Impulsive control of symmetric Markov processes
and quasi-variational inequalities

Hideo Nagai

By introducing the notion of impulsive control of a diffusion process A. Bensoussan - J.L. Lions ([1]) showed that if the solution of a quasi-variational inequality has sufficient regularity (twice differentiability and continuity), it turns out to be a pay-off function. Furthermore they constructed the optimal strategy out of the solution. But the regularity problems remained open. On the other hand M. Robin ([7]) has set up an impulsive control problem of a general Markov process with a Feller transition semi-group and has constructed the optimal strategy out of the pay-off function which was characterized however in terms of the semi-group rather than the generator of the basic Markov process. As for the characterization by means of the quasi-variational inequality the regularity of the solution was still assumed in order to identify the solution with the pay-off like that of Bensoussan-Lions. Regularity problems of elliptic or parabolic quasi-variational inequalities have been studied by L.A. Cafarelli - A. Friedman and others (cf. [2],[5]) under the condition that the diffusion and drift coefficients have sufficient regularity. Cafarelli-Friedmans' work combined with Robin's establishes completely the relationship between impulsive control problems and quasi-variational inequalities with respect to nice diffusion processes.

Our objective is to extend this relationship to general symmetric Markov processes associated with regular Dirichlet spaces. We prove that the pay-off is characterized by the weak (maximum) solution of the quasi-variational inequality defined on the Dirichlet space (Theorem 2 in §2). Since we assume only that the Dirichlet space is regular, Theorem 2 establishes the relationship for a wide class of processes. It applies as well
to symmetric diffusion process with measurable coefficients and symmetric Markov processes with non local generators (cf. [4]).

Our approach is more potential theoretic than others and accordingly the regularity questions can be dispensed with. Indeed we use potential theories of Dirichlet spaces and Markov processes developed in [4]. The same method has been used in [6] to establish the relationship between variational inequalities and optimal stoppings and in [8] to include stopping games.

We would like to express our hearty thanks to professors M. Fukushima and T. Sirao for valuable advice and also to Mr. S. Sato for useful discussions.
§1. Quasi-variational inequalities on regular Dirichlet spaces

Let \(m(dx) \) be a non-negative Radon everywhere dense measure on a locally compact Hausdorff space \(S \) with countable base. Suppose that \((\mathcal{F}, \mathcal{E}) \) is a regular Dirichlet space relative to \(L^2(dm) \):

1) \(\mathcal{F} \) is a dense linear subspace of \(L^2(dm) \),

2) \(\mathcal{E} \) is a symmetric bilinear form on \(\mathcal{F} \times \mathcal{F} \),

3) \(\mathcal{F} \) is closed with respect to \(\mathcal{E}_1 \)-norm, where
\[
\mathcal{E}_1(u,v) = \mathcal{E}(u,v) + (u,v),
\]
(\(u,v \)) denoting inner product of \(L^2(dm) \),

4) unit contraction operates, that is, if \(v = (0\nu)\lambda 1 \), \(u \in \mathcal{F} \), then \(v \in \mathcal{F} \) and \(\mathcal{E}(v,v) \leq \mathcal{E}(u,u) \),

5) \(\mathcal{F} \cap C_0(S) \) is dense in \(\mathcal{F} \) with \(\mathcal{E}_1 \)-norm as well as in \(C_0(S) \) with uniform norm, \(C_0(S) \) denoting the space of all continuous functions on \(S \) with compact support.

Definition 1.1. The capacity of a subset of \(S \) is defined as follows: for open set \(A \subset S \)

\[
\text{Cap}(A) = \inf \{ \mathcal{E}_1(u,u); u \in L_A \}
\]
if \(L_A \neq \phi \),

\[
\infty
\]
otherwise,

where \(L_A = \{ u \in \mathcal{F}; u \geq 1 \text{ m-a.e. on } A \} \) and for general set \(B \subset S \)

\[
\text{Cap}(B) = \inf \{ \text{cap}(A); B \subset A, A \text{ is open} \}.
\]

Definition 1.2. A subset \(B \) of \(S \) with \(\text{Cap}(B) = 0 \) is called almost polar and "Quasi-everywhere" or "q.e." will mean "except for an almost polar set".

Let \(S_\Delta = S \cup \Delta \) be the one point compactification of \(S \).
When S is already compact, Λ is regarded as an isolated point. Any function on S is extended to a function on $S \cup \Lambda$ by setting $f(\Lambda) = 0$.

Definition 1.3. A function f defined q.e. on S is said to be quasi-continuous (in the restricted sense) provided that for each $\varepsilon > 0$ there exists an open set $G \subset S$ such that $\text{cap}(G) < \varepsilon$ and $f|_{S \setminus G}$ ($f|_{\Lambda \setminus G}$ respectively) is continuous.

It is known that each $u \in \mathcal{F}$ admits a quasi-continuous modification \tilde{u} in the restricted sense in the case that $(\mathcal{F}, \mathcal{E})$ is a regular Dirichlet space: $u = \tilde{u}$ m.a.e. and \tilde{u} is quasi-continuous (cf. [4])). Hereafter \tilde{u} denote a quasi-continuous modification of $u \in \mathcal{F}$.

Let $\nu(dx)$ be a given non-negative Radon measure of finite energy integral, that is, there exists for each $\alpha > 0$ a unique function $U^\alpha \nu \in \mathcal{H}$ such that

$$(1.1) \quad E^\alpha (U^\alpha \nu, \nu) = \int_S \nu(x) \nu(dx) \quad \text{for each } v \in \mathcal{F} \cap C_0(S).$$

Suppose that M is a operator defined on \mathcal{H} such that

(M.1) Mu is a Borel function for any $u \in \mathcal{F}$, $\forall x$

(M.2) $M_1(x) \leq M_2(x) \iff u_1(x) \leq u_2(x)$ q.e.,

(M.3) $Mu(x) \geq 0 \quad \forall x \quad \text{if } u(x) \geq 0 \text{ q.e. and}

(M.4) $\lim_{n \to \infty} Mu_n(x) = Mu(x) \quad \forall x \quad \text{if } u_n(x) \downarrow u(x)$ q.e.

We consider the following quasi-variational inequality:

$$(1.2) \begin{cases} E^\alpha (u, v-u) \geq \langle v, \tilde{v}-\tilde{u} \rangle & \forall \tilde{v} \leq \tilde{u}^\alpha \text{ q.e.} \\ \tilde{u} \leq \tilde{u}^\alpha \text{ q.e.} \end{cases}$$

Theorem 1. The above quasi-variational inequality (QVI) (1.2) has the maximal solution.
Put \(u_0 = U_\alpha v \) and \(V_1 = \{ v \in \mathcal{F} ; \widetilde{v} \leq \widetilde{M} \} \), then we have the unique solution of the following variational inequality (VI) (1.3):

\[
\begin{align*}
\mathcal{E}_\alpha (u,v-u) & \geq <v,\widetilde{v}-\widetilde{u}> & \forall v \in V_1 \\
u & \in V_1,
\end{align*}
\]

because (1.3) is equivalent to

\[
\begin{align*}
\mathcal{E}_\alpha (u-U_\alpha v,v-u_\alpha v) & \leq \mathcal{E}_\alpha (v-U_\alpha v,v-U_\alpha v) & \forall v \in V_1 \\
u & \in V_1,
\end{align*}
\]

and \(V_1 \) is the closed convex subset of Hilbert space \((\mathcal{F}, \mathcal{E}_\alpha)\). Let us denote the solution by \(u_1 \). In the same way we can inductively take the solution \(u_n \) of the VI:

\[
\begin{align*}
\mathcal{E}_\alpha (u,v-u) & \geq <v,\widetilde{v}-\widetilde{u}> & \forall v \in V_n \\
u & \in V_n,
\end{align*}
\]

\(V_n = \{ v \in \mathcal{F} ; \widetilde{v} \leq \widetilde{M}_{n-1} \} \) for each \(n \).

At first we note the properties of the solution \(u_n \) of the VI (1.5).

Lemma. The above \(u_n \) has the following properties

(i) \(U_\alpha v - u_n \) is an \(\alpha \)-almost excessive function and the unique element which minimizes its \(\alpha \)-energy integral in the closed convex subset \(U_\alpha v - V_n \) of \((\mathcal{F}, \mathcal{E}_\alpha)\):

\[
\begin{align*}
\mathcal{E}_\alpha (U_\alpha v-u_n,U_\alpha v-u_n) & \leq \mathcal{E}_\alpha (U_\alpha v-v,U_\alpha v-v) & \forall v \in V_n
\end{align*}
\]

for each \(n \),

(ii) (1.7) \(u_n \leq u_{n-1} \) m-a.e. for each \(n \),

(iii) (1.8) \(u_n \geq 0 \) m-a.e. for each \(n \) and
(iv) \(\{ u_n \} \) is a \(\mathcal{E}_\alpha \)-Cauchy sequence.

Proof of Lemma. (i) Since \(u_n \) is the solution of (1.5) it satisfies the following inequality:

\[
(1.9) \quad \mathcal{E}_\alpha(u_n - U_n^\alpha, v - u_n) \geq 0 \quad \forall v \in V_n.
\]

If \(w \geq 0, \mathcal{E}_\mathcal{K} \), then \(u_n - w \in V_n \). Therefore it holds that

\[
(1.10) \quad \mathcal{E}_\alpha(U_n^\alpha - u_n, w) \geq 0 \quad \forall w \geq 0 \text{ m-a.e., } w \in \mathcal{K}.
\]

that is \(U_n^\alpha - u_n \) is \(\alpha \)-almost excessive because (1.10) is equivalent to

\[
(1.11) \quad u_n \geq 0, \quad e^{-\alpha t} T_t u_n \leq u_n \text{ m-a.e., } \forall t > 0.
\]

Here \(T_t \) is the \(L^2 \)-Markov semigroup corresponding to Dirichlet form \(\mathcal{E} \) (cf. [4]). The latter half of (i) follows directly if \(V_1 \) in (1.4) is replaced by \(V_n \).

(ii) Inequality (1.7) with \(n = 1 \) is obvious \(U_1^\alpha - u_1 \) is \(\alpha \)-almost excessive and \(U_1^\alpha = u_0 \). Assume that it holds for \(n \), then \(\widetilde{u}_n \leq \widetilde{M}_n \text{ q.e.} \). Therefore \(\widetilde{u}_n \leq \widetilde{M}_n \text{ q.e.} \). Since \(\widetilde{u}_n \leq \widetilde{M}_n \text{ q.e.} \) by definition we have \(\widetilde{u}_n \widetilde{u}_n+1 \leq \widetilde{M}_n \text{ q.e.} \). On the other hand \(U_n^\alpha - u_n \widetilde{u}_n+1 = (U_n^\alpha - u_n) \wedge (U_n^\alpha - u_n+1) \) is \(\alpha \)-almost excessive because both \(U_n^\alpha - u_n+1 \) and \(U_n^\alpha - u_n \) are \(\alpha \)-almost excessive. So it follows that

\[
(1.12) \quad \mathcal{E}_\alpha(U_n^\alpha - u_n \widetilde{u}_n, u_n \widetilde{u}_n+1) \leq \mathcal{E}_\alpha(U_n^\alpha - u_n, U_n^\alpha - u_n)
\]

from \(U_n^\alpha - u_n \leq U_n^\alpha - u_n \widetilde{u}_n+1 \). By (i) of present Lemma we conclude that \(u_n \widetilde{u}_n+1 = u_n \), that is, \(u_n+1 \leq u_n \) m-a.e..

(iii) Since \(\widetilde{u}_1 \geq 0 \text{ q.e.} \) we have \(\widetilde{M}_0 \geq 0 \text{ q.e.} \). Furthermore \(\widetilde{u}_1 \leq \widetilde{M}_0 \text{ q.e.} \) by definition, so we have \(\widetilde{u}_1 \widetilde{V}_0 \leq \widetilde{M}_0 \text{ q.e.} \). Both \(U_1^\alpha - u_1 \) and \(U_1^\alpha \) being \(\alpha \)-almost excessive, \(U_1^\alpha - u_1 \widetilde{V}_0 = (U_1^\alpha - u_1) \wedge U_1^\alpha \) is \(\alpha \)-almost excessive. Therefore it follows that
(1.13) \(\mathcal{E}_\alpha(U_{\alpha}v-u_1V^0, U_{\alpha}v-u_1V^0) \leq \mathcal{E}_\alpha(U_{\alpha}v-u_1, U_{\alpha}v-u_1) \)

from \(U_{\alpha}v-u_1V^0 \leq U_{\alpha}v-u_1 \) m-a.e.. It implies that \(u_1V^0 = u_1 \), that is \(u_1 \geq 0 \) m-a.e.. We can inductively show \(u_n \geq 0 \) m-a.e.

by similar argument.

(iv) Since \(U_{\alpha}v-u_n \leq U_{\alpha}v-u_m \) m-a.e., \(n \leq m \), and \(U_{\alpha}v-u_n \leq U_{\alpha}v \) m-a.e. for each \(n \) by (ii) and (iii) it holds that

(1.14) \(\mathcal{E}_\alpha(U_{\alpha}v-u_n, U_{\alpha}v-u_n) \leq \mathcal{E}_\alpha(U_{\alpha}v-u_m, U_{\alpha}v-u_m) \leq \mathcal{E}_\alpha(U_{\alpha}v, U_{\alpha}v) \)

for each \(n \leq m \). Therefore \(\mathcal{E}_\alpha(U_{\alpha}v-u_n, U_{\alpha}v-u_n) \) monotonously increases to a finite number. Since \(w_n = U_{\alpha}v-u_n \) is \(\alpha \)-almost excessive

\[
0 \leq \mathcal{E}_\alpha(w_n-w_m, w_n-w_m) = \mathcal{E}_\alpha(w_n, w_n) - 2\mathcal{E}_\alpha(w_n, w_m) + \mathcal{E}_\alpha(w_m, w_m) \\
\leq \mathcal{E}_\alpha(w_m, w_m) - \mathcal{E}_\alpha(w_n, w_n), \quad n \leq m.
\]

Hence \(w_n \) is a \(\mathcal{E}_\alpha \)-cauchy sequence, so \(u_n \) is also.

Proof of Theorem 1. As the result of (ii) and (iv) of Lemma there exists \(u \) such that \(\mathcal{E}_\alpha(u_n-u_n, u_n-u) \to 0 \) and \(\tilde{u}_n \to \hat{u} \) q.e.. We can now prove that this function \(u \) is a solution of the quasi-variational inequality (1.2). We at first note that it follows that

\[
\mathcal{E}_\alpha(U_{\alpha}v-u_n, U_{\alpha}v-u_n) \leq \mathcal{E}_\alpha(U_{\alpha}v-u, U_{\alpha}v-u) \quad \forall \tilde{v} \leq \tilde{u} = \lim_{n \to \infty} \tilde{u}_n \text{ q.e.}
\]

from (1.6) because \(\tilde{u}_n \to \hat{u} \) q.e. implies \(\tilde{u}_n \to \hat{u} \). Therefore it holds that

(1.15) \(\mathcal{E}_\alpha(U_{\alpha}v-u, U_{\alpha}v-u) \leq \mathcal{E}_\alpha(U_{\alpha}v-u, U_{\alpha}v-u), \quad \forall \tilde{v} \leq \tilde{u} = \tilde{u}_n \text{ q.e.} \)

since \(\mathcal{E}_\alpha(u_n-u_n, u_n-u) \to 0 \). On the other hand, since \(\tilde{u} \leq \tilde{u}_n \leq \tilde{u}_{n-1} \)
q.e. for each n we have

$$(1.16) \quad \tilde{u} \leq \lim_{n \to \infty} \tilde{M}_n \tilde{u} = \tilde{M} \tilde{u} \quad \text{q.e.}.$$

(1.15) with (1.16) is equivalent to the QVI (1.2).

Now we are going to prove that the above solution u of QVI (1.2) is the maximal one. Take another solution w of the QVI

\begin{align*}
\tilde{w} \leq M \tilde{w} & \quad \text{q.e.} \\
\mathcal{E}_\alpha(w, v-w) \geq \langle v, \tilde{v} - \tilde{w} \rangle & \quad \forall \tilde{v} \leq M \tilde{w} \quad \text{q.e.}
\end{align*}

In the same way as Lemma we can see $U_\alpha v - w$ is α-excessive, so $U_\alpha v \geq w$. Therefore $M U_\alpha v \geq \tilde{w}$ q.e.. That is $w \notin V_1$. Since $U_\alpha v - u_1 v w = (U_\alpha v - u_1) \cup (U_\alpha v - w)$ is α-almost excessive and $U_\alpha v - u_1 v w \leq U_\alpha v - u_1$ it holds that

$$(1.17) \quad \mathcal{E}_\alpha(U_\alpha v-u_1 v w, U_\alpha v-u_1 v w) \leq \mathcal{E}_\alpha(U_\alpha v-u_1, U_\alpha v-u_1).$$

Hence we have $u_1 \geq w$ by similar argument as (iii) of Lemma. In the same way we can inductively see $u_n \geq w$ for each n, which implies $u \geq w$.
§2. Impulsive control of symmetric Markov processes

Let \(X = \{ \Omega, \mathcal{B}, \mathcal{B}_t, \mathbb{P}_x, X_t, \theta_t \} \) be an \(m \)-symmetric standard Markov process of function space type with the state space \(S \). We assume that its Dirichlet space \((\mathcal{F}, \mathcal{E})\) is regular. We are now going to repeat Robin's construction of controlled process (cf. [7]) with a little modification and set up an impulsive control problem.

Consider the infinite product space \(\Omega_\infty = \Omega \times \Omega \times \Omega \times \cdots \) and define its sub-\(\sigma \)-fields by

\[
(2.1) \quad \mathcal{B}_t^n = \pi_n^{-1}(\mathcal{B}_t)^\otimes n
\]

where \(\pi_n \) is the projection from \(\Omega_\infty \) to the \(n \)-th product \((\Omega)^n\). \(\mathcal{B}^n \) is similarly defined. For \(\omega = (\omega_1, \omega_2, \cdots) \in \Omega_\infty \), we let

\[
(2.2) \quad (\theta_n, t\omega)(s) = (\theta_{t\omega_1}(s), \cdots, \theta_{t\omega_n}(s))
\]

\[= (\omega_1(t+s), \cdots, \omega_n(t+s)).\]

We note that, if \(\sigma(\omega) \) is a \(\mathcal{B}^n \)-measurable function on \(\Omega_\infty \), then \(\sigma(\omega) = \tilde{\sigma}(\omega_1, \omega_2, \cdots, \omega_n) \), \(\tilde{\sigma} \) being a \((\mathcal{B})^{\otimes n} \)-measurable function on \((\Omega)^n\). Such an identification of \(\sigma \) and \(\tilde{\sigma} \) will be made below without mentioning explicitly. It is further noticed that \(\mathbb{P}_x \) for each \(x \in S \) can be regarded as a probability measure on \((\Omega_\infty, \mathcal{B}^1)\).

A family of subsets \(\{ \Gamma_x \}_x \subseteq S \) of \(S \) is called admissible if the following condition \((\Gamma)\) is satisfied:

\((\Gamma)\) if \(x_n \rightarrow x \), \(x_n \in S \) and \(y_n \in \Gamma_{x_n} \), then there exist \(y \in \Gamma_x \) and \(\{ y_{n_k} \} \subseteq \{ y_n \} \) such that \(y_{n_k} \rightarrow y \).
A sequence \(v = \{(\tau_i, \xi_i)_{i=1}^{\infty}\} \) of the pairs of random variables \(\tau_i \) and \(\xi_i \) on \(\mathcal{S}_\infty \) is called an admissible control if the following conditions \((v.1)\sim(v.3)\) are satisfied for a given \(\{\Gamma_x\} \):

\((v.1)\) \(\tau_i \) is a \(\mathcal{B}_t^1 \)-stopping time such that \(\tau_i \leq \tau_{i+1} \) for each \(i \) and \(\lim_{i \to \infty} \tau_i = \infty \).

\((v.2)\) \(\xi_i \) is \(\Gamma_{X_{\tau_i}}(\omega_i) \)-valued \(\mathcal{B}_{\tau_i}^1 \)-measurable random variable for each \(i \).

\((v.3)\) for each \(N \) with \(\text{Cap}(N) = 0 \) there exists \(\tilde{N} \subseteq N \) with \(\text{Cap}(\tilde{N}) = 0 \) such that \(P_x(\xi_i \in \tilde{N}) = 0 \), \(x \in S - \tilde{N} \) for each \(i \), where \(P^i_x \) is a probability measure on \((\mathcal{S}_\infty, \mathcal{B}^i) \) specified below.

The set of all admissible controls are denoted by \(\mathcal{V} \). Let us define, for \(y \in S \), an element \(\delta_y \in \mathcal{S}_\infty \) by

\[(2.3) \quad \delta_y(t) = y \quad \forall t \geq 0 \]

and denote by \(\varepsilon_{\delta_y} \) the probability measure on \((\mathcal{S}_\infty, \mathcal{B}) \) which is concentrated on \(\delta_y \).

For a given \(v = \{(\tau_i, \xi_i)_{i=1}^{\infty}\} \in \mathcal{V} \), we are interested in the process \(X_t(\omega_1) \) governed by \(P_x \) up to time \(\tau_1(\omega_1) \). \(X_t(\omega_1) \) is stopped at time \(\tau_1 \) and then our interest is switched to the process \(X_{\tau_1}(\omega_1) + t(\omega_2), t \geq 0 \), governed by \(P^i_{\xi_1}(\omega_1) \) up to time \(\tau_2(\omega_1, \omega_2) \) and so forth. To formulate such a process, we construct probability measures \(P^n_x \) on \((\mathcal{S}_\infty, \mathcal{B}^n) \), \(n = 1, 2, \ldots \), as follows:
First let
\[p^1_x = p_x \quad \text{on} \quad (\Omega^1, \mathcal{B}^1) \]

We can construct a probability measure \(p^2_x \) on \((\Omega^2, \mathcal{B}^2)\) such that

\[
\begin{align*}
 p^2_x &= p^1_x \quad \text{on} \quad \mathcal{B}^1_{\tau_1} \quad (\subset \mathcal{B}^1) \\
 p^2_x(\theta^{-1}_{2, \tau_1} B | \mathcal{B}^1_{\tau_1}) &= \varepsilon_{\delta_{X_{\tau_1}}} \otimes p^1_x(B), \quad p^1_x - \text{a.s. on} \quad \{\tau_1 < +\infty\}
\end{align*}
\]

for each \(B \in \mathcal{B}^2 \). Then the process \(X_{\tau_1 + t}(\omega_2) \), \(t \geq 0 \), is Markovian with respect to \((\mathcal{B}^2_{\tau_1 + t}, p^2_x)\) under the condition \(\mathcal{B}^1_{\tau_1} \). We define the probability measure \(p^{n+1}_x \) on \((\Omega^n, \mathcal{B}^{n+1})\) inductively by

\[
\begin{align*}
 p^{n+1}_x &= p^n_x \quad \text{on} \quad \mathcal{B}^{n+1}_{\tau_n} \quad (\subset \mathcal{B}^n) \\
 p^{n+1}_x(\theta^{-1}_{n+1, \tau_n} B | \mathcal{B}^{n}_{\tau_n}) &= \varepsilon_{\delta_{X_{\tau_n}}}^{(\omega_n)} \otimes \cdots \otimes \varepsilon_{\delta_{X_{\tau_n}}}^{(\omega_1)} \otimes p^1_x(B) \quad p^n_x - \text{a.s. on} \quad \{\tau_n < +\infty\}
\end{align*}
\]

where \(B \in \mathcal{B}^{n+1} \).

We are now in a position to formulate our main theorem. Consider the Dirichlet space \((\mathcal{F}, \mathcal{E})\) associated with the process \(X \). We suppose that a non-negative Radon measure \(\nu(dx) \) of finite energy integral and non-negative continuous function \(k(x, \xi) \), \(x, \xi \in S \), are given which are to define a pay-off function. It is known that a non-negative continuous additive functional \(A_t(\omega) \) on \(X \) corresponds to \(\nu(dx) \):
\[E_x \left[\int_0^\infty e^{-\alpha s} dA_s \right] = U_x \text{ q.e.} \]

(cf. [4]). Let for \(\omega = (\omega_1, \omega_2, \ldots) \in \Omega_m \)

\[
A_t = \begin{cases}
A_t(\omega_1), & 0 \leq t \leq \tau_1 \\
A_{\tau_1} + A_{t-\tau_1}(\theta_1 \omega_2), & \tau_1 < t \leq \tau_2 \\
A_{\tau_{n-1}} + A_{t-\tau_{n-1}}(\theta_{n-1} \omega_n), & \tau_{n-1} < t \leq \tau_n
\end{cases}
\]

and

\[
y_t(\omega) = X_t(\omega_{k+1}) \quad \text{if} \quad t \in [\tau_k, \tau_{k+1}).
\]

We can now define the pay-off function \(u^*(x) \) by

\[
u^*(x) = \inf_{v \in V} J_x(v)
\]

\[
J_x(v) = \lim_{n \to \infty} J^n_x(v)
\]

\[
J^n_x(v) = E_x^n \left[\int_0^{\tau^n} e^{-\alpha t} dA_t + \sum_{i=1}^n e^{-\alpha \tau_i} k(X_{\tau_i}(\omega_i), \xi_i) \right].
\]

We then introduce the operator \(M \) by

\[
M\phi(x) = \text{q-essinf} \{ \phi(y) + k(x,y) \} \quad y \in \Gamma_x
\]

\[\equiv \text{sup} \{ c : \text{Cap} \{ y \in \Gamma_x ; \phi(y) + k(x,y) < c \} = 0 \} \]
for $\phi \in \mathcal{K}$. The fact that this operator M satisfies (M.1)–(M.4) will be shown later (\S3). Recall that Theorem 1 then guarantees the existence of the maximum solution of the QVI (1.2) associated with the present data $\langle \mathcal{K}, \mathcal{E} \rangle$, ν and M.

Theorem 2. The pay-off function $u^*(x)$ defined by (2.9) is a quasi-continuous modification of the maximum solution u of the QVI (1.2) corresponding to the above $\langle \mathcal{K}, \mathcal{E} \rangle$, ν and M.

Remark. We note that if $\nu(dx) = f(x)dm$ with a Borel function f in $L^2(dm)$, $J^n_x(v)$ is written as

\begin{equation}
J^n_x(v) = E^n_x\left[\int_0^T e^{-\alpha t} f(y_t) dt + \sum_{i=1}^n e^{-\alpha r_i} k(X_{r_i}(\omega_n), \xi_n) \right].
\end{equation}

In the next section we study the operator M defined by (2.12). All assumptions and notations in section 2 are assumed through the following sections.
§3. Operator M

Definition 3.1. A sequence $\{F_k\}$ of closed sets such that $F_k \uparrow$ and $\text{Cap}(S - F_k) \downarrow 0$, $k \to \infty$ is called a nest on S. A nest $\{F_k\}$ is said to be (m)-regular if for each k $m(U(x) \cap F_k) \downarrow 0$ for any $x \notin F_k$ and any open neighborhood $U(x)$ of x.

Let Q be a countable family of quasi-continuous function in the restricted sense on S. Then it is known that there exists a regular nest $\{F_k\}$ on S such that $u|_{F_k \cup \Delta}$ is continuous for each k for any function $u \in Q$.

Lemma 3.1. For any function $\phi \in \mathcal{F}$ $M\phi$ is a Borel function and has the following representation:

\begin{equation}
M\phi(x) = \lim_{n \to \infty} \inf \{\phi(y) + k(x,y)\}
\end{equation}

where $\{F_n\}$ is a regular nest and Γ^n_x is a subset of S which satisfies (1).

Proof of Lemma 3.1. It holds that by definition

\[\text{Cap}\{y \in \Gamma^n_x; \phi(y) + k(x,y) < M\phi(x) - \varepsilon\} = 0 \]

for any $\varepsilon > 0$. Take a regular nest $\{F_n\}$ such that $\phi|_{F_n \cup \Delta}$ is continuous for each n. Put

\[N^n_x = \{y \in \Gamma^n_x; \text{there exists a open neighborhood } U_y \text{ such that } \text{Cap}(U_y \cap F_n \cap \Gamma^n_x) = 0\} \]
and define

$$\Gamma^n_x = \Gamma_x \cap (\bigcup_{y \in N^n_x} U_y)^c$$

by above U_y. Then it is obvious that Γ^n_x satisfies (I') because $\left(\bigcup_{y \in N^n_x} U_y \right)^c$ is closed. Since $\phi(\cdot)$ and $k(x,\cdot)$ are continuous on $\Gamma^n_x \cap F_n$ it follows that

$$\phi(y) + k(x,y) \geq M\phi(x) - \epsilon \quad \forall y \in \Gamma^n_x \cap F_n$$

from

$$\text{Cap}\{y \in \Gamma^n_x \cap F_n; \phi(y) + k(x,y) < M\phi(x) - \epsilon\} = 0$$

Therefore

$$\liminf_{n \to \infty} \{\phi(y) + k(x,y)\} \geq M\phi(x).$$

In order to get converse inequality put

$$c = \liminf_{n \to \infty} \{\phi(y) + k(x,y)\},$$

then

$$\text{Cap}\{y \in \Gamma_x; \phi(y) + k(x,y) < c\} = \text{Cap}\{\Gamma_x \cap (\bigcup_{n} F_n); \phi(y) + k(x,y) < c\}$$

$$\leq \sum_{n=1}^{\infty} \text{Cap}\{y \in \Gamma_x \cap F_n; \phi(y) + k(x,y) < c\}$$
= \sum_{n=1}^{\infty} \text{Cap}\{y \in \Gamma^n_x \cap F_n; \phi(y) + k(x,y) < c\}.

Hence c \leq M\phi(x)$. Now (3.1) has been proved. On the other hand, since \(\inf_{y \in \Gamma^n_x \cap F_n} \{\phi(y) + k(x,y)\} \) is a lower semi-continuous function according to the following lemma, we have the conclusion that $M\phi(x)$ is a Borel function.

Lemma 3.2. For any $\phi \in \mathcal{F}$

\[M_n \phi(x) = \inf_{y \in \Gamma^n_x \cap F_n} \{\phi(y) + k(x,y)\} \]

is a lower semi-continuous function and has a measurable selection for each n.

This lemma is a trivial modification of Theorem A in §5, Chap. 2 of [3]. Because $\Gamma^n_x \cap F_n$ also satisfies (Γ) and $\phi(\cdot)$ and $k(x,\cdot)$ are continuous on F_n.

Lemma 3.3. The operator M defined by (2.12) satisfies $(M.1) \sim (M.4)$.

Proof of Lemma 3.3. $(M.1)$ has been proved in Lemma 3.1. $(M.2)$ and $(M.3)$ are obvious. As to $(M.4)$ it is easily seen that

\[\lim_{n \to \infty} M_n u(x) \geq M u(x). \]

On the other hand
so we have

$$\lim_{n \to \infty} M u_n(x) \leq u(y) + k(x, y) \quad \forall y \in \Gamma^m_x \cap F_m,$$

for each m. Then it holds that

$$\lim_{n \to \infty} M u_n(x) \leq \liminf_{m \to \infty} \{u(y) + k(x, y)\} \quad \forall y \in \Gamma^m_x \cap F_m$$

$$= M u(x).$$
§4. Optimal stoppings of Markov processes

We prepare for the proof of Theorem 2 some lemmas on optimal stoppings of Markov processes with which regular Dirichlet spaces are associated.

Let ψ_n be a given Borel function and s_n be the unique solution of the following variational inequality:

\[
\begin{aligned}
\mathcal{E}_\alpha(s_n',v-s_n) &\geq \langle v, \tilde{v} - \tilde{s}_n \rangle \quad \forall v \in \mathcal{F}, \tilde{v} \leq \psi_n \text{ q.e.} \\
\text{for each } n.
\end{aligned}
\]

\[
(4.1)
\]

Lemma 4.1. Suppose that $\psi_n(x) + \psi(x) \geq 0 \quad \forall x$, then $\mathcal{E}_\alpha(s_n',s_n-s) \to 0$ where s_n is the unique solution of

\[
\begin{aligned}
\mathcal{E}_\alpha(s,v-s) &\geq \langle v, \tilde{v} - \tilde{s} \rangle \quad v \in \mathcal{F}, \tilde{v} \leq \psi \text{ q.e.} \\
s \in \mathcal{F}, \tilde{s} \leq \psi \text{ q.e.}
\end{aligned}
\]

\[
(4.2)
\]

Proof of Lemma 4.1. In a similar way as the proof of Theorem 1 we can easily show that $s_n \geq s_{n+1}$, $s_n \geq 0$, and $U_\alpha v - s_n$ is an α-almost excessive function for each n (cf. Lemma in §1). Therefore we have

\[
\mathcal{E}_\alpha(U_\alpha v - s_n, U_\alpha v - s_n) \leq \mathcal{E}_\alpha(U_\alpha v - s_m, U_\alpha v - s_m) \leq \mathcal{E}_\alpha(U_\alpha v, U_\alpha v) \quad n \leq m.
\]

So there exists $s_0 \in \mathcal{F}$ such that $\mathcal{E}_\alpha(s_n - s_0, s_n - s_0) \to 0$. Furthermore s_0 satisfies

\[
\begin{aligned}
\mathcal{E}_\alpha(U_\alpha v - s_0, U_\alpha v - s_0) &\leq \mathcal{E}_\alpha(U_\alpha v - v, U_\alpha v - v) \quad \forall v \leq \lim_{n \to \infty} \psi_n = \psi \text{ q.e.} \\
\tilde{s}_0 &\leq \psi \text{ q.e.}
\end{aligned}
\]

\[
(4.3)
\]

which is equivalent to (4.2). Hence we conclude $s_0 = s$ because of uniqueness of the solution of (4.2).
Lemma 4.2. Put
\[t_n(x) = \inf_{T} E_x \left[\int_{0}^{T} e^{-\alpha s} d\lambda(s) + e^{-\alpha \tau} M_n \phi(X_{\tau}) \right] \text{ q.e.} \]
where \(\phi \in \mathcal{F} \), then \(t_n \) is a quasi-continuous modification of the solution \(s_n \) of the variational inequality (4.1) for each \(n \) in which \(\psi_n \) is considered \(M_n \phi \). Furthermore there exists an optimal stopping time.

Proof of Lemma 4.2. Since \(U_\alpha v - s_n \) is \(\alpha \)-almost excessive by similar argument as Lemma 1.1 there corresponds a non-negative Radon measure \(\mu_n \) of finite energy integral such that
\[E_\alpha(U_\alpha v - s_n, v) = \int \mu_n(dx) \tilde{v}(x) \quad \forall v \in \mathcal{F}. \]
Therefore it follows that
\[(4.4) \left\{ \begin{array}{l} \int \mu_n(dx)(\tilde{s}_n(x) - \tilde{v}(x)) \geq 0 \quad \forall \tilde{v} \leq M_n \phi \quad \text{q.e.,} \\ \tilde{s}_n \leq M_n \phi \quad \text{q.e.,} \quad s_n \in \mathcal{F} \end{array} \right. \]
from (4.1) with \(\psi_n = M_n \phi \). Put
\[(4.5) \quad L_n = \{ x \in \bigcup_{k=1}^{\infty} F_k ; \tilde{s}_n(x) < M_n \phi(x) \}, \]
where \(\{F_k\} \) is a regular nest corresponding to the family of quasi-continuous functions \(\{s_n\} \). Take an arbitrary point \(x_0 \in L_n \), then \(x_0 \in F_{k_0} \) for some \(k_0 \). On the other hand, since \(M_n \phi(x) \) is a lower semi-continuous function there exists a sequence of continuous functions \(c^n_j(x) \) such that \(c^n_j(x) + M_n \phi(x) \), \(j \to \infty, \forall x \). Therefore \(c^n_{j_0}(x_0) > s_n(x_0) \) for sufficiently large \(j_0 \), which implies that there exists a neighborhood \(U(x_0) \) of \(x_0 \) such that
\[s_n(x) < c^n_{j_0}(x) \quad \forall x \in F_{k_0} \cap U(x_0). \]
Accordingly there exists a neighborhood \(V(x_0) \) and \(v_n \in \mathcal{F} \cap C_0(S) \) such that
\[\bar{V}(x_0) \subset U(x_0), \]
and
\[\tilde{s}_n(x) + v_n(x) \leq M_n \phi(x) \]
because the Dirichlet space \((\mathcal{F}, \mathcal{E})\) is regular. Therefore
\[-\int u_n(dx)v_n(x) \geq 0 \]
which implies \(u_n(V(x_0)) = 0\). Since \(x_0 \in L_n\) is arbitrary we conclude that
\[(4.6) \quad u_n(L_n) = 0. \]

Next, we have
\[(4.7) \quad \tilde{s}_n(x) \leq M_n \phi(x) \quad \text{q.e.} \]

On the other hand let \(S - N\) be a defining set of the additive functional \(A_t\) (cf. [4]) and put \(\tau_n = \inf \{t; X_t \in L_n^c \cap (S-N)\}\), then
\[(4.8) \quad P_x(x, \tau_n \in L_n^c \cap (S-N)) = 1 \quad x \in (\bigcup_{n=1}^\infty F_n) \cap (S-N) \]
for the benefit of lower semi-continuity of \(M \phi\) and quasi-continuity of \(s_n\).

From (4.6), (4.7) and (4.8) in addition to the fact that there corresponds a non-negative additive functional \(A_t^R\) to the \(\alpha\)-almost excessive function \(U_\alpha v - s_n\) such that
\[U_\alpha v - s_n = E_x[\int_0^\tau e^{-\alpha s}dA_s^n] \quad \text{q.e.} \]
our present lemma follows in the same way as Theorem in [6].

Lemma 4.3. Put
\[(4.9) \quad t(x) = \inf_{\tau} E_x\left[\int_0^\tau e^{-\alpha s}dA_s + e^{-\alpha \tau}M\phi(X_\tau)\right], \]
then \(t(x)\) is a quasi-continuous modification of the solution of the variational inequality (4.2) in which \(\Psi\) is considered as \(M\phi(x)\).
Proof of lemma 4.3. Let $s(x)$ be the solution of (4.2) with $\psi = M\phi$, then $U_\alpha v - s$ is α-almost excessive and there corresponds non-negative continuous additive functional A_t^0 such that

$$
(4.10) \quad U_\alpha v(x) - s(x) = E_x[\int_0^\infty e^{-\alpha t}dA_t^0] \text{ q.e.}
$$

On the other hand we have

$$
(4.11) \quad \widetilde{s}(x) \leq M\phi(x) \text{ q.e.}
$$

From (4.10) and (4.11) it follows that

$$
\widetilde{s}(x) = E_x[\int_0^\infty e^{-\alpha t}dA_t] - E_x[\int_0^\infty e^{-\alpha t}dA_t^0]
$$
$$
= E_x[\int_0^\tau e^{-\alpha t}dA_t] - E_x[\int_0^\tau e^{-\alpha t}dA_t^0] + E_x[e^{-\alpha \tau}S(X_\tau)]
$$
$$
\leq E_x[\int_0^\tau e^{-\alpha t}dA_t + e^{-\alpha \tau}S(X_\tau)]
$$
$$
\leq E_x[\int_0^\tau e^{-\alpha t}dA_t + e^{-\alpha \tau}M\phi(X_\tau)] \text{ q.e.,}
$$

for any stopping time τ. Therefore it holds that

$$
(4.12) \quad \widetilde{s}(x) \leq t(x) \text{ q.e.}
$$

Now it is clear that

$$
t(x) \leq \inf_{\tau} E_x[\int_0^\tau e^{-\alpha t}dA_t + e^{-\alpha \tau}M\phi(X_\tau)] = \tilde{s}_n(x) \text{ q.e.}
$$

Since $\mathcal{E}_\alpha(s_n - s, s_n - s) \to 0$ by lemma 4.1 we obtain $\tilde{s}_n(x) + \tilde{s}(x)$ q.e.. Hence

$$
(4.13) \quad t(x) \leq \tilde{s}(x) \text{ q.e.}
$$

(4.12) and (4.13) give our conclusion.
§5. Proof of Theorem 2

Now we are going to prove Theorem 2. Let us introduce the set \(V_n \) of admissible controls which have \(n \) jump times at most:

\[
\text{(5.1)} \quad V_n = \{ v \in \mathcal{V}; \tau_{n+1}(\omega) = \infty \}
\]

for each \(n \). Put

\[
\text{(5.2)} \quad u^*(x) = \inf_{v \in V_n} \mathbb{E}_x \left[\int_0^{\tau_{n+1}} e^{-\alpha s} dA_s + \sum_{i=1}^n e^{-\alpha \tau_i} k(X_{\tau_i}(\omega_i), \xi_i) \right]
\]

and

\[
\text{(5.3)} \quad w_n(x) = \inf_{\tau} \mathbb{E}_x \left[\int_0^{\tau} e^{-\alpha s} dA_s + e^{-\alpha \tau} M w_{n-1}(X_{\tau}) \right]
\]

for each \(n \) where \(w_0(x) = \mathcal{U}_\alpha v(x) \).

Theorem 2 is a consequence of the following two propositions.

Proposition 5.1. \(W_n(x) \) is a quasi-continuous modification of the solution \(u_n \) of the variational inequality (1.5).

Proposition 5.2. It holds that

\[
\text{(5.4)} \quad w_n(x) = u^*_n(x) \quad \text{q.e.}
\]

Proposition 5.1 is a direct consequence of Lemma 4.3. For the proof of Proposition 5.2 we prepare the following two lemmas.
Lemma 5.3. It holds that

\[(5.5) \quad w_n(x) = \lim_{k_1 \to \infty} \lim_{k_n \to \infty} w_{k_1 \ldots k_n}^n(x) \quad \text{q.e.}\]

where

\[(5.6) \quad w_{k_1 \ldots k_n}^n(x) = \inf_{E} \left[\int_{0}^{\tau} e^{-\alpha s} dA_s + e^{-\alpha T} M_{k_n} w_{k_{n-1} \ldots k_1}^{n-1}(X_{\tau}) \right] \quad n=2,3, \ldots \]

and

\[(5.7) \quad w_{k_1}^l(x) = \inf_{E} \left[\int_{0}^{\tau} e^{-\alpha s} dA_s + e^{-\alpha T} M_{k_1} w_{X_{\tau}}^{n-1}(X_{\tau}) \right].\]

Proof of Lemma 5.3. Because of Lemma 4.1 it follows that

\[(5.8) \quad w_{k_1}^l(x) + w_1(x) \quad \text{q.e.,} \quad k_1 \to \infty\]

from $M_{k_1} \tilde{\nu}(x) + MU \tilde{\nu}(x) \quad \forall x, \quad k_1 \to \infty$, in the same way as the proof of Lemma 4.3. Let us assume that

\[(5.9) \quad w_{n-1}(x) = \lim_{k_1 \to \infty} \lim_{k_n \to \infty} w_{k_1 \ldots k_n}^{n-1}(x) \quad \text{q.e.}\]

Then it follows that

\[(5.10) \quad \lim_{k_n \to \infty} w_{k_1 \ldots k_n}^n(x) = \inf_{E} \left[\int_{0}^{\tau} e^{-\alpha s} dA_s + e^{-\alpha T} M_{k_n} w_{k_{n-1} \ldots k_1}^{n-1}(X_{\tau}) \right] \quad \text{from} \quad M_{k_n} w_{k_{n-1} \ldots k_1}^{n-1}(x) + M w_{k_{n-1} \ldots k_1}^{n-1}(x) \quad \forall x, \quad k_n \to \infty, \]

in the same way as above. On the other hand it holds that
by our assumption and the property of M. Making use of Lemma 4.1
we obtain our present lemma from (5.10) and (5.11).

Lemma 5.4. Let \(\mathcal{X} = (\Omega, \mathcal{B}, \mathcal{F}_t, \mathbb{P}_x, X_t) \) be a m-symmetric
Markov process associated with a regular Dirichlet space \((\mathcal{F}, \mathcal{E})\)
and

\[
H(M\phi; x) = \inf_{\tau} \mathbb{E}_x \left[\int_0^\tau e^{-\alpha s}d\mathcal{A}_s + e^{-\alpha\tau}M\phi(X_\tau) \right] \quad \phi \in \mathcal{F},
\]

then it holds that

\[
\mathbb{E}_x \left[\int_0^\tau e^{-\alpha s}d\mathcal{A}_s + e^{-\alpha\tau}M\phi(X_\tau) \mid \mathcal{G}_0 \right] \geq e^{-\alpha\sigma}H(M\phi; X_\sigma)
\]

for any stopping time \(\sigma, \tau \) such that \(\sigma \leq \tau \). Here \(\mathcal{A}_t \) is an
additive functional of \(X \) corresponding to the Radon measure \(\nu(dx) \)
of finite energy integral.

Proof. At first we note that \(H(M\phi; x) \in \mathcal{F}, U_\alpha \nu(x) - H(M\phi; x) \)
is \(\alpha \)-almost excessive and \(H(M\phi; x) \leq M\phi(x) \) q.e. by Lemma
4.3. Therefore \(e^{-\alpha t} \{ U_\alpha \nu(X_t) - H(M\phi; X_t) \} \) is a \((\mathbb{P}_x, \mathcal{G}_t) \)
supermartingale for q.e. \(x \). Hence

\[
\mathbb{E}_x \left[e^{-\alpha\tau} \{ U_\alpha \nu(X_\tau) - H(M\phi; X_\tau) \} \mid \mathcal{G}_0 \right]
\]

\[
\leq e^{-\alpha\sigma} \{ U_\alpha \nu(X_\sigma) - H(M\phi; X_\sigma) \} \quad \mathbb{P}_x \text{- a.s. q.e. } x.
\]

So we have
Accordingly it follows that

$$E_x\left[\int_0^\tau e^{-\alpha s} dA_s + e^{-\alpha \tau} H(M\phi; X_t) \mid \mathcal{B}_\sigma \right] \geq e^{-\alpha \sigma} H(M\phi; X_\sigma).$$

from $H(M\phi; x) \leq M\phi(x)$ q.e.

Proof of Proposition 5.2. Let $v \in \mathbb{V}_n$, $v = \{(\tau_k, \xi_k)_{k=1,2,\ldots,n} \colon \tau_{n+1} = \infty\}$, then

$$J^n_x(v) = E_x^{n+1} \left[\int_0^\tau e^{-\alpha s} dA_s + \sum_{i=1}^n e^{-\alpha \tau_i} k(X_{\tau_i}(\omega_i), \xi_i) \right]$$

$$= E_x^{n+1} \left[\int_0^\tau e^{-\alpha s} dA_s + \sum_{i=1}^n e^{-\alpha \tau_i} k(X_{\tau_i}(\omega_i), \xi_i) + e^{-\alpha \tau_n} \int_0^\infty e^{-\alpha s} dA_s \right]$$

$$= E_x^{n+1} \left[\int_0^\tau e^{-\alpha s} dA_s + \sum_{i=1}^n e^{-\alpha \tau_i} k(X_{\tau_i}(\omega_i), \xi_i) + e^{-\alpha \tau_n} E_x^{\infty} \left[e^{-\alpha s} dA_s \right] \right]$$

$$\geq E_x^n \left[\int_0^\tau e^{-\alpha s} dA_s + \sum_{i=1}^{n-1} e^{-\alpha \tau_i} k(X_{\tau_i}(\omega_i), \xi_i) + e^{-\alpha \tau_n} \mu_{\alpha}^\nu(X_{\tau_n}(\omega_n)) \right]$$

$$= E_x^n \left[\int_0^\tau e^{-\alpha s} dA_s + \sum_{i=1}^{n-1} e^{-\alpha \tau_i} k(X_{\tau_i}(\omega_i), \xi_i) \right]$$

$$+ E_x^n \left[\int_{\tau_n}^{\tau_{n-1}} e^{-\alpha s} dA_s - \int_{\tau_{n-1}}^{\tau_n} (\theta_{\tau_n} - \omega_n) + e^{-\alpha \tau_n} \mu_{\alpha}^\nu(X_{\tau_n}(\omega_n)) \mid \mathcal{B}_{\tau_{n-1}} \right]$$

$$\geq E_x^n \left[\int_0^{\tau_{n-1}} e^{-\alpha s} dA_s + \sum_{i=1}^{n-1} e^{-\alpha \tau_i} k(X_{\tau_i}, \xi_i) + e^{-\alpha \tau_{n-1}} H(\mu_{\alpha}^\nu; X_{\tau_n}) \right]$$
In order to get the converse inequality take a sequence \(\{ \tilde{\tau}_j \} \) of stopping times each of which minimizes
\[
\mathbb{E}_x \left[\int_0^{\tilde{\tau}} e^{-\alpha s} dA_s + e^{-\alpha \tau} k(x, \xi) + e^{-\alpha \tau} w(x, \tau) \right]
\]
Furthermore take a sequence of functions \(y_{k_j}(x) \), \(j=1,2,\ldots,n \) such that
\[
M_{k_j} w^{j-1}_{k_j-1} \cdots k_1(x) = w^{j-1}_{k_j-1} \cdots k_1(y_{k_j}(x)) + k(x, y_{k_j}(x))
\]
Put
\[
\hat{\tau}_i = \tilde{\tau}_{i-1} + \tilde{\tau}_{n+1-i} \tilde{\tau}_{i-1} \omega_i, \quad \tilde{\tau}_i = \tilde{\tau}_{n}(\omega_i)
\]
and
\[
\hat{\xi}_i = y_{k_{n+1-i}}(x, \hat{\tau}_i)
\]
Then \(\hat{\nu} = \{(\hat{\tau}_i, \hat{\xi}_i) : i=1,2,\ldots,n', \hat{\tau}_{i+1} = 0\} \notin \mathcal{V}_n \)
and
\[w_n \cdots k_1(x) = E_x \left[\sum_{\tau_n} e^{-\alpha s dA_s} + e^{-\alpha \tau_n} \frac{1}{k_{n-1} \cdots k_1} \right] \]

\[= E_x \left[\sum_{\tau_n} e^{-\alpha s dA_s} + e^{-\alpha \tau_n} \frac{1}{k_{n-1} \cdots k_1} \right] \]

\[= E_x \left[\sum_{\tau_n} e^{-\alpha s dA_s} + e^{-\alpha \tau_n} \right] \]

\[= E_x \left[\sum_{\tau_n} e^{-\alpha s dA_s} + e^{-\alpha \tau_n} \right] \]

\[\sum_{n=1}^{\infty} e^{-\alpha \tau_i} \]

\[\geq u^*(x) \text{ q.e..} \]

Therefore making use of Lemma 5.3 we conclude that

\[w_n(x) \geq u^*_n(x) \text{ q.e..} \]

Proof of Theorem 2. By Propositions 5.1 and 5.2 \(u^*_n \) is a quasi-continuous modification of the solution \(u_n \) of the variational inequality (1.5) for each \(n \). Since \(u_n \) converges to the maximum solution \(u \) of the QVI (1.2) in \(E_\alpha \)-norm: \(E_\alpha(u_n-u, u_n-u) \rightarrow 0 \), \(n \rightarrow \infty \) we have

\[u^*_n(x) \rightarrow u(x) \text{ q.e., } n \rightarrow \infty \]

taking a sub-sequence if necessary. On the other hand it holds that

\[u^*_n(x) \downarrow u^*(x) \text{ q.e., } n \rightarrow \infty \]

by the next lemma. This completes the proof of Theorem 2.
Lemma 5.5. It holds that \(u_N^\#(x) + u^\#(x) \) q.e., \(N \to \infty \).

Proof of Lemma 5.5. For each \(\varepsilon > 0 \) there exists \(v = v(x) = \{(\tau_1, \xi_1)_{i=1}^\infty \} \in V \) such that

\[
 u^\#(x) \geq \lim_{N \to \infty} E_x^N \left[\int_0^{\tau_N} e^{-\alpha s} d\Lambda_s + \sum_{i=1}^{N} e^{-\alpha \tau_i} k(X_{\tau_i}, \xi_i) \right] - \varepsilon
\]

So for any \(N \) it holds that

\[
 u^\#(x) \geq E_x^N \left[\int_0^{\tau_N} e^{-\alpha s} d\Lambda_s + \sum_{i=1}^{N} e^{-\alpha \tau_i} k(X_{\tau_i}, \xi_i) \right] - \varepsilon
\]

Put \(v^N = \{(\tau_1, \xi_1)_{i=1,2,\ldots,N; \tau_{N+1} = \infty} \} \), then \(v^N \in V_N \). Therefore from

\[
 E_x^{N+1} \left[\int_0^{\tau_{N+1}} e^{-\alpha s} d\Lambda_s + \sum_{i=1}^{N+1} e^{-\alpha \tau_i} k(X_{\tau_i}, \xi_i) \right] \geq u_N^\#(x)
\]

and \(u_N^\#(x) \geq u^\#(x) \) it follows that

\[
 |u_N^\#(x) - u^\#(x)| \leq E_x^{N+1} \left[\int_0^{\tau_N} e^{-\alpha s} d\Lambda_s \right] + 2\varepsilon.
\]

Since \(\tau_N \to \infty \) as \(N \to \infty \) we obtain

\[
 \lim_{N \to \infty} u_N^\#(x) = u^\#(x) \text{ q.e.}
\]

\(u_N^\#(x) \geq u_{N+1}^\#(x) \text{ q.e.} \) is obvious.
References

Hideo Nagai
Department of Mathematics
Faculty of Science
Tokyo Metropolitan University
Fukazawa-cho, Setagaya-ku
Tokyo, Japan