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BRS Symmetry and Unitarity

in Kaluza-Klein Theory

—— Towards the Realistic Unified Theory —

Yoshiaki OHKUWA

Department of Physics
Osaka University
Toyonaka 560, Japan

Abstract

We first review fundamental ideas of Kaluza-Klein theory
and discuss various problems in constructing a realistic
unified.theory of elementary particles and gravitation based on
the Kaluza-Klein theory. In the main part of this thesis we
show 1) The four dimensional BRS symmetry can be obtained
correctly through the Kaluza-Klein dimensional reduction from
the highér dimensional BRS symmetry, and the physical S-matrix
unitarity can be established in the whole quantum Kaluza-Klein
theory including both massless and massive modes. 1ii) The
gyromagnetic g-factor of massive fields in the Kaluza-Klein
theory is unity, which is one of the special features of massive

fields in the Kaluza-Klein theory.
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§1l. Introduction and Histrical background

It is known that there exist four types of interactions
in nature. They are the‘strong interactibn, the electromagnetic
interaction, the weak interaction and the gravitational |
interaction. These four types of interactions have different
sources and have different intermediate Bosons. Also they
have different range of interaction énd the strength of them
is full of variety. We observe that these interactions present
various aspects in the real world. |

However these four interactions are not completely
different from each other and have some universal properties.
For example about the grévitational interaction and the
electromagnetic interaction the strength is in proportion to
inverse square of the distance, the mass of the intermediate
Boson is zero and there are general invariance and gauge
invariance respectively in the Einstein theory and the Maxwell
theory. If we consider that these four interactions have
different origin, we will have too many elementary particles,
since there must be many kinds of interﬁédiate Bosons and
matter fields. Therefore various atﬁeﬁéfs have ‘been tried to
construét a unified theory of interaction under the belief
that the fundamental structure of the natﬁre must be simple
and the complexity that is seeniin the real world is no more

than the result of combination of a few fundamental



)

*
constituents ‘.

*) The author has the following personal opinion about unifi-
cation of interactions. Consider for example Millikan's "
experiment which determins the mégnitude of elementary charge.
In this experiment oil drops with charge are put in such an
~electromagnetic field that can be éancelled with the gravita-
tional force. Let us make the situation simpler. Consider
two kinds of interactions, A and B, and a point particle which
is a common source of these two interactions. The reason why
this point particle does not split into two parts, the source
part of the interaction A and the source part of the interaction
B, should be the following. The interactions A and B have

the same origin in a certain sense or there is a "glue" force
connecting thése two parts. Even if the latter is the case,
however, then we must explain why the "glue" forée can connect
A and B. We will haﬁe to consider "glue", A and B have the
same origin or will have to introduce "glue of glue" -----

and so on. Hence interactions in nature must have infinite
hierarchical structure or must be unified alternatively.
However physics should clarify‘in what level the unification
of interactions occur and what kindsvof constituents are in
the same level. It is quite probable;that we-have to consider.
a certain kind of composite model to explain quarks, leptons
etc. as found states of the fundamental constituents. We

treat this problem in §3 again.



Since Einstein constructed the theory of general relativity

in 19151)

, many attempts have been made to unify the gravita-
tional interaction and the electromagnetic interaction, since
only these two interactions were known in those days. The

most famous attempts of them may be the Weyl theory (1918)2)

and the Kaluza-Klein theory (1921, 1926)3). In the Weyle

theory the electromagnetic field is described by the new degree
of freedom which is introduced by the transformation (gauge
transformation) of the magnitude of the line element dS1 .

In the Kaluza-Klein theory the electromagnetic field is

described by the new degfees of freedom in the metric-tensor
which is introduced by extending the four dimensional space-
timeAto the five dimensional space-time. Although these

theories succeeded to some extent, they did not come to be
studied so much, after the existence of the weak ahd the strong
interactions was found. On the other hand it became possible

to describe the electromagnetic and the weak interactions in

a unified manner on the basis of the gauge theory (Yang-Mills
theory)4) which was discovered in 1954. This is £he Weinberg-
Salam theory_(l967)5). In the Weinberg-Salam theory the direct .-
product group -~SU(2) X U(l) is taken-for the non-Abelian - :.._ .
gaﬁgebgroupwof'Yang—Mills field, where;~SU(2) implies the weak . - -
interadtion and':ﬁ(l) implies the electromagnetic interaction.
Extending the gauge group into larger groups than that of |
Weinberg-Salam theory many physicists tried to construct

6)

ground unified theories, GUTs ', in which the strong interaction-

is contained as well as the weak and the electromagnetic - - -5.° -

7)

interactions. The supersymmetric theories which treat Bosons .



and Fermions symmetrically were constructed as extended theories

8)

of gauge theories, and supergravity which is the local
supersymmetric theory began to be studied»siﬁce 1976. In the
research of'supergravity it was noticed that tﬁe extended
supergravity can be obtained easily from the higher dimensional

9)

simple supergravity. In this context the Kaluza-Klein theory

10)

was rivived and has been studied actively again. This

Kaluza-Klein theéry is not the original five dimensional theory
but the extended 4 +D (D2 2) dimensional theoryll)
which can unify the Einstein theory and the Yang-Mills theory.
Though the extra dimensional space was considered as merely a
mathematical tool when the original Kaluza-Klein theory was
proposed, it is now considered as a physical object in recent
literatures. The background of this change of interpretation
is the idea of so called spontaneous compactificationlz) that
the direct product of four dimensional space-time and compact
manifold can be obtained as the ground state solution of the
field equation in the higher dimensional space-time. So as to
explain that the extra space is not observed in nature the
magnitude of that space is considered to be of the order of
the Planck length. Hence the effect of the extra”space could
,bé observed only by the massive modes as heavy as the Planck
mass.l3)

If the extra space really exists, it seems that the
quantization has to be carried out in the higher dimensional
space-time. On that occasion we must examine the consistency

between the four dimensional quantum theory and the higher

dimensional quantum theory. As is well known the Faddeev-Popov



14)

ghost fields must be introduced to assure the physical

S-matrix unitarity in the quantization of gauge fields such

as the gravitational field or the Yang-Mills fields. In order

for us to establish the unitarity the BRS symmetryls)

16)

plays
a crucial role. In this thesis first we shall show that
the four dimensional BRS symmetry can be obtained correctly
through the Kaluzé—Klein dimensional reduction from the higher

17)18)19) 20) . Next we shall derive

dimensional BRS symmetry.
the BRS symmétry of massive_tensor fields through the dimen-
sional reduction technique and establish the physical S;matrix
unitarity in the whole quantum Kaluza-Klein theory including

21)

both massless and massive modes. On the other hand the

massive modes should be examined for the possible test of .
the Kaluza-Klein theory. Therefore it may be meaningful to
find some special features of them. In this thesis we shall
also show that the gyromagnetic g-factor of massive fields
in the Kaluza-Klem theory is unity, which is one of ﬁhese
special features.zz)

In §2 we review the fundamental ideas of the Kaluza-Klein
theory. First we explain the five dimensional theory and in
. the second place we illustrate the 4 + D ( D 2 2 ) dimensional
theory.

In §3 we overview problems in building a realistic model.
The problem of cosmological constant and the stability problems
are also treated in this section.

In 8§84 we treat the problems in quantization of the Kaluza-

Klein theory. We examine the consistency between the four

dimensional BRS symmetry and the higher dimensional BRS symmetry



and also examine that of the extended BRS symmetry.
Constructing a unitary model of massive spin 2 fields through
the dimensional reduction technique we establish the physical
S-matrix unitariﬁy of the whole quantum Kaluza;Klein theory.

In 85 we consider the problem how to test the Kaluza-Klein
theory and also make comments on other problems in this theory.
In particular we compute the gyromagnetic g-factor of massive
fields in the Kaluza-Klein theory.

§6 is devoted to summary,



§2. Fundamental ideas in the Kaluza-Klein theory

We review the five dimensional theory in §2-1 and the

4 +D (D2 2) dimensional theory in §2-2,

A§2 -1 The Kaluza—Klelh theory 1n the 5—d1men51onal space—tlme
2-1-1 The Kaluza—Kleln ansatz | '

In the Elnsteln'theory of general reiativity the gravita—
"tlonal field is considered as a geometrical object under the
'prlnc1ple of general relat1v1ty and the pr1nc1ple of equlvalence.
In order to treat also the electromagnetic fleld geometrlcally
let us con51der the theory of general relatlvlty in the five
dimensional space-time. Take.the five dimensional Einstein

,Lagrangian that is - _
mv , ' - wo |
Z /— : _ : : (2-1)

(cf. the appendix A). If we impose no restriction on the
theory, we have merely the five dimensional gravitational
theory and we cannot'tell:thch degrees of freedom eor;espond
to thé electromagnetic field. Let us assume the following.

_ ®)
~ansatz on the five dimensional metric tensor 314N 2

é,m (x', x;); g/“ (0 + elﬂAﬂ‘X)A X ..»»W'Aﬂ‘x)
- efjAMX) R e

. with M,N =0, 1, 2, 3, 5and M, =0, 1, 2, 3. This

(2.2)

assumption is called the ansatz of dimensional reduction.”)

*) This ansatz is based on the idea that the five dimensional
geometry is the direct product (M4x Sl) of Minkowski space—time(M4)

and a circle (Sl) as we can subsequently see.



(cf£. §2-1-4 and §2~1-6) In eq. (2.2) € and ¥ ‘are parameters
which denote the charge and the size of the fifth dimensional
space, respectively.. The fields @/M, a) , A}t (X) = - are
fun'ctions_of X(_J_NI'? and do not depend on X% . We interpret
that  Jup(D) s the four dimensional gravitational field
| S and’ A (x) is the eiectroxﬁagnetic fieid This interpreta-

tion is based on the follow1ng reason. The flve dimensional

connectlon r; PMN is calculated from the ansatz (2 2)
ne | . .
() _ ' B : ' ' »
A 7A ef? A A S .
MV v T ) (A/‘FV ""AvF/* ) L )
¢5) ' ($)
"N g | rﬁt =0 S |
| o | (2-3)

s -“QA,O’_:,:,, | A (A FVID+A» ,u/o) e(c) Ay ()A/u)

(S)

) - kY : -
5 2 , :
= -—62’2/%'01:/79 55 =0 B S

Pa)

with F /&P = IB/AAV a 3”' A# . The five diinensidnal
Riccli tensor tRS)MN reéds

5)

R/Av: ap t ‘ejt(Aﬂé,\Fu}‘-i' A,,}AF/AA— F:“AFV")'*@?‘A/;AuFﬁFfK
DR A AT B (e AT )

s
(2.4)
SAMS

R - A SRR A

9

2[F £6 : o . - -
ssj%E““F' o e

We obtain the scalar curvature



)

R R elz F/"“’ F_'/'U) y (2-5)

and the Lagrangian Z

2 =58 2[5 (R - LB )

Here we find that the first term is the Einstein Lagrangian

3)

and the second term is the Maxwell Lagrangian. It is a
remarkable fact that we have the correct sign of the Maxwell
Lagrangian relatively to that of the Einstein Lagrangian.
Hence we may be able to regard 3#$IX)' as the gravitatiocnal
field and /&M(X) as the electromagnetic field.

2-1-2 Interpretation of the extra dimensional space

Let us determine the parameter /e which expresses the
size of the fifth dimensional space. We assume that the fifth
dimensional space is compact and in particular it is a circle

S’i with (0< XA542T . To obtain the correct four dimen-

sional Einstein-Maxwell action we choose the normalization of

the five dimensional action,tofbe

i L

where G is the Newtonian constant. Employing eq. (2-6) we

obtain

S = !61T65 <]9R - (IéTTG) %d"x/_&l: F”" (2.5)




10

In order to have the standard four dimensional Maxwell action

. . . 2 7 .
- it is necessary to put ' elk =1 i.e. ,e ~[/16TG or
T = o .m\px » Where A= ZI—% and Mpr are the.

19 Gew) ,

fine structure constant and the Planck mass ( &~ 10
respectiyely; Thefefore, if X is the order of unity;*) the
- size of the fifth dimensional space is és_sﬁall as the Planck
length. This makes it possible to consider the extra dimen~
sional space as a physical 6bject in gpite of the fact that our
real world is obserﬁed.to_be‘a four dimensional space-time.
-Therefore wé daﬁ make the interpretation that thefextfa
‘dimensidnal‘spaceﬂdoes exist but cannot be observed as long as
the super high energy experiment or coémblogicai observation
" with the eﬁergy of the Planck mass is not performed.
2-1-3 Gauge transformation
In'ﬁhié section we examine how the gauge tfansfprmation
of the electromagnétic field is expiained in this Kaluza-Klein |
theory. The ansatz of dimensional reduction (2-2) is nothing
but an assumptibn of a special dependence on the coordinates
| )Cf‘7:X;. of the five dimensioﬁal metric tensor. (cf. §2-1-4)
If we perform a génefai transformation in the five dimensional
:sbace—time, this ansaﬁz cannot be preserved. In otherxr WOrdé
this ansatz does not respect the'fivé dimensional prihciple of
general reléﬁivity.' Let us look for the special five dimensionai
coordinate transformation that preserves the ansatz (2—2). ,Wé

. write the five dimensional coordinate transformation as

XM__-)' er..__.xH.’.SIM SxM Eé“ ' (2-9)

*) To determine the magnitude of the parameter € we must consider
the electro-magnetic interaction of charged matter fields. (cf.

eqs. (2-27,38)
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)
As 3;4N is a tensor, it is transformed like

(s)

, )
j’ My (X)) — 3‘MN(X)

I

& duan )

. ® (2-10)

= —3,.,, Ex g’ru — v €' g,,”, - éPQP §”MN

M
We are searching for such 6‘ that preserves the ansatz that

is
5, & (X0 + el Aux)Ajex) el"AL) )
7 — .
3 (x3x) = el* Ar (x) 22
' 7]
We see that the infinitesimal change of 3-55 is

(&9 P(” p {s) p 5 P(ﬂ
S 355:"356 y 3,:5'956 ‘;lgp - € aP dss =235 €M Tps |
On the other hand the consistency of the ansatz demands
&)
S 355 = S/Q"‘ =0 . Therefore it is needed that os GP:‘O

i.e. ¢gF does not depend on X% . 1In this case we obtain

from egs. (2-10) and (2-2) that

3,3/«;»"‘ "3,4‘6/\' 3,\1) 'avel\’ S&M - 6'\ oA j’/uu , (2-11)

SAe =~ Ay - ERA-LaE o

I

- Tl 2-13
§dss= 0 | .- (213
The equation (2-11) implies the four dimensional coordinate
transformation Qf, 3/Lv' , and the last term of (2-12) -~ ~ =~ =
implies the gauge transformation of /R/( . We have seen -

that the gauge transformation of the vector potential /\A
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is described by a special five dimensional coordinate transfor-
mation of the metric tensor.
2-1-4 Extended ansatz including a scalar field
In this section we examine the meaning'of.the ansatz (2-2).
For notational simplicity we take the system of unit: J=171 .
Rewrite the general five dimensional metric tensor
as

(s} (s ) : ‘
3/“1)(3(,7(5-)- gﬂgﬁ[l,xf) jj_p(x,xs.) = ;Ly(x,x,)

&) <x ) ()’ ) _
,X ) = € /l )’YS
95’“ : - 7 (2-14)

(5)

9 . (O Xs) P2 (X, Xs)

Il

That is
g) 3—/“,, -+ ezA/MA)) eA/M
MN eAV : (Fl »

We notice that the ansatz (2-2) is equal to the definition
(2-14) with the restriction that gﬂy and /4/4 do not

-1 . ) q
depend on Xy and ¢ = , in other words, gykv an

‘5-)5/,( do not depend on Xs and’ (5,5 =1 .
Let us extend the ansatz (2-2) in order for g;: to
depend on X# . This is equivalent to the assumption that
eéch component of %fnu does not depend on Xﬁ- but

depends on X% . It is convenient to work with the finfbein

(s)
Eu? which is more fundamental than the metric tensor

[¢2)
3 uw . The ansatz (2-2) can be rewritten with the

finfbein as



&) a E}A«(X) EA/M (x)
En?GXs) = ' ,
0] 1 9 (2-15)
6 o) ) ' _ :
3/.4” = EMA EN'B 7A8 ' 7,“; Ediag(—++++) ,

14 r
whexre M , u are the indices of the world coordinate and
A, o are the indiées‘ofvthe inertial frame. Let us

- assume the following extended ansatz:

g A(x x )y = C,a'(x) E/,"‘():) e fto Aﬂm (2-16)
M y A5 0 ._ (Ft( £ .
In vth‘is case the metric tensor réads |
2 Prg, + P A €T
Cd (X, Xs) = o ST s ot |, (2-17)

Provided we assume (2-16) in place of (2-2), the Lagrangian

a‘f: /- (gsf fg becomes

£ =3[ LR |
4’716'1{ PR 250 P (AP -Aud, ©)
R PTG oaa g 1)
Fhr(rt) Prretagary o) @ ] |

To obtain this equatioﬁ we have used the fact that the metric
‘ tensor (2-17) is obtained by replacing‘ ngN in the ansatzA
(2=2) by ¢prt ‘é’w fa'nd also by redefining A/u-—i'A s,
3/‘W - Sy szi’-z-é ’ and moreover we have used the formula

(a-24) -of the conformal transformation in Appendix A. We

13
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notice that the coupling between the electromagnetic field
,4/¢ and the scalar field q’ becomes simple, if we set
S—t=20 and 28+t =1 . The Einstein Lagrangian can be

obtained by setting 2FV++ =0 . Then we have

v MY il
i ="3'[ R - CF F,upF(u - g’ ———"——a#:];jp ] (2-19)
In an alternative case that S-f =0 and 2f+t=1 we have

2 ., P ay QAY A(Fl’
£ =/FLPR -§ P FuF+ 23”2 0E] ooy

In this case the scalar field can be identified with the Jordan-

Brans-Dicke f1e1d23)

As we have seen above, if we allow 3.55 to depend on
X* , we have a scalar field which couples with the gravita-
tional field and the electromagnetic field. This scalar field
can be used to plausibly explain the contraction of the extra
dimensional space (cf. §3-6).
2-1-5 Harmonic expansion and massive modes

As we have seen in the previous section, the ansatz of
dimensional reduction (2-2) is to restrict the dependence on
the coordinates fx“,‘xs of the five dimensional metric
tensor glqw . Now let us examine small perturbation which
depends on X% around the ansatz (2-2). We will have a

13)22) Let us decompose

series of massive modes as follows.
the five dimensional metric tensor gnMN into the Kaluza-

Klein background g34N and perturbation hHN as
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5) -
Lis) = X '
q’ ) =3 )4 [ (xxs , (2-21)

j (X) — g/w(x) + e, z/‘\/“(1[),4,,&') e,alA/u(I))
! e " A, (D P& .

Since plhysical particles should be defined in the local
inertial frame of the five dimensional space-time, we take this
inertial frame. Define the field hAg as

' hAB = EAM E B” J’)MN . Now the harmonic expansion

(Fourier expansion) of the field h,}g can be written as

; ©) e inxsy m
hag(% Xs) =hoyp) + b e hmon +hel (222)
Here (028()() is the massless mede and U:\)B (x) (n=xo0)

are the massive modes, as we shall see below. So that we may
see this, let us write down the equation of motion which is in
the first order of the field hAB . The corresponding

bilinear terms of hAB in the five dimensional Einstein

Lagrangian [ = /_.5’ ié’ are (cf. eq. (A-22))

i(z) =/—:§ [% ZhB.CIZhAB - %‘Z hBBVC ;’IAC

(2-23)
17 B &= _1; = T7A] BC
+2}' VA I'\B Vﬁhcc - +VA;’)BQV I’\ J
where 17/\ = EA M VM , and VM is the covarilant'_j_
derivative with respect to the background g&#n . 'So as

to extract the physical modes we impose the unitary gauge
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condition ;X’::O (N¥0) | 10 make the calculation
Simpler we use the weak field approximation that the background
four dimensional space~time is flat ( [’r?’O ) and the
eleétromagnetic field is weak /qlﬂ, 0, oF~0 .
Thén the coefficient df E};nxs in the linearized field

%y

equation ' is written as

i ( '71 r Y
DiD¥hy — 3 h'%y ZDMD‘}WKﬂlenF o

. (2-24)
(4] m
+ D(o( Dp) Hm + 7«,9 ( DXDS (mg "Dx th hn ) = 0
D¥H™, ‘;ﬁlF rsD uzs —) | , (2-29)
. ) ,
’WW = H’:( "= | | -, (2-26)
with D,O = a,o - /(enA,o | . Here the symmetrization

means e.g. D(“ D,@) = é’(Dd Dﬁ'f‘Dﬂ D«) . Using (2-25) and

(2-26) we rewrite the equation (2-24) as

Da;D hm X: (::,s +2ien F¥a«hmr

- Zleﬁ F“Dca:DarH:,s)s = . (2-27)

*) The equation (2-24) happens to be identical to that appeér—
_ing in ref. 24), where Velo and Zwanzinger claimed that six
degrees of freedom are contained in this equation. However in
- our case the other two constraints (2-25), (2-26) allow us to

‘describe a spin two particle correctly.
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The first term is the kinetic term including the minimal

coupling with the electromagnetic field, the second term is

the mass term and the rest terms are nonminimal interactions

with the electromagnetic field. If we define the charge of
m

the massive tensor field LY to be % ; the minimal

coupling D/o should be written as b/, - ;AP . Hence we

notice ?;: €én , that is the charge is multiplicative of

e with an integer n . From eq. (2-27) we find that the

mass of the field ‘1’,9 is m= I _ m:.@mn .
2

[ (™M)
%3
of the Planck mass. Therefore it is possible to explain that

Namely the mass of the tensor field is in the order
the reason why such massive tensor fields are not observed .in
nature is because the mass of them is too heavy than the
energy in present experiments.

By the way we notice that both the charge and the mass
include the common integer N . This 7Y comes from the
differential operator Bg in the field equation. At first
sight it is curious that the charge and the mass come from the
same origin,‘but this seems natural in the following consider-
ation. Since in the Kaluza—Klein theory we start from the
five dimensional thedty of general relativity, the electro=-
maghetic field is also based on the curvature of the (five
dimensional).space—time; Hence it is natural that‘fhe~charge
which is the source of the electromagnetic field has the same
origin as the mass which is the source of the gravitational
field.

2-1-6 Ground state solution and the meaning of the Kaluza-
Klein ansatz

In the previous section we have examined the excited modes
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[N

in the background of the Kaluza-Klein _ansatz. However the

ansatz (2- 2) is not a solution of the five dimensional
). e:p‘i-

G
Einstein equation, because eq. (2- 4) shows RES e ,oo-Ff,’ 0

and this. contradicts with the Elnsteln equation fg’ M '
N

In thls sect:x.on 1et us examlne what the ansatz (2- 2) really -

- means. Cons:.der the follow1ng ground state solutlon of the

flve dlmensn.onal E:Lnsteln equatlon-

O
g‘MNz A 2

, (2—28)

‘which trivially satisfies the five dimensional Einstein

[ $x]
equation Ruw =0 . Here the fifth space is assumed to be a

circle with 0<Xs<27 . In the same way as thé previous section
' )
we decompose the field §u» into the ground state gm: and

perturbation |h,,
ts) = | |
o (X2 = Gy + Dy (X2 . (2-29)

Suppose we perform the harmonic expansion of ,’l/u; in a

Ay o ' ' : ©) ‘
similar way to the equation (2-22), we find that h'as is a
massless field and ‘:28- (n+0)  are maseive fields. Adding.

the zero mbde to the grOund state Jun we have

) 7 @ vy s (X)
( /*P P (2-30) °

(x Xs) ; ]
g’MN "h“’)sy(x) ./Ql‘l‘ “ (X) .

ThlS express:.on is equlvalent to the one when we assume that
: ) -
each component of ¢ g,  does not depend on X® but depends

’~onAIM . In this case, as we examined in the section 2-1-4,

we obtain the Kaluza-Klein Lagrangian including a sca_l'ar
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field from the five dimensional Einstein Lagrangian. In other
words we find that the Kaluza-Klein ansatz with a scalar field
is nothing but the zero mode of the harmonic expansion around
the ground state solution and the Kaluza-Klein Lagrangian is
the low energy effective Lagrangian which contains only the zero
mode.l3)
2-1-7 Spinor field

‘So far we have treated Bose fields only, but there are
also Fermion fields in nature. In this section we explain
how to treat a spinor field in the Kaluza-Klein framework.l3)22)
(cf. §3-1)

In order to treat a spinor field we have only to add the
*)

following Dirac Lagrangian ‘by hand to the Einstein Lagrangian

in the five dimensional space-time:

(5) 5 (5)
35?’ = 1/~ 5—(1 Xs) \Ij(x,ls) F’ EA (X, Xs) VM \f)(x Xs) , (2-31)
5) 5 A i5) g - .
M= 9"" + BMEAB7 [ [—I r ] ' . (2-32)
(5) M (5) (s) (5) (5) N <5)
BAEBC] - EEA EBJ <)M ENc Er_g Ec] JM NA
s M ) N - ST (2-33)
+ E[C EAJ QM FNB . ,

5)
(See Appendix A) Here the spinor field qJ has four components

B)
and r7A satisfies the five dimensional Clifford algebra

*) The bare mass for the Dirac partiéle in the five dimensional

space-time causes CP-violation after the dimensional reduction.
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6)
_ AB g

{ } 2 7 . We can utilize the four

. . . . 9 ! 2 3 F/r—=ryoyiy2 xs3
dlmens(;.)onal Dirac matrix [} . ¥ , J , e ) Y (=15°0'Y 6)
for r7A . After the dimensional reduction with the Kaluza-

(8 «

Klein ansatz of the fiinfbein EMA*:(Eg‘ 324“) the spinor

[

Lagrangian (2-31) becomes

i5)

Lo =155 F(V(V-eAd) + 780
RN D cH R A

o)
When we perform the harmonic expansion of ‘f’

5

0 > 1 -
Y = Y% + Z (e ¥y +hc.] (2-35)

J

we find that the second term in eq. (2-34) which corresponds
the mass term includes the matrix s . Performing the chiral

transformation,

) i Ye \5) 5 (£2)

v, ‘1’-—>e "y (2-36)

to obtain the ordinary mass term, we have

Lo =i0FF ¥ (I -eA)+ 335
+ 16X IER Fa,e[ X«x Xﬂ]} \i/ ' . (2-37)

. . . InXxs
In the equation of motion the coefficient of e can be

written as
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{Xd(vd‘fieﬁAo«)“% | IE,Q F.m[)(“ Xﬂ]l[}um' o (2-38)

The first term is the‘kinétic term includiﬁg the minimal -
coupiing with'the~gravitational field and the electrémagnetic
field. The secdnd term is £he méss term_ana fhe third.ferm__
is the Paﬁli term. From éq. (2-38) we find that the chargé_ahd

the mass of the spinor fleld pim s zr—-eh and

m = !%! = [ni{- f*>ﬂh2 , respectively. This means that
the mass of the splnor field ‘P“” is in the order of the .
Planck mass, hende'we cannot assign the field 'q)M) directly

to a ordinarylparticle (electron etc,). ”We féce_this problem
again in §3-3; - o
§2-2 The Kaluza-Klein theory in the (4+D)—dlmen51onal space-
time
This section is devbtedvto explain the 4+D -(D22) dimensiohal
extended theory which qnifies the gfavitational field and the

‘Yang-Mills field.

2-2-1 SPOntaneous.compaqtification

Lef us fiist recall the five dimensibnal Kaluza-Klein theory
reviewed in the previous section. The program was as follows:
1) Seek for the ground state solution of the five dimensional
éction with a compact extra space 2) Perform the harmonic expan-—
sion for the quantum fluctuation field with respect to the extra
coordinate ~3) Extract the zero mode of the expansion to'obtain:
the Kaluza-Klein ansatz and the low energy effective Lagrangian

4) Calculate the massive fields from the nonzero modes of the

expansion.A For the (4+D)-dimensional theory we have only to
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take the same procedure as above. In this case, however, the
procedure becomes more complicated owing to the fact that

there are many ways to construct a theory with different shape
of internal spaces. The extra space should be compact and

have the magnitude as small as the Planck length. Provided the
extra space is for example the D-dimensional torus jTD and

has a symmetry of [U(l)]D, the ground state solution can be

written as

(4+0) 7wy 0 '
gMN(x, y) = ( ) Sm) (2-39)

which is clearly a solution of the (4+D)-dimensional Einstein
equation. Here X and y. denote the four and internal D
dimensional coofdinates, respectively. As a more attractive
case if we choose another extra space which has a larger
symmetry that is for example the D-dimensional sphere

SD ( v SO(D+1) /SO (D)) with a symmetry of SO(D+1l), then we will

have to assume

(4+D) 7 MY 0

X,4) = ' (2-40)
G (209 0  Jmal(® |

withgmn being the metric tensor on SD. ‘However we immediately
find that this is not a solution of the (4+D)-dimensional
Einstein equation. Hence in oxrder to obtain a solution which
has a compact internal space with a large symmetry we must
start from such a (4+D)-dimensional action that contains some
matter field (for example extra gauge fields) in addition to

the metric tensor field. Alternatively we need the cosmological
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term.. This complication seems to be contrary to the motivation
of the Kaluza-Klein theory that the gauge fields are described
by some components of the metric tensor. But this is not
necessarily nonsense, since for example the eleven dimensional
N = 1 supergravity has an éxtra gauge field Ap4up in the

9) Therefore it came to be studied

eleven dimensional action.
actively to obtain a solution with a compact internal space
by means of adding various additionai actions to the Einstein
action in the higher dimensional space-time. This procedure
of finding a solution of compact internal space is called

12)

spontaneous compactification. The solution has in general

smaller symmetry than the (4+D)-dimensional action. This
resembles the spontaneous symmetry breaking in the Higgs-Kibble
mechanism. It may be an interesting problem to clarify in the
spontaneous compactification what is the counterpart of the
Goldstone boson in the Higgs-Kibble mechanism. In the next

section we consider how to assign the ground state in general

cases.

2-2-2 Finding the ground state

We expect the ground state to be the direct produét M4 X B
of the Minkowski space M4 and a coméact manifold B. There are
many possibilities in the way of taking the compact manifold B.
If we expect the éauge field which comes from the higher
dimensional metric tensor to have a symmetry described by a -
group G, we have two possibilities. In one case we take the
group G itself (éroup manifold) for the internal space and in
another case we take the éoset G/H (homogeneous space) which

is the manifold obtained by deviding the group G by its subgroup



H. (cf. the appendices B and C) It is known that the theory
has the symmetry G X G in the groupmanifold case and it has
the symmetry G X (N/H) with N being the normalizer of the sub-

group H in the homogeneous space case.25)

(See the appendices
B,C) The necessary dimension of internal space to make the
theory have a symmetry G is dim. G in the case of a group-
manifold and is dim G-dim H in the case of a homogeneous space.
For a given dimensionality of space-time a larger symmetry can
be obtained in the latter case than in the former case. As
the dimension of the space-time is considered to be less than
or equal toveleven in supergravity, which we explain in §3-2,
the economical tYpe of theories with a homogeneous space are
more often used than the theories with a groupmanifold. We
might also consider a theory with a general manifold for the
internal space. Let us see the way how to assign the ground
state in both cases, G and G/H.

Consider the (4+D)-dimensional vielbein rather than the
metric tensor in order to treat Fermion fields, too. With the

parenthesis < > representing the vacuum expectation value

we assume

+4) S o ~ 0

< EMA(X,¥)> - 0 E.% (%) (2-41)

Here E}f(@ is the vielbein which makes the metric tensor on
the manifold B. In other words we assume there exists a

(44D) ~-dimensional theory which has the solution (2-41). Since
the ground state ansatz is expected to be invariant under the

extra dimensional coordinate transformation Y-—Y’ ,13) the

24
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vielbein ( EmA> should satisfy

@) » S X D N
A M
(2-42)
CEMY,9)) = ) £ %) e 42

This means that the vielbein <E%“>- is form invariant:

(410 (44D)

(E mf(x, é‘*’)> CE mix, 40 (2-43)

(cf. §2-1-3) 1In the case of a groupmanifold G we can assign
the covariant basis GEMaly) in the appendix B to E,%(Y¥) ,26)

namely

E,.%9 = En® (Y (2-44)

This identification is justified since under the coordinate
transformation Y-+ %” the vielbein En® transforms as

E% YY) =

E;“ (y) (coordinate transformation), (2-45)

yr}n

and the covariant basis transforms as

a . ,a : . o :“__--.‘-—‘ - _ R o .- ‘ .
en (4= 3:",,,, ey - o (a-46)
under the left translation y-iy’ (See the appendix B). In
the case of a homogeneous space G/H it is possible to take for
qu (%) the covariant basis En (¥  in the appendix

C, which can be justified as follows. In comparison with

the vielbein which transforms as (2-45), the covariant basis
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transforms under the left translation 1%73’ (See the

appendix C) as

entrn =38 e, D (1) (2-47)

Here L)abéﬁ) is the matrix of the adjoint representation of
the group G. We notice that eq. (2-47) contradicts (2-43)

and (2-45) by a factor D% (47) . Hence the general
qoordinate transformation is not enough to relate the vielbein
Ex? and the covariant basis Eﬁ;“ of G/H. On the other

hand the theory is invariant under the (4+D) -dimensional

local Lorentz transformation that is the frame rotation

SO(l,‘3+D) besides the general coordinate invariance. Suppose

we perform the frame rotation SO(D) in the extra space as

well as the general coordinate transformation, we have

3 Y™ b D a (coordinate transformation
7 A9 = L. (4 + local Lorentz transfor-
E'n (#) by Eh ) Ds mation) -

(2-48)

instead of (2-45). Here qu is a representation of SO(D).

' Comparing this with eq. (2-47) we find that D2 (47)

which comes from the left translation on G/H should be embeded
in Dbk which is a representation of SO(D). Namely we have
only to assign qu :.[)b“(ﬂﬂ) in the case that dim G/H = D.
To be concrete the generator (QK of H should be written by

a generator Zab of SO(D) as

Qz =-71_-fzbczl’° (2-49)
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(See the appendix C). This is because we can write the
adjoint representation Ehb(ﬁ) under an infinitesimal

transformation of H as

vDab(*f{): Sap + Shi-fazs = Sap + Was

or Dbe)‘: i —I-SI)E- QE’ , and under the infinitesimal

transformation of SO(D) D is written as [ =1+ }lwab I

2-2-3 Harmonic expansion

First let us consider the case of a groﬁpmanifold G.

For the sake of conéidering physical particles we take
the (4+4D)-dimensional inertial frame. The harmonic expansionl3)
of a (4+D)-dimensional general field §§uﬁu.ab".cnﬁ) caﬁ be

written in terms of all the representations D"t of a

group G as

_ [n} "(g) {n
$ aporrabe W= {Z,,; Da.. (L#) ¢ - () ,  (2-50)

where {n} implies the indices which distinguish the represen-
tations of G, X%,A--- are the indices of the four dimensional
inertial frame, /},b“z‘are those of the extra space and [ (%)
is defined inréhe appendik B. ﬁere we havé oﬁitted detailed
factors and indices (See the ref. 13). Let us rewrite (2-50)

in a simpler form omitting indices as

L4

} ~ ; 7
P (x,9)= f‘_’} D™ 17 w) ¢ (v . (2-51)
n
Since the field é@(i&ﬂ) is a world scalar, it behaves under

the general coordinate transformation as



' 4
P(x,p) —> P (x,3") = isc:c,g) (2-52)
Each term in the righthand side of the eq. (2-51) transforms

under the left translation Y- %" (B-1) as

DML ) 9y — DM L) ¢71y,

— DM(L"(?)) D—im(g) <{>'“’(x) ‘ (2-53)

So that the expansion (2-51) is consistent with egs. (2-52),

(2-53) the field qﬁﬂ(x) has only to transform as

DMy = D™(a) M oy , (2-54)

Next let us consider the case of a homogeneous space
G/H. Also in this case we expect that a (4+D)-dimensional

field @ (2, 3) can be expanded as

P (X,4) = rZ DM(L) o™y (2-55)
. n .

2

‘with representations Eﬂ"’ of the group G and |[_(¥) defined
in the appendix C. Since the field (% 4%) is a world
scalar, it behaves similarly to (2-52) under the general
coordinate transformation. Each term of the expansion (2-55)

transforms under the left tanslation Y- ¥%° (c-1) as

28
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D™( L) ¢ — D™( L") )

(2-56)

= D™(4) D™( L)) D™ 9) $"; )

Then we find that even if the field 4””&1) transforms as
eq. (2-54), egs. (2-52) (2-55) and (2-56) are not consistent
owing to .the factor [ﬂ”(ﬂ) in (2-56). Therefore in the
homogeneous space case we cannot expand a field as (2-55).
Now let us try to utilize the degrees of freedom of the frame
rotation as in the section 2-2-2. We do not start with a
general field but with a special field € (1,4) which .

transforms under the left translation 39-% as

Fx,9) = D(L) B(X, ¥ (2-57)

2

13) In

where ID({) is some particular representation of H.
other words we decompose a general field into irreducible
representations of H. Expand the field é@(d)?) as

{1} ny
$hy= 2 DLW ¢ %) (2-58)

{n T T

Here [){”q is chbéénréo as to-coﬂtain ﬁhe pértiéﬁiar '
representation D among all the representation [){”‘ of

the group G. If D is contained several times in D{nq '
we must distinguish them, but we qmit detailed.indicés

(See the ref. 13.) Iﬁ ﬁhié case éachiéerm of the expansion (2-58)

transforms as



Dm'l( L"(é))‘ c}:f"l"[x) s D{ﬂ’( L"(V)) <F'f"’1 (1)

(2-59)

= DA) D™ (1) D' ™ (9 ¢ (xy

under the left translation. 1In this case we have only to

assume
P Mixy = D™ a) ¢ ™iyy (2-60)

Now we must confirm that the theory is invariant under the
left translation. Provided H is embeded into SO(D) as in

the section 2-1-2, the factor [D(4) in (2-57) can be absorbed
into the degrees of freedom which come from the local Lorentz
SO(1,3+D) invariance of the theory. Therfore we can perform
the harmonic expansion in the case of homogeneous space G/H,
too. In this case, however, all four dimensional field which
have a nontrivial representation of H do not apéear through

the harmonic expansion and only special representations in
| 13)

13)

which H contents are included in SO(D) can be obtained.
| Let us look at an example of the harmonic expansion.
Consider the case that G = SO(3), H = SO(2) and G/H = S2.

We must deéompose a field into irreducible representations of
H = SO(2) which are distinguished by "isohelicity" A .
When we write the field as 45[1,9,qn , the harmonic
expansion of 4’) is

4’;\()(,6, ¢) = 2. J21+i 2 D)\{\( ( Lq(“’)) 4:31”” 0 (2-61)

20200 M *

30
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Here DA'MI belongs to a (24%+l)-dimensional irreducible

unitary representation of SO(3).

2-2-4 Zero mode ansatz and effective Lagrangian
To make the explanation simpler let us first consider the
case of a homogeneous space G/H. The Kaluza-Klein ansatz is
obtained from the zero mode of the harmonic expansion and can

be written asl3)

TE)M vy = | Br@w e Adw Dp'(Le)
0 2 Ent(H (2-62)

Here € 1is the coupling constant of the field Aﬂ% , ,Q
is a parameter which shows the size of the extra space, Dg“
is a matrix of the adjoint representation of G and E}ma is
the covariant basis of G/H. To confirm that the ansatz (2-62)
really corresponds to the zero mode, we have only to make sure
~ ,

o, . . .
that E%u implies the graviton and /ﬁk'b is a massless

field by inserting the ansatz (2-62) into the (4+D)-dimensional

Einstein Lagrangian,
[ G2 : S
L = -3 R S | (2-63)

From the ansatz (2-62) we have

(@40) E d"(x ) —€ E f (x) AE’\(I) Dg‘(us)ec?s)
Eﬁ M(Ix 3) = ( ' N m
0 €a"(8/4 (2-64)



and

#4 YA BA T "ATDp"
%MIN(I,‘Q) _[ Gt el ALA D Dee 0 ADe B ), s
eﬁlApﬁDfaema 2> dmn

From the definition in the appendix A the spinor connection

reads

(44D)

Bo([ﬁ)‘] = Er,o(,u Ep:p QM'E)’Y—E[/S/‘EIJ”:)M‘EV@(

+Eey" Ewg I Ev,e

= Buargsa ,
(440) (a40) 0 A

- M A 2-66
Bo([/&c] - Bcce{,a] = %_‘ Eu EAV F‘;m, Dd c ( )

(a+0)

Bo([bc] = "eA«xa\( D?E—Da‘fmcé)‘f:ébc

B et = - 2 Fave = LMa%4;
afbe) = — 5 Tabc — Flla " Tdic

)
B a rber

i

otherwise=0
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. b — m b & _ A 2 ¢ R,
with T[,°= €, Em and F_,up :'b,uAy"A/A,\ +€§g£ A,‘Ay .
Using the definition (A-20) we obtain
(4+D)

242 A A 0)]
R = R"%ﬂ }'“ﬁdFd'de DaCD@C ‘*‘/%ER (2-67)

_J__(‘g*"” = \/_Tg /? X ’ = det E(v) det efﬁ),ep | (2-68)

\»

The action is written as

i

1 i) (4++0)
E; /QD Q/ yd4ﬂék/:r§ ﬁé

(2-69)

_ Y - T 12

=[x/ R- 2 E e +LRT
. o D 0,
with X=(X,%) and YV = {d Y (ﬂ-’w) . Here we have used
the relation:
1oy rm i | _
T {4 o Da c(LON Dp(L9) = 4 Sa , (270

with 78; d;mCG/H)/dim G . In eq. (2-69) the first
term is the Einstein action, the second term is the Yang-Mills
action and the third term is the cosmological term. We have

(4 A
seen that Eém and ,4jlb are massless as expected.
Next let us consider the case of a groupmanifold G. 1In

this case the ansatz (2-62) is replaced by
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(410) E.0 e lAS 0\
Aro M
En'(xy= 4 (2-71)

0 A e«“ (¥ ’

Pay attention to the fact that (2-71) is not the special case
of (2-62) with H = 1. Of cource we may take such an ansatz,
but the factor DBA(L(Q) is merely unnecessary complication.

From the ansatz (2-71) we get

1 —7) (£40)
S=pylet TR

fox /g [R -2l Fuere + 4R ]

Il

(2-72)

I

in place of eq. (2-69).

2-2-5 Gauge transformation
Let us examine the gauge transformation. In the following
explanation we use the unit, ‘[::i . We begin by the case of
a homogeneous space G/H. We can write the infinitesimal left

translation depending on X - as -~ ... g TP e

(2-73)

§ 4" = Kraweto

. . . m . . '
using the Killing vector '< 1y in the appendix C. Here we

FaN
have set Sﬁe = €b in eq. (C-13). Under the general
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coordinate transformation the metric tensor behaves as

(4+D;4 v (Hli)' T “H’}MN

$9 (rg) = ¢ o — ¢ Moy w ’
, (2-74)

(440 (449 (440) (£+9)
§ 4M = g g e - P g
From egs. (2-62), (2-73) and (2-74) we get

’\ 2 ~ A~

SAE =) AR e Qi F - LD, el (2-75)

A A A A
with Dy, €% = ), E° +eff-t€aAy€ €e . The equation (2-75)
implies the gaﬁge transformation of the Yang-Mills field
‘/L”2~ . We see that the gauge transformation corresponds
to a special (4+D)-dimensional coordinate transformation which
preserves the form of the D-dimensional metric tensor (isometry
ie. $3M=0 for the internal space).

In the case of the group manifold G eqg. (2-73) is replaced

by

XM =€t )
L l(2-T6) -

S ”4’»”‘ = ™ (Y éb(x); S R

>

since 63*1 is a Killing vector on G. (cf. the appendix B)

And we have

A B ER A A LoD e e
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with Dy €%= ), €% ~ef,c 24,2 €C  in place of eq. (2-75).

of cource  §g§MM=¢ also in this case.

2-2-6 Scalar field and spinor field

- Scalar fields can be included in the framework of the
Kaluza-Klein theory in a similar way to the section 2-1-4. We
can introduce a scélar field just in the same way AS eq. (2-16),
and we may also obtain scalar fields from the harmonic expansion
of the vielbein En2(x,9) . Provided there exist an extra
~gauge field /4MNP(1/9) in the (4+D)-dimensional theory, it
is possible for scalar fields to come from the harmonic
expansion of. /\%”PCI,%) . These scalar fields are considered
either to determine the magnitude of the extra space ér to
serve as Higgs:fields.
| | As for spinor fields we can introduce them alike in the
*)

section 2-1-7. The Dirac Lagrangian in the (4+D)-dimensional

-space-time is

'. (410 (+0) (#¢0) (Ho) (440 (4t0) ‘
Ly =2det B0 Yo [ B o U, Povy) + hc. (2-78)
a+0) (H-nl (4+D/I‘ @) ($40) ,
with /= éM + = BMMB][[—7 [—’8] Here FA is the
@i (D)
' (44D) -dimensional B’ —matrix and satisfies {I”* } 753

Now we consider the case of the hongeneous space G/H only.
Expressions in the case of the_groupmanifold G can be obtained

just in the same manner of this section. Assuming the Kaluza-

*) It is not always possible to introduce the spinor field in

the compact manifold. For example,'CP2 manifold does not

27)

admit the spin structure.



Klein ansatz (2-62) for the background vielbein we get

e 440 ® i

Ly -——dewadef@é?){ Yool “E@l You

(#D)

(¢t0 W G0
: + W[Jl,:f‘) [74 ea[ﬂ)V)n W(I;&)
(2-79)
el ¢ @i :m)d (&0 ) (-HD)
+ 37 FuaDaa W) Yo [TAL 7 6] B o, a)}
T h. c
b
1£) &) A
with Qu = Z + "eA/mb (I)T';,‘ and
. - 0 . W (4"“” (a40) n 28)
To = iR U+ (Vo Kent®) LT 77 7] Here,we
have used eq. (C-15). Let us perform the harmonic expansion
(q.+0)
of the spinor field &j(x,&), that is
G+m i n
Vo = D (L) P (2-80)

Then we obtain the action of the four dimensional spinor field

¥ f'"}(JL) as

Sy = (4% 2y
(410 :
=7 Havx detEn P[P (Efwl], —eAED Pt 2o
fy A 7.40) ~ " N :
- M - % Foa'(1 }—”{f‘ l"g,\]LV”CI) +h.C.
where
M= f\(?/ fdbﬁ D{M(UW)[P DM(QA) +% ‘Fasc FMC}D((E’) (2-82)
~ (2-83)
o= {/i— (a2 D™ [Len) D™y D (L) ,

37



40 ' (@) i) (%w)
and [~ apc is defined by antisymmetrizing [74[7b[7¢

13)

about a,b,c. In the dimensional reduction the Y -matrix

is often decomposed as

(44D) (44D )

T=yel , Pzreft e

1l

We notice that in both egs. (2-79) and (2-81) the first term
is the kinetic term including the minimal coupling with the
Yang-Mills field, the second term is the mass term and the

last term is the Pauli term.

38
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§3. Problems in constructing a realistic unified model

— overview ——

As we have seen in the previous sections the Kaluza-Klein
theory has a mathematical beauty and is a good candidate of a
unified theory of all interactions including gravitation.
However there remain many unsolved problems in constructing a
realistic unified theory. Let us overview some of them in

this section.

§3-1 Fermions and neéessity of supergravity

We may add the Dirac Lagrangian by hand to the Einstein
Lagrangian in the higher dimensional space-time in order to-
include spinor fields in the Kaluza-Klein theory. This seems
rather ad hoc and cannot be a way of constructing a "unified"
theory. On the other hand we have the theory of supergravity
which naturally contains both the graviton and Fermion fields
under the principle of local supersymmetry. The advantage of
the supergravity is that it has the possibility to be a
consistept theory of quantum gravity because the supersymmetry
may give rise to cancellation of all the ultraviolet |
divergénces.zg)”’Thérefdfé‘it'mayABe-préferable to start from
the supergraﬁity. " As fhe cancellation of divergehce is more
probable in extended supergravities with larger N and these
extended supergravities are known to be easily obtained from
a higher dimensional simple supergravity with N = 1,9) many
physicists have examined the'dimensional"reduction of it. If

we set the vacuum expectation value of Fermions in the super-

gravity to be zero and consider the Bosonic sector only, the
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remaining theory is nothing but a Kaluza-Klein theory with
some extra gauge fields in the higher dimensional space-time.
There are component field supergravity and superspace super-

gravity, and they are known to be equivalent.zg)

Suppose we
prefer to start from the simplest Lagrangian in constructing
a unified theory, we had better to take the superspace super-

gravity. Then the ultimate goal of Kaluza-Klein unified theory

will be somethihg like the one illustrated in the table 1.

table 1

§3-2 Restriction on the gauge group

When we attempt to construct a realistic unified model,
the easiest way in choosing the gauge symmetry may be to take
the groups 'such as SU(5), SO0(10) which succeeded to'some

6)

extent in GUTs. Now people belive that supergravity exists

only in less than or equal to eleven dimensions.lo) _This is
because the supergravity in a more than eleven dimensional
space-time requires a particle with a spin s Z 5/2, and it is
widely believed to be difficult to construct a consistent theory

30) Consequently, as long as

of such a higher spin particle.
we start from supergravity, we must consider it in the less

than or equal to eleven dimensional space-time and therefore

the symmetry group in the Kaluza-Klein theory should be severely
restricted, Even if we take the most economical theory with a

homogeneous space, the SU(5) gauge symmetry requires the twelve

dimensional space-time owing to the fact that dim
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[SU(5)/SU(4) X U(1l)] = 8. 1In the case of S0(10) we need
thirteen dimensions because dim [SO(10)/S0(9)] = 9. This

forces us to abandon SU(5) and SO(10). The>best we can-conceive
is the direct producﬁ gauge group SU(3) X SU(2) X U(l) on

account of the fact dim

[{sU(3)/sU(2) X U(1)} X {su(2)/u(L)} x v(L)] = 719" since

the eleven dimensional N = 1 supergravity is unique and contains
sufficient variety of fields to possibly describe the nature,

the dimensional reduction of it has been studied actively in

9)29)31)

these days. However as we shall see in the next section

the chirality cannot be defined in an odd dimensional space-time
and it is difficult to obtain chiral Fermions (this is definitely

needed to describe the weak interactions) after dimensional

9)

reduction. It is possible for a less than eleven dimensional

theory to have the symmetry of SU(3) X SU(2) X U(l), provided
the theory has an extra U(1) gauge field. Such a theory is

known in a ten dimensional supergravity, in which the extra

2 2

'space is compactified into Cp® X S® and the problem of the spin

32)

structure is solved using the U(l) gauge symmetry. As the

ten dimensions are important for the string theory and the

chirality can be defined in even dimensions, the ten dimensional

32)

supergravity has also been studied recently. Another

possibility is to consider composite particles. Though the

vielbein EbA corresponds to an elementary particle, the spinor

1

*) In this case it is difficult to introduce the spinor field

due to the fact SU(3)/SU(2) X U(1l) ~ Cp2 which does not admit

spin structure.27)'
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connection BM[AB] may be regarded as a composite operator of

A 31) . .
EM . There is an effort to make the field BM[AB

33)

] propagate

and to regard it as a géuge field, and some physicists have

tried to utilize SO(7) in the frame rotation group SO(1, 10).31)
Although a theory of interacting particles with S 2 5/2

34) Theﬁ

is not yet found, it may be constructed in future.
supergravity will be constructed in a higher than eleven
dimensional space-time. Furthermore supergravity is not
necessarily inevitable even in a theory with Fermions. Accord-
ingly it is not meaningless to discuss any dimensional Kaluza-
Klein theory.

Since the harmonic expansion.on a homogeneous space G/H
includes only restricted representations of G(cf. §2-2-3), some
realistic fields with nontrivial representation may not appear
from that expansion in some models. (See examples in ref. 13)
To construct a realistic unified model we must make all quantum
numbers of realistic particles appear in that model. If the
Kaluza-Klein theory had any principle to choose a certain
symmetry and some representations, and if they happened to be
identical to those in nature, it would be very nice for a

realistic unified theory. At any rate the assignment of the

gauge group and the dimensions is one of the open problems.

§3-3 Chirality and massless spinor fields

There exist chiral Fermions like neutrinos in nature. In
the four dimensional space-time we can define chirality using
XS (’:‘: iyeyiyry?) and we can assure using the chiral
invariance that the massless Fermions remain massless even with

guantum corrections. -However we cannot define chirality in an
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odd dimensional space-time, because for example
ey y*rys=1 in the five dimensions. Hence it is
difficult, though not yet verified impossible, to obtain

four dimensional chiral Fermions through dimensional reduction

9)

of such a space-time. There are some literatures which

consider the dimensional reduction of spinor fields in any

35)

dimension, examine the conditions to obtain chiral

35) 36) 37)

Fermions or discuss discrete symmetries such as C,P,T.
| Since the Kaluza-Klein theory does not have parameters
with the mass dimension except for the gravitational constant
G, the mass of the particleé in this theory is necessarily
either zero or of the order of the Planck mass. (cf. §2-1-5)
On the other hand there are variety of mass in nature such as
electron mass 0.5 MeV and Z Boson mass 90GeV. The X boson

15 38)

predicted in GUTs has the mass about 10~ GeV We must

explain the variety of mass. This hierarchy problem is the
hardest one to solve not only for the Kaluza-Klein theory but
also for all the unified theories, since a unified theory is
preferred to have as few parameters as possible. We have two

possibilities to explain the realistic mass spectrum: -
. A ,

i) Obtain a light mass (’anzlﬁfgé ) kby;éome nonpertufbativé
L | ‘ 10)

or 1_'1_) Create- 'a llght M
39)

effects from the Planck mass,’mpl,

mass from the zero mode through the Higgs—Kibble mechanism.

However no way of calculation is known in the case i). In the

case 1i) we have the difficulty that there does not exist the

zero mode of spinor fields in many Kaluza-klein theories.
Let us explain this massless spinor problem below. - =

The mass operator of the spinor -field is written as
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° o (” ’ . A ‘
—1€,4 “f}'ﬂ -, e

il

M
from eqs.. (2-79:84) with [: 1 .' In order to examine whether
this operator has a zero eigenValue we calculate the square '_

of it, M1 . Using -eq. (A-20) and the cycl:.c:.ty of the

Riemann tensor ( Rude"' Racdb'*‘ Radbc"‘a) we get '

N2 un )] o)

V_M 3 "Vl + ;i' | S '_,."(“3-2)

This equatlon is called the theorem of Llchnerow1cz.4o)

Provided the D—d:mens:.onal space is compact the Laplac:.an
. W W
g.'” m Vn is. negatlve—seml—deflnlte. *) Since in many

. cases the curvature of a compact D-dimensional space is

**)

o - ’ ,
positive, namely R > 0 ,. we find that

(»

' W : w (@ ] '
*) See that jd 3§ 4" G 7 s, = = [ 5 5 (971 50,.) £ O
S . o S
**) Let Vi be the covarlant derivative under the D-dimen-
sional coordinate transformation. From eq. (A-20), the

cyclicity of the Riemann tensor and the Killing equation (c-20)
W) ‘ ’

we obtain V,,Vg, K“”‘"VZVPK = P Ve Kap =0 .
Us:mg this equation and eq. (A—20) we flnd that the Killing
s O O

vectors K ap sat:l.sfy g," Vp Ve Kam = R K“h .
Suppose the extra space is an Elnsteln space i.e.

W

Rpn = c %'rm with a constant C . Then we have

w . ®) - . S

mn — ~» Therefore the negative-
3’ Vm Vn ap — C K’a‘p : g

semi-definiteness of the Laplacian implies that C 20

and therefore k >0 .28
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F% 2 > 0‘ ' ' | (3-3)

' ' _ > :
and there is no zerd mode of spinor-fieldé. When we stick to
a particular space with a large symmetry, for ekample a
maximally symmetric spéce (c£. eq:- A-25), for the extra space,
- we will be confronted with thisAdifficulty. But there are
severai ways to avoid this diffiéulty. First there exist
compact spaces with ]g’= 0 or [(5 Z0 (non—Einstein space) ,
for example Eﬁ=0 on the D-dimensional torus. Futhermore
it is possible‘for the spinor zero mode to exist in such

theories that include (4+D)~dimensional extra gauge fields

or Rarifa-Schwinger fields with spin 3/2.

§3-4 Puzzle of the cosmological constant
When we perform the dimensional reduction, we have a huge

éoémolqgical constant in general as can be seen in eq. (2-69).

: ) =
In the case R 70 this cosmological constant is as big as

Akk‘xzi%'r»r 1038 GeVz.' On the other hand astrophysical

observations show that Aexp 4 10783 GeV2.4l)42) This

puzzle is the problem of the cosmological constant. )
Although this problem has not been solved,vsome attempts

have béen made to settle it. The conventional but unsatis-

"factory treatment df cosmological.constant is to put an

" adjustable ¢osmdlogical term by hand in higher dimensions and

to fine-tune the four dimensional effective cosmological

43)

constant to be zero. On the other hand it is known that

supersymmetrf”prohibits nonzero vacuum energy and cosmological

44)

constant. However supersymmetry must be broken at low energy,
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because in the real world there are no Boson-Fermion pair with
the same mass predicted by supersymmetry. And in supergravities,
contrary to the globally supersymmetric theory, the cosmological
constant is not zero even with unbroken supersymmetry.3l)
Consequently it is not at all clear whether supersymmetry can
explain the extraordinary small cosmological constant.
§3-5 Stability of solutions and the principle to choose a
solution

When we cohsider spontaneous compactification, we sometimes
have several different solutions and need to choose one of them.
For example several solutions have been known in the eleven

31)

dimensional supergravity, after the solution with a seven

9)

torus T7 was found. The table 2 is devoted to the summary

of them.

table 2

Suppose our universe corresponds to one of these solutions, the
right solution must be stable against small perturbation. For
the purpose of examing stability we have to calculate the mass
spectrum of fluctuations arround the solution. 1In all the

knéwn solutions of that éupergravity the four dimensionalrspace—
time is not that of Minkowski but that of anti-de Sitter.3l)
It is also known that the existence of the tachyonic mode
( M*¢ 0) does not necessarily correspond to the instability

49) For example a scalar

" in the anti-de Sitter background.
particle with an apparently tachyonic mass ( m*<0) does not

violate the stability unless m2 is below a certain critical
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value ( O¥¢+a*x¥=0, R=|24% 0(5';1_?' . ). Recently the

round s’ and left squashed solutions were shown to be stable

50) and the round S7 solution is

51)

under dilatation and squashing,
also known to be stable against all fluctuations. Among
these fluctuations there are the modes with mM2*<0 ,.but
they correspond to the criticallvalue which is just allowed
Vin the anti-deSitter background;»i_

Even if a soluﬁion is sfable against classical flﬁctuations
‘and corresponds io a local minimum point, it may be unstable
.under a Quantum tunnel effect when there is anotherAminimum
point with lower energy. For instance the standard five
‘dimensional Kaluza—Rlein theory is known to be semiclassically

52)

unstable. As is well known in the theory of gravitation,

energy density cannot be defined in a covariant way and we can
only define total energy in an asymptotically flat space.4l)

We can hardly tell which solution is realized among the solutions
with different boundary conditions. Accordingly we have a
resérvation to the claim that we can explain the reason why the
dimensionality of our world is four on the basis of thé

classical solutions of supergravity. What we do not have is

a principle for choosing a solution.

§3-6 Cosmology

We have said that the size of the extra space is as small
as the Planck lengfh to explain the invisibility of the extra
space. Now we must explain why it is so small compared to our
fhree'dimensional_spacé. As the vacuum éxpectation value of
the scalar field C? in eq. (2-19) can be considered to

express the size of the extra space, we can determine this size
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by calculating the effective potential of e and finding
its minimum point. There are some literatures which attempt to
explain the smallness of the extra space along this line of-

thought.53)

If the minimum point of the effective potential
'corrésponas to a compact manifold with different circumferences
along the different symmetry directions, we can determine the
ratios among the gauge coupling constants corresponding to the
symmetry groups. For the ratios of the circumferences are just

those of coupling constants as Weinberg showed.54)

(cf. §2-1-2).
Provided that the ratios of couplings in a theory with |

SU(3) X SU(2) X U(l) are determined from the circumferences of
extra space, it will not be necessary to embed this group into

a larger group as in GUTs. -

7 Another way to account the smallness of ﬁhe extra space is

55)56) In this cosmo-

to consider time dependence of its size.
logical approach the extra space is considered to be in the same
size of our three dimensional space at the Planck time of the
universe. The extra space contracts relatively to the three
dimensional space as time passes. In order to illustrate this
let us take the five dimensional Kasner type space-time,ss)

namely we take the line element:

ds* = -dt* + = (t/%a)* (dx?)* (3-4)

i= l,1,3,5 2

with X°=1t . We can find the following solution which

&
satisfies the five dimensional Einstein equation Ruw =0 i.e.

ds*= —dt*4+ s (/4 dX)* 4 (to /£ Nd X5? (3-5)
i=1.23 .
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In this solution the three dimensional space explodes and the
extra space contracts for the time duration. Such a particle

has also been obtained in the eleven and ten dimensional

56)

supergravities. However there is an argument that the extra

space does not contract so fast relatively to the three -
dimensional space, because the higher dimensional anisotropic

space-time may be isotropized by particle creation due to the

7)

in the same manner

as the four dimensional anisotropic universesg). Since the ratio

quantum effect in a background space—time5

between the size of the extra space and the Planck length

determins the magnitude of the coupling constant X , we may

have the difficulty in a time-dependent extra space. that &

becomes too large compared to the observed upper limit.ss)

In the recent cosmology the inflational scenario that the

universe expands exponentially is considered to solve many

2)

difficulties such as flatness and horizontal problems.4 Hence

we may have to examine whether this scenario matches to the
Kaluza-Klein cosmology. It has been pointed out that during

the cosmological dimensional reduction entropy is pumped from

the extra space into the four dimensional universe.sg) This

idea is based on the analogy of the sudden smashlng of a’;‘

d- dlmen51onal lattlce into a (d-1) dlmen51onal one w1th the
consequent increase in disorder. This entropy may be useful
to solve the cosmological probleﬁs.

As we have seen above, there are several unsolved problems
in constructlng‘a reallstlc model based on the Kaluza—Kleln B
theory. But we mlght expect they w1ll be solved in future andri

it would be very fascinating if the ex15tence of the extra

space is predicted on more sound grounds.
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§4. Quantum Kaluza-Klein theory

In this section we consider the quantization of the
Kaluza—-Klein theory. After some comments on the problem of
ultraviolet divergences we discuss the BRS symmetry and the

physical S-matrix unitarity.

§4-1 The Problem of ultraviolet divergence

If the extra space does exist, it is natural to consider
the quantization in a higher dimensional space-~time. The problem
is that the higher the dimension of space-time is,vthe worse is
the ultraviolet divergence. On the other hand the original
Einstein theory is not renormalizable even in the four dimensions
and a consistent theory of gravitation without uncontrollable
ultraviolet divergences is not yet known.zg) In order to handle
the ultraviolet divergences we might have to consider nonpertur-
bative methods. Some physicists have tried for example the
methods to expand quantum gravity-in powers of -% or é; ’
where N is the number of matter fields coupled to gravitation

R . .
and d (=4+D) is the number of space-time dimensions.GO)Gl) )

There are also many attempts to get rid of divergence pertur-

batively. For instance the Lagrangian with bilinear terms of

62)

Riemann tensors can be added for the renormalizability. The

. *) 1In the latter method even such a speculation has been made
that the theory becomes finite at the limit of d— oo ’

namely the dimensions of the space-time are infinite.
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Einstein Lagrangian may be induced by the quantum fluctuation

63)

of some fundamental fields. However one of the most

promising theories to solve the ultraviolet catastroph may be

29) Since the modern Kaluza-Klein theory is

the supergravity.
motivated by tﬁe supergravity (cf. §3-1), we think that the
quantization of the Kaluza-Klein theory is meaningful and hope
that the problem of ultraviolet divergences are ultimately
solved by supergravity.

When we consider the quantization of this theory, we have
to examine the consistency between the higher and four dimen-
sional.quantum theories. There are literatures which discuss
the ultraviolet behavior of Kaluza-Klein theories in both the

64) It has been

higher and lower dimensional space-time.
pointed out that they are consistent with each other when all
the modes in the harmonic expansion of the fields are taken

into consideration.

- §4-2 BRS symmetry and physical S-matrix unitarity

The Kaluza-Klein theory includes the gauge fields as well
as the gravitational fields after the dimensional reduction.
Both in quantum gravity and in the theory of quantum non—Aﬁéiian
gaﬁge fields, it is well known that we: need ‘the gauge fixin§?$'*;~l

14) in the - < -

term together with the Faddeev-Popov ghost term
lagrangian to ensure the unitarity of the S-matrix. The key to
the proof of the unitarity is the invariance of the total
Lagranéian undér the BRS transformationlS).l6)65) Therefore

if we consider the extra space to exist and perform the
quantization of the Kaluza;Klein theory in the higher dimensional

space~-time, we must introduce the gauge fixing term and the
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Faddeev-Popov ghost term to the higher dimensional Einstein
Lagrangian and make the theory have the BRS symmetry so as to
ensure the unitarity. In this case it 1s necessary to examine
the consistency between the BRS symmetries in the higher dimen-
sional and in the four dimensional theories. When we perform
the harmonic expansion of the higher dimensional metric tensor
field, the zero modes correspond to the graviton and the gauge
particles. The nonzero modes correspond to a series of massive
tensor fields. (cf. §2-1-6, §2-2-4) 1In this section let us
first establish the relation between the BRS symmetries in the
higher dimensional Einstein theory and the four dimensional
Einstein-Yang-Mills theory which corresponds to the zero modes

18)

in the harmonic expansion. In the subsequent section we

generalize this investigation to the extended BRS symmetry.lg)zo)
Next using the dimensional reduction technique we derive the
BRS symmetry of massive tensor fields which corresponds to the
nonzero modes of the expansion.Zl) Finally we show that the
physical S-matrix is unitary in the whole quantum Kaluza-Klein

theory including both massless and massive fields.Zl)

4-2-1 Kaluza—Kleln theory and BRS symmetryls)

First let us consider the Kaluza-Klein theory w1th a
group manifold G. We write down the lagrangian for the (4+D)—di¥

mensional quantum gravity as®>)

L= L+ Zs , (4-1)
Le= /-9 (ﬁb)» (4-2)
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(#+D) (+10) (£+0)
SfG: i $(dmCy /-3 guv) . (4-3)

The BRS transformation 3 in eq. (4-3) is defined by

AL (M»i1 - im0 'umM wo) o
3" =3"9,C" +9™9,C" -CPap 2 ,
G+0) (4+0) 380 (340 {4+ (++0)

Sbmzo, §CM=“CP3pCH, SCM’;ibM y (4-4)

[$FF=-0FT ]

with the convention of the left-differentiation rule. Here
4t0? ©4+0) {#40) N
b is an auxiliary field and M (, are the Faddeev-Popov
M 3 M

ghost fields.

The geﬁeral invariance of the Eistein action (4-2) and
the nilpotency property of the BRS transformation guarantee
that the total action is invariant under the BRS transformation.

;fq includes both the gauge fixing and the Faddeév—Popov

ghost terms:

I G — QM‘E: / ($+0) (41‘0th N ’ ()M(ED/ [ (H.ﬂ)) (45)”?3 (45;’
N . (4-5)
(-Hp) (“D) ++ ) | |
T e T ]

{4+0)
The variation with respect to Ly gives the [(4+D)-dimensional]

. ' o : L @D 4
De Donder (harmonic) gauge condition, 3p1(~—§f’ jwMN‘)::
We will now look at the BRS transformation in the Kaluza-

Klein decomposition. To do this we must specify the y-dependence
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(the y's are "internal" coordinates) of the Faddeev-Popov ghost
wo (4407 (410 '

fields C” , (C, and the auxiliary field b;, . Let us
recall the gauge transformation in the Kaluza-Klein theory
because the BRS transformation is the quantum counterpart of it.
The gauge transformation was nothing but the special (4+D)-
dimensional coordinate transformation that preserves the form
of the D-dimensional metric tensor. See egs. (2-76,27). Since

the ghost field cH corresponds to the parameters of the

coordinate transformation Eﬁ4 , we take the ansatz:

@+ 44D

Choum=CH*0n ) Clagp = €74 Clx (4=6)

About .C:h1 and bb& we assume that they do not depend on

¥ , namely

(#40) _ @2 —, :
C,u. (X,Y) = C,u(x) ’ Cattny = C°% (X) ’
(4 £ @) (4=7)

bu .t = b (0 bu(z 9= b (2

so that we get De Donder-Landau gauge in the four dimensions.
i The factorized form for C and ) will in-general give a
non-linear gauge condition. The Kaluza-Klein ansatz (2—71)
together with (4-6) immediately gives the "gravitational part”

of the BRS transformation correctly:

5 gﬁlv: 3_/4,09(0 CD + 3PV b,o C,u _ Cpap g/'w

§ b

As for the "gauge part" if we redefine the auxiliary field

(4-8)
0, §C*=-C"3C", §Cu=ib,

i
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10
as
b

bom ~ i C'ot),o C‘:n (4-9)
J

U_
x"
I

and use Lie's differential equation (B~6) and the anti-

commuting property of ghost fields,
: a . q M
SA™ = -84 D% + A% (M - 0Py A

§C* = —cPyCt —ghetCrct 5 (4-10)

~ 0 [ E ~ 1
- with D(o Ca = b,o Ca“;. ‘beaA,ob Cc .
V Let us look at the.gauge.fixing'and the Faddeev-Popov '

ghost terms in the action

Substituting the ansatz (2-71) and (4-7) we have

w

S¢ =1V Jdx §([8C,8*")

. ‘ _ (4-11)
=i §eu/F em (6 (F . ThA™) ,
) :
with V = Sdpﬂ‘/gf being the volume of the group space.

We find that the gauge fixing and ghost terms for the De Donder
gauge have been obtained in the "gravifational part". In orxder
to get expected terms in the "gauge part" we must redefine the

fields 'C- and b as
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h

Coa(0 = C%0 (d°8 [/ Few € ™a(®) /O

(4-12)

ba 0 = B'at0(d®s /Gy € ma(® /V :

Then we find that the "gauge pa;t" of the action .Sg ' becomes

as

-1 §d8)F ema (dx§ (3 Yu To-A%)
=iV §d*X § (/5 3, CahA™) (4-13)
=V [d*X/~F[ Juba A% = 3 Ca 3D, C°] .

The first and second terms represent the gauge fixing and

ghost terms for the Landau gauge, respectively. With the

definition (4-12) the last two terms in (4-10) are replaced by

§Ca=1ba —C*3,Cq , $bha= —C* ba (4-14)

We find that the "gauge part" of the BRS transformation has
been derived.

- Let us quickly find the BRS current and the ghost current.
G+0
Since the BRS current 3}'4 is the BRS transform of the ghost
222 M (4t M 0 M
current J. , Jg'= § J. , it is sufficient to find

(140 ] L. GH)
c”' . The Kaluza-Klein decomposition of Jk” '
(449 (£0) v e G0 (0 ()

J—CM: i,/jgwaNCP ( gMNcP_*_ 3HPCN _3NPCM)
(4-15)
@)

i Ty $ (\/:?» %’D’MN)
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J‘A S-dpy (jtoiu/ )

11

'/:E gyéf(g»vc(“ + gﬂf’cvd g_PPCM)

(4-16)
il Cyg(\/'_g' 3#1))
: = qMYla = gy a
+i/g (9, Car3*C*-C, 9D, C*) .
The current  Je”  is conserved in the usual sense,
duj;":: 0 . We notice the gravitational and gauge

parts of the ghost current in the four dimensional space-time
are derived from the gravitational ghost current in the higher
dimensional space-time as expected. A brief comment may be

needed for other gauge conditions than the De Donder gauge.
N #40) (340)

N
quartic terms for the coloured ghosts and complicates the

An additional term like °‘ 7 M gives rise to
Feynman rule.

Above we have treated the theory with a groupmanlfold G.
The exten51on to the homogeneous space G/H is easy., We have
only to replace eqgs. (4—6, 12) by

(4 tp) 4¢m

C*nm =C*a), C "oy = CoooD"(L#)E: Ty G

Cat0= Co% 0 §d°§} “”g) Da (L) €, w)/v ,
(4-18)
ba

Yy = bin (x) fdoﬁ §’(g) Dab(l_(g‘)) éb 7"(9_)/{’7) »

57
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where Dﬁc is the adjoint representation of G. (cf. the
appendix C)

We conclude that the BRS symmetry in the (4+D)-dimensional
Einstein theory is consistently decomposed into the sum of
the BRS symmetry in the four-dimensional Einstein and Yang-Mills

theory.

4-2-2 Kaluza-Klein theory and extended BRS symmetrylg)

In the preceding section the Faddeev-Popov ghost fields
C and Ef have not been treated symmetrically and a
certain redefinition of C-field has been needed. In this section
treating the ghost fields ( and Zf symmetrically we
extend the previous results to the extended BRS transforma-

tion.66)m68)

65)68)69)

We write down the Lagrangian for the (4+p)-dimen-

sional quantum gravity as

i =ig + ie , (4-19)
T @10

L e /‘3 R , (4-20)

; ~ G MN «w) Gﬂ&
L q 7551 Tuw (3 +i C*"C") , (4-21)

)

I
!

Here S and S represent the BRS transformation and

68)69)

anti- BRS transformation , respectively, which are

defined by



&#p3 q (44D (a40) (440 (4%

§ 3" = —(gmy (Ve Gy (M Ty Gy

(O] 4+0) (4+0)
C" =Cry,CH"
(4-22)
@10 , & (440! ity
5 C™" = L " + C Pg P C " ,
(g403 " {4409 p w0y |
é b = C )P 5’1 )
) (CRLY (#40) #ro) (440 (440) t-+0)
My MP C PN M _ P MM
$ 9 T N IS L
— o) (4*0’ (4+0) { fD) A
M . 4
=ibM-CcryC ,
) (4-23)
_ Gio M 40) Wt
5 C - = C P 9 P C M , ’
— @ (4+0) (4t0)

Sbm‘—"'fl,gpb" , 3

with the convention of the left-differentiation rule. In
Eq. (4-21) 7M.v Z—(%«v 0 ) r Where 44 and ¥ run
& mn)

from 0 to 3 and m and n from 5 to 44D. We choose 7#,,. as
(—; 1‘?) ~ and  *7,, @as  S$man - .The total action is
invariant under the extended BRS transformation owing to the

~general invariance of the Einstein action (4-20) and the

nilpotency property sz = —2 = {§ g} =0 . Substitut—

ing (4-22), (4 23) into (4- 21) we flnd iq to be the sum of

the gauge lelng term and the FaddeeV—Popov ghOst term."*"‘””:”

59
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(49 @&+ ({@4D) 5407 (&

Lo = L5 T ($4 051" - 5 EHE -1 500,00, C1) 120

+ (total divergence).
In order to study the dimensional reduction of the

extended BRS transformation first we must determine the y-
(4 (4403
M
dependence of the Faddeev-Popov ghost fields (:H ’ C and
{+¢0)

the auxiliary field ph™ . From the similar consideration as

we did in the section 4-2-1 the y-dependence of the Faddeev-

(2] {(+0)
Popov ghost fields (" , ¢ " 4is naturally assumed as

(440) (449

c/“_(x,t;)= CHx) ChxH) =€ CD s,

A+n) 4+0)

CHmm=CH*v , C™ap=eM(PH Tl , (4-26)

($0)
Next we assume the y-dependence of the auxiliary field b" as

4 i)

b xy="5" (0

{44p)

b= €M) b |
| +4(em € + € 3 E™) CU0 TP,

(4-27)

(4+0) .
An apparently complicated form for [)” is justified a posteriori.
From the ansatz (2-71) and (4-25,26,27) we immediately get
the gravitational part of the extended BRS transformation

correctly,
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Re s

|

—( jﬂ-p glo'CV'f 3_’01)3,0 C;M-_— CPQP g_Mx))

_ . - © (4-28)
§T7=ibt+crCt ’
§ b= 7. b7 S | g
i gy e
S C” = A‘-ID/A"" 5”9{0 C’M: | "
o | (4-29)
S 6 = ——E"J,o c™ RN
S b= —ee. b

The gauge part of‘the extended BRS transformation can be
-calculated us:.ng the antlcommutlng property of C and C ,and L;Le s

differential equation (B- 6 ) together with the Jacobl 1dent1t1es

(CXC)XC—P(Cxc)XC—;‘-(ch)yC Oetc with
(Cxc)? —f‘“bCCbCC. and ‘fbc _____A__fabc . '

We obtain

--SIACVA:: ,gfﬁf Qp{:“f__/%quocyﬂf% CrI. A

i

SC* = -Licxo® +cry.ct |
B ' (4-30)

- Qa

$C
5 b

W

ib" = 4(cx) + cey.C" ,

(b~ 3 cxe)x )+ 73 b*

1l
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onl

o _gue ) TO 4 par) EF TEY AS
AV = =FC D.CT +AYLL - TQAY -

S C* = ib*+ 2(cxB)' = Cra.C"

_ | (4-31)
¢ C* = L(exe)t—ce 3,06

§ bt - 2f(b+ 4 CxINE) Ty b

-Here we noticé that on the righ_t—hand side of. egs.(4-30,31)
the gauge part and the gravitational part of the extended BRS
transformation are distinctly separated. Now from these results:

the preVJ.ous assumptlon (4-27) can be Justlfled as follows.

Consistency of the assumptlons (4-—25,26) and Egs. (4 22 23,

30,31) ~ requires
_ “+m (440 (m
SCeh=€e % (i b" +CFPp ™)

(+42

= e%, (4 b rend,en ckce) +cryc*

=ibe-L(exer) 4+ cey.C®
b4
— o a . (*Wn'q (440 (,m,,
$CT= e (4= CPpe™

4fD’

C .
=% (A b ~-en ;)e'"cc) cf’g,oC“
- L& 1 —\& = a

A b “"5(CX,C) "‘C'pgpc
‘ Adaing Vthese two equations we get

i)

2ib*=¢€ 4 {2.:b"+(ennerelyer)CctCY

7



which is nothing but eq. (4-27)

63

. Finally we are going to examine the gauge fixing and the

Faddeev-Popov ghost parts of the action,

w4
=--jd‘“’§§ 7MNF°'(§HN+ANEMCN)}

[2=(x,3)]

From the ansatz (2-71) and (4-25,26) Wwe get

e (st D

SS{ Ty [T (F™rioc CMCY)]
= F 557 B (3w coE)
G Swn 8™ S5F
T Swehel S5/ (AYAL +ixcoTY)

(4-32)

The first term implies the correct 4-dimensional gravitational

term. The second term becomes a total divergence. Using

egs. (4-28,29,30,31) we. get an explicit form of the

jd“" F’ g,,,,, e el SS{ (A“f"A'—+,(ozc c")}
= (exCHBO A Db+ L bt

- 44 {(bXC)“Eb—(bXE)“C_"} ‘

(4-33)

+,:’gw C*Dych- A A¥(ExD.C—CxD.C)
5'%—{ CX C) (cxc)b (cxc?)“(c'xé)‘"’}
- {c

c@Exar ey + e ooxe )} ]



64

_where M ab = fda}\/:‘;’ Smn E”'ae",, . Since obviously
g?nn is not a tensor toe matrig F4tw depends on .which
coordinate system we take for y» . If we can take the coordi-
nate system such that |M,, ©C §,, the third term on the

rlght—hand 31de of eq (4-32) becomes
Sdax Sab SS {j— (A“("A*’ + A4 0( C“ L)}
Sd“x(m {A’M e b + b

(4-34)

. . . . . ' : o . 66
This action is identical to that of Curci and Ferrari. )

Now some comments are needed about the proportionality
M ap O Sab' . In the case of the Su(2) group we can check
that M ap OC Sap by an explicit calculation choosihg |
Caml = €,°Qa - L =exprg.) and Qa=70°
where G2 is the Pauli matrix.(cf. the eppendik B) For general,
- cases, however, the author has no proof that we can aiways
oﬁoose the coordinate so that M ab OC-S“, . If the
proportionality M 1< Su& does not hold, the express:.on (4-33)
turns out to be a little messy. In pr1nc1ple, however, such a
gauge fixing term is nothing wrong.

We can ta];e another way . Namei.y we can choose 7,,,,n
as gtm(g) instead of gm n - Also in this case the
total action -is invariant underv the extended BRS transformation,

and eqs. (4-28,29,30,31) hold without modification.
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But the explicit form of fq becomes

540 (440

i_@, ::‘/_(nm) 7’“1 (ﬁ PQ bN (4+o;MH1>) _,45)?0‘)” M() (EJ))

. (o 3 un it VI L (4fn’ ($#)
*%7»«»%[/-73{13"" bP+ah' (CNC'-CMCT) (4-35)

{430) (L (+0) (4400 (49 («w» (%i0)
#2947 (CT30C"- c?a C o+ (F’"’g””c c”]
G5 0 GHY ~ o
where g gMv_ g»M Nt jCcMcH . The second term is

not a total divergence on account of the gt -dependence of the
matrix 7MN . In the case of =0 the gauge fixing condition

in the (4+D)-dimensional space is not the De Donder gauge but

(2 ﬁ/ f(‘i—o)(‘ijN) _ 17 ) GoMn_ 0

«Egl

Now the equation corresponding to eq. (4-32) is

(60)

$S{ T 50 (G 4 o EHED))
_r gg{7/up g#l)*/‘ucﬂ u)}

_ (4-36)
+DJ% $S/2 |
0P S SSF (At 4 v ety
where we havé used the pi:operty 'gmn ﬁtm'n :: D and

g'*mnew; et: SAB . Again the first term implies the -
" 4-dimensional gravitational term and the second term becomes a
" total divergence. The third term becomes the Lagrangian of

66)

Curci and Ferrari no matter which coordinate system we choose

for the Y -space.
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A comment on the gauge fixiﬁg and the Faddeev-Popov ghost
terms (4-21,34) . By the usage of 5, 5 .we have written
the gauge fixing and the Faddeev-Popov ghost pérts 6f thé-
Lagrangians (4;21,34) in.a very compact way. This form is
suggésted_by_thé supétspaée férmulation of the extended BRS
transformation§7)69)\1n:the sﬁpe¥s§ace formulaﬁion the extended

BRS symmetry can be elegantly expressed. ' In this formulation

the superfields of the Yang-Mills theory are

b = AS 4 BSAL+ BSAY + 68STAL

-~

$2 = Co+ 8Sc*+BS§c* + 0585 C? ( 4—37)
Fo= CTh4p5CTHDICT +6085C"

where 6 and é-iare the Grassmann coordinates of the
superspace, and S and § represent the BRS transformation
and another BRS transformation. Then the gaﬁge fixing and the

~Faddeev-Popov ghost parts of the Lagrangian are written as

.:h{;fq ==lfd9¢1§'( ?ﬁi ?b”/ﬂ+.j Ofﬁéaéga)

= - §5 (AL A riaceEd) , we

This equation suggestg-the left-hand side of -eq. -(4-34).
In conclusion, the extended BRS transformation in the
(4+D) -dimensional Einstein theory is consistently decomposed

into the sum of the extended BRS transformation in the



4-dimensional Einstein and Yang-Mills theory.

4-2-3 BRS symmetry of massive tensor fields and physical
21)

S-matrix unitarity

The BRS symmetry of massive tensor fields was first
derived in ref.2l1 by the present author. Following this work
let us examine the BRS symmetry'of massive tensor fields by
means of the dimensional reduction technique and establish
the total physical ‘S-matrix unitarity in the Kaluza-Klein
theory.

We consider the five dimensional Kaluza-Klein theory to
illustrate the procedure in the simplest ekample. The five

65)

dimensional quantum Einstein action is written as

S= Se +S¢ ' | | | (4-39)

&)

T S5 | '
Q= 50 dxssd"x -3 R , (4-40)
21 . . L (5) ,
Se= So d-xssd X (1) §(on C -2 ™) _ (4-41)

where RMN-:DPFZN— and

(3)

) £l =) tnM” - a5 (D :

~iS(mCy [T ™) = — J5F Gy |
A w G {FE( 37,0+ 9m,Cm)

-3 ([FE §mwEr) } . (4-42)



Hereafter we employ the convention that capital latin letters
M,N run 0,1,2,3,5 and greek letters /u’)) run 0,1,2,3. In
the action (4-41) we do not take the unitary gauge condition

[EX 4

( 3s 3s54=0 ) but také the De Donder gauge condltlon(aM(rﬁ“”:o 0

L

, since we want to investigate the BRS symmetry. The total

action (4-39) is invafiant under the BRS transformation65):

“) -

Gon 3, Enfor 3,8 G 8y o
op S+ dpl- —C o d

Ly '
3 LM =0
(4-43)
(5) 5 )

§ Qv = —C7 0™ | - ,

(5 (5)

§ C

il
|
v
K
-

where_We use the left-differentiation convention.

When we expand the field in the five dimensional space-
time in the harmonic functions of the compact internal manifold,
we have.a series of massive fields in addition to massless fields

in the physical four dlmen51onal space t1mel3)_ Then the full

actlon and the full BRS transformatlon become con51derably

compllcated However~1n‘order to establlsh the phy51cal S—matrix

unltarlty in the standard Kugo—Ojlma formallsm we have only to

consider asymptotlc flelds provided we assume asymptotlc

completeness, since the ‘total action is obviously invariant under
' 16)

the full BRS transformation . Let us consider the harmonic

expansion of the asymptotic fields:



&} AN Xs

9 OGXs) —> Ty + Z A ()06 | o

oW 2 AnXs '

b ¢, Xe) —> 27, Bl € o

R n=- 7 ’
-45) o3 ANXs
B o — ke 2
n=-co - .
B - . 00 ANnXs . .
Cu G X —> 7, x;"’(x € . ’
‘ n=-v ,
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(4-44)

where 7MN=diag_("++++) . In terms of these asymptotic fields

the action becomes

S N 2_”. Z S(n)

(m g d*x oZ, on

(4-45)

2o 2, [AUAT A = AT h
iaﬂﬁf—mm. %(mh;lu _#}Pﬂc—mm{/‘)p m:~
Y R A i L
+ %,z /)i;;)s {;}5 _ ;_;p ﬁf-;’)}? 5,: + T ﬁ-mm tmy _ m ﬁ(-m) (,;:)u
3 ‘At—m (m) % aﬂ (':’P }gm) + '{mﬂksm/\)l ﬂtrm Amﬁ":njg;m)
4 ?f"'"’ é“b’m, VSISO (A -4

and the BRS transformation reads '



g m,)uy — ( 3/1. V(m+ay X m))

70

= ’
m; _ ¢ . )
gﬁ = (z,, S in ™) ,
§A% = - 24nk”
(4-47)
ch = ‘X(m-: 0
5/3 M ,
g Xcm — Aﬁm
The asymptotic action (2; " is invariant under the asymptotic

BRS transformation as it should be.

(4-46) we get equations of motion as

(['_'l-h_“) m’y + 3,«/5’"" + by,é’"" = 0

(O-n* ‘"ﬂ’s + WBM+Angd = 0
. n | ) '__
(D r1)ﬁ55+ 2Kﬂﬁ5 =0
)
a-p%(ﬂ ) a/u701(m? + n‘f\(;‘;.—

AP~

ap’fl w %ﬁ(r;,o i %1791(2)5_ =0

(D hz ﬂ(h) ’ (D nz)b/(h)

which can be written in a compact form

-n) XM =

From the asymptotic action

& (4-48)

7.
R (4-49)
, (4-50)
. (4-51)
V4
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(0—h>) AN, + amﬁm, +3~ﬂtm =0 _ , (4-52)
N <m (m A ' ,

b amﬁ Y =0 - - , (4-53)
[(D ;11)2 =0 ] , (4-s4)

with the convention that 35—':_‘/{)1 . -The equations (4-48) imply

(Z)N (n %0 ) are massive tensor fields with '

" that the fields.
the-mass Inl » afxd the equations ( 4-49,50 ) correspond to the
~ divergenceless condition ( g4 A*YCp ) and the traceless
condition ( .ﬂ ~0 ) for massive tensor fields, respectivel:g.
As the actlon (4-46) has no derivative terms of 63", we
regard the ;(71) fields as dependent variables and we require the

.following canonical (anti-)commutation relations:

[ rm -[Tm’ (‘.‘HJ Ly = ’;’_(7KM7LN+ 7K"7,_M)S(x -3 ,
R 1 ( . - - ) ’
{ Y o0, Ty henge = =4 Thn §(X=3) ,
| e s
, th — 7 2D )
{ M (X) , TTXN(W}X y = A 7MN_£C7( Y N e

otherwise=0, where

cn) “no Fnp ;
Tf = 3(,(1% -——7,uvbpne-m émﬁ ; é’[‘tvé@'ﬁ:m\

¢ | ‘
“ébc‘f\ﬂ: +A n7 ‘K(-m (/..18,{;)” + 4 7;4»/3&;1)

O eno : optm _ in peme | ha \ (4-56)
TMus = —aﬂ'ﬂ 2 Ru - 8 (



1 - ! ¢
[0 =L 0hh + YR 4380 ;
m _ En) tm — -m
M= -43"Tu ’ é?f ,

[ -T</uw —(T/“’+ Tou) J
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Now it is easy to see that the fields 'A T /3’ , ¥ and X can be

written as
‘K‘n’m f [A(x—z, ¥ ﬁ(m(z).{_Em’(x_Z)a (O~ n,)ﬁ;m ]
Bucr=(fe ax-zin) 3 i)
= AEmE [
X':(xﬁjd’z A (x-Z3n% 3— ;"’( )

(ASEB=AMBE-%AB)

(4-57)

and that the right-hand side of these equations is independent

of Z° . Here the functions JAY ‘and E" satisfy the following

© -relations:

(O-nAXnY =0 . , BA [xemo =§(X)
(O-NPE™(x) =0 , (O-1DE™0) =A(Xn)
A = e far € 50 ) erPx

E” (0 = G5 [dr e §pum) etPx

(4-58) .
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Employing the equations (4-48~58) we gét the four-dimensional

*
(anti-)commutation relations ):

[. (’:(’L(‘U 3 (;nhl)(w]: A (%7“7;4;; _7KH7LN-7K:V Z.M YA (X-3n2)

+ A (Towdude + Tendudic + Teudud it Tuw ddie ) E T

2
[ n;"'- (x)’ﬁsn’w_)] =4 (Temdr + Tiudx) A (X—b‘;i n) 3
. (4-59)
[ B, By ty] =0 ,’
{18, Yo} = T A-30) ,.

with Qs = AN . If we formally write the fields as

*) The factor 2/3 in the equation (4-59) may be understood if we
notice that the (anti-)commutation relations in the 4+N-dimen-

sional quantum Einstein fheory:

[ ’Iplk:.(l), ﬁmvw)] =4 ( 2 i Toaw — kot Tow="Tew 7’-“) Dix-%)

2+N
A (en DoV Tindedit T VOV + T YE0E) ECL-3)
['Kkl_ ‘(17,- ﬁM(?)} = A 7KH35* 71.}4 ¢)I:<L) Dx-4) s

[BuonBul=0 {50, 5, (0}= T D=2
ﬁhere L | |
DCI"&) = (E%)Sﬁ[d'“ﬁ" €(P°) S(Pz) eAP[.Z 3]

’ ” L adp-Y) |
E(x-9=gaum|d% € §(mE :



. mt =L p-
Ao = j B[ AR E T A e ]
o (17T)9~

o =5 e B e ™ e e )

OJr)1

) ',,“f ~2p.
. )—f 6(?”)[ X&"’(P)G + Y m e ]
(ur) -

¥ APX L P.
?f,‘:’(x)--f - 6P [ ?(“”(p)e Y ime )
(2m)=

" we get

(4% ﬁ""f(%)] (Tewa Tt T Toe = 3 T Tu) 8P CPERI § ¥ 000

+ Ty PoP+ Tun Bk "f7kHP~ﬁ + T Pulbi) =
x QP S (Pny SHP-17)

' [ @ (f') /33"(%)] - _/(-(7I<HFL +7L.MP}<) 6'“)0} SCPI"’nI) 34(/)-?)
[ A . 8] = 0

{?fm(P) X""(&)}" i Ty B(P0) § (P2 12) §4(P-2)

with Ps_s n

Now we consider the massive modes( N% 0 ) first.

take the rest frame, P,,—_- P.=P=0
50) imply that
cn) —F‘ﬁ;: (‘ﬁ.-— 1, 2, 3)
(m
n PR+ AL = —Chi+ e

n Po(’)ellm'f' ’ﬁz(;.”'i"ﬂ M) = (Pol"nl}ﬁ o(g)
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(4-60)
J
b
b4
“{4-61)
-2
J
Let us

Then the equations (4—49>,

7 (4-62)
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which show that there remain ten independent components of fields

'for each n (£0). We set

(]0(", l(m ('D(niﬁlﬂ) sa(nl ﬁm) CiDU” (-%(m ,— ‘Azl:) (h)
n, 2= = '

13 3l 4 [T 3 »

- - "lm (4-63) |

| /Xm) i{_,;; Po ({ 'ﬁ,,)J ,X(m o,g (,{ 123) /XW— ﬁ;,;--l—

074 n 2.0 .

After a suitable rescaling 6f fields the (anti-)commutation

relations of these fields are found to be

Coleroar &P YR Y
® | Sw 0O 0 0 0

'X M 0 Wyy - 7n~ ¢ 0

Bu| © -7 O € o (4-64)

ful 0 0 0 0 i%,

Yu| © 0 0 =iy © .

This table is written in the symbolic notation and should be read

as e.g. L (]DM, Lf';] = SM,V . The BRS trahsformatio'n';(4_,—47) of

these fields can be rewrittenias

$Pu =LiQs, W"]=0
§YL =[4Qs , X = - %
SRH =405, B =0
N ={igs, W =0
ST =(iQs, T =-ipa

I

Al

J k4—65)
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where QB is the generator of the asymptotic BRS transformation

(4-47,65):
b i
QB = znmz,", QB ’
_ (4-66)
- P
Dm): m:‘m §d37<( )o r-w b,vm ﬂ-p » éo bf‘m ) .

'The equations (4—65) show that QD is a BRS singlet and that( 'X' -
ﬁ/ Y ) makes a BRS quartet. Hence we regard SD,\;”’ as physical
particles and ’)(M as H:ngs—like particles. We impose the

sub‘sidary condithn to the physical state ( lphys) ) as

Qe Iphysy=0 . | . (4-67)

Then the physical S-matrix unitarity of the massive tensor sector
can be established as shown below for each n (x0) in the same
16)

way as in the Kugo-Ojima formalism . The projection operator

m
'P(N) onto the /V—unphysical-—particle sector can be written as

o) f — +D ' '
= =2 Ml [
.(N). /V ;Z;b ab 1972 u,b 3

S | (n)+r n M (m* ™ (m A
N ( Mo -y igrm - (,,_,,'Xcm ta-11 B
(")1_ (h) {n]"' (”) M ’
t4 X (N=i) cm X tr~iy) Baem ) , (4-68)
. )
= { Qs , Rew | (N>1)
> (4-69)

. M, Tt p it A et pemy
with Koy = N ( a, : Pm-nlx m T 'X wn-,nX g) T m ::3,, ::m) .

We see for any physical states |4y , 12> that

K P18y =0 (Nz1) ,
(F147= <+IZ'_E""H7 GIPS Y =CROE R 2 0 . (4-70)

cnl
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Since the hermiticity of the Hamiltonian is obvious and the time-
independence of the physical subspace which is the total vector
space of the physical state |[phys)> is guaranteed, eg. (4-70)"

shows the physical S-matrix unitarity for each massive mode (n¥0 ).

As for the zero modes we can proceed in the same way as in
the case of massive modes stated above. In the massless case
( N=0 ) we can choose the frame as P, =P,_ =0 and write

© oo '

£ _ + _ ) V__ () » ) _ (£
(F':__“_z__l_ll’cpl;_—_ IIJCF":%SI, LF-LE 52 ,(fsr_gﬁslf L)

 Kss p ©) | 2 P
t oo~ > t _ o4 . t_ 33T 3
Ko 2 S Xi= (B=42), A3=

24iF T AP, 24P , 470

——

1]

i

. ({2}
A= Ao

’i-i Fo

The (anti-)commutation relations of these fields are

me 0 0 -
me = o m" 0 (4-72)
0 0 m°*

=<1
® o

A G- R &
3 » y
(f: S‘} 0 0 0

O

Xal 0 W [ 0 0

=
y

Bu| 0 ~%w 0 0 0O
0
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AR R

,rhv xrfo w =/ 0 0
_ = el o 4 0 o o
Yo 0 0 0 4«
.&- 0 0 0 —i 0 Y

3
!
5

And the BRS transformations become
+ v
'A(F,i S(Pj - 0

1t =, CJirr=-u

I
S

§8a=8k=0 | $Bs=8K=0

(4-73)

——

b Uu = 4Pk § Ys=-4ps

g$‘=o- .

We notice that each 99'15 a BRS singlet and that each « X ., /9 .
‘X' r Y') makes a BRS quartet. As the (anti-)commutation
relations and the BRS tragéformation are.similar to those of the’
massive modes, we can prove the physical S-matrix unitarity in

the massless sector in the same way as the massive modes. We
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will not repeat the procedure here.

We conclude that a unitary model of massi?e spin 2 fields
can be constructed through the dimensional reduction techniqug
and that we can prove the total éhysical S-matrix unitarity.in
the Kaluza-Klein theory combining the results in the massive and
massless sectors. In the full five dimensional Kaluza—klein
theory the physical modes'are a series of massive tensor fields,
a massless graviton, ‘a massless phdton and a massless.scalar
field.13) 1 other words we need these infinite numbers of field
fo construct a unitary model of massive tensor fields with
interactions. We 'summarize the BRS symmetry of the five

dimensional Kaluza-Klein theory in the table 3.

table 3

We cannot find any obstructions to conjecture that as for the
Kaluza-Klein theory in the higher than five dimensional space-
time the total physical S-matrix unitarity can be proved in the

’ *
same way as demonstrated above in the simplest example. )
§4-3 Comments on thedquantum Kaluza-Klein theory

Let us comment on the relation between the higher and

lower dimensional quantizations. The path-integral formalism

*) A report on a unitary quantum Kaluza-Klein' theory in the

six dimensional space-time has been done at meeting in

Kyoto University.70)
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of the five dimensional quantum theory is formulated in the
71) .

— i S:"dngdﬁc.,t (& x,%5)
W = ﬂd By, %) o7

J

functional integration

where @ (X,X;) is a five dimensional field. When we perform
the harmonic expansion (Fourier expansion) of the field

as

—_ = inXs (n)
3 (XA = ,,Z.m c e (1) (4-75)
and change the variable é (X,X) into ém‘(x) in eq. (4-75), the

eq. (4-74) will be replaced by

W= J[[7dstmel Tl LTETD

(4-76)
)
where Jacobian J is only a constant. Though this discussion
is considerably naive,*) it suggests that the higher and lower
dimensional quantum theory are equivalent only when the massive

modes are taken into consideration.

*) In the path-integral formulation of the gravitational field

we must take account of the problem of the measure of the

2)

integral.7 We will not discuss this problem here.
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§5. Possible test of the Kaluza-Klein theory and massive

Particles

In this section we consider the possible way to test the
Kaluza-Klein theory and in particular we examine one of the
special features of its heavy particles, namely the gyromagnetic

ratto.

§5-1 Test of the Kaluza-Klein theory

Let us consider the way how we can test the Kaluza-Klein
theory as a matter of principle. The most direct test would be
to find out the existence of the extra space. However since
its size is considered to be as small as the Planck length,’
the best we can do is to look at the massive particles of the
order of the Planck mass, which are the consequences of the
existence of the extra space. (cf. §2-1-5) At such a high
energy the gravitational quantum effect will be important and
one might think that we cannot say anything definite abdut such
heavy particles. However, as we have seen before the first

e

excited mode in the expansion (2-22) has the mass (“’i')nPi )
that is a little smaller than the Planck mass h1ﬂ1 .*) Hence
it is possible to test the existence of the extra space in

principle. Then it will be needed to find out the special

*) The size of the extra space can be considerably larger

than the Planck length according to Weinberg.54)



82
*
features of the heavy particles in the Kaluza-Klein theory, )

which cannot be seen for the more conventional heavy particles.

§5-2 Gyromagnetic ratio of heavy particleszz)

In this section we study a particular aspect of electro-
mangetic interactions of the heavy spinning particles, namely

the gyromagnetic ratio, because there is a possibility that

*) One of the effects of the extra space may be the correction
on the four dimensional causality or Lorentz invariance. The

(4+D) ~dimensional microscopic causality can be represented as

[ @@, PwEn]=0 for (-2 0

je. (X=X 4 (4-y)*>0

which is a little different from the four dimensional one73)

[ P, ¢ (x)] =0 for - (X=X")* >0

Though this correction does not tend to violate the four
dimensional causality, it will change the dispersion relation
of the forward scattering amplitude, though it will be tiny.
If the size of the eéﬁra space 1s much larger than tﬁe Planck

4)

length,5 this correction would be used one of the tests of

the Kaluza-Klein therory.
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the gyromagnetic g-factor of them differs from the ordinary

74)

value g=2 due to their nonminimal interaction with the
electromagnetic field. (cf. egs. (2-27, 38) To be specific let

us consider the original five dimensional Kaluza-Klein theory.

5-2-1 Massive tensor fieid
In order to evaluate the g-factor of the massive tensor
field we only have to examine the linearized field equation of
I1AB ; Where hAB is the fluctuation of the five dimensional
metric tensor arround the Kaluza-Klein background. (See eq.(2-21))
This field equation has been already derived as (2-27). Going
into the rest frame of our particle and assuming that only the

- - a
magnetic field B is non-zero we can derive the change of

the energy due to the magnetic interaction as74)

AE = -l_%q B-3 (5-1)

E

1l

M+ A4AE (5-2)
s

e

where S represents the spin vector of the massive tensor
field and its charge z_ and mass M have been determined in

§2-1-5. With the reducéd magnetic moment /I in the unit of

the Bohr magneton 5%2 the g-factor is defined as -

- _ % B.z
AE = —355 B-i& (5-3)
3- = ._l_}i_l (5-4)

Gy

The equations (5-1%4) shows the magnetic g factor of the massive
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spin two particle is_unity,_g = 1. Incidentally the last term
of eqg. (2-27) represents the Thomas precessioﬁ.

5-2-2 Massive vector field

. Let us consider an extra Abelian gauge field {7& in
the background of‘the five dimensional‘Kaluza—Klein ansatz
(2-2, 15), i;bJA . Take Lagrangian, Which is added to the

five dimensional Einstein Lagrangian, as

1 & O w

L v = ~ V¢ W w | 2 (5=5)

s

1)) (s) t :
with WMN = QM VN - oN \7M . If we do the harmonic

expansion for the extra gauge field

i.e.

¢ t0) % N5 44 tm) '

Va (0X) = V% + 2, [ €™ 5™ +he ) (5-6)
the massive modes 1%z(m) (n=0 interacts with the

. gauge figld. /%n which comes from the background (2-2, 15) in
a particular way that we shall see below. In order to extract
the physical modes we impose the gauge condition

l’g”=:0 (n £0) . Using the weak field approximatioh
([ ~0 , A*~0 , oF ~0 ) for simplicity we derive the

equation of motion for the massive spin 1 particle as

. p ) . V l ) .
DD, ™ — Wy, ™ jenFu®v,™
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L ‘ 1 V
DX ™ — %F“-’“ Du Us™ = 0 S E
with Df,E-: b(a - ien Af’ . . The equation (5-7) indicates

that the mass M and charge 4  of the massivé vector field
Vi™  are ]'}11-3@ Mpy and ep  , respectivély. In the same

way as. the massive tensor field itl lS easy to observe that the

gyromagnetic g-factor of the massive vector field is uhity:

g = 1. The last term of eqg. (5-7) implies the Thomas precession.

5-2-3 Massive Spinor field
The dimensional reduction of the five dimensional spinor
field in the Kaluza—Klein background has béen previously obtained
in §2-1-7. Again appealing to the weak field approximation
(P~0, A*~0, dF~0 ) ve write down the field equation

of the massive spinor field Y™ as

J

(D=2 I 1) e 20 - s

with Df, = 310 - fehAf . Multiplying eq. (5-9) by the

operata:( b'dDo( + 29_’1_ _ %F«K,[Xd, X/s] _ , we get
(DD~ 2 = lrppriyer
1 * Ya ) _
+ LIV R, D) ¥ =0

(5-10)

From this equation we can easily derive the magnetic g-facor‘
of the massive spinor field as g = 1. Since the g—factof of a

massive spinor field interacting minimally with the electro-
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magnetic field is two, our result g = 1 has an origin in the
Pauli term in eq. (2-38). Again the last term of the equation

- (5-10) represents the Thomas precession.

5-2-4 Claséical spinning particle
We are now going to show that the magnetic g factor is
universally g = 1 for an arbitrary chargedvspinning particle
‘which emerges.from the harmonic expansion in the Kaluza-Klein
"theory. For that purpose let us consider the geodesic _
equations75)'for the Velocity. []'4 énd the spin S'M - of the
classical charged particle in the five dimensional space-time.

It reads

)

+ r"’MPa'L]f’(jrg = 0 b

.DU“. - dU”

S ——— —

]

G

|

9

(5-11)
«) -

- i1C{L]‘1§?P =0 )

Q. o
1%} n
x

|

\w)
i
o,
g

with the masslessness condition, uM Um =0 . Lét us go
over to the local inertial frame. The Kaluza-Klein ansatz gives

the équations of motion as

d

G

|

el FYUAU =0

O o
QT e
&
i

0

-

v

-
N

R

(5-12)

QA o

|

“—%FMUAS",—.%F"‘AS"‘U:':O s

Q. o
™.~

|

s _edp o« = | | -
"{Fﬁ U”S‘x—-o .

oo
g
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we write the conserved quantity U4 as Uu*® = n
which can be identified with a charge. The first equation in
(5-12) implies the equation of motion of a charged particle

under the Lorentz force. We redefine the velocity and the spin

as
A= drga = N |
to get UtUy=-1 and 5A=$.>=0 . If we require
‘ ':S'A U*=o0 , we get the transversality S ,U%=0 | .

It is easy to check that S¢3S¥  is constant. (Multiply
eq. (5-14) by % ) Hence (¥ and §, can be interpreted
as the physical velocity and spin of our point particle. We

‘finally obtain

dSe: e,fn~ /SS _,_Cl'n Ku‘“ﬁs —
——— _— ¥ oy
d C .2 l»)\, Fo( i 2 FtA « 0 3 (5~14)
() .
where dT =Ml T is the proper time interval in the physical

four dimensional world. The equation (5-14) indicates that the
~gyromagnetic g factor of our classical spinning particle is
unity. The last term of the equation (5-14) represents the

Thomas precession.74)

5—2-5 Discussion on g = 1
As we have seen above the magnetic g factor is unity for
—any massive spinhing particle in the Kéluza—Klein theory of
the five dimensional space-time.
Since it is known'thaﬁ the classical orbital motion of a

76)
14

charged particle causes a magnetic moment with g = 1 perhaps
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our result g = 1 may be related to the fact that the electro-
magnetic interaction in our case has its origip in the orbital
motion in the direction of the extra coordinate. The result
g = 1 reminds us of the old story on the magnetié moment of

77)

the electron. We comment that the high energy behavior of

the Compton scattering amlitudes of such particles with g = 1

will be worse than with g = 2,78)

and this difficulty may come
from the fact that the original five dimensional Einstein
action is not renormalizable.

Though it is known that the gyromagnetic g-factor of the
real light particles like leptons, quarks and W, Z bosons is
nearly two, our particles with g = 1 are considered to be as
heavy as the Planck mass and obviously cannotrbe identified
with these real light particles. Even if we consider a theory
where the size of the extra space is not so small, it is clear
from the result g = 1 that we should not regard the real
particles to be the massive modes in the five dimensional
Kaluza-Klein theory. Since our result is based on the five
dimensional theory, g-factor may differ from unity in a certain
higher dimensional theory. We will have to construct a realliséic
unified theory in which we can really treat these light particles
in the nature. Anyhow, in principle, if super high energy
experiments or cosmological oSservations are possible, the
characteristic value of g-factor for the heavy spinning particles

can be used to test the Kaluza-Klein theory.
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§6. Summary

The Kaluza-Klein theofy has a mathematical beauty, there-
fore it is now one of the most promising unified theories of all
interactions in the nature. Since the Kaluza-Klein theory is
closely related to supergravity, we may expect to obtain a
consistent quantum theory of gravitation based on it in future.

If the extra space predicted by the Kaluza-Klein theoryv
"really exists, itvis natural to perform quantization in the
higher dimensionalvspace—time. We have shown that the four
dimensional BRS symmetry can be obtained correctly through
the dimensional reduction from the higher dimensional BRS
symmetry. This result can be extended to the extended BRS
symmetry. Wg have also seen that the physical S-matrix unitarity
can be established in the whole quantum Kaluza-Klein theory.

As a biproduct of this procedure we have obtained a unitary
model of interacting massive spin 2 particles.

On the other hand to test the Kaluza-Klein theory, it is
necessary to examine the characteristic properties of the
massive particles predicted by it. As a special aspect of these
particles we have shown that the gyromagnetic g-factor of them
is universally unity in the five dimensional theory. |

Although we have several unsolved problems in constructing
a realistic Kaluza-Klein theory, we may expéct fhey will be
solved in future. Since the Kaluza-Klein theory is a beautiful

system, we may hope that at least it has some sort of truth.
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Appendix A. General relativity in the higher dimensional

space-tire

(410}
Consider (4+D)-dimensional vielbein EEAK%Z) ;13) Here

X =(X,Y) and Z,X,Y% are the [(4+D), 4, D]-dimensional
coordinates, respectively. Letters M and ‘A represent world

indices and frame labels, respectively. The (4+D)-dimensional

. (410 . .
metric tensor gh“' is defined as

440) (&) (-}fb?

g’ wv@) = EMA(S) EE (’) Tas (A-1)

with 7/-18 Edl'ag (’I, 1 3 1. 1) . The vielbein transforms like

@t0) ‘ @) 3N @

E.M & — E} = AZ’ME W (2) " (A-2)

under the general coordinate transformation, and it transforms

like

“@io (1), (2t0) (A-3)
EM ®— En'(» = Eu’ (z) Ag't) ' |
with

C(CA(B) (lp 8(2) 7A8 = 7c.o

(A-4)

under the local Lorentz transformation. The local Lorentz

transformation (frame rotation) belongs to SO(1, 3 + D).. The

(20 44D
—1]

(4+D) -dimensional spinor q}GU has 2_E components.

It is '‘a scalar:
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(4+0) g S )
V= — Yo “I’(Z) (A-5)

under the coordinate transformation but transforms as

SO(1,3+D) spinor:

“4+0) (++)} (41

Yo— VYo =Swa)VYe | (3-6)

-under the frame rotation. The covariant derivative for the
{4+4D)

spinor field kf}(g) is defined as

(440) (340) “+0) (44D

Va¥Y =(3u+ By )WY  (a-7)

In order to obtain the~covariance-
@0 um) ' LI {4t ﬁ*”

VH — WS L]J' =@Qm T BM ) L}J 5 Ve ¥ | under the frame

4+0)

rotation, we should assume that BM = SBuS7 4+ SIuS™ .

{¢+0) . . .
The (4+4+D)-dimensional Dirac-matrix |'7A satisfies the Clifford

410} {(++0) R
algebra  { [ " 7%} = 2778 . suppose the field

(440) #H0) @4p) - (440 fa10) [l
\{) (= Y+ r’o) transforms like L}/‘z)—> ‘)U(z) = LV(Z) S™a™)

under the frame rotation. The Dirac Lagrangian in the

(4+D) -dimensional space-time is written as

o (:-_4-9)‘(440) (4.va k1) (4t0) (3-8)
il-9 YEA"T" Vu Y

In order this Lagrangian to be invariant under frame rotation,
4‘"’) @4}
§ and (Q should satisfy Q*s = ScaY) [ STta) .

[uo) (#40)

Such an § can be expanded by LA 18]

{4+0)

therefore the spinor connection Br1 can be also expanded by

40} (a40)

[ rﬁ r’B ; namely
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10 1 @ (HD)A (4{-0)8
By = ‘STBM[ABJ[P,’_,J (a-9)
L]
440

From the vielbein [Ey#% and the spinor connection
Uty

BM[A 8] let us define +the l1-form:
(4+mA (4-_10) A M @+ (#+0) .
E = Em d ® ) BAB = Bmms: dz" (A-10)

The torsion 2-form is defined by

(4420 4 {+?) (4107 . (4D

=dE" + EFAB." a-1)

and the curvature 2-form by

(@+0) @ ) (440)

RABE d Bs®+ Ba®A B’ . ‘ (A-12)

Raising or lowering the indices M and A is performed
(4 . '
by 3.,4” and 7/,,3 , respectively. Expanding these 2-forms

~like

(54D TG @+ (419)

— A : :
Th= > Tun d2*AdZ” ) Ra%= %RM‘NABJZM.AC’ZNS (a-13).

~we obtain

(40 A @40 A 4+D) A @t» 3 “1 47 a1D) 8 (419 A
[ MN ’—‘QM EN —_'QNEM + Em® Bwee ‘“Eu Bme 9
(310 410 410 (3t» (4 (44 ($4D) (A-14)

RHNA B — bM BN[A B1 - QN BM[AB]+ BMLACJBNICS'] - BND\C] BM[CB] .

+10)
If we impose the torsionless condition 'TA =0 , we find the
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(#407
relation between the spinor connection BMEAB) and the:
{+4D)
vielbein En? as

@0) 1 mp) (‘“’D) 4+ (4+0)
Burser = bn ( Nragze = esar + L reass) (A-15)
42 @y (44) (44D (440)

with ﬂmg]c— EA Eg (c) ENC QN ch) « In this case the Riemann

tensor,
(440} (#0) (449) (440) {410} {440)
M R -
R NPQ — éPr7 np T r7 or! NP (a-16)
(449) (4+0) 4w
v

with FPQ =7 ﬁ“ (c) f'wg‘h)g 3,,,; C)llgfg)and the field Ruwas in
eq. (A-14) are related as 4)

(30 (440)  (44D) (D) | »

- » _ 8 A-17)
R mwra = Ep”? Ea® Ruuns | ( !

Next we summarize useful formulae as follows. Denoting
world indices M , N , frame labels A , B and spinor

(+40) (440 «p) “+0) U
sufices & ¢ (¢Y¥Y= ¥ & ¢5) we can write the covariant

derivative of the most general field TM v A 8 & ¥ which
is covariant under both coordinate transformation and frame

_rotation as

e I R
Ve Tu's s
,= ) N B .I’ v 8 ¢ 3+D)
DP-TP; A8 Te +I—IPQTMQ B ¥

“%+m . o 440
4
B " Th" s o+ BrPaTh"s s

(++D) cm) 40 (44D @ (D)

'*'3891&0]“7 ,—’DJQ TMNABZE‘ M[CDJI.P F]z M A é ,(A-18)
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For example,

(410) (449

E; A 0 (¢+0) .MH& o (A-19)
VM N T o VM U—,)é =0
(4
and they correspond to the fact that EEMA is the vielbein
&40 _ (4407
from which the metric gmuv is constructed and rvA is

a constant matrix, respectively. Commutation relations of the

covariant derivatives satisfy

4+D) @0 ) 1 {(4+0) (m’; (449 :
[%,V»]({/:?RMNAB[P:FB]LF ’

(440) (412 (£+9)

LV, VdVE= R, Ve , (a-20)

14D (4D

VH 3 VN] TPQ:: —( ED)RPHN TRQ + Té”RGMN TPR) o

Under the weak field approximation79),

. (449) —
grm = 3’MN -+ hMN (A-21)

the curvature density can be written as
F&E =F3[R =5 ha"R ~h"™ Ry
4 huhe? - Lhavh™)R
b Th ™ R + A" R a2
+ 5V hu Dah™ = 2T hu Vah?@
+ 277, WPMN_‘%VPh“"ﬁi’}m”]-rfotdiv.,

The sufices M , N are raised or lowered by gMN . Under the

conformal transformation,
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Q¢+w 4+D)

Yaw = K Fin | (A-23)

the curvature tensors are transformed like

-Hll ®i0

RHNPG —'KRMN?O

@) (449 (4i0] (@) (4--:0) (440 g»d (449

—{(ﬁMng SMPV)')NK 3PNVQ NQVP)Q“K}
{¢¢9)

+ 72 {33uK (3ue QK- 4030k - 3<)~k(3naé,,K 40 3,K)

¢y @t i (¢i0)

+( G ug Jup— Furdne) SRSQRK%K }

(A-24)
l+m {¢40) (4+0) . () @) (4iD)

1 )
R W = RMN ~ 7K {(2+D)V,,, WK + G 378 VPQQK}

(++2) [46#

- fer (- (6+3DJAMK9~K+03M oy, KoK |

@) (440 ki)

- = ?I?R (3+D)3n~ﬁ19~K isﬁ)s-ﬁo)g“"g KK .

Finally, if a d-dimensional space-time is the maximally symmetric

space75) with dé{fﬁ

Killing vectors, the curvature tensors

can be written as

(d)
(d) R d)y @ W) (d)

RMNFQ = m ( g‘MP g‘we - 3’»4& 3‘NP) (A-25)
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Appendix B. Group manifold (G)

Suppose the coordinates '},t’” (mn= 1~D,D=ding) on the
group G, and write each element of the group G as L (%) .

The left translationt> Y- Y¥” is defined by
3-Lw =Ly (B-1)

 with ﬁ & C‘[ . Let us introduce a covariant basisl3) S q(ﬂ)

from the l-form €& (%)

el =17(9dL

(B-2)

= €Y Qa =dI"EnYY Qa S
Here Q“ ( qQ=1~ D) are generators of the group and
satisfy the Lie algebra:
[Qa, Q] = Fab “Qc - (B-3)

- - C - . - -
with structure constants ‘l"ab of the group G. Differential

of the l-form € (%) reads

dewy) = dL' ) AdLY = - [“edLwlAdLe)

= —CWACLY) (B-4)

and this can be written in components as

de“®) = -3 A e tH i’ )
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The equations (B-4,5) are called the Cartan-Maurer formulaso)

or the equation of structure. From eqg. (B-5) we derive the

Lie's differential equation as

amenq—)nﬁma‘—‘-embehc‘fbcq ' s (B-6)
" Om € — "y dm e = j(_abc en. (B-7)

where ™, is the inverse matrix of €,% . Defining the

(A A
generators | , as | 4 = eamw) _g_gm , we obtain the Lie

algebra of the group G:

[

[La,tbjz'}abc[a - (B-8)

The behavior of €©(%) under the left translation

ﬂ f9'2’ can be deduced from egs. (B-1,2) as

e-en) =Lmidun)=ew +Lidily
In components this'can be rewritten like
er ()= e + (37d9) b D, L) (B-10)

where [)Ba is the adjoint representation of G defined by

g Q. 3 = D% (9 Q, (B-11)

T4 ]
The coefficients of d¥  in eqg. (B-10) give the behavior of
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the covariant basis e‘mq under the left translation Y= Y7

as
L 247 b
€ #) = Tyrn €5 7 (%) (B-12)
b
‘since 9 does not depend on “4”" .
@)
Let us introduce the metric tensor Gy, on the group

manifold G by

©) a b 7
Fnn ()= €' (9) Cn (D das (B-13)

The infinitesimal left translation is written like

| (8483) = (145320 )L (9= L) + 4™, L (9) . (B-14)
From the definition of Killing vectors k(“m[w :

L (3458 = LB + §3% K ® dml (9 (5-15)

and egs. (B-2, 11, 14) we can easily derive
§47=§3KaT) KM =D (LW 6T | e16)

In the case that the structure constant ‘fabc is fully

antisymetric it is straight forward to derive Killing's equation
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(] i

Vm Kan Vn Kam =0 (B-17)
[2)} ) (0]

with VmKan:t)mKan - 7P Kap _ . Here we have used the

property:

ém Da b(L('f”) = = emcw) Da d(L(W) %Cdb (B-18)

If we define the generators La as L& = K:‘(#) 36_9'7" ’

we find they satisfy the Lie algebra,
. . B c
[La,’—b] —'—‘;Ab [_c (B-19)

We also notice from egs. (B-6, 13) that the covariant basis

fﬁha are another set of Killing vectors, since

b) ~

O~
Um Ka + V., K" =0 (B-20)

with the definition:
Knl(9) = €m2t4) (B-21)

It is easy to see from egs. (B-7, 18) that the generators
LA ; ta commute ]:Log EL] =0 .

As we have seen above the group manifold G admits fhe
symmetry G X G, we shall see in app. C that the group manifold
G is a special case of a homogeneous space G/H with H = 1 and

AL
that K and Kn® correspond to the Killing vectors for
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the left and right translations, respectively.zs)sl)

Appendix C. Homogeneous space (G/H)

A homogeneous space (cost space) is a manifold obtained
by dividing a group G by its subgroup H i.e. G/H. That is
gH={9€eG; 3~97 i+9°=9°4, «/{eH} . For example if
G = SO(3) and H = s0(2), then G/H = 82 This means that if we
freeze the rotation arround a certain coordinate axis in the
space of the Euler angles, we are left with only two degreeg
of freedom which correspond to the freedom of the direction of
the axis. Let us introduce the coordinates %" (m= {~D, D=dimG/H)
on the homogeneous space G/H, namely a represensative element
of each coset is written as [ (4) . Multiplication from the
left by an arbitrary element 3 & @& will generally carry

into another coset. Writing its representative element as

we have the left translationl) 4->%" as

g_.[_(g) = L_(r*g') R (c—l)

with -ﬁ_é}% . Compare this with eq. (B-1l). Let us introduce

a covariant basis]f3) eha\(‘é) from the l-form €(9%)
e =7 dLiy

=efm Qs =dime,. w0, . e
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Here the indices { run from 1 to dim G and the

generators Qa\( A=1~dim G) satisfy the Lie algebra:

[Qa, Q?]:ocm 6@3 | (c-3)

Py
. (@
with the structure constants jc'a"i} of the group G. The

equations (B-5,6) are replaced by

A
b

dety=-2efwmarefwfs” , (e
Im Enl =W Ewmf = -0, fp° @5

The behavior of ew) under the left translation o= y’

can be deduced from egs. (C-1,2) as

el — ) =47 W' d( Ly A7)

R ewR I+ RART + AL 4Ly Y

QD
Writing the adjoint representation of G as Dg“ b ;
- ~
37Q2% =Datw Q2 - (c-7)

we have the component form of eq. (C-6):

et = €2y D) + Add) P+ @ dIF De LR | cee

Let us assume that the algebra is fully reducible, i.e.



Da -g(‘ﬁ) = DZ ° (ﬂ) =0 where the indices (@

are those of G/H and H, respectively. Then we obtain
ea(y) = s 9 DAY +(§7d9P De (Lewd”)

The coefficient of dg’m in eq. (C-9) reads.
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and a

(c-9)

eutien = 12 &, 0Dy (4"
The infinitesimal left translation:

L (4+59) =(1+§95-Q2) Lo 1-5£"‘7Qa)=uy)§ SYmM) Lty (c-11)
and the definition of Killing vectors Kz™u) :

L(?}*S“’)‘;L(?)+S§¢Kﬁ”(é)§%LCSL) (c-12)
as well as egs. (C-2, 7) show that

s gzm: S gﬁ K{"(‘:J) , Ka™w = D;x f’().(‘é)) e." () (C-13)
where €.™ is the inverse matrix of €,,° . If we define
 the generator | 2 as La = Katd) -()2’—_3,,‘ , we find

[La, Lsl=-%s: Lo (c-14)

Here we have used the property «)C aTc = 0 which shows
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that H is a subgroup of G and the equation,

In Dal(Ltw) = - €, Dp T (Lts) £25° (c-15)

Now let us turn to the right actionsl) of g 6(3 on

L(¥) :
L9939 = (¥4 | : (C-16)

For the expression L(Q)' ﬂ. to make sense, it should not
depend on the choice of coset representatives. This happens
if and only if g- belongs to the normalizer N(H) of H in
G which is defined as N(H)={8¢§; 9HJ'=H} - In this
case if we write another representative of the coset of | (})
as ) 7(4) , we find that [(%)4 and Lf(;yg are in the
same coset. Since the right action of ¢4¢H on | (%) is
tri&ial, we need only to consider elements of N(H)/H. The

infinitesimal right action can be written as

L(g»eé‘é):L(‘é)(i+§3¢@ia)(1-5,g?.ga) (C-17)

In the same way as the Killing vectors }(@”‘ we obtain another

set of Killing vectors:

Ka™ (3) = €a"(%) (c-18)

c
We have to be careful that only in the case of ‘f' alF =0

we can obtain [T-—c{ s ELJ = '}ab’c Ec’

with [;‘E €?aﬂlg)§§h . (cf. eq.(B-8)) Since we derive the
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. A%
commutation -relation of [_3, l.a as
7~ J 7 e 3 11
Cla, Til=(Dad-Dacm.d)fi7°€c"dn (TTa®= 6&"6F) , we
find | 3 and' L, commute only if f,3 =0 .
) :
" Provided we introduce the metric ¢ ,, on the homogeneous

space G/H by
o . | b , I | :
I0= Ch' D&Y Sy - | , (19

the Killing equations hold,

o [0 | W w )
Vch’t‘h"'VnK'gm =0 » Vqun+ Vn Kam=0 (C-20)

in the case that :Fﬁ"[;t':\ is fully antisymmetric.
Therefore we conclude that the homogeneous space G/H has

25)81l) 1, the case H=1 the normalizer

the symmetry Gx(N/H).
N is equal to G, and consequently the group manifold has the

symmetry G X G.
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Table captions

Table 1. Ultimate goal of Kaluza-Klein unified theory.
Table 2. Solutions in the ll-dimensional supergravity.

Table 3. BRS symmetry in the five dimensional Kaluza-
Klein theory: ‘

# in ( ) represents degrees of freedom of fields.



higher dimensional

superspace

supergravity

113

Kaluza=Klein
dimensional

reduction

l

higher dimensional

component field

supergravity

four dimensional

|

Kaluza-Klein
dimensional

reduction

l

four dimensional

superspace . realistic
supergravity unified theory
Table 1.
solution supersymmetry gauge group ref.
1.t/ N=8 U(L)x e+e xU(L) | 9
w\/
7
2. round S7 =8 50(8) 45
3. left—-squashed S7 =1 SO (5)xSU(2) 46
4. round S7 + torsion N=0 SO (7) 47
5. right-squashed S7 =0 SO (5)xSU(2) 48
6. right-squashed s’ =0 SO (5)xSU (2) 48
+ torsion

Table 2.
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metric tensor
field

physical unphys:

mode mode

(s) (5)
Lﬁ X5) (,XM(IS'>

(5) (5)

- auxiliary ghost

field field

(%) (s)
/8 M ( ij’) - XM (1;-)
(5) (5)

anti-ghost
field

%)

(5)

4-dimensions

<[L dimensional reduction

massive
modes
(n¥0)

massless
modes
(n=0)

tensor

vector

scalar

Lf {m ; )
M M
(spin 2)

(5) (5)

¢ ( X,

(2) (4)

@ ¥ ( X
(2) (1)

ps
(1)

/3Mm, X%(m

(5) (5)

: t
87 e,

(4) (4)

ﬁ‘h bzv\

(1) (1)

T

(5)

TY, )
(4)

e )
(1)

Table 3.



