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Impulsive control of symmetric Markov processes

and quasi-variational inequalities
Hideo Nagai

By introducing thé notion of impulsivéhcontrol of a diffusion
process A. Bensoussan - J.L. Lions ([1]) showéd that if the
solﬁtion of a quasi-variational inequality has sﬁfficient regularity
(twice differentiability and continﬁity), it tﬁrns ouf to be a pay-
off function. Furthermore they constrﬁctéd the optimal strategy
oﬁt.of the solution. Bﬁt thé régularity problems rémained ppén.

On the other hand M. Robin ([7]) has set ﬁp an impulsive control -
problem of a_genéral Markov procéss with a Féllér transition semi-
~group and has constrﬁctéd the optimal stratégy out of thé pay-off
fﬁnction.whieh'was characterizéd howevér in térms of the sémi—grbup
rather than_thé.genérater of the basic Markov process. As for the
characterization by méans of the qﬁasi-variational inéqﬁality the
régﬁlarity of“the'solﬁtion was still assﬁméd in ordér to identify
thé solution with thé pay-off like that of Bensoussan-LIons.
Regularity problems of élliptic or-pargbolicAquasi—variatipnal
-inequalities have bgén studied by L.A. Cafarelli - A. Frigdman
and others (cf.. [2],[5]) under the condition that the diffusion
and drift coefficients have sufficient regularity. Cafarelli-
Friédmans' work combined with Robin's establishés completely the
relationship between impulsivé control problems and quasi-variational
inéqualities with respect to nice diffﬁsion processes.

Our objective is to extend this relatiohship to general
symmetric Markov processes associated with regular Dirichlet
spaces. We prove that the pay-off is characterized by the weak
(maximum) solution of the quasi-variational inequality defined
on the Dirichlet space (Theorem 2 in §2). Since we assume only
that the Dirichlet space is regular, Theorem 2 establishes the
relationship for a wide class of processes. It applies as well

.



to symmetric diffusion process with measurable coefficients and
symmetric Markov processes with non local generators (cf. [4]).
Our approach is more potential theoretic than others and
accordingly the regularity questions can be dispensed with.
Indeed we use potential theories of Dirichlet spaces and Markov
processes developed in [4]. The same method has been used in [ 6]
to establish the relationship between variational inequalities
and optimal stoppings and in [8] to include stopping games.
We would like to express our hearty thanks to professors M.
Fukushima and T. Sirao for valuable advice and also to Mr. S. Sato

for useful discussions. -



§1. Quasi-variational inequalities bn regular Dirichlet spaces

Let m(dx) be a non-negative Radon everywhere dense
measure on a locally compact Hausdorff space S with countable
base. Suppose that QF;E) is a regular Dirichlet space
relative to L2(dm):

i) & 1is a dense linear subspace of L2(dm),
ii) £ is a symmetric bilinear form on FKxF,

iii) K& 1is closed with respect to gl-norm, where
‘ E:l(u,v) = E(u,v) + (u,v), (u,v) denoting inner
product of Lz(dm),

iv) unit contraction operates, that is, if v = (0Vu)Al,
ue Kk, then ve A and §g(v,v) £ £(u,u),

v) ]Q\CO(S) is dense in' % with El—norm as well as
in CO(S) with uniform norm, CO(S) denoting the space
of-all continuous—functions on S with compact support.

Definition 1.1. The capacity of a subset of S 1is defined

as follows: for open set A C S

-

Cap(A) = {;inf'{ E]fu,u); u € L,} if L, L,
® otherwise,

where L, ={ué€ek; ;u>1l m-a.e. on A} and for general
set B C S

Cap(B) = inf { cap(A): BC A, A 1is open}.

Definition 1.2. A subset B of S with Cap(B) =0 1is
called almost polar and "Quasi-everywhere" or "g.e." will

mean "except for an almost polar set".

Let SA = SUA be the one point compactification of S.



When S 1is élready compact, A is:regarded as an isolated
point. Any function on S is extended to a function on SVA
by setting f(A) = 0.

Definition 1.3. A function f defined g.e. on S is
said to be quasi-continuous (in the restricted sense) provided
that for each € > 0 there exists an open set G C S such
that cap(G) < & and fISQG (f}SA_G respective}y) is
continuous.

It is known that each u €% admits a quasi—continuous
modification' W in the restricted sense in the case that &, £)
is a regular Dirichlet space: u=1 mQa.e. and T is quasi-—-

continuous (ef. [#]). Hereafter U denote a quasi-continuous
‘modification of u e % . |

Let -v(dx) be a given non-negative Radon measure of finite
energy integral, that is, there existsﬂfor each o > 0 a
unique function Uav € /& such that

(1.1) ‘Ea(Uav;'v) = j‘Sv(x)v(dx) for each v € FnCy(8).

hard

Suppose that M is a operator defined on K suéh that

(M.1) Mu is a Borel function for any u e;f,
Vx
(M.2) Muy(x) < Muz(x)/\ff u; (x) 2 uy(x) q.e.,

(M.3) Mu(x) >0 -¥Yx . if wu(x) >0 g.e. and
(M.4%)  lim Mu (x) = Mu(x) Yx if un(x) + u(x) q.e...

n-—-o

We consider the following quasi-variational inequality:

N ¢ (u,v-u) > <v, 70> | : VY¥ < MT q.e.
(1.2) @ '
u< Ml og.e.
Theorem 1. The above quasi-variational inequality (QVI)
(1.2) has the maximal solution.



Put. uO = UiV and V = { v é\?r ¥ s Mub g.e.}, then we

have the unique solution of the follow1ng varlatlonal 1nequa11ty
(vi) (1.3):

E (u,v-u) > <v,7-1> Vv €V

o =
(1.3
u € Vl’

because (1.3) is equivalent to

‘ Ed(u-U&v,u-qu) £ E&(V—Udv,v—U&v) Vv e vy
(1.4) ' - -

u e’V1

and Vl is the closed convex subset of Hilbert space. Q?r,fg).
Let us denote the solutlon by ul In the same way we can
1nduct1vely take the solution u, of the VI:

o Eé(u;v—u) ;_$v5ﬁﬁu} - Yye v
(1.5 ¢
u é—Vn,

={veF; V< Mﬁh_l g.e.} for each n.

At firstfwe note the properties of the solution u of the
vi (1.5).

Lemma, - The above u, has the follow1ng properties
(i) U'v - u, is an &-almost excessive function and the unique

element which minimizes its oa-energy integral in the closed convex
_subset U v - V of (j: E’)

R _ _ - v
(1.6) E;(U&v\un,Uav u) £ g (U v-v,0 v-v) vev,

for each n,

(11) (1.7) u < u m—e;e. for each n,
(111) (1.8)

I'd

> 0 m-a.e. for each n and



(iv) {u_} 'is a & -Cauchy sequence.
n a )

Proof of Lemma. (i) Since u_ 1is the solution of (1.5)
it satisfies the following inequality:

U ¥
(1.9) _E@(un Uav,y-un) >0 vV EV,.
If w 20, GJ;, then u - W€ Vn' Therefore it holds that
(1.10) Ea(UaV—u w) 20 Yw >0 mea.e., weJ K.

that is Uav - un is a-almost excessive because (1.10) is
equivalent to '

(1.11) unA;'Q, e u_ <u_ m-a.e., Yt s 0.
Here Tt is the L2-Markov semigroup corresponding to Dirichlet
form . £ (ef. [4]). The latter half of (i) follows directly
if V; in (1.4) is replaced by-'vn} , ~
(i1) Inquality (1.7) with n =1 is obvious U V'- ug
is @-almost excessive and U v = Ug- Assume that it holds for n,

then Mun ;—Mﬁh_l Yx. Therefore fﬁ;+l < ME’ 1 g.e.. Since
ﬁ; hY Ma;_l. g.e. :by definition we have uﬂUun+l hS Mﬁ;_l g.e..
On the other hand Uy¥ - uyu .. = (UV = u JA(UY - u_q) is
G-almost eicessive because both U,V - Ui and Uav - u, are
a-almost ekcessive. So it follows that

- (1.32)  EGUyv-uyu 0,0 v-u yu 1) & & (U v-u U v-u )

from U,V - u 2 U,V - wyu .,. By (1) of present Lemma we

conclude that = U, that is, u <u m-a.e..

ntl = "n _
—~ .
(iii) Since U,V 2 0 q.e. we have Mu0 >0 VYx. Furthermore

h& hS MuO g.e. by definition, so we have iJO < Mﬁb g.e.. Both

urf‘/un+l

UyV - uq and U,V being a- almost exces51ve, Uyv - uivo =
(Uyv - ul)AUaV is a-almost excessive. Therefore it follows that



(1.13) E;(Uav—uivo,Udv—u£VO),fé'fa(U v-ul,U v—ul)

from U U VO <U U
that 1s
by similar argument

; Wm-a.e. It implies that uiJO = up,

uq Z 0 m—a e.. We can inductively show u ;‘0 m-a.e.

n

(iv) -Since U T up < U&v - u, m-a.e., n<m, and
Uy - u, < U v m—a e. Tfor each n by (ii) and (diii) it holds

n =
that
1 - —_ — ) —_ - .
(1.14) Eﬁ(Uav w0 v w) < E&(Uav up,U v-u) < E&(Uav,Uav)

for each n < m. Therefore E‘(U'v~ﬁ ,U v-u_) monotonously
: = - o o - N7 a n

increases to a finite number. Since wn = Uav - un is @q-almost

excessive

0 < & Gupmwpw ) = £ Gupw) = 28 Gupyw)) o+ § Gopuwp)

n m n m

A

gg(wm,wm) - Eg(wn,wn), n < m.
Hence W is a E&—cauchy sequence, so u, is also.

Proof of Theorem 1. As the result of (ii) and (iv) of
Lemma there exists ﬁ such that E (u —u,uy -u) » 0 and ﬁ; Ty
g.e.. We can now prove that this functlon u is a solution of

 the quasi-variational inequallty (1.2). We at first note that

. .it- follows that

E;(Uav un,Uav un) < E&(Uav v,Uav v) R MO = lim MO q.e.

N>

from (1.6) because U_ ¢+ U q.e. implies Mﬁh ¢ MU. Therefore
it holds that

(1.15) € (U v-u,U v-u) < £ (Uv-v,Uv=v), Y7 ¢ Mi q.e.

. - 7~ ~~ ~
since Ea(un—u,un—u) + 0. On the other hand, since u < u_ < M



g.e. for each n we have

(1.16) ¥ < lim M = MT q.e..

N>

(1.15) with (1.16) is equivalent to the QVI (1.2).
Now we are going to prove that the above solution u of QVI
(1.2) is the maximal one. Take another solution w of the QVI

-

E;(w,v-w) > <v,V-w> VG’é MW q.e.

~

w < MW qg:e.

In the samé way as Lémma we can sée Udv - w 1is 'd—excééSivé, :Ye)
U,V > w. Therefore MﬁgG >W q.e.. .That is w ¢ V;. Since
Udv - uyw = (Uav— QILA(Uav - w) is a-almost excessive and

Uav - uyw g Uav - uy it‘holds that

(1.17) E;(Uav—uﬂ/w,U&v—uﬂ/w) < f&(Uav—ul,Uav—ul).

Hence we have u; > w by similar argument as (iii) of Lemma. In
the same way we can inductively see un > w for each n, which
implies u > w.



§2. Impﬁlsive control of symmetric Markov processes

Let X = {Q,ﬁ,ﬁt, P

Markov process of function space type with the state space S. Ve
assume that ifs Dirichlet space (éﬁ, €) is regular. Ve are now
going to repeat Robin's construction of controlled process (cf. [71])
with a little modification and set up an impulsive control problem.

Consider the infinite product space <e., =§2xg2xg2x---- and
define its sub-o-fields by

<’ Xis éi} be an m-symmetric standard

2 @ -

where T is the projection from G2, to the rn-th product (ST

dgq is similarly defined. For u = (wl,mé,-~-~-?--) € C) |, we let

D Do ?

(2.2) (8 w)(s) = (8,q(8),mrevrerens,pu (s))

]

(wl(t-{-s,)’......-...,.’mn(t-}-s)).

We note that, if o(w) is a (R"-measurable function on S:gw, then

o(w) =‘31ml,wé,----~',wn), T being a (43)8m~measurable function

on (0. Sﬁchranfidentification'of ¢ and O will be made below
"without mentioning explicit1&; It is further noticed that PX for

each x € S can be regarded as a probability measure on (S, ¢31).

A family of subsets {I,} . o of S is called admissible if
the following condition (T') is satisfied:

(r) irf Xp > X, Xp,X €S and y_¢€ rxn, then there exist y e T,

and {ynk} (:{yn} such that ynk+ y.
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A sequence v = {(Ti’gi):=l} of the pairs of random variables

T4 and g; on €2, 1is called an admissible control if the admissible

following conditions (v.l1)~ (v.3) are satisfied for a siven/'\{l‘x}r

B i . .
(v.1) 1, is a dgt-stopplng.the such that 71, < 7444 for

each 1 and 1im Ty 5@
i

(v.2) &, is T

i 3
i X (m')—valued dgr.—measurable random variable

Ti lA 3 1

for each 1

: A~
(v.3) for each N with Cap(N) = 0 there exists N DN with
Cap(N) = 0 such that P}l{(gi € N) =0, xeS-N for

each 1, where Pi is a probability measure on (Sam,éfﬁ

specified below.

The set of all admissible controls are denoted by V. Let us
define, for y € S, an element Gy € G) by

(2.3) §,(6) =y Yt 20

s the probability measure on (§2,f3) which = -
y .

is concentrated on §_.

and denote by €

For a given v = {(Ti,gi):=1} € V, we are interested in the
process X (w;) governed by P, up to time rl(wl). Xt(wl)) is

stopped at time and ‘then our .interest is switched to the

T1
process Xrl(m1)+t(w2)’ t > 0, governed by P

12(wl,w2) and so forth. To formulate such a process, we construct

up to time
El(ml)

probability measures Pg on (gzm,agn), n=1,2,--++, as follows:
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First let
1 _ 1
P, = P on (G2 ,R)
s 2 2
We can construct a probability measure Px. on (gaw,gg ) such
that
2 1 1 A1
g P, =P, on dSTl (C R
(2.4) ‘

2,,-1 1 - 1 e

l P-(8 B| ) = e, ®P_ (B) P- - a.s. on- {1 .< +=}

X 2,Zi dgrlt_ GXT 51 ; X 1
et 1

for each B 65432. Then the process X t > 0, is Markovian

(w,),
T1+t 2

2 ‘s 1
) under the condition /37

We define
x ..

with respect to (435 ¥t’ P
1 1

the probability measure P2+1 on (SEM, ¢;n+l) inductively by

ntl _ .n

_ . n n
P T =P, on dng (c R )
(2.5) |
n+tl,. -1 ! .
] = . cesscss P B
"x (en+1’TnB|£Tn) EGX (wl)® ®€(SX (wn)® ‘t’n( )
T4 T,
n
Px - a.s. on {Tn < + «}
where B € &Snf_. .

We are now in a position to formulate our main theorem. Consider~
‘the Dirichleﬁ épace (jﬁ, £) associated with the process X. We
suppose that a non-negative Radon measure v(dx) of finite energy
integral and non-negative continuous function k(x,§), x,& € S,
are given which are to define a pay-off function. It is known
that a non-negative continuous additive_fﬁnctional At(w) on X
corresponds to wv(dx):



(]
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(2.6) EXES e_anAs] =UVv q.e:
0

(ef. [4]). Let for

(2.7)‘

a)

= (wysugyceerness) €S2

A= { A (wy), 0<t gy
ALt AL (6 wy) 7, <t 27,
EﬁA + A, (e w ) T <t <7
k =Th-1 t-t,1 rn_l ny n-1 n
and
V(2-8) Ve lw) = X (up, ) it t el T1p,Tq)-
We can now-define the pay-off function u#*(x) by
(2.9) u*(x) = inf Jx(v)
vey
oas n
(2.10) Jx(v) = 1lim Jx(v)
n-o>o
_ T
n _ =n n -at.; + o ~OT5 1(X (w.) )]
(2.11) JX(V) = EX[ e q&t ?=£ e ik T, Wy ,Si .
0

We then introduce the

(2.12) M¢(x)

operator M by

q-essinf {¢(y) +fk(X,Y)}
yery

sup  {c: Cap{y € fx;¢(y)w+ k(x,y),< c}A=_0}_
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for ¢ e-jZ. The fact that this opérator M satisfies (M.1)~
(M.l4) will be shown later ( §3). Recall that Theorem 1 then
guarantees the existence of the maximum solution of the QVI {1.2)
associated with the present data (A, ), v and M.

Theorem 2. The pay-off function u¥*(x) defined by (2.9)
is a quasi-continuous modification of the maximum solution u
of the QVI (1.2) corresponding to the above (_f, £), v and M.

Remark. We note that if v(dx) = f(x)dm with a Borel function
f in Lz(dm), J?(v) is written as
n n “n -at n -aT
(2.13) J.(v) = Ex[j e fy.)dt + Z__jl e ¢ i k(Xrn(wn)’En)]
0 : LT '

In the next section we study the operator M defined by
(2.12). All assumptions and notations in section 2 are-assumed
through the folloWing sections.
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$3. Operator M

Definition 3.1. A sequence {F, } of closed sets such that

F, t and Cap(S—Fk) ¥+ 0, k > » is called a nest on S. A nest
{Fk} is said to be (m)-regular if for each k m(U(x)r\Fk) Yo

for any x € Fk and any open neighborhood U(x) of x.

Let @Q ©be a countable family of Quasi—continuous function in
the restricted sense on S. Then it is known that there exists

a regular nest {F, } on S such that ul is continuous for

FkUA

each k for any function u € Q.

Lemma 3.1. For any function ¢ éjg M¢ is a Borel function
and has the foliowing representation:

(3.1) Mé(x) = lim inf {9(y) + k(x,y)}
n->« yeI‘E(\Fn

where {Fn} is a regular nest and Pz is a subset of S which

satisfies (T).
Proof of Lemma 3.1. It holds that by definition
Cap {y € T_; ¢(y) + k(x,y) < Mo(x) - €} =0

“is

for any € > 0. Take a regular nest {Fn} such that ¢|F UA"
n

continuous for each n. Put

Ng = {y ¢ FX; there exists a open neighborhood Uy such

that Cap(Uy,q F.nT.) =0}
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and define

n _ c
re=r.nC U i U,
y €N,

n

by above Uy. Then it is obvious that FX satisfies (T') because

« U Uy)C is closed. Since ¢(+) and k(x,-) are continuous
y €N

on Ty AF, it follows that

o(y) + k(x,y) > Mo (x) - e Yy e rz,q F,

fromd
Caply € ILNF 5 ¢(y) + k(x,y) < Mg(x) - €} = 0
Therefore

lim inf {6(y) + k(x,y)} > Mop(x).
T yerlnF,

In order to get converse inequality put

¢ = lim inf {¢(y) + k(x,y)1},
n-—-c . n :
yerxr\Fn

then

Cap{yérx; o(y) + k(x,y) < c} = Cap{rxn(\J Fn); o(y) + k(x,y) < c}
n

s ZlCap{yean Fps 0(y) + k(x,y) < ¢l
n:



n=1

16
Cap{yél";’nFn; o(y) + k(x,y) < c}.

Hence c¢ < M¢(x). Now (3.1) has been proved. On the other hand,
since inf {6(y) + k(x,y)}

n
ye I'x/\Fn

is a lower semi-continuous function
according to the following lemma, we have the conclusion that
My (x) 1is a Borel function.

Lemma 3.2. For any ¢ ¢ 55

Mn¢(x) =

inf {o(y) + k(x,y)}
n
y‘éPXf\Fn .

for each n.

is a lower semi-continuous function and has a measurable selection

This lemma is a trivial modification of Theorem A in §5,
Chap. 2 of [3]. Because szw Fh also satisfies (I') and
$(+) and k(x,+) are continuous on Fn

Lemma 3.3. The operator M defined by (2.12) satisfies
(M.1) ~(M.4).,
Proof of Lemma 3.3. (M.1l)

(M.2) and (M.3)

that

has been proved in Lemma 3.1.
are obvious. As to (M.h)

it is easily seen
lim Mu_(x) > Mu(x).
N> n -

On the other hand



, y -
Mun(x) < un(y) + k(x,y) y e T, NF,
so we have

- V. . .m
1lim Mun(x) < u(y) + k(x,y) y €T . NF

n->«
for each m. Then it holds that

lim Mu (x) g lim inf - {u(y) + k(x,y)}

. N M- m
yeTXﬂFm

Mu(x).
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§4. Optimal stoppings of Markov processes

We prepare for the proof of Theorem 2 some lemmas on optimal
stoppings of Markov processes with which regular Dirichlet spaces
are associated.

Let wh be a given Borel function and Sh be the unique
solution of the following variational inequality:

Ea(sn,v—sn) > <v,7—§'n> Vv e R, ¥ < v, q.e.
(4.1) %

s, EF > E’n;wn g.e.

for each n.

Lemma U4.1. Suppose that wn(x)+w(x) >0 VX, then .

E&(sﬁ-s,sn—s):+ 0 where s is“the unique solution of

(s,v—é) > <v,¥-5> veR,T<y q.e.
(4.2) {Eﬂ = ="
s €k, S <V q.e.

Proof of Lemma U4.1. In a similar way as the proof of Theorem
1 we can easily show that s_ > s s S. >0 and U v - s is
n = "ntl n = i o
n

ne- n
an a-almost excessive function for each (ef. Lemma in &1)
Therefore we have

Eg(Uav_sn’Uav_sn) < E&(Uav_sm’Uav—sm) 2 Ea(Uav’Uav) nIm..
So there exists Sq € :ﬁ such that E;(Sn-SO’sn_so) ~+0.
Furthermore Sg satisfies
. _ - _ _ V ~ . -
€, (U v-54,U v-55) < £ (U v-v,U v=v) V¥ < lim g, =
. g.e.

(4.3)

~

s 2 ¥ q.e.

which is equivalent to (4.2). Hence we conclude

Sq = s because
of uniqueness of the solution of (4.2).
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Lemma 4.2. Put

T
s -as -aT
tn(x) = 12f Ex[ Soe dA_ + e Mn¢(XT)] qg.e.

where ¢ thz, then tn is a quasi-continuous modification of the
solution 'Sy of the variational inequality (4.1) for each n in
which wn is considered Mn¢. - Furthermore there exists an optimal
stopping time.

Proof of Lemma L4.2. Since Uav - 5, is a-almost excessive
by similar argument as Lemma 1.1 there corresponds a non-negative
Radon measure Uy of finite energy integral such that

E;(Uav—sn,V) = ’gun(dx)gix) Vv-gji

Therefore it follows- that

3

- 'gun(dx)(gn(x) V) 20 YT e

s, <M é  q.e., snéﬁ '

from (4.1) with W, = M ¢. Put
(8.5) Iy = (xe \JFys 5 (x) < M (X)),

where {Fk} is a regular nest corresponding to the family of
gquasi-continuous functions {E;}. Take an arbitrary point X E'Ln’.
then Xy € Fk for some ko. On the other hand, Since Mné(x) is "L
. 0

a lower ‘semi-continuous function there exists a sequence of continuous
functions ¢f(x) such that c?(x) 4 Mn¢(x), j + », Yx. Therefore

n

Jo
there exists a neighborhood U(xo) of x

c (xo)'> sn(xo) for sufficiently large J,, which implies that

0 such that

sn(x) < c?o(x) v

Accordingly there exists a neighborhood V(xo) and v € gaf\Co(S)
such that

X E-Fkor\U(xo).

V(XO) C U(XO) >
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Supp v_ C U(xo), vn(x) > 0 on V(XO)

and
sn(x) + vn(x) < Mn¢(x)

because the Dilichlet space C?;E) is regular. Théreforé
-.fun(dx)vn(x) >0

which implies un(V(xo)) = 0. Since Xy € Ln is arbitrary we
conclude that

]
o

(4.6) w (L)

Next, we have

e 5 (x) < M o(x) q.e.

On the other hand let S - N be a defining set of the additive
functional At (ef. [&]) and put T, = inf {t; X _¢€ Lg/\{S-N}},
then .

t

(4.8) P(X_ € Lon(s-N)) =1 xé€ (UF)In(s-N)
T n n
n v n=1
for the benifit of lower semi- contlnulty of M ¢ and quasi-
continuity of Spe o
From (4.6), (4.7) and (4 8) in addltlon to the fact that
there corresponds a non-negatlve additive functlonal At to

the q-almost excessive function U v - sn such that

U v - Sy T E Um g.e.

our present lemma follows in the same way as Theorem in [(6].

Lemma 4.3. Put

T
(4.9) t(x) = ir;f‘ EX[SOe_anAS + e-aTMcb(XT)],

then t(x) is a quasi-continuous modification of the solution

of the variational inequality (4.2) in which ¥ is considered
as Mé(x).
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with ¢ = M¢, then Uav - s is a—almoét excessive and there
corresponds non-negative continuous additive functional Ag such
that - '

Proof of lemma 4.3. Let s(x) be the solution of (4.2)

—~ oo_to
(M.lO)‘ Uav(x) - s(x) = Ex[joe o dAt] g.e..

On the other hand we have
(4.11) S(x) < Mé(x) q.e..

From (4.10) and (4.11) it follows that

(-2

-at iy - -at.,0
Ex[joe aa.] - Ex[jze dAt]
T

Ex[Joe atdAt] - EX[STe‘“tdAg]~+ftx[ e““TE(XTﬂ

S(x)

1"

0.
T
< E [f e %qn, + e7OTE(x )]
= xtJ, t T

T
-ot -
< EX[SOe dA_ + e aTM¢(XT)] q.e.,

for any stopping time t. Therefore it holds that
~ . .
(4.12) s(x) < t(x) q.e..
Now it is clear that

- T ‘ .
. -at -aT ‘1 .~
t(;)_;:}gf EX[JO?. dA, + e Mn¢(XT)] = sn(x) q.e..

Since E&(sn—s,sn;s) -+ 0 by lemma 4.1 we obtain E;(x) + s(x)
g.e.. Hence

(4.13) t(x) < S(x) q.e.

(4.12) and (4.13) give our conclusion.
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§5. Proof of Theorem 2

Now we are going to prove Theorem 2. Let us introduce the
set Xn of admissible controls which have n Jjump times at most:

(5.1) vV, ={vel; 1 ., ==}
for each n. Put

(5.2) uﬁ(x)

i
e
o}
w
&3
=
+
|_l
[ |
S
o}
+
| [
Q
4]
[o]]
™
+
e
nl |
}_J
(1]
|
R
~
b
-
~
>
~
~~
£
e ‘
S
-
(221
(=
A
et

and .

(5.3) wn(x)

]
Ho
o]
]
=

s
—
(@) ?
1]
!
R
A
o
ford
+
!
Q
_
F
3
I .
)
-~
g
~
Nt
[

v
for each n where wo(x) =~Uav(x).

Theorem 2 1is a consequence of the following two propositions.

Proposition 5.1. Wn(x) is a quasi-continuous modification

of the solution u, of the variational inequality (1.5).
Proposition 5.2. It holds that
' = u¥
(5.4) w (x) = u¥(x) q.e..

Proposition 5.1 is a direct consequence of Lemma 4.,3. For
the proof of 'Proposition 5.2 we prepare the following two lemmas.



Lemma 5.3. It holds that

(5.5) w_(x) = 1lim e-e-- 1im wl
n k. 4o k 4o kn
-1 n
where
T
(5.6) wﬁ ek (x) = inf Ex[j e_anAS + e %y
n 1 T 0
n=2,3, ......

and

1

s -as . -aT
(5.7) Wy (x) = inf Ex[j e "TTdA_ t.e M
O .

1 T

Proof of Lemma 5.3., Because of Lemma 4.1

(5.8) wi (x) + wy(x) q.e., k

1 1

from Mk 1

1

the proof of Lemmali.3. Let us assume that

(5.9) . W (x) = 1im eoees liﬁ w (x)
sl kb k_te fno1"" K
. n "
Then it follows that
T
. n _ -as ~0Tpy
(5.10) 1im Wik (x) inf Ex[ e dAS + e Mw
k 4o "n 1 T .
n 0
n-1 n-1 v
from M, w (x) + Mw (x) X
kp kpo1tky kpo1007Ky >

n-1

k

©

Uav(X%)].

k
n

n-—
n-1

k

1...‘k

1

in the same way as above. On the other hand it holds that

23

(XT)]

1

it follows that

—~ —~ . .
Uav(x) ¥ MUav(x) ¥, k, 4+ «, in the same way as the

ok (XT)]

1
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(5.11) Mwn (x) = 1im ecce- lim Mw,

by our assumption and the property of M. Making use of Lemma b1
we obtain our present lemma from (5.10) and (5.11).

Lemma 5.4. Let X = (0,8, 8 &9 'P'x, Yt) be a m-symmetric

Markov process associated with a regular Dirichlet space (F, &)
and

T
" H(M¢;x) = inf E};[S e“asdix‘s + e““MMXT)] ¢ € F<,
T 0
then it holds that
T .
= -aS ;7 -aT d = -0o 7
EXES e AR, + e MO(X )| B 1 2 e HM$X )
5 ,

for any stopping time o, t such that o £ T} Here Kt is an

additive functional of X corresponding to the Radon measure v (dx)
of finite energy. integral.

Proof. At first we note that H(Mé;x) € K, Uav(x) - H(Mé;x)
is a-almost excessive and H(M¢;x) < M¢(x) qg.e. by Lemma
C et = ) — . =
4.3. Therefore e {Uav(Xt) ——H(M¢,Xt)} 1s_a (Px, f%)

supermartingale for g.e. x. Hence

= -oT bd . 12
E.L e™*T(U v(X ) - HMo;X )} B, ]

in

-ao - T 5 _
e {Uav(XG) - H(M¢,Xc)} P, - a.s. g.e. X.

So we have
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= -aS 7 -oT R — - -ag T
EXES e TdA_ +t e T H(M3X )| BT 2 e HMPX ).
s ,
Accordingly it follows that
T . .
— ~QS ;= -oT 7 = —-adg X
EXES-e dA_ + e M¢(XT)|430] 2 e H(M¢,Xo)
3 ,

from H(M¢;x) < Mo (x) qg.e.

Proof of Proposition 5.2. Let ve ¥, v = {(1,8 )1 5 ... p

Tn+1= =}, then 7 )
INv) = En+1[5 e %53p  + zn’ e T k(X -(6.),E.)]
x X Sg -4 T, 17271
i=1 _ i
= En
X

i=1l i
1]

(<]

0
T - 0o
+1 n -as <O -0 -0T -0s .
[} e™dAg + ) (e 1 k(X (0),g) + e 'nle T dA (8, v,y
0 n
T
-as
s

n n
_ phtl -aT, -aT -os
= E, [ e dA_ + E_ e i k(XT.(mi),Si) +e " 'nEg 6 e dAS]]
0 i=1 i n /g
T
ne (% -as =l ar —aT_
> EX[J e "VdA  + 2_ e 1 k(X, (w),E.) + e n MU VX, (e)))]
0 i=1 i » n
T : -
T - n=-1 n-1 . :
- E“[S e%San  +5 7.6y k(X (u,),E,)
X =s = T, 1 i
n "n as ot ~ [ﬂf’n_l]
+ E[| e ""aa (8 w )+ e n MU V(X_ (0 N)IR
X j =T, 1 Tpho1 D a T, B’ o1
T
n-1
n-1 n-1
n -as <S> _-aT. -at ~
2 Exq e dés + e i k(XT',Ei) + e rn-1 H(MUav,XT )]
0 i=1 i n-1
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T .
= E, [\ e%%da_ +2 [ e™1 k(X_ ,&,) + e % Tn-1 wy(x_ )]
0 i=1 T4 Th-1

v
&}

T
> Elf-'le‘“SdA + e
= Tx* s €
“0

at '
1 Mwn—l(xrl)] > wn(x) g.e.

’ ~/
- In order to get the converse inequality take a sequence {Tj}j=

: of stopping times each of which minimizes
1,2,++++n

-

-0S j-1
Ex[g < dAs * Mk.wk. +eek (XT)]'
0 J J"l 1

Furthermore.take a sequence of functions Vi (x), j=1,2,+-+,n
| » j
such that
-1 ' j-1
M W) (x) = w (y, (x)) + k(x,y, (x))
ks'ky g0k ky_gcoky Tk k,
Put
T3 Ti-l;ﬁffn+1;iferi_i”i)’ T = Tyey)
and
E. =¥ (X2 (w,)).
SRS B R
Then v = (13,8050 5, 00u n? i1 = P € 4,
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n T S T n-1

W (x) = E [g e %%aa + e %Th M w T (X )]
kn . kl X 0 s kn kn_1 kl n

~

X k . T

‘[’ .
n —~
_ -0S -QT n-1
= E [g e "TdA  + e n {w v, (T X)) + k(Xx Ly (X )}
0 n-1 1 n n n n n

l "~
= EI[\ e %5aA  + e Ty k(x~ L7, (X20)
X S T k T
0 1 n 1
o~
'Tn—l ~ N 2 .
—Ct'l' -0S —-QT - \
+ 1E; [| e 7%dA_ + e " 'n-1 M W o (X )
3 So 8 k1 ¥po°Ky  Tha

"~

n ~
- En"’l[S e_asdé + 2 ‘7e—a’fi k(x; ’Ei)]
' 0 i=1 i

v

%

uf(x) q.e..

Therefore making use of Lemma 5.3 we conclude that
%

wn(x) > un(x) qg.e..

Proof of Theorem 2. By Propositions 5.1 and 5.2 u: is a

guasi-continuous modification of the solution u, of the variational
inequality (1.5) for each n. Singe u, converges to the maximum

solution u of the QVI (1.2) in & - norm: 5’(u ~u,u_-u) > 0,

n » ® wWe have

ui(x) > u(x) qg.e., n->®

taking a sub-sequence if necessary. On the other hand it holds that
u¥(x) + u¥(x) gq.e., n > e

by the next lemma. This completes the proof of Theorem 2.
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Lemma 5.5. It holds that u¥(x) + u*(x) q.e., N » o,

Proof of Lemma 5.5. For each e > 0 there exists v = v(x)
[ee]
= {(7;,€;);_7} € ¥ such that

t n

n
® . n -QS 7 -OT, -
u*(x) > lim EX[S e TdA_ + Z_ e 1 k(X_ ,E0] - ¢

So for any N it holds that
T

' N ,
N -QS —-aT
* P4 . _
u*(x) > EX[S e "TdA_ + Z~i e i k(XT‘,Ei)] €
0 i=1 i

= =}, then vNé \

-
Put v = {(7,,85), V-

$=1,2,-+-N> 'N+1 Therefore
3 b
from :

T

EN+1[ N+1_anA +E -QT., k(\( £ )] N z( )
< e Al e 1 k(X L& uf(x

0 i=1 i =

and uﬁ(x) > u®(x) it follows that

[uf(x) - u*(x)|

A

N+1 -as

E. [ST e dés] + 2¢.
N

Since TN + o as N > « we obtain

lim uﬁ(x) = u¥(x) q.e.
N-o

¥ ¥ « .
uf(x) > uf, ,(x) q.e. is obvious.
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