n' , 

a, a. J ER. Propo si tion 7.41 then determines tho se 
~, ....... 

80 

conserved currents expressible by differential polynomials. See 

[AG,O] for other methods to compute E~,n-l(R). [AG] covers 

the case n = 2. Both treat general linear differential 

equations. 

7.62. Korteweg-de Vries equation. Let R be as in §3.S. 
~ .. -'-'-' 

Since (!; = D(u) +K = - d2 - ud l :- di ' 

-- + ~. i 
Put Wm = g~~R('y'(j(x , u j i j < m). It is easy to show 

/---:--' -:d~.!Il Wm+l < ~di!llWm + 1 . This implies immediately that even in 

the space of COO conservation laws, those found in [MG:K] ~s __ . 

independent and spanns 

7.63. Benjamin-Bona-Nahony equation ( [BBl'1] ) . Let M = 2 
'D 
~, . 

\. --' .. .- ... -.- ...... - ..... 



N=MXR 
v.,.u 

and 

Ui,j = u(i,j)· 

R = f K = u 2 , 1 - u o, 1 + UUl , ° = O} C N3 ' where 

Note that by a linear change of coordinates 

2 
of R, R can be transformed to a pseudo CK system and we 

\"." 

can apply the results of this section to R. We have 

81 

In [T2] it is proved that with 1, 2 
u, U + 2ul ,1 

as a basis. Moreover it is easily verified that EO,l:::::::- El,l 
11· 

Thus the equation R has only three independent conservation laws. 



8. Noether theorem 
V"--

The results of §5-7 imply a quantitative version of the 

classical Noether theorem. 

Let M = Rn , N = M:' x Rm 
The notations are as in §3.l 

'. ...... 

and § 5.4. 

8.1. Quantitative version 
... --

Theorem 8.1. Let R be the Euler-Lagrange equation with 
'I, ,'- ---,', -_. __ - _._ 

the Lagrangean F f'~Noo ' i ._~, R ={6 F = •.. = 0 F = o} • 
1 -m 

Suppose R is a pseudo CK system. Then 

(i) 

and 

is exact for n = 1 

Recall that EO,n-l - is the space of conserved currants 
1 

of R (cf. Remark 4.5l(ii». 

--Proof. (ii) is Corollary 7.22. 

By proposition 5.5, we have whence 

Then by Theorem 6.6 and Theorem 7.21 

::: !.:_(R) Q.E.D. 

" ,',:' 
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8.2. £xplicit version. Let R = {o.F = O} be as in 
-J 

Theorem 8.1, i.e., 

~ 

o.F 
. J 

j 
= ~. (1) 

J 
- F. 

J 

with F j f- A satisfying (7.11-).. 

Let ~: E~ ,n-l~~"(R) be the composition of 

d E O,n-l El,n-l d h' h' f Th 81(') 1: 1 ~ 1 an t e ~somorp ~sm 0 eorem. ~. 

The elements of Im ~ are called the Noether symmetries of R. 

Indentify "L(R) with Ker1>R CA (R) m by Theorem 6.6, 

regard A(R)CA as in §7.5 and use notations of §7.31. 

Then Theorem 7.5 and Corollary 7.52 implies the following 

direct and inverse Noetheor theorems. 

Theorem 8.2 . 
..... ,-~ ... ~. 

"- ° ri-I (i) ~ maps [r . J . dx. ] E El ' to 
"". -~ ~ ~ - -

83 

<I»EA(R)m J i 
j> = (1)1 ' 

. . . with cf>. = IJEN (-d) dJl/dvk._l,J , 
m . .~ . .2,n ~ 

(ii) cf> = (cf>l , ... cf> ) EA(R) is a Noether s~~t~y , 
m 

if and only i! 

(~ii) 

represented _I:>¥_ 

(i > 2»,· wh er e 
= 

o . (r ."~ . cS . F ) = 0 , 
- ~ -J "J J 

------

I· 1 J.dx. 
~= ,n ~ ~ 

iE-Z(l,m) . 
\"" "" 

"~-l" E 0 n-l 
II cf> E' 1 

rV~ J' Jl 
J. = IJEN -L'=l d (u J o. J+(,)K[x,su]ds), 
~ - 1 '-J , m J ,~ " ". ,~ 0 

is 

Remark 8.21. (i) and (ii) are given essentially in 

[Mar] . 



8.3. Classical version. Finally we write the condition of ,_._. 

q, E £ (N) to be tangent to Reo and induce a Noether symmetry. 

Let R be as in § 8.2. Indentify ~:(N) = Am by 

Proposition 6.21. 

Theorem 8.3. Let A- = (A-
~ ~l' , ~ ) E i. (N) . m 'J 

Then 

is tangent to Reo and [~IR::.]EL.(R) is a Noether symmetry if 
<XI ~ 

and only if 

Lq, (Fdx) E an~ ,n-l 

iproof. By definition 

L<I> (Fdx) = i (<I> ) 0 (Fdx) . 

5 41 h · enl,n-l By Lemma . , t ere 1S an n aN such that 

o (Fdx) i = an + O. FOu A dx 
1 

By Lemma 6.31, we have 

Since 

- i 
= i(<I» (an + o.Fou A dx) 

1 -

_ 1.:.<1>.0 .Fdx (,m_od. anO,n-l) . 
-J J J 

Thus L<I>(Fdx)E_~~a if and only if 

° n-l 1.: • A- • 0 • Fdx E an' I 
--J ~J J 

which is equivalent <P E' I~ll 
. - '. 

by Theorem 8.2. Q.E.D. 
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This proof shows also the following 

.... -,--. 

5,~::.?11.~:ry:_ 8.31. ~uppose '<P = (<PI' ••• , .<Pm) E{~,<N} 

~at:i_~~_~~~. L~ (Pdx) = a~ (3.~ E n~' n-1) •. Then ::_~ I Reo is a Noether 

~y~[U~e~ry and corresponds to 

where 

[(w - i(<P)wp ) IR ] E E~,n-1(R} , 

E nl,n-l 
wp uN 

eo 

is defined by 

. ". -, - , . , ~., ~ ".., . 

(5.41l) • 
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9. Backlund correspondences 
_ •• _ . E ' .• yz::o. 

The flat connection H defines a class of correspondence 

between solutions of differential equations. This includes the 

usual Backlund transformation. 

Focus our attention on the following aspect of the usual 

Backlund transformations: Let Rand R' be two differential 

equations. A Backlund transformation T transforms solutions 

of Rand R' to holonomic equations whose solutions are those 

of R' and R respectively (cf. Remark 2.23 for the meaning 

of "holonomic"). In other words solutions of Rand R' 

allows us to obtain families of solutions of R' and R res-

pectively by integrating ordinary differential equations. Thus 

T defines a point to finite-dimensional submanifold correspond-

-" --ence between :Sol.(R) and Sol (R' ) . 
'---.' 

This aspect, which seems to be essential, is not lost by 

the following generalization. 

Let p': N'----?M, p": N"--7M be bundles and suppose 

R'CN' k' and R" CNk" satisfy Condition 2.3. We call a 

submanifold RC Nk (N = N' x MN") a Backlund correspondence 

between R' and R" if and only if ~ = R (\(R' x· R") co co M co is a 

subbundle of Nco and q' I!{ .and q" II< have finite-dimensional 

fibers, q', qll being the natural projections N ---"7N' ~Nn. 
co CD ' CD 

Here N = NI X N" = {(y' ,y") EN'x N"; ply' = p"y"} 
M 

is the 

fiber product and we identified N = N' x N" 
CD co M co in the obvious 

way. 

Note that neither R' nor R" plays a special role in·;.' 
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this definition. 

Let R be a Backlund correspondence between R' and R". 

For 5' E.: .... SOl(R'), let R (s') eR;;' be the pull-back of the bundle '--' -R~R' 
00 

by s' : 
00 

R(s') = {y"E-R;;' ; (s;'(-rr"(y"», y") EtU, 

where '1T": N;;'-fM is the projection. By definition, R(s')--7M 

is a finite-dimensional bundle. 

Proposition 9.1. R(s') is an intermediate integral of __ ._ .... _0_'.' _' __ 0 _____________ _ "'-.. .. . 

R" (cf. Remark 2.43), i.e. TR(S')'::)HR"IR(S'). 

Let y"E-R(s ') • By definition y = (y' ,y") E?{, 

where y' = s;'(x), x = 1T"(Y"). 

Let X ET M. x Let 

~" E (HN,.,) y" be its horizontal lifts. 

'" '" X" = q:X. Since H' s are tangent to 

}c , c... T R ' and c y' 00 
}cIlE T R". y" 00 

2c' f (HN,) y' and 

Obviously 2c' 
R, R' and R" 

00 00' 

Hence 

'" .}c ('" , ~")ET (R' x RIf)(\T R = X , = T R. Y 00 M 00 Y 00 Y 

Moreover we have }c E: Ty (q' -Is;, (M) ) , since }cl = sc:*x. 

= q~~, 

we have 

Hence 

Since (HRIf)ylf is spanned by (XIf) IS, the assertion follows. Q.E.D. 

Remark 9.2. Given R', it is important to construct 

Backlund correspondences between R' and other equations. 

There are two methods known, Hirota's [Hi] and Whalquist-

Estabrook's [NE]. The main part of the latter is to construct 
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ra 0, .... (q', - 0 1 a Lie algebra 1.3 and a ~-valued l-form"~~ \~}29 "nR~ such that 

dW - [w, w] = 0, 

i -j 
where D: . X. ® W , 1:Y. ® n - ] 

-~ ~ J 

Y t:..d' i jc..nO"l 
X., . \..." J' w, n 'C ~'R I • 
~ J../ 

- ~ [X Y] iC'I ",i _4.."nj - L. ., • \Of u.t 

- ~ J 
for 
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10. 'Concluding remarks 
\,.".4..- • 

10.1 . 
....... -. -. 'Motivations. The motivation of this paper is in 

Proposition 4.8, which came naturally from an effort to unite 

the two important aspects of differential forms: they define 

cohomology classes and differential systems. 

This proposition aroused the problem of computing 

which turned out to be connected with various problems such as 

characteristic classes of foliations (Remark 4.51(iii», 

symmetries(~6), Gelfand-Puks cohomologies (~3.3) etc •• Thus the 

description of E~,n-l(R} for determined systems R (Theorem 

7.21), which is useless viewed from the original motivation, is 

not insignificant and actually gives us a method of computing 

the conserved currents of various differential equations (~7.6). 

However at present the knowledge about is quite 

unsatisfactory, especially for overdetermined systems. 

Languages. Manin says in n~an] there are three equivalent 
'--~ ...... -:.' - '. 

languages for the formal study of differential ~quations ---

classical, differential-algebraic, and geometric. This paper 

uses the geometric one in developing the basic notions and the 

classical one, which uses the standard coordinate on N (§1.3), 
<Xl 

in the proofs and examples. 

Note that the languages used in [Han] is "extrinsic", i.e., 

consider the pair 
. h 
(N " I I) ( § 2 • 2) 

00 1,,--,00 
the basic object, whereas 

[VI] and this paper use intrinsic languages, i.e., the manifold 

R~ is considered as the basic object (cf. Remark 2.43) . 

.. . 
~ ... .. . 



Further note that [V~ uses differential-algebraic, 

algebraic-geometric, and categorical terminologies to define 

various concepts including E~,q(R), whereas this paper uses 

only differential-geometric ones. In fact only one basic 

notion, the flat connection HR (§2.4), is enough for theoreti

cal development, with a little loss of generality of R 

however. 
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10.3. probl~~s. In spite of the simplicity of their definitions, 
: .............. -
the invariants * * n ' R 

and 

trivial problems related to them. 

* * E ' (R) r of R have many non-

Here are some, which seem to deserve further investigations. 

-10.31. Describe the theory of characteristics of R by .. 
HR (cf. Remark 6.16 for the Cauchy characteristics). This may 

need to rephraze the usual Cartan-Kahlertheory in terms of HR' 

which might enable us to define the "Monge characteristics" 

purely geometrically. 

t~ :_~~. When Ta;tID" M = 2, dim N = 3, R CN2 ' state the 

applicability to R of the Darboux's method of integration 

( [Gou] ) in terms of This seems to clarify the geo-

metric background of this method and to enable us to generalize 

it to general equations. 

10.33. Develop the theory of Backlund correspondences e ~ ___ _ 

along the lines in§9. Unite it with the Whalquist-Estabrook 

method. ( nm], c£. Remark 9.2). This might give us a method of 

constructing elements of EP,q(R) (c£. [WSK]). 
r 



91 

'-.lO~.34. Calculate EO,3(R) for the Yang-Mills equation on 
00 t . . ' .. 

R~ [GS] constructs 15 independent elements. Since R has 

soliton solutions, it can be infinite-dimensional • 

.... 10-;, 35. (i) . ""' 
Compute \i;I.. ° 

~> , for the equation 
po. 

R of integrability of almost complex structures (§3.B) on 

M = S6 • 

(ii) Is it possible to use of §3.B 

the deformation theory of complex structures (cf.§4.6)~ 

for 

(iii) Compute * C • 
H (W2n ' Lri' , .~) (cf. Remarks 3. Bl, 

4.B2). FP+lH* might measures Irn(~ Sol(R)--
. p--

'IT (rR) = 'If (rN». 
'p -'p 

(cf. Proposition 4.4). Note that 'ITp (rN) ®ZR is "calculable" 

algebraically by the Sullivan theory ([Su]). 

OSAKA UNIVERSITY 
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