



|              |                                                                                     |
|--------------|-------------------------------------------------------------------------------------|
| Title        | 発芽時における種子貯蔵蛋白質の変動                                                                   |
| Author(s)    | 原, いくこ                                                                              |
| Citation     | 大阪大学, 1979, 博士論文                                                                    |
| Version Type | VoR                                                                                 |
| URL          | <a href="https://hdl.handle.net/11094/24604">https://hdl.handle.net/11094/24604</a> |
| rights       |                                                                                     |
| Note         |                                                                                     |

*The University of Osaka Institutional Knowledge Archive : OUKA*

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

大阪大学理学博士  
学位申請論文

発芽時における種子貯蔵蛋白質の変動

1979年2月8日

原 いくこ

80SC00361

## 目 次

|       |                                                                                               |       |     |
|-------|-----------------------------------------------------------------------------------------------|-------|-----|
| 第 1 章 | 序 論                                                                                           | ..... | 1   |
| 第 2 章 | 発芽時における子葉細胞中の蛋白質顆粒の形態的変化<br>および貯蔵蛋白質(種子グロブリン)の局在性                                             | ..... | 8   |
| 第 3 章 | カボチャ種子グロブリン                                                                                   |       |     |
| 第 1 節 | 精製, 特性 および サブユニット構造<br>(Plant & Cell Physiol. (1976) <u>17</u> , 799)                         | ..... | 34  |
| 第 2 節 | 発芽に伴う変化<br>(Plant & Cell Physiol. (1976) <u>17</u> , 815)                                     | ..... | 50  |
| 第 3 節 | Cucurbita 属の他種の種子グロブリンとの比較<br>およびペプチド鎖成分の性質<br>(Plant & Cell Physiol. (1978) <u>19</u> , 237) | ..... | 59  |
| 第 4 章 | 蛋白質分解酵素と貯蔵蛋白質(種子グロブリン)の分解                                                                     |       |     |
| 第 1 節 | 未発芽種子中の蛋白質分解活性;<br>種子グロブリンの分解                                                                 | ..... | 66  |
| 第 2 節 | 発芽子葉中に出現する蛋白質分解活性                                                                             | ..... | 89  |
| 参考 総説 | カボチャ種子蛋白質<br>(蛋白質・核酸・酵素 (1976年2月) 別冊,<br>植物酵素・蛋白質研究法, 465)                                    | ..... | 126 |
| 謝 辞   | .....                                                                                         | ..... | 133 |

## CONTENTS

|                                                                                                                                                                                                |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Chapter 1. Introduction .....                                                                                                                                                                  | 1   |
| Chapter 2. Morphological changes of protein bodies in cotyledon cells during germination and localization of storage protein, seed globulin .....                                              | 8   |
| Chapter 3. Pumpkin seed globulin                                                                                                                                                               |     |
| I. Purification, characterization, and subunit structure (Plant & Cell Physiol. (1976) <u>17</u> , 799) .....                                                                                  | 34  |
| II. Alteration during germination (Plant & Cell Physiol. (1976) <u>17</u> , 815) .....                                                                                                         | 50  |
| III. Comparison of subunit structures among seed globulins of various <u>Cucurbita</u> species and characterization of peptide components (Plant & Cell Physiol. (1978) <u>19</u> , 237) ..... | 59  |
| Chapter 4. Proteolytic enzymes and degradation of storage protein, seed globulin                                                                                                               |     |
| I. Proteolytic activities in cotyledons of ungerminated seeds, hydrolyzing seed globulin .....                                                                                                 | 66  |
| II. Proteolytic activities in cotyledons of germinating seeds .....                                                                                                                            | 89  |
| Reference (Review). A pumpkin seed globulin .....                                                                                                                                              | 126 |
| Acknowledgment .....                                                                                                                                                                           | 133 |

## 略号

Sup·I·n ; 蕊芽 n 日目の子葉からの 2M NaCl を含む緩衝液による抽出液。

Sup II·n ; Sup II·n 中の熱安定性方面。

sup i·n ; 蕊芽 n 日目の子葉からの 25mM 緩衝液による抽出液。

sup ii·n ; sup i·n を 同緩衝液に移し透析した方面。

Chx·Sup, Chx·sup ; 5mM チクロヘキシミド存在下で 吸水させて  
子葉よりの Sup 及  $\alpha$  sup.

BAPA ; N- $\alpha$ -ペソリジイル-D,L アルギニン p-ニトロアニリド

CM 化 ; カルボキシメチル化

pCMB ; p-クロロマーキュリ安息香酸

DEAE-セルロース ; ジエチルアミノエチル-アルロース

DTT ; シテオスレイトール

EDTA ; エチレンジアミンテトラ酢酸

FITC ; フルオレセイン・イリチオシアネット

LPA ; ロイシン p-ニトロアニリド

$\beta$ -ME ;  $\beta$ -メルカプトエタノール

PAGE ; ポリアクリルアミドゲル 電気泳動

PMSE ; フェニルメタンスルフォニルフルオリド

SDS ; ドテシル硫酸ナトリウム

TCA ; トリクロロ酢酸

# 第一章

## 序 論

1

被子植物で内胚乳の初期発育は 胚に比べて  
早くから起こり、ごく初期の胚は成長に必要な栄養を  
からホルモン様物質に至るまで 胚を完全にとりまつてこの内  
胚乳に依存する。胚は内胚乳を消化し、内胚乳の  
退化によって成長する。形態的にも生化学的にも発育が  
進むと胚の細胞内には多種多様な有機物質と合成す  
る代謝機構が活性化されてくる。内胚乳の高い浸透圧が  
この活性化に役立つとも言われる。即ち内胚乳は  
栄養を供給するのみでなく胚を独立栄養へと誘導する。  
無胚乳種子では胚が完全に発育するまで内胚乳の殆  
どが消化され、その栄養は胚の子葉へ移されてしまう。この  
時期の発育中断(休眠)は胚のその後の発育(発芽)に  
とって必須なものではない。若く胚を培養し幼植物に成  
長させた例もある(1)。休眠の原因として考えられることは  
種皮との分化しつかず外側の組織の厚く硬い細胞壁の発達、  
脱水状態の進行、酸素濃度の変化、また成長を抑える物質  
(アフサニシン酸など)の蓄積などである。

これまでの胚発育の重要な寄与と1つめに頂端

分裂組織は発芽に際して運動を始める。この分裂組織もまた取り出して通常な培地で成長させ、芽と形成させることができる(2)。分裂組織から子葉(無胚乳種子の場合)から送られる栄養液やエネルギーを得て成長を続けるのは初期の胚が内胚乳を栄養液と共に発芽していくと非常に似てゐるようだと思われる。以上のように無胚乳種子の場合物質は内胚乳から胚(3葉)へそして子葉から分裂組織へと流れていく。有胚乳種子の場合には内胚乳が消化しきられる前に休眠に入らなければ、無胚乳種子と同様の物質の流れを考えることができる。即ち胚発芽との時期で休眠が始まることかによつて種子の貯蔵組織も異なってくる。

子葉と内胚乳とは組織の起源を全く異にするかわらず、貯蔵物質と云ふ意味はいずれも細胞内の不可かねる蛋白質顆粒中に存在する。第2章で1つ子葉中のこの蛋白質顆粒の微細構造と発芽に伴つてどのように融合を繰り返して液胞へと変化する様子について詳しく述べる。

貯蔵蛋白質はその溶解度の違うアルブミン、プロラミン、プロラミン、グルテリンの4種に分類される(3)。この内プロラミンとグルテリンは殻類の内胚乳にのみ存在が知られてゐるが

7:127:11-1は種子一粒に広く存在してゐる(4,5), 無胚乳種子の  
種をはじめ 有胚乳種子の 内胚乳の外側の アリュ-ロニ層(6,7)や,  
まれに 内胚乳に見られる(8).

7:127:11-1は主に 115 7:127:11-1 と 75 7:127:11-0.2-1に  
主に 大別される(5). マメ科の種子の場合 有どか と 両者を有す  
い(5) 番自層と 肝臓物層とのもつ種子の場合 同時に  
該種の番自層が存在する例が多々。 ところが アサ種子やウリ科  
種子では 肝臓 番自層が 115 7:127:0 7:127:11-1 に限られてゐる,  
これが 全番自層含量の 90% 以上を 占める(9).

第3章 第1,3節 2:1-1 刀豆( Cucurbita sp.) 種子より  
結晶化によって得られた 7:127:11-0 の 分子量 約 60,000 のサブニクト  
から成り, そのサブニクトは 分子量 36,000 ある 115 34,000 の酸  
性ペプチド鎖と 分子量 22,000 の 基性ペプチド鎖が S-S 結  
橋で結合していることを中心に, 7:127:11-0 の 自身の性質について  
議論を進める。

生体内の物質代謝を調べる際に注目となる物質の種類  
は少ないけれど有利である。 無胚乳種子であるウリ科種子の肝臓  
物質は 脂肪と 7:127:11-0 である。 脂肪の代謝について 2:1-1-2  
ロジ-ム, 7:127:1-ソ-ム, ミトコントリア, パトロラスム等を行なわれ,

エルギーと供給される同時に、大部は最終的にはショ糖となり、成長部へ運ばれる。明らかにならぬが、一方胚日頂の胚芽には胚乳の糖は少ない。

第3首第2節 2-12 カボチャ (Cucurbita sp.) の子葉のアロマリンの代謝の中間産物が発芽4日目の子葉中に大量に蓄積される、またその限界分解物の溶解度がアロマリンのそれより高くなる結果、アロマリンが限界分解を受けたことにより溶解度が高くなる結果と受け取れ、12118という基準則の制限につけて議論) 118. これは Reilly の報告 (10) によると支持される。

一方発芽時に子葉に出現する胚日頂分解酵素もエキソアロマティーゼ。両者共に多數の報告がある (4, 11-17)。10.7 それらの実験は細胞内で直接胚日頂の分解に寄与しているか否かについては理論的議論の域を出ていない。胚日頂がこれらの酵素、基質に到達したとすると例は少ない (18, 19)。

胚日頂の分解に寄与している分解酵素には恐らく複数のエキソ、エキソアロマティーゼがあると思われるが、これらが各々基質である胚日頂にどのような順序で作用するか。またどの各段階でどのような生成物を生成するかをも重要な点である。この分解過程の調節は、アロマリンの存在、アロ酵素の存在、ホルモンによる合成

の誘導、最終産物によるフィード・バック阻害、酵素の基質特異性、酵素や基質の局在、pH などによる、2 行なわれる可能性があるため。

酵素基質は単なるアミノ酸供給源ではあるが、胚発芽段階では分解を受けず、また発芽時にはその分解活性を調節しながら 分解されるとアミノ酸とアミドの形で成長抑制に転流し新しい基質合成を行なわせる。一度に基質の分解が起ると胚自体が圧迫されると破裂されるのを防ぐためにも 分解の調節は必ず必要であると考えられる。

第4章 1 み カボチャ (Cucurbita sp.) 種子のアロマリンの限界分解活性が 乾燥種子中にても存在するらしい。またこの限界分解物には特異的に効く分解酵素が存在するといはるが参考である。池上 1971 年のアロマリンは特異的に効く酵素につれての報道がある(20)が、実験には明かではない。

## References

- (1) V. Raghavan, J. G. Torrey: Amer. J. Bot. (1963) 50, 540
- (2) R. H. Wetmore: Brookhaven Symposia in Biology (1954) 6, 22
- (3) T. B. Osbone: Amer. Chem. J. (1892) 14, 662
- (4) F. M. Ashton: Ann. Rev. Plant Physiol. (1976) 27, 95
- (5) E. Derbyshire, D. J. Wright, D. Boulter: Phytochem. (1976) 15, 3
- (6) Y. Morita, M. Horikoshi: Agric. Biol. Chem. (1972) 36, 651
- (7) H. S. Dhaliwal: Theor. Appl. Genet. (1977) 51, 71
- (8) R. E. Tully, H. Beevers: Plant Physiol. (1976) 58, 710
- (9) V. Dlouhá, B. Keil, F. Šorm: Coll. Czech. Chem. Commun. (1963) 28, 2969
- (10) C. C. Reilly, B. T. O'Kennedy, J. S. Titus, W. E. Splittstoesser: Plant & Cell Physiol. (1978) 19, 1235
- (11) C. A. Ryan: Ann. Rev. Plant Physiol. (1973) 24, 173
- (12) A. Tomomatsu, N. Iwatsuki, T. Asahi: Agric. Biol. Chem. (1978) 42, 315
- (13) M. Nishimura, H. Beevers: Plant Physiol. (1978) 62, 44
- (14) J. A. Crump, D. R. Murray: Proc. Aust. Biochem. Soc. (1978) 11, 26
- (15) M. Abe, S. Arai, M. Fujimaki: Agric. Biol. Chem. (1977) 41, 893
- (16) K. Preston, J. Kruger: Phytochem. (1977) 16, 525

- (17) I. B. Emseva, M.A. Belozerskii: Biokhimiya (1977) 42,  
560
- (18) B. Baugartner, M. J. Chrispeels: Eur. J. Biochem.  
(1977) 77, 223.
- (19) V. P. Bul'maga, A. D. Shutov: Biokhimiya (1977) 42,  
1983
- (20) P. W. Spencer, R. D. Spencer: Plant Physiol. (1974)  
54, 925

## オ 2 章

### 発芽時ににおける子葉細胞中の蛋白質顆粒の形態的変化 及び貯蔵蛋白質（種子プロテイン）の局在性

#### 要約

1. カボチャ(Cucurbita sp.)種子の子葉細胞は稈状( $30 \times 80 \mu\text{m}$ )で、中に卵形( $5 \times 7 \mu\text{m}$ )の蛋白質顆粒が多数存在していた。電顕観察によると、蛋白質顆粒は主入糸とてクロロプロト(球形糸)とフリスタロイド(蛋白質結晶糸)と各一つとも、つまり、限界膜で被われていた。
2. 蛋白質顆粒は種子の吸水後24時間以内に融合を始め、発芽3日目になるとフリスタロイドはしたいくつも小さくなり、逆に周辺のマトリックスは内容物の密度の低下と同時に大きくなっていた。クリスタロイドとマトリックスの境には膜構造はなかった。融合と吸水をくり返して、発芽5-8日目には細胞の大部分を占める液胞へと変化してゆき、マトリックスの内容物もその間にまばらになっていた。この頃原形質連絡が良く見られた。発芽14日目には胞内にわずかに蛋白質粒と残り液胞となっていた。
4. テ伐抗体法によると、カボチャ種子プロテインの局在を調べたが、乾燥種子の組織には全くテ伐を示さず、発芽子葉のマトリックスにテ伐が見られた。しかしフリスタロイドはテ伐を示さなかった。

はじめに

被子植物の場合 種子の貯蔵胚由来には 単子葉植物の胚乳やアリューロン層、双子葉植物の子葉の細胞中のオルカネラ胚由来顆粒に存在する (1~3)。この胚由来顆粒は直径 1~10  $\mu\text{m}$  の球状で主にアラロビト (環糊精 : フィチン酸の高積部) やクリスタロイト (胚由来結晶) を含むもと、主にアラロビトを全く含まないものがある (4)。カボチャ (Cucurbita sp.) 種子の貯蔵胚由来である 11S 7S のアラロビトと同様のアラロビトを貯蔵胚由来ともつものにアサ (Cannabis sativa) 種子やマメ科のズンドウ (Phaseolus aureus) やリラマメ (Vicia faba) の種子がある。前者の胚由来顆粒はアラロビトとクリスタロイトとともに (5) が、後者のそれは主にアラロビトともいふと言わされている (6,7)。アサ種子のクリスタロイトは単離されており、エテスチン (貯蔵胚由来、アラロビト) から成るとか示されて (5)。一方クリスタロイトの周辺のマトリックス部がも胚由来から成ると言われて (8) 両者の関係は不明である。

発芽種子の胚由来顆粒につれて ハウテワマメ (Lupinus luteus) (8) やリラマメ (9) などで調べられて (5) が、知見はまだ少ない。胚由来顆粒は胚芽に隣接し融合し、液胞に分裂をされ (10)。

株式会社 フジテック種子。全量自販量の 90% 以上を占める フジ  
ブリスの発芽時の分解過程の研究の一環として、発芽子葉細胞壁の  
蛋白質鎖のクリストロトミックリソースを中心に、蛋白質の存在状態  
の変化を光顕、電子顕微鏡で調べた。また、ブロブリスの子葉  
を用いて発芽過程の子葉組織にアラビノースを試み、ブロブリス  
の耐性について検討した。

## 材料と方法

材料: カボチャ (Cucurbita sp., テツカブトナニキン文配種) 種子は タキイ種苗株式会社(京都)より購入した。

Paragon 12 Paracon C. & C. Co. Inc. (Bronx, N. Y.) 8",  
他の試葉は 特級あるいは實驗用を用い、半井化学薬品株式会社(京都) 及び 和光純薬工業株式会社より  
購入した。

カボチャ種子プロテリン及びその固定分解物  $T_{op}$  の調整は  
前に詳しく述べた(11, 12)。ただし  $T_{op}$  は 0.4M NaCl を含む  
0.02M 1,2-酸緩衝液 (pH 7.0) で平衡化してウルトロゲル A-44 カ  
ラムのプロセラフライトによりさらに精製したものと用いた。

電子顕微鏡による観察: 組織片 ( $0.5 \text{ mm}^3$ ) は尿素 0, 1/2,  
1, 3, 5, 8 及び 14 日目の子葉の中央部分からとった。 2%  
バラジウムアルテント, 2.5% プルタルテント, 0.05M カコシレート緩衝  
液 (pH 6.7) で 1 時間, 次に 2% 2.5% プルタルテント, 20% DMSO,  
同緩衝液で 1 時間赤固定した後, 2% オスマウム酸で 3 時間  
後固定した。 0.05M 同緩衝液で 2 時間組織片を洗った

後、アセトン・シリースで脱水し、*n*-ブチルセロエーテル-Spurr's  
あるいはプロピレンオキサイド-Spurr'sシリースで脱脂と浸透させ、Spurr's  
に包埋した(13)。超薄切片を LKB 社のウルトラミクロトームでガ  
ラスナ行を用ひて作製し、酢酸ウランとウエン酸鉛で二重染色した(14)  
後、JEM 7型あるいはJEM 100-B型電子顕微鏡で観察した。

光学顕微鏡による観察： 工記と同様の方法で作成した  
組織片からウルトラミクロトームで  $1\mu\text{m}$  の切片を作製し、KOH-エタノール  
溶液で脱脂後、Paragon で染色しオリーバス BHB 型顕微  
鏡で観察した。

3葉組織とフアン固定後パラフィン切片を作り、マロリ染  
色したものを同顕微鏡で観察した。

抗体アグローラ：血清の調整： 抗アグローラは陰性分解  
物TgR 16 生理食塩水には溶解しないので、1.5M食塩を  
含む0.1Mリノ酸緩衝液に溶解して(0.25mg/ml) Freund  
の完全アシミュバント1/2(15)により、ウサギの四肢の指掌部に各々  
0.1mlを注入し、2週間後再び同様の免疫操作を行った。  
その後1週間後耳静脉より試抹出し、1%アカルーステル(1M  
NaCl, 0.05Mリノ酸緩衝液(pH7.0)を含む)を用ひてOuchter-  
long の二重抗体法(16)により、先方の抗血清の存在を確か

の(図.1), 全程四を行つた.

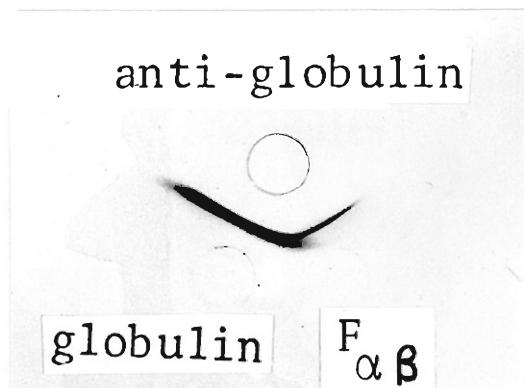



図.1. アグロブリーン及ウ: $F_{\alpha\beta}$ のゲル内二重抗体像

アガロースゲル(1%)に1μgアグロブリーンを溶解させたものに  
1M NaClを含むリン酸緩衝液を入れて. 各抗原  
濃度は0.5mg/mlである. 反応は室温で一夜行つた.

下記操作法: 薄片0.1, 2, 3及び5日目の子葉より約1mmの厚さ  
の種断面片を切りとり, 2%グルタルアルデヒド, 0.05Mカジオレート緩衝液  
(pH 6.7) 1:室温で1時間浸し固定(1K後), 4°Cの同緩衝液で  
1時間組織片を洗浄. Leitz社のヒストクリト- $\alpha$  2.5μmの薄断  
切片をカバー-グラス上に作製した. 組織と固定せしめの凍結-融  
解を行つと, 細胞内構造が著しく破壊された.

下記操作法は1回接着法を用いた. 種アグロブリーン約

11は Top の抗血清は pH 7.2 酸緩衝 - 王理食塩水 (PBS + 脱脂) で 20 時間に亘り、アセトンで 5 分間処理した薄切片と 20°C で 18 時間一次反応を行なった。対照実験にて、各抗血清を過剰の抗原で沈殿させた後、遠心分離 めどりは 正常ウサギ血清と同様の操作を行なった。一般に一次抗血清との反応は 37°C で 1 時間行なわせたが、この条件下では最終的に薄切片に T1 細胞を観察するには至らなかった。抗血清と反応させた薄切片は PBS で 1.5 時間洗浄後、FITC 標識・抗ウサギ血清 (ヤギ) 及 PBS で 15 分間に亘る大もと 37°C で 1.5 時間反応させた。この二次反応後 再び PBS で薄切片を洗い 黒 T 伎 フリセリ (10% PBS を含む) で封入し、American Optical Corporation の T1 光顕微鏡で観察した。

一方直接法も 次のようにして試みた。種子プロアリの抗血清と 3 回の疏安分画 (332/食和疏安 1=2 次段) を精製し、FITC 溶液と 4°C 5 時間反応させた。過剰の FITC を下ル口通で除去後、DEAE セルロース カラムで FITC 標識・抗血清を精製し、エキスと同様に操作した。T1 伎 1 下記の如きに従い 直接法のそれよりいくぶん弱かった。

## 結果

カド・テ・種子の子葉細胞は 平板 ( $30 \times 80 \mu\text{m}$ ) で、  
数の 粘液顆粒 (直径約  $5 \mu\text{m}$ ) とともに (図.2. C, D).  
粘液顆粒は 脂肪を含む フエロソームにとり囲まれて あり、内部  
構造物には フロホイド (図.2. A) と フリスマロイド (図.2. B) が  
ある。フロホイドは マトリックス部分の 境に 膜をもつて おり、  
固定が 非常に 難しく 脱落する場合が 多かつた。一方 フリスマ  
ロイドと マトリックスの 境に 膜構造は 見られなかつた (図.4. C).

吸水後 24時間以内に 粘液顆粒は 融合を始めた。  
発芽1, 2日目の子葉細胞の 粘液顆粒は 大きく 2倍近くになり、  
内部に フリスマロイドが 複数個存在しているのか 認められて (図.  
3.). さらに吸水が 続き 発芽5日目になると、フリスマロイドの大  
きさは なし 小くなる程度であるべし、マトリックス部分、電子密度が  
急に低下し、領域も 増大していく (図.4). 発芽8日目では  
粘液顆粒の マトリックス部分は 内容物が 内部から 分離され、  
網目状に なり、大 1像が 見られた (図.5). フリスマロイドが  
2つあるものもある (図.5. B), 融合をくり返して、網目構造も  
分解され、わずかな 粘液顆粒を残して 疣状化していく 細胞を  
みた (図.5. C, 図.6. B). 発芽14日目になると 細胞との細胞壁が

細胞の大部を占める液胞（蛋白質顆粒由来）とともに、けい竜の  
密接な奥など 2種の物質が存在してい（図.6.A）。

このうちには胚芽に伴って子葉細胞の蛋白質顆粒は融合  
する所をくり返して液胞へと変化してい（図.7）。しかし  
A変化の程度には子葉細胞の存在部位により異なってい（図.8）。  
蛋白質顆粒の融合や液胞化は維管束の近くの細胞の方が  
速かつて（図.8.A,B）。また表皮や下表皮に近い細胞の蛋白質  
顆粒の融合、液胞化は中央部の細胞に比べて早く起こる。  
同じ胚芽8日目の子葉細胞の蛋白質顆粒でも、子葉中央部の方  
は細胞壁に沿って融合が始まっているものもあり、下表皮（図.8.C）  
では、まだから下表皮に至るまでの細胞壁を順次見えて（図.4.D  
⇒図.5.B ⇒図.8.D），下表皮に近い細胞壁では融合、溶解の  
進行が速いことがわかる。即ち胚芽1～14日の各時期の  
子葉中央部の細胞の変化が胚芽8日目の子葉細胞にて全く  
観察されることになる。しかし同一細胞内に蛋白質顆粒の状  
態は多様と同時にあら（図.8）。

胚芽5～8日目の子葉細胞の細胞壁にはかなりの頻度で  
plasmodesmが見られた（図.9.B）。また胚芽5日目の子葉細  
胞では細胞壁が破壊され隣接細胞と完全な原形質連絡

1によると内密物の運動は物質の運動と目づけられて(図.9.A)。これらは貯藏物質の分解物の運動には全く関係しない。

種子プロファイル及びその隔壁分解物  $T_{0.5}$  はすべて干渉波を用いて各発芽段階の種子組織には T1光技術を試みた結果、未発芽種子は全く T1光を示さないが(図.10.A)。発芽葉のクリスマリクトも T1光を示さないが(図.10.B-D)。

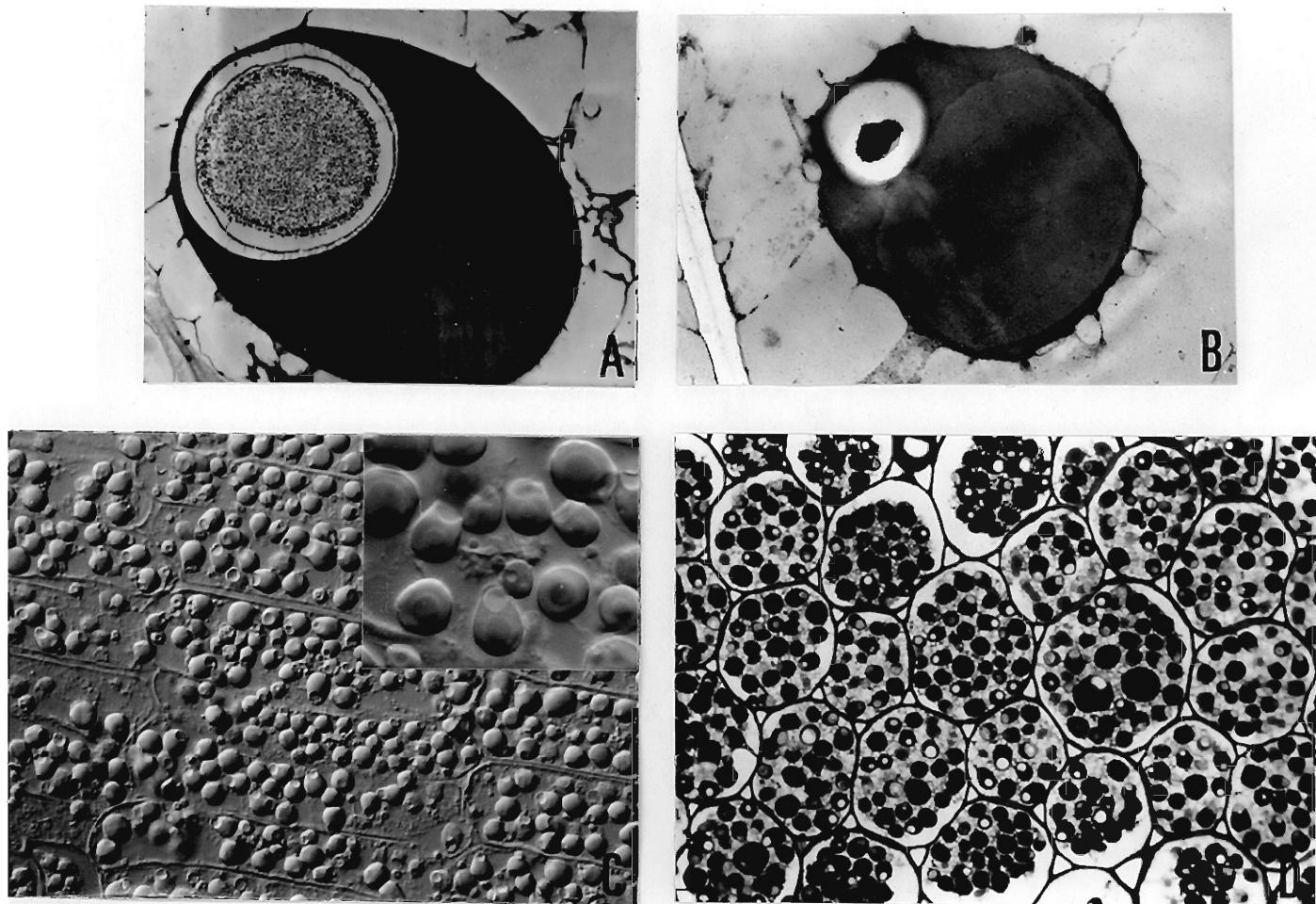



図2. 乾燥種子の3葉細胞及び蚕白質顆粒.

A. 典型的な蚕白質顆粒の電子顕微鏡像. フリスコロイドとそれととり固む膜構造が見られる. 組織とエターナルで10日前脱脂洗浄後固定した. 固定液の詳細は不詳. ( $\times 6,500$ )

B. フリスコロイドとモル蚕白質顆粒の電子顕微鏡像. ( $\times 10,000$ )

C. 3葉細胞の微小干渉顕微鏡像. 棒状の細胞間に多数の蚕白質顆粒が存在している. フラン固定後のパラフィン切片 ( $\times 660$ ) 石工はその拡大像 ( $\times 1,650$ ) である. フリスコロイドとアロホイドが見られる.

D. 3葉細胞の横断面の光顕微鏡像. 固定はフルタルテヒト・オスミウム酸にかけ, 脱水後 Spurr's に包埋し,  $1\mu\text{m}$ の切片を作製した ( $\times 660$ )

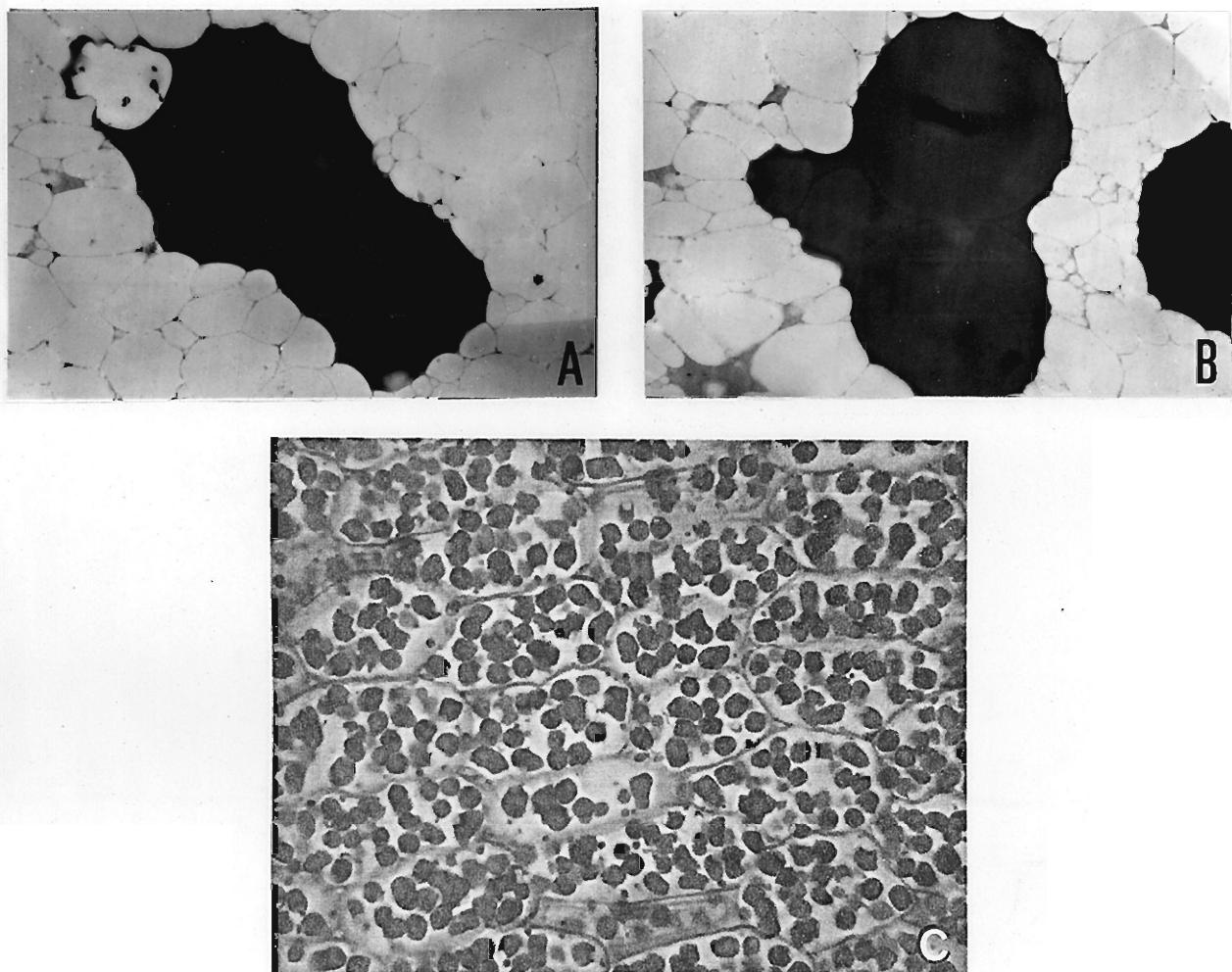



図3. 吸水後融合1始める蚕白質顆粒

A, B. 豐芽1日目の融合1に蚕白質顆粒の光顕像. 融合により

Aはクリスタライド2個, Bは4個も, 218のかわる. 周辺は  
スエロリームである. (x 5,000)

C. 豐芽2ヶ月の3葉細胞の光顕像. 蚕白質顆粒は融合1  
より2種の形を1つ. クリスタライド複数個も218のかわる  
められるものある. 処理は図2.Cと同じである (x 320)




図. 4. 発芽に伴う融合と吸水によるマトリックス部分の増大による自殖顆粒

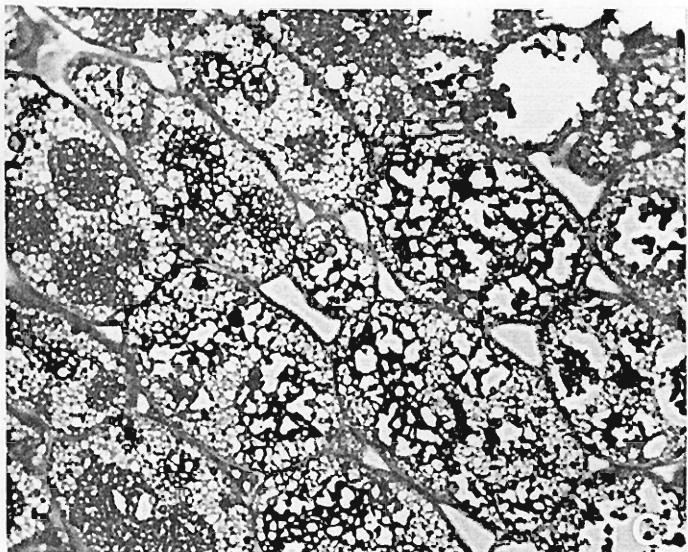
A, B. 発芽5日目の自殖顆粒の光顕像。未発芽みる1/2発芽初期。

モード比8:2 クリスタロイトは直径20μ, マトリックス部分は直径12μ (A:  $\times 5000$ , B:  $\times 8000$ )

C, D. クリスタロイトとマトリックスの境の拡大図。( $\times 150,000$ )

E 発芽8日目の3葉の中央部の光顕像。処理は図. 2. Cと同じ。( $\times 800$ )

F 発芽5日目の子葉細胞の光顕像。処理は図. 2. Dと同じ。( $\times 660$ )



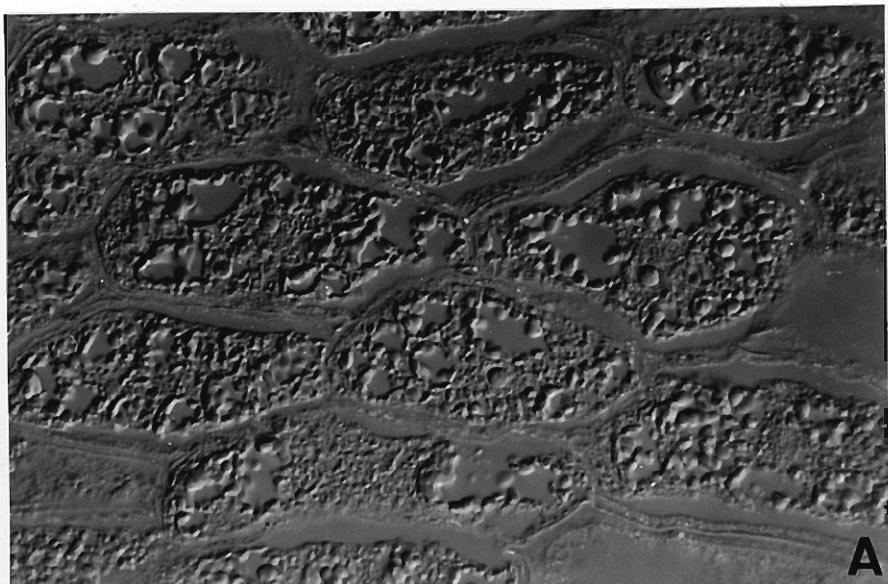



図1.5 巻芽8日目の3層細胞: マトリックス部の内部から網目状の

分解されたいく蛋白質顆粒.

- A. 織物干渉顕微鏡像. 处理は図2, Cと同じである. ( $\times 660$ )
- B. 光顕像. 处理は図3, Cと同じである. ( $\times 800$ )
- C. 光顕像. 处理は図2, Dと同じである. ( $\times 660$ )

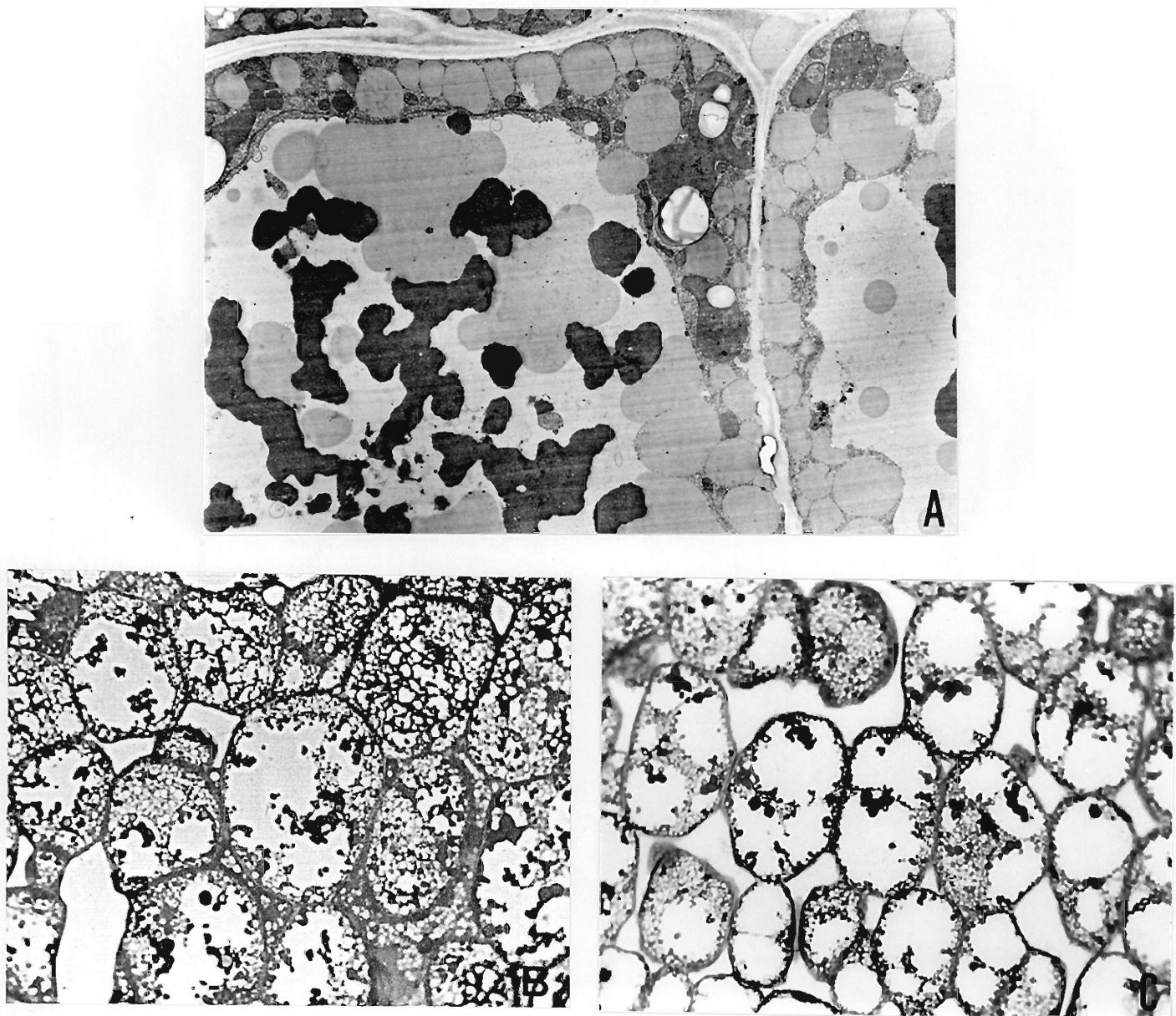



図.6. 蚕日復3細胞の液胞

A. 孵芽14日目の3細胞の液胞像。液胞内に電子密度の異なる2種の物質がある。細胞壁にも変化が見られる。細胞間隙にも

アフロリーム様の顆粒が見られる。 ( $\times 4,000$ )

B,C. 孵芽8日目の3細胞の液胞像。細胞壁により液胞化が進行している。処理は 図.2,Dと同じ ( $\times 660$ )

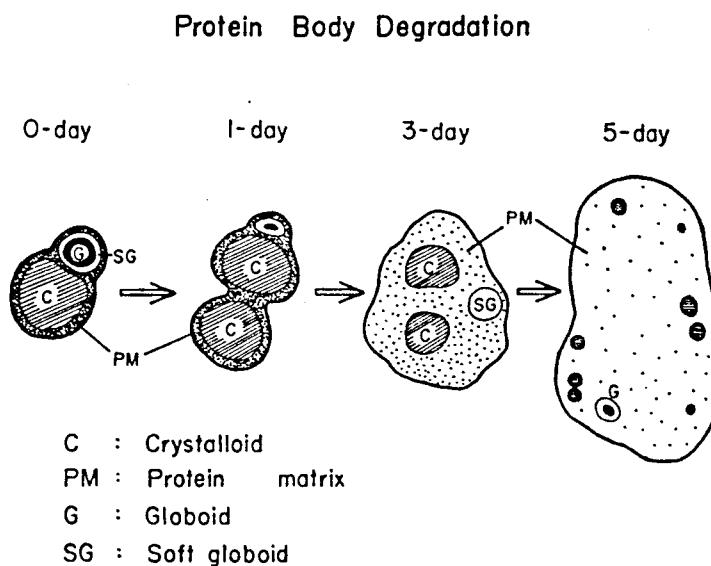



図.7. 発芽に伴う蛋白質顆粒の融合と分解の過程の  
模式図.

発芽1日以内に蛋白質顆粒は融合とせぬ。3日目に  
は吸水が進みマトリックス部分は増大し、内容物の密  
度は低下 $12<8$ 。さらに融合、吸水をくり返し、同時に  
クリストロイドの分解も進行して発芽5日目くらいから液胞化に  
いく（図2.～図6.51）

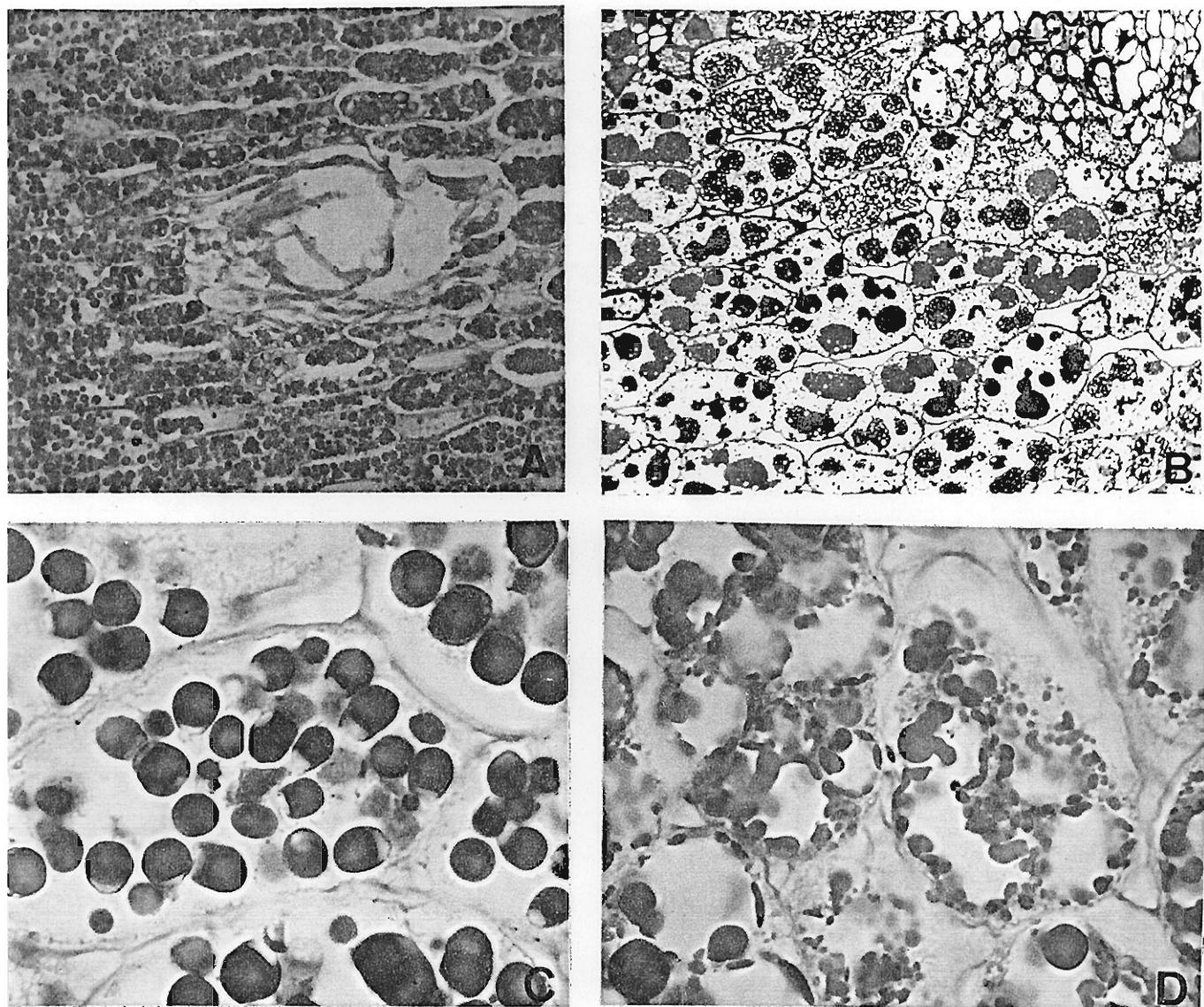



図8. 卵黄粒の存在部位 1-3, 2万倍後の異なる蛋白質顆粒.

A. 産卵3日目の卵黄球附近の子葉細胞の光顕像. 卵黄球附近  
の細胞の蛋白質顆粒の局在合<sup>レ</sup>解が速い. 処理は 図2. Cと同じである. (x320)

B. 産卵5日目の子葉細胞の光顕像. 卵黄球(左)附近の細胞の蛋白質  
顆粒の液化化が早く始まる. 処理は 図2. Dと同じである. (x660)

C, D. 産卵8日目の子葉細胞の光顕像. Cは子葉の中央部の細胞,  
Dは根に近い細胞である. 処理は Aと同じである. (x800)

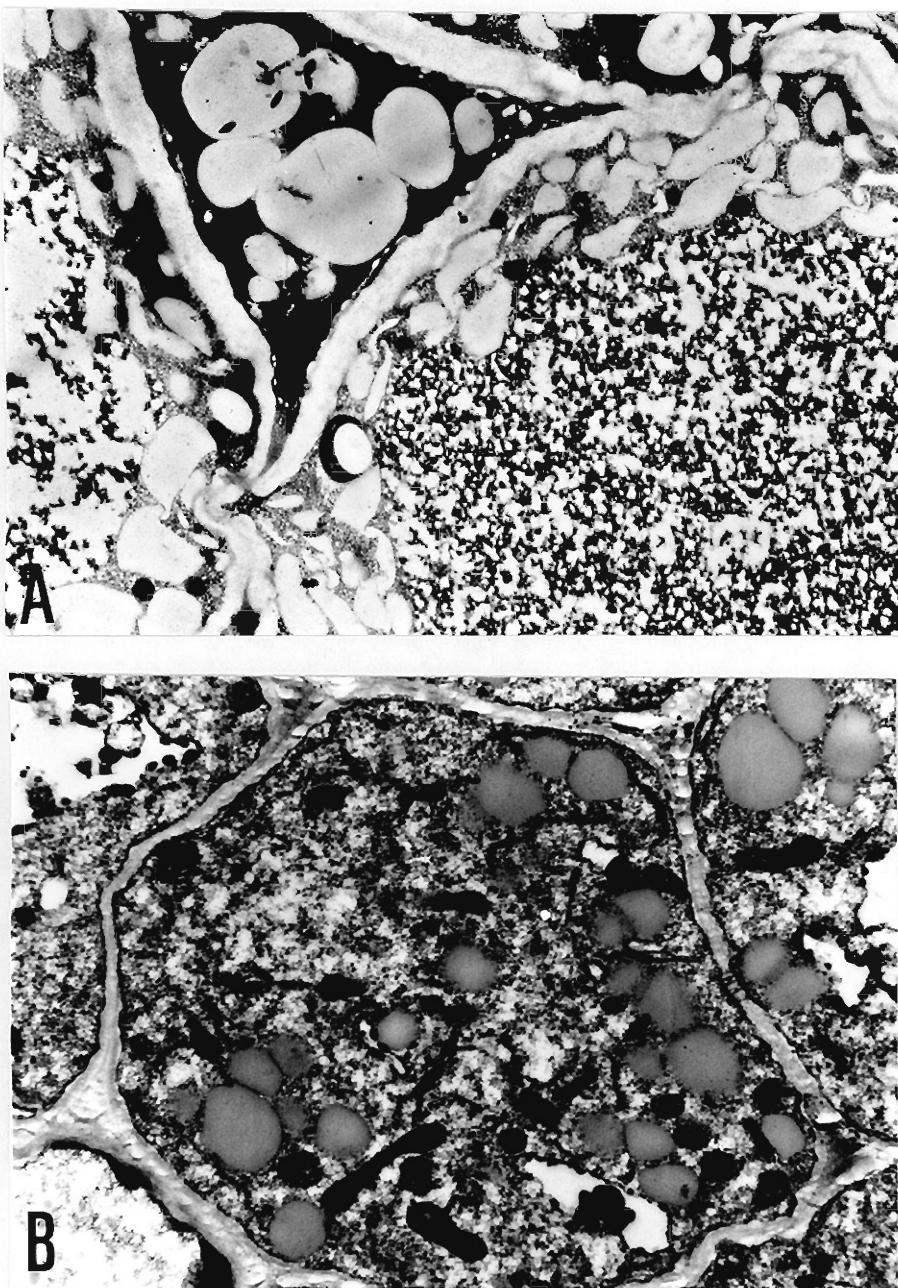



図.9. 発芽達成の3葉細胞の形態復連続

A. 発芽5日目の3葉の電顕像. 細胞壁が破壊され 内容物の移動が見られる. 細胞間隙にも電子密度の高い物質が存在する. 右下細胞の大部分を占めているのが 融合により大きな量の原核. ( $\times 6,600$ )

B. 発芽8日目の3葉の電顕像. 右側細胞壁に plasmodesmata が多数見られる. 原核はかなり大量の原核を含めて液胞化している. ( $\times 4,200$ )

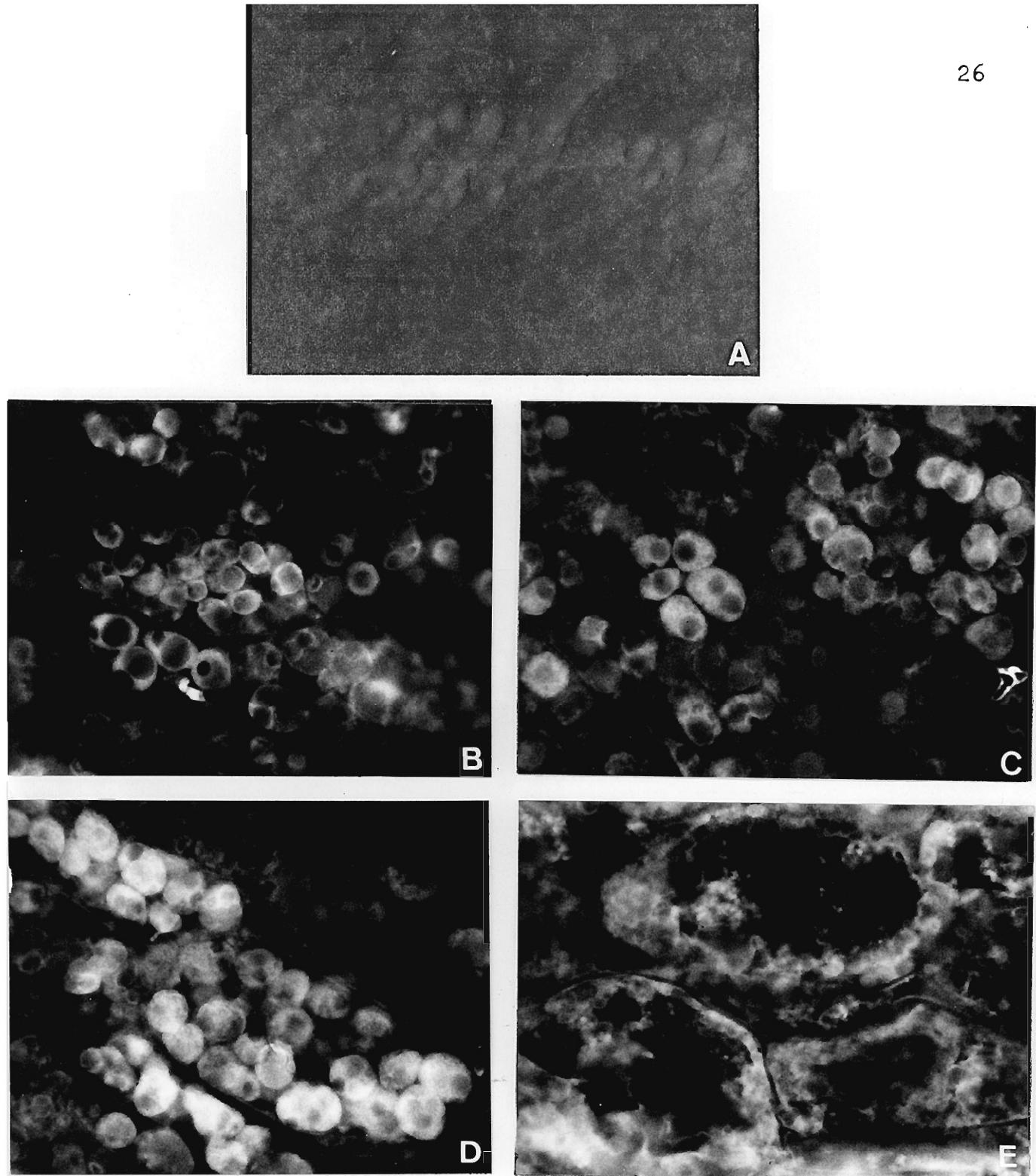



図.10. 各発芽子葉組織の T1 抗体法

A. 正常ウサギ血清と一次抗体と 12 用い: 対照。乾燥種子の組織も同じく T1 抗を全く示さない。

B, C, D, E は各々発芽 2, 3, 3, 5 日目の子葉組織。いずれも組織を 7:167 ルナビ固定後、5 μm の凍結切片を作製 ITC. (x750)

## 考 察

カド・テア種子の3葉網膜。蛋白質顆粒はLottのクリストンエッセンス法によると結果(17)と同様にクリストントとクロロホイト各21%とその周辺をとり固むマトリックス部分とから成る。これは典型的な蛋白質顆粒のひとつである。一般に蛋白質顆粒は単に膜に囲まれてゐると言つてはいるが、限界膜程度のものか観察できなかつた。クロロホイトはPやKを多量に含むことが証明されており(18)、フィチン酸の蓄積部位であるか、固定が難しく切片作製の際には脱落する場合が多い。

クリストントは主として結晶状態で存在(21)ことかアガ種子(5)やヒマ種子(19)で知られてゐる。カド・テア種子の場合も同様的ではあるが、オリヒ为主要貯蔵蛋白質であるクロブリニの消天速度(12)とここで観察されたクリストントの消天速度とはほぼ同じである。オリヒに乾燥種子の重量の約25%，または全蛋白質量の90%以上を占めるクロブリニの存在場所とすれば乾燥種子のマトリックス部分には小豆豆子と云ふべき。クリストントはクロブリニと存在(21)と考えられる。オリヒ種子クロブリニの抗14·Iは約11.1克抗14·法2·Iはクリストントは全くT1をとるが、発芽2日目以後のマトリックス部分は約

ナラタガ見られた。クリスタロイトがナラタガでないのは  
オ1はクリスタロイトはナラタガ阻害する物質である。オ2はフルターレテ  
ビト固定処理により抗性入りにくくなる。オ3はクロフリンが  
非常に密に纏められた状態でクリスタロイトを形成する際の  
抗性がなく反応が起り得るからである。さての原因が考えられる。  
植物材料はナラタガ抗性法を適用した例がまだ少なく、今回  
も常法通りではナラタガを觀察することができず、反応時間と長く  
12時間マトリックス部分はナラタガを認めた。しかし、固定処理を行  
なわずに凍結切片を作ると細胞内構造が破壊する場合など  
技術的には改善されるが、どうも、吳が素多く残るらしい。

一方マトリックス部分のナラタガを示す形にはつまらず、電  
顕鏡观察でクリスタロイトとマトリックスの境は特に膜構造のよ  
うなものは認められなかつたので、またクリスタロイトは水  
溶液中で単離されると不溶性であるので、マトリックス側に  
出現した酵素によつて一部分解を受けたクロフリンがクリスタロ  
イトの結晶構造から離れて、マトリックス側に移るのもと考えら  
れる。RPL電顕標本のマトリックスははとくのよつて蛋白質  
が存在するか不明であるが、蛋白質のマトリックスはクロ  
フリンの分解産物は占められていくのであろう。

蛋白質顆粒は 吸水 24時間以内に融合と始めるため  
大きくなり、フリスマロイドやアロジットと複数個もつようになる。クリ  
スマロイドは 1粒で 1% が消化され、一方マトリックス部  
では 蛋白質顆粒の吸水による膨張に伴い、2倍となり、蛋白質は  
周辺からではなく 内部から 分解を受け 細胞状の構造となり  
く。  
それも やがて 3倍となると 分解されて わずかの蛋白質顆粒と  
12 細胞。大部 分を 占める 液胞に移る。 1粒に 分解酵素  
が 蛋白質顆粒外から 吸水と同時に 移る とする見込みは、マトリ  
ックスの蛋白質成 分は 周辺から 分解を受けるものと想われる。  
蛋白質顆粒の 内部からの 分解 は (Pisum sativa) (20) や (Vicia  
faba) (9) などで観察されてる。 また 蛋白質顆粒に 蛋白質  
分解酵素の存在が 言及められてる例も多い (5, 21~23)。 カボチャ  
(Cucurbita sp.) 種子の フローラル 1粒 元素不溶性であるが、  
発芽過程で 限定 分解を受け 溶解液と 増すことで わずか 2倍 (12)。  
また 乾燥種子には フローラルと 限定 分解する 酵素工 及び その 限定  
分解物  $F_{ap}$  は 特異的に 動く 分解酵素工 の存在につれて、  
その 局在は 不明であるが、オナ草乙 講義論、秀穂 1212。  
これらの 分解活性。 知見を 研究合せると、まず フリスマロイ  
ドを 形成する 2つの フローラルは 吸水によって 活化される

トリフス側の酵素Ⅰにより 限界分解物  $T_{\alpha_3}$  を生じる。  $T_{\alpha_3}$  はアラロツリニンに比べて 溶解度が高いため、 マトリックス側へ拡散して、 特異的に強く 分解酵素Ⅱの作用を、 小アフロチトやアミノ酸を生じる。 この結果 粒子の浸透圧は増加し、 これに吸水を促す。 これがどのように考えらるるかである。 実際 潜在酵素の活性化か どうのうか機構が起るのか、 また どの段階までの 分解が 粒子内に起るかといふ点につけては 不明であるが、 発芽過程の 特徴 粒子の分解機構を考えるに興味ある問題である。 発芽過程で生理的いくつかの酵素がこれらの分解産物の続く分解を助けてくる可能性もあるが、 最終産物は 王者酵素へと転流される。

発芽子葉細胞には多くの plasmodesm が観察される。 また 発芽 5 日目の細胞では 完全な 原形質連絡が見られ、 ステロリーノードなどの移動がいくのか 認められた。 これらの細胞を 1 個 1 個 密度の高い物質が存在するが、 このような部分は光顕でも認められた。 Bratley らも (Vicia faba) は 原形質膜の陷入か 1/10 1/10 見られるなどと示し、 細胞間隙には 密度の高い物質が存在する (アーリはモリソン) ことを 1 個 1 個の機能は不明であるのか、 物質の輸送と関連する

のではなかと論じている(9)。しかし 原形復の完全な連絡が観察された例は 基本組織系では 他にない。

蛋白復顆粒の構造変化は 線管束, 穀, あるいは表皮に近い細胞ほど 早く進行した。これは吸水の起ニリやヨリの細胞から 先に 内部の蛋白復の分解が始まつていくのであろう。

## References

- (1) F. M. Ashton: Ann. Rev. Plant Physiol. (1976) 27, 95
- (2) 佐々木高京子: 豊田植物研究 (1978) 22, 1320
- (3) J. Pernollet: Phytochemistry (1978) 17, 1473
- (4) T. L. Rost: Amer. J. Bot. (1972) 59, 607
- (5) A. J. St. Angelo, L. Y. Yatsu, A. M. Altschul: Arch. Biochem. Biophys. (1968) 124, 199
- (6) N. Harris, M. J. Chrispeels: Plant Physiol. (1976) 37, 229
- (7) C. J. Bailey, A. Cobb, D. Boulter: Planta (1970) 95, 103
- (8) F. Mlodzianowski: Z. Pflanzenphysiol. Bd. (1978) 86, 1
- (9) L. G. Briarty, D. A. Coulter, D. Boulter: J. Exp. Bot. (1970) 21, 513
- (10) M. S. Buttrose: Aust. J. Biol. (1963) 16, 305
- (11) I. Hara, K. Wada, S. Wakabayashi, H. Matsubara: Plant & Cell Physiol. (1976) 17, 799
- (12) I. Hara, K. Wada, H. Matsubara: Plant & Cell Physiol. (1976) 17, 815
- (13) A. R. Spurr: J. Ultrastruct. Res. (1969) 26, 31
- (14) E. S. Reynolds: J. Cell Biol. (1963) 17, 208
- (15) J. Freund: Ann. Rev. Microbiol. (1947) 1, 291
- (16) O. Ouchterlony: Progr. Allergy. (1962) 6, 30
- (17) J. N. A. Lott, P. L. Larsen, J. J. Darley: Can. J. Bot. (1971) 49, 1777

- (18) J. N. A. Lott: Plant Physiol. (1975) 55, 913
- (19) R. E. Tully, H. Beevers: Plant Physiol. (1976)  
58, 710
- (20) J. M. Bain, F. V. Mercer: Aust. J. Biol. Sci.  
(1966) 19, 69
- (21) C. A. Adams, L. Novellie, N. V. W. Liebenberg:  
Cereal Chem. (1976) 53, 1
- (22) T. N. Koreleva, M. V. Alekseeva, A.D. Shutov,  
I. A. Vaintraub: Sov. Plant Physiol. (Engl. transl.)  
(1973) 20, 650
- (23) G. F. I. Morris, D. A. Thurman, D. Boulter:  
Phytochemistry (1970) 9, 1707

Chapter 3

*Plant & Cell Physiol.* 17: 799-814 (1976)

## Pumpkin (*Cucurbita* sp.) seed globulin I. Purification, characterization, and subunit structure

Ikuko Hara, Keishiro Wada, Sadao Wakabayashi, and Hiroshi Matsubara

Department of Biology, Faculty of Science, Osaka University, Toyonaka, Osaka 560, Japan

(Received April 9, 1976)

A heat stable globulin present in the cotyledons of pumpkin seeds was prepared as crystals which were soluble in a dilute saline solution below pH 4.5 or in a solution with a high ionic strength at neutral pHs. The protein was nearly homogeneous by ultracentrifuge analysis, and had a molecular weight of about 112,000 daltons. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis separated the globulin into two subunits,  $\alpha$  and  $\beta$ , corresponding to molecular weights of about 63,000 and 56,000 daltons, respectively. By reduction of disulfide bonds, the two subunits were each separated into two polypeptide chains with molecular weights of around 36,000 and 22,000 daltons, judged by gel electrophoresis. The amino acid composition of whole globulin indicated high contents of arginine, glutamic acid and aspartic acid. The total number of half-cystine residue was nine and only one residue was shown to be free. The subunit structure of the globulin is discussed. The protein has been shown to have oxaloacetate decarboxylase activity, and this fact was confirmed. However, the activity decreased markedly at pH 4.5 in a fairly short period. It did not require  $Mn^{++}$ , and the  $K_m$  for oxaloacetate was determined to be 4.1 mM.

The germination process of plant seeds is one of the most important biological events. This process begins just after water uptake by the dormant seeds, and includes various complicated physiological changes to develop the hypocotyledon and root. Among the changes in seeds during the very early germinating stage (awakening step) the most prominent one is probably the degradation of reserves to supply the necessary materials and energy to active sites. It has long been known that dicotyledonous seeds, especially those with a high protein content, have various globulins as so-called storage proteins, mostly in crystalline forms (1). The characterization, metabolism, and synthesis of the proteins present in various stages of developmental and germination processes have been extensively studied (9, 11, 18) but still far more detailed experiments are necessary to understand the events, germination as well as development.

In order to understand the early germination process we focussed our attention on the changes in storage proteins. As a typical storage protein, the crystalline pumpkin globulin was chosen, because early workers found that it existed in a large

Abbreviations: SDS, sodium dodecyl sulfate; pCMB, *p*-chloromercuribenzoate; A-buffer, 0.1 M Na-phosphate buffer, pH 7.0, containing 2 M NaCl; PE-cysteine, S- $\beta$ -(4-pyridylethyl)cysteine; DEAE-cellulose, diethylaminoethylcellulose.

quantity, at least 25% of total weight in seed cotyledons (20), it was heat stable and easily crystallized (30), it was extensively and rapidly broken down during the early stage of germination (8), some proteolytic enzymes degrading this storage protein have been isolated and the effects of hormones studied (2, 26, 28), and it must be rapidly accumulated during maturation of the seeds as reported in other seed globulins (14). It was also reported that the globulin had oxaloacetate decarboxylase activity (29) and that it was digested by a bacterial protease, and the susceptibility of this protein was related to stages of the germination process (Tagawa, personal communication). Further, the metabolic systems of amino acids released from pumpkin seeds during germination (22) and the amino acid composition of the globulin (8) have recently been reported. The composition was also reported by Smith and Greene (24).

The investigation of structure and mechanism of degradation of the globulin during germination must contribute to a better understanding of the process. This paper describes the purification and characterization of the pumpkin seed globulin, and the following paper will describe the alterations in the protein during germination, and further studies of the structure of the protein molecule.

#### Materials and methods

**Materials:** Pumpkin (*Cucurbita* sp., hybrid, Tetsukabuto-nankin) seeds, cucumber (*Cucumis* sp.) seeds, and watermelon (*Citrulus* sp.) seeds were purchased from Takii Seed Co. (Kyoto). EDTA, Na-oxaloacetate, sodium dodecyl sulfate (SDS),  $\beta$ -mercaptoethanol, *p*-chloromercuribenzoate (pCMB) and other chemicals were reagent grade and purchased from Wako Pure Chemical Industries, Ltd. (Osaka) and Nakarai Chemicals, Ltd. (Kyoto).

**Procedures for isolation, purification and crystallization of pumpkin seed globulin:** The isolation and crystallization procedures for seed globulin was exactly the same as that reported in 1941 by Vickery et al. (30). After removal of seed coats, about 10 g of the seeds were ground in a mortar and stood overnight at room temperature with 30 ml of 0.1 M Na-phosphate buffer, pH 7.0, containing 2 M NaCl (A-buffer). The mixture was centrifuged and the supernatant solution was heated at 80°C for 10 min. After centrifugation, the supernatant solution was diluted with a 4 fold volume of deionized water at 60°C. With gradual cooling of the solution crude crystals appeared. The crystals were collected by centrifugation and dissolved in the A-buffer. The second crystals were obtained after dilution of this solution as mentioned above. The crystallization procedure was repeated several times and finally about 300 mg of purified crystals were prepared. Three other preparative methods were also carried out as follows. (a) To avoid proteolysis during extraction, the heat treatment (80°C, 10 min) was carried out before standing the mixture of ground seeds with the A-buffer overnight. (b) The extraction of globulin was carried out with the A-buffer containing 1.1 mM pCMB. (c) Instead of dry seeds the maturing seeds in fruits were used as the starting material.

**Purity and molecular weight determination:** The purity of the crystalline globulin was analyzed by the sedimentation pattern in the Spinco model E ultracentrifuge with a protein concentration of 0.56% in the A-buffer at 20°C and 40,000 rpm. The sedimentation coefficient of the globulin at infinite dilution,  $S_{20,w}^0$ , was

calculated for various concentrations of the protein from 0.1 to 0.56%. The molecular weight was determined by the sedimentation equilibrium procedure (36) at 20°C and 4,800 rpm in the same solvent as above.

*SDS-polyacrylamide gel electrophoresis:* SDS-polyacrylamide gel electrophoresis was carried out in principle according to the method of Weber and Osborn (34). The flat type gels were used as Wada and Snell described (32). The gel slab,  $14.3 \times 10 \times 0.1$  cm, was polymerized with 7.5 or 10% of acrylamide using N,N,N',N'-tetramethylethylenediamine and ammonium persulfate, and soaked overnight in 0.1 M Tris-acetate buffer, pH 8.2, containing 0.5% SDS. The reservoir buffer was 0.05 M Tris-acetate containing 0.5% SDS. Samples with or without prior reduction by 1%  $\beta$ -mercaptoethanol were dissolved in 0.025 M Tris-acetate buffer containing 1% SDS and heated at 100°C for 1 min to make the SDS-protein complex. Electrophoresis was carried out at 25 mA and ca. 150 v for 2-3 hr at 20°C. The gels were stained overnight with 0.25% Coomassie brilliant blue R-250 in a mixture of 30% methanol and 10% trichloroacetic acid, and then destained with a mixture of 7% acetic acid and 30% methanol. After destaining, the gels were scanned at 570 nm by a Fuji Riken Densitometer, Type FD-A IV.

*Two-dimensional SDS-polyacrylamide gel electrophoresis:* A 10% gel slab was prepared as described above, except that a groove,  $0.2 \times 0.2 \times 0.1$  cm, was made at a corner about 1.5 cm off from the two edges of the slab. After the sample was applied in the groove with bromophenol blue, an internal standard, the first dimensional electrophoretic run was conducted at 25 mA for 3 hr. The gel slab was then dipped in the gel buffer with 5%  $\beta$ -mercaptoethanol for 30 min in order to split disulfide bonds in the protein. The second run was successively carried out at a right angle to the first at 25 mA for 2.5 hr. The conditions for staining, destaining etc. were as described above.

*SDS-hydroxylapatite chromatography:* Hydroxylapatite and brushite (27) were used for SDS-hydroxylapatite chromatography according to Moss and Rosenblum (19). The globulin (4 mg per ml, in 0.01 M Na-phosphate buffer, pH 6.4, containing 1% SDS) was boiled in a water bath for 2 min to make the SDS-protein complex, and dialyzed against 0.01 M Na-phosphate buffer, pH 6.4, containing 0.1% SDS overnight. The column ( $1.4 \times 25$  cm) made of a mixture of hydroxylapatite and brushite in 3 to 7 ratio (w/w) was washed with a buffer containing 0.1% SDS and 2 ml of protein solution were loaded on it. A linear gradient was performed between 50 ml of 0.3 M and 50 ml of 0.5 M Na-phosphate buffer containing 0.1% SDS. The flow rate was 10 ml per hr and each fraction (1.5 ml) was monitored at 280 nm. Aliquots of the main fractions were dialyzed against 0.025 M Tris-acetate buffer, pH 8.2, containing 1% SDS for SDS-polyacrylamide gel electrophoresis. The remainders were dialyzed against water and lyophilized for analysis of amino acid composition and N-terminal amino acid residues.

*DEAE-cellulose chromatography:* A DEAE-cellulose column ( $2.6 \times 40$  cm) was equilibrated with 0.1 M Tris-HCl buffer, pH 8.0, containing 6 M urea. About 40 mg of carboxymethylated globulin (7) were dissolved in 4 ml of the equilibration buffer and loaded on the column. After passing 20 ml of the equilibration buffer through the column, a linear gradient elution was performed between each 190 ml of the equilibration buffer and the same buffer containing 0.6 M NaCl at a flow rate of 10 ml per hr at room temperature. Each fraction (2 ml) was monitored at 280 nm.

After dialyzing against water and lyophilization, the main fractions were analyzed by SDS-polyacrylamide gel electrophoresis and amino acid analyzer.

*Analysis of amino acid composition:* Amino acid composition was determined by a Beckman analyzer, 120 B, after hydrolysis of the protein with 6 N HCl at 110°C for 24 hr (25). The half-cystine content of seed globulin was determined on carboxymethylated and performic acid oxidized globulin prepared as described (7, 15). The tryptophan content was estimated by the UV absorption spectral method (3).

*Determination of sulphydryl groups:* Determination of free sulphydryl groups was performed as follows. (a) The reaction with pCMB according to Boyer (5) as modified by Benesch and Benesch (4) was used in 6 M urea. Glutathione was used as a standard material. A 10  $\mu$ l aliquot of the pCMB solution was added to 3 ml of 0.1% protein solution in 0.33 M Na-acetate buffer, pH 4.6, containing 6 M urea and to an equal volume of buffer without protein. The increase of absorbance was measured at 255 nm. (b) The chromatographic determination of cysteine residue as S- $\beta$ -(4-pyridylethyl)cysteine (PE-cysteine) was performed according to Friedman et al. (12). Alkylation of protein by 4-vinylpyridine was carried out in Tris-HCl buffer, pH 7.5, containing 6 M urea without  $\beta$ -mercaptoethanol. After incubation the solution was adjusted to pH 3, dialyzed against 0.01 M acetic acid, and lyophilized. The alkylated sample was hydrolyzed with 6 N HCl in a sealed, evacuated tube at 110°C for 24 hr, and analyzed on the amino acid analyzer (25). Free sulphydryl group content was calculated by the ratio of PE-cysteine to histidine on the molar basis.

*N-terminal residues:* Determination of the N-terminal residues was carried out by Edman degradation method (16).

*Hexose and hexosamine analysis:* Hexose content of globulin was determined by the orcinol-H<sub>2</sub>SO<sub>4</sub> method and the content of hexosamine by the *p*-dimethylamino-benzaldehyde method (23).

*Assay for oxaloacetate decarboxylase activity:* A Warburg manometer was used to measure the evolution of CO<sub>2</sub> from oxaloacetate. The system finally set for the assay was as follows. The main vessel contained 0.4 mg of globulin dissolved in 1.9 ml of 0.2 M Na-acetate buffer, pH 4.5, containing 1 mM EDTA. The side arm contained 0.1 ml of 0.1 M oxaloacetate dissolved in 1 mM EDTA. The reaction was carried out at 35°C. Since CO<sub>2</sub> evolution was not observed when KOH was present in the center well, the gas evolved was considered to be solely CO<sub>2</sub>. The other product was confirmed to be pyruvate by using a lactate dehydrogenase system (31).

## Results

*Purity and molecular weight of crystalline pumpkin seed globulin:* Crystals of pumpkin seed globulin were regular octahedrons with each side 10–20  $\mu$ , or octahedron-like shape with acute vertical angles (Fig. 1).

The Schlieren pattern of the globulin in the ultracentrifuge gave a single and symmetrical peak in the A-buffer (Fig. 2 (a)). A small peak preceding the main one appeared at 73 min-run. The plot of 1/S<sub>app</sub>·C, where S<sub>app</sub> and C represent the apparent S value and the protein concentration, respectively, determined S°<sub>20,w</sub>

## Pumpkin seed globulin I

803

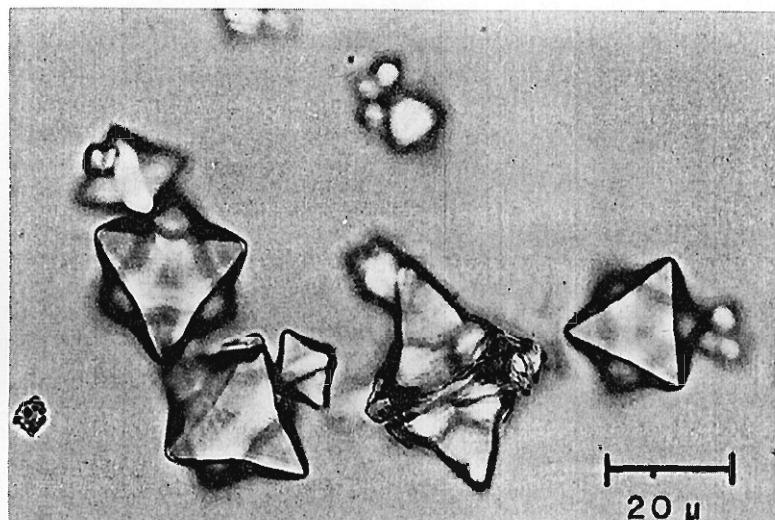



Fig. 1. Crystals of pumpkin seed globulin.

Table 1 Amino acid composition of pumpkin seed globulin and its subunits

| Amino acid    | Residues per molecule             |                                     |                                    |                               |
|---------------|-----------------------------------|-------------------------------------|------------------------------------|-------------------------------|
|               | Crystalline globulin <sup>a</sup> | $\gamma'$ -Chain (P-3) <sup>d</sup> | $\delta$ -Chain (P-1) <sup>e</sup> | $(\gamma' + \delta) \times 2$ |
| Lysine        | 27 ( 14)                          | 10                                  | 6                                  | 31                            |
| Histidine     | 18 ( 17)                          | 5                                   | 4                                  | 19                            |
| Arginine      | 101 (122)                         | 33                                  | 21                                 | 109                           |
| Tryptophan    | 19 <sup>b</sup> —                 | —                                   | —                                  | —                             |
| Aspartic acid | 87 ( 92)                          | 28                                  | 16                                 | 86                            |
| Threonine     | 30 ( 31)                          | 7                                   | 10                                 | 34                            |
| Serine        | 64 ( 69)                          | 24                                  | 15                                 | 78                            |
| Glutamic acid | 159 (190)                         | 60                                  | 25                                 | 169                           |
| Proline       | 43 ( 4)                           | 14                                  | 8                                  | 45                            |
| Glycine       | 72 ( 74)                          | 26                                  | 12                                 | 77                            |
| Alanine       | 64 ( 64)                          | 20                                  | 14                                 | 67                            |
| Half-cystine  | 9 <sup>c</sup> ( 6)               | 4                                   | 1                                  | 10                            |
| Valine        | 54 ( 53)                          | 16                                  | 13                                 | 58                            |
| Methionine    | 16 ( 14)                          | 4                                   | 5                                  | 17                            |
| Isoleucine    | 39 ( 35)                          | 13                                  | 8                                  | 43                            |
| Leucine       | 69 ( 77)                          | 22                                  | 15                                 | 74                            |
| Tyrosine      | 27 ( 14)                          | 6                                   | 6                                  | 23                            |
| Phenylalanine | 38 ( 42)                          | 14                                  | 8                                  | 44                            |

<sup>a</sup> Based on the molecular weight of 112,000. The values in parentheses are those reported (8) multiplied by a factor of 9.19 to make comparison with the present analysis easy.

<sup>b</sup> Determined by the UV absorption method.

<sup>c</sup> Determined as cysteic acid and carboxymethylcysteine.

<sup>d</sup> Based on the molecular weight of 36,000.

<sup>e</sup> Based on the molecular weight of 22,000.

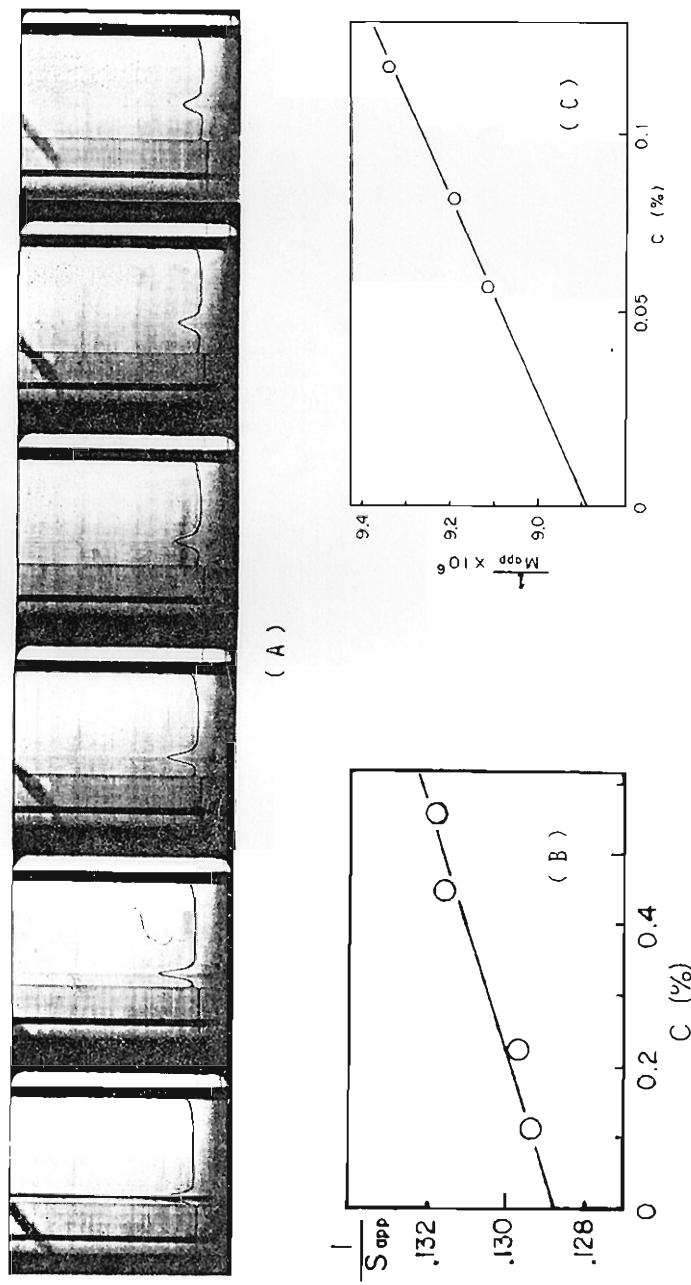
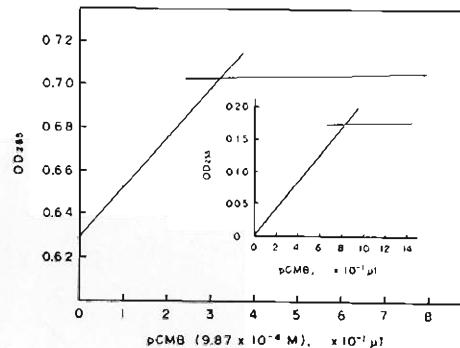




Fig. 2. (A) Sedimentation pattern of *pumpkin seed globulin*. The ultracentrifuge was run with 0.1 M Na-phosphate buffer, pH 7.0, containing 2 M NaCl. Photographs were taken at 13, 25, 37, 49, 61 and 73 min (from left to right) after reaching a speed of 40,000 rpm at 20°C. Protein concentration was 0.56%. (B) Plot for  $1/S_{app}C$  by sedimentation velocity. The conditions were as given in (A).  $S_{app}$  and  $C$  represent the apparent  $S$  value and protein concentration of seed globulin, respectively. (C) Estimation of the molecular weight of *pumpkin seed globulin* by sedimentation equilibrium. Analysis was carried out in 0.1 M Na-phosphate buffer, pH 7.0, containing 2 M NaCl, at 20°C and 4,800 rpm.

## Pumpkin seed globulin I

805

Fig. 3. The titration of sulphydryl groups in seed globulin by the pCMB titration method. The inset shows the standardization curve for the pCMB solution used by 3 ml of  $2.70 \times 10^{-4}$  M glutathione. pCMB ( $9.87 \times 10^{-4}$  M), 10  $\mu$ l at a time, was added to 3 ml of 0.1% protein solution in 0.33 M Na-acetate buffer, pH 4.6, containing 6 M urea and to 3 ml of the buffer in the absence of the protein. The absorbance increase was measured at 255 nm.



to be 7.8 (Fig. 2(B)). The sedimentation equilibrium method showed the molecular weight of the protein to be 112,000 daltons (Fig. 2(C)).

*Chemical properties of globulin:* The amino acid composition of carboxymethylated globulin is shown in Table 1 together with that reported by Chou and Splittstoesser (8). The contents of arginine, aspartic acid and glutamic acid were remarkably high, having the general properties of other seed storage proteins. This composition was similar not only to those of the globulins from squash, cucumber and watermelon which belong to *Cucurbitaceae*, but also to that of edestin from hemp (*Cannabis sativa*) seed (24). The half-cystine content, 9 residues per 112,000 daltons, was very low. The number of free sulphydryl groups was 0.9–1.2 mole per protein by both pCMB




Fig. 4. SDS-polyacrylamide gel electrophoretic patterns of *Cucurbitaceae* seed globulin. Seed globulins of cucumber and watermelon were prepared as described in the text for pumpkin globulin. 7.5% gel was used. Gel buffer solution was 0.1 M Tris-acetate, pH 8.2, containing 0.5% SDS. Electrophoresis was carried out at 25 mA for 2.5 hr at 20°C. -ME and +ME represent the absence and presence of  $\beta$ -mercaptoethanol, respectively.

titration (Fig. 3) and PE-cysteine determination in 6 M urea. Probably the other 8 residues formed disulfide bonds.

The Edman degradation procedure revealed the N-terminal residue to be only glycine. The second step showed leucine. The N-terminal residue of  $\beta$  subunit separated by SDS-hydroxylapatite chromatography (Fig. 6) was also glycine. The quantitative determination of the terminal residue will be reported in the future.

Hexose and hexosamine were not detected.

*Subunit structure of globulin:* SDS-polyacrylamide gel electrophoresis separated the globulin into two subunits,  $\alpha$  and  $\beta$ , which were shown as corresponding bands on the gel electrophorogram in the absence of sulphydryl reducing agent as shown in Fig. 4. The molecular weights of these corresponded to 63,000 for  $\alpha$  and 56,000 for  $\beta$ . The color strength of the  $\alpha$  band developed by Coomassie brilliant blue was apparently a little less than that of the  $\beta$  band. After reduction with  $\beta$ -mercaptoethanol they were further separated into main bands,  $\gamma$ ,  $\gamma'$  and  $\delta$ , corresponding to molecular weights of about 36,000, 34,000 and 22,000 daltons, respectively. A minor band  $\delta'$  was present near  $\delta$ . To learn whether it is common in other seed globulins or unique in pumpkin globulin to have subunits,  $\alpha$  and  $\beta$ , and the peptide chains,  $\gamma$ ,  $\gamma'$ ,  $\delta$  and  $\delta'$ , globulins were prepared in the same manner from cucumber and watermelon belonging to the same family, Cucurbitaceae. These globulins

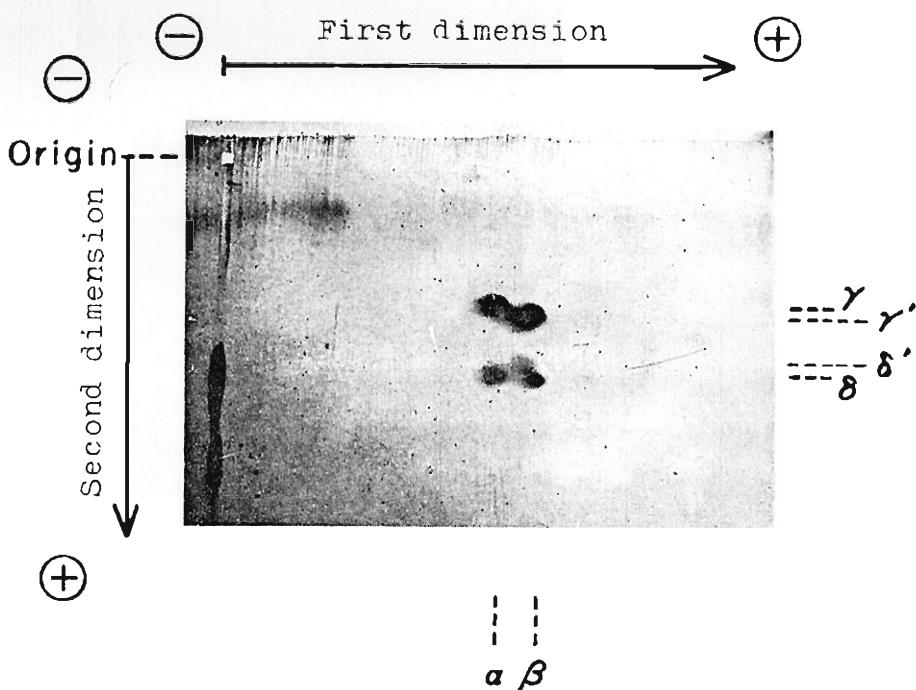



Fig. 5. Two-dimensional SDS-polyacrylamide gel electrophoretic pattern of pumpkin seed globulin. 10% gel was used. After the first run, the gel plate was soaked in a gel buffer containing 5%  $\beta$ -mercaptoethanol for 30 min to reduce disulfide bonds. The second run was successively carried out at right angle to the first dimension. The conditions were as in Fig. 4.

## Pumpkin seed globulin I

807

showed similar SDS-gel electrophoretic patterns except for minor difference in migration distance (Fig. 4).

It is interesting to note that when 0.1% SDS was used, the globulin showed only one broad band with approximately the same mobility as those of  $\alpha$  and  $\beta$ . Using 0.05% SDS in order to visualize protein-SDS complexes in gels by chilling according to Wallace et al. (33), again only one band appeared without any separation of  $\alpha$  and  $\beta$ . Therefore, it was necessary to use a high concentration, 0.5%, of SDS in both reservoir and gel buffer to obtain a clear separation of the  $\alpha$  and  $\beta$  bands.

The SDS-gel electrophoretic patterns in Fig. 4 indicate that both subunits  $\alpha$

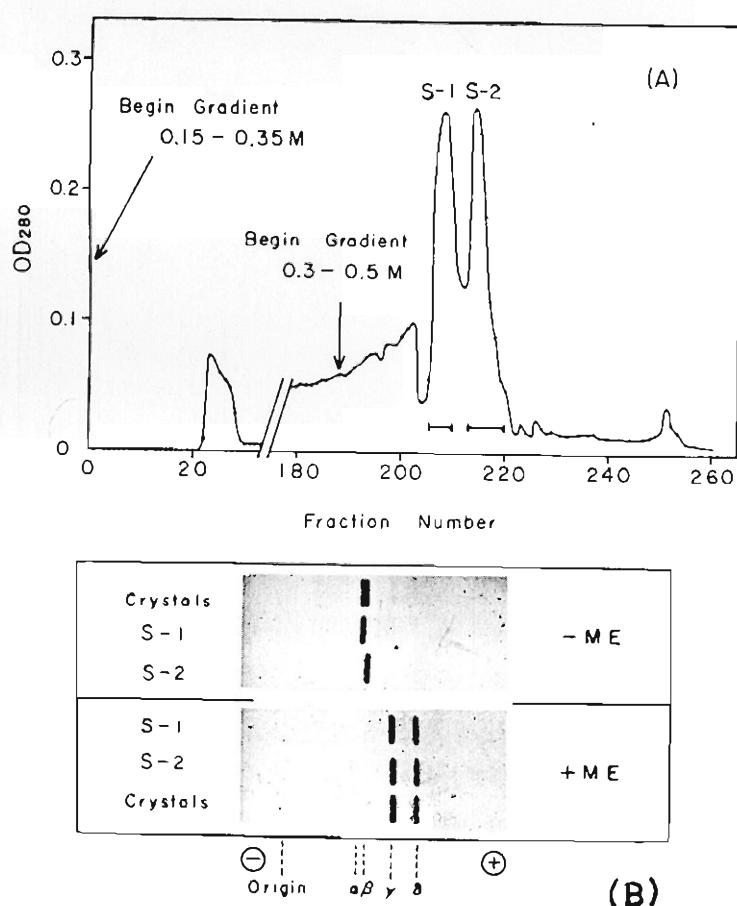



Fig. 6. (A) SDS-hydroxylapatite chromatography of SDS treated pumpkin seed globulin. Seed globulin dissolved in 0.01 M Na-phosphate buffer, pH 6.4, containing 2% SDS was heated at 100°C for 2 min and applied to a column (1.4 × 25 cm) of hydroxylapatite treated with SDS. After gradient elution between 0.15 M and 0.35 M of Na-phosphate buffer containing 0.1% SDS, another gradient elution between 0.3 M and 0.5 M phosphate buffer was carried out. Each fraction volume was 1.5 ml. The fractions were monitored at 280 nm. (B) SDS-polyacrylamide gel electrophoretic patterns of two peaks, S-1 and S-2, obtained by the chromatography shown in (A). The electrophoretic conditions were as in Fig. 4.

and  $\beta$  must have disulfide bonds in the molecules. Two dimensional SDS-polyacrylamide gel electrophoresis confirmed the fact that  $\alpha$  and  $\beta$  subunits separated by the first electrophoresis were further separated by the second to give  $\gamma$ ,  $\gamma'$ ,  $\delta$ , and  $\delta'$  chains after reduction by  $\beta$ -mercaptoethanol (Fig. 5). The  $\gamma'$  spot derived from subunit  $\beta$  moved a little faster than the  $\gamma$  spot from subunit  $\alpha$ . In contrast the  $\delta$  spots from both  $\alpha$  and  $\beta$  showed nearly the same mobilities. A faint spot apparently derived from the  $\beta$  subunit seemed to correspond to  $\delta'$  shown in Fig. 4. Comparing the patterns shown in Fig. 4, it seems likely that  $\gamma$  and  $\gamma'$  derived from  $\alpha$  and  $\beta$  have slightly different molecular weights, and  $\delta$  derived from  $\alpha$  and  $\beta$  have similar molecular weights. In order to characterize the  $\alpha$  and  $\beta$  subunits, further separation was performed on an SDS-hydroxylapatite column. Column chromatography yielded two main peaks, S-1 and S-2 (Fig. 6(A)). SDS-gel electrophoresis of the protein in each peak showed that the fraction S-1 corresponded to the  $\alpha$  band and S-2 to the  $\beta$ . These two components had similar amino acid compositions. After reduction with  $\beta$ -mercaptoethanol, both S-1 and S-2 showed nearly an similar pattern having  $\gamma$  and  $\delta$  bands (Fig. 6(B)). However, if the pattern was carefully examined,  $\gamma$  derived from S-2 moved a little faster than  $\gamma$  from S-1. This coincided well with the pattern shown by two dimensional electrophoresis. These results suggested that each subunit,  $\alpha$  and  $\beta$ , had disulfide bonds combining each  $\gamma$  and  $\gamma'$  with  $\delta$  chains.

Further, using carboxymethylated globulin, the separation of chains,  $\gamma$ ,  $\gamma'$ ,  $\delta$  and  $\delta'$ , was performed by DEAE-cellulose column chromatography in 0.1 M Tris-HCl buffer, pH 8.0, containing 6 M urea. The chromatography gave three main peaks, P-1, P-2, and P-3 (Fig. 7(A)). SDS-gel electrophoresis of these showed that P-1 corresponded to the  $\delta$  band, P-2 to the  $\gamma$ , and P-3 to the  $\gamma'$  (Fig. 7(B)). The amino acid compositions of P-1 and P-3 are shown in Table 1. Twice the value of the sum of the compositions of P-1 and P-3, (composition of  $\delta$ +composition of  $\gamma'$ ) $\times 2$  coincided very well with the composition of the original globulin.




Fig. 7. (A) DEAE-cellulose chromatography of carboxymethylated globulin. Protein dissolved in 0.1 M Tris-HCl buffer, pH 8.0, containing 6 M urea was applied to the column (2.6  $\times$  40 cm). After passing 20 ml of the above buffer, a linear gradient to 0.6 M NaCl was conducted. Each fraction contained 2 ml. The flow rate was 10 ml per hr. (B) The densitograms of SDS-gel electrophoresis of the main peaks, P-1, P-2 and P-3, as shown in (A). The electrophoretic conditions were as in Fig. 4.

## Pumpkin seed globulin I

809

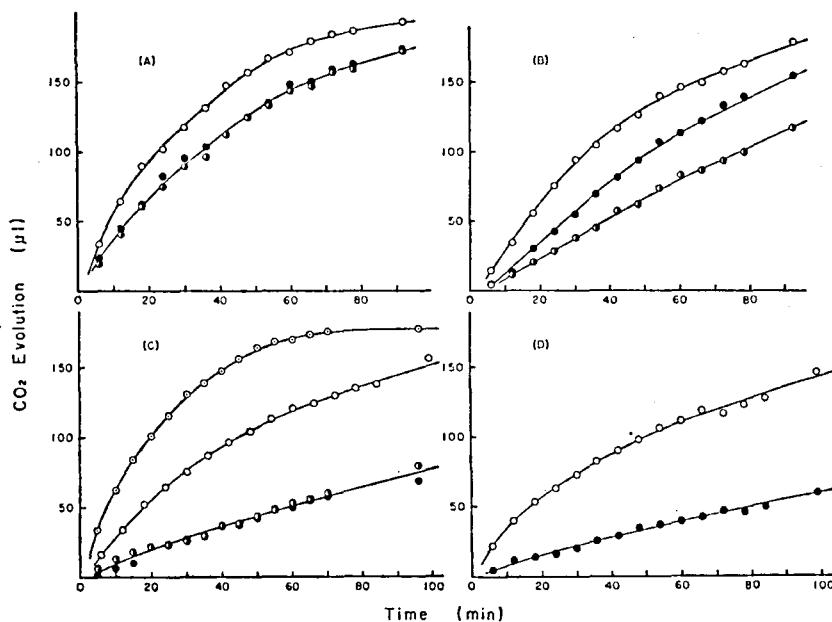



Fig. 8. Effect of  $Mn^{++}$  on the oxaloacetate decarboxylase activity of pumpkin seed globulin. The evolution of  $CO_2$  from 10  $\mu$ moles of oxaloacetate was measured in 2 ml of 0.2 M Na-acetate buffer, pH 4.5, containing (A) 1 mM  $MnCl_2$ , (B) none, (C) 0.1 mM EDTA, and (D) 1 mM EDTA at 35°C by a Warburg manometer. -○-, with 0.4 mg of seed globulin; -●-, with 1 mg of seed globulin; -□-, with 0.4 mg of heat treated seed globulin; and -●-, without globulin.

Because the  $\alpha$  and  $\beta$  subunits had similar amino acid compositions and SDS-gel electrophoretic patterns except for minor differences in their molecular weights, it was possible to assume that the  $\beta$  subunit might be a product of partial proteolysis of the  $\alpha$  subunit. In order to inhibit the action of protease, if any, during preparation, we tried the heat treatment before extraction, the addition of 1 mM PCMB to the buffer, or using the maturing seeds in the fruits as the starting material. However, no particular change in SDS-gel electrophoretic pattern was observed in any case.

*Oxaloacetate decarboxylase and other biological activities of globulin:* It is known that pumpkin seed globulin has oxaloacetate decarboxylase activity (29). We confirmed this, and will show some additional data here. The optimum pH of the activity was determined to be 4.5 using 0.2 M Na-acetate buffer. The effect of  $Mn^{++}$  on the activity was examined in the same buffer, as shown in Fig. 8. In the presence of 1 mM  $Mn^{++}$ , the  $CO_2$  evolution of the control systems with or without heat inactivated enzyme were nearly the same as that of the active enzyme system (Fig. 8(A)). This result was probably due to the decarboxylation of oxaloacetate catalyzed by the metal itself. In the absence of  $Mn^{++}$  the  $CO_2$  evolution of those systems decreased as a whole, and that of the control system with the heat inactivated enzyme was less than that of the system without the heat inactivated enzyme (Fig. 8 (B)). This was probably caused either by the adsorption of  $CO_2$  evolved on the heat inactivated enzyme or by the trapping in the heat inactivated enzyme of metal ions

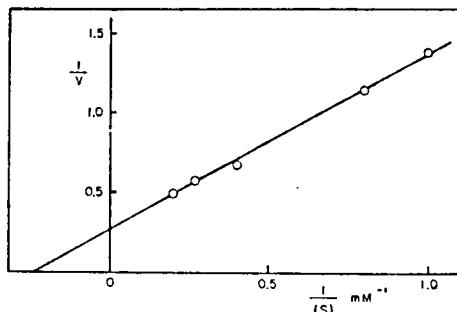



Fig. 9. The Lineweaver-Burk plot of oxaloacetate decarboxylase activity. The manometric measurement was carried out in 0.2M Na-acetate buffer, pH 4.5, containing 1 mM EDTA at 35°C with 0.4 mg of seed globulin.

contaminating the reaction mixture which catalyzed the decarboxylation of oxaloacetate. The addition of 0.1 mM EDTA to the reaction system depressed the  $\text{CO}_2$  evolutions of control systems to a reasonably low level but still the enzyme activity was seen to be fairly in a high level (Fig. 8(C)). By increasing the concentration of EDTA to 1 mM, the control  $\text{CO}_2$  evolution was slightly further depressed without practical change in the activity of the enzyme (Fig. 8 (D)). These results suggested that  $\text{Mn}^{++}$  was not required to activate the decarboxylase in the pumpkin globulin. A higher  $\text{CO}_2$  evolving activity was observed with a higher globulin concentration without affecting the control levels of  $\text{CO}_2$  evolution (Fig. 8 (C)). However, the initial rates were difficult to measure, and the following experiments were carried out in a buffer containing 1 mM EDTA with 0.4 mg of seed globulin. Using this system, the  $K_m$  value for oxaloacetate was calculated by Lineweaver-Burk plots to be 4.1 mM (Fig. 9), which was fairly high compared to the usual value for other oxaloacetate decarboxylase (35).

Table 2 shows the decrease in activity by standing the globulin in Na-acetate buffer, pH 4.5, containing EDTA, but the cause of this phenomenon was unknown. Pyruvate, malate, succinate, maleate, malonate, citrate, and glutamate were not decarboxylated by the globulin under the same conditions used for the assay of oxaloacetate decarboxylase activity. It showed no other biological activities such as antibiotic activities against yeast, fungi, *E. coli*, and *B. subtilis*, toxin activity against mice, or phosphoenolpyruvate carboxylase activity.

Table 2 Effect of incubation time on the oxaloacetate decarboxylase activity

| Time    | Enzyme <sup>a</sup><br>(mg/2 ml) | EDTA<br>(mM) | Activity <sup>b</sup><br>( $\mu\text{l}/\text{min}$ ) |
|---------|----------------------------------|--------------|-------------------------------------------------------|
| 30 min  |                                  |              | 4.89                                                  |
| 150 min | 1.0                              | 0.1          | 1.92                                                  |
| 30 min  |                                  |              | 1.78                                                  |
| 4 days  | 0.4                              | 0.1          | 0                                                     |
| 30 min  |                                  |              | 2.06                                                  |
| 4 days  | 0.4                              | 1.0          | 0.37                                                  |

<sup>a</sup> The enzyme was dissolved in 0.2M Na-acetate buffer, pH 4.5, containing EDTA at 20°C.

<sup>b</sup> The activity was expressed as  $\text{CO}_2$  evolution per min in the manometric measurement.

### Discussion

The pumpkin seed globulin prepared by repeated crystallization was shown to be nearly homogeneous by ultracentrifuge analysis. The molecular weight of crystalline globulin was 112,000 daltons in a neutral buffer containing 2 M NaCl. SDS-polyacrylamide gel electrophoresis of the globulin yielded  $\alpha$  and  $\beta$  bands of 63,000 and 56,000 daltons, respectively. Therefore, the molecule of 112,000 daltons was considered to be a dimer of the subunits,  $\alpha$ - $\beta$ ,  $\alpha$ - $\alpha$ , and/or  $\beta$ - $\beta$ . The color strength of the  $\alpha$  band after staining on SDS-gel electrophoresis was slightly less than that of the  $\beta$  band, although SDS-hydroxylapatite chromatography showed two similar peaks, S-1 corresponding to  $\alpha$  and S-2 to  $\beta$ . Therefore, the crystalline seed globulin may have more  $\beta$  subunits than  $\alpha$  subunits. The reduction of disulfide bonds separated  $\alpha$  subunits into  $\gamma$  and  $\delta$  chains with molecular weights of 36,000 and 22,000 daltons, and  $\beta$  subunit into  $\gamma'$  and  $\delta$  chains of 34,000 and 22,000 daltons.

The carboxymethylated globulin was separated into  $\gamma$ ,  $\gamma'$  and  $\delta$  chains by DEAE-cellulose chromatography. Although the  $\delta$  chain was obtained as a single peak, it might be heterogeneous and composed of two different components with a similar molecular weight. Fractions P-2 and P-3 seem to correspond to  $\gamma$  and  $\gamma'$ , respectively.

Twice the value of the sum of the amino acid compositions of  $\gamma'$  (P-3) and  $\delta$  (P-1) was quite similar to the original composition of globulin. It is thus tentatively postulated that the crystalline seed globulin is a unit of 112,000 molecular weight composed of two subunits, each of which has a molecular weight of about 60,000. Each subunit is composed of two unequal polypeptide chains joined by disulfide bonds.

Subunits  $\alpha$  and  $\beta$  showed similar compositions and similar SDS-gel electrophoretic patterns after reductive cleavage of disulfide bonds, but the presence of one mole of free sulphydryl group per 112,000 molecular weight suggested that  $\alpha$  and  $\beta$  subunits had differences in their polypeptide chains though to a minor extent. One of the differences might be due to a partial proteolysis of the  $\alpha$  subunit to produce the  $\beta$  subunit. However, the several other preparation procedures preventing proteolysis resulted in the same SDS-gel electrophoretic pattern. The partial proteolysis, if any, might occur during seed development and maturation after flowering, and not during preparation. Another possibility of the different subunit composition was due to the material itself, which was a hybrid.

The amino acid composition of pumpkin globulin prepared as described above had a composition very similar to that reported by Chou and Splittstoesser (8). The notable differences were in the contents of lysine, arginine, glutamic acid, proline, half-cystine and tyrosine. These differences might be due to the difference in the strain of pumpkin seed. In general, the arginine and acidic amino acid contents were rather high, and this fact might be related to the metabolic process at the early germination stage as suggested by Lignowski and Splittstoesser (17). Only one free sulphydryl group was detected in the molecular weight of 112,000, and therefore only one of the subunits,  $\alpha$  or  $\beta$ , must have it. The location of this group is now under investigation.

It is known that the pumpkin seed globulin has the oxaloacetate decarboxylase

activity (29). The optimum pH of the enzymatic activity was determined to be 4.5. The real optimum pH might lie at a higher pH, but the decrease in solubility of the globulin at higher pH regions in low ionic strengths lowered the activity. Although the solubility of the globulin increased at higher pH regions and ionic strengths, the activity became lower. Byrrum et al. investigated this phenomenon in fairly detail (6). Usually oxaloacetate decarboxylase activity requires or is activated by metal ions such as  $Mn^{++}$  and  $Mg^{++}$  (10, 21, 35). However, in this experiment the decarboxylase activity was not affected by the presence of  $Mn^{++}$ . Since the turnover number of this activity, 25.8, was very low compared to usual enzymatic activities, its physiological role in seed cotyledons is not clear. The following paper will discuss this problem. The  $K_m$  value for oxaloacetate of this enzyme was calculated to be 4.1 mm which was quite high, when compared to others (10, 21). The reaction in seeds is considered to be more like a solid phase reaction and therefore, even if the  $K_m$  value is high, the reaction necessary in the early germination process, if any, will be fulfilled by that enzymatic catalysis. This activity decreased rather rapidly by standing the solution in the Na-acetate buffer, pH 4.5. The reason for the loss of activity at lower pH is not known, but at this pH region the globulin might be in a dissociation-association equilibrium depending on the protein concentration, pH value and incubation time, as suggested by Fuerst et al. (13). Therefore, at this pH the globulin might form polymers which induced the loss of activity.

The storage protein might not merely be one supplying amino acids to germinating cells for de novo protein synthesis but might also have additional functional roles. For example, the globulin structure might be suitable for packing in a dense state in the dehydrated conditions in seeds. Also the unique structure might be suitable for limited proteolysis to release only necessary amino acids and peptides in the early germination stage as one of the regulatory mechanisms. Further, the protein might have some enzymatic activities controlling the germination process, or it might be precursors which would be activated during germination. We are investigating these possibilities, and the oxaloacetate decarboxylase activity might be such a case.

The authors express their thanks to Dr. K. Kakiuchi for his kind assistance with the ultracentrifuge analysis, Drs. S. Yoshikawa and Dr. Y. Morinaga for their helpful support and discussion on the manometric measurement. They also thank Dr. H. Yoshizumi for the assay of antibiotic activity, Dr. M. Funatsu for the toxin assay, and Dr. H. Nakagawa for the phosphoenolpyruvate carboxylase assay.

#### References

- (1) Altschul, A. M., L. Y. Yatsu, R. L. Ory and E. M. Engleman: Seed proteins. *Ann Rev. Plant Physiol.* 17: 113-136 (1966).
- (2) Ashton, F. M. and W. J. Dahmen: A partial purification and characterization of two amino-peptidases from *Cucurbita maxima* cotyledons. *Phytochem.* 6: 641-653 (1967).
- (3) Bencze, W. I. and K. Schmid: Determination of tyrosine and tryptophan in proteins. *Anal. Chem.* 29: 1193-1196 (1957).
- (4) Benesch, R. and R. E. Benesch: Determination of -SH groups in proteins. *Methods Biochem. Anal.* 10: 43-70 (1962).

- (5) Boyer, P. D.: Spectrophotometric study of the reaction of protein sulphydryl groups with organic mercurials. *J. Am. Chem. Soc.* 76: 4331-4337 (1954).
- (6) Byerrum, R. U., S. A. Brown and C. D. Ball: The action of electrolytes on oxalacetic decarboxylase from *Cucurbita* seeds. *Arch. Biochem.* 26: 442-456 (1950).
- (7) Canfield, R. E. and C. B. Anfinsen: Chromatography of pepsin and chymotrypsin digests of egg white lysozyme on phosphocellulose. *J. Biol. Chem.* 238: 2684-2690 (1963).
- (8) Chou, K. H. and W. E. Splitstoesser: Changes in amino acid content and the metabolism of  $\gamma$ -aminobutyrate in *Cucurbita moschata* seedlings. *Physiol. Plant.* 26: 110-114 (1972).
- (9) Chrispeels, M. J. and D. Boulter: Control of storage protein metabolism in the cotyledons of germinating mung beans: Role of endopeptidase. *Plant Physiol.* 55: 1031-1037 (1975).
- (10) Dean, B. and W. Bartley: Oxaloacetate decarboxylase of rat liver. *Biochem. J.* 135: 667-672 (1973).
- (11) Dure, L. S. III: Seed formation. *Ann. Rev. Plant Physiol.* 26: 256-278 (1975).
- (12) Friedman, M., L. H. Krull and J. F. Cavins: The chromatographic determination of cystine and cysteine residues in proteins as S- $\beta$ -(4-pyridylethyl)cysteine. *J. Biol. Chem.* 245: 3868-3871 (1970).
- (13) Fuerst, C. R., A. G. McCalla and J. R. Colvin: Electrophoretic and sedimentation characterization of crystalline squash seed globulin. *Arch. Biochem. Biophys.* 49: 207-221 (1954).
- (14) Hill, J. E. and R. W. Breidenbach: Proteins of soybean seeds II. *Plant Physiol.* 53: 747-751 (1974).
- (15) Hirs, C. H. W.: Determination of cysteine as cysteic acid. In *Methods in Enzymology* 11. Edited by S. P. Colowick and N. O. Kaplan. p. 59-62. Academic Press Inc., New York, N.Y., 1967.
- (16) Iwanaga, S., P. Wallén, N. J. Gröndahl, A. Henschchen and B. Blombäck: On the primary structure of human fibrinogen. Isolation and characterization of N-terminal fragments from plasmic digests. *Eur. J. Biochem.* 8: 189-199 (1969).
- (17) Lignowski, E. M., W. E. Splitstoesser and K. H. Chou: Glutamine synthesis in germinating seeds of *Cucurbita moschata*. *Plant & Cell Physiol.* 12: 733-738 (1972).
- (18) Millerd, A.: Biochemistry of legume seed proteins. *Ann. Rev. Plant Physiol.* 26: 53-72 (1975).
- (19) Moss, B. and E. N. Rosenblum: Hydroxylapatite chromatography of protein-sodium dodecyl sulfate complexes. *J. Biol. Chem.* 247: 5194-5198 (1972).
- (20) Osbone, T. B.: Crystallized vegetable proteins. *Am. Chem. J.* 14: 662-689 (1892).
- (21) Plaut, G. W. E. and H. A. Lardy: The oxalacetate decarboxylase of *Azotobacter vinelandii*. *J. Biol. Chem.* 180: 13-27 (1949).
- (22) Rena, A. B. and W. E. Splitstoesser: The metabolism of proline in cotyledons of pumpkin (*Cucurbita moschata*). *Plant & Cell Physiol.* 15: 681-686 (1974).
- (23) Rosevear, J. W. and E. L. Smith: Glycopeptides I. *J. Biol. Chem.* 236: 425-435 (1961).
- (24) Smith, E. L. and R. D. Greene: Further studies on the amino acid composition of seed globulins. *J. Biol. Chem.* 167: 833-842 (1947).
- (25) Spackman, D. H., W. H. Stein and S. Moore: Automatic recording apparatus for use in the chromatography of amino acids. *Anal. Chem.* 30: 1190-1206 (1958).
- (26) Spencer, P. W. and R. D. Spencer: Globulin-specific proteolytic activity in germinating pumpkin seeds as detected by a fluorescence assay method. *Plant Physiol.* 54: 925-930 (1974).
- (27) Tiselius, A., S. Hjertén and Ö. Levin: Protein chromatography on calcium phosphate columns. *Arch. Biochem. Biophys.* 65: 132-155 (1956).
- (28) Tsay, R. and F. M. Ashton: *De novo* synthesis and hormonal regulation of a dipeptidase in *Cucurbita maxima*. *Phytochem.* 13: 1759-1763 (1974).
- (29) Vennesland, B. and R. Z. Felsher: Oxalacetic and pyruvic carboxylases in some dicotyledonous plants. *Arch. Biochem.* 11: 279-306 (1946).
- (30) Vickery, H. B., E. L. Smith, R. B. Hubbell and L. S. Nolan: Cucurbit seed globulins I. *J. Biol. Chem.* 140: 613-624 (1941).

- (31) von Korff, R. W.: Purity and stability of pyruvate and  $\alpha$ -ketoglutarate. In *Methods in Enzymology* 13. Edited by J. M. Lowenstein. p. 519-523. Academic Press Inc., New York, N.Y., 1969.
- (32) Wada, H. and E. E. Snell: Isolation of large peptides by flat-bed polyacrylamide gel electrophoresis. *Anal. Biochem.* 46: 548-556 (1972).
- (33) Wallace, R. W., P. H. Yu, J. P. Dieckert and J. W. Dieckert: Visualization of protein-SDS complexes in polyacrylamide gels by chilling. *ibid.* 61: 86-92 (1974).
- (34) Weber, K. and M. Osborn: The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. *J. Biol. Chem.* 244: 4406-4412 (1969).
- (35) Wojtczak, A. B. and E. Walajtys: Mitochondrial oxaloacetate decarboxylase from rat liver. *Biochim. Biophys. Acta* 347: 168-182 (1974).
- (36) Yphantis, D. A.: Equilibrium ultracentrifugation of dilute solutions. *Biochem.* 3: 297-317 (1964).

Plant & Cell Physiol. 17: 815-823 (1976)

## Pumpkin (*Cucurbita* sp.) seed globulin II. Alterations during germination

Ikuko Hara, Keishiro Wada, and Hiroshi Matsubara

Department of Biology, Faculty of Science, Osaka University,  
Toyonaka, Osaka 560, Japan

(Received April 9, 1976)

Alterations in pumpkin seed globulin during germination were examined mainly by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The total protein content of etiolated cotyledons decreased to 32% of the initial content 14 days after germination, and the globulin was rapidly degraded to produce new components with molecular weights of about 40,000 (major component) and 30,000 daltons, which were soluble in a solution with relatively low concentrations of salt at neutral pHs in contrast to insoluble crystalline globulin. The proportion of these soluble proteins to the total amount of protein extracted in 2 M NaCl solution increased rapidly during the period of 2 to 4 days after planting. During this period, the globulin was rapidly degraded with progressive increase of the component of 40,000 daltons. This species was separated into two polypeptide chains with molecular weight of about 20,000 daltons by treatment with sulphydryl reducing reagent. The soluble fraction preserved oxaloacetate decarboxylase activity. These changes in solubility and subunit structure, and the preservation of the decarboxylase activity of heat stable proteins obtained from etiolated cotyledons are discussed.

The degradation of seed proteins during germination has been studied for many years, especially using legume seeds (14), such as *Glycine max* (3), *Phaseolus aureus* (5, 9), *Vicia faba* (2) and *Pisum sativum* (6). Some proteolytic enzymes have been found in various seeds (5, 10, 12, 16, 19). Biochemical and histochemical methods have also been used in these studies. Recently, using immunological techniques, the development and degradation of  $\gamma$  globulin of rice embryo have been studied (11). Splittstoesser et al. have reported the metabolic systems of amino acids released from pumpkin cotyledonary reserve protein (4, 13, 15) hydrolyzed by proteolytic enzymes (1).

The pumpkin globulin has been shown to have a molecular weight of 112,000 daltons and to be dissociated in sodium dodecyl sulfate (SDS) solution into two subunits of around 60,000 daltons composed of two non-identical peptide chains

Abbreviations: SDS, sodium dodecyl sulfate; pCMB, *p*-chloromercuribenzoate; A-buffer, 0.1 M Na-phosphate buffer, pH 7.0, containing 2 M NaCl; B-buffer, 0.02 M Na-phosphate buffer, pH 7.0, containing 0.4 M NaCl; Sup I, II, and III, supernatant solutions I, II, and III, respectively; Sup II-*n* and Sup III-*n*, the supernatant solution II and III prepared from the cotyledons germinated for *n* days.

of about 36,000 and 22,000 daltons linked by disulfide bonds as described in the preceding paper (8).

Following the detailed process of the degradation of this seed globulin during germination, particularly in its early stage, must give an insight into the regulatory mechanism of degradation relating to the utilization of amino acids released. Further it is interesting to see whether the oxaloacetate decarboxylase activity does show any difference in its catalytic manner after degradation. The study of the proteolytic enzyme system relating to the early germination stage is also quite interesting.

This paper describes the alterations in the subunit structure, the properties and the activities of pumpkin seed globulin during germination.

### Materials and methods

**Materials:** Pumpkin seeds and all other reagents were the same as those described in the preceding paper (8).

**Germination of the pumpkin seeds:** Pumpkin seeds were weighed after removal of the coats, allowed to germinate on moist filter papers in Petri dishes and grown in the dark at 20°C for various periods up to 14 days.

**Preparation of the crystals and other fractions from etiolated cotyledons:** Crystallization procedure of pumpkin globulin was almost the same as that described (8) except for the volume (20 ml per 1 g of dry seeds) of 0.1 M Na-phosphate buffer, pH 7.0, containing 2 M NaCl (A-buffer) used for the extraction, and the addition of 1 mM pCMB, as shown in Fig. 1. After the seeds (about 1 g) were grown in the dark for a certain period, the cotyledons were ground in a mortar and stood for 18 hr at 20°C in 20 ml of the A-buffer with 1 mM pCMB. The homogenate was centrifuged at 12,000 rpm for 20 min and the supernatant solution (Sup I) was heated at 80°C for 10 min. After centrifugation a supernatant solution (Sup II) was obtained. Sup II was gradually cooled and maintained at 0°C overnight to precipitate crude crystals. Sup II was separated into the first crystals and supernatant

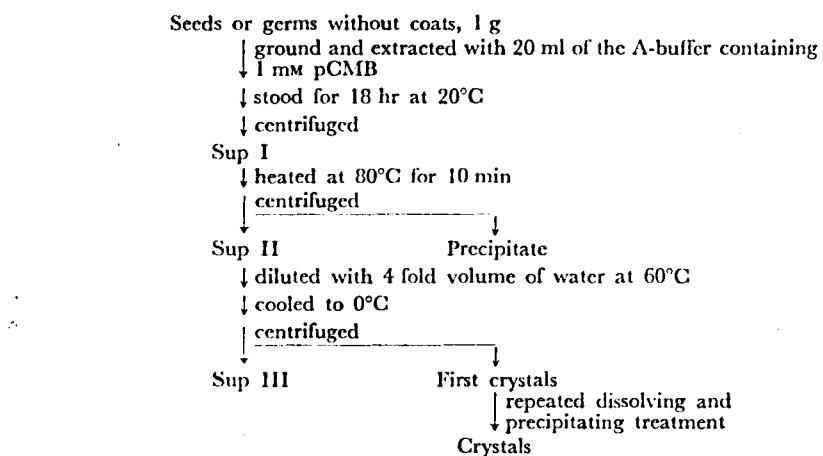



Fig. 1. A flow sheet for the preparation of seed globulin and other fractions.

solution (Sup III) by centrifugation. Since the protein concentration in cotyledons obtained at different germination stages decreased with time, it was assumed to be in accurate to use an equal amount of buffer solution for extraction of proteins and estimation of their solubilities. Therefore, in a separate experiment an alternative preparative procedure was employed. Namely, the proportion of the volume of the A-buffer with 0.1 mM pCMB to the total amount of proteins estimated by the above experiment was made constant, that is, 20 ml per 250 mg of total protein, although there was no practical difference between the results obtained by these two extraction methods.

*Estimation of the protein content:* The content of proteins in Sup II or Sup III extracted from germinated cotyledons was estimated by the biuret reaction of Gornall et al. (7). Sup II or Sup III of the cotyledons obtained after a certain period of germination was diluted with the A-buffer or 0.02 M Na-phosphate buffer, pH 7.0, containing 0.4 M NaCl (B-buffer) to make the protein concentrations 1 to 10 mg per ml. After the mixture of 1 ml of Sup II or Sup III and 4 ml of biuret reagent was stood for 30 min at 20°C, the absorbance was measured at 540 nm with a Hitachi spectrophotometer, type 124. A calibration curve was prepared using crystalline globulin.

*SDS-polyacrylamide gel electrophoresis:* Sup II at each stage was diluted 15 fold with 0.025 M Tris-acetate buffer, pH 8.2, containing 1% SDS for Sup II-0 and Sup II-1, 10 fold for Sup II-2 and Sup II-4, and 5 fold for Sup II-6, Sup II-8, Sup II-10 and Sup II-14, and dialyzed for 4 hr at 20°C against the same solution as that used for dilution before applying to SDS-gel electrophoresis. Each Sup III was applied to SDS-gel electrophoresis after dialysis. The detailed conditions of SDS-gel electrophoresis have been described in the preceding paper (8). After staining followed by destaining, the gel slabs were scanned at 570 nm with a Fuji Riken Densitometer, type FD-A IV. In order to determine the relative amounts of components in Sup II, the area under each peak in the densitogram was measured.

*Determination of the solubility and the components in Sup II:* It was tentatively defined that the solubility was the percentage of the amount of soluble protein in Sup III soluble in the B-buffer to the total amount of proteins in Sup II. In other words the solubility corresponded to the proportion of the amount of soluble components in 0.4 M NaCl solution to that of heat stable protein extracted by 2 M NaCl solution from germinated cotyledons. Both the protein content and the relative amounts of components on the densitogram obtained by SDS-gel electrophoresis were determined as described above.

*Assay method for oxaloacetate decarboxylase activity:* Manometric measurement was used. The protein content of each fraction of Sup II was estimated by the biuret method. Each Sup II was diluted with the A-buffer containing 1 mM EDTA to make the protein concentration 0.4 mg per 0.035 ml, and its final concentration was adjusted to be 0.4 mg per 0.1 ml by successive dilution with 1 mM EDTA. The main vessel contained 0.1 ml of the sample solution and 1.8 ml of 0.2 M Na-acetate buffer, pH 4.5, containing 1 mM EDTA. The side arm contained 0.1 ml of 0.1 M oxaloacetate dissolved in 1 mM EDTA. The other conditions were the same as described (8).

### Results

The globulin crystals obtained from dry seeds showed a subunit structure composed of  $\alpha$  and  $\beta$  identified by SDS-polyacrylamide gel electrophoresis as described (8). The  $\alpha$  and  $\beta$  subunits were further separated principally to  $\gamma$  and  $\delta$  polypeptide chains after cleaving the disulfide bonds.

Germinating seeds showed elongation of the roots followed by the appearance of hypocotyls by utilizing materials derived from the so-called storage protein (Fig. 2). Sup I prepared as described in Fig. 1 from these cotyledons at various germination stages contained proteins soluble in 2 M NaCl solution, which decreased to 32% of the initial content after 14 days (Fig. 2). Sup I was separated into Sup II and precipitate by centrifugation after heat treatment at 80°C, 10 min (Fig. 1). The protein content of the heat unstable precipitate showed little change during germination (Fig. 2). Namely, as the total amount of protein in Sup I decreased during germination, the heat stable proteins also decreased. The crystals prepared as shown in Fig. 1 from the cotyledons of seeds germinated for various periods showed exactly the same gel electrophoretic patterns as those for crystals obtained from dry seeds.

Sup II prepared from the cotyledons at different germination stages subjected to SDS-gel electrophoresis. The results are shown in Fig. 3. Sup II·0 prepared from dry seeds gave two bands,  $\alpha$  and  $\beta$ , with molecular weights of 63,000 and 56,000 daltons, respectively, which were mostly derived from crystalline globulin. A slightly higher density was observed at the position of  $\beta$  band as was also observed previously (8). As germination proceeded, the  $\alpha$  band initially decreased and disappeared in 2 to 3 days after germination and the  $\beta$  band also disappeared by 8 days. Concomitantly with the decrease of  $\alpha$  and  $\beta$  bands, components of about 40,000 ( $F_{43}$ ) and 30,000 daltons increased rapidly by 4 days and then decreased by 10 days. Essentially the same pattern was observed with the changes of various

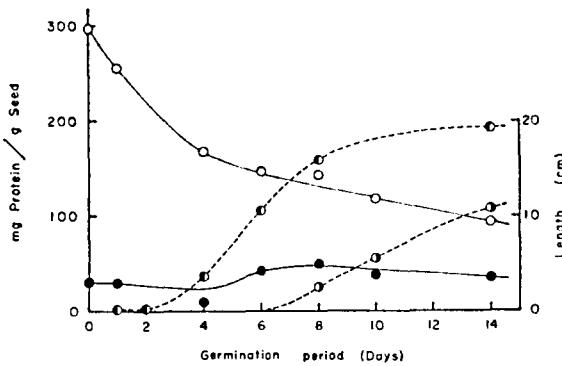



Fig. 2. Changes in the protein content in cotyledons, lengths of roots, and hypocotyls during germination. Seeds after removal of coats were placed on moist filter papers and allowed to imbibe water in the dark at 20°C for days. Determination of the protein content was by the biuret method. -○-, the total amount of protein in Sup I from cotyledons of 1 g seed during germination; -●-, the content of heat unstable protein included in Sup I; that is, the amount of precipitate of Sup I produced by heat treatment (80°C for 10 min) -○--○-, the average length of roots of the seedlings; -●--●-, the average length of hypocotyls of the seedlings.

## Pumpkin seed globulin II

819

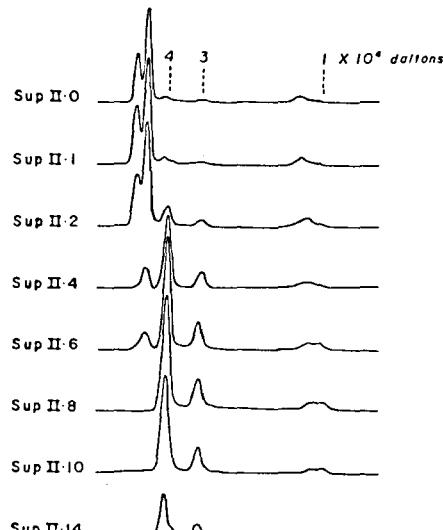



Fig. 3.

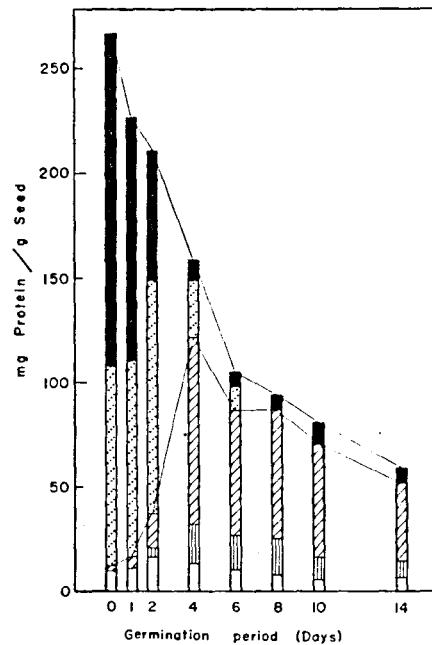



Fig. 4.

Fig. 3. *SDS-polyacrylamide gel electrophoretic patterns of Sup II from cotyledons at different germination stages.* Sup IIs were obtained as described in Fig. 1 and 2. They were diluted 15 fold for Sup II-0 and Sup II-1, 10 fold for Sup II-2 and Sup II-4, and 5 fold for Sup II-6, Sup II-8, Sup II-10 and Sup II-14, with 0.025 M Tris-acetate buffer, pH 8.2, containing 1% SDS. After dialyzing against the same solution as that used for dilution, they were applied to SDS-gel electrophoresis. The conditions for electrophoresis were described previously (8). The gels were scanned at 570 nm by a Fuji Riken Densitometer, type FD-A IV.

Fig. 4. *Changes in the components in Sup II.* Sup II, Sup III and first crystals were prepared as shown in Fig. 1. The amount of  $\alpha + \beta$ ,  $F_{\alpha\beta}$  and the components with molecular weights of about 30,000 and 10,000 daltons were calculated by the ratio of each area under the peak in the densitogram shown in Fig. 3 to the total amount of the protein in Sup II. ■,  $\alpha + \beta$  (first crystals); ▨,  $\alpha + \beta$  (in Sup III); ▨,  $F_{\alpha\beta}$  (in Sup III); ▨, the component with molecular weight of about 30,000 daltons (in Sup III); □, the component with molecular weight of about 10,000 daltons (in Sup III).

components in Sup III. The quantitative changes in the components in Sup II during germination are summarized in Fig. 4. A remarkable change was noted in the pattern of the components during the period of 2 to 4 days after planting. In this stage the  $\alpha$  and  $\beta$  components decreased rapidly while the  $F_{\alpha\beta}$  increased simultaneously with the increase of the component of about 30,000 daltons, although the amount of this component was relatively small. The total amount of heat stable protein, mostly composed of  $\alpha$  and  $\beta$ , extracted from the dry seeds was about 27% of the total weight of seeds without coats and that extracted from etiolated cotyledons decreased to 22% of the initial protein content after 14 days (Fig. 5). On the other hand, the solubility, the proportion of the amount of soluble components in 0.4 M NaCl solution to the total amount of protein in Sup II, increased rapidly,

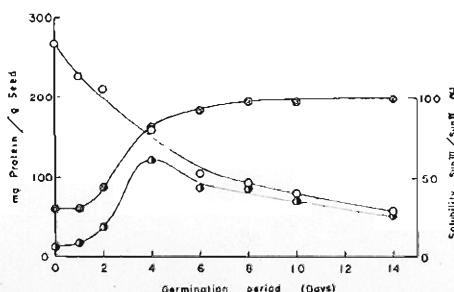



Fig. 5. Changes in components in cotyledons during germination.  $\circ$ —, total amount of protein in Sup II from cotyledons of 1 g of seed during germination;  $\bullet$ —, the solubility expressed as the percentage of the amount of protein in Sup III to that in Sup II;  $\bullet$ —, total amount of protein with molecular weights of about 40,000 ( $F_{\alpha\beta}$ ), 30,000 and 10,000 daltons, excluding  $\alpha$  and  $\beta$  derived from crystalline globulin.

especially during the period of 2 to 4 days and almost all proteins were found to be soluble in 0.4 M NaCl solution by 6 days (Fig. 5). The total amount of protein of about 40,000 ( $F_{\alpha\beta}$ ), 30,000 and 10,000 daltons increased rapidly by 4 days and then gradually decreased (Fig. 5).

It was clear from Fig. 4 that the  $F_{\alpha\beta}$  was rapidly accumulated by 4 days of germination and slowly degraded afterwards. To learn the molecular changes in globulin in more detail SDS-gel electrophoresis was again used for Sup III as

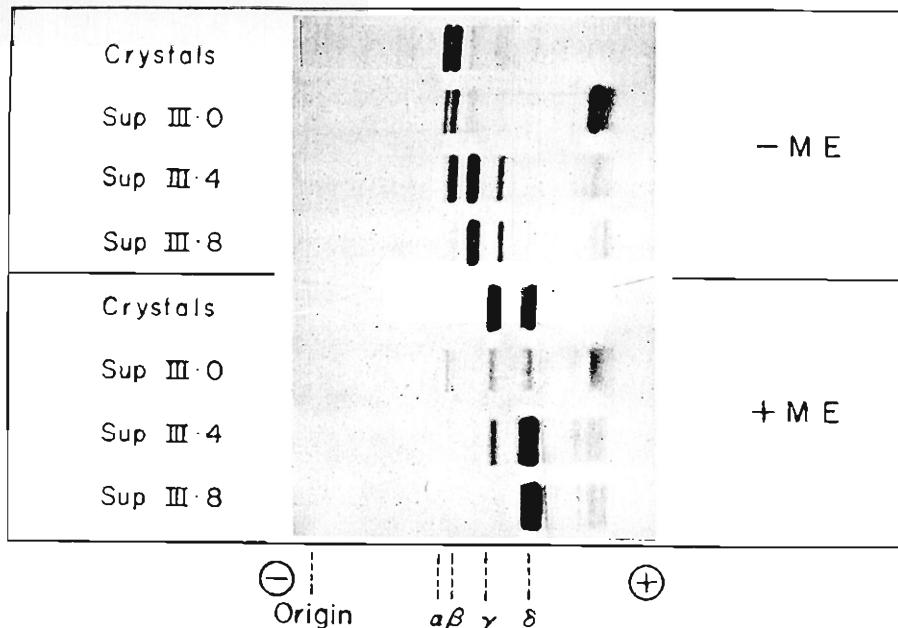



Fig. 6. SDS-polyacrylamide gel electrophoretic patterns of Sup III extracted from 0-, 4-, and 8-day seeds. The conditions of germination and electrophoresis were the same as in Fig. 2 and 3 without any dilution of the sample. ME refers to  $\beta$ -mercaptoethanol.

Table I *Changes in oxaloacetate decarboxylase activity of Sup II during germination*

| Fraction  | Activity <sup>a</sup><br>( $\mu$ l/min) |
|-----------|-----------------------------------------|
| Sup II·0  | 2.48                                    |
| Sup II·2  | 1.98                                    |
| Sup II·4  | 2.45                                    |
| Sup II·6  | 1.87                                    |
| Sup II·8  | 2.07                                    |
| Sup II·10 | 1.88                                    |
| Sup II·12 | 2.15                                    |

<sup>a</sup> Manometric measurement of  $\text{CO}_2$  evolution.

shown in Fig. 6. Compared to the pattern of crystalline globulin, Sup III·0 showed a higher content of material corresponding to the  $\beta$  subunit than the  $\alpha$  and also a strong band corresponding to a low molecular weight at around 10,000 daltons. This pattern suggested that the  $\beta$  subunit seemed to be more soluble than the  $\alpha$  in the B-buffer. The Sup III·8 gave a major band,  $F_{\alpha\beta}$ , and the addition of  $\beta$ -mercaptoethanol produced one major band corresponding to the molecular weight of about 20,000 daltons. This suggested that the larger polypeptide chains,  $\gamma$  and  $\gamma'$  with molecular weight of about 36,000, of  $\alpha$  and  $\beta$  subunits were probably degraded to produce the new molecular species,  $F_{\alpha\beta}$ .

Pumpkin seed globulin is known to have oxaloacetate decarboxylase activity (18), and this fact was confirmed as previously shown (8). The activity of each fraction from the cotyledons at different germination stages showed little change in the assay system employed (Table I). Therefore, at least some of the components derived by partial proteolysis of crystalline globulin must preserve this activity.

### Discussion

As germination proceeded, the proteins in Sup I extracted in 2 M NaCl solution decreased and those in Sup II, heat stable proteins, also decreased, to 22% of their initial content after 14 days of germination. The proteins degraded were considered to be utilized to support the growth and development of the roots and hypocotyls. In our experiments, seeds were allowed to germinate after removal of the coats, and therefore the germination might be faster than that of seeds with the coats, because of their high permeability to water, gas, etc., and lack of mechanical resistance to the increase in volume by imbibition. Although it might be different from the normal germination, the essential mechanism of the germination process was assumed to be the same.

Sup II was separated into Sup III and a precipitate by centrifugation after dilution. The precipitate consisted mostly of crystalline globulin, which had two similar subunits with molecular weights of around 60,000 daltons. They were dissociated into two non-identical polypeptide chains of about 36,000 and 22,000 daltons by sulphydryl reducing agent as described (8). At any germination stage, the precipitate showed essentially the same SDS-gel electrophoretic pattern as that

of crystalline globulin obtained from dry seeds. However, the amount of the precipitate showing this pattern decreased as germination proceeded, while the amount of protein in Sup III soluble in 0.4 M NaCl solution increased. Namely, the solubility, as expressed by Sup III/Sup II, increased with time. This change in solubility was probably due to the change in the structure of globulin molecule itself.

The SDS-gel electrophoretic patterns of Sup II and Sup III extracted from etiolated cotyledons of different stages showed the degradation pattern of the globulin itself, that is,  $\alpha$  subunit of the globulin was first degraded and the degradation of  $\beta$  subunit followed, with the production of new components of about 40,000 ( $F_{\alpha\beta}$ ) and 30,000 daltons. Although these new components might not be homogeneous, there were no other components in a noticeable amount. However, the possibility cannot be excluded that some of these components were newly synthesized during germination. In spite of this possibility, the  $F_{\alpha\beta}$  was considered to be a product of partial proteolysis of the globulin, for the following reasons. (a) It was soluble in 2 M NaCl solution and heat stable as the globulin was. (b) It increased concomitantly with the decrease of  $\alpha$  and  $\beta$  subunits of the globulin. (c) It was separable into two polypeptide chains of about 20,000 daltons by cleavage of disulfide bonds. (d) It preserved oxaloacetate decarboxylase activity.

Both Sup III-0 and crystalline globulin have  $\alpha$  and  $\beta$  subunits, but the proportion of the  $\beta$  content to  $\alpha$  in Sup III was higher than that found in crystalline preparation. The  $\beta$  subunit may be more soluble in the B-buffer than  $\alpha$ . Therefore, solubility of the protein in a neutral solution with low salt concentrations seemed to increase with the increase of the extent of limited proteolysis, that is, the solubility of  $\beta$  is larger than  $\alpha$  and that of  $F_{\alpha\beta}$  larger than  $\beta$ .

The components  $F_{\alpha\beta}$  corresponded to 40,000 daltons on the SDS-gel electrophoresis, but they might be heterogeneous and composed of two different molecular species, one derived from  $\alpha$  and the other from  $\beta$ . Both had two chains of about 20,000 daltons linked by disulfide bands. It is likely that  $F_{\alpha\beta}$  is a hydrolytic product of the heavier chain,  $\gamma$  and  $\gamma'$ , of the  $\alpha$  and  $\beta$  subunits. The  $\delta$  chain was probably intact or very limitedly hydrolyzed, at this stage, and covalently bound to the hydrolyzed chain of  $\gamma$  and  $\gamma'$  by disulfide bonds originally present in  $\alpha$  and  $\beta$ . The globulin thus became soluble in 0.4 M NaCl solution and yet preserved decarboxylase activity after removal of a portion corresponding to the molecular weight of about 20,000 daltons. The insoluble nature of globulin might prevent rapid proteolysis which would produce excess nutrients before the synthetic systems are ready to handle them. The limited proteolysis changed insoluble globulin to a soluble form which might be suitable for subsequent proteolysis and for migration, if necessary. This might be considered a regulatory mechanism of seed germination.

The real physiological function of oxaloacetate decarboxylase activity of the globulin is obscure. However, even after proteolysis producing the component  $F_{\alpha\beta}$ , the oxaloacetate decarboxylase activity was found to the same extent as the original globulin. Therefore, this activity might have some relation to plant metabolic systems. Incidentally oxaloacetate is a strong feed-back inhibitor of, for example, isocitrate lyase (17) which participates in the glyoxalate cycle. Also the decarboxylated product of oxaloacetate, pyruvate, is an important intermediary

compound in various metabolic pathways. The real biological significance of the activity and the search for other biological activities should be considered in future.

The authors thank Dr. K. Tagawa for his encouragement and many valuable suggestions.

#### References

- (1) Ashton, F. M. and W. J. Dahmen: A partial purification and characterization of two amino peptidases from *Cucurbita maxima* cotyledons. *Phytochem.* 6: 641-653 (1967).
- (2) Boulter, D. and J. T. Barber: Amino-acid metabolism in germinating seeds of *Vicia faba* L. in relation to their biology. *New Phytol.* 62: 301-316 (1963).
- (3) Catsimpoolas, N., T. G. Campbell and E. W. Meyer: Immunochemical study of changes in reserve proteins of germinating soybean seeds. *Plant Physiol.* 43: 799-805 (1968).
- (4) Chou, K. H. and W. E. Splittstoesser: Changes in amino acid content and the metabolism of  $\gamma$ -aminobutyrate in *Cucurbita moschata* seedlings. *Physiol. Plant.* 26: 110-114 (1972).
- (5) Chrispeels, M. J. and D. Boulter: Control of storage protein metabolism in the cotyledons of germinating mung beans: role of endopeptidase. *Plant Physiol.* 55: 1031-1037 (1975).
- (6) Danielsson, C. E.: The breakdown of the high molecular reserve proteins of peas during germination. *Acta Chem. Scand.* 5: 541-554 (1951).
- (7) Gornall, A. G., C. J. Bardawill and M. M. David: Determination of serum proteins by means of the biuret reaction. *J. Biol. Chem.* 177: 751-766 (1948).
- (8) Hara, I., K. Wada, S. Wakabayashi, and H. Matsubara: Pumpkin (*Cucurbita* sp.) seed globulin I. Purification, characterization, and subunit structure. *Plant & Cell Physiol.* 17: 799-814 (1976).
- (9) Harris, N. and M. J. Chrispeels: Histochemical and biochemical observations on storage protein metabolism and protein body autolysis in cotyledons of germinating mung beans. *Plant Physiol.* 56: 292-299 (1975).
- (10) Harvey, B. M. R. and A. Oaks: The hydrolysis of endosperm protein in *Zea mays*. *Plant Physiol.* 53: 453-457 (1974).
- (11) Horikoshi, M. and Y. Morita: Localization of  $\gamma$  globulin in rice seed and changes in  $\gamma$  globulin content during seed development and germination. *Agr. Biol. Chem.* 39: 2309-2314 (1975).
- (12) Ihle, J. N. and L. S. Dure, III.: The developmental biochemistry of cottonseed embryogenesis and germination. *J. Biol. Chem.* 247: 5034-5047 (1972).
- (13) Lignowski, E. M. and W. E. Splittstoesser: The change in arginine levels and the metabolism of urea and ornithine in *Cucurbita moschata* seedlings. *Physiol. Plant.* 25: 225-229 (1971).
- (14) Millerd, A.: Biochemistry of legume seed proteins. *Ann. Rev. Plant Physiol.* 26: 53-72 (1975).
- (15) Rena, A. B. and W. E. Splittstoesser: The metabolism of proline in cotyledons of pumpkin (*Cucurbita moschata*). *Plant & Cell Physiol.* 15: 681-686 (1974).
- (16) Ryan, C. A.: Proteolytic enzymes and their inhibitors in plants. *Ann. Rev. Plant Physiol.* 24: 173-196 (1973).
- (17) Spector, L. B.: Citrate cleavage and related enzymes. In *The Enzymes* 7. Edited by P. D. Boyer, p. 357-389. Academic Press, New York and London, 1972.
- (18) Vennesland, B. and R. Z. Felsher: Oxalacetic and pyruvic carboxylases in some dicotyledonous plants. *Arch. Biochem.* 11: 279-306 (1946).
- (19) Yomo, H. and K. Srinivasan: Protein breakdown and formation of protease in attached and detached cotyledons of *Phaseolus vulgaris* L.. *Plant Physiol.* 52: 671-673 (1973).

*Plant & Cell Physiol.*, 19(2): 237-243 (1978)

**Pumpkin (*Cucurbita* sp.) seed globulin III.  
Comparison of subunit structures among seed globulins  
of various *Cucurbita* species and characterization of  
peptide components**

Ikuko Hara, Morikazu Ohmiya and Hiroshi Matsubara

Department of Biology, Faculty of Science, Osaka University,  
Toyonaka, Osaka 560, Japan

(Received September 8, 1977)

Various *Cucurbita* seed globulins showed patterns similar to one another on SDS-gel electrophoresis,  $\alpha$  and  $\beta$  bands for unreduced globulins and  $\gamma$ ,  $\gamma'$ ,  $\delta$  and  $\delta'$  bands for reduced ones. On gel electrophoresis in 6 M urea, reduced globulin gave two acidic and two basic bands. These corresponded to  $\gamma$  and  $\gamma'$  chains and  $\delta_1$  and  $\delta_2$  chains, respectively, identified by two-dimensional urea-SDS gel electrophoresis. The compositions of the  $\alpha$  and  $\beta$  subunits were proposed.

**Key words:** Pumpkin seed — Seed globulin — Two-dimensional polyacrylamide gel electrophoresis.

The subunit structure of the seed globulin of *Cucurbita* sp. hybrid Tetsukabuto-Nankin has been discussed in previous papers together with the limited degradation of the globulin during germination (7, 8). The globulin was separated in SDS solution into  $\alpha$  and  $\beta$  subunits with molecular weights of 63,000 and 56,000 daltons, respectively. The  $\alpha$  and  $\beta$  subunits seemed to consist of two polypeptide chains,  $\gamma$  and  $\delta$  for  $\alpha$  and  $\gamma'$  and  $\delta$  for  $\beta$ , of about 36,000 and 22,000 daltons, respectively, linked by disulfide bond(s). In order to clarify whether the heterogeneities of these molecular compositions such as  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\gamma'$ ,  $\delta$  and  $\delta'$  are due to the hybrid nature of the material used and also to obtain more information on the subunit structures of this protein, we analyzed seed globulins obtained from various *Cucurbita* species by SDS-gel electrophoresis and the globulin of *Cucurbita* sp., Tetsukabuto-Nankin by two-dimensional urea-SDS gel electrophoresis.

**Materials and methods**

**Materials and procedures for isolation of various *Cucurbita* seed globulins:** Seeds of *Cucurbita* sp. hybrid Tetsukabuto-Nankin and all chemicals used were the same as those described in the preceding paper (8). Seed samples of *Cucurbita pepo* (var. New England pie) were supplied by Dr. C. Rick, University of California, Davis. *C. moschata* (var. Kikuza, Kogiku) and *C. moschata* (var. Kurokawa, Hyuga 14-gō)

Abbreviations: SDS, sodium dodecyl sulfate; DEAE-cellulose, diethylaminoethyl-cellulose.

self-fertilized for 14 generations were provided by Dr. T. Nakatsuru, Agricultural Experimental Station in Kumamoto. *C. moschata* (Shiragikuza), *C. pepo* (Long cream) and *C. maxima* (Tsuchihira) came from Dr. S. Marukawa, Ibaragi Horticulture Experimental Station. The isolation and crystallization procedures of seed globulins were exactly the same as those reported previously (8).

*Polyacrylamide gel electrophoresis:* The methods of preparing flat-type gels and the detailed conditions for SDS-gel electrophoresis on 7.5% polyacrylamide gel were described in the previous paper (8). For the gel electrophoresis in 6 M urea, 5% gel slabs were prepared as described elsewhere (8), except that grooves,  $1.0 \times 0.15 \times 0.1$  cm, for placing samples to start electrophoresis were made in the center between the two electrodes (Fig. 2, right). The slabs were soaked overnight in 0.1 M Na-phosphate buffer, pH 6.4, containing 6 M urea. The sample with or without prior reduction by 1%  $\beta$ -mercaptoethanol was dissolved in 0.025 M Na-phosphate buffer, pH 6.4, containing 6 M urea. Electrophoresis was performed at 0.03 amp and 4°C for 6 hr. Staining and destaining methods were described previously (8).

*Two-dimensional polyacrylamide gel electrophoresis:* To examine not only the charge characteristics of each subunit and its peptide components but also the correlation between them, two-dimensional polyacrylamide gel electrophoresis was carried out in urea and urea-SDS systems. For two-dimensional electrophoresis in urea-SDS systems, two 5% gel slabs,  $14.3 \times 10.0 \times 0.2$  cm, were prepared and two different types of grooves, a small one of  $0.2 \times 0.2 \times 0.2$  cm and a larger one of  $0.8 \times 0.2 \times 0.2$  cm were made in the middle of the lower part of each slab as shown in Fig. 3. The gels were soaked overnight in 0.1 M Na-phosphate buffer containing 6 M urea. The sample (4 mg per ml in 0.025 M Na-phosphate buffer containing 6 M urea) was placed in both grooves with 1%  $\beta$ -mercaptoethanol for one slab and without it for the other. After the first electrophoresis at 0.04 amp and 4°C for 9 hr, the lower part of the gel slab,  $2.0 \times 10.0 \times 0.2$  cm, with the larger groove was cut off and stained to obtain a marker pattern. The rest of the gel slab was dipped in 0.1 M Tris-acetate buffer, pH 8.2, containing 1% SDS for 16 hr. The second run was subsequently carried out at right angle to the first at 0.04 amp and 20°C for 4.5 hr.

For electrophoresis in urea system alone, a 5% gel slab of the same size with three grooves was prepared. A small groove,  $0.2 \times 0.2 \times 0.2$  cm, was made at the center of the gel slab and two larger ones,  $0.8 \times 0.2 \times 0.2$  cm, were made in the middle of the lower part and of the left part for marker patterns of the first and second runs, respectively, as shown in Fig. 4. After the gel slab had been soaked overnight in phosphate buffer with urea, sample solution without reducing agent was applied to both the small and lower large grooves. The first run was performed under the same conditions as those described above, and the lower part of the gel including one large groove was cut off and stained. The rest of the gel was dipped in phosphate buffer containing 6 M urea and 5%  $\beta$ -mercaptoethanol for 12 hr in order to split the disulfide bonds in the protein. Before the second run at right angle to the first at 0.06 amp and 4°C for 9 hr, a sample which had been reduced was applied to the other large groove to obtain a marker pattern for the second run.

### Results and discussion

Various *Cucurbita* seed globulins all gave similar patterns on SDS-gel electro-

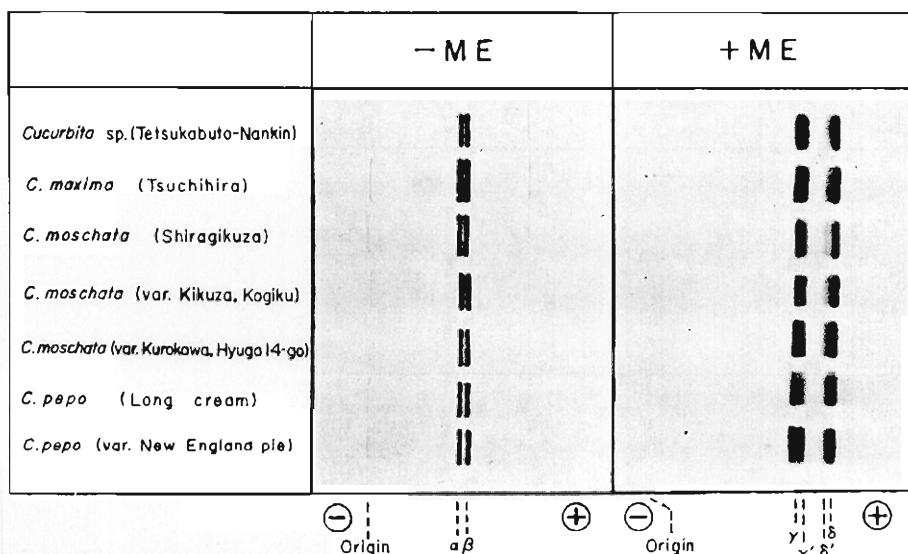



Fig. 1. SDS-polyacrylamide gel electrophoretic patterns of various *Cucurbita* seed globulins. Seed globulins were prepared as described before (8). 7.5% gel was used. Gel buffer solution was 0.1 M Tris-acetate, pH 8.2, containing 0.5% SDS. Electrophoresis was carried out at 0.025 amp and 20°C for 2.5 hr. -ME and +ME represent the absence and presence of  $\beta$ -mercaptoethanol, respectively, in sample solutions.

phoresis to that of the globulin of hybrid Tetsukabuto-Nankin, which had been previously examined (7, 8), as shown in Fig. 1. All unreduced globulins showed two bands,  $\alpha$  and  $\beta$ , but their color intensities after staining differed slightly from each other and the differences depended on each *Cucurbita* seed sample. After reduction by  $\beta$ -mercaptoethanol, they were separated into major  $\gamma$ ,  $\gamma'$  and  $\delta$  bands and a minor  $\delta'$  band. Therefore, it seems likely that these heterogeneities are not due to a special hybrid nature of Tetsukabuto-Nankin and are common characteristics of probably all *Cucurbita* seed globulins. Tetsukabuto-Nankin (hybrid) was thus employed in the following experiments as a standard species for investigating the germination process of *Cucurbita* seeds. Such heterogeneities are well known in the component molecules of several 11S globulins (5). In our previous investigation (8), the globulin had a molecular weight of around 112,000 daltons in a neutral buffer containing 2 M NaCl. The protein, however, is very similar in its peptide chain components to legumin or the so-called 11S globulins, including edestin, which have molecular weights of 300,000–400,000 daltons. All these globulins are composed of a large and a small polypeptide chain with similar size and amino acid composition. The amino-terminal residues of their smaller chains are all glycine (3, 6, 8, 10, 12–15). Most of the two types of polypeptide chain were heterogeneous (2, 4, 9), which seemed to be a common property of seed globulin.

Pichl reported polyacrylamide gel electrophoretic patterns with urea or SDS of globulins of various Cucurbitaceae seeds (11), which were more complex than those shown in Fig. 1 and 2. His results, however, account for the heterogeneous aggregations of acidic and basic polypeptide chains. Those aggregations seemed to be due

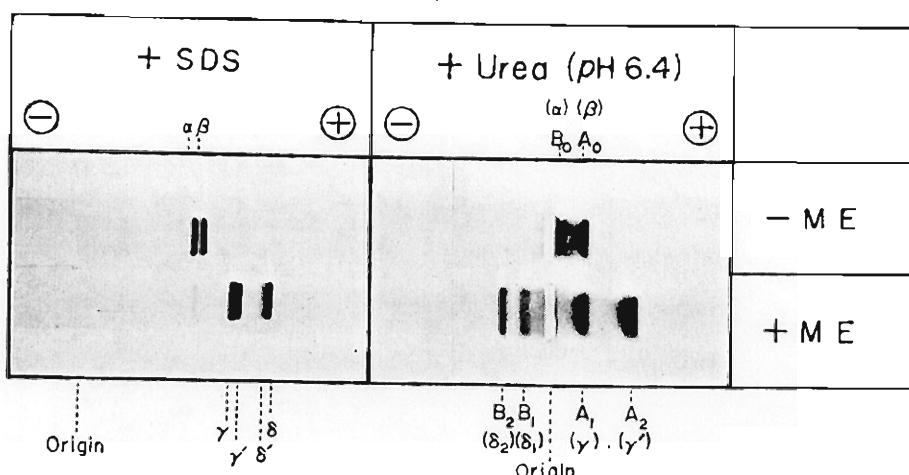



Fig. 2. Comparison between patterns of SDS-gel electrophoresis (left) and gel electrophoresis in 6 M urea (right) of pumpkin (*Tetsukabuto-Nankin*) seed globulin. Conditions for the former were the same as those in Fig. 1. The latter electrophoresis was carried out at 0.03 amp and 4°C for 6 hr on 5% gel in 0.1 M Na-phosphate buffer, pH 6.4, containing 6 M urea. The symbols in parentheses refer to the corresponding components finally assigned from the experiments shown in Fig. 3 and 4.

to the preparation procedure of globulins or to high ionic strength, 2 M NaCl, in the sample solutions for polyacrylamide gel electrophoresis with urea.

Fig. 2 shows gel electrophoretic patterns of the pumpkin seed globulin with or without prior reduction of the disulfide bonds in SDS and 6 M urea. In the SDS system, the electrophoretic patterns were the same as those shown in Fig. 1. In the urea system, unreduced globulin gave the two bands  $A_0$  and  $B_0$  with slightly stronger color densities for  $A_0$  upon staining and reduced globulin gave four bands, two acidic ( $A_1$  and  $A_2$ ), and two basic ( $B_1$  and  $B_2$ ). However, a longer electrophoretic run separated the  $A_2$  band into two.

From the previous results of DEAE-cellulose column chromatography, carboxymethylated globulin was separated into three fractions corresponding to  $\gamma$ ,  $\gamma'$  and  $\delta$  chains ( $\delta$ ). However, Fig. 2, shows clearly that urea electrophoresis separated the globulin into four major bands ( $A_1$ ,  $A_2$ ,  $B_1$  and  $B_2$ ) and therefore, the  $\delta$  band was expected to be separated also.

In order to find the correlation between these bands in urea gel electrophoresis and those in SDS-gel electrophoresis, we carried out two-dimensional electrophoresis in a urea-SDS system (Fig. 3). The unreduced globulin was first separated into  $A_0$  and  $B_0$  by electrophoresis in 6 M urea as observed in Fig. 2, then further moved to  $\alpha$  and  $\beta$ , respectively, by the second electrophoresis in SDS-gel.  $A_0$  corresponded to the  $\beta$  subunit and  $B_0$  to the  $\alpha$  one. In the same manner, the globulin reduced with  $\beta$ -mercaptoethanol was separated into two acidic,  $A_1$  and  $A_2$ , and two basic,  $B_1$  and  $B_2$ , bands by the first run in 6 M urea. The second SDS-gel electrophoresis moved the acidic  $A_1$  and  $A_2$  bands respectively to  $\gamma$  and  $\gamma'$  and the basic  $B_1$  and  $B_2$  ones to  $\delta_1$  and  $\delta_2$ , both of which were probably derived from the  $\delta$  observed in SDS-gel electrophoresis. We have reported that both subunits  $\alpha$  and  $\beta$  had polypeptide

## Pumpkin seed globulin III

241

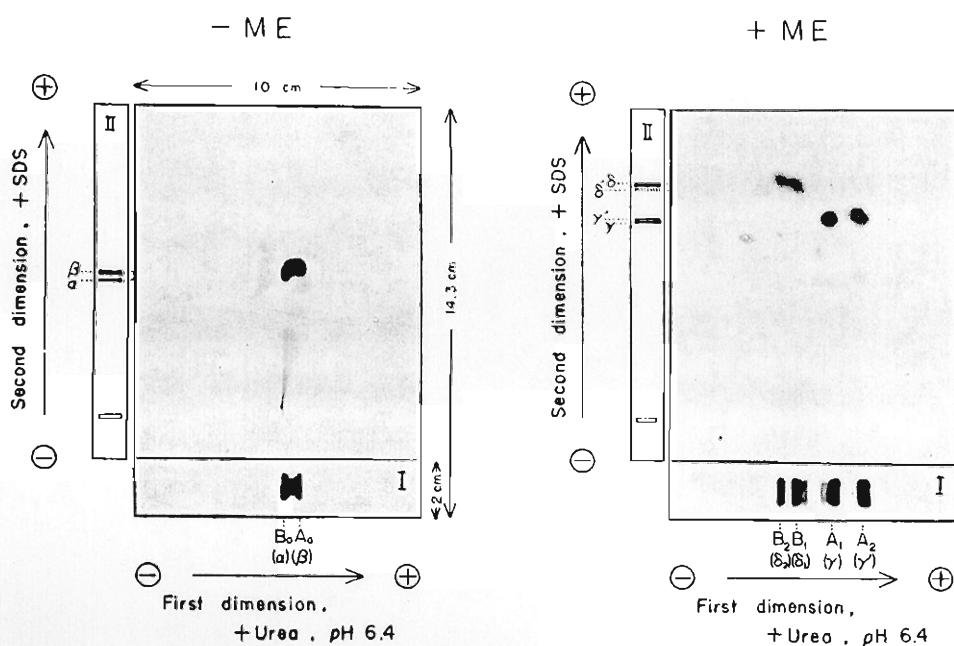



Fig. 3. Two-dimensional gel electrophoretic patterns of pumpkin (Tetsukabuto-Nankin) seed globulin with (+ME) or without (-ME) prior reduction by  $\beta$ -mercaptoethanol on 5% gel in urea-SDS system. After the first runs at 0.06 amp and 4°C for 9 hr in a gel buffer containing 6 M urea, the gel plates were soaked in Tris-buffer containing 1% SDS for 16 hr. The second runs were successively carried out at right angle to the first at 0.04 amp and 20°C for 4.5 hr. The two electrophoretic patterns on plates I and II are for the marker patterns of the first and second runs, respectively. See Fig. 2 for symbols in parentheses. The lower parts of the gel slabs,  $2.0 \times 10.0 \times 0.2$  cm, were cut off after the first electrophoresis.

chains,  $\gamma$  and  $\delta$  for  $\alpha$  and  $\gamma'$  and  $\delta$  for  $\beta$ , and these peptide chains were linked by disulfide bonds (8). Whether subunit  $\alpha$  or  $\beta$  was the origin of the minor peptide chain  $\delta'$  was not clear because it disappeared during two-dimensional electrophoresis. Each  $\alpha$  and  $\beta$  was found to consist of an acidic and a basic chain, but the detailed composition of each subunit is still not clear.

To clarify which chains were combined with disulfide bridges to compose subunits  $\alpha$  and  $\beta$ , a two-dimensional gel electrophoresis in a urea system was used (Fig. 4). Clearly, from the results shown in Fig. 3 (left, without  $\beta$ -mercaptoethanol),  $A_0$  and  $B_0$  separated by the first run of the globulin without  $\beta$ -mercaptoethanol corresponded to  $\beta$  and  $\alpha$  subunits, respectively. The second run in 6 M urea after reduction of these two subunits, revealed that  $A_0$  separated into  $A_2$  and  $B_2$  and  $B_0$  into  $A_1$  and  $B_1$ . These results together with those shown in Fig. 3 indicated that subunit  $\alpha$  consisted of an acidic  $\gamma$  and a basic  $\delta_1$  chain and subunit  $\beta$  of an acidic  $\gamma'$  and a basic  $\delta_2$  chain. The previous paper (8) suggested that as the  $\delta$  chain showed only one cysteine residue,  $\alpha$  and  $\beta$  each had an inter-chain disulfide bond between  $\gamma$  and  $\delta_1$  for  $\alpha$  and  $\gamma'$  and  $\delta_2$  for  $\beta$ . All other disulfide bonds were probably intra-chain forms in peptides  $\gamma$  and  $\gamma'$ .

Soybean 11S globulin was shown to be a dimer and its monomer consisted of

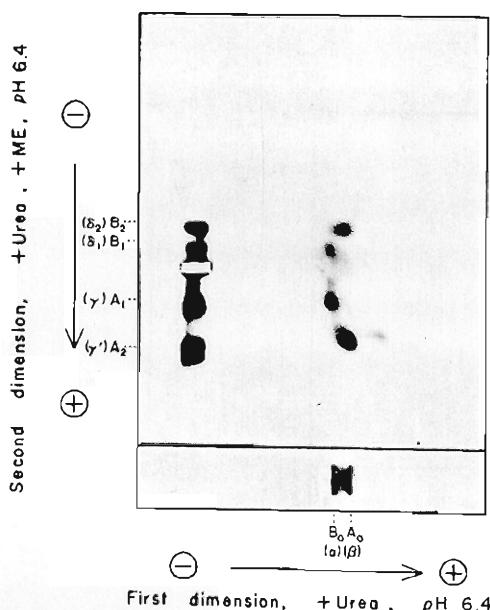



Fig. 4. Two-dimensional gel electrophoretic pattern of pumpkin (*Tetsukabuto-Nankin*) seed globulin on 5% gel in a urea system. The conditions of both the first and second runs were the same as those of the first in Fig. 3. After the first run, the gel plates were soaked in a gel buffer containing 6 M urea and 5%  $\beta$ -mercaptoethanol for 12 hr to reduce the disulfide bonds and the second run was carried out successively. Two patterns under and on the left of the gel plate were marker ones for each run. See Fig. 2 for explanation of the symbols in parentheses. The lower part of the gel slab was cut off after the first run and stained. The gel was 0.2 cm thick.

three acidic polypeptide chains each with a molecular weight of 37,000 daltons and three basic chains of 22,300 daltons each (2). Recently, however, four acidic and four basic polypeptide chains have been found in the 11S globulin on the basis of a combination of chromatography and gel electrophoresis (9).

Chemical studies are now in progress on these subunits and preliminary results suggest that  $\delta_1$  and  $\delta_2$  chains have the amino-terminal sequence Gly-Leu-Glu(Asp)-Glu-Thr-Ile- and the C-terminus Arg but the amino-terminal sequence, Ile-Gln-Gly-Tyr- of the  $\gamma$  chain is quite dissimilar to that of  $\gamma'$ , which has a blocked amino-terminus, according to the Edman degradation procedure (1). Detailed experiments will be published in the near future.

The present experiment using two-dimensional gel electrophoresis in urea-SDS system and urea system was very useful and simple to use for elucidation of the constitution of peptide chains in heterogeneous subunit components.

We are grateful to Drs. C. Rick, T. Nakatsuru, and S. Marukawa for the generous supply of seeds and to Drs. T. Matsui of Kyushu University and T. H. Jukes of University of California for the kind arrangements. We also thank Mr. S. Wakabayashi for his aid in the analysis of amino-terminal amino acid.

#### References

- (1) Blombäck, B., M. Blombäck, P. Edman and B. Flessel: Human fibrinopeptides isolation, characterization and structure. *Biochim. Biophys. Acta* 115: 371-396 (1966).

(2) Catsimpoolas, N.: Isolation of glycinin subunits by isoelectric focusing in urea-mercaptoethanol. *FEBS Letters* 4: 259-261 (1969).

(3) Catsimpoolas, N., J. A. Kenney, E. W. Meyer and B. F. Szuhaj: Molecular weight and amino acid composition of glycinin subunits. *J. Sci. Food Agr.* 22: 448-450 (1971).

(4) Derbyshire, E. and D. Boulter: Isolation of legumin-like protein from *Phaseolus aureus* and *Phaseolus vulgaris*. *Phytochem.* 15: 411-414 (1976).

(5) Derbyshire, E., D. J. Wright and D. Boulter: Legumin and vicilin, storage proteins of legume seeds. *ibid.* 15: 3-24 (1976).

(6) Dlouhá, V., B. Keil and F. Šorm: On proteins. LXXXV. Separation of the two polypeptide chains of S-sulpho-edestine. *Coll. Czech. Chem. Commun.* 28: 2969-2976 (1963).

(7) Hara, I., K. Wada and H. Matsubara: Pumpkin (*Cucurbita* sp.) seed globulin II. Alterations during germination. *Plant & Cell Physiol.* 17: 815-823 (1976).

(8) Hara, I., K. Wada, S. Wakabayashi and H. Matsubara: Pumpkin (*Cucurbita* sp.) seed globulin I. Purification, characterization, and subunit structure. *ibid.* 17: 799-814 (1976).

(9) Kitamura, K., T. Takagi and K. Shibasaki: Subunit structure of soybean 11S globulin. *Agr. Biol. Chem.* 40: 1837-1844 (1976).

(10) Ōkubo, K., M. Asano, Y. Kimura and K. Shibasaki: On basic subunits dissociated from C (11S) component of soybean proteins with urea. *ibid.* 33: 463-465 (1969).

(11) Pichl, I.: Seed globulins of various species of Cucurbitaceae. *Phytochem.* 15: 717-722 (1976).

(12) Vaintraub, I. A. and Nguyen Thanh Thien: Separation of vetch legumin subunits by chromatography on DEAE-cellulose. *Dokl. Akad. Nauk. SSSR.* 180: 1239-1241 (1968).

(13) Vaintraub, I. A. and Nguyen Thanh Thien: Quaternary structure of the vetch seed legumin. *Mol. Biol.* 5: 59-68 (1971).

(14) Wright, D. J. and D. Boulter: Purification and subunit structure of legumin of *Vicia faba* L. (broad bean). *Biochem. J.* 141: 413-418 (1974).

(15) Zmrhal, Z.: Amino acid composition of A- and B-chains of S-sulfo-edestin. *Coll. Czech. Chem. Commun.* 32: 2337-2342 (1967).

## 第4章

### 蚕自復分解酵素と貯蔵蚕自復(種子アロフリニ)の分解

#### オ1節 未発芽種子中の蚕自復分解活性; 種子アロフリニの分解 要約

1. アロフリニから  $F_{ab}$  を生成する限定分解活性は 乾燥種子の抽出液には見い出せなかつたが、シクロヘキシミド存在下で 4日間 吸水させた子葉からの抽出液には存在した。この活性は pCMB, PMSF, EDTA,  $\beta$ -ME, DTT 及び カルボチアのトリプシン・インヒビターの影響を受けなかつた。
2. この限定分解活性は  $F_{ab}$ , CM化アロフリニ,  $\beta$  鎮に おいては大きな変化を与えたが、 $\gamma$  鎮を良く分解して 分子量約 23,000 と 13,000 の分子種と生成した。
3. この抽出液にはさうに  $F_{ab}$  や  $\beta$  鎮から特異的に アミノ酸や小ペプチドを遊離させる活性が見つかった。アロフリニや  $\gamma$  鎮に対する活性は低く、卵白アルブミンなど の蛋白質は殆ど分解されなかつた。この活性は pCMB や EDTA に阻害され、 $\beta$ -ME や DTT によって活性化された。

## (はじめに

貯蔵・蛋白質の分解に関与する酵素か、休眠種子中にすでに存在しているか、それとも発芽に伴って *de novo* 合成されるか、また存在しているとすればその活性化の機構はどのようなものであるかなどに関してはまだのものも知られていない。

序論で述べたが、種によって休眠か胚発芽の様子が段階で起こっているとすれば、休眠種子の酵素の有無も種によって異なるかも知れない。アロフリンと貯蔵蛋白質として多くの種々な乾燥種子でいくつかの蛋白質分解酵素が見つかっている(1-3)が、いずれも *in vitro* で種子アロフリンと殆ど分解しない。

カボチャ(Cucurbita sp.)種子の場合、後節でも議論しているが、アロフリンの消失が吸水のかなり初期から始まっており(後節、図.10、(4))、これとともに作って作って分解活性の変動パターン(同上、図.11)をみると、吸水後24時間でかなり高いアロフリンの分解活性を現わしていることになる。続く発芽1日目から少なくとも2日目までの活性には大きな変化はない。発芽後してからアロフリンの消失速度が増すということはないのである。即ち酵素の *de novo*

合成があるとすれば、それは吸水直後に始まり、24時間以内にしだいに合成は抑えられたことになる。

一方、胚発芽時に合成された不活性な形の酵素が吸水直後活性化される（構造は不明）とすれば、発芽初期からのアロフリンの消失パターン（後節、図10.）は理解できる。

ここでは乾燥種子には見出せなかった、アロフリンと限定分解する活性がシクロヘキシミド処理により発芽（吸水は起こしていない）種子に出現したこと、またアロフリンの限定分解物  $T_{AP}$  をさらに特異的に分解する活性の存在について報告する。

## 材料と方法

材料： シクロヘキシミドは特級と半合成品株式会社から購入した。種子や他の試薬については他の論文通りである(4)。

種子の発芽： 1% 次亜塩素酸ナトリウムで 1 時間 滅菌後、1 時間水洗した種子をシャレ内で水あるいは 5mM シクロヘキシミドで温らせて口吹き器に置き、日直 20°C で吸水させて。

種子 7-12 日目、その他の方の直の調整： クロフリン及びアセチル解物の調整は他の論文に詳述(4.5)。クロフリンの CHCl<sub>3</sub> の方法及び 80% テトラ氷酢酸 (δ, γ, γ' 構造) の離方法についても他の論文に詳述している(5)。

Sup I·m は発芽 7 日目の子葉を 2M NaCl, 0.1M 4-硝基安息香酸 (pH 7.0) (1.5ml/3 枚) によせて抽出した。Sup I·m を 80°C 10 分間熱処理後の遠心清澄は Sup II·m と表わす(5)。

Sup I·n は発芽 11 日目の子葉を 25mM 7-エン酸緩衝液 (pH 5.8) および 25mM 4-硝基安息香酸 (pH 7.0, 8.0) (1.5ml/3 枚) によせて抽出した。Sup I·n は 10 分間緩衝液によると 0°C で一夜透析して Sup II·n を得た。Sup I は 7-メチル-10-FapE 含むが、Sup I はこれらの含量が低く、シクロヘキシミド存在下で吸水させて子葉よりの抽出液は Chx·Sup および Chx·sup と表わす。

Chx-Sup I-1=含みの  $\gamma$ -GTP- $\alpha$  in vitro  $\gamma$ -の活性測定:

5mM チロペクチド存在下で 1日又は 4日間 吸水させた 3葉  
乾燥穀子 及び 正常 1=4日間 稲芽させた 3葉より 食塩抽出液  
Chx-Sup I-1, Chx-Sup I-4, Sup I-0, Sup I-9 各  $\approx 0.05\text{ml}$   
 $\pm 0.15\text{ml}$  の  $\gamma$ -射線 1Tc,  $37^\circ\text{C}$  0 ある 18時間 放置し  
た後, 0.5ml の SDS-PAGE 試料溶液を加え SDS-聚丙烯酰  
胺電動を行, Tc.

Chx-Sup I-4  $0.05\text{ml}$  1=0.1M  $\gamma$ -酸化酵素液  $0.14\text{ml}$   
加え 25  $\text{mM}$  の pCHB,  $\beta$ -ME, DTT, EDTA, 10mM PMSF,  
ある 31 minutes の カルボ・トリロジン・インヒビター (精製度 95%  
市販)  $\pm 0.01\text{ml}$  加え 2,  $37^\circ\text{C}$  0 及び 18時間 反応させた後  
20% TCA  $\pm 0.1\text{ml}$  添加し,  $0^\circ\text{C}$  30 分間 放置 1Tc. その後  
1滴  $0.1\text{ml}$  1=0.2M NaOH を加え 次に 1.0ml の  $\gamma$ -射線  
溶液 (2% ヒト血清, 0.04%  $\text{SnCl}_2$ , 1M 酢酸緩衝液 (pH 5.5),  
75% X-1721) を加え  $100^\circ\text{C}$  15 分間 2= 焼色させ  $A_{570}$  で測定  
室 1Tc. 1 unit 1=1分間 1=  $A_{570}$  1 Tc  $\pm 1721$   $\text{SnCl}_2$  塗布  
酵素量 1Tc.

至適 pH の測定は 2~4 まで 1=12 行, Tc.  $0.05\text{ml}$  の  
Chx-Sup I-4 1= 各 pH の緩衝液  $0.1\text{ml}$  及び  $37^\circ\text{C}$  18時間 放置

後 1.0 ml a SDS-PAGE 試料溶液を加え、100°C 151回<sup>9</sup>熱処理後、同溶液に文み 12 透析して SDS-ゲル電気泳動にかけた。用いた緩衝液は 0.1M フェン酸緩衝液 (pH 3~5) 0.2M ニク酸緩衝液 (pH 6~8)、0.2M 灰酸ナトリウム-灰酸水素ナトリウム緩衝液 (pH 9~11) である。

Chx-sup i·4 & u: Chx-sup ii·4 1=83 7:127:11: F<sub>αβ</sub>, CM1C7:  
127:11: Y, Y', 5% 食塩の溶解性: 0.1 ml a Chx-sup i·4  
 および Chx-sup ii·4 1=0.1 ml a 1% 食塩溶液を加え、37°C で 0,  
 6, 18 時間反応させて後、上記と同様に操作して TCA 溶液  
 で沈殿を洗浄後、0.5 ml a SDS-PAGE 試料溶液を加え、SDS-  
 ゲル電気泳動にかけた。

SDS-ポリアクリルアミドゲル電気泳動 (SDS-PAGE): 試料溶液  
 (7 1% SDS を含む Tris-酢酸緩衝液 (pH 8.2) (SDS-PAGE 試  
 料溶液と同様) を用いた。ゲル濃度は 7.5%。泳動条件は  
 前論文と同じを行った (5)。

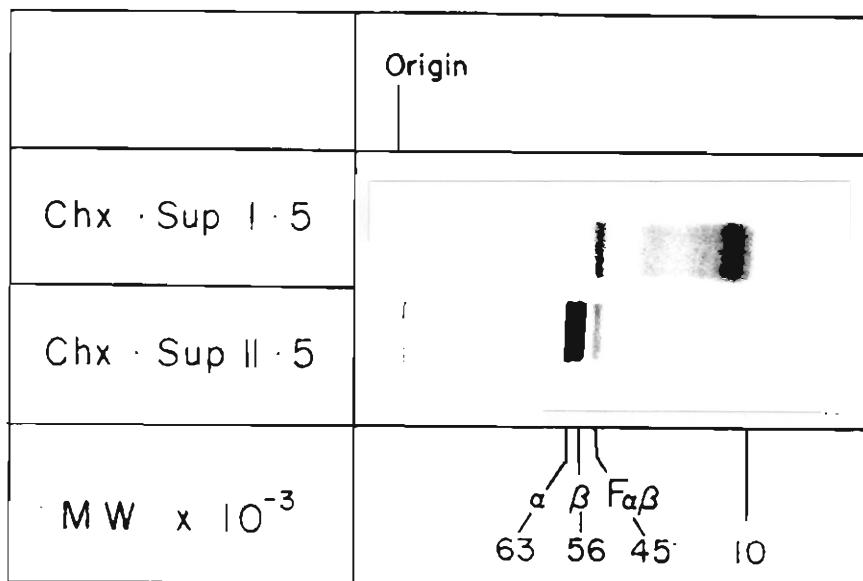



図.1. Chx · Sup I · 5 及び Chx · Sup II · 5 の SDS - ペーパー電気泳動図。

Chx · Sup I · 5 及び Chx · Sup II · 5 は 5 mM の MOPS 缶内に保存され、  
 存在下、脂中に 20°C で 5 日間温存された。Sup I は Sup II と  
 同じである。Sup I, Sup II の調整はすべて中。各 Sup I  
 終濃度 1% に加えられた SDS を加え、SDS-PAGE 試料溶液  
 に加え、透析後、電気泳動にかけた。泳動条件は  
 すべて中。

|               | Origin | $\alpha$ $\beta$ $F_{\alpha\beta}$ | Incubation time (hr) |
|---------------|--------|------------------------------------|----------------------|
| Sup I·0       |        |                                    | 0                    |
|               |        |                                    | 18                   |
| Chx · Sup I·1 |        |                                    | 0                    |
|               |        |                                    | 18                   |
| Chx · Sup I·4 |        |                                    | 0                    |
|               |        |                                    | 18                   |
| Sup I·4       |        |                                    | 0                    |
|               |        |                                    | 18                   |

図.2. 0, 1, 4日間吸水子葉抽出の各Sup I-I-1を含まる

ケロチニンとビトロジンの溶解状態とSDS-ゲル電気泳動.

0.05 ml の Sup I-I-1 と 0.15 ml の I-I 加え 37°C で

0.5 ml の SDS-PAGE 試験液と加え SDS-ゲル電気泳動にかけ.

溶出液を加え SDS-ゲル電気泳動にかけ.

## 結果

シクロヘキシミド存在下での吸水させた子葉中の Chx-Sup II と a in vitro における

変化： シクロヘキシミド存在下で 5 日間 吸水させた子葉よりの  
食塩抽出液の SDS-ゲル電気泳動図と 図.1.1 に示す。  
食塩抽出液を 热処理 1 時 Chx-Sup II-5 では  $\gamma$ -globulin は  
 $\beta$  の 2 带の バンドが 見られたが、 热処理前 Chx-Sup I-5 では  
 $\gamma$ -globulin の  $\alpha$  と  $\beta$  に 相当する バンドが 消失し、 主に  $F_{\alpha\beta}$  の バンドと  
量 約 12,000 に相当する バンドの 2 带が 現われた。 そして  
子葉中に は 未分解のまま 存在 12 時  $\gamma$ -globulin が 热抽出の過  
程で  $\gamma$ -globulin から  $F_{\alpha\beta}$  の 限 定 分解 が 走ることと考えられた。

シクロヘキシミド存在下での 吸水時間 1=5 時  $\gamma$ -globulin の 限  
定 分解活性 变動を 計べて (図.2.)。 乾燥種子からの Sup I-0  
及 1 日 吸水させた子葉よりの Chx-Sup I-1 では 共に 活性は見  
られない,  $\gamma$ -globulin の  $\alpha$  の バンドが 消失し、 新しく  $F_{\alpha\beta}$  の バンドが  
現われたが、 Chx-Sup I-4 では  $\gamma$ -globulin の  $\alpha$  と  $\beta$  の バンドが 1 時  
正常に 分解させた子葉の Sup I-4 では  $\alpha$  の バンドの 染色強度が  
弱くなり、  $F_{\alpha\beta}$  が 現われたが、 18 時間 インキュベート 1 時後 の 10°-  
21 に 大きな 変化は 見られなか、  $\gamma$ -globulin の  $\alpha$  の バンドが 1 時後 の  $F_{\alpha\beta}$

| pH      | Chx · Sup I·4 |          |         |
|---------|---------------|----------|---------|
|         | Origin        | $\alpha$ | $\beta$ |
| Control |               | —        | —       |
| 3       |               | —        | —       |
| 4       |               | —        | —       |
| 5       |               |          | —       |
| 6       |               |          | —       |
| 7       |               |          | —       |
| 8       |               |          | —       |
| 9       |               |          | —       |
| 10      |               |          | —       |
| 11      |               |          | —       |

図.3. Chx · Sup I·4 のプロアーリンの限定分解活性の至適 pH

Chx · Sup I·4, 0.05 ml に 0.1 ml の各 pH の緩衝液を加え, 37°C で 18 時間 反応後, 1.0 ml の SDS-PAGE 試料溶液を加えた. 純照は 反応前 に 热処理したものと用いた.

| Enzyme source<br>Substrate \ | Chx-sup i-4 | Chx-sup ii-4 | Incubation time (hr) |
|------------------------------|-------------|--------------|----------------------|
| Globulin                     | ■<br>■■■    | ■<br>■       | 0<br>18              |
| F <sub>ab</sub>              | ■<br>■      | ■<br>■       | 0<br>18              |
| CM-Globulin                  | ■■<br>■■    | ■■<br>■■■    | 0<br>18              |
| γ                            | ■<br>■■■    | ■<br>■■■     | 0<br>18              |
| γ'                           | ■<br>■■■    | ■<br>■■■     | 0<br>18              |
| δ                            | ■■<br>■■    | ■■<br>■■■    | 0<br>18              |

図4. Chx-sup i-4 及び Chx-sup ii-4 に対する γ, γ', δ, F<sub>ab</sub>, CM-Globulin, γ, γ', δ の分解。

反応液は 1% α-ケト酸溶液 0.1ml 及び Chx-sup 0.1ml の成り、37°C で 18 時間反応後 20% TCA と 0.1ml  
DDA。アセトニトリル後、SDS-PAGE 試料溶液 1c 滴加して

のバンドの位置と Sup I-4 の  $T_{\alpha\beta}$  のそれとは確かに一致していた。

Chx-Sup I-4 のもう1種の活性は pCHB, PMSF,  $\beta$ -ME, DTT, EDTA やカブチャ種子より精製したトリプロシン・イニビビター（後節参照）に影響されなかつた。この活性の至適 pH は 5~8 の広い範囲に存在していた（図.3.）。

シクロヘキシミド存在下での吸水させた3量の抽出液 (Chx-sup I-4, Chx-

sup II-4) のプロアーリン,  $T_{\alpha\beta}$ , CH化アロフリン, Y, Y' 領に与す作用:

図.1. より予想された通り, Chx-sup I-4 は プロアーリンの  $\alpha$  のバンドを消失させ, 新たに  $T_{\alpha\beta}$  のバンドを生じた（図.4.）。試料溶液に  $\beta$ -ME を加えて SDS-ゲル電気泳動を行うと, 分子量 22,000 の  $\beta$  の位置に主なバンドが生じた。CH化アロフリン,  $T_{\alpha\beta}$  及び  $\alpha$  領は大きな変化を示さなかつた。一方 Y' 領は明らかにバンドの染色が薄くなると共に, 分子量 23,000, 24,000 及び 13,000 の位置に新たにバンドを生じた。これに比べて Y 領はあまり大きな変化は示さなかつた。Y' 領は反応溶液に溶け難い。この溶解度の差が被分解性の差を生じさせたとも考えらる。

一方 Chx-sup II-4 は プロアーリンと2種の活性を示す。

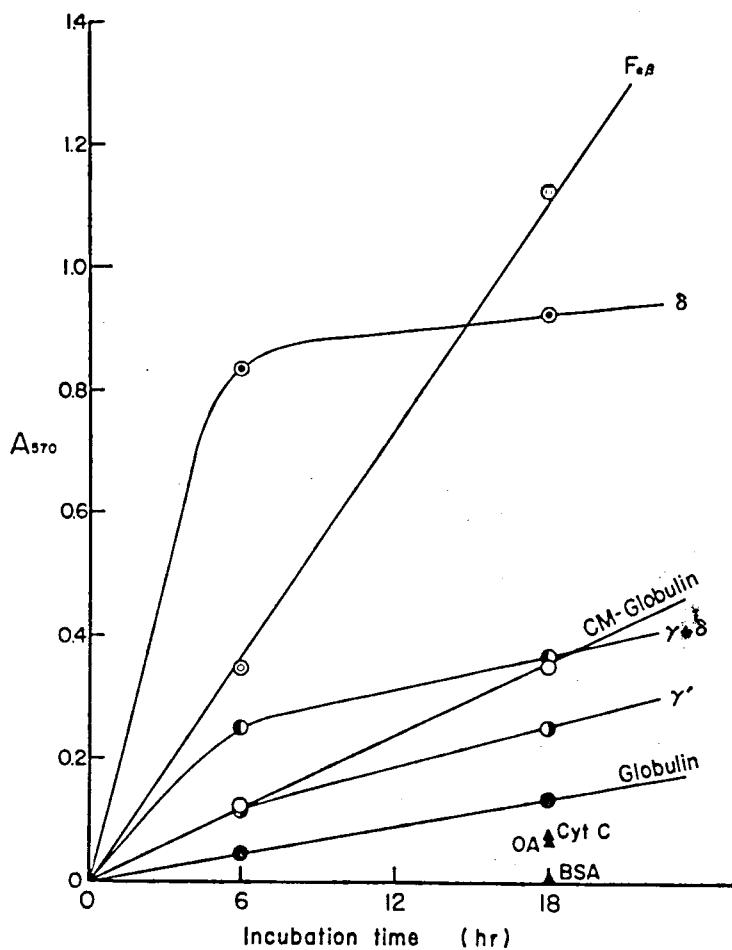



図.5. Chx-sup ii-4 1=δ3 7.10.7.11=,  $F_{\alpha\beta}$ , CM-Globulin

及u:  $\gamma$  鎮,  $\gamma'$  鎮,  $\delta$  鎮の反応活性

Chx-sup ii-4 0.1ml 1= 1% a 蔗糖溶液を加え,  
 37°C 2° 6 時間及 18 時間及心させた後 a TCA の活性  
 反応を =-ヒドリ= 脱色させ,  $A_{570}$  を測定した.

失つてゐた(図.4)。 $\text{F}\alpha\beta$ , CMIC-PGII,  $\gamma$ 鎖の大さな変化も見られなかつた。しかし  $\gamma$ 鎖と  $\gamma'$ 鎖に同じように  $\text{Chx}\cdot\text{sup}\text{ii}\cdot 4$  と同様の変化を示してゐた。即ち  $\gamma'$ 鎖は  $\gamma$ 鎖より新しくなったと見て、 $\gamma$ 鎖は全く  $\gamma'$ 鎖の性質から離れてゐる程度である。

次に  $\text{Chx}\cdot\text{sup}\text{ii}\cdot 4$  1=8, 2 TCA 溶浴性蛋白質に基質より遊離するアミノ酸の量は小ペプチド量の時間変化を示す(図.5)等量のウツ心筋チトロムC, 卵白アルブミン, ウシ血清アルブミンと基質としの場合、小ペプチド量はアミノ酸の遊離は非常に少なかつた。すなはち TCA 沈殿性蛋白質 SDS-ゲル電気泳動パターンも全く変化は見られなかつた。

7:27:11,  $\gamma$ ,  $\gamma'$ 鎖, CMIC-PGII の溶解度は  $\text{F}\alpha\beta$  の 1=8, 2 T<sub>2</sub> と  $\gamma$ 鎖の 1=8, 2 小ペプチド量はアミノ酸の大さな変化に遊離 LT=。7:27:11 と  $\text{Chx}\cdot\text{sup}\text{ii}\cdot 4$  1=8, 2 と  $\text{F}\alpha\beta$  と示す(図.4)のと 7:27:11 に示す溶解活性は非常に低く、 $\gamma'$ 鎖は  $\text{Chx}\cdot\text{sup}\text{ii}\cdot 4$  1=8, 2 の子量 23,000 の 1=8, 2 の子量 13,000 の子量の 1=8, 2 の子量の 1=8, 2 に示す。これらがこれらに溶解度は小ペプチド量に示す。これより  $\gamma'$ 鎖は  $\text{Chx}\cdot\text{sup}\text{ii}\cdot 4$  1=8, 2 と示す。これは  $\gamma$ 鎖と  $\gamma'$ 鎖の混合物に示す溶解度は  $\gamma$ 鎖の溶解度パターンを反映していると示される。  $\gamma$ 鎖の溶解度は他の子量と異なった。

表.1. Chz. sup ii. 4 α γ' ロブリニ及 u' F<sub>αβ</sub> 分解活性に  
及ぼす インヒビター, SH試薬, 金属キレート剤の影響.

| Compound<br>added | Concen-<br>tration<br>(mM) | Globulin                            |                             | F <sub>αβ</sub>                     |                             |
|-------------------|----------------------------|-------------------------------------|-----------------------------|-------------------------------------|-----------------------------|
|                   |                            | Activity <sup>a)</sup><br>(μ units) | Relative<br>activity<br>(%) | Activity <sup>a)</sup><br>(μ units) | Relative<br>activity<br>(%) |
| None              | -                          | 54                                  | 100                         | 241                                 | 100                         |
| pCMB              | 5                          | 10                                  | 19                          | 44                                  | 18                          |
| PMSF              | 1                          | 27                                  | 50                          | 122                                 | 51                          |
| PTI <sup>b)</sup> | 3ImU                       | 61                                  | 113                         | 206                                 | 85                          |
| β-ME              | 5                          | 197                                 | 365                         | 600                                 | 249                         |
| DTT               | 5                          | 269                                 | 498                         | 325                                 | 135                         |
| EDTA              | 5                          | 19                                  | 35                          | 44                                  | 18                          |

a) 1 unit は 1時間に A<sub>570</sub> と 17% 増加させるのに  
要する酵素量とした。

b) カドチヤ種子より 精製した トリプシン・インヒビター (第4章,  
第2節参照)

を示した。

Chz. sup ii-4 1=83 7:127:11=と  $F_{ab}$  の溶解は 5mM a pCHB + EDTA に よる阻害された (表. 1.). 1mM PMSF 1=83 阻害は PMSF を溶解する エタノールによる阻害という可能性もある。また  $\beta$ -ME 和 DTT などの SH 誘導素 1=83 に 由性化された。これは 酶素が 由性化されたためか あるいは  $F_{ab}$  が 7:127:11= や  $F_{ab}$  の  $\alpha \rightarrow S-S$  結構  $\alpha$  の  $\alpha$  1=83 と 遠離した場合の溶解を受けやすくなっているためである。

## 考察

データは「さなかつてか」、50% エタノール 1=3時間浸して種子から Sup I.O 1=1はアロフリニの限定分解活性が存在しない。このような処理で発現される活性が乾燥種子で見られない原因と12次のようなことが考えられる。乾燥種子中 1=1はインヒビタが存在し、抽出液ではこのインヒビタが作用して活性は測定されなかつたが、エタノール処理によるとインヒビタは失活してると説明がつく。乾燥種子に酵素が存在する場合、種子の胚発芽(休眠)中、同じ細胞内で脂肪酸の合成が盛んな時期に分解酵素も合成されることがある。このような際に合成される分解酵素は不活性な状態であることが期待される。安全装置としてのインヒビタの存在も充分考えられる。アロ酵素と存在しない場合はそれを活性化させるのに他の酵素の合成が必要となる。発芽直後の早いアロフリニの分解開始(オ4草、オ2節、図1.10)(4)からこれは少し考え難い。

シクロルキシミド存在下で4時間吸水させて3葉1=1も活性が発現する(図1.1、図2.)が、シクロルキシミドの作用によるものは全く不明である。シクロルキシミド存在下で吸水させることによると乾燥種子(大麦)になつてアスファルトのアイソア

何か出現したという報告がある(6).

以下は得られた結果を説明するための推測であるが、  
このような調節機構を考えるとも可能である。上の考察の通り、  
休眠種子中に限定分解活性とともに酵素とそのインヒビターが存在  
している。正常な発芽ではインヒビターと失活させる因子が働く  
生理学的。この因子の活性は過剰のアミノ酸量に依存してあり、アミ  
ノ酸量が多くなると低くなり、逆に過剰のアミノ酸量が少なくなると因子の  
活性は高くなる。即ちインヒビター活性を阻害してみるとアミノ酸と分解  
されるようになる。シクロヘキシミド存在下で吸水した子葉は  
アミノ酸過剰量が非常に少ないで、因子の活性が上昇しインヒビター  
が阻害されるので、酵素自身には膜に被われては蛋白質顆粒内  
へ入りこめないので in vivo で分解されることはできないが、  
in vitro で細胞を破壊してやると酵素活性が発現される。  
シクロヘキシミドが膜の透過性を変えるという報告はある(7)。  
以上は考えられる可能性のひとつである。インヒビターの存在は  
1912年オランダ2節でも議論している。

限定分解活性は pCHB, PMSF, EDTA やカルボチオトリフチ  
ン-1-ヒビターなどの影響は受けない。従ってチオル酵素や  
セリンチオ酵素ではない。Reilly は フローラリンの分解過

程について 限定分解物 が生じると その結果を 支持しているが、  
 プロアリシンとトリプロシン消化液と 限定分解物 が生じるので、トリプロ  
 シン様のエリザベス酵素が働くと 121% (8) が、 彼らの結果とは  
 一致しない。 我々の予備実験の結果では トリプロシン消化  
 1% で  $F_{\text{ap}}$  は生じるが、 やがて 次々と 分解が進んでいく。  
 しかし ここで シクロヘキシミド存在下で 吸水した 3種の 限定分解活性  
 は pCMB で 阻害を受けないが、 クロアリシンや  $F_{\text{ap}}$  や アミノ酸や  
 小分子テドロ生じる活性は pCMB に より 阻害される。 従って 両者は  
 異なる 121% の 酵素活性とみなせる。 この点でも トリプロシンとは 異  
 なることがわかる。

プロアリシン由来の いくつかの 基質の 分解活性の 結果 (図-4) か  
 ら プロアリシンは  $\alpha$  サブユニットが 完全に 分解を受けたのに 対し、  $\beta$  サ  
 ブユニットの 分解は 進み難いことがわかる。  $\alpha$  サブユニットは  $\gamma$  鎮を  
 $\beta$  サブユニットは  $\gamma'$  鎮をもつ (9)。 分解後の 試料に  $\beta$ -ME を  
 入れ SDS-ゲル電気泳動を行うと、  $\gamma$  鎮が 分解され  $\gamma'$  鎮  
 が 生成されるのが 見られて。 一方 CM 化 プロアリシンより 分解した  
 $\gamma$  鎮と  $\gamma'$  鎮とでは、  $\gamma'$  鎮の方が 容易に 分解を受けて 新しい 分  
 種を 生成するのみで、  $\gamma$  鎮も 同じ傾向はあるが、 分解を  
 受け難い。 これは 両者の 溶解度の 差によるものであろう。

クロアリニの場合は 塩濃度を高めると溶解するので、この状態では Y 鎮の方が 分解を受けやすいと考えられる。この分解によって 分子量 36,000 の Y 鎮（あるいは 分子量 34,000 の Y' 鎮）が 1/2 分解され、分子量 23,000（あるいは 24,000）と 13,000 の 2つの方分子量に 分かれると、23,000（24,000）の方分子量がさらに 分解して 13,000 の分子量と なじてか 1問題となる。もし後者であるとすれば、Y (Y') 鎮やクロアリニと 分解して際に かなりの量の 小ペプチドが 遊離されてくるはずである。図.5. の 結果はこれを否定している。  
すなはち 図.4. の 23,000 と 24,000 の 染色度と 13,000 の 染色度に 大差がないので、Y (Y') 鎮は この 2つの 分子量に 分解されると考えるとある。

次に クロアリニ由来の 各基質から 小ペプチドあるいは アミノ酸を遊離させる活性についてみると、Top と δ 鎮に 特異的である（図.5.）。Top は δ 鎮と Y (Y') 鎮の 分解物 とか ジスルフィド結合したものと考えられる。Y 鎮は 限定分解を受けないにもかかわらず、小ペプチドの遊離活性は 低いので、Top の高い活性は δ 鎮が 分解を受けた結果とみなすことができる。一方 クロアリニも δ 鎮とともに活性がある。これは Y (Y') 鎮と共に存在する δ 鎮の状態が 単独で存在する場合や Top の成分として存在する場合と異なり、分解を受け難い構造ととてなることと 示唆している。

Y'鎖の方解活性の初速度が非常に速く、及ぶかあたかも飽和に達したような曲線を描く理由は不明である。Y'鎖の方解産物が阻害的に働くといふのもかもしれない。この場合  $T_{Op}$  の一成分としてのY'鎖はシスルフィド結合で他のペプチド鎖とつながり、このY'鎖の方解産物による阻害を受けなかつたと考えることができ。Y'鎖とY'鎖の混合物の方解活性も曲線を描くことがある。これはY'鎖の方解を反映しているのである。Y'鎖はY'鎖と同様底の方解していよいよである。CH<sub>4</sub>ヒドロアリニの場合にはY'鎖の方解方が重なる直線的に増加してと考えられる。

この活性はpCMB, EDTAで阻害を受け、 $\beta$ -MEやDTTにかけ活性化される。この活性化は基質分子のシスルフィド結合が切れてY'鎖が遊離したためとも考えられるがpCMBにより阻害を受けるので一応チオール酵素とみなせる。

シクロヘキシミドによつてBAPA方解酵素の合成は止まる（後節、図.1.）。このように蛋白質合成が止まるのであるから、 $T_{Op}$  やY'鎖の方解酵素も乾燥種子中にすでに存在しているとすると、Sup II-O Iはこの活性はない（後節、表.1.）から、限定方解活性と同様。イニビビターや因子の存在を仮定して現象を説明しなければならない。

レスエヌリ 肝臓蛋白質 プロアーリンの分解過程を追うと、吸水により活性化され(構造は不明) 限室分解酵素 := プロアーリンは  $F_{\alpha\beta}$  と分子量 13,000 の分子種に分解される。この反応は吸水後直ちに速かに起り、発芽 4 日目まで  $F_{\alpha\beta}$  は 1/2 と消滅する。一方  $F_{\alpha\beta}$  はこれに特異的な分解酵素 := 小アーティドヒドロアーリン。この反応は玉件内の還元状態や pH 1=より 2 シスルブト結合が切れるなどあれば" 分解産物による阻害か かかる可能性もある。いずれにしても プロアーリンの分解に比べて反応が速いので  $F_{\alpha\beta}$  の発芽達成に高積する。次に  $F_{\alpha\beta}$  から玉じで小アーティドヒドロアーリンより遊離した 13,000 の分子種は プロアーリン同様 Arg 含量が高まります、これらは発芽達成で玉件の BAPA 分解酵素 (Arg のカルボキシ側を切断する) や LPA 分解酵素 (アミノペプチダーゼ) によって分解されるものと考えられる(後節参照)。

シクロヘキシミドの作用、休眠種子に分解酵素が存在するといはるが不活性化の機構、また発芽時の酵素の活性化の機構などと残された問題が多い。またこれら一連の酵素群が細胞内のどこで働きか。即ちどこまでの分解か 実際に蛋白質顆粒内で あるか、それとも、検討する必要もある。

## References

- (1) A. G. Iordan, M. A. Belozerskii: Biokhimiya (1976) 41, 673
- (2) A. Tomomatsu, N. Iwatsuki, T. Asahi: Agric. Biol. Chem. (1978) 42, 315
- (3) J. B. Caldwell, L. G. Sparrow: Plant Physiol. (1976) 57, 795
- (4) I. Hara, K. Wada, H. Matsubara: Plant & Cell Physiol. (1976) 17, 815
- (5) I. Hara, K. Wada, S. Wakabayashi, H. Matsubara: Plant & Cell Physiol. (1976) 17, 799
- (6) N. Papageorgakopoulou, J. G. Gerogatsos: Int. J. Biochem. (1978) 9, 133
- (7) R. Ezekeil, K. S. K. Sastry, M. Udayakumar: Indian J. Exp. Biol. (1978) 16, 519
- (8) C. C. Reilly, B. T. O'Kennedy, J. S. Titus, W. E. Splittstoesser: Plant & Cell Physiol. (1978) 19, 1235
- (9) I. Hara, M. Ohmiya, H. Matsubara: Plant & Cell Physiol. (1978) 19, 237

## 第2節 発芽種子中に出現する蛋白質分解活性

## 要約

1. 3種のいくつかの蛋白質分解活性の発芽に伴う変化を調べた。乾燥種子にはカゼイン分解活性とLPA分解活性が少し存在し、BAPA分解活性及び種子プロアーリンとその限定分解物F<sub>αβ</sub>の分解活性は極くわずか存在しえただ。いずれの活性も発芽2-4日目に急激に増大し、多量との活性が4-6日に最大に達した。その後の活性の減少量は各活性により異なり、最大活性の50%に減少するのはプロアーリンとF<sub>αβ</sub>の分解活性が最も早く発芽7日目、次いでカゼイン分解活性が10-12日目である。BAPA及びLPA分解活性は発芽12日目に約75%の活性を保持している。一方プロアーリンからF<sub>αβ</sub>を生じる限定分解活性も乾燥種子には存在せず、発芽4日目が最大である。
2. 発芽5日目の3種の抽出液をアルカリ透し、各活性の溶出パターンを調べた。プロアーリン分解活性はI及IIの2つのピークを示し、BAPA分解活性のピークとは異なつたが、カゼイン分解活性はプロアーリン分解活性IIと同じ所に溶出された。

3. BAPA 万解活性の構造を試みた。一部万構造した  
 BAPA 万解活性は  $\mu$ CHB の阻害を受ける。 $\beta$ -ME や DTT は、  
 活性化されると、PMST, EDTA, 2 価金属イオンやカブテア種子  
 のトリフロシン・インヒビターには影響されない。BAPA 万  
 解活性には フロブリンから  $F_{\alpha\beta}$  を生成する限定万解活性は  
 ない。また フロブリンや  $F_{\alpha\beta}$  から 小ペプチドやアミノ酸を  
 遊離させる活性も非常に弱い。

4. 3 週目にトリフロシン・インヒビターが存在していた。この  
 トリフロシン・インヒビターは 落芽に伴ってゆるく減少し、落芽  
 12 日目には最大阻害活性の 60% を保持していた。落芽時  
 の蛋白質万解酵素との関係は不明である。

## はじめに

貯蔵蛋白質としてアラブリンをもつ種子あるいはその芽  
玉えに出現する蛋白質の酵素について多く報告があり(1~5),  
単離・精製されたものもある(6~10). しかしこの時期に蛋白質  
の代謝が盛んであるからといって必ずしもこれらの酵素が貯蔵  
蛋白質の分解に直接関与しているとは限らない. 調べられて  
実際貯蔵蛋白質を分解して例は少なく(9,10), 10% 118 例の  
アラブリンと分解した例はあまりない.

3種中で貯蔵蛋白質の分解に関与している一連の酵素につれて研究の場合 注意しなければならない点がいくつもある.  
その1に 精製して得られた酵素が 同じ起源の 他の貯  
蔵蛋白質を分解しない場合でも、一概にその酵素が 貯蔵蛋白  
質の分解に関与していないとは言えない. 貯蔵蛋白質に限  
る角質などの変化を与えてやることによって分解活性を認めると考  
えられる. 即ち貯蔵蛋白質の分解に2次的に働く可能性  
がある. その2に 動物性起源の蛋白質(カゼイン, ヘモグロビンなど)  
を基質としないで結果活性が見られない場合も、貯蔵  
蛋白質に特異的に働く酵素が存在する可能性がある.  
その3に、芽生えの中の分解活性を *in vitro* でみると時に基質とて

同じ起溼の種子貯蔵日数と用い方を例加多いか、 実際には  
発芽時期によって 基質となる 豆日数 方子日数 も変化しておこる。  
これにはならない。 即ち 貯蔵日数が多さに直結した時期。発芽  
えの方解活性の 基質となるのは *in vivo* では 貯蔵豆日数の方解  
産物なのである。

カボチャ (Cucurbita sp.) 種子では 発芽初期の豆  
日数が解の基質となるのは 115717% プロアーリンのみであり (11),  
豆日数代謝の追跡には 有利な材料である。 す・プロアーリン  
子のサブニット構造などの活性や 発芽適温に高積みのプロア  
リニの限界方解物  $T_{\text{dp}} = 1412$  は 12 に報告され (11~13;  
第3章)。 これは 12 発芽に伴う 3葉に出現する 115717% の  
活性について調べ、 発芽時の 全豆日数量や プロアーリニ量、 変動の  
データ (12) と比較しながら考察 17%.

## 材料と方法

材料：  $N\text{-}\alpha\text{-アミノ酪酸-D,L-アルギニン-p-ヒドロアリド}$  (BAPA), ロイシン  $p\text{-ヒドロアリド}$  (LPA), カゼイン, アゾカゼイン, シクロヘキシド・セフロース4B などは 試薬は 特級を 半井化学薬品株式会社 (京都) 及び 和光純薬工業株式会社(大阪) より 購入した。トリプシンは Worthington 社より 購入した。カゼイン (テツカブト・ナンキン支配種), Cucurbita sp. )種子は タキイ種苗株式会社 (京都) より 購入した。

種子の発芽： 種子は 次亜塩素酸ナトリウムで 30分間 滅菌後, 1時間 水に洗したものを用いた。殻を除去した種子をシャーレに水あるいは 5mM シクロヘキシミドで 湿らせて 口紙上に置き, 暗中 20°C で 吸水・発芽させた。

### 種子プロテリン及びプロテリンの限定量解物 (T<sub>DP</sub>) の調整：

前回の論文に詳述した (11, 13)。

トリプシン・セフロースの調整： 約 10ml のセフロース4B を 10倍量の水で洗った後, 混合しつつ  $\text{BrCN}$  水溶液 ( $750\text{ mg}/10\text{ ml}$ ) を加え,  $3\text{ M NaOH}$  で  $\text{pH} \approx 10 \sim 11$  に保つ。20分間 放置後, 吸引口過しつつ, 100ml の冷たい水, 続いて 100ml の  $0.1\text{ M}$  炭酸ナトリウム-炭酸水素ナトリウム 混合緩衝液 ( $\text{pH } 9.0$ ) で洗う。

これに トリフ<sup>0</sup>シン 溶液 (20mg / 10ml 0.1M 同緩衝液) を加えて 一夜 沈却振盪後, 300ml の 0.1M リン酸緩衝液 (pH 8.0), 0.1M NaCl, 次に 300ml の 0.1M 酢酸緩衝液 (pH 4.0), 1M NaCl を注ぎ, これに 塩酸を pH 8 に調整 (T= エチレニシアミン溶液 (2g / 20ml) を加え, 4時間 放置した. 0.1M Tris-緩衝液 (pH 8.0) 300ml を注ぎ, 25 mM ジエン酸緩衝液 (pH 5.8) 1= 平衡化し, トリフ<sup>0</sup>シン-エフロ-ス カラム (1 × 15cm) を 1E 成した.

トリフ<sup>0</sup>シン・インヒビター活性の測定: 反応液の測定には 1mM BAPA (予め サラヤ DMSO に溶かしたもの) 0.2M リン酸緩衝液 (pH 8.0) に 溶解した) 0.5ml, 約 2m units の トリフ<sup>0</sup>シン 溶液 0.1ml, インヒビターの溶液 0.02~0.2ml, 及び 同緩衝液を加成し, 全容量 1.3ml を 37°C 1時間 反応させた. 0.5ml の 1M 酢酸を加え 反応を停止させた後, A<sub>410</sub> を 測定した.

1 Im unit は 2m units の トリフ<sup>0</sup>シンの活性を 50% 阻害するのに 要する インヒビター量と した.

Sup*ii*・5 1= 含まれる BAPA の活性, プロテラ=アラニン活性 及び

トリフ<sup>0</sup>シン・インヒビター活性。ウレトロゲル・プロテララ:

屠後 5 日目の子葉 122 例 (33.6 g) の抽出液 (supi.5) を透析・遠心後 (supi.5)，硫酸アミド (20% - 75%) を行い、  
沈殿を 25 mM ケン酸緩衝液に溶かし、同緩衝液で平衡化したウルトロデル AcA 44 カラム ( $2.9 \times 70 \text{ cm}$ ) にかけ溶かす。  
流速 1 L / 時間、各分画は 6 mL ずつ集め、BAPA 及  
トリプシンの分解活性、及びトリプシン・インヒビター活性の測定を行った。

#### BAPA; 活性分画 及びトリプシン・インヒビター活性の定量の確定：

工記と同様の操作と子葉 4 例 (3.6 g) の supi.5 を試料とし、ウルトロデル AcA 44 カラム ( $2 \times 100 \text{ cm}$ ) を行つた。マーカーとして用いた蛋白質はウシ血清アルブミン (分子量, 66,000)，卵白アルブミン (分子量, 46,000)，RNase (分子量, 12,800)，及ウマ心筋チトクロム C (分子量, 11,700) である。

#### トリプシン・インヒビター・アフィニティ・クロマトグラフィーによる精製：

supi.5 の下部濃度のトリプシン・インヒビター分画を工記の通り調整したトリプシン・エフロースカラム ( $1 \times 15 \text{ cm}$ ) にかけ、25 mM ケン酸緩衝液で AcA カラムと同様に洗つた後、0.2 M KCl - HCl (pH 2.0) でインヒビター分画を溶かす。この分画はエターナル G-25 で脱脂後、凍結乾燥し他の実験に用ひる。

トリプシン・インヒビター活性の発芽に伴う変化: 成芽 8 日

目的各子葉 10 個ずつから 7 エン酸緩衝液 1 ml ずつ子葉液 (sup: m) と トリプシン・エフロース・アブイ＝ティー・カラム (1 × 15 cm) にかけ、吸着、溶出してインヒビター活性を測定した。

蚕豆苗分解活性の測定

BAPA 分解活性: 反応液は 0.2 M リン酸緩衝液 (pH 8.0) に溶解した 1 mM BAPA 0.5 ml 及び必要に応じて同緩衝液 2:薄めた酵素溶液 0.1 ml から成る。イニシエーター、SH 試葉、2価金属イオンの効果を从にする場合は、適切な濃度の試葉 0.05 ml と酵素溶液 0.05 ml を手の混ぜ、20 分間放置後 0.5 ml の 1 mM BAPA を加えて反応を開始した。PMSF (エタノール溶液) は基質溶液に加えてから、直照と 2 用ひた基質溶液にも同量のエタノールを加えて。反応は 37°C 30 分間で、反応停止には 0.5 ml 1 M 酢酸の添加を行つた。活性は  $A_{410}$  を測定し、1 unit は 1 分間に  $1 \mu\text{mole}$  の BAPA を分解するに要する酵素溶液量とした。直照した酵素溶液の代わりには同緩衝液を入れたものを用ひた。

LPA 分解活性: 0.2 M リン酸緩衝液 (pH 7.0) に溶解した 5 mM LPA (予め少量の DMSO に溶解しておいた) 1 ml と酵素溶液 0.1 ml を加え、20°C で反応を開始し、 $A_{405}$

の変化を日立 124型分光光度計で追った。1 unit は 1 分  
間に  $1 \mu\text{mole}$  a LPA を分解するに要する酵素溶液量とする。

カゼイン分解活性: 0.1 M フェニ酸緩衝液 (pH 5.8) に  
溶解した 2% カゼイン  $0.1 \text{ ml}$  に酵素溶液  $0.1 \text{ ml}$  を加  
え,  $37^\circ\text{C}$  で 2~20 時間反応させた。20% TCA を  $0.1 \text{ ml}$  加  
えて反応を停止した後,  $0^\circ\text{C}$  で 30 分間放置した。遠心  
上清の TCA 不溶性蛋白質  $0.1 \text{ ml}$  に  $0.2 \text{ ml}$  a  $0.2 \text{ M NaOH}$  を加え  
中和した後,  $1.0 \text{ ml}$  a  $\text{ニンヒドリン試薬}$  (2% ニンヒドリン, 0.04%  
 $\text{SnCl}_2$ , 1M 酢酸緩衝液 (pH 5.5), 75% メチルセルロース) を添加し,  
 $100^\circ\text{C}$  15 分間処理して発色させ,  $A_{570}$  を測定した。  
1 unit は 1 分間に  $A_{570}$  が 1 吸光度増加するに要する  
酵素溶液量とする。

クロロブリニン分解活性: 0.1 M リン酸緩衝液 (pH 8.0) に  
1% 2% クロロブリニンを基質溶液とし同様の  
操作を行った。ただし反応時間は 4 時間とする。

sup.5 による分解活性の pH 依存性: 10 mM フェニ酸緩衝  
液に溶解した 1% カゼイン約  $0.1 \text{ ml}$  クロロブリニン  $0.3 \text{ ml}$  と  $0.1 \text{ ml}$   
の各 pH の緩衝液と  $0.2 \text{ ml}$  a sup.5 を加え  $37^\circ\text{C}$  で 2 時間

反応させた。各反応液の pH を調へた後 1.65 ml の 10% TCA を添加し、その遠心工清 0.1 ml につけて工記と同様の操作を行ひ、 $A_{520}$  を測定した。

用いた緩衝液は pH 2-7; 0.1M チエニ酸緩衝液、pH 7-8; 0.2M リン酸緩衝液、pH 8-11.5; 0.2M 炭酸アトリウム-炭酸水素ナトリウム緩衝液である。

カゼインは pH 5.0 以下になると溶解度が悪くなるので、2% アソカセインを用いて同様の操作を行ひた。0.5 ml の 8% TCA の添加で反応を停止後、遠心工清の  $A_{366}$  を測定した。1 unit は 1 万回に  $A_{366}$  が 1 ユニット增加させるのに要する酵素溶液量とした。

クロブリニ及ブチロブリニの分解活性の pH 依存性： 1M NaCl を含む 12.5 mM チエニ酸緩衝液 (pH 5.8) に溶解して 0.2% クロブリニ含有 11.1 ml の  $F_{ab}$  0.05 ml、ウルトロセル・クロマトグラフ用の方皿 II を 0.1 ml、各 pH の緩衝液 (工記と同様) 0.4 ml を加え反応液を 37°C 18 時間反応させた。pH を調へた後、0.5 ml 20% TCA を添加し、その遠心工清 0.1 ml につけて工記と同様に 1% ナトリウムモリブド酸を用いて  $A_{520}$  を測定した。対照は未反応の溶液の TCA の溶性方皿を用いた。1 unit は 1 万回に

$A_{570}$  と 1T<sub>1</sub> で增加量を算する酵素量と 1T<sub>1</sub>。

ブロマリン及び TGA の分解活性の発芽に伴う変化： 酵素溶液

12 supernatant を用い、0.1M エン酸緩衝液 (pH 5.8) を用いた時は全て上記の pH 依存性の測定の場合と同様に操作した。

TCA 沉殿分画はアセトン洗浄後、0.1 ml の SDS-PAGE 試料溶液を加え、SDS-アリル電気泳動を行った。

BAPA 分解酵素の精製

第1段階、抽出： 発芽 5 日日の子葉 149 個 (42.3 g) に 200 ml の 0.1M エン酸緩衝液 (pH 5.8) を加え振り混ぜた。 = 実験で“2. 抽出液”とし、遠心 ( $8000 \times 30$  分) 工清を集めた。

第2段階、DEAE-セルロースカラムクロマトグラフィー： 遠心工清を 25 mM リン酸緩衝液 (pH 8.0) で透析後 再び遠心で洗殿を除き工清を DEAE-セルロースカラム ( $6 \times 8 \text{ cm}$ ) に吸着させ、同緩衝液で充てた後、0.5M NaCl を含む同緩衝液で溶かした。活性分画を同緩衝液に含む透析 1T<sub>1</sub> 後、遠心工清を集めた。

第3段階、DEAE-セルロースカラムクロマトグラフィー： 工清を DEAE-セルロースカラム ( $2.4 \times 45 \text{ cm}$ ) に吸着させ、100 ml の同緩衝液を流した後、500 ml の同緩衝液と 500 ml の 0.7M NaCl を

含む 同緩衝液の 濃度勾配で 溶出し、 活性方画を集めた。

第4段階、 ウルトロドール AcA 34 フロコトアラブー： 活性方画

85% 流出 沈殿させた後、 ウルトロドール AcA 34 カラム (3x 116 cm) にかけ、 25mM フェニ酸緩衝液 (pH 5.8) で溶出した。

第5段階、 DEAE-アルロース 1:83 濃縮：

第6段階、 ウルトロドール AcA 44 フロコトアラブー： 濃縮した  
活性方画を ウルトロドール AcA 44 カラム (3x 190 cm) にかけ、 25  
mM フェニ酸緩衝液 (pH 5.8) で溶出した。 (流速は 26 ml/  
時間)。 各方画は 10 ml ずつ 集めた。 活性方画は DEAE-  
アルロース で 濃縮した。

SDS-ジアクリルアミドゲル電気泳動 (SDS-PAGE)： 試料

溶液は 1% SDS を含む 25mM Tris-酢酸緩衝液 (pH  
8.2) (SDS-PAGE 試料溶液と同様) を用いた。 泳動条件  
は 全く お論文の通りに行なった (II)

蛋白質の定量法： ピュレット反応 あるいは UV 吸収 ( $A_{280}$ ,  
 $A_{260}$ ) 法により求めた。

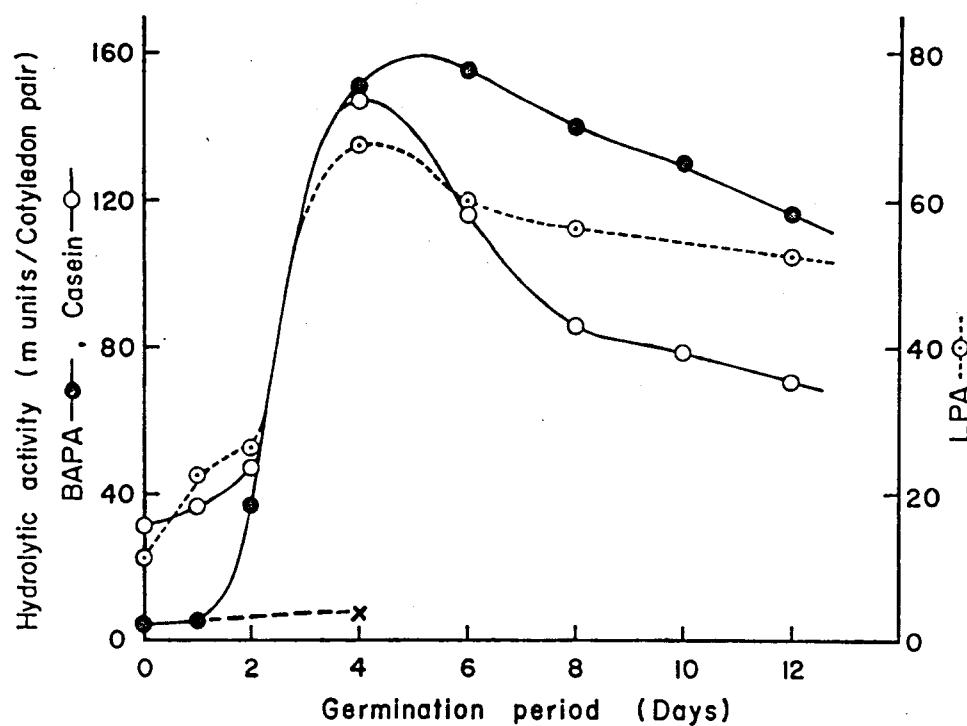



図. 1. 3葉の蚕豆胚芽の蛋白分解酵素活性の発芽12日までの変化。

蚕芽 n日目の3葉のsupi-nと BAPA及びLPA活性測定用には pH7.0の緩衝液を抽出し、これを酵素活性測定用には pH5.8の緩衝液を抽出した。supi-nとさらに透析して supi-nを酵素活性測定用とした。 ---x は 5mM チフロベキシミト存在下で吸水させた3葉のChx-supi-n BAPA分解活性を示す。

| Substrate<br>Enzyme<br>source | Globulin                    | F <sub>α</sub> β        | Incubation<br>time<br>(hr) |
|-------------------------------|-----------------------------|-------------------------|----------------------------|
|                               | origin α β F <sub>α</sub> β | origin F <sub>α</sub> β |                            |
| sup ii-2                      | —                           | —                       | 0                          |
|                               | —                           | —                       | 18                         |
| sup ii-4                      | —                           | —                       | 0                          |
|                               | —                           | —                       | 18                         |
| sup ii-6                      | —                           | —                       | 0                          |
|                               | —                           | —                       | 18                         |
| sup ii-8                      | —                           | —                       | 0                          |
|                               | —                           | —                       | 18                         |
| sup ii-10                     | —                           | —                       | 0                          |
|                               | —                           | —                       | 18                         |

図2. γ-IGM 及び F<sub>α</sub>β の酵素活性の発芽に伴う変化。

発芽の日数の 3 案の sup ii-n (γ-IGM 細胞液)

を酵素活性と 12 時間 0.2% γ-IGM 及び F<sub>α</sub>β

(12.5mM γ-IGM 細胞液, 1M NaCl 溶液) を基質溶

液と 12 37°C 18 時間 反応させた後, TCA 沉淀

方法を SDS-PAGE 法で泳動にかけて。

表. 1.

γ: D7:4:2 及び F<sub>αβ</sub> の酵活性の発芽における変化

| Enzyme source | Activity <sup>a)</sup> (m Units/Cotyledon pair) |                 |
|---------------|-------------------------------------------------|-----------------|
|               | Substrate                                       |                 |
|               | Globulin                                        | F <sub>αβ</sub> |
| sup ii.0      | 0.09                                            | ----            |
| sup ii.1      | 0.09                                            | 0.09            |
| sup ii.2      | 0.23                                            | 0.02            |
| sup ii.4      | 2.07                                            | 4.56            |
| sup ii.6      | 1.70                                            | 3.47            |
| sup ii.8      | 0.75                                            | 1.37            |
| sup ii.10     | 0.92                                            | 0.98            |
| sup ii.12     | 0.42                                            | 1.08            |

a) 1 unit (f. 10) = A<sub>520</sub> E 1 T = 1 J 増加量 = 100

酵素量 = 1 Tc.

## 結果

発芽に1半, 23葉中に出現する酵素活性: カゼイン, BAPA,

LPA の分解活性の発芽時の変化を 図.1. に示した。発芽種子にも これらの活性は少ないと存在していい。この活性も 発芽2日目から4日目にかけて急激な増加を示した。カゼインの活性は発芽12日目で半減したが、BAPA 分解活性は 発芽5日目から6日目に最大となり、12日目でもその70%以上の活性を保持している。

プロアーリンの限定分解活性は 発芽4日目の sup II. 4 に現われた (図.2.)。即ち α-ラバクチンがうすくなり、T<sub>α</sub>Bが主いた。これは in vivo でのプロアーリンの分解パターンと同一である。sup II. 6, 8, 10 にも わずかに活性が見られる。図には示してないが sup II. 0, 1 には活性はない。T<sub>α</sub>B の分解に伴うものは特にバクテリオ色素強度が大きく減少するがわかる。

一方 プロアーリン 及び T<sub>α</sub>B からアミノ酸や小ペプチドは遊離する活性も やはり カゼイン, BAPA, LPA 分解活性と同様 発芽2日目から4日目にかけて急激に増大し、その後減少する。発芽12日目には最大活性の20%近くになっている (表.1.)

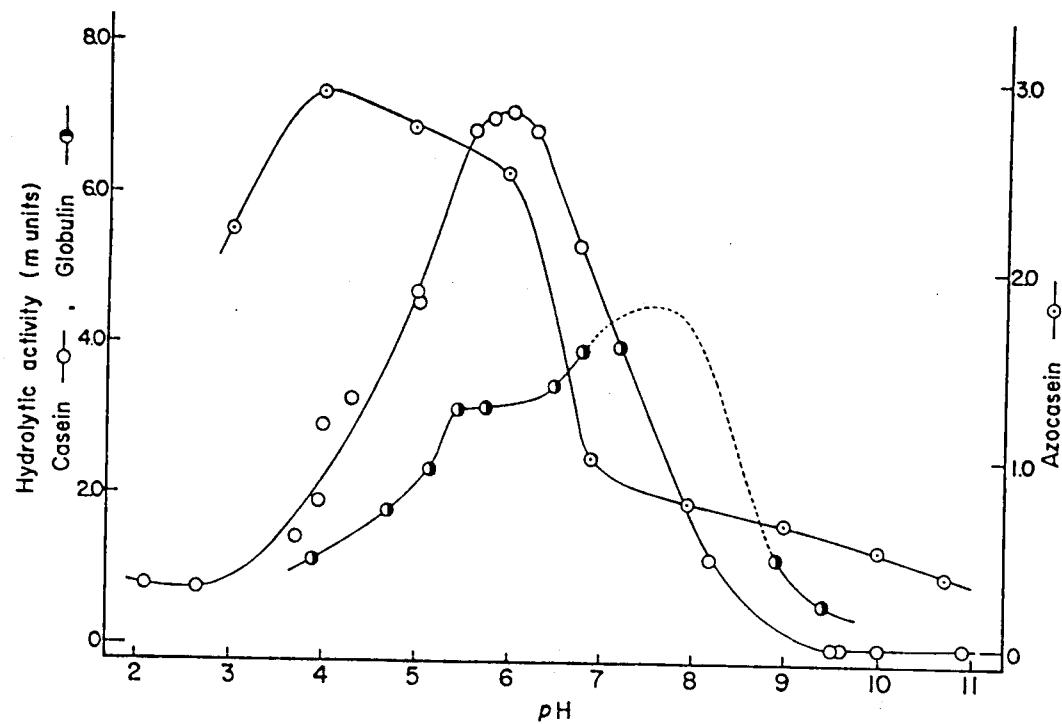



図. 3. 発芽 5 日目の子葉中の蛋白質分解活性の至適 pH

活性測定の詳細は本文中。破線は

図. 5. よりの推定で描いた。

$T_{\alpha\beta}$  の分解活性が プロアリノの分解活性に比べて 2倍近く強くなると持続であった。

レセヨリ カゼイン, BAPA, LPA, プロアリノ,  $T_{\alpha\beta}$  の分解活性は いずれも発芽2日目までは大きな変化は見られず、その後急激に上昇し、発芽4日目近くで最大になつたがその後の活性の減少をみると、プロアリノと  $T_{\alpha\beta}$  の分解活性の減少ペースは似ているが、カゼインや BAPA 分解活性の減少ペースは異なり、非常に急激である。

いずれの活性も 12時間最大を示すと思われる sup II.5 につれて 分解活性の至適pHを調べた(図.3)。カゼイン分解活性の至適pHは 5.9 であるが、pH 5.0 以下ではカゼインの溶解度が 50% 以下の酸性側での活性が低下するとも考えられる。アリノカゼインとカゼインに比べて 酸性側での溶解度が高いうちの分解活性の至適pHは 4~6 に存在する。一方 プロアリノの分解活性は pH 5.0~pH 8.5 の範囲に存在するが、至適pHも pH 8.7 近くと pH 5~6 の少なくとも 2つのピークが存在する(図.3, 図.5.)。

sup II.5 に存在する BAPA と プロアリノ 分解活性: sup II.5 に

ウルトロゲル・クロマトグラフ-1=86 溶液 パーナーを 図.4. に示した。

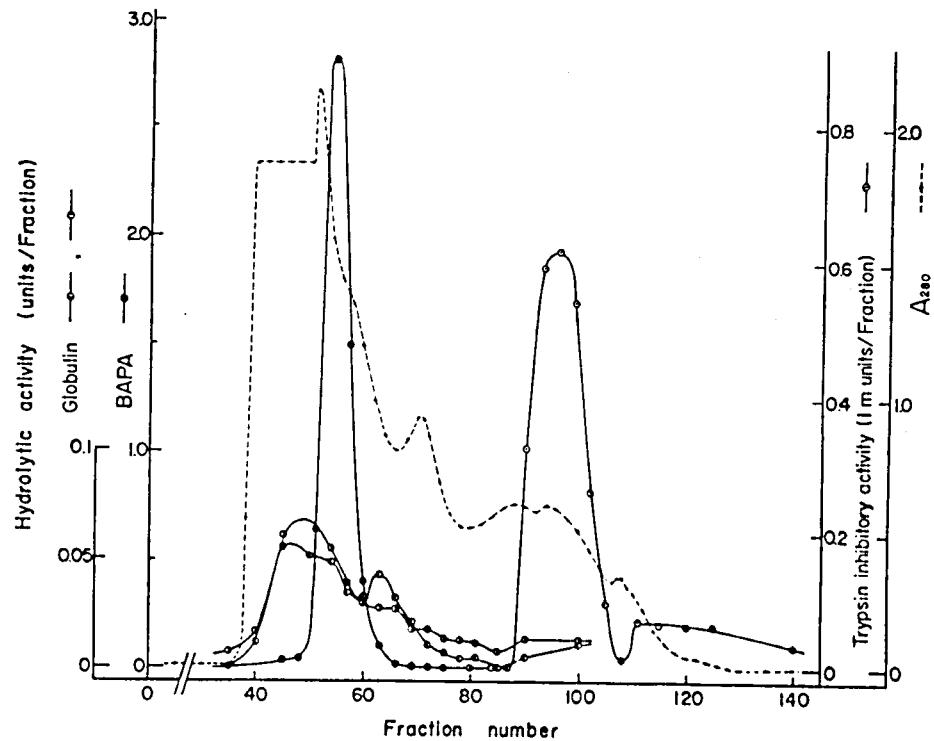



図.4. 発芽5日目の子葉抽出液のウルトロゲル・クロマトグラフ:

BAPA, グロブリン及ぶトリプシン・インヒビター; 濃度パラメータ。

発芽5日目の子葉 122個分 (33.6g) の抽出液 (sup:1:5) を  
硫酸アミニ酸の後 ウルトロゲル・クロマトグラフを行。K. 7:0  
アルミニ酸性測定は 0.1M リン酸緩衝液 (pH8.0): —●—  
及ぶ 0.1M エン酸緩衝液 (pH5.8): —○— にて  
行。Tc. 各分量は 6ml. 活性測定、詳細は  
右欄中。

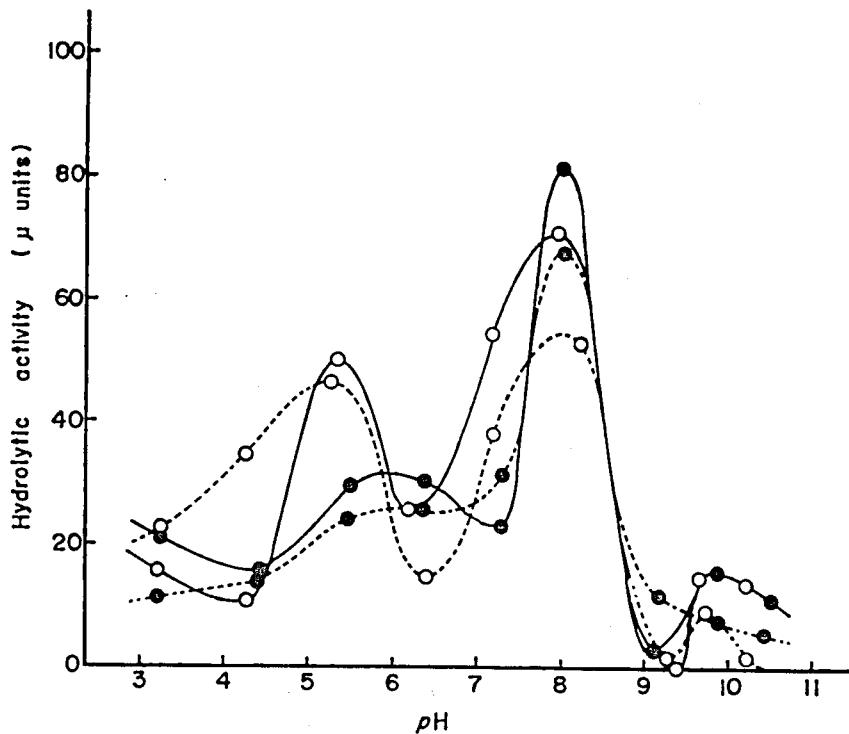



図5. ウレトロゲル・クロントカラーフーの活性とpH

II I=83 クロトリニンと  $F_{ab}$  の分解活性とpHの変化

活性測定は同一の緩衝液は pH 7.5 以下で  
ケン酸緩衝液と同一の地図と図3.と同じである。及  
ぶ条件は図2.と同じ。酵素溶液は sup II-5 の  
ウレトロゲル 溶液を用いた (図4.)

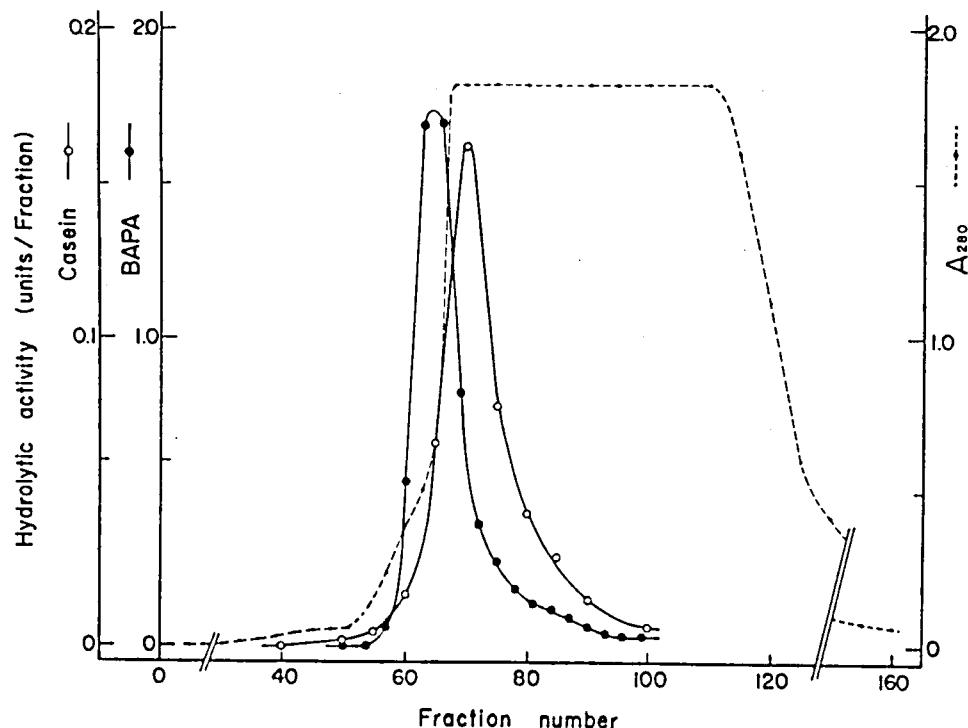
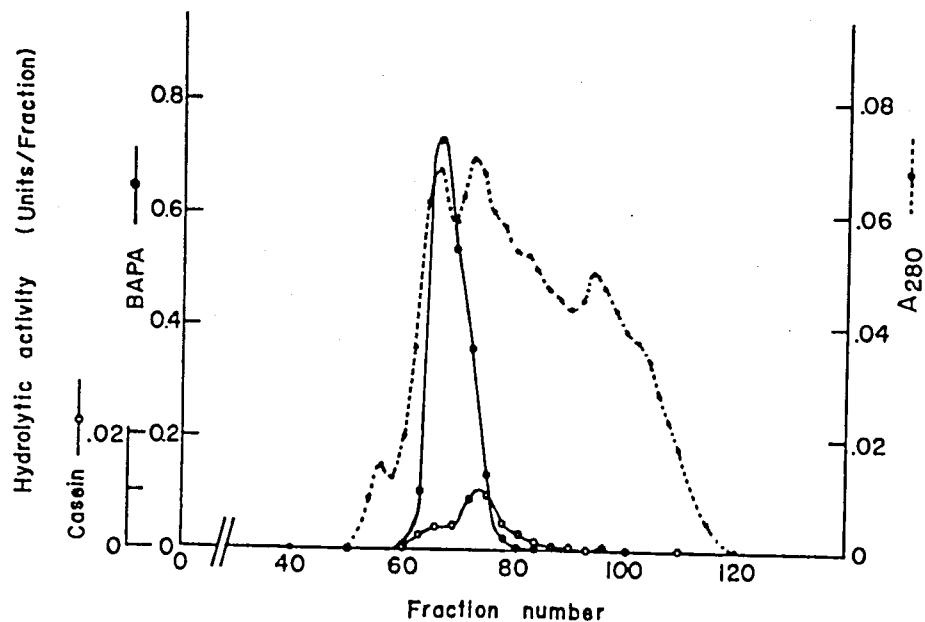




図. 6. BAPA 及<sup>u</sup> カゼイ<sup>u</sup> 分解活性 a DEAE-セリウス

カラム I=83 i 答<sup>u</sup> ハ<sup>u</sup> 7-ン

発芽 5 日目<sup>u</sup> 子葉部の抽出液 (sup : -5) & DEAE  
セリウス・カラム 2<sup>u</sup> 段階的<sup>u</sup> に 吸着、溶出させた方面を 25ml  
リ<sup>u</sup> 酸緩衝液 (pH 8.0) で 透析平衡化後、DEAE-セリウス  
カラム・クロマトグラフ<sup>u</sup> 行<sup>u</sup> た。 壓<sup>u</sup> 濾液勾配は 500 ml<sup>u</sup>  
1 回緩衝液と 500 ml<sup>u</sup> 0.7M NaCl を含む 1 回緩衝液  
2<sup>u</sup> 作成した。 各方面は 6 ml<sup>u</sup>。 活性測定<sup>u</sup> 詳細  
(本<sup>u</sup> 文中<sup>u</sup> )



12.7. BAPA 及び カゼイン分解酵素のウルトロゲルAcA

44 カム 1=33 濃度パラ-ン。

DEAE-セルロース カム 濃度の活性面 (図-8.)

ミウルトロゲルAcA34 カム・7122トゲラ-ヒ-を行. T=13, DEAE

セルロース 2: 濃縮12 ウルトロゲルAcA44 カム 1=0.1Tc.

1溶虫 18 25mM 7エン酸緩衝液 2: 行. Tc. 各方濃18

10ml. 活性測定の詳細は本文中。

BAPA 分解活性は ゲルロ過2 分子量 58,000 の折りたて 溶出された。

クロラリニン 分解活性は 主に分画Iと分画IIに認められ、  
分画Iは pH8.0, 分画IIは pH5.8 の方がそれそれ高い活性  
を示した。 BAPA 分解活性は 分画Iに含まれるか、活性のピーク  
は異なり。 一方 カゼイン 分解活性のピークは 分画IIのピークと  
一致し、 10%活性は クロラリニン 分解活性より高い。  $T_{50\%}$   
分解活性は 分画Iと分画IIでは クロラリニン 分解活性より少し低  
い。(図.5)。 テーパーは示されないが、 SPS-ゲル電気泳動では  
各 pH 下で  $\alpha$  及  $\alpha'$  が クロラリニンの限定分解 I によって調  
べたが、  $\alpha$  のバンドの染色強度が著しく減少し、  $T_{50\%}$  のバンドが  
生じたものはない。

BAPA 分解活性の精製： 図.6. に BAPA 及  $\alpha'$  カゼインの分解活性  
の DEAE-セレロース カラムによる溶出パターンを示した。 明らかに  
BAPA 分解酵素と カゼイン 分解酵素とは異なることがわかった。  
図.7. に ウルトロゲル・カラムによる溶出パターンを示した。 BAPA 分  
解活性より少し遅れて カゼイン 分解活性が 溶出されたが、 大部分  
操作中に失活してしまった。 最終的には BAPA 分解活性と カゼ  
イン 分解活性を分離することはできなかつた。 各精製段階の

表2. 蒜芽5日目の子葉よりのBAPA分解酵素の精製

| Purification step              | Total <sup>a)</sup> protein (mg) | Total <sup>b)</sup> activity (units) | Specific activity (units/mg protein) | Purification ratio | Recovery of activity (%) |
|--------------------------------|----------------------------------|--------------------------------------|--------------------------------------|--------------------|--------------------------|
| Extraction                     | 3180                             | 47.2                                 | 14.8                                 | 1.0                | 100                      |
| DEAE-cellulose chromatography  | 1330                             | 25.1                                 | 18.9                                 | 1.28               | 53.2                     |
| DEAE-cellulose chromatography  | 616                              | 17.0                                 | 27.6                                 | 1.86               | 36.0                     |
| Ultrogel AcA 34 chromatography | 34.4                             | 17.3                                 | 503                                  | 34.0               | 36.7                     |
| DEAE-cellulose concentration   | 21.9                             | 6.60                                 | 301                                  | 20.3               | 14.0                     |
| Ultrogel AcA 44 chromatography | 4.22                             | 4.80                                 | 1140                                 | 77.0               | 10.2                     |

a) 蛋白質定量はビュレット法又はUV法 (= 343 nm)

b) 1 unit (又は 1 分間) = 1  $\mu$  mole の BAPA を 1 分間に 増加する

酵素量 = 1 unit

表.3.

BAPA の解活性に及ぼす インヒビター, SH試薬 及び2種金属イオンの効果

| Compound added     | Concen-<br>tration<br>(mM) | Activity <sup>a)</sup><br>(m units) | Relative<br>activity<br>(%) | Compound<br>added | Concen-<br>tration<br>(mM) | Activity <sup>a)</sup><br>(m units) | Relative<br>activity<br>(%) |
|--------------------|----------------------------|-------------------------------------|-----------------------------|-------------------|----------------------------|-------------------------------------|-----------------------------|
| None               | -                          | 4.79                                | 100                         | EDTA              | 1.0                        | 5.00                                | 104                         |
| PTI <sup>b)</sup>  | 3ImU                       | 5.71                                | 119                         | "                 | 5.0                        | 4.79                                | 100                         |
| PCMB               | 0.1                        | 4.58                                | 96                          | CaCl <sub>2</sub> | 1.0                        | 5.00                                | 104                         |
| "                  | 1.0                        | 3.54                                | 74                          | "                 | 5.0                        | 4.71                                | 98                          |
| PMSF <sup>c)</sup> | 0.1<br>(4.63)<br>(4.66)    | 99                                  |                             | MgCl <sub>2</sub> | 1.0                        | 5.00                                | 104                         |
| "                  | 1.0<br>(4.46)<br>(4.59)    | 97                                  |                             | "                 | 5.0                        | 5.13                                | 107                         |
| β-ME               | 1.0                        | 5.75                                | 120                         | MnCl <sub>2</sub> | 1.0                        | 4.92                                | 103                         |
| "                  | 5.0                        | 5.83                                | 122                         | "                 | 5.0                        | 4.79                                | 100                         |
| DTT                | 1.0                        | 5.71                                | 119                         | CoCl <sub>2</sub> | 1.0                        | 4.88                                | 102                         |
| "                  | 5.0                        | 5.92                                | 124                         | "                 | 5.0                        | 4.58                                | 96                          |

a) 活性測定方法は本文中, 1 unit は 1 分間 = 1  $\mu$  mole

BAPA の解離に必要な酵素量と同様。

b) カルボキシル酸より精製したトリフロン・インヒビター (本文参照)

c) PMSF 溶液中のエタノールによる阻害を補正した (本文参照)

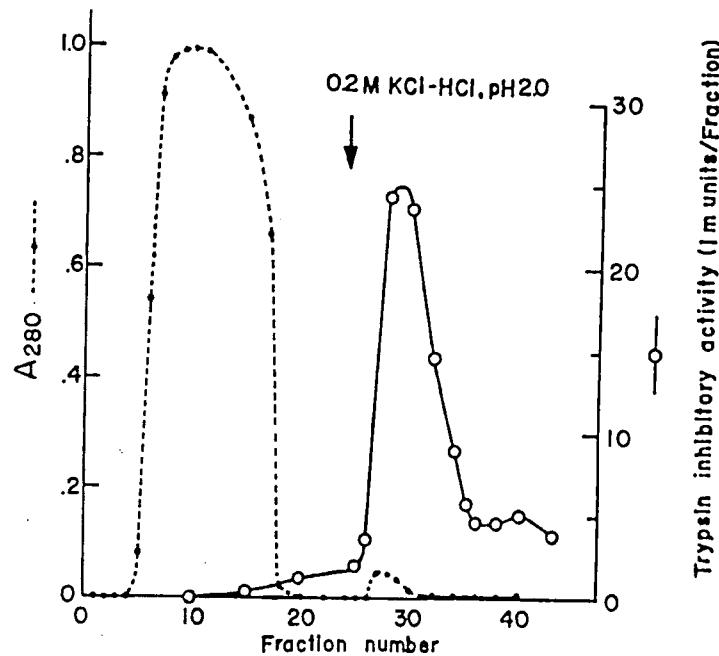



図.8. トリプシン-セラロース・アフィニティー・カラム I=88

トリプシン・インヒビター活性をトリプシン・セラロース・カラム (1.0 x 15 cm) で

得られれた結果を示す。インヒビター活性を測定する方法は、  
イソヒドロキシアルブミン (1.0 mg/ml) とトリプシン (1.0 mg/ml)  
を、フェノール酸緩衝液 (2:1) で混合後、0.2M KCl-HCl  
(pH 2.0) でインヒビター活性を測定した。支条材  
料は、5日間の発育した4個のアメーバーである。各活性は  
3 ml。

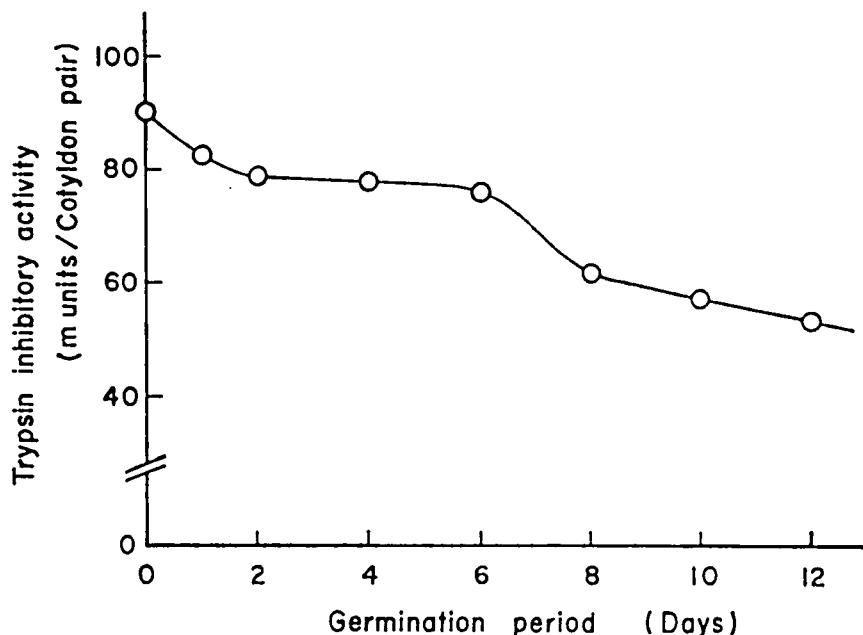



図.9. 子葉中のトリプシン・インヒビター活性の発芽に伴う変化

発芽の日目の子葉 各10個についての  $\text{sup} \text{II} \cdot \text{m}$   
 $(25\text{mM} \text{ケン酸緩衝液})$  と トリプシン・エフェロース・アセテート・  
 カラムにかけ、吸着、溶出して各インヒビター活性の  
 活性を測定した。活性測定の詳述は省略する。

活性と精製倍率 及び回収率を表.2.1に示した。

BAPA 分解酵素は約 77 倍精製された。

BAPA 分解活性における インヒビター, SH試薬, 及び 2価

金属イオンの効果: BAPA 分解活性は 2価金属イオン

や EDTA に影響されなかった (表.3)。また PMSF や カル

チアミンのトリフオシン・インヒビター 1 にも阻害されることはなかった。

一方 pCMB 2.1 は 1mM で 26% の失活が見られ、 $\beta$ -ME や DTT  
によると活性が上昇した。

BAPA 分解活性の グロブリン,  $F_{ap}$  に対する作用:

図.4 の グロブリン 分解活性との比-7 と BAPA 分解活性の比-7 の  
差ることで、BAPA 分解活性を含む グロブリン 分解活性の割合  
に グロブリン 限定分解活性が 収録されなかったことから 予想さ  
れた通り、BAPA 分解活性には グロブリン 限定分解活性や  
グロブリン 及び  $F_{ap}$  から 小部分と 多量に遊離させた活性は  
 $F_{ap}$ ,  $F_{n}$ 。

トリフオシン・インヒビター 活性: トリフオシン・インヒビター 活性は  
アルコール 2.3% 10,500 の割合に溶かされた (図.4)。アル  
コールの トリフオシン・インヒビター 分画を トリフオシン・セファロース・ア  
ルミニウムにかけると 非常に良く精製することができた (図.8)。

この精製標品を用ひて、3条件のいくつかの蚕自腹分解活性に及ぼす影響について調べた(表.3., 第3節, 表.1.)。

一方このカラムを更に  $sup\cdot$  に含むトリプシン・インヒビタ活性を測定し、発芽に伴うインヒビタの変動を示した(図.9)。インヒビタは発芽に従って減少したが、その減少はゆるやかで、発芽12日目に66%のインヒビタ活性を保持した。即ち諸々の蚕自腹分解活性が発芽2日目から4日目にかけて急増する(図.1., 表.1.)のに対し、インヒビタ量は急減するとなかった。

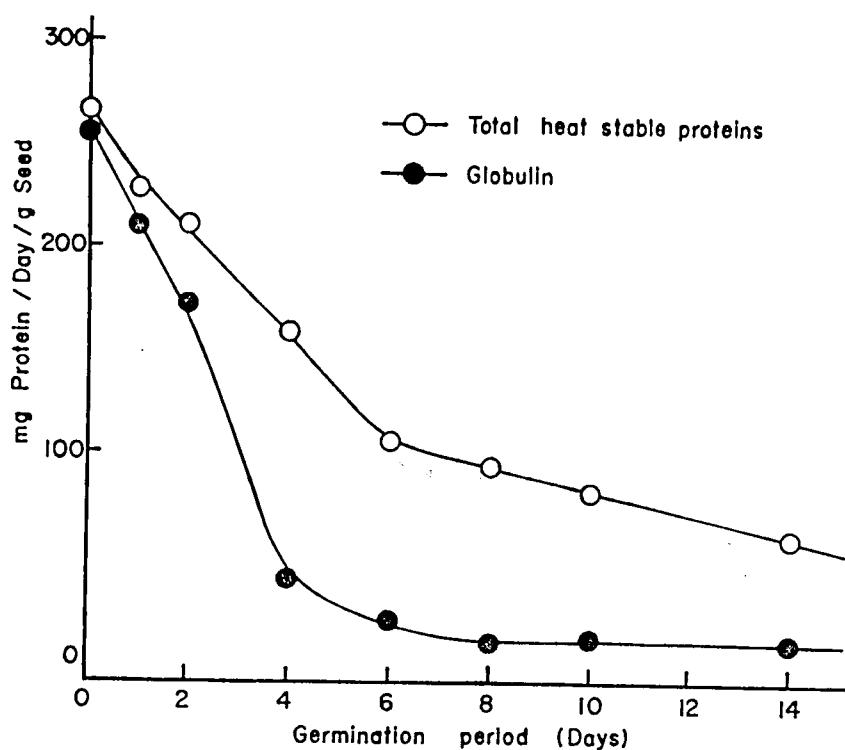



図.10. 3葉中の全熱安定性蛋白質量とグロブリン量の発芽による変化

第3章 第2節の結果より、図を作成した。

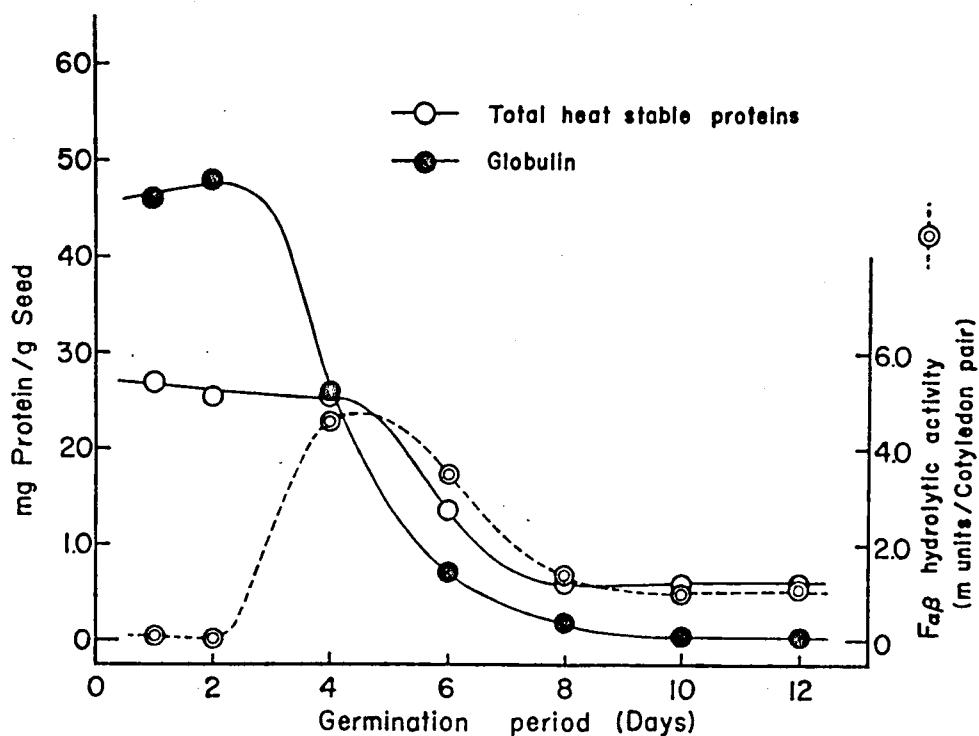



図.11. 予葉中の全熱安定性蛋白質とグロブリンの消

失速後の発芽に伴う変化。

図.10. a. 蛋白質量の変化の各発芽時期の成

分数を図に表わした。蛋白質の量(基質の量)が  
変化するので直接的なことは言えないが、各時期の蛋白  
質の分解活性を反映している。破線は予葉抽  
出液の  $F_{\alpha\beta}$  の分解活性(表.1の結果)の変動である。

## 考察

子葉中の全熱安定性蛋白質量とクロアリニ量の発芽に伴う変化を第3章第2節の結果から図.10. に表わした。またこの図とともに各時期の蛋白質量変化の微分係数を図.11. に示した。これは発芽各時期での蛋白質の消化速度即ち蛋白質分解活性の強さを表わしたものとする。ただし基質濃度が変化しているので直接的でない。

まず最初にクロアリンとその限界分解物  $F_{ap}$  における発芽初期の分解について検討する。表.1. より発芽初期のクロアリン及び  $F_{ap}$  の分解活性は発芽2日目で非常に強く、その後急速降低する。ところが図.10. の全蛋白質量及びクロアリニ量の変動を見ると、発芽0日目から4日目までほぼ一定の速度で減少しており、発芽2日目で、クロアリニは30%，全蛋白質量は20%減少している。即ち図.11. もわかるように、発芽1,2日目の子葉中には4日目の子葉に匹敵するほどの分解活性があることを察する。従って今回測定された活性が *in vivo* で測定された活性とその点を反映しているとは考え難い。この食生活の原因にて考えられるのは、 $\alpha_1$  に抽出時の酵素の失活。 $\alpha_2$  に *in vivo* では存在場所を異にするため作用しなかつてインヒビターか、細胞の破壊によく阻害活性を発現した。 $\alpha_3$  に活性測定に用ひた

プロブリニ や  $F_{\alpha\beta}$  の in vivo の状態と異なつてゐる。かくみづれる。発芽4日目以降の抽出液の分解活性が測定されることは、 $\alpha_1, \alpha_3$  の可能性は少ない。

次に発芽4日目以降の  $F_{\alpha\beta}$  の分解活性の減少パターン(表.1.)は3葉片の全蛋白質量の消化速度から考えられる活性の変動と良く一致する(図.11)。  $F_{\alpha\beta}$  の分解活性とプロブリニの分解活性は同一活性の強度に差はないか、変動のパターンは似てゐる(表.1.)。プロブリニの分解はプロブリニから  $F_{\alpha\beta}$  を生成する第1段階と  $F_{\alpha\beta}$  からさらに分解される第2段階とかく成ると考えられるが、図.2.で明白なように第1段階の活性が弱いため、プロブリニの分解活性が  $F_{\alpha\beta}$  のそれより低くなつてゐるであつた。

プロブリニから  $F_{\alpha\beta}$  を生成する第1段階の活性も発芽2日目で殆どなく発芽4日目で最も強い(図.2.)。と3葉のプロブリニ量の減少をみると(図.10)。発芽初日から減少し、4日目までに殆どプロブリニが消失した。この食い違いの原因も前に示したのと同様の3つが考えられる。前に述べたように第2の原因が最も可能性が高いとすれば、 $\alpha_1$  インヒビタ(実験は不明である)は発芽3日目以降急激に減少すと云ふ条件をつけたと、これが現象は説明がつく。

乾燥種子にプロアリニや Fap の分解酵素があるか否か  
種子は問題である。図.11. 1=J<sub>0.12</sub>も吸水後 24 時間以内に  
急激に酵素の de novo 合成が起つたとする可能性も否定できない。  
しかし BAPA 分解酵素 (シクロヘキシミトニン合成阻害される) など  
の発芽時の活性出現のパターンと比較してみた考え難い。  
この点に關じては前節でも議論したのと同様、吸水 1=J<sub>0.12</sub>  
不活性酵素 (乾燥種子に存在する) の活性化の可能性が示唆  
される。

発芽に伴つて子葉中に出現する蛋白質酵素活性は LPA 分解  
活性、BAPA 分解活性、カゼイン分解活性、プロアリニ分解活性など  
である (図.1, 図.4, 表.1.), これらカゼイン分解活性は  
プロアリニ分解活性とゲル電気泳動に溶出されることが (図.4, 図.7)  
至適 pH も共に 5~6 附近である (図.3, 図.5) ことが、同じ酵素活性に  
よるものとみなし得る。エンドウの芽王元で至適 pH 7~8 の BAPA 分  
解活性と至適 pH 5.5 及び 7.0 の 2 種のカゼイン分解活性は見つかる  
(14) が、これは今回の結果と類似である。

BAPA 分解活性はゲル電気泳動で分子量 58,000 の蛋白質として検出  
され、また pCMBS で阻害され、β-ME やシナオスマイトールで活性化される  
一方 PMSF, EDTA, 2 価金属イオンやカルボキシトリフロシン・イニヒビター

影響されなかつて (表. 3.), そのエ 調整 ITC サルミンーセフロース  
カラム (トリフシン不吸着 ITC) にも吸着されなかつて (テクノス ITC)  
ので, トリフシンとは異なり, テオール酵素であると考えられる。  
ソハ (15) やエンドウ (8) の乾燥種子からも BAPA 万解酵素が  
精製され得るが, 前者は活性量 65,000-70,000 単位/ミリガム  
の酵素, 後者はシジリフロロピルルオロリニ酸 ITC エタノール  
ドトモ影響されないなどの点から活性はかなり異なつて。  
しかし いずれの酵素も各々の種子プロアーリンを万解しないと  
矣 (15) - (8) 12/13.

BAPA 万解活性や LPA 万解活性は発芽 4-6 日目に最大  
大になつて後 発芽 12 日目までかなり保持されつて (図. 1.),  
一方 この時期にはプロアーリンは殆ど存在しない (図. 10.) し,  $T_{ap}$   
の万解活性も発芽 7 日目で半減して (表. 1., 図. 11.).  
従つて BAPA 万解活性や LPA 万解活性が貯蔵日数の万  
解に関与してゐるとすれば,  $T_{ap}$  の万解産物の小ペプチドの万解に  
携わつてゐるのであろう。元来 プロアーリンはアルギニンを多量に含  
んでゐるので, 当然 アルギニンを多く含む万解産物が生じる  
ことが予想される。このよくな小ペプチドの万解に BAPA 万解  
酵素が関与してゐるのではないかどうか。

本種子には ティスやリママメの種子と同様 トリフロシン・インヒビターアクチベーターと似た構造をもつてゐる (図. 4.)。 トリフロシン・エフロース・アクトリビン・カラムで分別精製すれば 2種類 (図. 8.) が、 分量約 8,000 で  $A_{280}$  が 非常に 小さいので、 ティスの Bowmann-Birk トリフロシン・インヒビターアクチベーターと思われる。 トリフロシン・インヒビターアクトリビン・カラム実験種子の発芽時の蛋白質の分解に 1割手12%かという問題がある。 子葉中に出現する BAPA の活性の阻害は 1%か (図. 3.)。 一方 フローラル・カルボン酸  $F_{ap}$  が 王城酸の活性をもつて また フローラル  $F_{ap}$  が 小さな活性をもつて 逆離する活性をもつて影響を与えなかつて (第4章、第1節)。 発芽時の阻害活性の変動は 7%とみて、 減少はゆるやかで、 発芽4日目までには 約減りとなく、 12日目までには まだ 60% の阻害活性を保持 12% (図. 9.)。 したがって 今まとりみたての 酶素活性は 1% 無関係と言える。

## References

- (1) F. M. Ashton: Ann. Rev. Plant Physiol. (1976) 27, 95
- (2) a. M. M. Basha, L. Beevers: Planta (1975) 124, 77
- (3) J. Mikola: Physiol. Plant. (1976) 36, 255
- (4) J. A. Crump, D. R. Murray: Proc. Aust. Biochem. Soc. (1978) 11, 26
- (5) S. M. Mahaboob, J. P. Cherry: J. Agric. Food Chem. (1978) 26, 229
- (6) J. B. Caldwell, L. G. Sparrow: Plant Physiol. (1976) 57, 795
- (7) P. J. Du Toit, J. C. Schabot, P. G. Kempff, S. A. Lawbscher: Phytochemistry (1978) 17, 365
- (8) A. Tomomatsu, N. Iwatsuki, T. Asahi: Agric. Biol. Chem. (1978) 42, 315
- (9) V. P. Bul'maga, A. D. Shutov: Biokhimiya (1977) 42, 1983
- (10) B. Baumgartner, M. J. Chrispeels: Eur. J. Biochem. (1977) 77, 223
- (11) I. Hara, K. Wada, S. Wakabayashi, H. Matsubara: Plant & Cell Physiol. (1976) 17, 799
- (12) I. Hara, K. Wada, H. Matsubara: Plant & Cell Physiol. (1976) 17, 815
- (13) I. Hara, M. Ohmiya, H. Matsubara: Plant & Cell Physiol. (1978) 19, 237
- (14) L. Beevers: Phytochemistry (1968) 7, 1837
- (15) I. B. Emtseva, M. A. Belozerskii: Biochem. Engl. Transl. (1977) 42, No. 4, part 1, 560