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§ 1. Introduction. 

The purpose of the present paper is to characterize the images of some 
function spaces on the motion groups by the Fourier transform. 

Let K be a connected compact Lie group acting on a finite dimensional 
real vector space V as a linear group. Let G be the semidirect product of 
V and K, i. e. G is the group comprised of all pairs (x, k) (XE V, kEK) with 
the direct product topology, multiplication being given by (Xl! k j )(x2 , k2) = 
(xj+kjx2, kjk2). G is called the motion group. 

Let V be the dual space of V. For any ~E V we denote by U~ the induced 

representation of G by the unitary representation xf--'>ei<~,x>, (i="; -1) of the 
normal abelian subgroup V. U~ is not irreducible. Any irreducible unitary 
representation of G is, however, contained in U~ for some ~E V as an irre­
ducible component. Let E be a function space on G. We define the Fourier 

transform Tf of fEE by Tf(~)=Lf(g)U~dg. If fis integrable, this transform 

has meaning and Tf is a bounded operator valued function on V. 
The Plancherel formula for G (L2-theory) was given by A. Kleppner and 

R. Lipsman ([1J, Theorem 4.4). Let C;;"(G) be the space of all infinitely dif­
ferentiable functions with compact support on G. Let S(G) be the space of 
all infinitely differentiable and rapidly decreasing functions on G. In this 
paper we consider these two cases E=C;;,,(G) (the Paley-Wiener theorem) and 
E=S(G). Then Tf(~) is an integral operator on L 2(K) for any fEE and ~E V 
and its kernel function is given by /CA~; kj, k2)= S I(kjx, kjk21)ei<~,x>dx, (k j, k2EK). 

When K is the identity group, /Cf is the ordinary Fourier transform on Eucli­
dean space V. We call /Cf the scalar Fourier transform of f. Let it and E 
be the images of E by the scalar Fourier transform and Fourier transform, 
respectively. The characterization of it can be accomplished by the ordinary 
arguments of the classical Fourier analysis. To study the mapping /Cff--'>Tf 
from it to E we use an auxiliary theorem which can be proved using the 
representation theory of compact groups. 

We can assume that there exists a K-invariant inner product On V. There-
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fore, we can assume beforehand that K is a connected subgroup of SO(n), 
where n is the dimension of V. If K={l}, G=V~Rn. If K=SO(n), G is the 
Euclidean motion group. We state another example. Let Go be a connected 
noncompact semisimple Lie group with finite centre and K be a maximal com­
pact subgroup of Go. Let g=f+l' be the Cartan decomposition of the Lie 
algebra 9 of Go, where f is the subalgebra corresponding to K. Then K 
operates on l' via the adjoint representation. If V=l', G is called the Cartan 
motion group. If Go is the Lorentz group SOo(n, 1), G is again the Euclidean 
motion group. K. Okamoto and the author proved the Paley-Wiener theorem 
for the Euclidean motion group in [3]. M. Sugiura determined the space S(G)A 
for the Euclidean motion group ([5J). 

This paper, in the first presented form, was entitled as "Fourier Trans­
forms on the Cartan Motion Group", and treated the Cartan motion group case 
only. The author was suggested by the referee to represent in this more 
general form. The author is very thankful to the referee for his remarks of 
great value. The short summary for the Cartan motion group case is in [2J. 

The author would like to express his sincere gratitude to Professors O. 
Takenouchi and K. Okamoto who have encouraged him with kind advices. He 
also would like to express his thanks to Professor M. Sugiura who suggested 
the generalization of our problems. 

§ 2. Scalar Fourier transform. 

Let (,) be a K-invariant inner product in V. K also operates on V via 
the contragredient of the action on V. In V and V we can define the K­
invariant measure which are induced by the above inner product. We normalize 
these measures by mUltiplying (2n)-n/2, (n=dim V), and denote them by dx and 
d~, respectively. Let dk be the Haar measure on K normalized such as the 
total measure equals to 1. Then dg=dxdk is the normalized Haar measure 
on G. 

Let S)=L2(K) be the space of all square integrable functions on K. The 
representation U e induced by ~E V is realized on S) as follows; forg=(x, k)EG 

Hence if jEL1(G), we have 

(TtC~)F)(kl) = S /(g)(Uj,F)(k1)dg 
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1) E=C,;CG). Let I xl =Cx, X)1/2. We define a compact subset QCa) of G 
for any positive number a by QCa)={Cx, k)EG; Ixl~a}. We denote by Vc 
the complexification of V. We extend naturally the K-action on V to the K­
action on VC. 

LEMMA 1. A function KC~; kl' k2) on Vx Kx K is the scalar Fourier trans­
form of fEC';CG) such that supp (f)cQCa) Ca>O) if and only if it satisfies the 
following conditions: 

Ci) KC~; kl' kz) can be extended to a Coo function on vcxKxK and KCc;,; kl' kz) 
Cc;, E VC) is entire analytic with respect to c;, for each kl' kzE K. 

(ii) For any K-invariant polynomial function PCc;,) on Vc and for any right 
invariant differential operators y, y' on K there exists a constant C~'Y';;?;O such that 

for any kl' k2EK. 
(iii) For any kEK 

PROOF. Let fEC';CG) and supp (f)cQCa). For c;,E VC we define the scalar 
Fourier-Laplace transform of f by 

KfCc;,; kl' k2) = fvfCklX, klkz -l)ei<C,x>dx . 

It is easy to see that the scalar Fourier-Laplace transform is a holomorphic 
extension of the scalar Fourier transform to vcx Kx K satisfying (i)rv(iii). 
Conversely, for a function KCc;,; kl' kz) on vcxKXK satisfying Ci)rv(iii) we de­
fine a function f on G by 

C2.1) 

where g=Cx, k)EG. Then we have that fEC';CG), supp (f)cQCa) and KC~; kl' k2) 
=KfC~; kl' k2) for all ~E V and kb kzEK by the classical Paley-Wiener theorem. 

2) E=SCG). Let f be the Lie algebra of K. We denote by UCfC) the 
universal enveloping algebra of the complexification fC of f. Let Y 1,"', Yo 
Co=dim K) be a fixed basis of f. Then the set YCm) = {y1m1 ... Yoms; m= 
Cmb ... , mo)EN°} forms a basis of UCfC) by the Birkhoff-Witt theorem. We 
regard any element of UCfC) as a right invariant differential operator on K. 
Then it operates on Sj=LzCK) in the sense of distributions. The Lie algebra 
of G is V+f and [V, V]={O}, [f, V]CV and [f, f]cf. We consider that UCfC) 
is a subalgebra of the universal enveloping algebra of the complexification of 
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the Lie algebra of C. We denote by A and p the left and the right regular 
representations of C, respectively, and also denote by the same notations the 
corresponding representations of the universal enveloping algebra on the space 
of COO-vectors. The bracket product [Y, x] of YEt and XE V is the differential 
of the K-action on V. 

Let VI, ... , Vn be an orthonomal basis of V with respect to the K-invariant 
inner product (,). And let w1, ••• , Wn be its dual basis of V. The inner pro-

duct (,) induces the K-invariant inner product of V. If x= i: XjVj E V and 
)=1 

~= f ~jWjE V, then IxI 2=(x, x)= ± xi and 1~12= f ~/. Making use of the 
)=1 )=1 )=1 

coordinate systems with respect to these bases, we define differential operators 
Dx" on V and Dr;n on V for any a=(a1, .... an)ENn by 

and 

Dr;n= ( at r1 

••• ( at rn, 
respectively. For f.ECoo(C) we have -aa f(x, k)=A(-Vj)f(x, k) for all j=l, ''', n. 

Xj 
Let S=S(C) be the set of all those functions f on C satisfying the follow­

ing conditions: 
(i) f is of class Coo, 

(ii) for any aENn, [1EN and m, m'END there exists a constant C'/l:;';:;;'O 

such that 

1(1 + I xI2)i3(D" aA(y(m»p(y(m'»f)(x, k) I ~ C':,'p' 

for all (x, k)EC. 

Such functions are called rapidly decreasing. 
LEMMA 2. S is closed with respect to the applications of D" a and A(y), 

p(y') for all aENn and y, y'E U(f"). 

PROOF. Because the left regular representation and the right regular 
representation commute, we have A(Y)p(y')= p(Y')A(Y) for all y, y' E U(tC) and 
D" ap(y) =p(y)D" a for all YE U(t") and aENn. Therefore we only have to 
see that A(y)Dx"fES for all fES and for all YEU(fC), aENn. For YEt and 
l~j~n we have 

A(Y) a~. f=A(Y)A(-Vj)f 
) 

=A(-Vj)A(Y)f+A([Y, -vJ)f 

=A(-Vj)A(Y)f+ ~ ([Y, vJ, vq)A(-vq)f 
q=1 
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a Therefore l(Y)---ax:- fES by the condition (ii) of S. And hence we obtain 
) 

l(y)D",afES for all YEU(fC) and aENn. q.e.d. 
We topologize S by the system of semi-norms of the form 

where aENn, fiEN and m, mIEN1i. 

PROPOSITION 1. S is a Frechet space. 
PROOF. It is easy to see that S is a locally convex topological vector 

space by the topology defined above. The topology is defined by a system of 
countable semi-norms. As is easily seen, S is a Hausdorff space. Hence S is 
metrizable. Using Lemma 2, we have the sequentially completeness of S. 

Hence S is complete. q. e. d. 
Let S be the set of those functions K(~ ; kl' k2) on Vx Kx K satisfying the 

following conditions: 
(ir K(~; kl> k2) is a Coo function on Vx Kx K, 

(ii)- for any aENn, fiEN and m, mlEND there exists a constant C,::;, 
such that 

I (1+ I ~12)f\D~ay(m)kly(ml)k2K)(~; kl' k2) I ~ C'::;" 

for all (~, kl' k2) E Vx Kx K, 
(iii)- for any k E K 

We topologize S by the system of semi-norms of the form 

where aENn, fiEN and m, mIEND. Then we have the following proposition. 
PROPOSITION 2. S is a Frechet space. 
Now we prove the space S is the image of the space S by the scalar 

F ourier transform. 
LEMMA 3. The scalar Fourier transform f-+ICf is a topological isomorphism 

from S onto S. 
PROOF. Let fES. We put lal=a1 + ... +an for a=(a1, ••• , an)ENn. 

n 
If X= ~ XjVjE V, we have 

)=1 

(2.2) 
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for any j = 1, ... ,n. By the condition (ii) of the definition of Sand (2.2) we 
have, for any aENn, 

This is integrable on V. Hence KAe; kl' kz) is infinitely differentiable with 
respect to e for any kl and k2. On the other hand, for any Y, Y' E f we obtain 

for all XE V, where Y k1 (resp. Ykz) denote the differential by the right invari· 
ant vector field Y (resp. Y') with respect to kl (resp. kz). By this fact and 
the condition (ii) of the definition of S, Kf(e; kb kz) is infinitely differentiable 

with respect to kl and k2. Because /=0 at x=oo and (1- j~ ( a~j yyl is a 

K-invariant differential operator on V for any [3EN, we have 

using the integration by parts. If we expand (1- ± (-aa )Z)fl, we can find 
J~l xJ 

positive numbers Cl! ••• , Cv and a(I), ... ,a(v)ENn and [3(1), ... ,[3(v)EN such 
that 

It is easy to see that Kf(ke; kl' k2)=KAe; klk, k2k) for all kEK. Thus we 
proved that K f E S and the mapping / I-t K f is continuous from S to S. As for 
the case of C~(G), for any K(e; kl! k2)ES we put 

(2.3) 
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By the conditions (W'"'-'Ciiir we can prove IECOO(G) in similar way. We can 
also prove that for any aENn

, (3EN and m, m'EN iJ there exist positive num­
bers Cl> ••• , Cv and a(I), ... , a(v)ENn and (3(1), ... , (3(v)EN such that 

Hence lE S and the mapping /C1-7 I defined by (2.3) is a continuous mapping 
from S to S. As stated above, this mapping is the inverse of the mapping 
II-7/Cf. Thus we proved Lemma 3. 

§ 3. Auxiliary theorem on compact Lie groups. 

Let K be a compact connected Lie group and f be its Lie algebra. Let T 
be a maximal torus subgroup of K and t the corresponding sub algebra of f. 
Let rand r' be the ranks of f and of the derived sub algebra [f, fJ of f, respec­
tively. We fix an Ad (K)-invariant positive definite inner product (Y, Y') on 
f. We define the norm by IYI=(Y, y)I/2. Let YI, "', YiJ (o=dimK) be a 

iJ 
basis of f and gij=(Yi , Y j ) and (gij)=(gij)-l. The element L/=- ~ gijYiYj 

i,j=l 
in the universal enveloping algebra of f is the Casimir operator of f. We 
regard L/ as a differential operator on K. 

We put r={HEt; exPK H=I}. For any AE.v=r1 we denote by H;.E t the 

element defined by <A, H)= v-I (H;., H) (HEt). We identify A and H;.. Let 
I be the set of all K-integral forms on t; 

1= PEt; (A, H)E2nZ for all HEr}. 

Let us fix a lexicographic order in t. Let P be the set of all positive roots 
with respect to this order. Then P consists of (o-r)j2 elements. The simple 
root system in P consists of r' elements, say aI, ... ,ar ,. The set 

g= PE I; (A, ai) ~ 0, 1~ i ~r'} 

is the set of all dominant K-integral forms on t. Let K be the set of all equi­
valence classes of irreducible unitary representations of K. For any irreduci­
ble unitary representation 1: of K we denote by [1: J the equivalence class 
which contains 1:. For each A E g we denote by 1:;' a representative of [1:J.J E K 
which is a matricial representation of K with the highest weight A. Then we 
have the bijection between g and K by the mapping A 1-7 [1:;'J. Let d(A) be 
the degree of 1:;'. 

Let dk be the Haar measure on K normalized such as the total measure 
equals 1. Put Sj=L2(K). We consider the set {~j} jEJ of functions on K 
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such that rjJj=d(},Y'27:~q for some AE g and p, q=l, ... ,d(A) (7:J.(k)=(7:~q(k»). 

That is, {rjJ j} jEJ is the complete orthonormal basis of .p owing to the Peter­
Weyl theorem. We denote by JJ. for AEg the set of jEJ such that rjJj= 
d(A)1/27:~q for some p, q=l, ... , d(A). 

We put p = (1/2) ~ a. Then the following lemma is well known (see [4J). 
af::.P 

LEMMA 4. (i) (Weyl's dimension formula) For every AEg 

d(A) = IT (A+P, a) 
aEP (p, a) 

(3.1) 

If K is abelian, we understand that the right hand side of (3.1) expresses 1. 
(ii) For every AE g and jEJ). we have 

(L/+ IpI2)rjJj= IA+pI2rjJj. 

(iii) The Dirichlet series 

(in the case K is abelian Z(s) = ~ 1 A 1-8
) converges if s>r. 

J.E~-{O} 

(3.2) 

The Casimir operator L/ is a formally selfadjoint differential operator. 
THEOREM 1. Let T be a bounded operator on.p. Then T has a Coo kernel 

function if and only if it leaves the space Coo(K) stable and for any I, mEN 
there exists a constant Cl,m such that 

(3.3) 

From this theorem we have immediately the following corollary. 
COROLLARY. Let T be a bounded operator on .p such that for any I, mEN 

there exists a constant Cl,m satisfying (3.3). Then T is of the trace class. 
PROOF OF THEOREM 1. Let K(k1' k2) be the kernel function of T, i. e. 

And assume that K(klJ k2) is of class Coo on Kx K. Then 

Hence 

where Cl,m= CS xf K 1 L/~1L/~K(k1' k2) 12dk1dk2) 1/2. 

Conversely, we assume that there exists a constant as in Theorem. Then 
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we can prove that there exists a constant c\,m such that 

We put 

(3.4) 

First we show that the series in the right hand side of (3.4) converges absolutely 
when Kis not abelian. IfjEj2. we have l(]sik)l~d(2)1/2 because IT~q(k)I~1. 

By (3.1) 
d(2)~ IT 12+pllal(p, a)-I 

aEP 

=12+pICO-T)/2IT lal(p, a)-I. 
aEP 

On the other hand by (3.2) 

(]Sj = I 2+p 1-21(L1+ I p 12)I(]Sj 

for l=O, 1,2, .... Therefore, for jEJ;. and iEjJ." we have 

Hence 

I (T(]Sj, (]Si) I ~ I 2+p 1-21 1 2' +p 1-2m l (T(L1+ I p 12)I(]Sj, (L1+ I p 12)m(]Si) I 

= 12+pl-21 12'+pl-2m l ((L1+ IpI2)mT(L1+ I pI2)1(]Sj, (]Si) I 

~ I 2+pl- 21 1 2'+pl-2mll(L1+ I p 12)mT(L1+ I p 12)111 

If we take l=m, 

. ~ I (T(]Sj, (]Si)(]Slk l )(]Sik2) I 
t.J<::::.J 

= Cl'l( ~ 12+ P 1-21 d(2)5/2)2 
.l.E::F 

~ Cl,l IT la 15(p, a)-5( ~ 12+ P 1-21+5CO-T)/4)2 
aEP J.E::F 

=C!,IIT laI 5(p, a)-5Z(2l-5(o-r)/4)2. 
aEP 

(3.5) 

Then by Lemma 4 (iii) this has a finite value for l>(50-r)/S. When K is 
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abelian, d(;{)=l and [q>ik) [= 1 for all jE]. So we have 

~ [(Tq>j, q>i)q>i(k 1)q>ik2) [ 
i,)EJ 

27 

(3.6) 

Hence by Lemma 4 this has a finite value for l>r/2. Thus the series (3.4) 
converges absolutely and also uniformly. Therefore IC(kl' k2) is a continuous 
function on Kx K and the double Fourier coefficients of IC(kl' k2 ) are (Tq> j, q>i) 
(i, jEJ). In order to prove that IC(kl' k2) is a Coo function it is enough to show 
that the Fourier coefficients are rapidly decreasing (see [4J), i. e. for any IEN 
and mEN there exists a constant Cl,m such that 

for any jEj). and any iEjJ.'. This is an immediate consequence of the condi-
tions of the theorem from Lemma 4. q. e. d. 

§ 4. Paley-Wiener theorem. 

Let B(f{)) be the Banach space of all bounded linear operators on f{). Then 
the Fourier transform T j of fEC';(G) defined by 

Tj(~) = S /(g)U~dg 
is a B(f{))-valued function on V., Let ICj(r;,; kl' k2) be the scalar Fourier-Laplace 
transform. We define the Fourier-Laplace transform of f by 

(FE f{)). 

Then Tj is a B(f{))-valued function on Vc by (ii) of Lemma 1. For each r;,E VC 
and g=(x, k)EG we put 

(FE f{)). 

Then Ur;, is a bounded representation of G on f{). And we have 

Let R be the right regular representation of K. The following theorem is an 
analogue of thePaley-Wiener theorem. 

THEOREM 2. A B(f{))-valued function T on V is the Fourier transform of 

fEC';(G) such that supp (f)cQ(a) (a>O) if and only if it satisfies the following 
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conditions: 
(l) T can be extended to an entire analytic function on vc. 
(H) For any l;E V, T(O leaves the space COO(K) stable and for any K­

invariant polynomial function p on VC and for any l, mEN there exists a con­
stant c~m such that 

IIP(O.dIT(l;).dmll ~ qm exp a 1 lm l; I. 

(Ill) For any k E K 

PROOF. Let fEC';(G) and supp(f)cQ(a). For any a=(ah ••• , an)ENn 

we define an operator Tfa by 

n 
where X= ~ XjV j . By the inequality 

j~l 

we can see that for any fixed l; = .± l;jw j E Vc the series 
J~l 

converges in the norm of B(S)) and equals Tf(l;). Hence TfCl;) is entire an­
alytic on Vc. 

Let us define a differential operator on V by 

PCD) = p(i a~l , ... , i a~n ) . 
Then the K-invariance of P and the standard arguments on the Fourier trans­
form theory of the Euclidean space give us 

C4.1) 

Because .d is a two-sided invariant differential operator on K of the 2-nd order, 
we have 

and 

Hence we obtain, for any l and m, 

.dITf Cl;).dm=T).(d)If'(4)mfCO. 
By C 4.1) and C 4.2) 

C4.2) 
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Hence we have 

IIP(()LFTf(()Llmll ~ eal1ml;l{f JS v I (P(D)}'(LI)!p(LI)mj)(x, k) I dXYdk t2. 
If we put 

we have (ll). 
The property (III) is the immediate consequence of the property Kf(k(; kl' k2) 

=Kf((; kIk, k2k). 
Conversely, let T be a B(.p)-valued function on V which satisfies the con­

ditions (I)rv(III) of the theorem. Let {qJ j} jEJ be the complete orthonormal basis 
of.p chosen in § 3. Then, by Theorem 1, T(() has C= kernel function K((; kr. k2) 

and it is given by 

(4.3) 

And the series in the right hand side converges uniformly on every com­
pact set in Vc X Kx K. If we adopt the similar computations in § 3 to 
P(()yT(()y'(y, y' E U(f")), we can prove that there exists a constant C~'Y' such that 

By the condition (III) and (4.3) give us 

Thus the kernel function K(~; kl' k2) of T(~), (~E V), satisfies the conditions 
(i)rv(iii) of Lemma 1. Therefore, K(~; kl' k2 ) is the scalar Fourier transform 
of a function jEC';(G) such that supp (f)c{J(a). By the equality K(~; kI' k2) 

=Kf(~; kI' k2) for any ~E V and for any kI' k2EK we have T=Tf . This com-
pletes the proof of the theorem. q. e. d. 

REMARK. Let T be a B(.p)-valued function on Vas in the theorem. Then 
T(~) is of trace class by (ll) and Corollary to Theorem 1. And hence T(~)U~-I 
is of trace class and its trace is 

Tr (T(~)U~-I) = Tr (U~-IT(~)) 

By the condition (ii) in Lemma 1, K(~; kr. k2) is a rapidly decreasing function 
with respect to~. So, by the condition (iii) in Lemma 1, we have 
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S V Tr (T(~)Ui-l)d~ = S l'Ix e-i<kk1'7,x>K'(~; kkl' kl)d~dkl 

= S)S v e-i<~'X>K'((kkltl~ ; kkl' kl)d~} dk1 

Hence by (2.1) we have 

This is the inverse Fourier transform. 

§ 5. Fourier transforms of rapidly decreasing functions. 

Let S be the set of all B(~)-valued functions T on 11 satisfying the fol­
lowing conditions: 

(i) A T is a B(~)-valued Coo fUnction on 11, 
(iir for any aENn, ~E 11, D~T(~) leaves the space COO(K) stable and for 

any aENn, f3EN and m, mIEN" there exists a constant C'!f.'r such that 

for all ~E V, 
(iiir for any k E K 

T(k~)=RkT(~)Rk-l , 

We topologize S by the system of semi-norms of the form 

r'!f.';'(T) = sup 11(1+1~12)fJy(m)D~aT(~)y(ml)ll, 
<El' 

where aENn, f3EN and m, mIEN". Then we have the following proposition 
as in § 2. 

PROPOSITION 3. S is a Frechet space. 

Let us prove the space S is the image of the space S by the Fourier 
transform. Let K'f and T f be the scalar Fourier transform and the Fourier 
transform of fES, respectively. Then 

(FE~) • 

LEMMA 5. The mapping K'r-.Tf gives a topological isomorphism from cS 
onto S. 

PROOF. For any aENn we obtain 
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S /fxl (DeaICj )(e; kl> kz)F(kz) I dkz)Zdk 1 

~ fxfxl (D~aICj)(~; kl> kz)l2dk1dk zlIFllz 

(FE.f.» • 

Hence, by the completeness of B(.f.» , T j is a C= B(.f.»-valued function on V. 
For any aENn

, ftEN and m, m'EN" we have 

11(1 + I ~lz).By(m)D~aTj(~)y(m')1I 

~ CS J KI (1 + I ~IZ).ey(m)kly(m')*kZD~alCj(~; kl> kz)l2dk1dkzY'z. 

The right hand side is dominated by a linear combination of r semi-norms. 
The condition (iiir is the immediate consequence of the condition Oiir. There­

fore TjES and the mapping ICj l---7Tj is continuous. Conversely, we assume 

that TES. Then, by the condition Oi)A, for any l, l'EN there exists a con­
stant Cl,l' such that 

11L1IT(~)L1I'11 ~ Cl,l' . 

From Theorem 1 T(~) has a C= (with respect to kl> kz) kernel function IC(~; kl' kz) 

which is defined by 

(5.1) 

By (iir we can prove that for any aENn, m, m'EN and l, l'EN there exists 
a constant C such that 

(5.2) 

Hence the series 

converges absolutely and uniformly with respect to~. If we take m=m'=O, 

we have the infinitely differentiability of IC(~; kl' kz) with respect to~. We 
denote by L the left regular representation of K. Then we have 

for all Y, Y'Ef and t, tER (see [3J, page 87 for a similar computation). 
Therefore, we obtain 

YklnzlC(~; kl' kz)= ~ (YT(~)(-Y')!f>j, !f>i)!f>i(k1)!f>J(kz). 
i,jEJ 
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So we have 

As a constant C in (5.2) we can take a linear combination of f semi-norms of 
T. Hence, by (3.5), (3.6) and (5.3), the value of 

1 (1 + 1 ~ 12),8 D~ay(m)kly(m')k2/i:(~; kl' k2) 1 

is dominated by a linear combination of f semi-norms of T. We can obtain 
(iii)- from (iii)A as in the proof of Theorem 2. Thus we have /i:(~; kh k2) E S 
and the mapping T-+/i: defined by (5.1) is a continuous mapping from .s to S. 
Because 

for FESj, this mapping is an isomorphism. q. e. d. 
By Lemma 3 and Lemma 5 we have the following theorem. 
THEOREM 3. The Fourier transform f-+ Tt is a topological isomorphism 

from S onto S. 
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