|

) <

The University of Osaka
Institutional Knowledge Archive

. Embodiment Approaches to Humanoid Behavior :
Title Lk . X .
Energy efficient walking and visuo-motor mapping

Author(s) |ZkEF, IEf

Citation |KFRKZ, 2005 1EHIFHX

Version Type|VoR

URL https://hdl. handle.net/11094/2460

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Embodiment Approaches to Humanoid Behavior

—Energy efficient walking and visuo-motor mapping—

(E2—=/A FOITEIERNDHEMEIC LS 7 7a—F
BT T2 F — DRI LGB~ v Y 7o)

By

Masaki Ogino

A THESIS SUBMITTED TOOSAKA UNIVERSITY
FOR THE DEGREE OFDOCTOR OFPHILOSOPHY
DEPARTMENT OFADAPTIVE MACHINE SYSTEMS
JANUARY 2005



Thesis Supervisor: Minoru Asada

Thesis Committee: Minoru Asada
Hiroshi Ishiguro
Koh Hosoda
Masao lkeda

Kouichi Osuka

(© Masaki Ogino, 2005.

Produced inATEX 2.



Acknowledgments

| would like to thank my advisor, Prof. Minoru Asada, for providing me a chance to step in this
exciting research area, robotics. | am very impressed and have respect for his serious attitude in
encouraging quite a novel field in robotics, and his serious efforts in conveying the interesting and

exciting accomplishments and futures in robotics to the public.

| am also grateful to my another advisor, Prof. Koh Hosoda, for leading me to this exciting,
interesting and strange research area, the "embodiment approach” in robotics. Because this area
has short history from its birth, we often have had hard discussions on fundamental methodology.

Those discussions give good opportunities for training the logical explanations.

Special thanks to my students for their great efforts, Masaki Haruna, Masaaki Kikuchi, Kazuhito
Tawara, Issei Tsukinoki, Jun’ichiro Ooga, Shigeo Matsuyama, Yutaka Kato, Masahiro Aono,
Hideki Toichi, Sou-san, Daisuke Shibuya. | am happy to work with many unique and excellent

students.

Thanks to Norbert Mayer for reading through this thesis and giving me helpful advice. Thanks
to Yasutake Takahashi for supporting in technological aspects in this thesis. Some researches
are impossible without his image processing programs. And congratulations on your marriage!
Thanks to Takashi Minato for helping me in various aspects. | was often helped by him when |
was starting to send my life in Asada Lab. Thanks to Noriaki Mitsunaga for giving various advices
from his rich experiences and knowledge about technologies. Thanks to Yukie Nagai for giving me
cups of tea. Although her research field is not related to mine directly, | am very impressed for her
active attitude to explore unique ideas in the unexplored field, developmental cognitive robotics.
Thanks to Yasunori Tada for his various implicit supports. He always takes on humble jobs in

Asada Lab. that | cannot do. | hope his subtle and careful works come to fruition in the very near



future. Thanks to Takashi Takuma for drinking with me. | have really enjoyed drinking with him
and this often relieves my stress. | hope he accomplishes natural walking in a real biped robot that
| couldn’t do in my research.

Thanks to Shizu Okada for supporting my life in Asada Lab.. She had been always annoyed
with and bearing the consequences of my mistakes on office procedures.

Thanks to other all members in Asada Lab. for their supporting.

| would like to thank my parents, brothers, family, teachers, and friends. Their mental and

financial supports encourage me through these long student lives.



Abstract

This dissertation presents embodiment approaches for realizing humanoid behaviors. In generating
humanoid behaviors without a precise model of a humanoid, it is important to adopt an appropriate
initial controller so that adequate parameter sets can be explored with avoiding falling down. The
phase resetting is a plausible feature that such an initial controller should have because it enables a
humanoid to walk in a wide range of parameters due to its strong entrainment to a stable limit cycle.
In this dissertation, with walking controllers utilizing the phase resetting, two problems involved

in humanoid walking are attacked: exploring energy efficient walking and accomplishing soccer
tasks with learning visuo-motor mapping. The appropriate parameters to solve each problem are
designed so as to make it easier to accomplish each task. For the first problem, we bring in the
parameters to the phase reset walking controller which determines ballistic motion of the swing leg.
Exploring those parameters, the same energy efficiency walking with that of human is acquired in
two dimensional simulation. For the second problem, we bring in the parameters which modifies
the standard walking and enables a robot to walk in various directions with various step length.
These parameters are related to visual information by reinforcement learning and visuo-motor

mapping, and various soccer tasks can be realized in a real humanoid robots.
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Chapter 1

Introduction

Human infants are able to learn to walk within about 2 years. At the beginning of walking, infants
often fall down easilly. However, within two months, they walk smoothly. At the same time,
infants learn not only how to walk, but also how to control the direction where they like to go.
In this process, human infants acquire two principle skills. One is to make their walking more
skillful. The other is to adjust their walking so that they can walk to the intended position that can
be monitored through the visual information. The following sections show an approach in which a

humanoid robot achieves walking skills.

1.1 The embodiment approach

Although many methods for generating humanoid motions have been proposed, they are mainly
categorized into two groups. One is the model based approach, and the other is the model-free
approach. In the former, a designer precisely constructs a physical model of the target system and
builds a controller based on the precise model. In the latter, it is more important to make use of
the intrinsic dynamics of a robot or to associate the sensor information with motions, instead of
using the controller based on a physical model. For that reason, this approach has been attracting
many researchers and it is called "the embodiment approach” [1], or "dynamics based approach”
[2, 3]. However, there are few studies concerning about whole body movements of a humanoid.
We suppose there are two difficulties in generating humanoid behaviors that a wheel type robot

does not have. The first one is the large number of degrees of freedom (DoF). This causes the

1



2 INTRODUCTION

explosion of combinations of motions that should be examined. The other is non-linear motion
and intrinsic instability of a body balance. This makes it difficult to search without falling down in

exploration space.

1.2 Neural basis for locomotion in biology

Here, let us see how these problems are solved in human beings. It is also thought to be a mystery
how humans solve the problem of the number of DoF (the curse of dimensions). It is found
that general movements observed in early infants are fundamental and germ for the following
motion developments [4]. Human infants show the walking-like movements even at the very early
developing stage of two days after their birth. And it is supposed that the special neural circuits,
called central pattern generator (CPG) [5], takes an important and principal role in that movement
[6].

From these observations, one assumption can be drawn. That is, in human development, the
neural basis is predetermined for locomotion, and the parameters in the innate neural basis are
learned adaptively through the developmental process. This may help to avoid exploring the use-
less parameter sets for a higher learning layer. In other words, CPG can be regarded as an interface
between the lower neural circuits for motion primitives and the higher learning nervous systems
(cerebellum or cerebrum).

Apart from the biological system, as an engineering solution for realizing bipedal walking
by learning, it is plausible to prepare the appropriate interface of walking parameters for higher
learning module so as to avoid exploring in the extravagant parameter space. Thus, it is important

how to construct the walking controller as the interface for learning.

1.3 Phase reset

In biomechanics, some CPG models have been proposed to explain how humans walk. They use
the non-linear equations to model the neural activities. Thus, they demonstrate that all the dynam-
ics of a robot, a controller, and the environment are drawn into a stable limit cycle in computer

simulations. However, from a view point of a humanoid controller, non-linear oscillator has some
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inappropriate aspects with respecto to the design of the controller because the resulting behaviors
of non-linear equations when the value of the parameters were changed are hard to predict.

To design a humanoid behavior, instead of directly using the CPG model, it is plausible to
adopt a controller with fewer parameters, of which the physical meaning are tractable. Moreover,
if we can extract the properties from the CPG model that stabilizes a biped walking, it becomes
possible to design a controller with tractable parameters.

The basic idea in this thesis is to design a simple controller for stable bipedal walking that has
appropriate parameters for the higher learning module. This walking controller should have the

following properties;

e Even though the number of parameters are limited, it must at least realize the intended mo-

tions.

e The walking is sufficiently stable during the exploration of the parameter values.

In this study, we adopt the phase reset algorithm as the control basis for realizing stable bipedal
walking. Briefly, the controller changes its walking mode from a swing phase to a support phase
and vice versa when the swing leg contacts with the ground. The role of the phase reset to stabilize
the walking was studied in detail by Yamasaki et al. [7]. The most attractive features of the phase
reset are to enable a robot to walk in a broad area of the parameter space, to make it possible to
explore the desired parameter and to design various modified motions (Fig. 1.1). The first feature
is used for exploring the energy efficient walking, and the second is used for making the various

walking motions that are related to visual information.

1.4 Overview

This thesis deals with two problems on the generation of humanoid behaviors using embodiment
approaches. The first problem concerns the realization of energy efficient walking. The second
concerns the visuo-motor mapping. For both problems, we adopt walking controllers that stabilize
a biped walking based on the phase resetting. The appropriate parameters to solve each problem
are designed so as to make it easier to accomplish the corresponding task. For the first problem, we

bring in the parameters to the phase reset walking controller which determines “ballistic” motion
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Parameter Space of Walking
Once you can find one parameter set

that enables a robot to walk,

walking possible area

1) you can explore the desired parameter
from there.

2) you can make various motions by modifying
the first parameter set.

walking impossible area

FIGURE 1.1 The advantage of using phase reset controller

of the swing leg. For the second one, we bring in the parameters which modifies the standard

walking and enables a robot to walk in various directions with various step length.

Part I presents the controller of the energy efficient walking based on ballistic walking.

Chapter 2 introduces the background of biped walking.

Chapter 3 presents the proposed controller of a simple biped model consisting of two links
without a torso, and shows that passive dynamic walking (PDW) can be accomplished

without falling down. Then, the biped model with knees but without a torso is examined
Chapter 4 demonstrates that the walking that has the same efficiency as human walking can

be achieved in the more realistic human model in two dimensional simulation.

Part Il deals with the problem of the generation of humanoid behaviors utilizing the sensori-

motor mapping between visual information and motor commands.

Chapter 5 introduces the existing studies of sensori-motor mapping.

Chapter 6 presents the application of reinforcement learning to the humanoid walking by
finding the correlation between rhythmic walking parameters and visual information in

order to approach to a ball for kicking.
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Chapter 7 proposes a controller in which a robot learns sensori-motor maps in each motion
module as the forward and inverse relationships between optic flows in the robot’s view

and motion parameters to realize a face-to-face pass between two humanoids.






Part |

Energy efficient walking of humanoid






Chapter 2

Related works in biped walking

Recently many robotics research groups have developed humanoids in academic institutes [8—
10], and in commercial companies [11-13]. However, the walking realized in these studies looks
awkward and seems "unnatural” compared with human walking. What causes this difference? It
Is essential to consider the scientific definition of "natural look” of walking. The movements of
living creatures are optimized energetically and make best use of gravitation and inertia. We are
so accustomed to seeing such a movement that our brain has a model of locomotion and feels that

typical robot-like movements are strange.

The purpose oPart | is to propose controllers that realize energy efficient walking with making
best of natural dynamics as it is in human walking. For that purpose, in this chapter, an overview of
the methods of biped walking in robotics and a human walking model are presented, to clear what
factors in robotics cause the unnatural biped walking and how those problems can be solved. The
algorithms for biped walking that so far have been proposed can be categorized into two streams
as explained in the previous chapter (Fig. 2.1). One istbeel based approaan which the
model of a robot and the environment are used explicitly during control. The otherdglaenic
based approacin which the model is not used during control although it can be used to verify the

stability of the movement.

In the following, | present the researches done so far in this field.

9
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natural dynamics,
energy efficient,
robust, adaptive

‘ human-like walking ‘

utilizing the
a robot model is dynamics of body,
fully described by \environment and
the designer ]‘ \ controller
Model-based Dynamics-based
Approach Approach
zr\{ pmk
PhaseReset

FIGURE 2.1 Two approaches in biped walking algorithms

2.1 Model Based Approaches

One of the common features in this approach is to set the reference trajectories for each joint
angles. The basic ideas for calculating the trajectories differs from methods to methods. But
broadly categorized, they are classified into three basic concepts based on the core indices, ZMP

and inverted pendulum mode. In the followings, the key idea of each method is introduced.

2.1.1 The ZMP based approaches

In bipedal walking, the state such that the foot of the support leg contacts with the ground at
one point should be thought to be avoided, because the system becomes uncontrollable. In static
walking, in which the walking speed is slow, if the projected point of center of mass (CoM) of a
robot exists within the area of the foot of support leg, the foot does not get into such an unstable
state. Zero moment point (ZMP) was proposed so that the same idea for the stability as in static
walking can be extended to the dynamic walking. ZMP can be defined as the point on the ground
where the total moment generated due to gravit yand inertia equals to zero [14-16]. Actually, ZMP
can be proved to be the same as the point of center of pressure (CoP) [17].

In the approaches based on ZMP index, the reference trajectories to be followed by high gain
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PD controllers are designed so that ZMP always exists within the foot of the support leg or the
polygon consisting of the support legs. For example, Takanishi group in Waseda University [9,
14, 18-20], the group that realized the biped walking in real robots based on ZMP since the very
early stage of humanoid robot researches, describes the trajectories of the arms, legs and ZMP
by the Fourier series and determines its coefficients to ensure the ZMP conditions in simulation.
The preset walking pattern is then played back using joint position control during walking with
compensated by the trunk. They tried to make use gravitational and inertial force with varying the

compliance of the legs, but the realized walking was not so natural as human walking.

FIGURE 2.2 The humanoid robot in Waseda University: WABIAN

In this approach, once you determine the ZMP trajectory, you can calculate the joint trajec-
tories to realize the ZMP trajectory based on the robot and the environment models. However, it
is difficult to determine the trajectories that fit to the natural dynamics as well as that fit to the
ZMP conditions. Moreover, you must select the appropriate ZMP trajectory that fits to the natural

dynamics among numerous possible walking trajectories.

2.1.2 Inverted pendulum model

In order to determine the reference trajectories that meet with natural dynamics, it is convenient
to adopt the simplified model so as to understand the intrinsic dynamics in the system. Inverted

pendulum model has been often used for bipedal control because, in the single supported phase,
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human walking can be modeled as the inverted pendulum model [21-26].

For example, Kajita et al. [24] modeled a robot with simplified model in which the legs were
massless, the upper body was a rigid inertial element and the robot walked with the center of mass
at a constant height. These assumptions enables to linearize equations of motion and makes it
easy to determine the reference trajectory that fit to the natural dynamics. Recently, they extended
their methods from the simplified two dimensional model to the three dimensional model with the

inverted pendulum in three dimensions.

FIGURE 2.3 Kajita’s robot: Meltran Il

The model of this approach is to relate the simplified low-dimensional model to the real com-
plex high-dimensional robot model. Simplification often needs peculiar assumptions such as short

lengths of steps or linear movement of the waist.

2.2 Dynamics based approach

This section presents the studies in the dynamics based approach. They can be categorized into
three groups from the view point of the originating idea; PDW, CPG and ballistic approaches.

However, the resulting control are quite similar in spite of the difference of their algorithms.

2.2.1 Passive Dynamic Walking

The robot that walks down on a shallow slope without any actuator has been popular since early

times. The oldest record | know is the patent about the shape of the feet of the toy [27] (Fig. 2.4).
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nnnnnnn 2 Bhoate—Shost 1.
@. T. PALLIS (otat) 9 hsta—gkast 2,

WALKING 70T G. T. FALLIS.

No. 376,688, Patented Jan. 17, 1593.\ WALKING ToY.

To. 376,688, Patented Jan. 17, 1888,
Feg. #.
%

FIGURE 2.4: The oldest record of PDW: [27]

Itis McGeer’s work [28, 29] that brought the toy to the stage of robotic research field as intro-
duced in the previous chapter. His work encourage many researchers to realize bipedal walking as

a mean to make best use of the intrinsic dynamics of a structure of humanoids.

In the early stage of this field, the properties of the dynamics that the simple PDW model has
were investigated. Coleman et al. [30] shows that the dynamics of PDW can be thought as the
extension of the rimless wheel. It is shown that the chaotic features appears in the boundary area

between the stable and unstable walking in simulation [31-34] and in a real robot [35].

The attempts to enhance a PDW robot with small actuation and with less control so that it can
walk in a level floor have begun around 2000. Sugimoto and Osuka [37] developed a real robot
which has 4 PDW ( total 8 legs) and proposed a controller derived from a chaotic control (Fig.
2.6). Asano et al. [38] proposed a controller that applies torque to the joints during walking on
the level floor so that the torque are the same as that given by the gravity in PDW. However, their
methods might not be categorized in "dynamic based approach” because they use the model of a

robot to derive the necessary torque.
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FIGURE 2.6: PDW robot of Osuka and Sugimoto: Quartet Il|

2.2.2 Central Pattern Generator

Vertebrate animals are thought to have neural basis for locomotion in spinal chord, named central
pattern generator (CPG) [5, 39]. Matsuoka proposed a mathematical model of CPG and demon-
strated that the combinations of simple neural models can generate the neural activities for loco-
motion [40]. Taga applied the CPG model proposed by Matsuoka to a human model and realized
stable biped walking in simulation [41]. He also showed his CPG model realizes very stable walk-
ing on a shallow slope and against sudden external forces. Taga suggests that this robust limit cycle
is the result of entrainment of the dynamics among the mechanical properties of a human model,
the CPG controller and the environment [42, 43].

Although various CPG models have been proposed and studied (for example, for locomotion of
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insects [44], for swimming and locomotion of lamprey [45]) or salamander [46], here I'll introduce
the simple Matsuoka’s model as typical CPG model.

Kimura et al. [47-50] realized 4-legged locomotion with Matsuoka type of CPG model in real
robots. They used the outputs of the CPG neurons as the desired value of the joint angles instead
of torque value. For biped walking, there have been few applications yet. The one example is
Miyakoshi’s study on stepping motion of humanoid model in three dimensional simulation [51].

One of the difficulties in application of CPG model to real robots is to determine the coefficients
of neural connections. As explained in Matsuoka’s model, CPG models includes many neurons
and they are connected mutually. This is the main reason why genetic algorithm have been often
used to solve this problem in general [52-57]. Another difficulty is that almost all robots employs
the proportional and derivative control for motor control in which the desired angle and angle
velocity should be given, whereas, in human model, the outputs of the CPG neurons are used as
torque.

Recently, CPG models have begun to be used as the rhythmic oscillator which can entrain with

the external inputs, and applied to various movements other than walking [58—60].

2.2.3 Ballistic walking

Ballistic walking was originated from the simple human walking model proposed by Mochon and
McMahon [61-63]. They got the idea from the observation of human walking in which the muscles
of the swing leg are activated only at the beginning and the end of the swing phase. Although their
model is simple which starts with certain initial value at the beginning of the swing phase and
afterwards moves only under the gravity (This is why this model is named "ballistic”.), it can
elucidate the observed data of human walking period.

Here, "ballistic walking family” is broadly defined as the walking controllers in which the
movement of the swing leg is governed by the gravitational and the inertial force in the middle of
the swing phase. Because ballistic walking originated as a human walking model, it is difficult
to distinguish clearly ballistic walking controllers from CPG controllers. However, it can be said
that CPG controllers use the intrinsic features of non-linear equations, whereas ballistic controllers

only mimic the apparent properties of human walking.
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In the following, we will introduce three main approaches of ballistic walking.

Delft Biped Laboratory of Delft University in Holland has developed real robots with pneu-
matic actuators. Pneumatic actuators are intrinsically difficult to use for positional control, but
they can be used passive factors when the internal pressure is very low. Their group utilizes this
characteristics of pneumatic actuators very well. Their controller uses the actuators only for mov-
ing the swing leg forward, instead of using for positional control [64—67]. There are two points
for keeping stability of walking in their control. The first point is to build a robot body so that
it can realize passive dynamic walking. The second is to determine the timing of turning on the
pneumatic actuators depending on the contact of the swing leg with the floor. In spite of this sim-
ple controller, they have realized the two dimensional and three dimensional waking without torso,

and three dimensional walking with torso [68, 69].

FIGURE 2.7: Max (left) and Denise (right) in Delft University

Pratt et al. [70, 71] of Leg laboratory in Massachusetts Institute of Technology realized robust
walking in a two dimensional real robot with the controller in which no control is applied during
the middle of the swing phase. Even though they use electric motors, they achieve the passive

phase with the series elastic actuators that enable a robot to vary the compliance of the joints. The
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controller they adopt is a state machine algorithm which transits its states depending on the sensor
information at the contact of the swing leg with the floor and time. However, it does not change
the trajectories of joint angles, but change only the timing of the transition of control state. With

this simple controller, they realize the stable walking with 1.25 [m/sec].

FIGURE 2.8 Spring Flamingo in MIT

Ono et al. in Tokyo Institute of Technology propose the controller that applies torque to the
hip joint proportional to the bending angle of the knee joint of the swing leg. They realize a stable
walking in simulation [72, 73] and in real robots [74] and insist that with this controller the whole
system makes a stable self-excited limit cycle. Their robots have actuators only in the hip joint. The
knees are fully passive during the swing phase and fixed by solenoids or magnetic brakes during
the support phase. In their controller, only the knee joint angle is used for sensor information, with
which it can detect the contact with the floor and changes the control mode from swing phase to
support one and vise verse. With this minimal configurations, they realize a stable planar walking.

It is important and interesting to think about what properties ballistic controllers have in com-

mon. The common features in the controllers mentioned above are stated as follows;
¢ In the beginning of the swing phase, the torque to make a swing leg move forward is applied.

¢ In the support phase, the torque to avoid bending of the knee joint of the support leg is

applied.
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FIGURE 2.9: biped Robot 3 of Ono et al. [74]

e The ground contact of the swing leg turns the control mode from the support one to the swing

one and vise verse.

It is meaningful to note that CPG controllers have similar features as these items. In CPG
models, the neurons are activated so that the torque is applied in the same way as mentioned
above. Furthermore, the ground contact information takes an important role in turning the support
mode and the swing mode in a controller. It is also interesting that the newer version of Taga’'s
CPG model to aim the more robust walking adopts "global states” as the input of the CPG neurons
that helps the CPG network to work in the same way as state machines such as Pratt’s model.

| believe the features mentioned above are fundamental to make a stable limit cyle for biped
walking, and the controller with those features can realize the stable walking, whatever algorithms

are adopted for implementing those features.

e Among these features, the third feature is regarded as the basis of the stable limit cycle. The
feature is nameghase reseaind the dynamics it affects to the system are investigated in
detail. Actually, Tsuchiya et al. propose a biped walking algorithm applying this feature that
does not have passive phase in control, and they demonstrate the stable walking with a real

small bipedal robot [75, 76].
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2.3 Approaching to the energy efficient walking from ballistic
walking with Learning

The purpose of my researches in chapter | is to realize energy efficient walking with exploiting
natural dynamics. Needless to say, PDW is the most efficient walking. However, PDW has some
difficulties for application to walking in a normal environment. The initial conditions that converge
to PDW are difficult to find, and the entrainment to the stable limit cycle occurs within the limited
small area. Although energy efficient walking has a limit cycle, it is hard to reach it. How does
a robot reach such a stable limit cycle? And how can it be accomplish adaptively without any
knowledge of a robot and the environment, a priori?

The studies that follow in the next two chapters are one of the possible solutions for that prob-
lem. As explained in the previous section, ballistic walking model provides the foundations for
stable walking against any control model. This means ballistic walking controller has larger area

for stable walking in control parameter space. Our aim is to go from ballistic walking to energy

PDW or Energy Minimum Walk}ﬁg .

Ballistic Walking

Dynamic Walking . --~

FIGURE 2.10 Approaching from ballistic walking area to the energy efficient walking

efficient walking. Our controller consists of two layeres; the lower layer stabilizes the ballistic
walking, while the upper layer tries to realize the minimal energy walking. In the followings, this
type of controller is applied to from a simple biped model to a more realistic human model.
Chapter 3 presents the application of the proposed controller to the simplest biped model con-
sisting of two links, without a torso and shows that PDW can be accomplished successively. Then,
the biped model with knees but without a torso is examined. Finally, it is shown that the walking
that has the same efficiency as human walking can be achieved in the more realistic human model

in Chapter 4.






Chapter 3

Acquiring Passive Dynamic Walking Based

on Ballistic Walking

Abstract

In this chapter, we propose a layered controller which enables the biped robot to walk adaptively
in minimal energy or passive dynamic walk, if possible. This controller consists of two layers:
the lower layer stabilizes the walking while the upper layer realizes the minimal energy walking.
The torque is applied to the robot in short time after the the free leg leaves the ground, and so
the walking is ballistic. Simulation results show that the proposed controller can realize passive

dynamic walking successively, starting from ballistic walking in the simple robot model.

3.1 Layered controller for ballistic walking

Taking the Poincdr section at heel contact in phase space of walking motion, the change of the
walking in each step is described as the transposition of the point on the Fosscdion.
In the passive dynamic walking in which no external force is applied to the robot, the state of

the (n+1)-th step depends only the state of the n-th step;

Sp+1 = f(sn) (31)
Many studies on ballistic walking have derived the conditions for stable walking from the condition

21
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thats = f(s) on Poinc& section. This condition is quantified by the multi-dimensional partial
derivative (or Jacobiam) f. If all eigenvalues of\ f lie within the unit circle, walking is stabilized
[65] [31].

In the ballistic walking, the condition for stable walking is analyzed in the same way. Suppose

the torquey,, is applied in short time after the free leg leaves the ground in the following way,

. (3.2)

Tw =

A, (0<t<ty)
0 <t0<t<T)

Here,t is the elapsed time after the free leg left the grougds small time as compared with
walking cycleT'. A, is constant during the-th step.

In this case, the displacement equation on Pomsaction becomes

Sur = (50, A). (3.3)

In this ballistic walking in which torque is applied during short time, contrary to passive dynamic
walking, the walking stability is controlled to some extent because the next statecan be
changed by,,. Formal’'sky derived the stable walking condition by formulating the equation (3.3)
as a boundary-value problem like= f(s, A) whent, is infinitesimal (the torque! is applied like
d-functions.) [77, 78]. Linde has found the condition for stable walking using the Jacobian of
[66].

The method mentioned above is effective when all parameters of the robot model are known a
priori. But if the parameters are unknown, how robot can attain the minimal energy gait adaptively
using its own sensor inputs?

To assure the walking stability, it is necessary to give the appropriate torque to the robot ac-
cording to the current statg,, so thats,, is a cyclic solution. For that, the inverse relation of the
equation (3.3) is useful:

An = g(Sn, Snt1)- (3.4)

If this function is available, the controller to realize the desired state can be built as follows:

An = g(n, 54)- (3.5)

Under this control, the desired state to realize the gait with minimum energy can be searched safely
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by the following equation.
Apin = min g(sq, Sq) (3.6)

We propose a controller which implements the equation (3.5) as the lower layer and the equa-
tion (3.6) as the upper layer as shown in Fig 1. The lower layer of the controller regulates the
torgue so as to keep the intersectional point on the Panglane,s,,, coincident to the desired
state,sy. The upper layer of the controller receives the information of current magnitude of the
torque applied to the waist,,, from the lower layer and gives the new desired state to be realized

in the lower layer.

[ Desired State Modificationj

S A

Ballistic Controller

FIGURE 3.1 A proposing layered controller for biped walking

In the lower layer, the controller should implement the equation (3.5). But it is impossible to
find the functionf without knowing the physical parameters of the robot. If the model of the robot
is simple, it is possible to prepare the simple feedback controller that works as the fufdtyon
getting the relationship of torque4,,, and the resultant state, ,; from observing several trial
walks. An example of this implementation will be shown in section 3.3. For more complicated
robot models, it is difficult to obtain the relationship from observations of trial walks. Thus we
introduce a neural network that maps the causality of the torque and the resultant state. This neural
network implements the equation (3.4) from the several trials in the learning phase. The simulation
relult of this implementation will be shown in section 3.3.

In the upper layer, to implement the equation (3.6), the desired statbat enables the robot

to walk with minimum energy is searched by stochastic hill-climbing method, as follows.

if(]s — sa|l <0)
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walking trajectory

Upper layer control Lower layer control
[Poincare Section|
(/o\, o
S & o
o0—5 é:'/
o/ o
Minimum Energy
Walking (or PDW)

FIGURE 3.2 Poincag section is taken at heel strike. On this plane, the lower layer of the controller tries
to keep the state at heel contact in the same area as the desired one which is given by the upper layer. The
upper layer of the controller tries to search the desired state which realize walking mode with minimum
energy.

Sdo = Sd

Sq = Sqo + random perturbation

The upper layer of the controller modifies the desired stat&Vhile ballistic torque produced by
the controller varies from time to time, the upper layer does not change the desired state. When
the torque is settled, which is observed by the efgor s4| < 4§, the layer will modify the desired
value in a random manner, and find the gradient to reduce the ballistic torque. In this way, the

layered controller makes the biped learn the passive dynamic walking by itself.

3.2 Simulation results

Several simulations are performed to show the effectiveness of the proposed layered controller. The

first experiment shows that the proposing controller can realize passive dynamic walking stably on
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a simple robot without knees. In the second experiment, it is shown that introducing a neural
network in the lower layer controller can successfully suppress the limping gait of a biped robot
with knees and then a gait with minimal energy can be realized.

In the following, each leg of a biped without knee is 1.5 [kg] and 0.6 [m]. For a biped model
with knees, the mass of thigh and shank is 1.0 [kg] and 0.5 [kg], respectively, and the length of
them is 0.3 [m]. The contact between the feet and the floor is modeled with spring-dumper model.
The coefficients of spring and dumper of the floor model is 20000.0 [N/m] and 100.0 [N sec/m],
respectively. The iteration time is 0.2 [msec]. The dynamics simulation is performed by articulated
body method [79].

3.2.1 Result on a biped without knees

In this experiment, to stabilize the ballistic walking, constant torque is applied to the hip joint
during 0.1 [sec] after the free leg leaves the ground. As the first trial to implement "ballistic

controller”, we adopted the simple feedback algorithm,
An+1 = An - O“S - Sd’u (37)

and as the representational variables of walking state, we adopt the angular velocity of waist joint,

6,,, So above equation becomes
An+1 = An - a(éw - éwd)v (38)

whered,,,, anda denote the desired value &f provided from the upper layer, and feedback gain,
respectively.

The upper layer of the controller modifies the desired joint afigle While ballistic torque
produced by the controller varies from time to time, the upper layer does not change the desired
angle. When the torque is settled, which is observed by the ka‘]s@| < 9, the layer will modify
the desired value in a random manner, and find the gradient to reduce the ballistic torque. In this
way, the layered controller makes the biped learn the passive dynamic walking by itself, if possible.

A simulation result with a biped without knees is shown in Fig. 3.4 . Figs. 3.4 (a) and (b)
show the angular velocities of the waist joint at the impact of each step, and the torque magnitude

applied to the waist joint, respectively. At the beginning, the torque is not settled, therefore the
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Desired State Modification

[
sd< A
L

N Ballistic Controller
An+1=An- (s -5d)

A S
Tw

FIGURE 3.3 Layered controller with simple feedback controller

desired waist velocity is not changed. Nevertheless, the biped continued to walk thanks to the
ballistic controller. After 10 steps, the torque is settled, and the upper layer begins to search for a
better desired value that makes the torque smaller. Afterward, the torque is continuously decreased

and passive dynamic walking is realized within 30 steps.

observed 1.4
1.2

——————— desired

1.0 A
0.8
0.6

Torque [Nm]

0.4 —

angular velocity [rad/sec]

0.2

0.0 —

T T T T T T
5 10 15 20 25 30 5 10 15 20 25 30
Walking Step Walking Step

(a) the angular velocity of hip joint atthe mo- (b) the magnitude of output torque at each
ment of heel strike in each step step

FIGURE 3.4: Walking mode converges to PDW under the proposing controller when the slope is inclined
1 [deg]
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3.2.2 Results on a biped with knees

When the feedback control proposed above is applied to a robot with knees, ballistic learner cannot
make the walking mode approach to the desired one because the walking mode is easily fell into the
2-cycled mode. To let walking mode converge to 1-cycled mode, the ballistic learner is enhanced
with neural network as shown in Fig. 3.5.

This neural network calculates the magnitude of the torque when the state at heel contact and
the difference between the current state and the desired one are given. Because the appropriate
torque value is unknown a priori, the functigrof the equation (3.6) is realized by neural network.

In training phase during which random torques are given to biped robot, the neural network is
trained by means of backpropagation algorithm so thatAhet then-th step can be obtained
when the state at n-th step and one at the-(1)-th step are given. The algorithm of the upper

layer is the same as that described in the previous section.

[ Desired State Modification

Sa < A

N Ballistic Controller

As=s-Sa @O A
s

FIGURE 3.5: Layered controller with neural network

Fig. 3.6 shows simulation results. In this experiment, the time from the moment the knee of
free leg is straight to the heel contact, is adopted as the representational variable of walking state.
Until the 30th step, random torque is given for training the neural network of ballistic learner.

When the ballistic learner works after the 30th step, the walking mode is stabilized by ballistic
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learner and converges to one cycled walking within 10 steps. And after about the 50th step, the

upper layer controller is activated and begins to search better desired value of the state.
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o
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—————— desired time

0.8
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o
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S

(a) the time during which the knee of free leg (b) the magnitude of output torque at each
is straight step

FIGURE 3.6. Applying layered controller to robot with knees

3.3 Discussion and future works

Here, we discuss about two problems of the method presented in this chapter.

The first problem is about the representative variables of the state. In this chapter, as the
representative variables of the state, we adopted the angular velocity of hip joint for the biped
model without knees, and the time during which the knee of free leg is straight, for the biped
model with knees. However, currently we do not know what kind of variables should be chosen.
Other variables or some combinations of them might be plausible. How to choose the appropriate
variables is the next challenge.

The second problem is the prediction of falling down. The upper layer tries to search the
desired state which enables the robot to walk with minimum energy, without knowing the safety
zone of states on Poin@section. So, if the robot cannot realize passive dynamic walking, the
robot inevitably falls down in the final stage of searhing. We are now trying to add another module

which evaluates the stability of walking.



Chapter 4

Learning Energy Efficient Walking with
Ballistic Walking

Abstract

This chapter presents a method for energy efficient walking of a biped robot with a layered con-
troller. The lower layer controller has a state machine for each leg. The state machine consists
of four states: First, constant torque is applied to hip and knee joints of a swing leg. Second, no
torque is applied so that the swing leg can move in a ballistic manner. Third, a PD controller is
used so that the certain posture can be realized at the heel contact, which enables a biped robot to
walk stably. Finally, as a support leg, hip and knee joints are servoed to go back and the torque to
support the upper leg is applied. With this lower layer controller, parameters that enable robot to
walk as energy efficiently as human walking can be searched by the upper layer controller without

paying any attention to avoid falling down.

4.1 Ballistic walking with state machine

Here, we use a robot model consisting of 7 links: a torso, two thighs, two shanks and two foots as
shown in Fig. 4.1.

The state machine controller at each leg consists of four states, as shown in Fig. 4.2: the

29
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Upper Body (3.0kg])
0.5[m]

. Shank (0.5[kg])
jpint 3, 92

O Foot (0.2[kg])
0;

1

SRS
0.08 [m]

FIGURE 4.1: Robot model

beginning of the swing phasewing I), the middle of the swing phasewing 1), the end of the
swing phasedwing Ill) and the support phassuppon).

/f 1
Heel Contact
of another leg t > Tswgl
(tis set to 0) / \
Heel Contact ‘ t > Tswgl +Tswg2

(tis set to 0)
OX

FIGURE 4.2 A state machine controller consisting of four states

In the support phase, the hip joint is servoed by a proportional derivative (PD) controller so
that the torso stands up and the support leg goes back. To the knee joint, torque is applied so that

the knee joint becomes straighten during the support phase. Therefore, the torque applied to the
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hip and waist joints are given by the following equations;

T = —Kp<(91 — eld) — Kv(él — éld) — Kwpew — vaéw, (41)
7y = —K, (02 — O24) — K, (02 — 0s4). (4.2)

The reference trajectory for the above PD controllers are described with the simple sinusoidal
functions which connect the angle of the beginning of the state to the desired one to be realized at

the end of the state,

7

it (0%2;918)(1 — cos %) + 6015 (t < Typ) 4.3)

1d = s .
k‘gle (t Z Tspt)

eld(t) — 2T5pt Tspt ( pt) ’ (4.4)
kO (t Z Tspt)
(

ot 00252;925)(1 — COS %) + 025 (t < Topt) (4.5)

2d = .

k926 (t 2 Tspt)

and

7T(02e*925) : i
: T2l gin T (t < Typt)
‘92d<t) _ 2Tspt Tspt P (46)

0 (t = Tipt)

whered,, indicates the angle at the moment when the controller enters the support phase (the
moment of contact of the swing leg with the ground), @hdindicates the desired angle that
should be realized at the end of the support phasethe time since the controller enters to the
support phase and,,, is the desired time when the support phase ends. In this simulation, the
control gains are set &s, = 300.0 [Nm/rad], K, = 3.0 [Nm sec/rad],K,, = 300.0 [Nm/rad]
and K,,, = 0.3[Nm sec/rad], and the desired angles of the end of the support phase are set as
0. = 20.0 [deg] andd,. = 0.0 [deg].

The swing phase is separated to three statesig | (the beginning phasegwing Il (the middle
phase), andwing lll (the end phase). Iswing |, the controller applies constant torque to both the
hip and knee joints. After the certain time passes, the control state charsyasgd|, in which no

torque is applied to the hip and knee joints. Thereforeswing Il the swing leg moves in a fully
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passive manner. After the swing time passgs., the control state changesdwing Ill, in which

the joints are servoed using PD controllers so that the desired posture at the end of the swing phase
can be realized. By taking a certain posture at the moment of ground contact, a certain degree
of walking stability can be assured. The state of the controller transits to thesafgtertwhen

the swing leg contacts with the ground. The output torque can be summarized as the following

equations,
)
A (t < Tswgl)
T =140 (Tawgt <t < Tawgr + Torga) (4.7)
\_Kp(el - eld) - Kv(él - 91(1) (Tswgl + TS?.UgQ S t)
and
4
-B (t < Tswgl)
T =10 (Towgt <t < Tawgr + Towga) (4.8)

L _KP(92 - 92d> - Kv<92 - 926[) (Tswgl + Tsng < t)

where the reference trajectorysmwing Ill is given in the same manner as the support phase, egs.
4.3-4.5. In our study, the desired angles of the hip and knee joints at the end of the swing phase
are set ag,. = —20 [deg] andd,, = 0 [deg], respectivelyI,,; and7y, . are setto 0.2 [sec], and
0.05 [sec].

Throughout walking, a PD controller with the small gaid§ (= 3.0 [Nm/rad] andK;, = 0.3

[Nm sec/rad]) is used to the ankle joints,
T3 = —K;(Qg - 93d) - KL(O;; - 93(1)- (49)

The desired angle of the ankle joint is always fixe@@ddeg]. Therefore, the ankle joint works as
a spring is attached.

The simulation result of the controller is shown in Fig. 4.3, in which the resultant torque curves
are shown with control mode during one period (two steps). In this figure, the control modes 1, 2, 3
and 4 correspond tewing I, swing I, swing Ill and suppartespectively. In Fig. 4.3, large torque
Is observed at the end of the swing phase and the beginning of the support phase. This torque

might be caused by too large or too small torque applied at the beginning of the swing phase. If the
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FIGURE 4.3 State machine mode and torque during one period

appropriate torque is applied swing I (at the beginning of the swing phase), this feedback torque
might be lessen and the more energy-efficient walking could be realized. In the next section, the

optimization of this torque is attempted by adding a learning module.

4.2 Energy minimization with a learning module

To realize the energy efficient walking, a learning module which searches appropriate output torque
in swing lis added to the controller described in the previous section (Fig. 4.4). Besides torque,
the learning module searches the appropriate value of control parameter which determines the end
of the duration of passive movemeitt,, . It is noted that these parameters are not related to the
PD controller which stabilizes walking. For the evaluation of energy efficiency, we use the average

of all the torque which is applied during one walking period (two steps),

3

Tstep
/ > mdt (4.10)
0

i=1

Eval =
Tstep

Using this performance function, the appropriate values of the parameters are searched in the

probabilistic ascent algorithm as follows.
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FIGURE 4.4: Ballistic walking with learning module

e ™
1 if(Bval < Evalpyy)
2 Apin = A
3 Bpin =B
4 Towgomin = Tswg2
5 A= A+ random perturbation
6 B = B+ random perturbation
7T Tawge = Towg2 +
random perturbation
N /

The simulation results are shown in Fig. 4.5. Figures. 4.5 (a), (b) and (c) show the time courses of
the output torque applied to the hip and knee jointswing |, A, B, and the passive timé, .,

and the average of total torquéyal, respectively. Even though the input torque changes variously,
the PD controller irswing Il which keeps the posture at ground contact constant realizes a stable

walking.
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FIGURE 4.5; Learning curve of control parameters and total torque
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FIGURE 4.6. State machine mode and torque by a state machine controller with a learning module

Comparing the first step with the 80th one, the average of total torque decreases (Fig. 4.5 (c)),
even though the output torque of the beginning of the swing phase at the 80th step is almost the
same as the first step (Fig. 4.5 (a)), whereas the passivefimg, increases (Fig. 4.5 (b)). The
total torque of walking, therefore, depends more on the passive time than the magnitude of the
feedforward torque which is given in the beginning of the swing phase.

Furthermore, in the final stage of learning, after the 120th step, the output torque of the hip
joint at the beginning in the swing phase becomes zero while the torque of the knee joint increases.
This result might be strange because many researchers have applied torque to hip joint in swing
phase. In this stage, the large energy output appears among weak ones (Fig. 4.5 (c)). This may be
because robot walk on a wing and a prayer on the subtle balance between dynamics and energy.
Once the balance is lost, the PD controller compensates stability with large torque.

Fig. 4.6 is the time-course of the torque in around the 80th step. Comparing the torque appeared
in Fig. 4.6 with those in Fig. 4.3, the total torque are reduced about 1/10 in the hip and knee joints,

whereas the torque profile at the ankle joint is almost the same.

4.3 Comparing with human data

In this section, we apply the proposed controller to the model which has the same mass and length

of links as human, and the torque and angle of each link are compared with the observed data in
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Mass | Length| Inertia
[kal | [m] | [kgm’]
HAT | 46.48| 0.542 | 3.359
Tigh | 6.86 | 0.383 | 0.133
Shank| 2.76 | 0.407 | 0.048
Foot | 0.89 | 0.148 | 0.004

Table 4.1: Mass and length of human model links

| Human| Simulation

Support : Swing%:%] 60:40 60:40
Walking Ratesteps/sec] 1.9 1.3

Walking Speedm/sec] 1.46 0.46
Walking Stepgm] 0.76 0.36
Energy Consumptioftal/m kg] | 0.78 0.36

Table 4.2: Characteristics of simulation and human walking

human walking.

For the parameters of the human model, we use the same model as that of Ogihara and Ya-
mazaki [52], which is shown in Table 4.1. The control gains at hip and knee joints are set as
K, = 6000.0 [Nm/rad], K,, = 300.0 [Nm sec/rad],K,,, = 6000.0 [Nm/rad] andk,,, = 100.0
[Nm sec/rad]. The desired angles at the end of the swing and support phases are the same as in
Section 2.

The time course of angle and torque of the simulation results are shown in Figs. 4.7 with human

walking data (from [80]). The horizontal axis is normalized by the walking period.

At the hip joint, while the time course of joint angle is almost same as human, that of torque
Is different, especially in around 80% and 30% walking periods in which strong effects of PD
controllers appears (Fig. 4.7 (b)). At the knee joint, the pattern of the time course of joint angle
roughly resembles human data in shape except at around the end of the swing phase and the be-
ginning of the support phase, in which the knee joint of human data becomes straighten but that of
simulation data not. Moreover, the torque pattern is quite different from human data. At the ankle

joint, it is surprising that the torque pattern shares common traits with human data, even though
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the ankle joint is modeled as simple spring joint. Fig. 4.7 (f) shows that, although the control state
after the support phase is namesing I’, it works as double support phase. The rate of swing
phase to support phase is the same as human data (40:60).

Table 4.2 compares characteristic features of walking in the simulation result with that in hu-
man data ([81]). It shows that the simulation algorithm succeeds in finding the parameters which
enable the human model to walk with 45% less energy consumption. But this walk may not neces-
sarily mean the energy efficient walking because the walking speed (and the walking rate) is much
slower than human walking. This may be because the proposed controller uses the ankle joint only
passively, and only the energy consumption is taken into consideration in the evaluation function

(eq. 10). Acquiring fast walking is our future issue.

4.4 Discussion

Our controller has a state machine on each leg which affects each other by sensor signals. Even
this simple controller enables a biped robot to walk stably. There are two reasons. First, PD
controllers at the end of the swing phase ensure that a biped touches down on the ground with
the same posture. This prevents a swing leg from contacting with too shorter or too longer step
length because of inadequate forward torque given at the beginning of the swing phase. But this
stabilization does not always work well. It mainly depends on the posture at ground contact. How
this posture is determined is the issue we should attack next.

The second reason for stable walking is that the controller has some common features to CPG
(Central Pattern Generator). In CPG model, the activities of neurons are affected by sensor signals
(or environment), and as a result global entrainment between a neural system and the environment
takes place [42] [43]. Our proposed controller doesn’t have a walking period explicitly. The period
of the controller is strongly affected by the information from touch sensors, which determine the
state transition of a state machine in each leg. It can be said that our controller has some properties
like global entrainment between the state machine controller and the environment.

The walking mode realized in this chapter is much slower than human walking as shown in
Table 2. Presumably the reason of this slow walking is due to the passive use of the ankle joint.

To realize fast walking, it is necessary to shorten the walking period and to make the step length
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longer. They are closely related to the ankle joint setting because the speed of falling forward of
the support leg is largely affected by the stiffness of the ankle joint, and the step length can be
longer if the support leg rotates around the toe. Controlling the walking speed is another issue to

be attacked.
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Visuo-motor mapping in humanoid walking
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Chapter 5

Related works in visuo-motor mapping

In part Il, we will treat a sensori-motor mapping problem when generating humanoid behaviors,
especially the mapping problem between visual information and various motions. This part is also
related to the the problem on how to generate purposive behaviors with the dynamic walking.

This chapter introduces the existing approaches that accomplish purposive locomotive behav-
iors using visual information in a legged robot. This research area can also be categorized into two
contrast approaches; model-based approaches and non-model-based approaches. Interestingly,
these approaches are strongly correlated with the approaches to realize the biped walking. This
is partly because a designer in the model-based approach tries to accomplish humanoid behaviors
after modeling a robot, a controller and the environment completely, whereas a designer in the
non-model-based approach regards the unpredictable emergence of entrainment between the dy-
namics of a robot and the environment. In the followings in this chapter, first the typical researches
in the model-based approach are introduced. Next the attempts in the non-model-based approach

are presented. Finally, the motivation and the rough idea of our approach are explained.

5.1 The model-based approach

Supposing that all information concerning the interaction between a robot and the environment
is available in advance, a designer can predict the dynamics of the whole system and build a
controller based on prediction. Conversely, a designer processes sensor information so that he/she

can comprehend the whole system. It can be said that the model-based approach is the approach
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that uses the frame of reference of a designer (who lives outside an agent).

Take an example task of approaching to the goal that can be captured in a robot camera, and
see how sensor information are described in the model-based approach. In the first step, the two
dimensional coordination of the goal in camera image is converted to the three dimensional data
in the coordinate system that centers on a camera using camera parameters. In the next step, the
coordinates are converted to that in the coordinate system that centers on a robot compensating
the orientation of a head and eyes of a robot. Using this information about the distance and the
direction of the goal, the robot motion to approach to the goal is planned. The trajectories of each
joint to realize the planned motion is calculated, and finally those trajectories are realized based on

the high gain feedback (Fig. 5.1).

(mainly used information)
l stereo vision image

[ Detection and Measurement }/iarget color and size

of the Target

l Garget position motion model of the target

[ Estimate of Target Motion

l target trajectory .
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l gaits d 4
ynamics,
L Trajectory Generation kinematics model

l posture sequence

ground reaction force,
[ Trajectory Modification torso absolute posture
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urrent angle
[ Motor Servo ]’/t

l motor current

FIGURE 5.1 The typical controller in the model-based controller: from [82]

This control flow is the typical series-type controller that Brooks has criticized for its slow
execution. However, the recent progress in computer technology improves the calculation perfor-
mance and enables this approach. Almost all humanoid projects adopt this approach.

Nishiwaki et al. [82] achieve the approaching of a humanoid to the moving ball. Their con-
troller describes the ball position in the global coordinate system and predicts its motion there. The
walking motion is planned based on the prediction. Kagami et al. [83] propose the 2.5 dimensional

description of the floor (Fig. 5.3). In their system, the stereo images of a humanoid are converted



5.1 THE MODEL-BASED APPROACH 45

to the texture in the global coordinate system using the camera parameters. The resultant map

helps a humanoid to plan walking for avoiding obstacles.

FIGURE 5.2 A humanoid robot can chase a moving ball by predicting its motion.: from [82]

One of the serious problems in the model based approach is the error that arises from various
reasons (e.g. the disagreement between the planned motion and the real motion, between the model
parameters and those in a real robot). Seara et al. [84, 85] propose the gaze control system for a
humanoid based on information criterion. Their system determines the motor command for gazing
so that the uncertainty arising from the errors are minimized. However, their system is limited to
gaze control in moving along the pre-determined course and does not refer to the problem how to
determine humanoid walking motions.

The common features in this approach can be summarized as follows,

¢ Visual information is converted and described in the coordinate system that a designer can

understand.

e The perception system and the controlling system for motion are developed separately and
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FIGURE 5.3 2.5D terrain modeling: from [83]

connected based on a designer’s interpretation.

Under the known and controlled circumstances, that is when all the information about a robot
and the environment are available, this approach is powerful and effective. However, in such a
system, any uncertainty causes the collapse of the whole system. How can a robot coordinate
their motion behaviors by itself? The non-model-based approach is an approach to cope with that

problem.

5.2 The non-model-based approach

When the information about a robot and the environment is not available, it is difficult to convert
the information about motions and sensors to the frame of a designer’s reference. In stead of
calibrating those data for converting to the designer’s view, it is necessary to calibrate the motion
data with the sensor data and vise verse. This correlating task without a designer’s view is sensori-
motor mapping.

The controllers in the non-model-based approach has been proposed in a wheel-type robot.
Optical flow has been used to learn the sensorimotor mapping for obstacle avoidance planned
by the learned forward model [86] or by finding obstacles that show different flows from the
environments using reinforcement learning [87]. However, it is difficult to directly apply those

methods to a legged robot, because there are much more degrees of freedom and sensors in a
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FIGURE 5.4: The robot traverses a obstacle by recognizing and localizing an obstacle: from [84]

legged robot, and motion commands are not so simple as in a wheel robot. In a legged robot, as
the first step, it is important to think about how to construct the motion primitives that is preferable
to make a sensori-motor mapping with sensors.

Miyashita et al. [88, 89] proposed a system which realizes the stable visual tracking in a 4-
legged robot based on the various kinds of reflective motions for avoidance of falling down. They
construct the motion repertories from the reflective motions that are generated in the visual track-
ing, and take the correlations with the visual information with those repertories. This methodology
is very unique in that even the motions units are not given by a designer in advance.

As biological-inspired model, CPG is supposed to be the motion unit for locomotion, and sev-
eral models are proposed to correlate the parameters of CPG neuron models and visual information.

lispeert and Arbib [90] propose the CPG model of locomotion and swimming for a salamandar.
They showed that the simple input to the CPG neurons can change the direction of locomotion. Us-
ing this property, they demonstrate that the lamprey model can chase the given target in a computer
simulation (Fig. 5.6).

For a humanoid model, Taga [91] shows that the temporal input to the CPG neurons in certain
phase of walking can activate the motions for obstacle avoidance by changing the step length and
the height of the foot. de Rugy et al. [92] showed that CPG model can adjust walking automatically

so that a human model can step on a target point when the estimated time for the foot to reach the
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FIGURE 5.5: Quadruped walking with reflexes: from [89]

FIGURE 5.6: A Salamandar model chases a randomly moving target: from [90]
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given target point is input to the CPG neurons.

2
y(m)
15

1

0.5

FIGURE 5.7: A human model can change its gait with simple modification of inputs to CPG neurons.:
from [91]

The proposed models for CPG above mentioned are all demonstrated in computer simulation.
The application of CPG to a robot is conducted by Kimura et al. [93]. They realize to avoid
obstacles or climb over a step utilizing visual information in the same way as the methodology of

Taga.

FIGURE 5.8 A quadruped robot can walk over a step by changing the CPG oscillation pattern with visual
information.: from [91]

In the non-model-based approach, in spite of the possible performance, the research stage is not
so adaptive that an agent adjusts automatically and adaptively the parameters of motions depending

on its own experience. In the CPG-based approach, although it is shown that the sensor input can
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change the locomotive motion, Currently, it seems that the adjustments of the sensor input is given

by the designer.

5.3 Learning visuo-motor mapping in humanoid behavior gen-

eration

The purpose of my researches in part 1l is to realize humanoid motions based on learning visuo-
motor mapping.

Chapter 6 introduces a layered controller, in which the lower-layer controller realizes rhythmic
walking based on the controller proposed by Tsuchiya et al. [76] and the upper-layer controller
learns the parameters of the lower-layer controller based on visual information. There are three
points in learning the upper-layer controller: (1) in the first stage, it learns the feasible parameters
of the lower-layer controller that enable a robot to walk, (2) to accelerate the learning process,
the upper-layer controller learns the model of the world: the relationship between the control
parameters given to the lower rhythmic walking controller and the change of the visual sensor
information, and (3) the upper-layer controller learns which parameters should be given to reach a
goal by reinforcement learning.

Chapter 7 presents a method of visuo-motor learning for behavior generation of humanoids,
and, as an example task, passing a ball between two different humanoids (face-to-face pass) [94]
is realized based on the sensorimotor mappings of motion primitives. The task is decomposed
into three basic motion modulesapping a ball approaching to a balandkicking a ball to the
opponent Each motion module can be further decomposed into several motion primitives, each
of which has motion parameters to control the motion trajectory. The sensorimotor mapping is
learned as the forward and inverse relationships between these motion parameters and optic flow
information in each motion. The acquired sensorimotor maps are used to select the appropriate
motion primitive and its parameters to realize the desired pathway or destination in the robot’s

view given by the planner.



Chapter 6

Reinforcement Learning of Humanoid
Rhythmic Walking Parameters based on

Visual Information

Abstract

This chapter presents a method for learning the parameters of rhythmic walking to generate purpo-
sive humanoid motions. The controller consists of two layers: rhythmic walking is realized by the
lower layer, which adjusts the speed of the phase on the desired trajectory depending on sensory
information, and the upper layer learns (1) the feasible parameter sets that enable stable walking,
(2) the causal relationship between the walking parameters here to be given to the lower-layer con-
troller and the change in the sensory information, and (3) the feasible rhythmic walking parameters
by reinforcement learning so that a robot can reach to the goal based on visual information. The
experimental results show that a real humanoid learns to reach the ball and to shoot it into the goal

in the context of thé&koboCupSoccerompetition, and the further issues are discussed.
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6.1 A RHYTHMIC WALKING CONTROLLER

6.1.1 A biped robot model

Fig. 7.1 shows a biped robot model used in the experiment which has a one-link torso, two four-
link arms, and two six-link legs. All joints rotate with a single degree-of-freedom (DoF). Each foot
has four force-sensing-resistor (FSR) sensors to detect reaction force from the floor, and a CCD

camera with a fish-eye lens is attached at the top of the torso.

6.1.2 A rhythmic walking controller based on CPG principle

We build a lower-layer controller based on one proposed by Tsuchiya et al. [76]. The controller
consists of two sub-controllers: trajectory controlleranda phase controlle(see Fig. 6.2). The
trajectory controller outputs the desired trajectory of each limb depending on the phase that is
given by the phase controller. The phase controller consists of four oscillators, each of which
is responsible for the movement of each limb (see Fig. 6.3). Each oscillator changes its speed
depending on the touch sensor signal, and the effect is reflected on the oscillator in each limb. As
a result, the desired trajectory of each joint is adjusted so that the global entrainment of dynamics
between the robot and the environment takes place. In the following, the details of each controller

are given.

Trajectory controller

The trajectory controller calculates the desired trajectory of each joint depending on the phase
given by the corresponding oscillator in the phase controller. Four parameters characterize the
trajectory of each joint as shown in Fig. 6.4. For joints 3, 4 and 5, which coincide with pitch axis,
the desired trajectory is determined so that in the swing phase the foot trajectory draws a ellipse
that has the radf in the vertical direction and in the horizontal direction, respectively. For joints

2 and 6, which coincide with roll axis, the desired trajectory is determined so that the leg tilts from
—W to W relative to the vertical axis. The amplitude of the oscillatiengdetermines the desired

trajectory of joint 1. The desired trajectories are summarized by the following functions:
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FIGURE 6.1 A model of biped locomotion robot
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FIGURE 6.2 A walking control system
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Joint 1
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FIGURE 6.4: Joint angles

0, = asin(e), (6.1)
0, = Wsin(¢), (6.2)
0, = fio,h,0), (1=3,4,5) and (6.3)
0 = —W sin(e). (6.4)

The detail of f; is explained in the Appendix. Among the four parameters described above,

which determines the walking step length, amdwhich determines the walking direction, are
selected as rhythmic parameters of walking. Although these parameters characterize approximate
direction and step length, they do not determine the resultant walking as precisely because of
slippage between the support leg and the ground. These parameters are learned in the upper-layer

learning module, which is described3n

Phase controller

The phase controller sets the phase that determines the desired value of each joint. The phase
controller consists of two oscillatorgyz and ¢;, for the right and left leg, respectively. The

dynamics of each oscillator is determined by the basic frequendiie interaction term between
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two oscillators, and the feedback signal from the sensory information,

¢ = w—K(¢pp —¢r—7)+9grL (6.5)
b = w—K(dpr— b —7)+ gn. (6.6)

The second term on the RHS in the above equations ensures that the oscillators have opposite

phases. The third term, feedback signal from sensor information, is given as follows:

g — K'Feed, (0 < ¢ < ¢c) 6.7)
—w(l — Feed;) (¢pc < ¢ < 2m)
i =A{R, L},

where K’, ¢ and Feed; denote feedback gain, the phase when the swing leg contacts with the
ground, and the feedback sensor signal, respectivEled; returns 1 if the FSR sensor value

of the corresponding leg exceeds a certain threshold value, otherwise 0. The third term in (5)
and (6) ensures that the mode switching between the swing phase and the support phase happens
appropriately according to the ground contact information from the FSR sensors. The values of

parameters are set as follows; = = [rad], w = 5.23 [rad/sec],K = 15.7 and K’ = 1.

6.2 REINFORCEMENT LEARNING WITH RHYTHMIC WALK-
ING PARAMETERS

6.2.1 The principle of reinforcement learning

Reinforcement learning has been receiving increased attention as a method of robot learning with
little or no a priori knowledge and a higher capability for reactive and adaptive behaviors. Fig. 6.5
shows a basic model of robot-environment interaction [95], in which a robot and environment
are modelled by two synchronized finite state automatons interacting in a discrete time cyclical
processes. The robot senses the current state S of the environment and selects an action

a; € A. Based on the state and action, the environment makes a transition to a new, stateS

and generates a reward ; that is passed back to the robot. Through these interactions, the robot

learns a purposive behavior to achieve a given goal. For the learning to converge correctly, the



REINFORCEMENTLEARNING OF HUMANOID RHYTHMIC WALKING PARAMETERS BASED ON
56 VISUAL INFORMATION

sw1: Next state s.: State Agent

r: Reward ¢ z
—

=

a: : Action

FIGURE 6.5. A basic model of agent-environment interaction

environment should satisfy the Markovian assumption that the state transition depends on only the
current state and the action taken. A stochastic funcfiomhich maps a state-action pair to the
next state : S x A — S) models the state transition. Usifl§j the state transition probability

P, 5., (a:) is given by

P3t73t+1 (at) = PTOb(T(Sh at) = St—&-l)‘ (68)

The reward function gives the immediate rewardjn terms of the current state by(s,), that is
re = R(s;). Generally,P;, .., (a;) (hereafterP?,) andR(s,) (hereafterR?,) are unknown.

The aim of the reinforcement learner is to maximize the accumulated summation of the given

rewards (calledeturn) given by

o0

return(t) = Zy"an, (6.9)

n=0

wherevy (0 < v < 1) denotes a discounting factor to give the temporal weight to the reward.
If the state transition probability is known, the optimal policy that maximizes the expected
return is given by finding the optimal value functidr*(s) or the optimal action value function

Q*(s, a) as follows. Their derivation can be found elsewhere [95].

Vi(s) = meE{TtH + AV (st41)|se = s, a0 = a}
= max Y Pl [Riy + V()] (6.10)
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Q*(s,a) = E{rin +71T2§XQ*(St+1,a/)|3t =s,a; = a}

= Y Py [R“ +ymaxQ*(s',d) (6.11)

The learning module examines the state transition when both feet are in contact with the ground
so that the stable visual information can be obtained (some experiments show the possibility that
the human brain may calculate the distance to the obstacle by visual information at the double
stance phase [96]). The state spaamnsists of the visual informatio#, and the robot posture
sp, and the action is setting the two parameters of rhythmic walking. Details are explained in the

following subsections.

6.2.2 Construction of action space based on rhythmic parameters

The learning process has two stages. The first stage constructs the action space consisting of fea-
sible combinations of two rhythmic walking parameters (7). To do that, we prepared the three-
dimensional posture spaegin terms of the forward length (quantized into four lengths: 0, 10,

35 60 [mm]) and the turning angte (quantized into three angles: -10, 0, 10 [deg]), which are the
previous action command and the leg side (left or right). Therefore, we have 24 kinds of postures.
First, we have constructed an action space of the feasible combinations Gj énd excluded

the infeasible combinations which cause collisions with its own body. Then, various combinations
of actions are examined for stable walking in the real robot. Fig. 6.6 shows the feasible actions
(empty boxes) for each leg corresponding to the previous actions. Owing to physical differences
between the two legs, the constructed action space was not symmetric, although theoretically it
should be.

6.2.3 Reinforcement learning with visual information

Fig. 6.7 shows an overview of the whole system, which consists of two layers: adjusting walking
based on visual information and generating walking based on neural oscillators. The state space
consists of the visual information, and the robot posture,, and adjusted actiomis learned by

a dynamic programming (DP) method based on the rhythmic walking parameter$) ( For the

ball shooting tasks, consists of ball substates and goal substates, which are quantized as shown
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FIGURE 6.6: Experimental result of action rule

in Fig. 6.8. We add two more substates, that is, “the ball is missing” and “the goal is missing

because they are necessary to recover from loosing sight of the ball or goal.

The learning module consists of a planner that determines an actiased on the current
states, a state transition model that estimates the state transition probaBjlitthrough the
interactions, and a reward model (see Fig. 6.9). Based on DP, the action value functian is

updated and the learning stops when there are no more changes in the summation of action values.
Q(s,a) = Z Pey[Rs +ymaxQ(s', a)], (6.12)

whereR, denotes the expected reward at the state
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6.3 EXPERIMENTS

6.3.1 A robot platform and environment set-up

We use a humanoid platform HOAP-1 by Fujitsu Automation Ltd. [97] attaching a CCD camera
with a fish-eye lens at the head. Figs. 6.10 and 6.11 show a picture and a system configuration,
respectively. The height and the weight are about 480 mm and 6 kg, and each leg has six degrees-
of-freedom and each arm has four. Joint encoders have high resolution of 0.001 [deg/pulse] and
reaction force sensors (FSRs) are attached to the soles. Color image processing to detect an orange
ball and a blue goal is performed on the CPU (Pentium Il 800 MHz) under RT-Linux. Fig. 6.12

shows an on-board image.

FIGURE6.10. HOAP-1

The experimental set-up is shown in Fig. 6.13 where the initial robot position is inside the
circle whose center and radius are the ball position and 1000 mm, respectively, and the initial
ball position is located less than 1500 mm from the goal whose width is 1800 mm and height is
900 mm. The task is to take a position just before the ball so that the robot can shoot the ball into
the goal. Each episode ends when the robot succeeds in getting such positions or fails (touches the

ball or the pre-specified time period expires).
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FIGURE 6.11 Overview of robot system

FIGURE 6.12 Robot’s view (CCD camera image through fish-lens)

FIGURE 6.13 Experimental environment
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6.3.2 Experimental results

One of the most serious issues in applying the reinforcement learning method to real robot tasks
is how to accelerate the learning process. Instead of using Q-learning that is most typically used
in many applications, we use a DP approach based on the state transitionipdalhich is
obtained separately from the learning behavior. Furthermore, we give the instructions to start up
the learning: during the first 50 episodes (about half an hour), the human instructor avoids useless
exploration by directly specifying the action command to the learner about 10 times per episode.
After that, the learner experienced about 1500 episodes. Owing to the state transition model and
initial instructions, learning converged in 15 hours, and the robot learned to get to the right position
from any initial positions inside the half field.

Fig. 6.14 shows the learned behaviors from various initial positions. In Figs. 6.14 (a)-(e), the
robot can capture the image including both the ball and the goal from the initial position while in

Fig. 6.14 (f) the robot cannot see the ball or the goal from the initial position.

yaTw S
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(a) Result 1 (b) Result 2 (c) Result 3

e I o e I
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(d) Result 4 (e) Result5 () Result 6

FIGURE 6.14 Experimental results
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6.4 DISCUSSION

This study shows the possibilities for humanoid to correlate its walking parameters and on-board
visual information through its experiences based on the so-called model-free approach which does

not need very precise model parameters that are usually necessary for the model-based approach.

In our approach, motion commands are directly correlated with camera image without the
complicated calibration process. It enables to evaluate the motion commands from the viewpoint

of the achievement of the task.

This sort of approach has been already studied in wheeled robots [98]. It is necessary to keep
stabilized walking to apply reinforcement learning to humanoid robot. There are two points to
realize stable walking in this study. The first point is keeping the walking trajectory continuous
when walking parameters are changed. To do that, the planned trajectory before the change is
modified so that the effects on walking can be as little as possible. The second is the action
rules described in Fig. 6. These rules impose constraints on the selection of action parameters.
For example, a robot cannot select left turn command with long step length just after right turn

command in the previous step.

There is still much room for improvement in this study as a model-free approach. One of the
problems is learning time. In our experiments, although 1500 episodes are examined and conver-
gence is conducted with the state transition probability acquired through those episodes, learning
results are not completely optimal. For example, the selected step length is not maximum limit at
the place where a robot is far from the goal place. Learning shows good convergence when the
experimental setting is simplified: approach to the ball on a straight line. When a robot is far from
the goal, the maximum step length is selected. This may be because the number of the states and
actions in this simplified experiment is much smaller than that in the experiment of approaching to
a ball from the various positions. Therefore, learning acceleration in the complicated environment

is one of our future works.
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6.5 CONCLUSION

Vision-based humanoid behavior was generated by reinforcement learning with rhythmic walking
parameters. Since the humanoid generally has many DoFs, it is very hard to control all of them.
Instead of using these DoFs in the action space, we adopted rhythmic walking parameters, which
drastically reduce the search space and, therefore, real robot learning was possible in a reasonable
amount of time. In this study, the designer specified the state space consisting of visual features

and robot postures. State space construction by learning is an issue for future exploration.
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Chapter 7

Visuo-Motor Learning for Behavior

Generation of Humanoids

Abstract

Humanoid behavior generation is one of the most formidable issues due to its many degrees of
freedom. This chapter proposes a controller for a humanoid to cope with this issue. A given task
Is decomposed into a sequence of modules. Each of which consists of a set of motion primitives
that have control parameters to realize the appropriate primitive motions. Then, these parameters
are learned by sensori-motor maps between visual information (flow) and motor commands. The
controller accomplishes a given task by selecting a module, a motion primitive in the selected
module, and its appropriate control parameters learned in advance. A face-to-face ball pass in a
RoboCup context (To the best of our knowledge, this is the first trial.) is chosen as an example task.
The corresponding modules are approaching a ball, kicking a ball to the opponent, and trapping
a ball coming to the player. In order to show the validity, the method is applied to two different
humanoids, independently, and they succeeded in realizing the face-to-face pass more than three
rounds. The rest of this chapter is organized as follows. Section 1 introduces an overview of our
proposed system. Section 2 provides the details of each module for "passing a ball” task. Section
3 shows experimental results of the task that need to use integrated modules. Finally discussions

and concluding remarks are given.
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7.1 Task, Robot, and Environment

7.1.1 Robot platforms

Fig. 7.1 shows biped robots used in the experiments, HOAP-1, HOAP-2, and their on-board views.
HOAP-1 is 480 [mm] in height and about 6 [kg] in weight [97]. It has a one-link torso, two four-
link arms, and two six-link legs. The other, HOAP-2 (a successor of HOAP-1), is 510 [mm] in
height and about 7 [kg] in weight. It has two more joints in neck and one more joint at waist that
HOAP-1 does not have. Both robots have four force sensing register (FSRs) in each foot to detect
reaction force from the floor and a CCD camera with a fish-eye lens (HOAP-1) or semi-fish-eye
lens (HOAP-2).

FIGURE 7.1 HOAP-1 with fish-eye lens and HOAP-2 with semi-fish-eye lens

These robots detect objects in the environments by colors. In this experiment, a ball is colored
orange, and the knees of the opponent robot are colored yellow. The centers of these colored

regions in the images are recorded as the detected positions.

7.1.2 Visuo-motor learning

Let the motion flow vector bé (¢ + 1) at the position-(t) in the robot’s view when a robot takes

a motion,a. The relationship between them can be written,

Ar(t+1) = f(r(t),alt)), (7.1)
a(t) = g(r(t), Ar(t+ 1)), (7.2)
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whereAr(t+1) is difference between the current position veattr+1) and the previous position
vector(t). The latter function is useful to determine the motion parameters after planning the
motion path way in the image. However, it is difficult to determine an unique motion to realize

a certain motion flow because different motion primitives can produce the same image flow by
adjusting motion parameters. Then, we separate the description of the relationship between the

motion parameters in each primitive and the image flow as follows.

a' = (pf,....p0)" =g(r,Ar) (7.3)

Ar = fYr, a"), (7.4)

a' is a motion parameter vector of ti¢h motion primitive. We use neural networks to learn these

relationships.

7.1.3 Task and Assumptions

"Face-to-face pass” can be decomposed into following three modules:
1. approaching to a ball to kick,
2. kicking a ball to the opponent, and
3. trapping a ball which is coming to the player

All these basic modules need the appropriate prediction models between motion parameters
and the environment changes. For example, to trap a ball in an appropriate way, the robots have
to estimate the arrival time and the position of the coming ball. To approach to a kicking position,
the robot should know the causal relationship between the walking parameters and the positional
change of the objects in its image. Further, to kick a ball to the opponent, the robot must know
the causal relationship between the kicking parameters and the direction into which the kicked ball
will go.

Moreover, basic modules to realize these behaviors should be activated at the appropriate situ-
ations. Here, the designer determines such situations to switch the behaviors, and we focus on the
module learning based on the optic flow information. Fig. 7.2 shows an overview of the proposed

system.
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FIGURE 7.2 A system overview

7.2 Module Learning Based on Optic Flow Information

7.2.1 Ball Approaching

Approaching to a ball is the most difficult task among the three modules because this task involves
several motion primitives each of which has parameters to be determined. These motions yield
various types of image flows depending on the values of the parameters which change continuously.
We make use of environmental image flow patterns during various motions to approach to the ball.
We separate the description of the relationship between the motion and the image flow into the
relationship between the motion primitive and the image flow, and the relationship between the

motion parameters in each primitive and the image flow (Fig. 7.3), as follows:

m = g,(r,Ar), (7.5)
a' = (p,phy)" = gy(r,Ar), (7.6)
Ar = fi(r,a"), (7.7)

wherem is a vector whoseé-th element indicates the effectivenessigh motion primitive to
generate the given flow, anef = (pi,pi)? is the motion parameter vector of tiigh motion
primitive. In this study, the motion primitives related to this module consists of 6 primitives;

forward walk(left and right),curve walk(left and right), andide stefleft and right). Each of the
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primitives has two parameters which have real values, as shown in Fig. 7.4.

Approaching Module
primitive
selector .
Sensorimotor Map
=
ATbal ATball motion primitive i I

PR o
primitive 0 O= o) gi
selector P
Sm fters
< ——
predicted A7y
v
L—

Motion primitive i
with parameters

FIGURE 7.3 An overview of the approaching module

Given the desired motion pathway in the robot’s view, we can select appropriate primitive by
gm, and determine the motion parameters of the selected motion primiti\gg bgsed on the
learned relationships among the primitives, their parameters, and flows. If the desired image flow
yields several motion primitives, the preferred motion primitive is determined by an evaluation

function.

forward walk curve walk side step
(Ieft , right) (Ieft , right) (left , right)
e
p: ' 1
ot

FIGURE 7.4: Motion primitives and parameters for approaching
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Images are recorded every step and the image flow is calculated by block matching between
the current image and the previous one. The templates for calculating flows are 24 blocks in one

image as shown in Fig. 7.5.
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FIGURE 7.5. An example of an optic flow in the robot’s view

Sensorimotor mapping between motion primitives and image flowsy,,

All of the data sets of the flow and its positional vector in the imageAr), are classified by

the self organizing map (SOM), which consists of 225x15) representational vectors. After
organizing, the indices of motion primitives are attributed to each representational vector. Fig. 7.6
shows the classified image vector (the figure at the left side) and the distribution of each primitive
in SOM. This SOM outputs the index of appropriate motion primitive so that the desired flow

vector in the image is realized.

Sensorimotor mapping between the motion parameters and the image flows?, g;;

The forward and inverse functions that correlates the relationship between the motion parameters
in each primitive and the image floy)fi,,gp, are realized by a simple neural network. The neural
network in each primitive is trained so that it outputs the motion parameters when the flow vector

and the positional vector in the image are input.
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Sforward walk (right) curve walk (right) side step (right)

FIGURE 7.6: Distribution of motion primitives on the SOM of optic flows

Planning and evaluation function

In this study, the desired optic flows in the robot’s view for the ball and the recaiygr,s,., are
determined as vectors from the current position of a ball to the desired position (kicking position)
in the robot’s view, and as the horizontal vector from the current position to the vertical center line,
respectively. The next desired optic flow of a ball to be realizgg,, is calculated based on these

desired optic flows,

Ngtep = HsballH/Armam (78)

Sball = Sbail/Mstep (7.9)

whereAr,,.. is the maximum length of the experienced optic flow. This reference vector is input
to the primitive selectory,,, and the candidate primitives which can output the reference vector

are activated. The motion parameters of the selected primitive are determined by the fypction

a' = g;(rballa Sball), (7.10)

wherer,,; is the current ball position in the robot’'s view. When the primitive selector outputs
several candidates of primitives, the evaluation function depending on thétask), determines

the preferred primitive. In this study, robots have to not only approach to a ball but also take an
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appropriate position to kick a ball to the other. For that, we set the evaluation function as follows,

Vim) = 130 — f* (T, a')||
+klsre — nstept (Tre, @')|), (7.11)
P = argmin V(m;)

iEprimitives
wherek is the constant value,.. is the current position of the receiver in the robot’s view, &d
is the selected primitive.
Fig. 7.7 shows experimental results of approaching to a ball. A robot successfully approach to

a ball so that the hypothetical opponent (a poll) comes in front of it.

FIGURE 7.7: Experimental results of approaching to a ball

7.2.2 Ball Kicking to the Opponent

It is necessary for the robots to kick a ball to the receiver very precisely because they cannot
sidestep quickly. We correlate the parameter of kicking motion with the trace of the kicked ball in
the robot’s view so that they can kick to each other precisely. Fig. 7.8 shows a proposed controller
for kicking.

The kicking parameter is the hip joint angle shown in Fig. 7.9 (a). A quick motion like kicking
changes its dynamics depending on its motion parameter. The sensor feedback from the floor
reaction force sensors is used for stabilizing the kicking motion. The displacement of the position
of the center of pressure (CoP) in the support leg is used as feedback to the angle of the ankle joint
of the support leg (see Fig. 7.9 (b)). Fig. 7.9 (c) shows the effectiveness of the stabilization of the

kicking motion.
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The initial ball position and the parameter of the kicking motion affects sensitively the ball
trace in the robot’s view. To describe the relationship among them, we use a neural network, which
is trained in the environment where the poll (10 [cm]) is put about 1 [m] in front of the robot (Fig.
7.10) (a)). The trace of the ball (the effects of the self motion is subtracted) is recorded every 100
[msec], and the weights in the neural network are updated every one trial. Fig. 7.10 (b) shows the
time course of error distance between target poll position and kicked ball in the robot’s view. It
shows that the error is reduced rapidly within 20 [pixel], which is the same size of the width of the

target poll. Fig. 7.11 shows the kicking performance of the robot.

pol | zone

1000

distance of poll and ball in robot’s view [pixel]

e B
St.?”‘?.rqs'..“."" ol TN AVAAAN I
I—I 0 5 10 15 20 25 30 35 40 45
trial number
(&) The environmental (b) The error of distance during the
setting learning process for kicking

FIGURE 7.10 The environmental setting and the learning curve for kicking

FIGURE 7.11 An experimental result of kicking a ball to the poll
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7.2.3 Ball Trapping

Fig. 7.12 shows an overview of trapping module. Robots learn the relationship between the po-
sition of the foot in robot’s view and the trap parameter which affects the position of the foot, to

acquire the skill to trap a coming ball.

Trapping Module
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Sensorimotor Map
j motion primitive 2
&"ball feasible trap left leg
primitive
velocity of| '+ selector motion primitive /
aball g "ball &m trap right leg

A )
Predictor arrival ’/.l

V.
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Timing

LvaIUMﬂ‘ parameters —

iftarrival t<tg,oshold)

Motion primitive i
with parameters
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FIGURE 7.12 An overview of the trapping module

Fig. 7.14 shows the trapping motion by HOAP-2 acquired by the method described below. In
order to realized such a motion, the robot has to predict the position and the arrival time of a ball
from its optic flow captured in the robot view. For that purpose, we use a neural network which
learns the causal relationship between the position and an optic flow of the ball in visual image
of a robot and the arrival position and time of the coming ball. This neural network is trained by
the data in which a ball is thrown to a robot from the various positions. Fig. 7.13 shows several
prediction results of the neural network after learnifg: [pixel] and At [sec] indicates the errors
of the arrival position and the time predicted at each point (every 0.3 [sec]) in the robot’s view.
T denotes a duration of the ball rolling. Based on this neural network, the robots can activate the
trapping motion primitive with the appropriate leg (right or left) at the appropriate timing (Fig.
7.14).
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FIGURE 7.13 The prediction of the position and time of a coming ball

FIGURE 7.14 An experimental result of a trapping module

7.3 Integration of the Modules for Face-to-face Pass

To realize passing a ball between two humanoids, the basic modules described in the previous

sections are integrated by a simple rule as shown in Fig. 7.15.

if the ball is if kicked the ball
in front of foot
if missed kick
TR
[Y
if the ball isnot )
in front of foot if the ball
moving here

=

FIGURE 7.15 The rule for integrating motion modules

Fig. 7.16 shows the experimental result. Two humanoids with different body and different
camera lens realize the appropriate motions for passing a ball to each other based on their own

sensorimotor mapping. The passing lasts more than 3 times.
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FIGURE 7.16 An experimental result of passes between two humanoids

7.4 Discussion

A humanoid has many degrees of freedom, which makes it more difficult to make motions than in
wheel robots. In this chapter, we encapsulated humanoid behaviors into motion modules, each of
which consists of multiple motion primitives. This method can be related to the biological neural
circuits for locomotion, CPG (Central Pattern Generator) [5, 39]. In cats, neurons for various types
of locomotions are found in the midbrain and it is believed that the deviations of one locomotion
is performed by the input from the higher central nervous system. Thus, nature seems to solve
the problem of DoFs to some extent in the same way as the proposed model in this chapter. The
model for locomotion that is more realistic as biological model are proposed by Taga [91]. They
demonstrate that the simple input to the CPG circuits makes it possible for a humanoid model to

walk over obstacles in the computer simulation environment.

The proposed approach is also plausible as a biological model in the view point of the cali-
bration (calibrating of the motor command by a robot’s self sensors and vice versa). This method
is more effective and simpler than the calibration method by a designer’s view because the re-

lationships between motor commands and sensor values are directly related to the tasks. And
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the proposed method is much more efficient than the direct reinforcement learning approach. In
the previous chapter, we realized the ball approaching task by reinforcement learning, where the
combinations of action and sensor values are directly related to the performance measure. Even
though the forward model was used for evaluating the state action evaluation function, the learning
process was much more unefficient, because the state for visual information was described by the
combination of target goal and the ball position. That caused the problem that a robot must try the
all configurations of the positions ball and goal. On the other hand, the proposed method in this
chapter describes the forward model of the general object in the view. Furthermore that model is
learned by the optic flows of general scene during walking, and a robot does not need to try all the
configurations of relative positions of a ball and a goal, which saves much learning time.

However, there remain the harder problems we skip in this chapter as a learning approach.
First is module decomposition problem, that is how to determine what are the basic modules for
the given task. Second is planning, that is how to organize each motion primitive to achieve the
given task. In this chapter, we assume module decomposition and planning are given in advance.

Combining the learning in each module level with that in higher level is our future issue.

7.5 Conclusions

In this chapter, the robots learn the sensorimotor mapping between optic flow information and
their own motion parameters. Acquiring basic modules for passing a ball is achieved using the
sensorimotor mapping. In each module, optic flow information is correlated with the motion pa-

rameters. Through this correlation, a humanoid robot can obtain the sensorimotor mapping to
realize the desired modules. The experimental results show that a simple neural network quickly
learns and models well the relationship between optic flow information and motion parameters of

each motion primitive.
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Appendix A

Planning the reference trajectory around

the pitch axis

FIGURE A.1: Joint angles and the reference trajectory of the foot

The position of the foot determines the reference trajectories of joints 3, 4 and 5. Let x and z

be the position of the foot in the plane XZ which is perpendicular to the pitch axis. The reference
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92 PLANNING THE REFERENCE TRAJECTORY AROUND THE PITCH AXIS

trajectory of the foot is given by

vr = 5 cos(s"), (A1)
zp = —H + hsin(¢"), (A.2)
vs =~ cos(e®), (A3)
2 = —H, (A.4)

(A.5)

where(zr, zr) and(zg, zs) are the positions of the foot in the swing and support phase, respec-
tively, H is the length from the ground to the joint 3,is the step length, ankl is the maximum
height of the foot from the ground (Fig. A.1). When the position of the foot is determined, the

angle of each joint to be realized is calculated by the inverse kinematics as follows,

03 = g + atan2(z, x) — atan2(k,z* + 2* + L? — L2), (A.6)
0, = atan2(k,z*+ 2* — L3 — L3), (A7)
05 = —(63+0a), (A.8)

where k is given by the following equation,

o= /(@2 2+ L2+ L3)2 — 2{(a? + 22)2 + L4 + L4}, (A.9)

In this research, the value of each parameter is set as follévs: 185 [mm], A = 8 [mm],

W =13 [deg], L; = 100 [mm] and L, = 100 [mm].



