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Abstract 

We first review fundamental ideas of Kaluza-Klein theory 

and discuss various problems in constructing a realistic 

unified theory of elementary particles and gravitation based on 

the Kaluza-Klein theory. In the main part of this thesis we 

show i) The four dimensional BRS symmetry can be obtained 

correctly through the Kaluza-Klein dimensional reduction from 

the higher dimensional BRS symmetry, and the physical S-matrix 

unitarity can be established in the whole quantum Kaluza-Klein 

theory including both massless and massive modes. ii) The 

gyromagnetic g-factor of massive fields in the Kaluza-Klein 

theory is unity, which is one of the special features of massive 

fields in the Kaluza-Klein theory. 
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§l. Introduction and Histrical background 

It is known that there exist four types of interactions 

in nature. They are the strong interaction, the electromagnetic 

interaction, the weak interaction and the gravitational 

interaction. These four types of interactions have different 

sources and have different intermediate Bosons. Also they 

have different range of interaction and the strength of them 

is full of variety. We observe that these interactions present 

various aspects in the real world. 

However these four interactions are not completely 

different from each other and have some universal properties. 

For example about the gravitational interaction and the 

electromagnetic interaction the strenqth is in proportion to 

inverse square of the distance, the mass of the intermediate 

Boson is zero and there are general invariance and gauge 

invariance respectively in the Einstein theory and the Maxwell 

theory. If we consider that these four interactions have 

different origin, we will have too many elementary particles, 

since there must be many kinds of intermediate Bosons and· 

matter fields~ Therefore various attempts have-been tried to 

construct a unified theory of interaction under the belief 

that the fundamental structure of the nature must be simple 

and the complexity that is seen in the real world is no more 

than the result of combination of a few fundamental-
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constituents*) . 

*) The author has the following personal opinion about unifi­

cation of interactions. Consider for example Millikan's 

experiment which determins the magnitude of elementary charge. 

In this experiment oil drops with charge are put in such an 

electromagnetic field that can be cancelled with the gravita­

tional force. Let us make the situation simpler. Consider 

2 

two kinds of interactions, A and B, and a point particle which 

is a common source of these two interactions. The reason why 

this point particle does not split into two parts, the source 

part of the interaction A and the source part of the interaction 

B, should be the following. The interactions A and B have 

the same origin in a certain sense or there is a "glue" force 

connecting these two parts. Even if the latter is the case, 

however, then we must explain why the "glue" force can connect 

A and B. We will have to consider "glue", A and B have the 

same origin or will have to introduce "glue of glue" .•.•• 

and so on. Hence interactions in nature must have infinite 

hierarchical structure or must be unified alternatively. 

However physics should clarify in what level the unification 

of interactions occur and what kinds of constituents are in 

the same level. It is quite probable that we have to consider. 

a certain kind of composite model to explain quarks, leptons 

etc. as found states of the fundamental constituents. We 

treat this problem in §3 again. 



Since Einstein constructed the theory of general relativity 

in 19151 ), many attempts have been made to unify the gravita-

tional interaction and the electromagnetic interaction, since 

only these two interactions were known in those days. The 

most famous attempts of them may be the Weyl theory (1918)2) 

and the Kaluza-Klein theory (1921, 1926)3). In the Weyle 

theory the electromagnetic field is described by the new degree 

of freedom which is introduced by the transformation (gauge 

transformation) of the magnitude of the line element d s 1 

In the Kaluza-Klein theory the electromagnetic field is 

described by the new degrees of freedom in the metric tensor 

which is introduced by extending the four dimensional space-

time to the five dimensional space-time. Although these 

theories succeeded to some extent, they did not come to be 

studied so much, after the existence of the weak and the strong 

interactions was found. On the other hand it became possible 

to describe the electromagnetic and the weak interactions in 

a unified manner on the basis of the gauge theory (Yang-Mills 

theory) 4) which was discovered in 1954. This is the Weinberg-

3 

5) Salam theory _ (1967) • In theWeinberg-Salam theory the direc-t; _-_ 

product group - SU(2) X U~l) is taken-_for -the non-Abelian~-. _~ __ : __ 

gauge group of Yang-Mills field, where-SU (2) implies the weak, -

interaction and - U (1) implies the electromagnetic interaction. 

Extending the gauge group into larger groups than that of 

Weinberg-Salam theory many physicists tried to construct 

ground unified theories, GUTS 6), in which the strong interaction-

is contained as well as the weak and theelectromagnetic- --,­

interactions. The supersymmetric theories7 ) which treat Bosons 



and Fermions symmetrically were constructed as extended theories 

of gauge theories, and supergravity8) which is the local 

super symmetric theory began to be studied since 1976. In the 

research of supergravity it was noticed that the extended 

supergravity can be obtained easily from the higher dimensional 

simple supergravity.9) In this context the Kaluza-Klein theory 

was rivived and has been studied actively again. ID) This 

Kaluza-Klein theory is not the original five dimensional theory 

but the extended 4 + D ( D > 2) dimensional theoryll) 

which can unify the Einstein theory and the Yang-Mills theory. 

Though the extra dimensional space was considered as merely a 

mathematical tool when the original Kaluza-Klein theory was 

proposed, it is now considered as a physical object in recent 

literatures. The background of this change of interpretation 

is the idea of so called spontaneous compactification12 ) that 

the direct product of four dimensional space-time and compact 

manifold can be obtained as the ground state solution of the 

field equation in the higher dimensional space-time. So as to 

explain that the extra space is not observed in nature the 

magnitude of that space is considered to be of the order of 

the Planck length. Hence the effect of the extra space could 

be observed only by the massive modes as heavy as the Planck 

13) mass. 

If the extra space really exists, it seems that the 

quantization has to be carried out in the higher dimensional 

space-time. On that occasion we must examine the consistency 

between the four dimensional _quantum theory and the higher 

dimensional quantum theory. As is well known the Faddeev-Popov 

4 



ghost fields 14 ) must be introduced to assure the physical 

S-matrix unitarity in the quantization of gauge fields such 

as the gravitational field or the Yang-Mills fields. In order 

for us to establish the unitarity the BRS symmetrylS) plays 

a crucial role. 16 ) In this thesis first we shall show that 

the four dimensional BRS symmetry can be obtained correctly 

through the Kaluza-Klein dimensional reduction from the higher 

dimensional BRS symmetry.17)18)19)20) . Next we shall derive 

the BRS symmetry of massive tensor fields through the dimen-

sional reduction technique and establish the physical S-matrix 

unitarity in the whole quantum Kaluza-Klein theory including 

both massless and massive modes. 2l ) On the other hand the 

massive modes should be examined for the possible test of 

the Kaluza-Klein theory. Therefore it may be meaningful to 

find some special features of them. In this thesis we shall 

also show that the gyromagnetic g-factor of massive fields 

in the Kaluza-Klem theory is unity, which is one of these 

special features. 22 ) 

In §2 we review'the fundamental ideas of the Kaluza-Klein . 
theory. First we explain the five dimensional theory and in 

the second place we illustrate the 4 + D (D ~ 2 ) dimensional 

theory. 

In §3 we overview problems in building a realistic model. 

The problem of cosmological constant and the stability problems 

are also treated in this section. 

In §4 we treat the problems in quantization of the Kaluza-

Klein theory. We examine the consistency between the four 

dimensional BRS symmetry and the higher dimensional BRS symmetry 

5 



and also examine that of the extended BRS symmetry. 

Constructing a unitary model of massive spin 2 fields through 

the dimensional reduction technique we establish the physical 

S-matrix unitarity of the whole quantum Kaluza-Klein theory. 

In §5 we consider the problem how to test the Kaluza-Klein 

theory and also make comments on other problems in this theory. 

In particular we compute the gyromagnetic g-factor of massive 

fields in the Kaluza-Klein theory. 

§6 is devoted to summary. 

6 



§2. Fundamental ideas in the Kaluza-Klein theory 

We revim'1 the five dimensional theory in §2-l and the 

4 + D (D ~ 2) dimensional theor¥ in §2-2~ 

§2-l The Kaluza-Klein theory in the 5-dimensional space-time 

2-1-1 The"Kaluza-Klein ansatz 

7 

In the Einstein theory of general relativity the gravita­

tional field is considered as a geometrical object under the 

principle of "general relativity and the principle of equivalence. 

In order to treat .also the electromagnetic field geometrically 

let us consider the theory of general relativity in the five 

dimensional space-time. Take the five dimensional Einstein 

.Lagrangian that is 

: (0) 

'£ :::= j j R (2-1) 

(cf. the appendix A). If we impose no restriction on the 

theory, ~e have merely the five dimensional gravitational 

theory and we cannot tell which degrees of freedom correspond 

to the elect!;'omagnetic field. Let us assume 

ansatz on the five dimensional metric tensor 

is'J " "" (~ (X") +" e).,f Jr (X) A" eX) a (x X)- :At-v rJ;< .)1 

dl-1N ' s- - " '. ').. " 
" elAv{X) 

the followi~g. 
($') 

d-J.1N . . 

(2.2) 

with M,N = 0, I, 2, 3, 5 and JU, V = 0, I, 2, 3. This' 

assumption is called the ansatz of dimensional reduction.*) 

*) This ansatz is based on the idea that the five dimensional 

geometry is the direct product (M4 X SI) of Minkowski space-time(M4 ) 

and a circle (SI) as we can subsequently see. 
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(cf. §2-l-4 and §2-l-6) In eg. (2.2) e and 1.. . are parameters 

which denote the charge and the size of the fifth dimensional 

space, respectively .. The fields 'J.".uv (X) , A/l (X) . are 

fun~tions of XO~X3 and do not depend on XS. We interpret 

that ~)AJ)(:r.) is the four dimensional gravitational field 

. and· Aj'\(X) is the electromagnetic field. This interpreta­

tion is based on the following reason. The five dimensional 

connection ft P M N is calculated from the ansatz (2-2) 

as 

. , 

, rCS) .A 
liS ::::= 0 , 

, , 

with The five dimensional 

Ricci tensor 
cs) 
R MN 

reads 

in . e'l.f A A - ~ e~~' fl5" Rj-lV ~ RfoP + 1 (f\u~~ FjJ . + Av ~A tu - I-p FVA) + + A;p-AlJF,()~ 

+~1{ r;1:(A)tFy !:+.A)) ~ L)_ b -c (Ajlr;-c +Avr; ~)} , 

We obtain the scalar curvature 
CS) 

R . . 

, 

• 

(2.4) 



CS} 

R , (2-5) 

and the Lagrangian ~ 

(2-6) 

Here we find that the first term is the Einstein Lagrangian 

and the second term is the Maxwell Lagrangian. 3 ) It is a 

remarkable fact that we have the correct sign of the Maxwell 

Lagrangian relatively to that of the Einstein Lagrangian. 

Hence we may be able to regard as the gravitatidnal 

field and A~«(X) as the electromagnetic field. 

2-1-2 Interpretation of the extra dimensional space 

Let us determine the parameter ~ which expresses the 

size of the fifth dimensional space. We assume that the fifth 

dimensional space is compact and in particular it is a circle 

To obtain the correct four dimen-

sional Einstein-Maxwell action we choose the normalization of 

the five dimensional action to be 

s ., 
where G is the Newtonian constant. Employing eq. (2-6) we 

obtain 

(2.8) 

• 

9 



In order to have the standard four dimensional Maxwell action 

it is necessary to put e1
11 = 1 i.e. J1.. JI6TiG. or 

r-: I 6 IT IS e;z 
i. - ./r:J. "h1 h e%..· d m th ..t - 2. IIL,PI , were 0< -= 4-Tf an pl. are e 

fine structure constant and the Planck mass ( ~ 1019 GeV), 

respectively. Therefore, if 0( is the order of unity,·*) the 

size of the fifth dimensional space is as small as the Planck 

length. This makes it possible to consider the extra dimen-
. 

10 

sional space as a physical object in spite of the fact that our 

real world is observed' to~e a four dimensional space-time •. 

. Therefore we can make the interpretation that the extra 

dimensional space does exist but cannot be observed as long as 

the super high energy experiment or cosmological observation 

with the energy of the Planck mass is not performed. 

2-1-3 Gauge transformation 

In this section we examine how the gauge transfprmation 

of the electromagnetic field is explained in this Katuza-Klein 

theory. Theansatz of dimensional reduction (2-2) is nothing 

but an assumption of a special dependence on the coordinates 

x.P- X!i of the five dimensional metric tensor. 
, , (cf. § 2-1-4) . 

If we perform a general transformation in the five dimensional 

space-time, this ansatz cannot be preserved. In other words 

this ansatz does not respect the 'five dimensional principle of 

general relativity. Let us look for the special five dimensional 

coordinate transformation that preserves the ansatz (2-2). We 

- write the five dimensional coordinate transformation as 

(2-9) 

*) To determine the magnitude of the parameter e we must consider 

the electro-magnetic interaction of charged matter fields. (cf. 

eq s • ( 2 - 2 7 , 38 ) 
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As is a tensor, it is transformed like 

(2-10) 

EH 
We are searching for such that preserves the ansatz that 

is 

£SJ, " ( d-~v (X') + eJ
2 

A;(X')A:(x') . 
~ (X, XS ) == e.,e A; (X') 

w 
We see that the infinitesimal change of ~ 55 is 

• 

On the other hand the consistency of the ansatz demands 
m 

J d-ss = ~~J. = 0 Therefore it is needed that dS ET':=o 

i.e. EP does not depend on Xs. In this case we obtain 

from eqs. (2-10) and (2-2) that 

~~_AV= - d"u E oh. ~ A V - d v E >'. {j.M- A eA d"\ J.,;Lt JI , (2-11) 

~A = d A - fA d A -.!. d E!i (2-12) - ',;Lt f . A ~ .A.A - -e ~ , 
J-I. 

~ ~S5 = 0 • (2-13) 

The equation (2-11) implies the four dimensional coordinate 

transformation of ~;Ltp. , and the last term of (2-12) 

implies the gauge transformation of A,)-t We have seen· 

that the gauge transformation of the vector potential I\fi 
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is described by a special five dimensional coordinate transfor-

mation of the metric tensor. 

2-1-4 Extended ansatz including a scalar field 

In this section we examine the meaning of the ansatz (2-2). 

For notational simplicity we take the- system of unit: 1.: 1 
Rewrite the general five dimensional metric tensor 

as 

(,1 CS) (S) 

d- fo~IXJX~) - ~s.r[l,XS") JSJJ (x JXs) 

) 
(2-14) 

m 
~ ss ()(, )(s) • 

That is 

(S) _ ( 

~ kW -
eAu) 

Cf2. • 

We notice that the ansatz (2-2) is equal to the definition 

(2-14) with the restriction that ~.,.M-Y and A)A do not 

depend on 
(5") 

d-sf! 

Xs and er = i 
do not depend on 

, in other 

AS and-

(SJ 

words, ~ 
(s) )A-)J 

~$s= 1 
(S) 

and 

Let us extend the ansatz (2-2) in order for ;j. SS to 

depend on This is equivalent to the assumption that 

each component of does not depend on X S" but 

depends on xrt . It is convenient to work with the fiinfbein 

El M A which is more fundamental than the metric tensor 

The ansatz (2-2) can be rewritten with the 

fiinfbein as 



(5) ( E'p e<{XJ eA), Cl)) 
E fvt A (X,Xs) -

0 .1- , 
(2-1S) 

(5) (S) (S") 

~ MIJ - E/J1 A EN B 7A B (AS = dia9-( - ++++ ) 
, , 

where M ,)U are the indices of the world coordinate and 

A , ~ are the indices of the inertial frame. Let us 

assume the following extended ansatz: 

e Cffx, Aj{ (X)) 
~ (2-16) 

'f (X) • 

In this case the metric tensor reads 

:= (Cf2r~.AY + e?'f
2SA/'AjJ 

e c.ps+t Av 

Provided we assume (2-16) in place of (2-2), the Lagrangian 

-p f£ii CS) 

d-- = J-" R becomes 

t. :::j1 [ 'f1r
+t R 

-~1 <t'l~+t FflJlF~v + 2(S-t) cr2Stt
-
1 FJLJJ (A>'~ r-Apdv 'f) 

~ (S - t)"J. '{'2.stt-l (A)I~ er -Aj-tap 'f)2 1 
+ 6 r-( Y+t) <pJ. ... tt-J ~.AV J/l er Jv c.r ] 

(2-18) 

• 

To obtain this equation we have used the fact that the metric 
CSJ 

tensor (2-17) is obtained by replacing ~MN in the ansatz 
(SJ 

(2;...2) by <[>It ~MII and also by redefining Ap. -7 A,rt l(s-t , 

4-7 q ~ :2.Y-2t , and moreover we have used the formula 
et.Av J'.pP 

(A-lt)of the conformal transformation in Appendix A. We 

13 



notice that the coupling between the electromagnetic field 

A~ and the scalar field Cf becomes simple, if we set 

s-t;:: 0 and 2 S + i = 1. The Einstein Lagrangian can be 

obtained by setting 2 r- + t, = O. Then we have 

(2-19) 
• 

In an alternative case that s-t==o and 2 Jr+ t -:: 1 we have 

(2-20) 
• 

14 

In this case the scalar field can be identified with the Jordan­

Brans-Dicke field 23 ) • 

As we have seen above, if we allow to depend on 

X p.. , we have a scalar field which couples with the gravita-

tional field and the electromagnetic field. This scalar field 

can be used to plausibly explain the contraction of the extra 

dimensional space (cf. §3-6). 

2-1-5 Harmonic expansion and massive modes 

As we have seen in the previous section, the ansatz of 

dimensional reduction (2-2) is to restrict the dependence on 

the coordinates 
CS) 

tensor a 
d"MfoI 

X.M. J X S of the five dimensional metric 

Now let us examine small perturbation which 

depends on X.!i around the ansatz (2-2). We will have a 

series of massive modes as follows. 13 )22) Let us decompose 

the five dimensional metric tensor into the Kaluza-

Klein background ~MN and perturbation hMN as 
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, (2-21) 

with 
• 

Since plhysical particles should be defined in the local 

inertial frame of the five dimensional space-time, we take this 

inertial frame. Define the field hAS as 

o hA B = EA P1 E s}J h lvfN Now the harmonic expansion 

(Fourier expansion) of the field hAS can be written as 

( 2-22) 
• 

Here hC"~B()() is the massless mode and h~6 eX) (n ~o) 

are the massive modes, as we shall see below. So that we may 

see this, let us write down the equation of motion which is in 

the first order of the field hAB The corresponding 

bilinear terms of hAS in the five dimensional Einstein 

. -p r-;jJ (S") 

LagrangJ.an cl.., = J-:J R are ( cf. e q.o (A - 22» 

(2-23) 

, 

where VA - ~- and VM is the covariant - EA V /vi 

derivative with respect to the background ~ fv( N So as 

to extract the physical modes we impose the unitary gauge 
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condition To make the calculation 

simpler we use the weak field approximation that the background 

four dimensional space-time is fiat ( f',...., 0 ) and the 

electromagnetic field is weak 

. e JnxS' Then the coefficient of in the linearized field 

equation*) is written as 

D DYh' (-rl) lll.h(')1) D Dr , CYJI • Ft hcn} 
7{ C<(3 - J.). U(J - 2 (c( n(3) ~ +2' eh '" (:1)1 

(2-24) 

Dl h(71) l~tf r.5 D h("' - 0 
«Y - n K «d-

(2-25) , 
(2-26) , 

with Here the symmetrization 

means e.g. DCe< D,G) = i (Del D,e + D,g D«) 

(2-26) we rewrite the equation (2-24) as 

DthP1} tl1. h{1I' . F r hem D~' 0( fJ - J.. 2 ~ fJ + 2 I en (c( t3) r 

2iefFdS D D gm - -:n (or 1 t 1,6)& 

Using (2-25) and 

o • (2-27) 

*) The equation (2-24) happens to be identical to that appear-

ing in ref. 24), where Velo and Zwanzinger claimed that six 

degrees of freedom are contained in this equation. However in 

our case the other two constraints (2-25), (2-26) allow us to 

describe a spin two particle correctly. 



The first term is the kinetic term including the minimal 

coupling with the electromagnetic field, the second term is 

the mass term and the rest terms are nonminimal interactions 

with the electromagnetic field. If we define the charge of 

the massive tensor field to be ~ , the minimal 

coupling should be written as 'of - i ~AfO Hence we 

notice en , that is the charge is mUltiplicative of 

e with an integer n From eq. (2-27) we find that the 

mass of the field h('I1) is m 1nl 1nl • JiX fTlpl «-(3 
1. 2-

Namely the mass of the tensor field h('II} 
';'(3 is in the order 

of the Planck mass. Therefore it is possible to explain that 

the reason why such massive tensor fields are not observed .. in 

nature is because the mass of them is too heavy than the 

energy in present experiments. 

By the way we notice that both the charge and the mass 

include the common integer n This n comes from the 

differential operator a~ in the field equation. At first 

sight it is curious that the charge and the mass come from the 

same origin, but this seems natural in the following consider-

ation. Since in the Kaluza-Klein theory we start from the 

five dimensional theory of general-relativity, the electro~~ 

magnetic field is also based on the curvature of the (five 

dimensional) space-time. Hence it is natural that the-charge 

which is the source of the electromagnetic field has the same 

origin as the mass which is the source of the gravitational 

field. 

2-1-6 Ground state solution and the meaning of the Kaluza­
Klein ansatz 

17 

In the previous section we have examined the excited modes 



lS 

in the background of the Kaluza-Kleinansatz. However the 

ansatz (2-2) is not a solution of the five dimensional 
~) .' . e~.2+ pG" 

Einstein equation, because eq. (2-4) shows Rr;5 = '4 Fj,5'F· .. =t: 0 
. 

and this contradicts with the Einstein equation 

In ,this section let us examine what the ansatz (2-2) really 

means. Consider the following ground state solution of the 

five dimensional Einstein equation: 

~HN= ( 

o 
J..2. ) , (2-2S) 

which trivially satisfies the five dimensional Einstein 

It') 

equa tion R MtI = 0 Here the fifth space is assumed to be a 

circle with 0 ~ Xs < 2 'TT In the same way as the previous section 

we decompose the field into the ground state ~HN 

perturbation , 

• (2-29) 

Suppose we perform the harmonic expansion of in a 
fEl) 

similar way to the equation (2-22), we find that n AB is a 

massless fie1.d and h[~B' (n:\=O) are massive.fields. Adding 

the zero m6d~ to the ground state ~HN we have 

and 

( 
7p-v + h ~vo:) 

.' 'hCO)SY{X) 
(2-30) " 

• 

This expression is equivalent to' the one when we assume that 
lS) ", 

each component .of ~ MN 
-, 

does not depend on XS" but depends 

-on x..u . In this case, as \'le examined in the section 2-1-4, 

we obtain the Kalu~a-Klein Lagrangian includi~g a scalar 
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field from the five dimensional Einstein Lagrangian. In other 

words we find that the Kaluza-Klein ansatz with a scalar field 

is nothing but the zero mode of the harmonic expansion around 

the ground state solution and the Kaluza-Klein Lagrangian is 

the low energy effective Lagrangian which contains only the zero 

mode. 13 ) 

2-1-7 Spinor field 

~o far we have treated Bose fields only, but there are 

also Fermion fields in nature. In this section we explain 

how to treat a spinor field in the Kaluza-Klein framework. 13 )22) 

(cf. § 3-1) 

In order to treat a spinor field we have only to add the 

following Dirac Lagrangian*)by hand to the Einstein Lagrangian 

in the five dimensional space-time: 

IS) (5') (S' (S) (5) 

'£ '" - ; J- g)(XJ~) f(x~Xs) r A [/\ 7x,xs) VM ~(X3X!;) ( 2-31) , 

, (2-32) 

CS) 

8 A CB C) 

(2-33) 
• 

lSJ 

(See Appendix A) Here the spinor field Y; has four components 
(5) 

and f7A satisfies the five dimensional Clifford algebra 

*) The bare mass for the Dirac particle in the five dimensional 

space~time causes CP-violation after the dimensional reduction. 



We can utilize the four 

dimensional Dirac matrix 

for After the dimensional reduction with the Kaluza­

($1 A _ ( EM et f".1 AJ the sp;nor K1ein ansatz of the funfbein E r'~ • 
M - 0 ). 

Lagrangian (2-31) becomes 

(5) 

When we perform the harmonic expansion of 0/ 

UI (0) 
1 (X) 

(2-34) 

• 

(2-35) 
J 

we find that the second term in eg. (2-34) which corresponds 

the mass term includes the matrix Os. Performing the chiral 

transformation, 

, (2-36) 

to obtain the ordinary mass term, we have 

(5) 

i J. j ~ 0/ ( 0« (VOl - eAo{ ds) + 1 dS 

+ 1¥ F"I' [ r", )(PJ } r (2-37) 

• 

In the equation of motion the coefficient of can be 

written as 

20 



• 
(2-38) 

The first term is the kinetic term including the minimal -

coupling with the-gravitational field and the electromagnetic 

field. The second term is the mass term and the third term 
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is the Pauli term. From eq. (2-38) we find that the charge and 

the mass of the spinor field 

m ==- 1nl _ Iru- 1« m .t- 2 p.J. 

lJ'cm is ~= Eh 

, respectively • 

and 

This means that 

the mass of the spinor field tf'L'tt) is in the order of the 

Planck mass, hence we cannot assign the field lJ1 (1) directly 

to a ordinary particle (electron etc.). We face this problem 

again in §3-3. 

§2-2 The Kaluza-Klein theory in the (4+0}-dimensional space­
time 

This section is devoted to explain the 4+0 -(022) dimensional 

extended theory which unifies the gravitational field and the 

-Yang-Millsfield. 

2-2-1 Spontaneous compactification 

Let us first recall the five dimensional Kaluza-Klein theory 

reviewed in the previous section. The program was as follows: 

I) Seek for the ground state solution of the five dimensional 

action with a compact extra space 2} Perform the harmonic expan-

sion for the quantum fluctuation field with respect to the extra 

coordinate 3} Extract the zero mode of the expansion to obtain' 

the Kaluza-Klein ansatz and the low energy effective Lagrangian 

4} Calculate the massive fields from the nonzero modes of the 

expansion. For the (4+0)-dimensional theory we have only to 
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take the same procedure as above. In this case, however, the 

procedure becomes more complicated owing to the fact that 

there are many ways to construct a theory with different shape 

of internal spaces. The extra space should be compact and 

have the magnitude as small as the Planck length. Provided the 

extra space is for example the D-dimensional torus .TD and 

has a symmetry of [U(l}]D, the ground state solution can be 

written as 

(2-39) , 
which is clearly a solution"of the (4+D}-dimensional Einstein 

equation. Here X and ~ denote the four and internal D 

dimensional coordinates, respectively. As a more attractive 

case if we choose another extra space which has a larger 

symmetry that is for example the D-dimensional sphere 

SD ( ~ SO(D+l}/SO(D» with a symmetry of SO(D+l}, then we will 

have to assume 

(2-40) 
o 

with gmn being the metric tensor on SD. ·However we immediately 

find that this is not a solution of the (4+D}-dimensional 

Einstein equation. Hence in order to obtain a solution which 

has a compact internal space with a large symmetry we must 

start from such a (4+D}-dimensional action that contains some 

matter field (for example extra gauge fields) in addition to 

the metric tensor field. Alternatively we need the cosmological 



term. This complication seems to be contrary to the motivation 

of the Kaluza-Klein theory that the gauge fields are described 

by some components of the metric tensor. But this is not 

necessarily nonsense, since for example the eleven dimensional 

N = 1 supergravity has an extra gauge field A MNP in the 

eleven dimensional action. 9 ) Therefore it came to be studied 

actively to obtain a solution with a compact internal space 

by means of adding various additional actions to the Einstein 

action in the higher dimensional space-time. This procedure 

of finding a solution of compact internal space is called 

t t "f" " 12) spon aneous compac ~ ~cat~on. The solution has in general 

smaller symmetry than the (4+D)-dimensional action. This 

resembles the spontaneous symmetry breaking in the Higgs-Kibble 

mechanism. It may be an interesting problem to clarify in the 

spontaneous compactification what is the counterpart of the 

Goldstone boson in the Higgs-Kibble mechanism. In the next 

section we consider how to assign the ground state in general 

cases. 

2-2-2 Finding the ground state 

4 
We expect the ground state to be the direct product M x B 

of the Minkowski space M4 and a compact manifold B. There are 

many possibilities in the way of taking the compact manifold B. 

If we expect the gauge field which comes from the higher 

dimensional metric tensor to have a symmetry described by a 

group G, we have two possibilities. In one case we take the 

group G itself (group manifold)-for the internal space and in 

another case we take the coset G/H (homogeneous space) which 
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is the manifold obtained by deviding the group G by its subgroup 



H. (cf. the appendices B and C) It is known that the theory 

has the symmetry G x G in the groupmanifold case and it has 

the symmetry G X (N/H) with N being the normalizer of the sub-

25) group H in the homogeneous space case. (See the appendices 

B,C) The necessary dimension of internal space to make the 

theory have a symmetry G is dim~G in the case ofa group~ 

manifold and is dim G-dim H in the case of a homogeneous space. 

For a given dimensionality of space-time a larger symmetry can 

be obtained in the latter case than in the former case. As 

the dimension of the space-time is considered to be less than 

or equal to eleven in supergravity, which we explain in §3-2, 

the economical type of theories with a homogeneous space are 

more often used than the theories with a groupmanifold. We 

might also consider a theory with a general manifold for the 

internal space. Let us see the way how to assign the ground 

state in both cases, G and G/H. 

Consider the (4+D)-dimensional vielbein rather than the 

metric tensor in order to treat Fermion fields, too. With the 

parenthesis < > representing the vacuum expectation value 

we assume 

( (2-41) 

Here E", t1 (~) is the vielbein which makes the metric tensor on 

the manifold B. In other words we assume the"re exists a 

(4+D)-dimensional theory which has the solution (2-41). Since 

the ground state ansatz is expected to be invariant under the 

extra dimensional coordinate transformation ~~~' ,13) the 
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should satisfy 

(4#» , ( < E M A (r, ~') > .= (2-42) 

• 

This means that the vielbein (Em't> is form invariant: 

(2-43) 

(cf. §2-1-3) In the case of a groupmanifold G we can assign 

the covariant basis e 111 tlOf) in the appendix B to E tn Q (~) 

namely 

e m et ( 11-) (2-44) 
• 

This identification is justified since under the coordinate 

transformation ;J.-" ";1' the vielbein E1t\ a. transforms as 
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26) 
I 

E' a( ~') - d ~ n E 11 ( ) 
m d - d ~'irI t1 -:J 

(coordinate transformation), (2-45) 

and the covariant basis transforms as 

(4-46) 

under the left translation if ~~' (See the appendix B). In 

the case of a homogeneous space G/H it is possible to take for 

the covariant basis e 1)\ it C~) in the appendix 

C, which can be justified as follows. 13 ) In comparison with 

the vielbein which transforms as (2-45), the covariant basis 



transforms under the left translation ;1;j 7:J.' (See the 

appendix C) as 

(2-47) 

Here D tt b (-R) is the matrix of the adjoint representation of 

the group G. We notice that eq. (2-47) contradicts (2-43) 

and (2-45) by a factor Db tt (-!'t--l) Hence the general 

coordinate transformation is not enough to relate the vielbein 

E'I'II a. and the covariant basis e"" a. of G/H. On the other 

hand the theory is invariant under the (4+D)-dimensional 

local Lorentz transformation that is the frame rotation 

SO(l, 3+D) besides the general coordinate invariance. Suppose 

we perform the frame rotation SO(D) in the extra space as 

well as the general coordinate transformation, we have 

instead of (2-45). Here 

(coordinate transformation 
+ local Lorentz transfor­
mation) 

(2-48) 

is a representation of SO(D) • 

Comparing this with eq. (2-47) we find that 

which comes from the left translation on G/H should be embeded 

in Db~ which is a representation of SO(D). Namely we have 
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only to assign in the case that dim G/H = D. 

To be concrete the generator Q~ of H should be written by 

a generator L a.b of SO (D) as 

(2-49) 



(See the appendix C). This is because we can write the 

adjoint representation Dabct) under an infinitesimal 

transformation of H as 

or D fl) = i + ~ he. Qc ' and under the infinitesimal 

transformation of SO(D) D is written as D 1 1 -41. -;::: - + - With 2..,. 
2 

2-2-3 Harmonic expansion 

First let us consider the case of a groupmanifold G. 

For the sake of considering physical particles we take 
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the (4+D)-dimensional inertial frame. The harmonic expansion
l3

) 

of a (4+D)-dimensional general field g? ti.~ ••• eu,.'. (:1.)~) can be 

written in terms of all the representations D(~} of a 

group G as 

(2-50) 

where Ill} implies the indices which distinguish the represen-

tations of G, rx,(J-.~ are the indices of the four dimensional 

inertial frame, t1, b·· *_ are those of the extra space and L (}l.) 

is defined in the appendix B. Here we have omitted detailed 

factors and indices (See the ref. 13). Let us rewrite (2-50) 

in a simpler form omitting indices as 

(2-51) 
• 

Since the field is a world scalar, it behaves under 

the general coordinate transformation as 



• ( 2-52) 

Each term in the righthand side of the eq. (2-51) transforms 

under the left translation ~ ~ }' (B-1) as 

(2-53) 

So that the expansion (2-51) is consistent with eqs. (2-52), 

(2-53) the field cp(""CX) has only to transform as 

(2-54 ) 
• 

Next let us consider the case of a homogeneous space 

G/H. Also in this case we expect that a (4+D)-dimensiona1 

field p (1) ~) can be expanded as 

(2-55) , 
'with representations D{ft l of the group G and L (~) defined 

in the appendix c. Since the field PCt) l1) is a world 

scalar, it behaves similarly to (2-52) under the general 

coordinate transformation. Each term of the expansion (2-55) 

transforms under the left tans1ation y~}' (C-I) as 
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(2-56) 

• 

Then we find that even if the field c:p{fl/(:t) transforms as 

eg. (2-54), egs. (2-52) (2-55) and (2-56) are not consistent 

owing to ·the factor D/ftl{L) in (2-56). Therefore in the 

homogeneous space case we cannot expand a field as (2-55). 

Now let us try to utilize the degrees of freedom of the frame 

rotation as in the section 2-2-2. We do not start with a 

general field but w,ith a special field ~ (1,~) which 

transforms under the left translat'ion ~ -7 ~I as 

, (2-57) 

where IDc{) is some particular representation of H. 13 ) In 

other words we decompose a general field into irreducible 

representations of H. Expand the field 

(2-58) . .. 
Here D {~'\ is chosen so as to contain the particular 

representation fl) 

the group G. If D 
among all the representation D{~' of 

is contained several times in D (7l'! 

we must distinguish them, but we omit detailed indices 
.* ----

(See ~ ref. D.) In this case each term of the expansion (2-58) 

transforms as 
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(2-59) 

under the left translation. In this case we have only to 

assume 

(2-60) 

Now we must confirm that the theory is invariant under the 

left translation. Provided H is embeded into SO(D) as in 

the section 2-1-2, the factor ID(~) in (2-57) can be absorbed 

into the degrees of freedom which come from the local Lorentz 

SO(1,3+D) invariance of the theory. Therfore we can perform 

the harmonic expansion in the case of homogeneous space G/H, 

too. In this case, however, all four dimensional field which 

have a nontrivial representation of H do not appear through 

the harmonic expansion and only special representations in 

which H contents are included in SO(D) can be obtained. 13 ) 

1 k 1 f h h · . 13) Let us 00 at an examp e 0 t e armon~c expans~on. 

Consider the case that G = SO(3), H = SO(2) and G/H = S2. 

We must decompose a field into irreducible representations of 

H = SO(2) which are distinguished by "isohelicity " .A 

When we write the field as ..+. ("" II i/"}) "T'..>. .AJ v I T , the harmonic 

expansion of 4>).. is 

• (2-61) 
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Here D.A '))t 
1 belongs to a (2£+1)-dimensional irreducible 

unitary representation of SO(3). 

2-2-4 Zero mode ansatz and effective Lagrangian 

To make the explanation simpler let us first consider the 

case of a homogeneous space G/H. The Kaluza-Klein ansatz is 

obtained from the zero mode of the harmonic expansion and can 

be written as13 ) 

Here e 

( 
o 

el ~~ll) Df/(Lc~)) ) 
.Q e-rn ltOH 

is the coupling constant of the field 

• 

is a parameter which shows the size of the extra space, 

(2-62) 

, 1. 

e_a. is a matrix of the adjoint representation of G and ~. is 

the covariant basis of G/H. To confirm that the ansatz (2-62) 

really corresponds to the zero mode, we have only to make sure 

~ lA.rI that t::,.,.- implies the graviton and is a massless 

field by inserting the ansatz (2-62) into the (4+D)-dimensional 

Einstein Lagrangian, 

-.+J (l4tO) ('f-f D) 

~ - J-~ R 

From the ansatz (2-62) we have 

( 

• 

-e l:::CX) A}J~ CO D~ Yu,yec ~) ) 
ef)..'Tft( ~)/1 

(2-63) 

(2-64 ) 
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and 

-e)~~fD"c\ eN ) 
..e2.~1tIn 

(2-65) 

• 

From the definition in the appendix A the spinor connection 

reads 

(+tD) 

13 e< [,al"J = E [0<. Po E,d:l V d.-4" .f.)'Y - E[~ ....... E rJ V ~,M E v", 

- Bet rt3 if] , 
(4to) (4tIJ) 

B ~[t1c] = - B CCnl,<11 
(2-66) , 

(4tD) _ A a- (D e D f IT e) f 
Bo([bc] - e 0( ;- - ;- 1+ . ehc , 
~ffi} 1. f 
t) ~ Cb c) = - 21 lA b c 

IP) 

B ({ Cbel 

otherwise=O 
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and 

using the definition (A-20) we obtain 

(4+0> 1l. A .<'\ 

R· - R - €l. I- - it F ti./> e D D A C - :iF ~f3 3c e , (2-67) 

n:;;:to) _ re, [7ji n f) 
J- ~ - J - if J :J A. 

The action is written as 

with and 

the relation: 

with 

(2-68) 
• 

(2-69 ) 
1 lD) 

+ 12. R ] , 

Here we have used 

(2-70) 

In eq. (2-69) the first 

term is the Einstein action, the second term is the Yang-Mills 

action and the third term is the cosmological term. We have 

seen that and are massless as expected. 

Next let us consider the case of a groupmanifold G. In 

this case the ansatz (2-62) is replaced by 
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(2-71) 
, 

Pay attention to the fact that (2-71) is not the special case 

of (2-62) with H = 1. Of cource we may take such an ansatz, 

but the factor Db a.. (Lon) is merely unnecessary complication. 

From the ansatz (2-71) we get 

S i fdf.+D ~J {HD) - ~PV 2j-~ R 
(2-72) 

1 (0) 

+ ,e~ R J , 

in place of eq. (2-69). 

2-2-5 Gauge transformation 

Let us examine the gauge transformation. In the following 

explanation we use the unit, 1. = 1 We begin by the case of 

a homogeneous space G/H. We can write the infinitesimal left 

translation depending on X ~ as 

K ?1\.f'. using the Killing vector b 

, 
(2-73) 

-. 

in the appendix C. Here we 

have set ~ ~ t == E b in eq. (C-13). Under the general 
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coordinate transformation the metric tensor behaves as 

, 
(2-74) 

• 

From eqs. (2-62), (2-73) and (2-74) we get 

(2-75) 
) 

with The equation (2-75) 

implies the gauge transformation of the Yang-Mills field 

- 'a' 
A~ . We see that the gauge transformation corresponds 

to a special (4+D)-dimensional coordinate transformation which 

preserves the form of the D-dimensional metric tensor (isometry 

for the internal space). 

In the case of the group manifold G eq. (2-73) is replaced 

by 

, 
._ ._.(2-7-6) 

, 

e 'lt1L since D is a Killing vector on G. (cf. the appendix B) 

And we have 

., (2-77) 
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with in place of eq. (2-75). 

Of cource also in this case. 

2-2-6 Scalar field and spinor field 

Scalar fields can be included in the framework of the 

Kaluza-Klein theory in a similar way to the section 2-1-4. We 

can introduce a scalar field just in the same way as eq. (2-16), 

and we may also obtain scalar fields from the harmonic expansion 

of the vielbein Provided there exist an extra 

in the (4+D)-dimensional theory, it 

is possible for scalar fields to come from the harmonic 

expansion of These scalar fields are considered 

either to determine the magnitude of the extra space or to 

serve as Hi9gsfields. 

As for spinor fields we can introduce them alike in the 

section 2-1-7.*) The Dirac Lagrangian in the (4+D)-dimensional 

space-time is 

• (<HD) (++D> (HD) (HD) (i-fDJ (4 f 1>' 

;[4- -=- '~ det E(t/~) r(:i/~) rA EA M(1,,,,) 1711 If'(){J~) -+ h. c. (2-78) 

with Here 

(4+D)-dimensional (( -matrix and satisfies 

Now we consider the case of the homogeneous space G/H only. 

Expressions in the case of the groupmanifold G can be obtained 

just in the same manner of this section. Assuming the Kaluza-

*) It is not always possible to introduce the spinor field in 

the compact manifold. For example, cp2 manifold does not 

admit the spin structure. 27 ) 



Klein ansatz (2-62) for the background vielbein we get 

(2-79 ) 

t h. c. , 
(4-) tf-) "" 

with D,P == ~ + i eA?b (::()Tt and 
(DJ lOI (4--fO) (4.fO) 28 ) 

T-:;- =: i Kt ')r\{'A) 11m -+ ~ ( VjH K~nc!1-)) [ r 1tt, r )1J Here, we 

have used eq. (C-IS). Let us perform the harmonic expansion 
l4fDJ 

of the spinor field Lp (_1)") I that is 

(2-80) 
• 

Then we obtain the action of the four dimensional spinor field 

as 

(2-83) 

, 
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and 
(4-+DJ l4-tD) ( 1-tII) 

is defined by antisyrnmetrizing ['« r" r ( 
13) v about a,b,c. In the dimensional reduction the 0 -matrix 

is often decomposed as 

(4-tDJ c( 

I , (2-84) 

We notice that in both eqs. (2-79) and (2-81) the first term 

is the kinetic term including the minimal coupling with the 

Yang-Mills field, the second term is the mass term and the 

last term is the Pauli term. 
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§3. Problems in constructing a realistic unified model 

--- overview ---
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As we have seen in the previous sections the Kaluza-Klein 

theory has a mathematical beauty and is a good candidate of a 

unified theory of all interactions including gravitation. 

However there remain many unsolved problems in constructing a 

realistic unified theory. Let us overview some of them in 

this section. 

§3-l Fermions and necessity of supergravity 

We may add the Dirac Lagrangian by hand to the Einstein 

Lagrangian in the higher dimensional space-time in order to-

include spinor fields in the Kaluza-Klein theory. This seems 

rather ad hoc and cannot be a way of constructing a "unified" 

theory. On the other hand we have the theory of supergravity 

which naturally contains both the graviton and Fermion fields 

under the principle of local supersymmetry. The advantage of 

the supergravity is that it has the possibility to be a 

consistent theory of quantum gravity because the supersymmetry 

may give rise to c£ancella tion of all the ultraviolet 

divergences. 29 )·Therefore-it may be preferable to start from 

the supergravity. As the cancellation of divergence is more 

probable in extended supergravities with larger N and these 

extended supergravities are known to be easily obtained from 

a higher dimensional simple supergravity with N ~ 1,9) many 

physicists have examined the'dimensionalreduction of it. If 

we set the vacuum expectation value of Fermions in the super-

gravity to be zero and consider the Bosonic sector only, the 



remaining th~ory is nothing but a Kaluza-Klein theory with 

some extra gauge fields in the higher dimensional space-time. 

There are component field supergravity and superspace super­

gravity, and they are known to be equivalent. 29 ) Suppose we 

prefer to start from the simplest Lagrangian in constructing 

a unified theory, we had better to take the superspace super-
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gravity. Then the ultimate goal of Kaluza-Klein unified theory 

will be something like the one illustrated in the table 1. 

table 1 

§3-2 Restriction on the gauge group 

When we attempt to construct a realistic unified model, 

the easiest way in choosing the gauge symmetry may be to take 

the groups such as SU(S), SO(lO) which succeeded to some 

extent in GUTs. 6 ) Now·people belive that supergravity exists 

1 . 1 hId' . 10) on y ~n ess t an or equal to e even lmenSlons. .. This is 

because the supergravity in a more than eleven dimensional 

space-time requires a particle with a spin s > S/2, and it is 

widely believed to be difficult to construct a consistent theory 

of such a higher spin particle. 30 ) Consequently, as long as 

we start from supergravity, we must consider it in the less 

than or equal to eleven dimensional space-time and therefore 

the symmetry group in the Kaluza-Klein theory should be severely 

restricted. Even if we take the most economical theory with a 

homogeneous space, the SUeS) gauge symmetry requires the twelve 

dimensional space-time owing to the fact that dim 
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[8U(5)/SU(4) x U(l)] = 8. In the case of 80(10) we need 

thirteen dimensions because dim [80(10)/80(9)] = 9. This 

forces us to abandon 8U(5) and 80(10). The best we can conceive 

is the direct product gauge group 8U(3) X 8U(2) X U(l) on 

account of the fact dim 

[{8U(3)/8U(2) X U(l)} X {8U(2)/U(1)} X U(l)] = ~10)*) 8ince 

the eleven dimensional N = 1 supergravity is unique and contains 

sufficient variety of fields to possibly describe the nature, 

the dimensional reduction of it has been studied actively in 

these days.9)29)3l) However as we shall see in the next section 

the chirality cannot be defined in an odd dimensional space-time 

and it is difficult to obtain chiral Fermions (this is defi~itely 

needed to describe the weak interactions) after dimensional 

reduction. 9) It is possible for a less than eleven dimensional 

theory to have the symmetry of 8U(3) X 8U(2) X U(l), provided 

the theory has an extra U(l) gauge field. 8uch a theory is 

known in a ten dimensional supergravity, in which the extra 

2 2 space is compactified into Cp X S and the problem of the spin 

structure is solved using the U(l) gauge symmetry.32) As the 

ten dimensions are important for the string theory and the 

chirality can be defined i~. even dimensions, the ten dimensional 

supergravity has also been studied recently.32) Another 

possibility is to consider composite particles. Though the 

A vielbein EM corresponds to an elementary particle, the spinor 

*) In this case it is difficult to introduce the spinor field 

due to the fact 8U(3}/8U(2) X U(l) ~ cp2 which does not admit 

. 27) spln structure. . 
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connection BM(AB] may be regarded as a composite operator of 

E A 31) 
M . There is an effort to make the field BM(AB] propagate 

. 33) 
and to regard it as a gauge field, and some physicists have 

tried to utilize SO(7) in the frame rotation group SO(l, 10) .31) 

Although a theory of interacting particles with S > 5/2 

is not yet found, it may be constructed in future. 34 ) Then 

supergravity will be constructed in a higher than eleven 

dimensional space-time. Furthermore supergravity is not 

necessarily inevitable even in a theory with Fermions. Accord-

ingly it is not meaningless to discuss any dimensional Kaluza-

Klein theory. 

Since the harmonic expansion on a homogeneous space G/H 

includes only restricted representations of G(cf. §2-2-3), some 

realistic fields with nontrivial representation may not appear 

from that expansion in some models. (See examples in ref. 13) 

To construct a realistic unified model we must make all quantum 

numbers of realistic particles appear in that model. If the 

Kaluza-Klein theory had any principle to choose a certain 

symmetry and some representations, and if they happened to be 

identical to those in nature, it would be very nice for a 

realistic unified theory. At any rate the assignment of the 

gauge group and the dimensions is one of the open problems. 

§3-3 Chirality and massless spinor fields 

There exist chiral Fermions like neutrinos in nature. In 

the four dimensional space-time we can define chirality using 

and we can assure using the chiral 

invariance that the massless Fermions remain massless even with 

quantum corrections. However we cannot define chirality in an 
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odd dimensional space-time, because for example 

in the five dimensions. Hence it is 

difficult, though not yet verified impossible, to obtain 

four dimensional chiral Fermions through dimensional reduction 

of such a space-time. 9 ) There are some literatures which 

consider the dimensional reduction of spinor fields in any 

dimension, 35) examine the conditions to obtain chiral 

Fermions35) 36) or discuss discrete symmetries such as C,P,T. 37 ) 

Since the Kaluza-Klein theory does not have parameters 

with the mass dimension except for the gravitational constant 

G, the mass of the particles in this theory is necessarily 

either zero or of the order of the Planck mass. (cf. §2-1-~) 

On the other hand there are variety of mass in nature such as 

electron mass 0.5 MeV and Z Boson mass 90GeV. The X boson 

predicted in GUTs has the mass about 1015 Gev. 38 ) We must 

explain the variety of mass. This hierarchy problem is the 

hardest one to solve not only for the Kaluza-Klein theory but 

also for all the unified theories, since a unified theory is 

preferred to have as few parameters as possible. We have two 

possibilities to-explain -the realistic-mass spectrum:­
f. 

i) Obtain a light mass (-'" m-p1. e -e) by_ some nonperturbat{v~ 

effects from the Plahck mass, . m 1,10) o-rii) Create -a light -
P -

mass from the zero mode through the Hfggs-Kibble mechanism. 39 ) 

However no way of calculation is known in the case i). In the 

case ii) we have the difficulty that there does not exist the 

zero mode of spinor fields in many Kaluza-klein theorie~. = 

Let us explain this massless spinorproblem below. 

The mass operator of the spinor -field is written as 



(D) 

• m - felt 
(D) a [;)I 

r v 111 
(3-1) 

.J 

from eqs .. (2-79, 84) with.~::; -1 ~ In order to examine whetlier 

this operator has a zero eigenvalue we calculate the square 
~2. 

of it, ~ • Usingeq. (A-20) and the cyclicity of the 

Riemann tensor ( R £t~cd -I- RACdb + R tldbc =0) we get 

1. (J») 

+ -R 4 
(3-2) .. 

This equation is called the .theorem of L{chn~r·owicz. 40) 

Provided the D-dimensional space is compact, the Laplacian 
(DI (DJ lill 

~ /)111 V III V 11 isnegative-semi-definite.*) Since in many 

cases the curvature of a co~pact D-dimensional space is 

positive, namely R) 0 ,~*) we find that 

*) See that 
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**) Let 
(D) 

v~ be the covariant derivative under the D-dimen-

sional coordinate transformation. From eg. (A-20), the 

cyclici.ty of the Riemann tensor and. the Killing equation (c-20) 
c/), UI' . (,>1 ~1 l~' till . 

we obtain V,. V i K~ iYl - V; VI> k ~m - Vm V'1 t< ~ p -= O. 
\ . . . 

Using this equation and 

vectors· k ttm satisfy. 

eq. (A-2D) we find that the 
(P' Il>J lD1 (PI n 
CJ.f1-17r llg. Kttm -:=. -Rrn K~ll 

Suppose the extra space is an Einstein space i.e. 

Killing 

~~) . 
R In)1 -:=. C Cl-";n with a constant C • Then ,..re have 

Therefore the negative-

semi-definiteness of the Laplacian implies that 

. £f!! "0 28) and therefore K '-



(3-3) , 
and there is no zero mode of spinor fields. When we stick to 

a particular space with a large symmetry, for example a 

maximally symmetric space (cf. eq;- A-2S), for the extra space, 

we will be confronted with this difficulty. But there are 

several ways to avoid this difficulty. First there exist 
(DI (DJ 

compact spaces with R = 0 or R <. 0 (non-Einstein space) , 
to) 

for example R =0 on the D-dimensional torus. Futhermore 

it is possible for the spinor zero mode to exist in such 

theories that include (4+D)-dimensional extra ·gauge fields 

or Rarita-Schwinger fields with spin 3/2. 

§3-4 Puzzle of the cosmological constant 

When we perform the dimensional reduction, we have a huge 

cosmological constant in general as can be seen in eq. (2-69). 
(O) 

~n the case R >0 this cosmological constant is as big as 

Akk '"'-' 12. "-' 10
38 Gev

2
•. On the other hand astrophysical 

observations show that Ae~p < 10-83 Gev2 • 4l)42) This 

puzzle is the .problem of the cosmological constant. 

Although this problem has not been solved, some attempts 

have been made to settle it. The conventional but unsatis-

factory treatment of cosmological constant is to put an 

adjustable cosmological term by hand in higher dimensions and 

to fine-tune the four dimensional effective cosmological 

constant to be zero~43) On the other hand it is known that 
\ 
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super symmetry· prohibits non zero vacuum energy and cosmological 

constant. 44) However supersymmetry must be broken at low energy, 



46 

because in the real world there are no Boson-Fermion pair with 

the same mass predicted by supersymmetry. And in supergravities, 

contrary to the globally super symmetric theory, the cosmological 

constant is not zero even with unbroken supersymmetry.31) 

Consequently it is not at all clear whether supersymmetry can 

explain the extraordinary small cosmological constant. 

§3-S Stability of solutions and the principle to choose a 
solution 

When we consider spontaneous compactification, we sometimes 

have several different solutions and need to choose one of them. 

For example several solutions have been known in the eleven 

d o ° 1 °t 31) ft th 1 to °th lmenSlona supergravl y, a er e so u lon Wl a seven 

torus T7 was found. 9 ) The table 2 is devoted to the summary 

of them. 

table 2 

Suppose our universe corresponds to one of these solutions, the 

right solution must be stable against small perturbation. For 

the purpose of examing stability we have to calculate the mass 

spectrum of fluctuations arround the solution. In all the 

known solutions of that supergravity the four dimensional space­

time is not that of Minkowski but that of anti-de Sitter. 3l) 

It is also known that the existence of the tachyonic mode 

( ~~< 0) does not necessarily correspond to the instability 

in the anti-de sitter background. 49 ) For example a scalar 

particle with an apparently tachyonic mass ( »11< 0) does not 

violate the stability unless m2 is below a certain critical 
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value ). Recently the 

round s7 and left squashed solutions were shown to be stable 

under dilatation and squashing, 50) and the round s7 solution is 

also known to be stable against all fluctuations. 51) Among 

these fluctuations there are the modes with »12<.0 , but 

they correspond to the critical value which is just allowed 

in the anti-deSitter background.-- -

Even if a solution is stable against classical fluctuations 

"and corresponds to a local minimum point, it may be unstable 

under a quantum tunnel effect when there is another minimum 

point with lower energy. For instance the standard five 

dimensional Kaluza-Klein theory is known to be semiclassically 
" 52) 

unstable. As is well known in the theory of gravitation, 

energy density cannot be defined in a covariant way and we can 

only define total energy in an asymptotically flat space. 4l ) 

We can hardly tell which solution is realized among the solutions 

with different boundary conditions. Accordingly we have a 

r~servation to the claim that we can explain the reason why the 

dimensionality of our world is four on the basis of the 

classical solutions of supergravity. What we do not have is 

a principle for choosing a solution. 

§3-6 Cosmology 

We have said that the size of the extra space is as small 

as the Planck length to explain the invisibility of the extra 

space. Now we must explain why it is so small compared to our 

three dimensional space. As the vacuum expectation value of 

the scalar field Y' in eq. (2-19) can be considered to 

express the size of the extra space, we can determine this size 



48 

by calculating the effective potential of tf and finding 

its minimum point. There are some literatures which attempt to 

explain the smallness of the extra space along this line of . 

thought. 53) If the minimum point of the effective potential 

corresponds to a compact manifold with different circumferences 

along the different symmetry directions, we can determine the 

ratios among the gauge coupling constants corresponding to the 

symmetry groups. For the ratios of the circumferences are just 

those of coupling constants as Weinberg showed. 54) (cf. §2-1-2). 

Provided that the ratios of couplings in a theory with 

SU(3) X SU(2) X U(l) are determined from the circumferences of 

extra space, it will not be necessary to embed this group into 

a larger group as in GUTs. 

Another way to account the smallness of the extra space is 

to consider time dependence of its size. 55 )56) In this cosmo-

logical approach the extra space is considered to be in the same 

size of our three dimensional space at the Planck time of the 

universe. The extra space contracts relatively to the three 

dimensional space as time passes. In order to illustrate this 

I t t k th f . d . . It' 55 ) e us a e e 1ve 1menS1ona Kasner type space- 1me, 

namely we take the line element: 

L: (t / -c .,) 2Pi [d:( i f" 
i:lJ~.3.S , 

with We can find the following solution which 
lS"J 

satisfies the five dimensional Einstein equation RMJI = 0 

ds2. = - dt2. -+ b (t Ito) (dXi)l. + (to It )(dXS-)~ 
j .... t. 2,3 • 

(3-4) 

i.e. 

(3-5) 



In this solution the three dimensional space explodes and the 

extra space contracts for the time duration. Such a particle 

has also been obtained in the eleven and ten dimensional 
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.. 56) . 
supergrav~t~es. However there ~s an argument that the extra 

space does not contract so fast relatively to the three 

dimensional space, because the higher dimensional anisotropic 

space-time may be isotropized by particle creation due to the 

quantum effect in a background space-time57 ) in the same manner 

th f d . . I . t . . 58) as e our ~mens~ona an~so rop~c un~verse • Since the ratio 

between the size of the extra space and the Planck length 

determins the magnitude of the coupling constant 0( ,we may 

• have the difficulty in a time-dependent extra space that ~ 

becomes too large compared to the observed upper limit. 55 ) 

In the recent cosmology the inflational scenario that the 

universe expands exponentially is'considered to solve many 

difficulties such as flatness and horizontal problems. 42 ) Hence 

we may have to examine whether this scenario matches to the 

Kaluza-Klein cosmology. It has been pointed out that during 

the cosmological dimensional reduction entropy is pumped from 

the extra space into the four dimensional universe. 59 ) This 
" . 

idea is based on' the analogy of the s'u'dden smashing of a 
.. 

d-dimensional lattice into a Cd-I)-dimensional one with 'the 

consequent increase in disorder. This eritropy may be useful 

to solve the cosmological problems. 

As we have ,seen above, there are several unsolved problems 

in constructing a realistic model based on the Kaluza-Klein 

theory. But we might expect they will be solved in future and 

it would be very fascinating if the existence of the extra 

space is predicted on more sound grounds. 
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§4. Quantum Kaluza-Klein theory 

In this section we consider the quantization of the 

Kaluza-Klein theory. After some comments on the problem of 

ultraviolet divergences we discuss the BRS symmetry and the 

physical S-matrix unitarity. 

§4-l The Problem of ultraviolet divergence 

If the extra space does exist, it is natural to consider 

the quantization in a higher dimensional space-time. The problem 

is that the higher the dimension of space-time is, the worse is 

the ultraviolet divergence. On the other hand the original 

Einstein theory is not renormalizable even in the four dimensions 

and a consistent theory of gravitation without uncontrollable 

ultraviolet divergences is not yet known. 29 } In order to handle 

the ultraviolet divergences we might have to consider nonpertur-

bative methods. Some physicists have tried for example the 

1 1 
methods to expand quantum gravity in powers of N or d ' 

where N is the number of matter fields coupled to gravitation 

and d (=4+D) is the number of space-time dimensions. 60 }6l}*} 

There are also many attempts to get rid of divergence pertur-

batively. For instance the Lagrangian with bilinear terms of 

Riemann tensors can be added for the renormalizability.62} The 

*} In the latter method even such a speculation has been made 

that the theory becomes finite at the limit of d~ 00 

namely the dimensions of the space-time are infinite. 



Einstein Lagrangian may be induced by the quantum fluctuation 

of some fundamental fields. 63 ) However one of the most 

promising theories to solve the ultraviolet catastroph may be 

the supergravity.29) Since the modern Kaluza-Klein theory is 

motivated by the supergravity (cf. §3-I), we think that the 

quantization of the Kaluza-Klein theory is meaningful and hope 

that the problem of ultraviolet divergences are ultimately 

solved by supergravity. 

When we consider the quantization of this theory, we have 

to examine the consistency between the higher and four dimen-

sional quantum theories. There are literatures which discuss 

the ultraviolet behavior of Kaluza-Klein theories in both the . 
h " h dId" "I "64) 19 er an ower lmenSlona space-t1me. It has been 

pointed out that they are consistent with each other when all 

the modes in the harmonic expansion of the fields are taken 

into consideration. 

§4-2 BRS symmetry and physical S-matrix unitarity 

The Kaluza-Klein theory includes the gauge fields as well 
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as the gravitational fields after the dimensional reduction. 

Both in quantum gravity and in the theory of quantum non-Abelian 

gauge fields, it is well known that we need :the gauge fix.:Lng-'::::,c -­

term together with the Faddeev-Popov"ghost terml4 ) in the "----" -

lagrangian to ensure the unitarity of_ the S-matrix. The key to 

the proof of the unitarity is the invariance of the total 

Lagrangian under the BRS transformation15 ) .16)65) Therefore 

if we consider the extra space to exist and perform the 

quantization of the Kaluza-Klein theory in the higher dimensional 

space-time, we must introduce the gauge fixing term and the 
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Faddeev-Popov ghost term to the higher dimensional Einstein 

Lagrangian and make the theory have the BRS symmetry so as to 

ensure the unitarity. In this case it is necessary to examine 

the consistency between the BRS symmetries in the higher dimen-

sional and in the four dimensional theories. When we perform 

the harmonic expansion of the higher dimensional metric tensor 

field, the zero modes correspond to the graviton and the gauge 

particles. The nonzero modes correspond to a series of massive 

tensor fields. (cf. §2-l-6, §2-2-4) In this section let us 

first establish the relation between the BRS symmetries in the 

higher dimensional Einstein theory and the four dimensional 

Einstein-Yang-Mills theory which corresponds to the zero modes 

in the harmonic expansion. IS) In the subsequent section we 

generalize this investigation to the extended BRS symmetry. 19) 20) 

Next using the dimensional reduction technique we derive the 

BRS symmetry of massive tensor fields which corresponds to the 

d f h 
. 21) nonzero mo es 0 t e expans10n. Finally we show that the 

physical S-matrix is unitary in the whole quantum Kaluza-Klein 

theory including both massless and massive fields. 2l ) 

4-2-1 Kaluza-Klein theory and BRS symmetry18) 

First let us consider the Kaluza-Klein theory with a 

group manifold G. We write down the lagrangian for the (4+D)-di­

mensional quantum gravity as 65 ) 

, (4-1) 

(4.fl» . 

R (4-2) , 
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• (4-3) 

The BRS transformation b in eg. (4-3) is defined by 

o , (4-4) ) 

, 
with the convention of the left-differentiation rule. Here 

(4+0) If-fD) (HO) 

bM is an auxiliary field and CM, C M are the Faddeev-Popov 

ghost fields. 

The general invariance of the Eistein action (4-2) and 

the nilpotency property of the BRS transformation guarantee 

that the total action is invariant under the BRS transformation. 

dl4 includes both the gauge fixing and the Faddeev-Popov 

ghost terms: 

(4-5) 

• 

(-4-+0 ) 

The variation with respect to bM gives the [(4+D) -dimensional] 

(h . ) "l~ (I ~+()J C1{"J uN ) -_ 0 De Donder armonlC gauge condition, O~I ~ ~'~ 

We will now look at the BRS transformation in the Kaluza~ 

Klein decomposition. To do this we must specify the y-dependence 
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(the yts are "internal" coordinates) of the Faddeev-Popovghost 
(~+O) (4+1>' (+~O) 

fields C"" , C Io'f and the auxiliary field b
M 

Let us 

recall the gauge transformation in the Kaluza-Klein theory 

because the BRS transformation is the quantum counterpart of it. 

The gauge transformation was nothing but the special (4+D)-

dimensional coordinate transformation that preserves the form 

of the D-dimensional metric tensor. See eqs. (2-76,27). Since 

the ghost field CM corresponds to the parameters of the 

coordinate transformation fM, we take the ansatz: 

(4-6) , • 

About CM and bM we assume that they do not depend on 

}i- , namely 

(4- t O) (4fP) 

C)4 eX,;1) = C (X) 
P- , C )nCt},) = Co", ex) , 

{4-fM 
(4-7) 

(ftO) 

bp- (x,~) -== b (X) , b ~(1,}) = b°")ol ex) 
~ , 

so that we get De Donder-Landau gauge in the four dimensions. 

The factorized form for C and b will in general give a 

non-linear gauge condition. The Kaluza-Klein ansatz (2-71) 

together with (4-6) immediately gives the "gravitational part" 

of the BRS transformation correctly: 

J 
(4-8) 

= 0 , • 

As for the "gauge part" if we redefine the auxiliary field 



(4-9) , 
and use Lie's differential equation (B- 6) and the anti-

commuting property of ghost fields, 

, 
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I f et Cb CC - - be 2 , (4-10) 

( - 0 
~ Cm = , 

. with D r C et = d f' Co. ~ f b c t\ A; cc; • 
Let us look at the. gauge fixing and the Faddeev-Popov 

ghost terms in the action 

substituting the ansatz (2-71) and (4-7) we have 

(4-11) 

, 

(D) ( 

wi th V == )dD!J. If being the volume of the group space. 

We find that the gauge fixing and ghost terms for the De Donder 

gauge have been obtained in the "gravitational part". In order 

to get expected terms in the "gauge part" we must redefine the 

fields c and b as 
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, 
( 4-12) 

ba. CX.) 
• 

Then we find that the "gauge part" of the action Sq becomes 

as 

= - i V S d+x ~ (j ~ dpC ({ 'A~"«) (4-13) 

= ~ f d4 xA [ d.,u b~ . A <l"p - d~ Co.' ~M.V Dv cO.] • 

The first and second terms represent the gauge fixing and 

ghost terms for the Landau gauge, respectively. With the 

definition (4-12) the last two terms in (4-10) are replaced by 

(4-14 ) , • 

We find that the "gauge part" of the BRS transformation has 

been derived. 

Let us quickly find the BRS current and the ghost current. 
(4+D) 

Since the BRS current J8 M is the BRS transform of the ghost 
~1I> rftDJ ,tto} 

current Jc. M, JBM=. ~ :reM , it is sufficient to find 
(t-tO) 

Tc,M The Kaluza-Klein decomposition of , 

(4-15) 



gives 

(4-16) 

• 

The current is conserved in the usual sense, 

We notice the gravitational and gauge 

parts of the ghost current in the four dimensional space-time 

are derived from the gravitational ghost current in the higher 

dimensional space-time as expected. A brief comment may be 

needed for other gauge conditions than the De Donder gauge. 

0< '1 MN ~HI» (4+0) 
An additional term like b I 2 M DN 

gives rise to 

quartic terms for the coloured ghosts and complicates the 

Feynman rule. 

Above we have treated the theory with a groupmanifold G. 

The extension to the ~omogeneous space G/H is easy. We have 

only to replace eqs. (4-6, 12) by 

Cs- (X) = C"rn (1) ~d~~r~(1) D~ b(LO}») eh 'tII(}}) / V 

b a cr) =- b\1I (X) f dD~ j ~(~) D~ b( Ll~)) e b "'( ~) I V 

, 
(4-18 ) 

, 
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D-
b
"'- C where 

appendix C) 
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is the adjoint representation of G. (cf. the 

We conclude that the BRS symmetry in the (4+D)-dimensional 

Einstein theory is consistently decomposed into the sum of 

the BRS symmetry in the four-dimensional Einstein and Yang-Mills 

theory. 

4-2-2 Kaluza-Klein theory and extended BRS symmetry19) 

In the preceding section the Faddeev-Popov ghost fields 

C and C have not been treated symmetrically and a 

certain redefinition of C-field has been needed. In this section 

treating the ghost fields c and C symmetrically we 

extend the previous results to the extended BRS transforma-

t " 66)"'68) l.on. 

We write down the Lagrangian65 )68)69) for the (4+D)-dimen-

sional quantum gravity as 

(4-19) 

, (4-20 ) 

, (4-21) 

Here ~ and ~ represent the BRS transformation and 

anti- BRS transformation68) 69) , respectively, which are 

defined by 
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~ 
(4fD) l+tD) (4fll) (ifOl f'tfl)) (+fGI (HI) 
~ MIJ - - ( ~ Mi' Jp (" + ~ PN d pe M _ C P dp ~ MW) , 
('Ho) (-4-+0) ("+0) 

J c~ C PdpC M ., 
(4-22) 

(++P) (4-fO) (-HD) (HO) 

~ CM i b M -t C Pdp C M , 
Cf+ll) {-4-tM {HO,. 

~ h M C PJ r b M , 

_ ("'tl») 

~ ~ MW 

- {+1DJ M 
~ C , 

(4-23) 

, 
_ (4+JlJ 

~ b J1 

with the convention of the left-differentiation rule. In 

Eq. (4-21) ,where fo and V run 

from 0 to 3 and m and n from 5 to 4+D. We choose 

( -' I 0) o I I 
and The total-action is 

invariant under the extended BRS transformation owing to the 

. general invariance of the Einstein action (4-20) and the 

ni1potency property o Substitut-

ing (4-22), (4-23) into (4-21) we fi~d .;lG, to be the sum of 
-. - ~. 

the gauge fixing term and the Faddeev-Popov ghost term: 



+ (total divergence) • 

In order to study the dimensional reduction of the 

extended BRS transformation first we must determine the y-
(4ff) (4-tol 

CH, CM dependence of the Faddeev-Popov ghost fields and 
(HO) 

the auxiliary field b M • From the similar consideration as 

we did in the section 4-2-1 the y-dependence of the Faddeev-
(i-to) (4-to) 

Popov ghost fields C ~ , C ~ is naturally assumed as 

, , (4-25) 

(4.iIU 

C ,lA ex,~) = E )(.(1) , • (4-26) 
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(ffDJ 

Next we assume the y-dependence of the auxiliary field b lA as 

(4fPJ 

b ~ (X,~) = .Jj (:l) , 

(Ho) b 111 CC~) -= e'1ll4 (~J bet (X) 
(4-27 ) 

+ ~ Ce'"(.ldl1 e 1t1
6 

+ ehb dh e)nA) C(\x) cbp:). 

(4 fO ) 

An apparently complicated form for b~ is justified a posteriori. 

From the ansatz (2-71) and (4-25,26,27) we immediately get 

the gravitational part of the extended BRS transformation 

correctly, 



~ d-.AAV:::: -( ~~f' dpcv-t ~I'Vdt' Cr - et> d;-o d-.MV) 

~ c~ 

1 b -t C,o dp c,K 

et<' dr bfo 
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, 

(4-28) 

, 
(4-29) 

, 

• 

The gauge part of the extended BRS transformation can be 

. calculated using the anticommuting property of C and C ,and Lie's 

differential equation (B- 6) together with the Jacobi identities 
. . 

.( ex C)x E -t (ex c) xC T (cxC)'XC=O etc. with 

(C.XC )A=fo..bC.CbCc and fbc Q = _fetbC 

We obtain 

. £ A It;t == . 3~/' D c Q: - A fAr d c;-t + 
I' ;.0 

C,o dt'AC\r , 
$co. - 1. (cxc/'- + CI'J eet 

:2 IP , 
(4-30 ) 

~ 
-a. 
C ). b et _ .L ( c x c) a. -+- C fI d c 0.. 

~ ~ 
, 

S bet ; {( b - ~ ex c) x c J 0.. + Cl' J~ b Cl 
• 
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(4-31) 

$ co.. ::=: ; (ex c)~ - CPdt> Ca. 

~ b ~ -= - ; [( b + ~ ex c) X c } et - ct' d~ b a 

• 

·Here we notice that on the right-hand side of eqs.(4-30,3l) 

the gauge part and the gr~vitational part of the extended BRS 

transformation are distinctly separated. Now from these results 

the previous assumption (4-27) can be ju~tified as follows. 

Consistency of the assumptions (4-25,26) and Egs. (4-22,23, 

30,31) requires 

({+n1 (+t D) (-um 

£ -a e .~ (.t b i'I1 + C P dp ern) C == ftI 

(-4-H) 

+ en
h I n e~ Che C) + Cl'dr ell e a. (~ bm 

1)1 

. be;... - i ccxcr:i + Ct'd c Q 
A. 

2- t'. 

1 

e t1 "' e)rl c h c C) - C ( '..0 C t\ b c:J.~ c d, 

• 

Adding these two equations we get 

) 



which is nothing but eq. (4-27) 

Finally we are going to examine the gauge fixing and the 

Faddeev-Popov ghost parts of the action, 

s~ =-~ftt ~ $ { '7 HNJ (~j( (rH" + ;. 0( (CM cffiW
)} 

[ ~ =. (:;(, ') J 

From the ansatz (2-71) and (4-25,26) we get 

_ ·.ov (Hi)) (4/-1» (-t.tD) 

~ ~ r 1 M rJ t~DJ ( ~~ M N + ~ ex C MeN ) } 

== Fw. ~ £" { frv J ~ ( &~y + A ()( C~ CV)} 

-t If ~",11 ~ 1ttn 5 &" FJ 

• 

(4-32) 
• 

+ Jf £ lht1 e 't~ e: $~ {J ;t ( A ty' A ~ + A ex c~ Cb)} , 
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The first term implies the correct 4-dimensional gravitational 

term. The second term becomes a total divergence. Using 

eqs. (.4-28,29,30,31)· ., we. get an explicit form of the 

third term: 
. 

jroz .JWS"'n e'"", e~~r fA (A "t:Ab/+;cI C~CbJ) ........ . 

-2 

+ l- ~foV D~ c et D;J Cb - ~ A ~ ( ex Dr C - C X ~ C ) b 
. . ." 

- ~ (C c XC) Lt ( C X c) b - Cc ye) a (c X cS b J 
"8 {C"((ExCjxclb -t C"((CXC)tc )b} ] 

J 
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where Since obviously 

~ lnl1 is not a tensor the matrix M Ab depends on which 

coordinate system we take for ~ If we can take the coordi-

nate system such that the third term on the 

right-hand side of eq. (4-32) becomes 

kx SAh S Sf H CA"t' N('T .. i c( C" c ~)l 

f d4 X(-21H){ oA~' Jr b + ~ b
2 

(4-34 ) 

+1 ~fovJrf'djlC ~; A«C.x~C-CX~C) 

. ~. Cc. X C ) ~ J 

h · .... oh ° • • 66) T ~s act~on ~s ~dent~cal to t at of Curc~ and Ferrar~. 

Now some comments are needed about the proportionality 

M 0..6 DC ~ a.b In the case of the SU(2) group we can check 

that M Ah DC all!. by an explicit calculation choosing . 
c.i 

,} m L e1l1~Qa. L =- eXp(~a.Q 0.) 
f , and Q.et -= "2 (Jet 

\vhere 6Cl is the Pauli matrix. (cf. the appendix B) For gener~l_ 

cases, however, the author has no proof that we can always 

choose the coordinate so that If the 

proportionality M a./'oC ~a.~ does not hold, the expression (4-33) 

turns out to be a little messy. In principle, however, such a 

gauge fixing term is nothing wrong. 

We can take another way_ Namely we cart choose 

as ~;nn (~) instead of ~ m n Also in this case the 

total action is invariant under the extended BRS transformation, 

and eqs. (4-28,29,30,31) hold without modification. 
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But the explicit form of ~4 becomes 

(4-35 ) 

where The second term is 

not a total divergence on account of the ~ -dependence of the 
r-

matrix 1 k AI· In the case of r:X ::=:.0 the gauge fixing condition 

in the (4+D)-dimensional space is not the De Donder gauge but 

Now the equation corresponding to eq. (4-32) is 

- '.'V . (+tP' " (+t!)) (H"D) . 

~ S { 7 HN j (r"( ~ uN + ; 0< CM C N) } 

= If ~ r [ 7;tU P R ( 3 foP + ; ex CM cv) J 

+-DJW ~~H 

+ If ~D.b $"5 [A (lfGlt'Aht'-f jCXCach
)}· 

where we have used the property 

J 

and 

Again the first term implies the 

(4-36) 

4-dimensional gravitational term and the second term becomes a 

total divergence. The third term becomes the Lagrangian of 

Curci and Ferrari66 )no matter which coordinate system we choose 

for the iJ- -space. 
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A comment on the gauge fixing and the Faddeev-Popov ghost 

terms (4-21,34) . By the usage of $ ~ S we have written 

the gauge fixing and the Faddeev-Popov ghost parts of the 

Lagrangians (4-21,34) in a very compact way. This form is 

suggested by the superspace formulation of the extended BRS 

transformation~7)69) In the superspace formulation the extended 

BRS symmetry can be elegantly expressed. In this formulation 

the superfields of the Yang-Mills theory are 

CP~ AA 
/v'- + e$A~+ B£A~ -t eeSrA~ , 

10- C (). + g ~ ca. + 73 ~ c"'- -t eesr ca 
(4-37) 

cptl co.. + e fc tA +e5 c o. -t eB5& CO- , 

where e and are the Grassmann coordinates of the 

superspace, and and ~ represent the BRS transformation 

and another BRS transformation. Then the gauge fixing and the 

Faddeev-Popov ghost parts of the Lagrangian are written as 

.... ;(c, == fdede ( r; t{1/ +;, ex tacpd) 

~ 5 (A~a A a,)A + A eX ca C 0.) 
• 

(4-38) 

This equation suggests the left-hand side ofeq .. (4-34). 

In conclusion, the extended BRS transformation in the 

(4+D)-dimensional Einstein theory is consistently decomposed 

into the sum of the extended BRS transformation in the 
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4-dimensiona1 Einstein and Yang-Mi11s theory. 

4-2-3 BRS symmetry of massive tensor fields and physical 

S " " " 21) -matr1x un1tar1ty 

The BRS symmetry of massive tensor fields was first 

derived in ref.21 by the present author. Following this work 

let us examine the BRS symmetry of massive tensor fields by 

means of the dimensional reduction technique and establish 

the total physicalS-matrix unitarity in the Kaluza-K1ein 

theory. 

We consider the five dimensional Kaluza-K1ein theory to 

illustrate the procedure in the simplest example. The five 

d " "1 t " " "65) 1menS1ona quan urn E1nste1n act10n is written as 

s = S~ + S~ (4-39 ) , 

(4-40 ) , 

(4-41) , 
where and 

• (4-42) 



68 

Hereafter we employ the convention that capital latin letters 

M,N run 0,1,2,3, 5 and greek letters fl., J} run 0, I, 2, 3. In 

the action (4-41) we do not take the unitary gauge condition 

( ds ~SM=O) but take the De Donder gauge condition{dM(j-}'~MII)=O) 
, since we want to investigate the BRS symmetry. The total 

action (4-39) is inva~iarit under the BRS transformation65 ): 

, 
o , 

(4-43) 

(5) cs, en 

~ CM - _ C l' d-p CM , 
(5) CS, 

b GM -. -,{ b
M 

, 

where we use the left-differentiation convention. 

When we expand the field in the five dimensional space-

time in the harmonic functions of the compact internal manifold, 

we have a series of massive fields in addition to massless fields 

in the physical four dimensional space-time13 t Then the full 

action and the full BRS transformation become considerably 

complicated. ·How~ver- in order- to estabii-sh th~ phys1.tal is-matrix 
• -- • - • 4-

unitarity in the standard Kugo-Ojima formalism we have only to 

consider asymptotic fields provided we" assume asymptotic 

completeness, since the total action is obviously invariant under 
. . 16) 

the full BRS transformation • Let us consider the harmonic 

expansion of the asymptotic fields: 
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, 

, 
(4-44 ) , . 

- OH eA n x!)' O'M (X) 
, 

where 7J'1N=diao(-+++t-). In terms of these asymptotic fields 
d'" 

the action becomes 

• \ yf-rn) \).t yN • 2 yE-m) ylJ + A ~ U 11 • 0 U cm) _ + A m 0 N U (m) 

and the BRS transformation reads 

J 

J 

(4-45) 

(4-46 ) , 
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, 

} 

~ It (~5" - - 2). n'ts'n) , 
(4-47) 

~ tS ~n) ~ '(~h) 0 
J 

~ '( ~n) -AtB ~J 
• 

The asymptotic action S c:~ 0 is invariant under the asymptotic 

BRS transformation as it should be. From the asymptotic action 

(4~46) we get equations of motion as 

P l. (r!) 

don 51' 

, J 

which can be written in a compact form 

, 

, 
(4-48) 

, 

o , 

(4-49) 

, (4-50) 

(4-51) 
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o , (4-52) 

1"\ .o.CflJN 
- -OH1L N 2. - a , (4-53:). 

, (4-54) 

with the convention that dS =: A n ·-The equations (4-48) imply 

. that the fields It (~JN (n::f 0 ) are massive tensor fields with 

theinass 1111, and the equations ( 4-49,50 ) correspond to the 

divergenceless condition ( Op -A:""~o ) and the traceless 

condi tion ( --A ~ -0 ) for massive tensor fields, respectively. 
~ .. . 

As the action (4-46) has no derivative terms of (.J~', we 

regard the p:;J ·fields as dependent variables and we require the 

. following canonical (anti-)commutation relations: 

. 
[ -Pt rn;l(X), IT~~(1JJJxo=~o = ~(7KM7LN+ rkllrLM)&(X-~) , 

, 
(4-55 ) 

-

otherwise=O, where 

, 
IT 

l~nS} _, , .1l f-nJ 0 __ , ",o!l f-i1J .in ...Qc-m 0 I (0 {-Ill 
r - 20..,.«71 s .2..0 ilps -"2 71.;«. - 2: d p.ps ,r (4-56) 



IT (n) - _ J, b o/' +..!.. \0 pC-M!, + ~ At-~J 
SS- - 2 Of' '1t t-11I 2. () 11 f> ~ 1'-' 

, IT {'I'll - ., 0 'V (-m 
- - A (J ON 'Ill 
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, 

• 

Now it is easy to see that the fields -It. I f3 ' '( and F can be 

written as 

, 

, 
(4-57) , 

, 

( A ~ B = A "J! B - d~A· B ) • 

and that the right-hand side of these equations is independent 

of ~o. Her·e the functions Ll' and E(hJ satisfy the following 

relations: 

. , , 

, , 
(4-58 ) 

L1(x;n1
) == ~ fr,{t p E(pO) ~(p2.tn:L) eA-PoX 

f.1-ifJ3 .. , 
Et.) (X) = (~pfcfp fWl b'(p'+n'l e1p . .x • 



Employing the equations (4-48~58) we get the four-dimensional 

(anti-)commutation relations*): 

, 
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, (4-59) 

[ 
C1t} (-nJ ] (3 M eX), (3 N (;1.) :::: 0 , 

, 

with ds- = A. n If we formally write the fields as 

*) The factor 2/3 in the equation (4-59) may be understood if ",e 
notice that the (anti-)commutation relations in the 4+N-dimen-

sional quantum Einstein theory: 

[AkL(lJ, {,,,wOJ)] -= i ( '2 !N '7kL7H,* -7"i1 1u,-'ikH 7LI-{) Dtx-Y-) 

~ J. ( (klld~J~ + 7LNd~J~+ 7kM~~J~ + 7UfJ~J~) E (t~";}-) ) 

where 
, 

• 



it ~~ cr) ::: f d4P~ BC pO) [ -Pt (~JP) rjP'x + ~(~~(P) ei. POx] 
. . (2.1T):l. , 

(3 J;' (X) -= ) d4PJ. e( PO) [ (3 ~n'( P) elpox+ f3:;}~P) e-1P
•
X J 

(21TP , 

we get 

[ ~(1;!L(I'), -Pt (~~('l-)] == ( 7 kM 7LJI + 7kJl kf.1 - ~ 7kL 71-111)9aO)MP+n'J $1-(P-V 

+ (7kN g1PL -1- 7L1.,P'1Pk + 7kHPf/Pr. + 7u-I fwP,J·:{ 

X e (pO) ~'(p~n:t.) St( p- f.) 

with Pt == n·· . 

) 

, 

, 

- , 

) 
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(4-60) 

.( 4-61) 

Now we consider the massive modes ( n ~ 0 ) first. Let us 

take the rest frame, p, = p:z..::: P3 == 0 • Then the equations (4-49, 

50) imply that 

p en) po f) (nJ 
tIn SA=.- 710-,( (~==1)2.J~) , 
n PO(fto~)+-R.;;) = -(l>o~+h2)-R~~ 

(4-62 ) 

Po ( It. ('HI P (111 P (11)) _ (b 'J. _ nz.).l (;1) 

11 7L/I + 112.2. + 1133 - ro n 05 , 
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which show that there remain ten independent components of fields 

for each n (~O). We set 

,. b (t1'_ ,,(I'I) 
(J)(n!:: penl (Oln:!: f) ('11) (pcn~ 1) (11) C!> (/1~ (3 pen) (f) CiII 1121 1'133 

T, -1t'1? 'l -1123, IJ = 113/ , 14 = 27111 , 15 == 2 

(4-63) 

• 

After a suitable rescaling of fields the (anti-)commutation 

relations of these fields are found to be 

<rJ ~: p
N
t r: -t 

rH 
!PM ~MN 0 0 0 0 

AM 0 W/-fN -711M () 0 

frlab::' (3M 0 -7H1: 0 a o . (4-64 ) 

OY! 0 0 0 0 ;. 711fi 

'OM 0 0 0 -1711/1 0 • 

This table is written in the symbolic notation and should be read 

as e. g • ['fM, cr/] == ~ H N The BRS transformation (4.-47) of 

these fields can be rewritten as 

~ r /:J -= [i Q B , 'f~"' J = 0 , 
~ ~~' [1 OB ~~n'] ¥~HJ , 

[A Os I (3~flJJ :::: 0 , 
(4-65) 

(" 'ruin) { I a {)... =- .A. Cls , 

, 
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where ~B is the generator of the asymptotic BRS transformation 

(4-47,65): 

too i ", OB == 2TTfc Q8 

Q (,,) ( j (\ (-")11 Y P (-"'J \ yP ) 
. B = ~±'7I ) d X do (3.'"1 • 0 l'JI) - (Jp de (J C?)I) 

, 
(4-66) 

• 

The equations (4-65) show that cP is a BRS singlet and that ( 'X I 

PI X, 'If ) makes a B~S quartet. Hence we regard <f:;' as physical 

t 'l d N cn) , 1 ' k ' 1 par lC es an ~M as HlggS- l e partlc es. We impose the 

subsidary condition to the physical state ( l pl,ys/ ) as 

• (4-67) 

Then the physical S-matrix unitarity of the massive tensor sector 

can be established as shown below· for each n (~O) in the same 

, th K ' , f l' 16) " way as In e ugo-O]lffia orma lsm • The prO]ectlonoperator 

n en) 
·rCNJ onto the }V-unphysical-particle sector can be written as 

D (tU I)' -I Q + 1) (1) b 
r CN) = N ~ 711. Qb I lH~". 

Cl,b 
, 

(4-68) 
J 

(N) /). 
, (4-69) 

with R ((~'J) = N' ( y{n/ pll1l A.[ 1-f + 'VCl1ltp,CnJ yH + ()JMN ~ emt 1) (/1) yen)) 
N I) M I (II-U 1\ CIIj ,,1-1 C N-f) 0 (n, r Iw1 I eN-I) 0 IV • 

We see for any physical states I J.~ , ,~> that 

-< f' Pc:;;' I ~ / = 0 (N'ZI) 
J 

<+1 f I = <fl f Pt;:'/f) == <-fl P(OltH-> == <RD~ft'f,Pc,,~"Jf> > 0 
11::. () • 

(4-70) 
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Since the hermiticity of the Hamiltonian is obvious and the time-

independence of the physical subspace which is the total vector 

space of the physical state I ph yS> is guaranteed, eg. (4-70) 

shows the physical S-matrix unitarity for each massive mode (n:f.O ). 

As for the zero modes we can proceed in the same way as in 

the case of massive modes stated above. In the massless case 

( 11 =. 0 ) we can choose the frame as PI -;:: f2. = 0 and write 

plCI 1)(0) 
cot~ n,,-1tu COt= f)CC) 'f'V';' O(tJJ rV"- ])(0, ct>s_ Epro) 
. 11 2 ,12 - 1111) , - 7lS1 , 2. = nS2 , I = 2.. nn , 

f)(CJ 
() CC) TLsS" 

Nt ':: nOr> - 2 
1\0 - 2' h ,.t re , 

• 

The (anti-)commutation relations of these fields are 

'VV1 (0) == 
/!la.b _ 

111t= 

Cf~ 
,( 

rx; 
p~ 

l(~ 

O;-t 

Cf~t rxt.
J
} 

~1j. 0 

0 Wju> 

0 -tp 
0 0 

0 0 

(3; 't/ -t 
¥JI 

0 0 0 

-~v 0 (J 

Q 0 0 

0 0 .t ~v 

0 -,.i tpv 0 

, -(4-71) 

(4-72) , 

, 
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cp-u:t 'X~t (3: 't; -t 
Os-r 

<p:-- ~AJ 0 0 0 0 
A-

1(V' 0 W -/ 0 0 ThV' 
/3s 0 -/ 0 0 0 

0 0 
. 

ds 0 0 1. 

Fs 0 
. 

0 0 0 -...l , 

= --+E 
lfsl I • 

And the BRS transformations become 

~ 'f1 = 0 ~ c.pr = 0 

~X~ =-~ ~ 'X 7!" := - AS" 

~f35-= ~rs=O ~ {3r == ~~=O 
(4-73) 

~ d'p = - J.Pf' , ~ 6S = -ifs , 

~ cr S 
- 0 - • 

We notice that each <.p is a BRS singlet and that each ( 1. , fl ' 
'( , ~_) makes a BRS quartet. As the (anti-)conunutation 

relations and the BRS transformation are similar to those of the 

massive modes, we can prove the physical S-matrix unitarity in 

the massless sector in the- same way as the massive modes. We 
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will not repeat the procedure here. 

We conclude that a unitary model of massive spin 2 fields 

can be constructed through the dimensional reduction technique 

and that we can prove the total physical S-matrix unitarity in 

the Kaluza-Klein theory combining the results in the massive and 

massless sectors. In the full five dimensional Kaluza-Klein 

theory the physical modes are a series of massive tensor fields, 

a massless graviton, a massless photon and a massless scalar 

field.~3) In other words we need these infinite numbers of field 

to construct a unitary model of massive tensor fields with 

interactions. We :summarize the BRS symmetry of the five 

dimensional Kaluza-Klein theory in the table 3. 

table 3 

We cannot find any obstructions to conjecture that as for the 

Kaluza-Klein theory in the higher than five dimensional space­

time the total physical S-matrix unitarity can be proved in the 

same way as demonstrated above in the simplest example.*) 

§4-3 Comments on the quantum Kaluza-Klein theory 

Let us comment on the relation between the higher and 

lower dimensional quantizations. The path-integral formalism 

*) A report on a unitary quantum Kaluza-Klein theory in the 

six dimensional space-time has been done at meeting in 

Kyoto university.70) 
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of the five dimensional quantum theory is formulated in the 

f . 1· . 71) 
unct~ona ~ntegrat~on : 

r7 _ ; ~:1TdXS"fd~x.,t (~C.Y,Xs-» 
W = lJ d P(X, X!") e (4-74) , 
where ~ (~JXS") is a five dimensional field. When we perform 

the harmonic expansion (Fourier expansion) of the field 

as 

e j nxs- ;F.. (") 
:t: (X) 

(4-75) , 
and change the variable 1? CX,;ls) 

. ;:t 171 J 
~nto ~ (.x) in eq. (4-75), the 

eq. (4-74) will be replaced by 

w 
• L. f d+X £. ("11)( f{"'C:ll) 

- J IT 1J d i l"CX) e I " (4-76 ) 

where Jacobian J is only a constant. Though this discussion 

is considerably naive,*) it suggests that the higher and lower 

dimensional quantum theory are equivalent only when the massive 

modes are taken into consideration. 

*) In the path-integral formulation of the gravitational field 

we must take account of the problem of the measure of the 

. t 1 72) 
~n egra • We will not discuss this problem here. 



§S. Possible test of the Kaluza-Klein theory and massive 

~articles 
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In this section we consider the possible way to test the 

Kaluza-Klein theory and in particular we examine one of the 

special features of its heavy particles, namely the gyromagnetic 

ratio. 

§S-l Test of the Kaluza-Klein theory 

Let us consider the way how we can test the Kaluza-Klein 

theory as a matter of principle. The most direct test would be 

to find out the existence of the extra space. However since 

its size is considered to be as small as the Planck length,' 

the best we can do is to look at the massive particles of the 

order of the Planck mass, which are the consequences of the 

existence of the extra space. (cf. §2-l-S) At such a high 

energy the gravitational quantum effect will be important and 

one might think that we cannot say anything definite about such 

heavy particles. However, as we have seen before the first 

excited mode in the expansion (2-22) has the mass (~~ mp~) 
that is a little smaller than the Planck mass *) 

it is possible to test the existence of the extra space in 

principle. Then it will be needed to find out the special 

*) The size of the extra space can be considerably larger 

than the Planck length according to Weinberg. S4 ) 

Hence 
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features of the heavy particles in the Kaluza-Klein theory,*) 

which cannot be seen for the more conventional heavy particles. 

§5-2 Gyromagnetic ratio of heavy particles22 ) 

In this section we study a particular aspect of electro-

mangetic interactions of the heavy spinning particles, namely 

the gyromagnetic ratio, because there is a possibility that 

*) One of the effects of the extra space may be the correction 

on the four dimensional causality or Lorentz invariance. The 

(4+D)-dimensional microscopic causality can be represented as 

for (l- 2!'J~ 70 

. (X-X')2. + {U_'''i'Y-)O I,e. d' (T , 

which is a little different from the four dimensional one73 ) 

L 4' t X), er (:1.')] - 0 fo Y ,(X-X'),.) 0 
• 

Though this correction does not tend to violate the four 

dimensional causality, it will change the dispersion relation 

of the forward scattering amplitude, though it will be tiny. 

If the size of the extra space is much larger than the Planck 

length, 54) this correction would be used one of the tests of 

the Kaluza-Klein therory. 



the gyromagnetic g-factor of them differs from the ordinary 

value74 ) g=2 due to their nonminimal interaction with the 
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electromagnetic field. (cf. eqs. (2-27, 38) To be specific let 

us consider the original five dimensional Kaluza-Klein theory. 

5-2-1 Massive tensor field 

In order to evaluate the g-factor of the massive tensor 

field we only have to examine the linearized field equation of 

h t\ B ' where hAB is the fluctuation of the five dimensional 

metric tensor arround the Kaluza-Klein background. (See eq.(2-21» 

This field equation has been already derived as (2-27). Going 

into the rest frame of our particle and assuming that only the 

magnetic field is non-zero we can derive the change of 

th d t th t o ° ° 74) e energy ue 0 e magne 1C 1nteract1on as 

LlE -L 
2M , (5-1) 

E - M + Ll 'E (5-2) - , 
...... 

where S represents the spin vector of the massive tensor 

field and its charge &- and mass tvl have been determined in 

§2-1-5. with the reduced magnetic moment ~ in the unit of 

~ the Bohr magneton 
2M 

the g-factor is defined as 

LlE 
'f. ~ ..... - -- B· .P 2H , (5-3) 

-:. 

~ IPI -
{S I 

(5-4) 
• 

The equations (5-1~4) shows the magnetic g factor of the massive 



spin two particle is unity, g = 1. Incidentally the last term 

of eg. (2-27) represents the Thomas precession. 

5-2-2 Massive vector field 

Let us consider an extra Abelian gauge field 

the background of the five dimensional Kaluza-Klein ansatz 

':::A 
(2-2, 15),· ~M Take Lagra~gian, which is added to the 

five dimensional Einstein Lagrangian, as 

;[\1 

with 

expansion for the extra gauge field 

i.e. 

the massive modes ~ ('1\) 
A (11 ~ 0) 

, 

If we do the harmonic 

(5-6) , 
interacts with the 
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. gauge fi~ld A~ which comes from the background (2-2, 15) in 

a particular way that we shall see below. In order to extract 

the physical modes we impose the gauge condition 

7/ ~l} =- 0 (11;f 0) Using the weak field approximation 

( r "-0, A '-~o , d F ",,0 ) for simplicity we derive the 

equation of motion for the massive spin 1 particle as 

- D/3 DIl V'd, ('1\.) _ Jll- 11'« £'11) _ i e n Fe< (.J. V"tl CIfl) 

~ etF (3 'r 0« D /3 VJ. (11) -=- 0 
(5-7) 

, 
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o (5-8) 
J 

with D t>:; dt' - i en A ~ The equation (5~7) indicates 

that the mass M and charge ~ of the massive vector field 

and en , respectively. In the same 

'!day as the massive tensor field it is easy to observe that the 

gyromagnetic g-factor of the massive vector field is unity: 

g = 1. The last term of eq. (5-7) implies the Thomas precession. 

5-2-3 Massive spinor field 

The dimensional reduction of the five dimensional spinor 

field in the Kaluza-Klein background has been previously obtained 

in §2-l-7. Again appealing to the weak field approximation 

we write down the field equation 

of the massive spinor field If'l'tI) as 

(5-9) 
J 

with D 1':= ~t> - ienA
t

. Multiplying eq. (5-9) by the 

operata: rot D 11 j el r [YaC V/->J -, we get 
o· '" + I - 1.. 6 r«f> 0, (). # 

• . ';n Ft<f\ [tt<)Ot1] 

;~,Q_ [ r~ [r~ r~JJ F~~ Dd ) ~ (") 
(5-10) 

+ • 

From this equation we can easily derive the magnetic g-facor 

of the massive spinor field as g = 1. Since the g-factor of a 

massive spinor field interacting minimally with the electro-
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magnetic field is two, our result g = 1 has an origin in the 

Pauli term in eq. (2-38). Again the last term of the equation 

(5-10) represents the Thomas precession. 

5-2-4 Classical spinning particle 

We are now going to show that the magnetic g factor is 

universally g = 1 for an arbitrary charged spinning particle 

which emerges from the harmonic expansion in the Kaluza-Klein 

theory. For that purpose let us consider the geodesic 

equations 75) for the velocity U"" and the spin S M of the 

classical charged particle in the five dimensional space-time. 

It reads 

DUM d U#-1 lSJ 

+ r~pe UP U~ -D-t:' df 
o , 

(5-11) 

D S~ cl ~M 
(l) . 

r~oVQ.,rp 
Df d ~) 

o , 

-UM with the masslessness condition, UM = 0 Let us go 

over to the local inertial frame. The Kaluza-Klein ansatz gives 

the equations of motion as 

d ~r/ 
d f 

- 0 

o 

, 

, 
(5-12) 

, 

• 
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we write the. conserved quantity UA:G" as 

which can be identified with a charge. The first equation in 

(5-12) implies the equation of motion of a cha~ged particle 

unde"r the Lorentz force. We redefine the velocity and the spin 

as 

to get 

i U.A 
1111 , 

and 

J (5-13) 

S A=s = 0 If we require 

, we get the transversa1ity 

It is easy to check that is constant. (Multiply 

eq. (5-14) by S« ) Hence (AI)( and S<JI can be interpreted 

as the physical velocity and spin of our point particle. We 

·finally obtain 

o , (5-14) 

is the proper time interval in the physical 

four dimensional world. The equation (5-14) indicates that the 

. gyromagnetic g factor of our classical spinning particle is 

unity. The last term of the equation (5-14) represents the 

h 
. 74) 

T omas precess~on. 

5-2-5 Discussion on g = 1 

As we have seen above the m~gnetic g factor is unity for 

any massive spinning particle in the Kaluza-Klein theory of 

the five dimensional space-time. 

Since it is known that the classical orbital motion of a 

charged particle causes a magnetic moment with g = 1,76) perhaps 
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our result g = I may be related to the fact that the electro-

magnetic interaction in our case has its origin in the orbital 

motion in the direction of the extra coordinate. The result 

. g = I reminds us of the old story on the magnetic moment of 

the electron. 77 ) We comment that the high energy behavior of 

the Compton scattering amlitudes of such particles with g = I 

will be worse than with g = 2,78) and this difficulty may come 

from the fact that the original five dimensional Einstein 

action is not renormalizable. 

Though it is known that the gyromagnetic g-factor of the 

real light particles like leptons, quarks and W, Z bosons is 

nearly two, our particles with g = I are considered to be as 

heavy as the Planck mass and obviously cannot be identified 

with these real light particles. Even if we consider a theory 

where the size of the extra space is not so small, it is clear 

from the result g = I that we should not regard the real 

particles to be the massive modes in the five dimensional 

Kaluza-Klein theory. Since our result is based on the five 

dimensional theory, g-factor may differ from unity in a certain 

higher dimensional theory. We will have to construct a reallistic 

unified theory in which we can really treat these light particles 

in the nature. Anyhow, in principle, if super high energy 

experiments or cosmological observations are possible, the 

characteristic value of g-factor for the heavy spinning particles 

can be used to test the Kaluza-Klein theory. 
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§6. Summary 

The Kaluza-Klein theory has a mathematical beauty, there­

fore it is now one of the most promising unified theories of all 

interactions in the nature. Since the Kaluza-Klein theory is 

closely related to supergravity, we may expect to obtain a 

consistent quantum theory of gravitation based on it in future. 

If the extra space predicted by the Kaluza-Klein theory 

"really exists, it is natural to perform quantization in the 

higher dimensional space-time. We have shown that the four 

dimensional BRS symmetry can be obtained correctly through 

the dimensional reduction from the higher dimensional BRS 

symmetry. This result can be extended to the extended BRS 

symmetry. We have also seen that the' physical S-matrix unitarity 

can be established in the whole quantum Kaluza-Klein theory. 

As a biproduct of this procedure we have obtained a unitary 

model of interacting massive spin 2 particles. 

On the other hand to test the Kaluza-Klein theory, it is 

necessary to examine the characteristic properties of the 

massive particles predicted by it. As a special aspect of these 

particles we have shown that the gyromagnetic g-factor of them 

is universally unity in the five dimensional theory. 

Although we have several unsolved problems in constructing 

a realistic Kaluza-Klein theory, we may expect they will be 

solved in future. Since the Kaluza-Klein theory is a beautiful 

system, we may hope that at least it has some sort of truth. 
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Appendix A. General relativity in the higher dimensional 

space-tir.!e 

Consider (4+D)-dimensional vielbein 13) 
Here 

~ =-(:l, 11) and~, X, 'j. are the [(4+D), 4, D]-dimensional 

coordinates, respectively. Letters ~ and A represent world 

indices and frame labels, respectively. The (4+D)-dimensional 

metric tensor is defined as 

(A-I) 

with '7As=diaj,(-1,l, 1·'·1). The vielbein transforms like 

(ttDI A (4+9) A d ~" (4-tD) A 
E ~ (Z) -7 E'11 (E'j = - E N (~) 

d~'M 
(A-2) 

under the general coordinate transformation, and it transforms 

like 

-~+P) (tttIl) 

E A. E' A h l3) ~ M (~) -
(A-3) 

with 

(A-4) 

under the local Lorentz transformation. The local Lorentz 

transformation (frame rotation) belongs to SO(l, 3 + D) ..• The 

(of.tp) 2 ( + .. +0 J 
(4+D) -dimensional spinor tf'(~) has .. components. 

It is ·a scalar: 
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(++D) (4tDI (Jf.+D) 

't' (3) ~ r'(~') = r (~) (A-5) 

under the coordinate transformation but transforms as 

SO(l,3+D) spinor: 

.. (4-1-1J) 

5 (a-I) reZ) (A-G) 

under the frame rotation. The covariant derivative for the 
(HD) 

spinor field 'V (~) is defined as 

('1-+0) {i. iD) 

( dM + BM ) tp (A-7) 

In order to obtain the·covariance: 
(,,--to' 14+') @401 ff+DI «-to) ~tD) {+flY Cf.+JIJ 

VH lP ~ V: '-P'= (dM 1- B: ) 41' == S [7M \f' under the frame 

rotation, we should assume that 

The (4+D)-dimensional Dirac-matrix satisfies the Clifford 
(4.tD) t+-+O) 

algebra { ,It J r"7S) = 17AB • Suppose the field 
(4+11' (4tDJ (H-D) (~) (+to) (4+11) 

f (= t.p+ raJ. transforms like - - I 
tt1l?:)~ tp(~) -== o/(Z) S- (a-i) 

under the frame rotation. The Dirac Lagrangian in the 

(4+D)-dimensional space-time is written as 

--f> _. )(4'" C;;;' t') M r(4t~ft v~t'} (<ffD) 

oLtp - I -~ I f-A· M y.; (A-a) 

• 

In order this Lagrangian to be invariant under frame rotation, 

fl C"I-tDJ 

S and a should satisfy aAS B-= S Ca.-4) r A 5-1(4-') 

S 
(4+0) (#DJ 

Such an can be expanded by [I''", r 8
] , 

(-4-4-0) 

therefore the spinor connection .. BM can be also expanded by 

, nam~~y 
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(A-9) 
• 

-<1-to) 
From the vielbein Ek A and the spinor connection 

let us define-the I-form: 

{4+O> 

EA - , (4-tll) 

B M(ABJ d gf1 (A-ID) 
• 

The torsion 2-form is defined by 

(HP) A 

T (A-Il) 

and the curvature 2-form by 

(+to) 

R B= 
A -

(~t/l) I.{.+II) {HD J 

d Bit B + Bite /\ Bc. B (A-12) 
• 

Raising or lowering the indices ~ 
(1'+/)) 

and A is performed 

by ~MN and 7Ptg I respectively. Expanding these 2~forms 

. like 

1 (4fO) A 
2 TMN dlMAd~tJ 

we obtain 

(4-tDJ (+to) (4-+D) (4tD) {HDJ C4fD) (4t~ 

T A '\ E A '\ E It E B 8 ..4] EBB AJ 
MN ==dM tI -dH M + M N[B - J.I M[R , 

(+to) (HO) C4tJ») (i+D) CHlll l+tD) £4+0) (A-14) 

R MNA B = ~~ BN[A B] - dN B M[AB]+ B MU! CJ BH[c.C] - 8NC/J 
BM[CGJ • 

(HD) 

If we impose the torsionless condition irA =0 I we find the 



(HO) 

relation between the spinor connection B i1Z:AB1 and the 
(HP} 

vielbein EM A as 

(4iD) (HI)) (4+0) (++1') [HD) 
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1- A(Jl (\ f""\ ) BM [KC] = 2 CM C:ABJC -.1 L (BC.JA + ~ L lCAJ8 (A-IS) 

(-tfD) (4+0) l~fI) (4-+1» [HP) 

with llL4li'lC.= EAJ.1 f8" (dI1ENc.-dN S.c) • In this case the Riemann 

tensor, 

. ti-fDJ I C++P) [4/P) (4-rn) (4+D) (:HD) 

with r~Q!!: 2. ''''''(dp~N9+JQ~lIp-dll~f9)and the field RHWItG in 

eq. (A-14) are related as 4) 

(4tD) 

R. MN PQ 

(q+tJ) (.;.+0) (HO) 

ErA EG B 
RMNAB 

(A-17) 

• 

Next we summarize useful formulae as follows. Denoting 

world indices M , N , frame labels A , Band spinor 

sufices ;J; \U '::!:: , 1. 

('!!.O) t400) (++J)J ~H~) 

( If' y; =: r f fi) we can write the covariant 

derivative of the most general field which 

is covariant under both coordinate transformation and frame 

rotation as 

(Mp) (-of.H) 

+ B cl T N B!f' B [,8 - N C ~ 
P CA H C ~ + P c] 1 M A ~ 

1 (S:+tD) [cr:~ r(4+II~J K T l'I B:k 1 B(H DJ r ri4t
ll)c fr~~J i£ - N B 1. 

+g H(eD] I, § IM A Z -g- M(CDJl , X IM A ~ (A-18) 
• 
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For example, 

(+tD) ~J A 

V"" 1= tJ :: 0 
J 

(A-19 ) 

(++IJ) 

and they correspond to the fact that t=MA is the vielbein 
t4-tO) (4+0) 

from which the metric 'JMN is constructed and rA- is 

a constant matrix, respectively. Commutation relations of the 

covariant derivatives satisfy 

Under the weak field approximation79 ) , 

(++O) 

;j. MN 

the curvature density can be written as 

j~ rHD) r-; [ R -:J. R =J- ~ 

.! h 'p I MN R- h M /JP-
- 2 P n MN + ph R Mw 

. 1: r7 h Go - I MP 1 F! h M i7 h pQ. 
1" 2 V P M VG. n - 2 V P M V Q. 

The sufices M, N are raised or lowered by ~ I1N 

conformal transformation, 

, 
, (A-20) 

11 

(A-2l) 
) 

(A-22) 

Under the 
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(HD) 

K ~MN (A~23) 

the curvature tensors are transformed like 

(++1) [4-'; 0) 

R'w,PQ = K R MW Po 

(+ft}) (4rD) (+fJ) ( .. +IJ) li#) 

+ ( ~}.f9 ~.vp - ~ MP ~ Ne) ~RS d~ K ds J.-< } , 
(A-24 ) 

, 

Finally, if a d-dimensional space-time is the maximally symmetric 

space7S ) w;th d(d+~ K;ll;ng vectors the curvature tensors .... .... .... , 
"2 

can be written as 

(d) R (J) (d) ld) Cd) 

d ( d - 1) ( ~ M f' ~ IV G - ~ M a ~ N P ) 
(A-2S) 

• 
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Appendix B. Group manifold (G) 

Suppose the coordina tes .~ rn (171 '= 1-D, D= di~ C:j) on the 

group G, and write each element of the group G as L(~) 

The left translationl3 ) ~ -'? '";I' is defined by 

~. L uu = L ( ~') (B-I) 

with ~ ~ q Let us introduce a covariant basis l3 ) e 1n qUJ) 

from the I-form e ('<1-) 

(B-2) 

• 

Here Q t{ (et =-1 ,-y D) are generators of the group and 

satisfy the Lie algebra: 

(B-3) 

with structure constants +ab c 
of the group G. Differential 

of the I-form e (~) reads 

(B-4) , 
and this can be written in components as 

(B-S) 
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The equations (B-4,S) are called the Cartan-Maurer formula 80 ) 

or the equation of structure. From eq. (B-S) we derive the 

Lie's differential equation as 

, (B-6) 

, (B-7) 

where e 1ll 
t4. is the inverse matrix of e1l1 lt Defining the 

generators "-L· as 1'- e me ") a , we obtain the Lie 
0. ~a - a. d d~1!t 

algebra of the group G: 

(B-8) 
• 

The behavior of e (~) under the left translation 

can be deduced from eqs. (B-l,2) as 

(B-9) 
• 

In components this can be rewritten like 

(B-IO) 

Db Cl • 
where is the adjoint representation of G def~ned by 

(B-ll) 

·~,m 
The coefficients of dd in eq.(B-IO) give the behavior of 
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the covariant basis e.')t'I4. under the left translation Vj -? ";)' 

as 

€.1r\ l\ C 'et') 

since ~ does not depend on 
UJ} 

Let us introduce the metric tensor <a- rn n 

manifold G by 

The infinitesimal left translation is written like 

From the definition of Killing vectors f(~~[V: 

and eqs. (B-2, 11, 14) we can easily derive 

, 

(B-12) , 

on the group 

(B-13) 
• 

(B-14 ) 

• (B-16) 

In the case that the structure constant ft\bC. is fully 

antisyrnetric it is straight forward to derive Killing's equation 
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[DJ Cm 
V1n K (Ht .+ V~ K tJ. m =-0 (B-17) 

Here we have used the 

property: 

(B-18) 

If we define the generators as , 

we find they satisfy the Lie algebra, 

--tt:\h C Le. (B-19 ) 
• 

We also notice from egs. (B-6, 13) that the covariant basis 

are another set of Killing vectors, since 

(B-20) 

with the definition: 

(B-21) 
• 

It is easy to see .from egs. (B-7, 18) that the generators 
,..., 

L C\ L 0. commute [Lo.., [bJ = 0 

As we have seen above the group manifold G admits the 

symmetry G x G, we shall see in app. C that the group manifold 

G is a special case of a homogeneous space G/H with H = 1 and 

that r<)t '" "" and K 7It It. correspond to the Killing vectors for 



the left and right translations, respectively. 25) 81) 

Appendix C. Homogeneous space (G/H) 

A homogeneous space (cost space) is a manifold obtained 

by dividing a group G by its subgroup H i.e. G/H. That is 

~/H ~ { ~ r:; ~; ;}"'f}-' if 5'=~::t1't, {GH}. For example if 
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G = SO(3) and H = SO(2), then G/H = s2 This means that if we 

freeze the rotation arround a certain coordinate axis in the 

space of the Euler angles, we are left with only two degree~ 

of freedom which correspond to the freedom of the direction of 

the axis. Let us introduce the coordinates '7J 1t1 Cm :. i "-D , D=di1l1 4/H) 

on the homogeneous space G/H, namely a represensative element 

of each coset is written as L(~) Multiplication from the 

left by an arbitrary element ~~q will generally carry 

into another coset. Writing its representative element as 

we have the left translation13 ) ~ -7 1]-' as 

fJ-·L(~) - L(~') .f{ (C-l) 

with Jt EH Compare this with eq. (B-1). Let us introduce 

a covariant basis13 ) e".., ~(~) from the I-form et\l).) : 

(C-2) 

• 
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Here the indices Cl' run from 1 to d 'i'r. Ct and the 

generators Qa- ( ~~1""'djillq) satisfy the Lie algebra: 

(C-3) 

with the structure constants 
( t 
r~~ of the group G. The 

equations (B-S,6) are replaced by 

(C-4) , 

• (C-S) 

The behavior of e(~) under the left translation J..-7 ";j' 

can be deduced from eqs. (C-l,2) as 

(C-6) 

Writing the adjoint representation of G as Dt l' ; 

(C-7) 

we have the component form of eq. (C-6): 

(C-8) 

Let us assume that the algebra is fully reducible, i.e. 
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where the indices a and Cl. 

are those of G/H and H, respectively. Then we obtain 

(C-9) 

The coefficient of 
, h1 0 

d~ in eq. (C-9) reads. 

(C-lD) 
o 

The infinitesimal left translation: 

(C~ll) 

and the definition of Killing vectors ki' 1Iton : 

(C-12 ) 

as well as eqs. (C-2, 7) show that 

, , (C-13) 

eh Jf/\ where ... is the inverse matrix of e-m et. If we define 

the generator L ~ as L ~ = k:(~) J~?rI , we find 

(C-14 ) 

Here we have used the property -f aT c. ::= 0 which shows 
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that H is a subgroup of G and the equation~ 

(C-IS) 

Now let us turn to the right action81
) of ~ E G on 

L C~) 

L (~). ~ (C-16 ) 

For the expression L (;1). ~ to make sense, it should not 

depend on the choice of coset representatives. This happens 

if and only if } belongs to the normalizer N(H) of H in 

G which is defined as NC H) =. {~Gq; ~ H 3-1 = H } In this 

case if we write another representative of the coset of L(~) 

as L' Ut) ,we find that L (~). ~ and L' (} J. ~ are in the 

same coset. Since the right action of on LC"J.) is 

trivial, we need only to consider elements of N(H)/H. The 

infinitesimal right action can be written as 

L ( ~ + ~ ~) = L ( ~) ( 1 + ~ ~ ~ Q et )( 1 - ~ -K a". Q et ) (C-17) 
• 

In the same way as the Killing vectors K~m we obtain another 

set of Killing vectors: 

(C-18) 
• 

We have to be careful that only in the case of f a be=- 0 

we can obtain 

(cf. eq. (B-8) ) Since we derive the 
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""-
commutation -relation of L IX, L Cl as 

C L a- I tJ.J = (D~ er - D(\cTTcd)+"lE'ee"JII ( b e""e1). 1ft\. == Lt lit ,we 

find L ~ and' [(l commute only if -f Ate =- 0 
(0) 

Provided we introduce the metric g. lIIn on the homogeneous 

space G/H by 

(C-19) 

the Killing equations hold, 

, (C-20) 

in the case that :f 4' t t is fully antisymmetric. 

Therefore we conclude that the homogeneous space G/H has 

the symmetry G x(N/H) .25) 81) In the case H=l the normalizer 

N is equal to G, and consequently the group manifold has the 

symmetry G X G. 
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Table 1. 

Table 2. 

Table 3. 

Table captions 

Ultimate goal of Kaluza-Klein unified theory. 

Solutions in the Il-dimensional supergravity. 

BRS symmetry in the five dimensional Kaluza-

Klein theory: 
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# in ( ) represents degrees of freedom of fields. 



113 

higher dimensional higher dimensional 

superspace component field 

supergravity supergravity 

I I 
Kaluza.:....Klein Kaluza-Klein 

dimensional dimensional 

reduction reduction 

1 1 
four dimensional four dimensional 

superspace , realistic 

supergravity unified theory 

Table 1. 

solution super symmetry gauge group ref. 

1. T7 N=8 U ( 1) x·· • xU (1) 9 
'- "V'"" -7 

2. round s7 N=8 SO(8) 45 

3. left-squashed S7 N=l SO(5)xSU(2) 46 

4. round s7 + torsion N=O SO(7) 47 

5. right-squashed S7 N=O SO(5)xSU(2) 48 

6. right-squashed s7 N=O SO(5)xSU(.2) 48 

+ torsion 

Table 2. 



massive 

modes 

(n%:O) 

massless 

modes 

(n=O) 

tensor 

vector 

scalar 

5-dimensions 

metric tensor 

field 

physical unphys~. 

mode mode 
(s-) 

( (Ol ~ (X s) ~ M (1s) 

(5) (5) 

4-dimensions 

~MI?I) 

(spi:h 
(5) 

4>i 
(2) 

(2 ) 

~s 

(1 ) 

2) ( 

( 

rx~'S'oJ 

(5 ) 

'At. 
/A-

(4) 

Table 3. 

auxiliary ghost 

field field 

(s-) (n 

,eM (.'/.r) O~(X1") 

(5) (5 ) 

~ dimensional 

!3 t.t") 

(5 ) 

{1-t 
)A-

(4 ) 

;3""" 

(1 ) 

¥ I,., 
H 

(5) 

Xi: 
;~ 

(4 ) 

'Ol/' 
(1) 
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anti-ghost 

field 

~"Xs) ) 
(5) 

reduction 

O~J ) 
(5) 

-f. 

) ~I'" 
(4 ) 

OV- ) 
(1) 


