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Impulsive control of symmetrlc Markov processes 

~Dd quasi-variational inequalities 

Hideo Nagai . 

By introducing the notion of impulsive. control of a diffusion 

process A. Bensoussan - J.L. Lions {[I]) showed that if the 

solution of a quasi-variational inequality has suf:ficient regularity 
, . 

(twice differentiability and continuity)~ it turns out to be a pay-

off function. Furthermore they constructed the optimal strat~gy 

out of the solut.ion. But. the r~gulari ty problems remained .open .. 

On the other hand' M.Robin (G7])ha's set up an impulsive control -

problem of a general Markov process with a Feller transition semi

group and has constructed the optimal strategy out of the pay-off 
. ... 

function which ~as characterized however in terms of the semi-group 

ra,th-er than the. g-en€rater of the b~sic Markov process ~ As for the 

characterization by means of the quasi-variational inequality the 
- ' ' 

r~gularity of _tb~ ~ol~tion was still assumed in order to identify 

the solution with the pay-off like that of Bensoussan-LIons. 

R~gulari ty problems of elliptic or_ par<3:bolic quasi-variati~:mal 

. inequalities have been studied by L.A. Cafarelli - A. Friedman _. . 

and others (cf .. [2J~[5J) ~nder the condition that the diffusion 
, , ' 

and drift coefficients have sufficient regularity. Cafarelli-
, ' 

Friedmans' work combined vlith Robin f s establishes completely. the 

relationship between impulsive control problems and quasi-variational 

inequalities with ~espect to nice diffusion processes. 

Our objective is to extend this relationship to general 

symmetric Markov processes associated with regular Dirichlet 

spaces~ We prove that the pay-off is characterized by the weak 

(maximum) solution of the quaSi-variational inequality defined 

on the Dirichlet space (Theorem 2 in ~2). Since we assume only 

that the Dirichlet space is regular~ Theorem 2 establishes the 

relationship for a wide class of processes. It applies as well 



to symmetric diffusion process with measurable coefficients and 

symmetric Markov processes with non local generators (cf. [4J). 
Our approach is more potential theoretic than others and 

accordingly the regularity questions can be dispensed with. 

Indeed we use potential theories of Dirichlet spaces and Markov 

proces~es developed in [4J. The same method has been used in [~ 

to establish the relationship between variational inequalities 

and optimal stoppings and in [8J to include stopping games. 
We would like to express our hearty thanks to professors M. 

Fukushima and T. Sirao for valuable advice and also "to Mr. S. Sato 

for useful discussions. 
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§l. Quasi-variational inequalities on regular Dirichlet spaces 

Let m(dx) be a 

measure on a locally 

base. Suppose that 

relative to L2 (dm): 

non-negative Radon everywhere dense 

compact Hausdorff space S with countable 

cF, E) is a regular Dirichlet space 

i) is a dense linear subspace of 2 L (dm), 

ii) E is a symmetric bilinear form on 

iii) ~ is closed with respect to tl-norm, where 

Cl(u,v) = E(u~v) + (u,v), (u,v) denoting inner 

product of L2 (drn) , 

iv) unit contraction operates, that is, if v = (OVu)Al, 

UEr, then VEr and f(v,v)_< E(u,u), 

v) F()co(S) is dense in yz with El-norm as well as 

in CO(S) with uniform norm, CO(S) denoting the space 

of-all continuous-functions on S with compact support. 

Definition 1.1. The capacity of a subset of S is defined 

as follows: for open set A C S 

where LA = { u E:r ; 
set BC S 

u > 1 = m-a.e. 

otherwise, 

on A} and for general 

Cap(B) = inf { cap(A): BC A, A is open}. 

Definition 1.2. A subset B of S with Cap(B) = 0 is 

called almost polar and "Quasi-everywhere" or "q.e." will 

mean "except for an almost polar set". 

Let S6 = SV6 be the one point compactification of S. 
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When S is already compact, ~ is-regarded as an isolated 

point. Any function on S is extended to a function on SV~ 

by setting f(~) = o. 

Definition 1.3. A function f defined q.e. on 

said to be quasi-continuous (in the restricted sense) 

that for each E > 0 there exists an open set G C S 

that cap(G) < E and fIS_G (f-I s -G respectively) is 
~ continuous. 

S is 

provided 

such 

It is known that each u E~ admits a quasi-continuous 

modification' u in the-restricted sense in the case that (Ji, £) 
is a regular Dirichlet space: u = u m-a. e. and U' is q~as i
continuous (cf. l4]). Hereafter -~ denote a quasi-continuous 

modification of u €: l' . 
Let -v(dx) be a given non-negative Radon measure of finite 

energy integral, that~is, there exists for each a > 0 a 

unique function U v E:p. such that 
a 

(1.1) ta(U",V,v) = SsV(X)V(dX) 

Suppose that M is a operator defined on:Ji. such that 

(M.l) Mu is a Borel function for any u f..]f., 
Vx 

(M.2) Mui-(x) < MU2 (X)j\ if ul(x) ~ u~(x) q.e. , 

(M. 3) Mu(x) > 0 Yx if u(x) > 0 q.e. and = = 

(11.4) lim Mu (x) = Hu(x) \Ix if u (x) {- u(x) 
n n n-+-oo 

We consider the following quasi-variational inequality: 

-. {t (u,v-u) ~ <v,v-U'> 
(1.2) a -. 

- -' u < Mu q.e. 
= 

\J v ~ Mu q. e. 

q . e.~ _ 

Theorem 1. The above quasi-variational inequality (QVI) 

(1.2) has the maximal solution. 
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Pu_t ua = U q V and VI =' { v (;:r ; V' ~ ).VIUa q . e'. }, then we 

have the unique solution of the followi~g variational inequality 

(VI) (1.3): 

-j 
~ <v,v"':u> 

because (l.~l is equivalent to 

{

C. (U-UiV,U-U v) < 
CCl Cl " Cl " 

(1.4) " --" 

uEV 1 

Cj (v-U'v v-Uv) 
Ca . ~' Cl 

and V 1 is tp.e closed convex subset of Hilbert space (F, ECl ) • 

Let us denote t~e s?lution by ':11' In th"e same way we can 

inductively take the solution u of the VI: n 

VI 

. .( ~ (u, v-~} 
(1.5) 

u EV n' 

...., -.J' 

> .",v,v"':u> "'tj v E V 
n 

q.e.} for each n. 

At first ~e note the properties of the solution 

(1.51. 

u 
n 

Lemma, The above u has the following properties 

of the 

5 

.n . . 
~-almost excessive function and the unique ( i) U:v - u 1s an 

. - Cl n 
element which minimizes its a.-energy integral in the C~Q~ed convex 

subset U v - V 
Cl n 

of (.r, Ell) : 

(1.61 c (U,v~~ ,u v-u) < C(U v-v,U v-v) CCl . Cl n Cl n - = Go. Cl Cl 

for each n, 

Ciil 
(iii) 
, 

(1. 71 
(1.8) 

un ~un_l m-a.e. for each n, 
u " > a m-a.e. for each nand 

n =" 



(iv) { un} is a E -Cauchy sequence. 
q 

Proof of Lemma. (i) Since u is the solution of (1.5) 
n 

it satisfies the following inequality: 

(1. 9) c (u -uv,v-u ) > 0 Ca n a n = 

If w ~ 0, Ej1., then u -wE-V. Therefore it holds that 
n n 

(1.10) Vw > 0 m-a.e., w E..r . 
that is Uav - un is a-almost excessive because (1.10) is 

equivalent to 

(1.11) 

Here Tt 

form. £ 
is the L2-Markov semigroup correspondi~g to Dirichlet 

(cf. [4J). The latter half of (i) follows directly 

if VI in (1.4) is replaced by'Vn , 

(ii) Inquality (1.7) with n ~ 1 is obvious Uav- u l 

6 

is a-almost excessive and Uav = uo. Assume that it holds for n, 
,....., - V ,.....",--' 

then MUn < -Mun _l x. Therefore un+ 1 ~ MUn -:-.1 q. e. . Since 

- <M~ ~ ~ <M~ un = un _l q.e .. by definiti~n we have unVun+1 = un _l q.e .. 

On the other hand U a v - unVun+ 1 = (U a v - un )/\ (U a v - un+ I) is 

a-almost excessive because both Uav - un+l and Uav - un are 

a-almost excessive. So it follows that 

... (1.12) 

from U v - u > U v - Un\/un+l . . a n = a .v 

E (U V-u ,U V-u ) a a n a n 

By (i) of present Lemma we 

conclude that unVun+l = un' that is, un+l ~ un m-a.e .. 

(iii) Since ~V ~ 0 q.e. we have MUO ~ 0 ~x. Furthermore 
~ < ~ - ~ u l = MuO q.e. by definition, so we have ulVO < Mu O 
Uav - u I and Uav being a-almost excessive, Uav

(Uav - Ul)AUaV is a-almost excessive. Therefore it 

q. e .• 

u VO = 
1 

follows 

Both 

that 



(1.13) 

from Uav - ulVO < Uav - u l m-a.e .. It implies that ulVO = u l ' 

that is u l > 0 m-a.e .. We can inductively show un > 0 m-a.e. 

by similar argument. 

(iv) ·Since U v - u < U'V - u 
a n a. m 
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Ua.V - un ~ Uav m-a.e. for each n 

m-a.e., n < rn, and 

by (ii) and (iii) it holds 

that 

(1.14) E (U v-u ,U v-u) < ~ (U v-u :U v-u~) < C (0 v,Uv) 
a a n a n ~ a m a ill = ~ a a. 

for each n < m. Therefore [CU v-~ ,Uv-u ) 
a a· n a n 

increases to a finite number. Since w = U v n a 
excessive 

0 < ~ (w -w ,w -w ) = E (w ,w ) 2~(w ,w ) 
= n m n m ann n m 

< E. (w ,w ) -£(w,w), n < m. 
= a m m ann = 

Hence w is a E -cauchy sequence, so u is n a. n 

monotonously 

un is a-almost 

+ f. (w ,w ) a m m 

also. 

Proof of Theorem 1. 

Lemma there exists u 

As the result of (ii) and (iv) of 

such that C (u u u u) + 0 and tln + U La . n- , n-
q.e .. We can now prove that this 

the quasi-variational inequality 

.. it· follows that 

function u is a solution of 

(1.2). We at first note that 

E (U v-u ,U v-u ) < C (U v-v~U v-v) a a n a n Ca a a 
v v < Mu = 1 im MUn q • e • 

n+a> 

from (1.6) because implies 

it holds that 

(1.15) ~ (U v-u,U v-u) < C (U v-v,U v-v), Vv < Mu 
La a a ca a a 

since E (u -u,u -u) + O. ann On the other hand, since 

Therefore 

q.e. 



------ ----. ------ -----------
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q.e. for each n we have 

(1.16) 11 < lim Mu = Mu = n n-roo 
q. e .. 

(1.15) with (1.16) is equivalent to the QVI (1.2). 
Now we are going to prove that the above solution u of QVI 

(1.2) is the maximal one. Take another solution w of the QVI 

In 

U \) 
CL 

Uv 
CL 

U v 
CL 

the 

> = 
-
-

\ :a(W, v-w) ~ <v, V->l> 

1 w 2 Mw q~e. 

same way as Lemma we can -- ....-
w. Therefore MUv > w .- CL = 

ulVw = (U v- ul )/\ (U CL v - w) 
CL 

ulVw < U v - u l it holds 
= CL 

(1.17) 

VV' < Ivlw 
= q.e. 

see Uv - w is CL-excessive, so 
CL 

q. e .. _ _ That is wE VI' Since 

-is CL-almost excessive and 

that 

Hence we have u l > w by similar argument as (iii) of Lemma. In 

the same way we can inductively see un ~ w for each n, which 

implies u > w. 
= 



9 

~2. Impulsive control of sy~~etric Markov processes 

Let X = {Q,d3,cBt , P
x

' Xt , et} be an m-symmetric standard 

Markov process of function space type with the state space S. We 

assume that its Dirichlet space (Jc, E) is .regular. He are now 

going to repeat Robin's construction of controlled process (cf. [7J) 

with a little modification and set up an impulsive control problem. 

Consider the infinite product space Q co = Q x QxQx . . . . and 

define its sub-cr-fields by 

(2.1) 

where ~ is the projection from ~ to the n-th product (~)n. n co 

(J2.,n is similarly defined. For W = (wl ,w 2 ' ••.••••• ) E ~, we let 

(2.2) 

We note that, if is a R.)n-measurable function on ~ , then 
IJ..:> €m 00 

cr(w) = ·;(w w- •.•.•• w). a beinoO" a (...0) -measurable function = l' 2' , n ' ()..J 

on (~)n. Such an~identification of cr and 
~ 

cr will be made below 

. without mentioni~g explicitly. It is further noticed that 

each x E S can be regarded as a probability measure on 

P x for 

1 
(Qco' rJ3 ). 

A family of subsets {rx}x E S of S is called admissible if 
the following condition (r) is satisfied: 

(r) if xn + x, xn'x E Sand Yn e rx ' then there exist Y ~ rx 
n 

and {Y } r {y} such that y + y. 
n ~ n n k k 



lO 

A sequence v = {(Ti'~i)~=l} of the pairs of random variables 

and on Q oo 

following conditions 

is called an admissible control if the etd 1111's5ib/e 

(v.l)""'-- (v.3) are satisfied for a given -{r }: .1\ x 

(v.l) 

(v.2) 

is a d3~-stoPPing.time such that for 

each i 

is 

and lim T. = 00 
1.

i+oo 

rx (w. )-valued 
T. 1. 

1. - -

for each i 

d3i -measurable random variable 
Ti 

r-I 
(v.3) for each N with Cap(N) = 0 there exists N ~ N with 

i.-.J ..-....J 

Cap(N) = 0 such that P (~. ~ N) = 0, x ~ S - N for x 1._ 

each i, where p~ is a probability measure on (~oo' d3i
) 

specified below. 

The set of all admissible controls are denoted 
define, for y E: S, an element 0y EQ by 

- (2.3) Oy(t) = y Vt > 0 

and denote by Eo the probability measure on 
y 

is concentrated on o . 
y 00 

For a given v = {(Ti'~i)i=l} E ~, we are 

process governed by p 
x up to time 

by V. Let us 

"-, 

(Q,!3) which 

interested in the 

stopped at time Tl and then our -interest is switched to the -

process X
Tl

(w
l

)+t(w2), t > 0, governed-by up to time 

-' --

is 

T2 (wl ,w2 ) and so forth. To formulate such a process, we construct 

probability measures on Q n -C oo,tB), n = 1,2,····, as follows: 
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First let 

pI = p 
x x 

We can construct a probability measure on such 

that 

~ 
p2 = pI on d3~1 (C 031

) x x 

(2.4) 

l p2(e-l BI S~ ) = EO @ P~l (B·) 
x 2, Ll 1 o. X 

P~ - a.s. pno.·{T~~~·+oo} 

..... ::- Tl 

for each B ~ 13 2 . Then the process X
T 

+t (w 2 ), t > 0, is Markovian 
1 

with respect to (~2 . p2) under the condition /0
1 . We define 

UJ T +t' x VJ T 1 1 

the probability measure p~+l on ($200' ~n+l) inductively by 

Pn 
x - a.s. 

where B t 8 n~l . 

on {T < + co} n 

We are now in a position to formulate our main theorem. Consider'~ 

the Dirichlet space (~, £) associated with the process X. We 

suppose that a non-negative Radon measure v(dx) of finite energy 

integral and non-negative continuous function k(x,~), x,~ E S, 

are given which are to define a pay-off function. It is known 

that a non-negative continuous additive functional At(w) on X 

corresponds to v(dx): 



(2.6) 

and 

(2.8) 

00 

EX[) e-asdAS] = 

o 
U v Cl q.e. 

AT + At T (eT W~), Tn 1 < t ~ Tn 
- n-1 - n-1 n-1 -

12 

We can now define the pay-off function u*(x) by 

(2.9) u*(x) = inf J (v) x 
v~y 

(2.10) Jx(v) = 1im 
n-+-oo 

In(v) 
x 

(2.11) 

T . 

E~[ j ne-atd~t n 
J~(v) = + ~ e-ClTi k(X (w.)'~i)J. 

i=l Ti 1 
0 

We -then introduce the operator M -by 

M</> (x) =q-essinf J</>(y) +:k(x,y)} 
YE rx 

_ sup {c: Cap{y f r;</>(y)+ k(x,y)< c} = O} x 
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for ~ &Jk. The fact that this operator M satisfies (M.l)~ 

(M.4) will be shown later (t3). Recall that Theorem 1 then 

guarantees the existence of the maximum solution of the QVI (1.2) 

associa ted with the present data· (:fi., t ) , v and M. 

Theorem 2. The pay-off function u*(x) defined by (2.9) 
is a quasi-continuous modification of the maximum solution u 

of the QVI (1.2) corresponding to the above (Jk, [), v and M. 

Remark. We note that if v(dx) = f(x)dm with a Borel function 

f in L
2 (dm), J~(v) is written as 

(2.13) J~(v) 

In the next section we study the operator M defined by 

(2.12). All assumptions and notations in section 2 are·assumed 

through the following sections. 
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~3. Operator M 

Definition 3.1. A sequence {Fk } of closed sets such that 

and Cap(S-Fk ) ~ 0, k + 00 is called a nest on S. A nest 

is said to be (m)-regular if for each k m(U(x)AFk ) \ 0 

for any x ~ Fk and any open neighborhood U(x) of x. 

Let Q be a countable family of quasi-continuous function in 

the restricted sense on S. Then it is known that there exists 

a regular nest {Fk } on S such that ul F vt, is continuous for 
k 

each k for any function u ~ Q. 

Lemma 3.1. For any function . </> ~:r M</> is a Borel function 

and has the following representation: 

M</>(x) = lim inf {</>(y) + k(x,y)} 
n+

oo 
YErn nF 

x n 

where {Fn} is a regular nest and 

satisfies (r) . 

rn is a subset of S which 
x 

Proof of Lemma 3.1. It holds that by definition 

Cap {y E rx; <j>(y) + k(x,y) < M</>(x) - E} = 0 

for any E > O. Take a regular nest 

continuous for each n. Put 

{F } such that 
n '" I is 'Y F Vt, . 

n 

N~ = {y E rx; there exists a open neighborhood Uy such 

that Cap(U (I F (\ r ) = O} Y n x 



---------------~-. ~---------- -
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and define 

by above U . 
Y 

Then it is obvious that rn satisfies (r) because x 
( U u )c is closed. Since <P ( • ) and k(x,') are continuous 

n y 
yE Nx 

on r~ n Fn it follows that 

<p(y) + k(x,y) > M<p(x) - £ Vy E rn n F 
x n 

from 

Therefore 

lim inf {<p (y) -+ k(x,y)} _~ M<P (x). 
n-+oo n 

y€rx"Fn 

In order to get converse inequality put 

c = lim inf {<p.(y) + k(x,y)}, 
n-+oo n 

YErxf\Fn 

then 

Cap{Yfrx ; <p(y) + k(x,y) < c} = Cap {rx(\( \J Fn); <p(y) + k(x,y) < c} 
n 

<Xl 

< ZCap{YEr (\ F ; <p(Y) + k(x,y) < c} 
n=l x n 



= ~ Cap{y ~r~{\Fn; ep(y) + k(x,y) < cL 
n=l 

l6 

Hence 

since 

c < Mep (x) . Now 

inf {ep(y) 

(3.1) has been proved. On the other hand, 

+ k(x,y)} is a lower semi-continuous function 

yE.r~nFn 
according to the following lemma, we have the conclusion that 

Mep(x) is a Borel function. 

"-
Lerruna 3.2. For any ep E :fi 

inf {ep(y) + k(x,y)} 

YEr~()Fn 

is a lower semi-continuous function and has a measurable selection 

for each n. 

This lemma is a trivial modification of Theorem A in ~ 5, 
Chap. 2 of [3J. Because rn F x n n also satisfies (r) and 

ep(.) and k(x,o) are continuous on F . 
n 

Lemma 3.3. The operator M defined by (2.12) satisfies 

(M.l) rv (M.4). _ 

Proof of Lerruna 3.3. (1\1.1 ) has been proved in Le~~a 3.1. 

(M. 2) and (M.3) are obvious. As to (M.4) it is easily seen 

that 

lim Mu (x) ~ Mu(x). 
n-+oo n 

On the other hand 

" 



---'----------------

so we have 

lim Mu (x) < u(y) + k(x,y) n 

for each m. Then it holds that 

Y y E rm (\ F 
x m 

lim MUn(X) < lim inf {u(y) + k(x,y)} 
n+oo m+oo m 

Y E:rx(\Fm 

= Mu(x). 

17 

.' 
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~4. Optimal stoppings of Markov processes 

We prepare for the proof of Theorem 2 some lemmas on optimal 

stoppings of Markov processes with which regular Dirichlet spaces 

are associated. 

Let W"n be a given Borel function and sn be the unique 

solution of the following variational inequality: 

ann = n 
(4.1) { 

E (s ,v-s ) > <v,'V-s > 

sn E.F- ' Sn < Wn q. e . 

for each n. 

Lemma 4.1. Suppose that .Wn(X)+W(X) ~ 0 Vx, then 

f" (s" "-s, s -s): + O' where" S" ls .. ·the unique solution of ann 
.-J ~ 

(4.2) {Ea. (s, v-s) ~ <v, v-s> 

s E:F, s ~ W q.e. 

v E- :r, v <I/J q.e. 

1 

Proof of Lemma 4.1. In a similar way 

we can easily show that s > s +1' s n = n n 

as the proof of Theorem 

> 0 and" Uav - sn is 

an a-almost excessive function for each n Cef. Lemma in ~l)_ 
Therefore we "have 

E (U v-s ,U v-s ) < C (U v-s ,U v-s ) < C (U v,U v) a a n a n = Ca a m a m = Ca a a 

Furthermore So satisfies 

(4.3) 
) ~a(UaV-So'UaV-So) ::: 

l So < I/J q.e. 

E (U v-v,U v-v) a a a 

which is equivalent to (4.2). Hence we conclude 

of uniqueness of the solution of (4.2). 

n < m. = ~-.:. 

q.e. 

because 
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Lemma 4.2. Put 

tn(x) = inf E [[Te-asdA + e-aTM ~(X )] 
T X Jo s n T 

q.e. 

where then t is a quasi-continuous modification of the 
n 

solution 's of the variational inequality (4.1) for each n in 
n 

which is considered Mn~. Furthermore there exists an optimal 

stopping time. 

Proof of Lemma 4.2. Since U v - s is a-almost excessive a n 
by similar argument as Lemma 1.1 there corresponds a non-negative 

Radon measure ~n of~finite energy integral such that 

E (U v-s ,v') = S~ (dx)~(x) Vv Ef. a ann 

Therefore it i'ollows· that 

i
· r,~n (dX)(Sn (x) - v:(x» > 0 

( 4 • 4 ) ) ,_ 

sn < Mn ~ q. e. , sn E .r 
V-::;'<MA. 

= n'+' q.e., vG..:F-

from (4.1) with ~n = Mn~. Put 
00 

(4.5) L = {x E V F ; ~n ( x ) < Mn~ ( x) } , 
n k=l k 

where {Fk } is a regular nest corresponding to the family of 
"...., 

quasi-continuous functions {sn}. ~ake an arbitrary point Xo ELn" 

then Xo E Fk for some k
O

• On the other hand, Since Mn<P'(x) is ". 
o 

a lower ~emi-continuous fUnction there exists a sequence of continuous 

functions c~(x) such that c~(x) t M A.(x), i 4 00, Yx . Therefore 
, J J n'+' < 

c~ (x O) > sn(xO) for sufficiently large jo' which implies that 
o 

there exists a neighborhood U(xO) of such that 

s (x) < c~ (x) 
n J 0 

Accordingly there exists a neighborhood V(xO) and vn E c;..(lCo(S) 

such that 



and 

because the Dilichlet space dH,£) is regular. Therefore 

- J~n(dX)Vn(X) > 0 

which implies ~n(V(xO» = O. Since Xo f Ln is arbitrary we 
conclude that 

Next, we have 
.' 

(4.7) q.e. 

20 

On the other hand let S - N 

functional At (cf. [~]) 

then 

be a defining set of the additive 
c and put 1'n = inf' {t; Xt E Ln (\ {S-N}}, 

00 

(4.8) p(X E LCf\(S-N»=1 
x 1'n n 

x E (LJ F ) (\ (S-N) 
n=l n 

for the benifit of lower semi-continuity of M cp 
·n 

continui ty of s . ; 
n 

and quasi-

From (4.6), (4.7) and (4.8) in addition to the'fact that 

th~re cqrresponds a non:".negative additive functional .A~ to 

the n-almost excessive function U v - s such that 
n n 

U~ = E [re-nsdAn-J q.e. 
n n xJO s 

our present lemma follows in the same way as Theorem in [6J. 

Lemma 4.3. Put 

(4.9) t(x) = inf E r(1'e-nsdA + e-n1'Mcp(X )], 
l' xl)O s l' 

then t(x) is a quasi-continuous modification of the solution 

of the variational inequality (4.2) in which ~ is considered 
as Mep (x) . 



-_._-- - - ---------- .. ------------ ----. --------------

Proof of lemma 4.3. Let sex) be the solution of (4.2) 
with w = M~, then U v - s is a-almost excessive and there a 
corresponds non-negative continuous additive functional A~ such 
that 

(4.10) ~X) = Ex[r:e-~tdA:] q.e .. 

On the other hand we have 

(4.11) "'"" sex) < M~(x) q. e .. 

From (4.10) and (4.11) it follows that 

~ ( x ) = Ex [J: e -a t dAt ] E ~ cl: e -a t dA~ ] 

= Ex[J:e-atdAt ] Ex[J:e-atdA~] -+:Ex[ e-aTs(xT)] 

2 Ex [S:e-atdAt + e-ClTs(xT)] 

:r 
~ Ex [)oe-atdAt + e-aTM~(XT)] q.e., 

for any stopping time T. Therefore it holds that 

(4.12) 
r--/ 

sex) < t(x) = q. e •. 

Now it is clear that 

t(x) ~:~~~ Ex[J:e,-atdAt + e-aTMn<P(XT)] = ~(x) q.e .. 

Since f (s -s;s ':'s) -+ 0 by lemma 4.1 we obtain S"(x) f ~(x) ann n 
q.e .. Hence 

(4.13) 
,...." 

t(x) < sex) q.e. 

(4.12) and (4.13) give our conclusion. 
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!5. Proof of Theorem 2 

Now we are going .tv prove Theorem 2. Let us introduce the 

set Vn of admissible controls which have n jump times at most: 

(5.1) 

for each n. Put 

(5.2) 

and 

(5.3) 

for each n 

u*(x) = n 

where 

inf 
T 

T 

E [(' e -etSdA 
x J, s 

o 

,....-
- u vex). 

et 

+ e -etTMv[ ·1 (X ) ] 
n- T 

Theorem 2 is a consequence of the following two propositions. 

Proposition 5.1. Wn(x) is a quasi-continuous modification 

of the solution of the variational inequality 

Proposition 5.2. It holds that 

(5.4 ) u*(x) 
n 

q.e .. 

(1.5). 

Proposition 5.1 is a direct consequence of Lemma 4.3. For 

the proof of Proposition 5.2 we prepare the following two lemmas. 



Lemma 5.3. It holds that 

(5.5) w (x) = 
n 

lim ..... lim w~ •.• k (x) 
k too n -1 

n 

q.e. 

where 

and 

(5.6) n· as -aT n-l ()] 
)

oT 

Wk ••. k (x) = inf E [ e- dA + e Mk Wk ••• k XT 
n 1 T X 0 S n n-l 1 

n=2,3,······ 

W~ (x) 
1 

T 

= inf E I) e-asdA x s 
ToO 

Proof of Lero~a 5.3. Because of Lemma 4.1 it follows that 

(5.8) q.e., kl t 00 

"......." ""'-" 
from Mk U vex) ~ MU vex) 

1 a a 
'ri x, kl t 00, in the same way as the 

the proof of Lemma4.3. Let us assume that 

(5.9) W lex) = lim .•..•• 
n-

klt oo 

Then it follows that 

1 ,0 n-l ( ) 
lm wk ••• k x 

k tQO· n-l 1 
n·-

q. e .. 

(5.10) 

~T 

lim w
k
n k (x) = inf E [\ e-asdA + e-aTMWnk-l k (X )] • • • x s • • • l' 

kn too n 1 T . 0 n-l 1 

n-l () n-l ( ) from Mk wk ... k x ~ MWk •.• k x 
n n-l 1 n-l 1 

v x, k t co, 
n 

in the same way as above. On the other hand it holds that 



(5.11) Mwn_l(x) 

by our assumption and the property of M. 

we obtain our present lemma from (5.10) 
Making use of 

and (5.11). 
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Lemma 4.1 

Lemma 5.4. Let X = (Q, cB, d3 t' P x' Xt ) be a m-symmetric 

Markov process associated with a regular Dirichlet space (~, £) 
and 

then it holds that 

T 

Ex[) e -as
dAs + e -aTM~ (X

T
) I £0 J > e -aoH(M~ ;Xo) 

(J 

for any stopping time (J, T such that (J ~ T. Here At is an 

additive functional of X corresponding to the Radon measure v(dx) 

of finite energy integral. 

.--
Proof. At first we note that H(M~;x) E ~, U vex) - H(M~;x) Cl 

is Cl-almost excessive and H(M~;x) ~ M~(x) q.e. by Lemma 

4.3. Therefore- e -Clt {U Cl v (X t ) -H(M~ ~Xt)} is a (p x' Et) 

supermartingale for q.e. x. Hence 

EX[ e-ClT{U veX ) - H(M~;X )}I d3 ] Cl T T ~(J 

< Px - a.s. q.e. x. 

So we have 



T 

EX[) e-asdAS + e-aTH(M$;XT'! oS,,] > e-acrH(M$;X"l. 
(J 

Accordingly it follows that 

T 

Ex[ )"e~aSdAs + e-aTM$(XT'! 68,,] > e-a"H(M$;X"l 

from H(M~;x) < M~(x) q.e. 

25 

Proof of Proposition 5.2. Let v ~ ~, v = {(Tk'~k)k=1,2, ••• ,n 

T n+ 1 = Q)}, then 

Q) 

+ ~ e-aTi k(X T. (wi)'~i) + e-aTn E~ A e-asdAs ]] 
i=l 1 n L.)o 

-aT + e n 
n-l 

MU~(X (w)) Ij),T ] 
a Tn n n-l 



,..J 

In order to get the converse inequality take a sequence {Lj}j= 

1,2,····n of stopping_times each of which minimizes 

j -1 () ] + Mk wk ••. k X . 
. . 1 1 L J J-

Furthermore take a sequence of functions Yk . (x), j=1,2,···,n 
J 

such that 

Put 

and 

Then 

and 

j-l ( ) 
Mk . wk. • •• k x = 

J J-l 1 
W~~l ••• k (Yk.(x)) + k(x,yk.(x)) 

J -1 1 J J 

A A __ 

Li = L i _.- l f:f +r-i (a ." ~.), .. -n . Li_l 1. '. 

~1.. = Yk (X A (w.)). 
n+l-i Li 1. 

v = <Xl} C V 
=n 



--- - -- - ---------- -------------- - ---------------- ---- ---

n 
wk ••• k (x) 

n 1 

:" _r 

> u*(x) = n q. e .. 

27 

+ e-aTl -aT n-2 ( , + e n-l rvlk wk •• k ~ J 

n-l n-2 1 n-l 

There_fore making use of Lemma 5.3 we conclude that 

q. e .. 

Proof of Theorem 2. By Propositions 5.1 and 5.2 u* n is a 

quasi-continuous modification of the solution un of the variational 

inequality (1.5) for each n. Since un converges to the maximum 

solution u of the QVI (1.2) in E - norm~ E (u -u u -u) ~ 0, a ex n 'n 

n ~ 00 we have 

u*(x) ~ u(x) 
n 

q.e., n ~ 00 

taking a sub-sequence if necessary. On the other hand it holds that 

u*(x) -I- u*(x) n - q.e., n ~ 00 

by the next lemma. This completes the proof of Theorem 2. 
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Lemma 5.5. It holds that u~(x) ~ u*(x) q.e., N ~ 00 

Proof of Lemma 5.5. For each E > 0 there exists v = vex) 

= {(Ti,Ei)i=l} EV such that 

u*(x) ~ lim Enx[(Tne-as~~s + ~ e-aTi k(X ,E.)] J . 1 Ti 2 n~oo 0 2= 

- E 

So for any N it holds that 

E 

from 

and u~(x) ~ u*(x) it follows that 

lu~(x) - u*(x)1 < E~+l[)oo e-as~s] + 2<. 
TN 

Since as N ~ 00 we obtain 

lim u&(x) = u*(x) 
N~co 

q. e .. 

U&(x) > U&+l(x) q.e. is obvious. 
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