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Research on Control Architecture and Visual
Information Processing for Mobile Robots

Mutsumi Watanabe

ABSTRACT

This thesis describes research and development con-
cerning an architecture of a driving controller and vision
information processing methods to generate basic behav-
iors for autonomous mobile robots working in unstruc-
tured dynamic environments, such as offices, homes, nu-
clear power plants and streets.

To counter various kinds of failures which may occur in a
dynamic environment, a new behavior-based architecture
is proposed to realize both efficiency in attaining a robot’s
mission and robustness against failures.

In addition, computer vision algorithms to realize sophis-
ticated obstacle avoidance ability are presented.

That is, a collision-free space detection method by pro-
cessing stereo images, and a moving obstacle detection
and recognition method by processing optical flow infor-
mation acquired from dynamic images, are explained.

A small cart-type robot has been developed for navigation
experiments in indoor environments. Experimental results
in real scenes have demonstrated the effectiveness of the
architecture and these methods.
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Chapter 1

Introduction

1.1 Development of research

Autonomous mobile robots have been extensively studied since the
1960’s. '

Conventional manufacturing robots in practical use generally have
limited intelligence because they are engaged in fixed work in restricted
environments such as factories. However, higher intelligence is required
for an autonomous mobile robot able to cooperate with human beings
in less restricted environments. To realize such robots, it is necessary
to develop a robust and purposive architecture for robot navigation
control and sensor information processing in dynamic environments.

In the 1960’s and the 1970’s, research on vision-based intelligent mo-
bile robots largely consisted of conducting feasibility studies relating to
the several key artificial intelligence (AI) problems, such as reasoning
or image understanding in block worlds (see Fig.1.1). The researchers
of intelligent mobile robots were mainly interested in indoor environ-
ments. Recently, with a view to improving the adaptability of robots,
research has focused on learning issues. The learning of environments
by automatic map generation based on vision-based observation has
already been done[2] [3][4]. :

A type of vision sensor system (HyperOmni Vision) with a hyper-
boloidal mirror to obtain 360° angle of view range of images around a
mobile robot has also been developed[5].
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Pursuit of navigation performance

Feasibility study of
Al problems Acquisition of adaptability (learning)

1970 1980 190 200

Realization of reactive robust robot

o

Figure 1.1: Development of vision-based intelligent mobile robot re-
search.

With regard to the automatic learning of behaviors, vision-based re-
inforcement learning for acquiring purposive behavior has been studied|[6].

In the reinforcement learning scheme, a robot and an environment
are modeled by two synchronized finite state automatons interacting
in discrete time cyclical processes. The robot senses the current state
of the environment and selects an action. Based on the state and the
action, the environment makes a transition to a new state and generates
a reward that is passed back to the robot. Through these interactions,
the robot learns a purposive behavior to achieve a given goal.

An example of this, in which a robot learns to shoot a ball into
a goal, has been successfully achieved without knowledge of the 3D
environment or its kinematics/dynamics.

In the 1980’s, more complete mobile robots which moved in the out-
door world started to appear. Navigation environments were usually
roads. Most of the robots were equipped with multiple sensors, such
as ultrasonic ranging sensors, laser rangefinders and TV cameras, to
improve the sensing ability for intelligent navigation. The main ob-
ject of these robots was efficient navigation. In some cases, attempts
were made to achieve real-time navigation by using a reactive function,
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such as white-painted line tracking, in a restricted environment without
obstacles.

These robots mentioned above had clear missions in terms of nav-
igation (for example, reaching a final goal or making a map). The
missions were distinctly given by the developer. That is, these robots
were human substitutes.

In the middle of the 1980’s, a novel type of reactive robot which
had no clear mission appeared. The main task of these robots was to
maintain safety while moving around an office environment, or in prac-
tice, the realization of robustness in navigation. These robots heralded
a new wave in intelligent mobile robot research.

Table 1.1 shows a classification of the representative intelligent vision-
based mobile robot research efforts, from the viewpoint of the naviga-
tion environment and the main research task.

As for the navigation environments, they are classified into two
types: the Arranged ones and the Unstructured ones.

In an arranged environment, environmental conditions, such as land-
marks or limits of obstacles, are set to be simple. Rather detailed
knowledge about the structure of the navigation environment can be
given (manually calibrated).

On the other hand, in an unstructured environment, environmental
conditions are left as they are. Only an outline of the structure or even
no information about the navigation environment is given in advance
(we call this uncalibrated).

They are further classified into the Indoor navigation environments
and the Outdoor navigation environments.

As for the research tasks, the Attainment of quick reflexive response
for real-time navigation, the Feasibility study of solutions to Artificial
Intelligence (AI) problems and the Pursuit of navigation performance
are the main ones which correspond to the three directions of research
shown in Fig.1.1, that is, the Realization of reactive robust robot, the
Acquisition of adaptability and the Pursuit of navigation performance.
The classification here is that which the author comprehends as the
current (1996) realization stage, where most robot research addresses
multiple research tasks and advances day by day.
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Table 1.1: Classification of intelligent vision-based mobile robot re-
search.

Navigation environment types
Research
Arranged Unstructured
tasks
Indoor Outdoor Indoor Outdoor
Intelligent car
Attainment of quick (ETL)
reflexive response for] Toy robots Insect robots HARUNOBU
real-time navigation VaMoRs MIT) (Yamanashi Univ.)
(BW Munich Univ.)
Feasibility study of]
solutions to Shakey, Flakey PVS HILARE CMU Navlab
Al problems (SRD) (Fujitsu and Nissan) (LAAS) (Carnegie Mellon Univ
Stanford cart | uﬁlazznumv. CMU Rover
Pursuit of navigation (Stanford Univ.) Martin Marietta (Carnegie Mellon Umy )
De: A
performance Nuclear power nver Aerospace) ' R “ky;Pl;dJm Rover
plant robot Hyper Scooter Yamabiko (PL)
(Toshiba et al.) (Tokyo Univ.) (Tsukuba Univ.)




1.1.1 Attainment of quick reflexive response for
real-time navigation

Indoor

Several toy robots equipped with infrared or ultrasonic ranging sensors
which quickly avoid obstacles using simple algorithms are the most
popular examples of indoor reactive robots, though they do not usually
use vision sensors due to the high cost.

In 1986, R.A.Brooks of MIT proposed a novel type of reactive robots
based on the subsumption decomposition[1]. Robots of this type had
no clear missions, such as, reaching a final goal or making a map. Their
main purpose was to maintain safety while moving around an office
environment. In a sense, such robots were similar to insects.

His group has been developing several insect-type robots (Genghis,
Attila) based on this concept|[7].

Outdoor

A pioneering research effort for outdoor robots was the intelligent car
at Japanese ETL which ran at speeds of 30 Km/h und used a vertically
located stereo pair of cameras to detect obstacles by comparing vertical
edges in both camera images|[8]. Using special hardware for image pro-
cessing, real-time navigation experiments were successfully done, but
the vehicle’s perception of the world was limited to a highly constrained
environment.

In the VaMoRs[9] vehicle developed at BW Munich University, sev-
eral processors detect the roadside edges in parallel, which makes it
possible for the cart to run on a highway test course at a top speed
of 100 Km/h. A real-time multiprocessor vision system was used for
processing camera signals and for scene interpretation.

At Yamanashi University, the series of vehicles has been devel-
oped since 1983. HARUNOBU-4[10] has three wheels (two of them
are driving wheels and other one is a free wheel). A TV camera plat-
form which rotates horizontally is fixed on top of the robot with two
infrared sensors. Several types of navigation behavior (Intersection-
searching, Passage-segment-searching, Moving-along, Dead-reckoning-
and-searching, Turning, and Avoiding-obstacle) have been tested on
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the roads at the Yamanashi University campus[11].

1.1.2 Feasibility study of solutions to Artificial
Intelligence (AI) problems

Indoor

Shakey, developed at the Stanford Research Institute at the end of
the 1960’s, was the result of pioneering research on intelligent mobile
robots. Shakey was connected by wire with a huge mainframe com-
puter, and moved shakily around a room, where several bricks were
set, by processing the information from a rangefinder and a TV cam-
era. The visibility graph (VGRAPH) description was used for modeling
the environment. It sometimes took one day to avoid a simple static
obstacle and plan a new path around it, due to the low computing
power and the poor control mechanism.

In the mid-1980’s, the SRI International Al Center developed its
successor, Flakey, as a tool to explore several Al problems, such as evi-
dential reasoning, planning using the procedural knowledge, rapid rea-
soning, motion analysis and natural language understanding. Flakey’s
hardware architecture consists of three layers. In the bottom layer, a
power supply, a motor driving part, a bumper and twelve sonar sensors
are implemented. A motor control processor and a main processor,
which is a remodel of a SUN workstation, are in the middle layer, and
a TV camera and a manipulator are in the top layer. Despite several
attractive research projects, few papers reporting successful navigation
of Flakey have been published.

The HILARE Project started in 1977 as an attempt at the LAAS
(Laboratoire d’Automatique et d’Analyse des Systemes du CNRS) robotics
group and other groups[12]. The HILARE was equipped with one free
front wheel and two motorized rear drive wheels for locomotion. For
perception, a video camera, an infrared triangulation system and a laser
rangefinder were mounted on a two-axis scanning system and integrated
to provide fast rough scene analysis consistent with navigation needs
(for example, obstacle avoidance, decision-making, path-planning and
search of minimum trajectory). The cell graph description for convex
regions was used for hierarchical path planning.
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Outdoor

The Personal Vehicle System (PVS) in Japan (Fujitsu Ltd. and Nis-
san Corp.) also successfully demonstrated experimental runs on an
arranged test course (at 60 Km/h on straight sections, 15 Km/h on
curves and 5 Km/h through intersections) using a high-speed image
processor FIVIS/VIP for real-time white lane tracking[13].

At Carnegie Mellon University, an outdoor autonomous research
project was started in 1984[14], with the aim of navigating through
the campus sidewalk network using a small outdoor vehicle called the
Terregator. In 1985, as part of the DARPA Autonomous Land Vehi-
cle Project, a computer controlled van with onboard sensors and re-
searchers named Navlab(Navigation Laboratory) was constructed[15].
For path planning, Navlab used the Annotated Map description, which
consists of triggered positions, perceptual knowledge and control knowl-
edge.

1.1.3 Pursuit of navigation performance
Indoor

The Stanford Cart and its successor, the CMU Rover, are the best-
known examples of indoor mobile robot studies[16]. In the studies,
the locations of critical points in images were detected by using the
interest operator (to detect points which have high directional variance
values), and the distance was measured by a stereopsis method using
nine images from a slide-type stereo camera system. A description of an
entire scene was constructed to find a location to where the robot could
move. Then the robot moved to that location and repeated the same
measurement to construct an environmental map. The uniform 3D-grid
description was used for modeling the environment. The Stanford Cart
took about 5 hours for a 20-meter move, with 20 % accuracy at best,
lurching about 1 meter every 10 to 15 minutes before stopping again
to take pictures, think and plan a new path. This was mainly due to a
lack of computing power.

At Toshiba Corp., the author and co-workers developed a visual
navigation system that allowed efficient movement in a nuclear power
plant, as part of MITI’s Advanced Robot Project[17]. The system con-
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sisted of five subsystems: environment teaching subsystem, self-location
measurement subsystem, obstacle detection subsystem, path planning
subsystem and path following subsystem as shown in Fig.1.2[18]. De-
tails of the obstacle detection algorithm used in the obstacle detection
subsystem are given in Section 3. The necessary information for esti-
mating self-location at critical points in the navigation environment is
written in a MIL (Multi Information Local) map[19], which is interac-
tively created in a remote-controlled run.

Fig.1.3 shows the robot developed by the project. Hitachi Ltd.
developed the actuator part including four legs, Mitsubishi Heavy In-
dustries Ltd. developed the manipulator part, Fujitsu Ltd. developed
the vision sensor part, and Toshiba Corp. developed the system config-
uration and the navigation parts. A demonstration of real navigation
in a static simulated nuclear power plant was successfully given in 1989.

At Tsukuba University, The series of small cart-type indoor robots
Yamabiko have been developed for twenty years[20]. Basic functions
for mobile robots, such as the landmark detection, the map generation
and the path planning[21], based on the range information from sonar
sensors ( Yamabiko is a Japanese word whose mean is a echo) and a TV
camera, have been extensively studied.

Outdoor

The Autonomous Land Vehicle (ALV) Project, which is a part of the
DARPA Strategic Computing Program in the U.S.A., was intended
to demonstrate the state-of-the-art in image understanding, artificial
intelligence, advanced architectures and autonomous navigation.

In the ALV system[22] developed at Maryland University, the whole
image was processed at the start(bootstrap stage) of the motion. After
edge detection in the image, pairs of roadside edges were selected from
the extracted edges, using the constraint of parallelism in the 3D space.
Then, a local window was allocated to each of the pairs and processed.
While the robot was moving(feed-forward stage), the whole image was
no longer accessed. Based on the position and direction of the roadside
edges in the previous image, the position of the next window to open
was predicted, and the roadside edge was detected inside the window.
By iterating this procedure, the direction of the robot progress was
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Environment teaching
subsystem

MIL (Multi Information Local) map

Self-location measurement

subsystem
Path planning
subsystem

i
Path following
subsystem

[

Robot
controller

Figure 1.2: Configuration of visual navigation system for robot in nu-
clear power plants. Details of the obstacle detection algorithm used in
the obstacle detection subsystem (hatched box) are given in Section 3.
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Figure 1.3: The robot developed as part of MITI's Advanced Robot
Project.
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controlled. A quad-tree description was used for three-level (long-range,
intermediate-range and short-range) path planning.

Martin Marietta Denver Aerospace developed Alvin, equipped with
an RGB video camera whose pan/tilt could be controlled, and a laser
rangefinder[23]. The VITS (Vision Task Sequencer) system, whose pro-
totype was originally developed at Maryland University, was extended
to handle both video and range sensors for achieving road following ca-
pabilities. Alvin traveled 4.5 Km at speeds up to 10 km/h on a paved
road.

At Tokyo University, a practical semi-autonomous mobile robot sys-
tem called Hyper Scooter, on which a human could ride and share access
to the environment through visual information, was developed[24]. A
user could give instructions to the robot without skillful programming
operations, and instead of human skill, a high speed tracking vision
system [26] did the actual driving.

An example of a robot of this kind in an unstructured outdoor
environments is the space robot prototype called the Rocky 7 Mars
Rover, developed at Jet Propulsion Laboratory(JPL)[25].

Rocky 7 has a stereo camera system with a 5 cm baseline at both
ends of the vehicle for avoiding static obstacles. An elevation map cre-
ated by pyramid image processing is analyzed to detect abrupt changes
in the height as obstacles.

1.1.4 Summary of issues in mobile robot research

In conventional mobile robot systems, generally, real-time navigation
experiments have been successfully done only in simple arranged envi-
ronments, such as a paved road, with long edge segments or painted
with a single color that is easy to detect, where no moving obstacles
appear. Autonomous navigation in real outdoor environments seems to
be very difficult at present, except when human-guidance is used, such
as in the case of Hyper Scooter, or in special static areas such as on
Mars for Rocky 7.

On the other hand, reactive robots based on subsumption archi-
tecture have moved around successfully in real dynamic environments.
However, clear navigation purposes, such as efficiently reaching a final
goal, seem to be difficult to achieve.

15



1.2 The aim of this research

This thesis describes research and development concerning the archi-
tecture of a navigation controller and visual information processing to
generate basic behaviors for autonomous mobile robots working in un-
structured dynamic environments, such as offices, homes and streets;
where,

1. Exclusive passage for robots is not established.
2. Independently moving objects such as humans exist.

3. Environmental conditions such as illumination or furniture posi-
tions frequently change.

In the classification of table 1.1, the robot we aim to realize is in-
volved in the Pursuit of navigation performance group.

To achieve this aim, conventional systems from previous research
are not applicable as they stand, because both the navigation environ-
ments and performance have been rather simple, compared with real
situations.

1.2.1 Basic behaviors for mobile robots

In this thesis, an independent module which provides some behavior is
called an agent. Each agent has a sensory input part, a processing of
sensory information part and a driving command output part.

Here, a behavior means a directive action to realize a function needed
for navigation.

Sophisticated vision-based agents are necessary when dealing with
several obstacles in dynamic environments.

An autonomous robot system should posess the following three abil-
ities.

o Robustness:

In this thesis, this word represents the ability to cope with sev-
eral unexpected situations (for example, the sudden appearance
of obstacles), to assure self-continuance, though robustness in

16



Table 1.2: Examples of behaviors for mobile robots. Newly proposed
behaviors in this thesis (Dead-end avoiding behavior and Obstacle
recognition behavior) are enclosed in squares.

Important ability Basic behavior

Obstacle detection

Robustness Free-space detection
Collision avoidance

Target tracking

Efficiency Path following
[Dead—end avoiding I

Path planning
Intelligence Map generation
[Obstacle recognition [

general is necessary for all behaviors. This includes adaptability
to flexibly accommodate environmental changes.

e Efficiency:

The ability to achieve its mission (for example, safe navigation to
a final goal), by the best cost-performance.

o Intelligence:

The ability to evolve itself to attain better performance (for ex-
ample, environment-map making for a subsequent navigation).

Table 1.2 shows the typical examples of the behaviors of mobile
robots.

For example, obstacle detection, free-space detection and collision
avoidance belong to the Robustness ability. Though they have a lay-
ered relationship at the functional level, that is, the collision avoidance
function consists of the obstacle detection function and the free-space
detection function, in this table they are listed independently because

17



the original behaviors are independent. A quick response time is nec-
essary for obstacle detection, while accuracy is required for collision
avoidance. »

A prediction process can improve both the reliability and the re-
sponse time for obstacle detection. A static obstacle detection tech-
nique and a moving obstacle detection technique are explained in Sec-
tion 3 and Section 4, respectively.

Target tracking, path following behavior and dead-end avoiding be-
long to the Efficiency ability. In several studies, these behaviors have
been functionally developed to ensure a quick response time (for exam-
ple, white lane tracking) in conventional reactive mobile robot systems.

Path planning, map making and obstacle recognition belong to the
Intelligence ability. Flexibility is the most important factor for these
behaviors.

Because every function based on a behavior has a possibility of fail-
ure, it is necessary to implement countermeasures against these failures.
Dead-end avoiding is an example of a special behavior for recovering
from dead-end situations.

Newly proposed behaviors in this thesis are enclosed in squares in
table 1.2, that is, the dead-end avoiding behavior and the obsta-
cle recognition behavior.

Obstacle recognition is useful to achieve an intelligent collision avoid-
ance function according to the type of obstacle.

The design of these behaviors is given in Section 2 and Section 4,
respectively.

1.2.2 Desired control systems for mobile robots

The behavior-based composition [27] is recognized as the most suitable
control system for robots working in a dynamic environment.
The main issues of behavior-based systems are as follows:

o Situatedness: Instead of acquiring a symbolic model description of
an outer world to manage abstract problems, the outer real world
itself should be managed. (The world is its own best model.)

o Embodiment: Intelligence cannot be realized without a body, as
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intelligence without a body does not exist. That is, robot research
should advance by developing real working robots.

o Intelligence: Intelligent behavior emerges from interaction with
the real world.

o Emergence: Intelligence is a basic element which emerges from
interactions among several elements of a robot system, instead of
as an independent local one.

In summary, intelligence emerges from the interaction of several
basic behaviors and the outer real world. For this reason, any problem
for intelligent mobile robots, such as navigation or learning, should be
divided into the basic behaviors (agents).

Each agent can be realized by rather simple procedures because it
has a unique purpose and complex world models are not necessary in
many cases. For example, an obstacle detection agent does not have to
discriminate types of obstacles or find a path to avoid. It just detects
objects which may interfere with the robot itself. No description of the
outer world is necessary. Because of the simplicity of these agents, they
can be realized robustly, and a robot control system, composed of these
agents, is highly adaptive to changes in environmental conditions.

The most popular example of behavior-based decomposition is the
subsumption[l]. In subsumption architecture, basic behaviors are lay-
ered in order such as, avoid objects, wander, explore, build maps, mon-
itor changes, identify objects, plan changes to a world and reason about
behavior of objects. Robustness is secured by the distribution and par-
allel activation of these behaviors.

The major problem of subsumption systems is the trade-off between
robustness and efficiency (and intelligence) in the same control frame-
work.

A new control architecture to attain both robustness and efficiency
is proposed in Section 2.
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Chapter 2

Control architecture

The author is motivated by a desire to bridge the gap between re-
flexive/reactive behaviors for self-continuance and purposive navigation
behaviors in order to navigate a single mobile robot in a dynamic en-
vironment to a final goal robustly and effectively, while preserving the
merits of behavior-based architecture.

In spite of several improvements in recent behavior-based researches,
conventional behavior-based systems still seem to have a weakness when
purposive navigation behaviors are combined with reactive/reflexive
behaviors for self-continuance, especially from the viewpoint of failure
recovery.

To overcome this difficulty, special agents to recover from several
failures are newly developed, and all agents are classified into three
groups according to the tasks, that is, to keep robustness for self-
continuance (reflexive), to attain the mission of the robot (purposive)
and to recover from failures (adaptive).

These grouped agents are directly connected to a navigation actu-
ator controller named Motion Executor, which determines the motion
(velocity and steering) command of the robot.

An extended energy-minimizing method is developed to produce an
appropriate velocity and steering commands for the robot navigation.

To prove the effectiveness of the architecture, simulation experi-
ments and real navigation experiments using a compact cart-type robot
BIRDIE have been done.
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2.1 Related work

As for control architectures, two types have been proposed to date:
functional decomposition and behavior-based decomposition.

Robots with functional decomposition normally use an SMPA (Sence-
Model-Plan-Act) framework as shown in Fig.2.1. At first, an external
world is observed using vision sensors such as CCD cameras or ultra-
sonic ranging sensors and a description of the observation is generated.
Next, an internal path-planner searches for the optimal route by match-
ing the current description with a prepared model of the environment.
The robot then moves following the planned path.

This SMPA architecture is suitable for efficient robot navigation.
On the other hand, this architecture has weakness in sensing and pro-
cessing from the viewpoint of robustness against several kinds of failures
which may occur frequently in dynamic and complex environments.
Once an error occurs in a process, the prepared motion plan can no
longer be executed.

sensors —— —— actuators

perception
modelling
planning

task execution
motor control

Figure 2.1: SMPA framework. The processing of the SMPA framework
is sequential, such as, Sensing - Modeling - Planning - Action.

Behavior-based decomposition was first proposed as a subsumption
architecture by Brooks[l] as a means to overcome this difficulty. In
the subsumption architecture, basic behaviors are layered in the order
such as, avoid objects, wander, explore, build maps, monitor changes,
identify objects, plan changes to a world and reason about behavior of
objects, as shown in Fig.2.2. Robustness is secured by the distribution
and parallel activation of these behaviors.
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reason about behavior of objects

plan changes to world
identify objects
sensors momt-or changes actuators
build maps
explore
wander

avoid objects

Figure 2.2: Subsumption framework. The processing of the subsump-
tion framework is parallel and layered in the order of robustness.

Recently, several advanced behavior-based systems have been pro-
posed to give a purposive capability to a robust reflexive/reactive con-
figuration for self-continuance.

Arkin proposed a motor schema-based architecture[28]. A schema
is a methodology used to describe an interaction between perception
and action. Each individual motor schema corresponds to a reflexive
behavior. A dynamic network was utilized instead of a layered config-
uration.

Maes proposed a method of selecting an action for an autonomous
agent by modeling as an emergent property of an activation/inhibition
dynamics among the actions and the environment[29].

Noreils presented a three-level (functional, control system and plan-
ning) configuration for indoor mobile robots[30]. The functional level
provides the basic capabilities (behaviors) of the robot, such as, wall-
following, obstacle-avoidance, tracking, sonar-orientation and vision-
position. The control system level manages the robot’s modules in
order to obtain the behavior corresponding to the current mission. The
planning level consists of the general planner and the path-planner. It
uses an AND/OR goal tree from a given goal into subgoals. Each leaf of
the tree sends a command to the execution control. For navigation, the
intermediate goal EXECUTE-PATH is created and the general planner
sends a request to the path-planner to compute a path between two
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locations. With the returned path, the general-planner creates a mis-
sion such as MOVE-NEAR or MOVE-TO. This configuration is more
flexible than conventional subsumption because the functional level can
be programmed by the control level in accordance with the mission of
the robot. The planning part comprises two rule-based modules: a
general-planner and a path-planner which prevents some failures from
occurring in navigation by applying prepared rules.

Hartley developed a prototype of a behavior-based airplane controller[31].
In the implementation, three levels of behaviors (top, middle and low)
were used. For example, control approach wvelocity behavior belongs
to the low level. Turn behavior, fly along a line behavior and fly to
a point behavior belong to the middle level. Each behavior consists
of different low level behaviors. For example, final approach behavior
starts with landing gear behavior in low level, then uses stay behavior
at the correct vertical behavior. To save the lack of modularity problem,
control(Inhibit, Suppress) connections among behaviors were utilized.
Other possible methods for the arbitration of behavior were also sug-
gested in this paper including priority lists and hysteresis.

Despite several improvements in recent behavior-based systems, these
systems still seem to have a weakness when purposive navigation behav-
iors are combined with reactive /reflexive behaviors for self-continuance,
especially from the viewpoint of failure recovery. Planning-only failure
recovery and behavior arbitration by restricted priority list may negate
the essential merits of behavior-based architecture, that is, robustness
and flexibility. Interactions among agents may occur and robustness
against failures of some agents, which is the main target of behavior-
based architecture, is not necessarily guaranteed. In addition, a failure
recovery mechanisms against undetectable individual failures and to-
tal failures, such as infinite-loop-motion, have not been examined in
conventional systems.

2.2 System design
A control architecture, which is suitable for navigating a single mobile
robot in an office to a final goal robustly and effectively, is proposed.

We assumed that the route to the goal is roughly given manually as a
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sequence of subgoals in advance, and an arrival to a subgoal or the goal
is determined by the robot itself.

In the case of navigation in unstructured dynamic environments,
such as offices, stations and streets, several failures (for example, miss-
ing of subgoals or a final goal) may occur frequently. To cope with
these situations, we examined failure types to be coped with first, then
prepared special adaptive agents which provide behavior output to re-
cover from these failure situations using heuristics, and finally installed
them in the system.

Those failures are classified into two types: the individual failure
which occurs in the process of generating a behavior from sensing results
and the total failure which occurs in a situation when dominant behavior
does not coincide with the achievement of the global mission of the
robot, that is, it greatly reduces efficiency of robot navigation.

Table 2.1 shows the failures to be coped with by the system.

Table 2.1: Type of failure
Individual Failure Total

Detectable Undetectable Failure

Self-
Missing moving
Continuance obstacle in Infinite-loop
Obstacle-Avoider stopping

Level
Missing target Detecting false
Purposive in target in )
Target-Searcher | Target-Searcher lInﬁI.nte-loop
Navigation motion sequence
Missing target | Mis-tracking of
Level in target in

Target-Tracker | Target-Tracker

The individual failures are still classified into the detectable failures
in the agent itself and the undetectable failures. For example, the miss-
ing target failure of target-searching and the missing target failure of
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target-tracking are detectable failures in the agents themselves. On
the other hand, the detecting false target failure of target-searching,
the miss-tracking of target failure of target-tracking and the missing
obstacle failure of a reflexive behavior agent are undetectable failures.

The total failures generally appear in infinite-loop-motion situa-
tions. For example, the infinite-loop-stopping failure when a robot
touches an obstacle and a safety circuit shuts off a power source and
the infinite-loop-motion-sequence failure when a robot becomes sand-
wiched between multiple close obstacles are total failures.

We examined only these two total failures in the system and did
not consider more complex failures, such as interference among mul-
tiple robots, as we considered a navigation of one robot in an office
environment.

We established principles to cope with the above failures.

As for detectable individual failures, the system immediately recov-
ers from the failures by using alternative agents, which provide behavior
output for recovery, and prevents the loss of navigation efficiency and
robustness. Multiple independent obstacle detection agents using vari-
ous kinds of sensors are prepared and the priority-based behavior arbi-
tration method is adopted for the reflexive agents, because robustness
has to be secured for self-continuance even for undetectable individ-
ual failures. In addition, as for total failures, special adaptive agents
are prepared to escape from the infinite-loop-motion situations so as to
avoid the great loss of navigation efficiency.

To realize these principles in the control system, the author, Onoguchi,
Kweon and Kuno proposed a new behavior-based architecture [32] in
which all navigation behaviors were clustered into three task-oriented
groups instead of a single layered configuration.

2.2.1 Constitution of group-based multi-agent sys-
tem

The main problem in designing a navigation control system is how to
reach a compromise between the navigation efficiency and robustness
against several failures mentioned in the last section. If no failure hap-
pens during navigation, the best system is the configuration of the
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minimal reflexive agents for self-continuance and purposive navigation
agents, in which the driving command is determined by directly switch-
ing the behavior outputs of these agents.

However, when the number of agents increases by adding obsta-
cle detection agents to improve robustness or adding adaptive agents
to recover from the failures, the merit of the original behavior-based
architecture is lost due to the complexity of behavior arbitration in
multiple agents. In that case, preparation of a few groups which in-
volve agents with similar tasks and behavior arbitration among these
groups are considered to be superior from the viewpoint of navigation
efficiency. In addition, the group-based system has the merit that the
alteration of the whole system is not necessary when new agents are
added to improve the ability of failure recovery.

In the proposed system, all navigation behaviors are clustered into
three task-oriented groups, that is, a Reflexive Behavior Agent
Group, a Purposive Navigation Behavior Agent Group and an
Adaptive Behavior Agent Group.

The number of groups is determined in accordance with the mission
of navigation. The number of our system is three, because we assumed
an indoor navigation with given subgoals and a final goal.

While the first two groups exist in conventional systems, the third
Adaptive Behavior Agent Group is newly proposed by the author[33].

Fig.2.3 shows the configuration of the system.

2.2.2 Driving command determination method

As for the method of determining a driving command in the system, the
conventional SMPA architecture has a problem because the mechanism
is complex and easily fails when some parts of intermediate processes
fail or are interrupted. Though the subsumption architecture is sim-
ple and robust against a failure of an intermediate process, the fixed
priority-based driving command determination by selecting behaviors
of activated agents (arbitration) tends to select lower-level behaviors
which are not good to achieve efficient navigation.

Though conventional systems have unique mechanisms, two kinds
of arbitration mechanisms are prepared in our system: the arbitration
mechanism inside each group and that among different groups.
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urposive Navigation
Behavior Agent
Group

Adaptive Behavior
Agent Group

Motion
Executor

Robot
Controller

Reflexive Behavior
Agent Group

Figure 2.3: System configuration(group level). Three task-oriented
groups (the Reflexive Behavior Agent Group, the Purposive Navigation
Behavior Agent Group and the Adaptive Behavior Agent Group) are
directly connected to the Motion Executor which determines a driving

command and sends it to the Robot Controller. -
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The agent arbitrators independently prepared for each group deter-
mine appropriate commands first, and then the driving command of
the robot is determined uniquely by selection of these commands from
every group based on priority of the groups. Both robustness against
failures and efficiency in navigation are realized by this distributed ar-
bitration mechanism.

Each agent always calculates a vector from a current position to a
position where the robot should move next, from sensing results and
history of selected driving commands, as behavior output. The meth-
ods of calculating driving command vectors are described in the next
section. When the length of the vector is larger than the threshold
value, the agent is judged to be active. This judgment information is
utilized to select behaviors of agents.

A Reflexive Behavior agent for self-continuance is designed to pro-
vide an output vector only when it detects obstacles. The agent is
judged active when it provides an output, including 0 (STOP com-
mand) vector provided by the static obstacle detection agent.

A Purposive Navigation Behavior agent calculates the position of
targets corresponding to current subgoal or goal, and detects the fail-
ure of target detection in itself. When the agent detects the failure,
it suddenly provides 0 (STOP command) vector and is judged to be
inactive.

An Adaptive Behavior agent always provides a driving command
vector while sensors are active. The judgment of activity in this case
is done by comparing the vector length with a threshold value.

A driving command for motion actuators is determined by simply
selecting an appropriate behavior from the arbitrated results in three
groups. The selection, that is, the arbitration among different groups,
is done by the following rule:

First of all, a behavior from the Reflexive Behavior Agent Group
for self-continuance is preferred to other groups except for infinite-loop-
motion situations because safety is the most important consideration.

Secondly, a behavior from the Purposive Navigation Behavior Agent
Group is preferred to achieve efficient navigation as long as the safety
is guaranteed.

When a failure of the Purposive Navigation Behavior Agent Group
or an infinite-loop-motion situation occurs, a behavior from the Adap-
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tive Behavior Agent Group is selected to recover from the failure.

The failure detection method is shown in the next section.

The arbitration methods in the three groups are as follows:
~ As for the Reflexive Behavior Agent Group, the arbitration priority
is determined according to the reliability of sensor observation of each
agent, and selection is done based on this priority. That is, the active
agent with the highest priority is selected. In a neighborhood of a
subgoal or a final goal, a target object which features the subgoal or
the goal position is supposed to exist. The agents which search or track
these targets are installed in the Purposive Navigation Behavior Agent
Group. '

As for the Purposive Navigation Behavior Agent Group, the prior-
ity is determined by the sequence of robot navigation. That is, target
searching and tracking agents are selected in order, following the se-
quence of subgoals and a final goal in the route given manually, and
navigate the robot to the final goal efficiently. Instead of maintaining
a detailed geometric map, only a topological information (the sequence
of targets) is necessary.

As for the Adaptive Behavior Agent Group, the Motion Executor
selects an appropriate agent which recovers from failures, such as miss-
ing of targets and a infinite-loop-motion situations, according to the
type of failures.

Fig.2.4 shows the detailed configuration of the system.

2.3 Detailed explanation of agents

2.3.1 Energy-based motion determination algo-
rithm

Acoustics sensors such as ultrasonic ranging sensors provide an inexpen-
sive means to obtain range information around the robot by computing
the echo travel time.

Kweon, the author, Kuno and Onoguchi have presented the energy-
based motion decision algorithm using multiple range information around
a robot[34], [35].

In a behavior-based mobile robot, each navigation behavior agent
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Figure 2.4: System configuration(agent level). This figure shows all
agents involved in Fig.2.3.
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computes a driving command directly from sensor data without build-
ing internal representation. Therefore, behaviors become more robust
when multiple sensor data are used to compute driving commands.

Here a method to compute a position and a direction of a robot
are presented by fusing multiple sensor data based on active contour
models.

To determine the best position and orientation of the robot using the
range readings from multiple sensors, the energy-minimizing contour
model, known as the snakes|[36] is utilized.

In the snakes algorithm, a solution can be seen as realizing the
equilibrium of the forces acting on the contour model. We apply the
idea to compute the position and orientation of the robot, at which the
equilibrium of all forces is maintained.

External
Forces
: j+1
fi Internal
Forces
fi
MA !

Figure 2.5: The energy-based motion decision. The dashed robot shows
the previous position. Internal forces, fs and fg, try to keep the robot’s
trajectory smooth.
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1. Asinternal forces, we consider a smooth force, f5, from the smooth-
ness constraints on the robot’s trajectory and a damping force,
fq, from the robot dynamics.

2. As external forces, the range forces, f;, from multiple range mea-
surements, push the robot to the location where equilibrium is
achieved between the range forces (the safest position), and other
external forces, such as the target forces, can be added to attract
the robot.

Forces acting on the robot include internal and external forces as
shown in Fig.2.5[37):

Here, a robot is bound to 2D (X-Y) space which is described by 2D
Cartesian coordinates. Fig.2.6 shows the definition of symbols used in
the following explanation.

R
Vi (X"{, i)

Vt~2

Figure 2.6: The definition of symbols and 2D Cartesian coordinates.
0 means an original position of the 2D coordinates. A location of the
robot is shown as a central point of a small ellipse. A small arrow shows
a direction in which the robot starts to move from each location. v{ is
the t-th location computed from the smoothness constraints.
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The location of the robot is presented by a 2D vector

vi = (z1, Y1) (2.1)

where (z;, y;) is the Cartesian coordinate of the robot’s position on the
floor at time ¢. Then, the internal smoothness force is computed by

f5(v) = a(vi — vi) (2.2)
+

where v{ is the ¢-th location computed from the smoothness con-
straints, and vy is the current robot position. « is a parameter to control
the smoothness in the robot movement. Based on simple trigonometry,
it is easy to compute the robot’s location, v{, satisfying the smoothness
constraint.

vy = (zf,4) (2.3)
AG

of =21 — Ti_o — 2(Yi1 — Yio) ta,n(?) (2.4)
AG

Y =2yi1 — Yoo — 2(T-1 — T4—2) tan(—i—) (2.5)

where A8 is the angle between the two lines formed by three robot
locations as shown in Fig.2.6.

fd(V) = d(Vt - Vt_1) (2.6)

where v and v¢_; are the t-th(current) and (¢-1)-th(previous) robot
locations, and td is a control parameter to effect the dynamics of the
robot. The range force for each sensor is computed as

fij (s,v) = k(sj — v¢) (2.7)

where s; represents the Cartesian coordinate values for the j-th range
reading, and % is the range force parameter which controls the effect of
the range force.

From Eqgs.(2.2),(2.6),(2.7), a new location of the robot, satisfying
the force equilibrium condition from multiple sensors, is simply com-
puted by
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n .
Vi41l = Vi + Z fi] (S, V) + fd(V) + fs(V) (28)
=0
where n is the number of sensors. The new location is controlled by
three parameters: «, d and % for the smoothness constraint, the damp-
ing force and the range force, respectively.

2.3.2 Reflexive Behavior Agent Group

The roles of the agents belonging to the Reflexive Behavior Agent
Group are to maintain the safety of humans and the robot itself, that
is, obstacle detection recognition and collision avoidance. We adopt a
multi-sensory configuration to avoid the danger caused by a failure of
obstacle detection.

In the system, the Contact Obstacle Detector using rubber sen-
sors, Sonar-based Obstacle Avoider using ultrasonic ranging sensors
and IR(infrared)-based Obstacle Detector, especially prepared for hu-
man obstacles, are installed. Here a motion determination algorithm of
the Sonar-based Obstacle Avoider is explained because these reflexive
agents use similar ones.

Sonar-based Obstacle-Avoider

The Sonar-based Obstacle-Avoider(O-A) only uses range measurements
reflected from nearby obstacles, because any range measurements that
are greater than a specified distance guarantee the robot’s safety. For
the O-A, the range forces from nearby obstacles act as repulsive forces
on the robot, while in the standard energy-based motion decision, the
range forces act as attractive forces. The repulsive range forces pushe
the robot to a new location.

The range force is inversely proportional to the range measurement.
In other words, nearer obstacles provide greater repulsive forces.

In (2.7), the range force f(s,v) is replaced by a repulsive range
force:

_ks_] if P < Ps

- j _
fil(s,v) = { 0 otherwise (2.9)
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where s; is a Cartesian coordinate value of the j-th sonar measurement
p;, and ps is the minimum safety distance for the robot.

2.3.3 Purposive Navigation Behavior Agent Group

The role of the agents belonging to the Purposive Navigation Behav-
ior Agent Group is to assist in navigating the robot to the final goal
efficiently. The navigation sequence to reach the goal is realized as the
specified agent pairs consisting of target-searching and target-tracking.
Each target corresponds to an object which characterizes a subgoal and
a final goal to be reached.

We have developed these three types of purposive navigation be-
havior agents by using features of targets in camera images.

Color-Tracker

This agent simply detects a region whose hue value is in a range of
target hue values in input color images, and calculates the direction of
the target.

When the focal length of the camera is f, and the distance between
the optical center and the center of extracted region is d, The direction
angle 6, is calculated as follows[34]:

d
6. = arctan 7 (2.10)

Wall-Tracker

Part of an indoor environment can usually be described by sets of par-
allel 3D lines, such as walls and corridors. In an image, they intersect
at a vanishing point.

Using this fact, this agent extracts a vanishing point (z,,¥,), and
calculates an angle needed to align a robot with the wall-steering angle
6., as follows:

tan o
cosd’

ftané) (2.11)

(Zo,y0) = (f
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0, = arctan?f—” (2.12)

where f is the focal length of the camera, and 6 and « indicate pan
and tilt angle of the camera with respect to the world coordinate.

Intersection-Tracker

This agents detect an intersection using a simple heuristic: intersections
ezist at the end of walls.

The algorithm works in the following steps[34]:

1. Compute a vanishing point.

2. Find two corresponding straight lines on the floor, which form
the vanishing point.

3. Extract vertical lines on each straight line, located at approxi-
mately the same distance from the robot.

The steering angle of the robot is determined by,

Ca'ug - Cz
f

where f indicates the focal length, C; is the column value of the image
center, and C,,4 is the average column value of two vertical edges.

tan 8; = (2.13)

2.3.4 Adaptive Behavior Agent Group

The role of the agents belonging to the Adaptive Behavior Agent Group
is to bridge the gap between the reflexive behavior for self-continuance
and the purposive navigation behavior, that is, to provide behaviors ap-
propriate for recovering from the undetectable failures in the purposive
navigation behavior agents and the total failures in infinite-loop-motion
situations.

In the system, we have prepared these three agents using sonar
Sensors.

Free-Space-Explorer

A Free-Space-Explorer(F-S-E) generates a driving command to push a
robot to the largest open space, which corresponds to the safest area for
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the robot. To achieve this goal effectively, the F-S-E uses the energy-
based method, with a range force parameter, k, at around unity.

£(s, v) = ks; 2.14
J

where s; is a Cartesian coordinate value of the j-th sonar reading. This
results in the range forces from sensors having a major influence and the
robot internal energy having a small effect. In this case, the robot moves
to the location where equilibrium between range forces is achieved.

Obstacle-Bouﬁdary-Follower

The Obstacle-Boundary-Follower(O-B-F) uses an algorithm similar to
the O-A. In the case of the F-S-E and O-A, the range forces from
nearby obstacles are either attractive or repulsive. For O-B-F, range
measurements from nearby obstacles are used to compute tangential
forces. )

In (2.7), the range force (s, v) is replaced by a tangential range
force:

£i(s,v) = { ]g(SJ S_]-—l) ihefivigsepth and p;_1 < ps (2'15)
where s; is a Cartesian coordinate value of the j-th sonar measurement
pj, and pq, is a threshold distance for nearby obstacles. The robot is
only pushed by these tangential forces. As long as good range mea-
surements are available without any systematic error, such as specular
reflection of sonar, the robot will never collide with obstacles, because
it always moves along the tangential directions of nearby obstacles.

The failure of this behavior can be easily detected by the null driving
command from this behavior which corresponds to these two possible
situations:

e There are no obstacles to follow.

o Obstacles are not detected due to sensor errors.
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Additional sensing from the deliberate motion of the robot or other
sensor is required to detect the real failure. Instead of that, we used the
exploratory rotational motion of robot to obtain multiple range mea-
surements at one robot location. These multiple range measurements
are then used to confirm the failure of the behavior.

Wall-Follower

The Wall-Follower(W-F) uses the same algorithm as the Obstacle-
Boundary-Follower(O-B-F). The only difference is that the object to
follow is not an unknown obstacle but a known wall existing in an
environment.

Open-Space-Explorer

Figure 2.7: The Open-Space-Explorer using the Free-Space-Explorer.
A circle shows a position, and an arrow shows the heading direction
of the robot. Dashed lines behind a circle show the hypothesized wall
which pushes the robot to free space.

In indoor navigation, a robot often needs the function of exploring
open space to find an exit in a room by just using robust reflexive
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behaviors for self-continuance, without using any sophisticated vision
systems or algorithms. We developed the Open-Space-Explorer(O-S-
E) based on the behavior of the F-S-E.

(s, v) = ks; (2.16)

where a range force parameter k is set at around unity.

The basic idea is to hypothesize an oblique wall immediately be-
hind the robot, as shown in Fig.2.7, and to update the actual sonar
measurements with the synthetic range readings reflected from this hy-
pothesized wall. Then, with these updated range readings, a new robot
location is computed by the algorithm of the F-S-E.

2.4 Motion Executor

Fig.2.8 show the mechanism of determining driving commands schemat-
ically. The driving command for actuators is determined in the Mo-
tion Executor by simply selecting an appropriate behavior from the
arbitrated results in three groups following the rule mentioned in the
previous section.

The agent arbitration mechanism inside each group is prepared in-
side the subsystem (the Motion Executor) which controls the actu-
ators of the robot as mentioned in the last section.

The Reflexive Arbitrator for Reflexive Behavior Agent Group adopts
the fixed priority-based arbitration. The priority is determined accord-
ing to the reliability of sensor observation.

The Purposive Arbitrator for Purposive Navigation Behavior Agent
Group adopts the mission-based arbitration. The priority is determined
by the sequence of robot navigation.

On the other hand, no formal arbitration is necessary for the Adap-
tive Behavior Agent Group because each agent always provides a be-
havior to stably approach free space. The Motion Executor can select
any active behavior when it requires it.

In addition, a rule-based arbitration can be installed according to
the type of failures from the viewpoint of increasing the navigation
efficiency.
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Figure 2.8: Mechanism of driving command determination. In the
Motion Executor, two kinds of arbitration systems are prepared: the
arbitration system among different groups and that inside each group.
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The possible rules are these two kinds: Missing target failure re-
covery rules that indicate an agent which recovers from an agent’s fail-
ure in Purposive Navigation Behavior Agent Group, and Infinite-loop-
motion failure recovery rules that indicate an agent which recovers from
infinite-loop-motion situations.

Suppose that A is a purposive navigation agent which fails in target
tracking or searching. Agent(i) is an adaptive agent which recovers
from the failure, and n is the number of possible agents to select. V)
and V(4) are driving command strength of the agent A and Agent (i),
respectively, and calculated as the length of the vector from current
position to the next position where a robot should move.

Then, the Missing target failure recovery rule is described as,

if V4=0

if V(1) >Th(l) Select Agent(1)
else if V(2) >Th(2) Select Agent(2)

else if V(n—1)>Th(n—1) Select Agent(n-1)
else Select Agent(n)

Here, V = 0 means that the failure of the agent A is detected
by agent A itself and no motion command is provided to the Motion
Executor. Th(1) and Th(2) are threshold values to judge whether the
agents, Agent(1) and Agent(2), are active or not, respectively. The n
is the number of candidate agents.

For example, when a robot is moving in a corridor and a corner of the
corridor is the target, which the Target(corner)-Searcher fails to detect,
the strength of the driving command from the Target(corner)-Searcher
becomes 0. In that case, the Wall-Follower is the most preferred agent
to recover from the failure and is selected if the strength, which is
calculated as vi;1 — vj in (2.8), is larger than a threshold value.

On the other hand, the Infinite-loop-motion failure recovery rule is
described as, :

if (find-loop(MH[0], MH[1], ...., MH[i-1]) = TRUE)

if V(1) >Th(1l) Select Agent(1)
else if V(2) >Th(2) Select Agent(2)
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else if V(i) > Th(i) Select Agent(i)
else if V(n—1)>Th(n—1) Select Agent(n-1)
else Select Agent(n)

Here, find-loop() is a logical function which becomes frue in the
case that repetition of the same driving command becomes larger than
a threshold value. M HJk] is a history of driving commands that is
selected at time &k and is memorized in a Motion Command Memory.
In our system, the maximum value of memory size ¢ is set to 10.

For example, when a robot is going to exit a room, if the Target(exit)-
Tracker fails in tracking and a robot repeats wandering for a long pe-
riod, the value of the find-loop() becomes true. In that case, the Open-
Space-Explorer is the most preferred agent to recover from the failure
and is selected if the strength, which is calculated using viy; — vj in
(2.8), is larger than a threshold value.

2.5 Summary of issues in the proposed
architecture

In summary, the merits of proposed architecture compared with con-
ventional systems are as follows:

1. A robot based on the proposed architecture can robustly navi-
gate itself by using a behavior from the three groups (Reflexive,
Purposive Navigation and Adaptive) because the architecture is
basically a behavior-based one. The robot can efficiently reach a
goal by following a sequence of sub-goal and goal targets, without
a detailed geometric map which is hard to prepare.

2. Due to collecting basic behaviors into the three groups, a new
behavior can be easily add to the system by just involving it to
an appropriate group according to the type of the behavior. Dif-
fering from the fixed arbitration in the subsumption architecture,
each group has its own arbitration mechanism that can provide
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the adaptability to the system against dynamic changing environ-
ments.

3. A motion command can be simply determined by just selecting a
behavior in the Motion Executor according to the priority of the
three groups. No predetermined rules or models in conventional
SMPA-based systems are required in advance. In addition, rules
for selecting an appropriate behavior in the Adaptive Behavior
Agent Group can be installed if necessary.

2.6 Experimental results

Experimental results of both simulation and real navigation showed the
effectiveness of the proposed architecture.

2.6.1 Simulation experiments

First of all, the adequate selection of behaviors in the Motion Executor
was tested using a simulator[34]. Stationary objects in the environment
such as desks or computers are shown as rectangles. The position of
the robot is shown as a circle. The heading is indicated as a small line
from the center of each circle. The sequences of the circles express the
locus of the robot. The mission is to exit the room (enclosed region in
the left side of the figure) and to reach the final goal (a black circle in
the right side of the figure).

Fig.2.9 and Fig.2.10 show the motion sequence when failure of Pur-
posive Navigation Agent Behavior Group agents occurs in the room
space.

Fig.2.9 shows the results with the Adaptive Behavior agents in addi-
tion to the Reflexive Behavior agents for self-continuance and the Pur-
posive Navigation Behavior agents. In this case, following the Missing
target failure recovery rules as shown in the last section, the Open-
Space-Explorer in the Adaptive Behavior Agent Group is selected to
recover from the failure when the Target(exit)-Searcher cannot find the
exit and it guides the robot to the neighborhood of the exit. When the
exit appears in the view, the Target-Tracker becomes active and it dom-
inates the robot to exit the room. Even when the robot approaches the
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wall, the Wall-Follower in the Adaptive Behavior Agent Group guides
the robot to get out of the room by following the wall.

Figure 2.9: Motion sequence with Adaptive Behavior agents. Station-
ary objects in the environment such as desks or computers are shown as
rectangles. The position of the robot is shown as a circle. The heading
is indicated as a small line from the center of each circle. The sequences
of the circles express the locus of the robot.

Fig.2.10 shows a result without the Adaptive Behavior Agent Group
agents, that is, only the Target-Searcher, the Target-Tracker in the
Purposive Navigation Behavior Agent Group and the Obstacle-Avoider
in the Reflexive Behavior Agent Group navigate the simulated robot.
Because a static wall stands between the start position and the exit
of the room space, Target-Searcher which corresponds to the exit fails.
Then the robot starts wandering and goes to collision-free space in front.
When the robot approaches the opposite wall, the Obstacle-Avoider
becomes active and switches the direction of the robot repeatedly until
the exit is in the view, that is, a infinite-loop-motion situation occurs.
In several experiments with changing start positions, the robot could
not reach the exit of the room space except when the start position is
included in the oblique region of Fig.2.10 and the exit is in the view.
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Figure 2.10: Motion sequence without Adaptive Behavior agents. The
robot could not reach the exit of the room space except when the start
position is included in the oblique region and the exit is in the view.

2.6.2 Experiments on real robot navigation

To evaluate the effect of environmental condition changes, such as,
sudden appearance of obstacles, fluctuation of illumination or slip of
actuators, the author and Ishikawa developed a small cart-type robot

BIRDIE(Behavior-based Intelligent Robot in Dynamic Indoor Environment)[33]

and did navigation experiments in an office.

Eighteen ultrasonic ranging sensors are installed around the robot to
acquire the 360-degrees-surrounding depth information at intervals of
20 degrees, which corresponds to the view angle of each sensor. Passive
infrared sensors are installed on the front of it to detect thermal obsta-
cles such as humans. Flexible belt-type touch sensors using electrically
conducting rubber are attached to the lower part of the robot. A mov-
able stereo camera platform is mounted on top of the robot. A flux-gate
compass 18 located in the center to detect the self-direction. The imple-
mentation of the system is distributed in a computer network external
to BIRDIE and in an onboard CPU within it. The computer network
consists of an engineering workstation and vision systems. Sensor data
(sonars, infrared, contact and compass) and a driving command are
communicated between the onboard CPU and the network through a
wireless serial link. The onboard CPU controls the sensor driver cir-
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cuits and motor drive circuits for the camera platform and the wheels.
Fig.2.11 shows the overview of the robot.

Real navigation experiments using the robot in an office, which
had similar constitutions as simulation experiments, had proved the
adequate agent selection in the proposed architecture.

The topological constitution of the office, that is, the sequence of
target objects for sub-goals and a goal, were manually taught by an
test run.

Fig.2.12 shows an example of agent selection when a human sud-
denly appears in a way while BIRDIE is approaching a fire extinguisher
as a final goal. At first, a Target-Tracker is successfully selected and
it is going straight ahead (a). When a human appears in the way of
the robot (b), and it is detected by sonar or infrared sensors (c), the
O-A agent is selected and the robot starts avoiding behavior (d). After
BIRDIE passes the human (e), the Target-Tracker becomes active and
the robot starts going ahead to the target again (f).

Fig.2.13 shows a target tracking result sequence, and Fig.2.14 shows
a motion sequence of the robot in a corridor. A Target-Tracker navi-
gates the robot to the next intersection. The target (an intersection,
in this case) is taught as a pair of vertical edges in front. BIRDIE
successfully approaches the intersection. Fig.2.15 shows an example of
a real motion sequence. Subgoals are vertical edges of room exit(A,B),
turning corners(D,E) and (F,G). The goal is a fire extinguisher(C).

At first, the robot missed the room exit(A,B) because it is out of the
view. Then, following the Missing target failure recovery rule, given in
the previous chapter, the O-S-E is selected and navigates the robot near
the exit. When the robot approaches the exit and the Target(A,B)-
Tracker becomes active, the T-T navigates the robot to the exit in
the same manner as in the simulation experiments. When the robot
intrudes in a corridor, the next Target(D,E)-Tracker becomes active
and the robot starts going ahead. When the robot approaches too near
a wall and the T-T fails, the W-F becomes active and it navigates the
robot near the turning corner(D,E) along the wall. Finally, from (F,G)
to (C), the Target(C)-Tracker successfully navigates BIRDIE to the
final goal.
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Figure 2.11: BIRDIE overview.
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(a) Start moving. (b) Human appears.

(¢) Human is detected. (d) Start avoiding.

(f) Approach the target
again.

(e) Finish avoiding.

Figure 2.12: Robot motion sequences of obstacle avoidance
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(a) Intersection tracking re- (b) Intersection tracking re-
sult (t=1). sult (t=2).

(c) Intersection tracking re- (d) Intersection tracking re-
sult (t=3). sult (t=4).

(e) Intersection tracking re- (f) Intersection tracking re-
sult (t=5). sult (t=6).

Figure 2.13: Image processing results of the Intersection-Tracker. A
square in each figure shows a result of vertical edge tracking as an

intersection target.
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(a) Motion sequence (t=1). (b) Motion sequence (t=2).

(c) Motion sequence (t=3). (d) Motion sequence (t=4).

(e) Motion sequence (t=5). (f) Motion sequence (t=6).

Figure 2.14: Robot motion sequences of passing along a corridor.
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T.S-T(F,G)

R0

OS.E.

T.S:Target-Searcher, T-T:Target-Tracker,
0.S.E.:Open-Space-Explorer, W.F.:Wall-Follower

Figure 2.15: Total robot motion example. The mission is to exit the
room (enclosed region in the left side of the figure) and to reach the
final goal (a black circle in the right side of the figure). Subgoals are
vertical edges of room exit(A,B), turning corners(D,E) and (F,G). The
final goal is a fire extinguisher(C). The sequences of the circles express
the locus of the robot.
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Chapter 3

Free space detection by
stereo vision

From the viewpoint of robustness only, the most reliable sensor is a
contact-type sensors such as a rubber sensor for detecting obstacles;
however the detection is only done when an obstacle is touched by the
robot, that is, the range of obstacle detection is very small. Most robot
researchers are using ultrasonic and laser ranging sensors because they
provide an inexpensive means to obtain range information around a
robot by computing the echo travel time.
The main drawbacks of ultrasonic ranging sensors are as follows:

1. They easily fail to detect an obstacle whose surface is inclined and
has specular reflection property, because the power of reflection
echo becomes weak.

2. They just detect the existence of obstacles.

Recognition of obstacle types is generally difficult from ultrasonic
ranging information.

Vision sensors, on the other hand, can provide rich information
for recognizing obstacles and are more reliable for detecting specular
objects, even though they are less reliable than contact-sensors and ul-
trasonic ranging sensors in situations in which obstacles are occluded
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or illumination conditions change. That is, a vision sensor is neces-
sary for intelligent mobile robots to attain the adaptive capability and
intelligence for global recognition.

In this chapter and the next chapter, vision-based obstacle detection
algorithms are explained.

3.1 Related work

3.1.1 Geometry of stereopsis methods

As for detecting static obstacles, stereo-based methods have been pro-
posed to build visual maps for collision-free space extraction.

The geometry of binocular stereo vision is shown in Fig.3.1[38].

A given point P is projected to a point I; in image 1, then its match
point I, in image 2 is searched. Point I5 necessarily belongs to a straight
line DE5 of image 2 determined completely by I;, which is called the
epipolar line associated with I;.

Let C; and C5 be the center of cameras 1 and 2, respectively. Then,
the 3D position of P is uniquely determined as the cross point of the
two lines I;C; and I,Cs. Epipolar lines DE; and DFE5 are cross lines
of the plane which includes the points Cy, Cs, and P, and, image 1 and
image 2, respectively

3.1.2 Related work on passive stereopsis methods

As for detection of correspondences in stereo images, numerous algo-
rithms have been proposed. They can roughly be classified into two
categories.

e Area-based approaches

In these approaches, the system attempts to correlate the grey
levels of image patches in the views being considered, assuming
that they present some similarity. The resulting depth map can
then be interpolated.
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Figure 3.1: The geometry of binocular stereo vision.

The underlying assumption appears to be a valid one for rela-
tively textured areas; however, it may prove wrong at occlusion
boundaries and within featureless regions.

Alternatively, the map can be computed by directly fitting a
smooth surface that accounts for the disparities between the two
images. This is a more principled approach since the problem
can be phrased as one of optimization; however, the smoothness
assumptions that are required may not always be satisfied.

e Feature-based approaches

These algorithms extract features of interest from the images,
such as edge segments or contours, and match them in two or
more views.

These methods are fast because only a small subset of the image
pixels are used, but may fail if the chosen primitives cannot be
reliably found in the images; furthermore, they usually only yield
very sparse depth maps.

In general, instead of points, structural features such as vertical
edges are extracted from stereo images and matched using geometric
constraints[39], or knowledge-based constraints[40][41].
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Ayache proposed a method for making a three-dimensional model
of an environment where a mobile robot is working, by using stereo
vision[40]. To decrease the uncertainty of noisy stereo measurement, the
extended Kalman filtering technique is utilized for building, describing
and fusing visual maps among various viewpoint positions. He also
proposed a use of the trinocular stereo vision to make stereo matching
reliable[42].

Nakayama, Yamaguchi, Shirai and Asada proposed a reliable feature-
based multi-stage stereo matching method which determines more re-
liable pairs of matching edges earlier than less reliable ones and makes
use of previous matching results[43]. The contrast of an edge segment is
used as the measure of reliability of the match because a high contrast
edge has high positional and directional accuracy. The decisions as
to whether there are correspondences between pairs of lower contrast
edges or not becomes easier, because previously found more reliable
matching results are available to reduce the occurrences of ambiguous
matches.

Fllled section Open space
(a) No obstacle exists.

W [w

Filled section Open space
(b) An obstacle exists in front.

B_ "% : Obstacle prediction
- region

Open space
(c) An obstacle exists behind.

Figure 3.2: Examination of obstacle existence situations.
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The author, Onoguchi, Kuno, Hoshino and Tsunekawa proposed a
method to examine the following three statuses by checking the inten-
sity sum of an obstacle prediction region, which is surrounded by stereo
matching edges[41].

1. There is no obstacle across the space where an existence of ob-
stacle is being examined as shown in Fig.3.2(a).

2. An obstacle exists in front of the space as shown in Fig.3.2(b).

3. An obstacle exists behind the space as shown in Fig.3.2(c).

The matching at an occlusion boundary is difficult, because the
contrast of an edge segment at an occluding boundary may drastically
change where the depth gap is large due to difference in the view di-
rection of cameras.

To solve this problem, Nakayama and Shirai proposed a feature-
based matching method which enables matching of occlusion bound-
aries using normalized light intensity[44]. At first, light intensity is
normalized so that intensities derived from matching edges, which are
obtained from texture edges, are similar between images. Next, edges
at occlusion boundaries are matched using the normalized intensity.
Experimental results using synthetic images and real images showed
the effectiveness of the method.

3.1.3 Related work on generation of environment
description

As for representation of an environment, several methods have been
proposed.

An octree can represent an environmental space by recursively sub-
dividing a region into octants. A tree node is labeled black if it is
completely contained within an object, labeled white if it is completely
contained within a free space; otherwise, the node is labeled gray. Using
this representation, a path planning problem can be solved efficiently,
such as finding the successive adjoining white octree cells from a start-
ing cell to a final goal cell [45].
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Occupancy grids proposed by Elfes[46] is a three-dimensional cell
representation to integrate various outputs from multiple sensors, such
as ultrasonic sensors and TV cameras.

The occupancy grid is a multidimensional random field that main-
tains stochastic estimates of the occupancy state of the cells in a spa-
tial lattice. To construct a sensor-driven map of the robot’s world, the
cell state estimates are obtained by interpreting the incoming range
readings using probabilistic sensor models. The Bayesian estimation
procedures allow the incremental updating of the occupancy grid using
readings taken from several sensors over multiple points of view.

The artificial potential field approach has been widely studied for
robot path planning[47]. In the approach, a repulsive force is given
at an obstacle position and an attractive force is given at a final goal
position to create a potential field in physical sense. An appropriate
path can be found by threading valleys of the potential field from a
start position to a final goal position.

Three-dimensional wire-frame representation is also proposed [48]
by applying the Delaunay triangulation method for stereo measurement
results.

Recently, the prozimity space method[49] was proposed to perform
real-time, behavior-based control of visual gaze and obstacle avoidance.
The prozimity space was a limited three-dimensional region of space
where the existence of objects was examined. The examination was
done, by matching surface texture of objects on the PRISM-3 stereo
vision system([50], and combining the result with motion measurements.
The performance of this method mainly depended on the texture infor-
mation of objects as same as that of the area-based stereo methods.

3.2 Disparity Prediction Stereopsis Method

In order to achieve safe navigation, a depth map for a whole scene is
not necessary. All that is required is information about the type and
the existence of obstacles to detect collision-free space.

The author, Onoguchi, Kuno and Asada have proposed a practical
collision-free space detection method (Disparity Prediction Stere-
opsis (DPS) Method)[51][52] for robots working in nuclear power
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plants. Stereo vision was used to extract the region whose dispar-
ity range corresponding to the navigation space by feature matching.
Fig.3.3 shows the composition of the DPS Method.

Feature edge extraction

Y

Vertical edge matching

Obstacle prediction region
establishment

A 4

Collision-free space detection|

Figure 3.3: Composition of the Disparity Prediction Stereopsis Method.

3.2.1 Prediction of disparity and feature edge match-
ing

First, the space, where the robot is due to move, is established as shown

in Fig.3.4, and the disparity range that corresponds to the position and

the space size is calculated.

Let the viewpoint height of the robot be X, the velocity of robot
progress be V' and the processing time be T'. The search space of size
X x V x T is defined at the front distance of V' x T from the present
position. The objects existing in this space are the obstacles to be
detected. Then, the search space is divided into a certain number of
cross sections which are vertical to the camera axis, and the disparity
values of objects which may exist on the cross section are calculated. If
an obstacle exists in the space, the following status is generally realized:
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Figure 3.4: Establishment of search space.

Vertical edge segments that are candidates of standing obstacle contours
appear in the space.

Next, edge segments are enhanced and vertical ones are extracted
from stereo camera images whose optical axes are set parallel.

Fig.3.5 shows the algorithm for extracting feature edges from im-
ages. The reasons why feature edges are used for matching, instead
of raw grey level data are the stability against the difference in ~y-
characteristics of two cameras and the lower computational cost.

First, the regions with high spatial discontinuity values are enhanced
by processing the 3x3 SOBEL filter. Next, the images are transformed
to binary data by predetermined threshold value, processed by thinning
operation, and independent components are labeled to measure the
length values. Then, the components with small length are eliminated
as noises, and other components are tracked by measuring the local
curvature values to describe edge segments. Finally, the components
which consist of vertical edge segments are selected for initial matching.

Fig.3.6 shows the configuration of a stereo camera system. Let the
centers of the stereo camera lenses be O1 and 02, and the projections
of a point P be P1 and P2, respectively. When the stereo cameras
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Spatial filtering (SOBEL operator)

Y

Binarization

Y

Thinning

Y

Labelling and noise elimination

Y

Tracking for making edge segment description

y

Vertical edge segment selection

Figure 3.5: Algorithm of feature edge extraction.
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are set at the same height, and the optical axes of stereo cameras are
parallel, the relationship between the distance and the disparity S is
simply given (S =S1~S2= %) as shown in the figure. Here, A
is an interval between two cameras, F is focal length, E is distance /pixel
conversion ratio and D is distance between stereo camera and an object.

Figure 3.6: Stereo camera configuration. When the stereo cameras are
set at the same height with the optical axes of stereo cameras parallel,
the relationship between the distance and the disparity S is simply
given (S = S1 ~ §2 = Ex&xF)

Next, the extracted edge segments are matched among a base mask
along the edge segment in a left image and prediction masks which are
set in a right image with the disparity range, as shown in Fig.3.7. By
combining the feature-based matching and the intensity-based match-
ing in these ways, matching accuracy can be improved.

If the discovery of a matched pair of vertical edges implies that there
exists an obstacle on a cross section, then the match is examined for
the remaining edges. If there is no matched pair, it is judged that no
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Coincident position

1
Prediction masks

Feature edge

Base mask

Disparity

Left image _ Right image

Figure 3.7: Edge segment matching by disparity prediction. The ex-
tracted edge segments are matched among a base mask along the edge
segment in a left image and prediction masks which are set in a right
image with the disparity range.

object exists on the cross section, and the matching in the next cross
section is examined. Thus, the existence or absence of objects in robot
moving space is determined based on the vertical edge matching.

By using the DPS Method, an intelligent Static Obstacle Avoider
agent in the Reflexive Behavior Agent Group for self-continuance can
be realized so that the agent becomes active and provides the stopping
behavior when matched edge segments are extracted during navigation.

3.2.2 Extraction of passage region

If the view directions of stereo cameras are parallel to a floor, when
an object does not interfere with the space where the robot is moving,
as in the case that the object is far and high above the viewpoint, an
object on a front wall is projected on an image with its lower end in
a region above a passage region. To check this status, the following
heuristic conditions which are useful for extracting passage regions are
built in the system.
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e Spatial continuity:

A connected region with a large area in the lower part of an image
is assumed as a candidate for passage region.

o Existence of roadside edge:

A long edge in the lower part of an image is assumed as a candi-
date for the border of passage region.

e Absence of vertical edge:

An object standing on a floor obscures a farther passage. Conse-
quently, when the view direction is parallel to the floor, a region
between vertical edges is more likely to belong to a standing ob-
stacle. This assumption does not apply when the passage has a
texture, as in a case of a floor with lattice stripes. It is almost
always valid for a monochrome floor and can be used effectively
in the passage detection.

¢ Uniformity:
In a region adjacent to a passage, intensity characteristics, such as
average intensity value, color and texture, do not greatly change.

This assumption is not true in general when a floor is uneven, has
shadow or reflection.

In practical use in indoor situations, a two-dimensional passage
detection method is efficient from the viewpoint of low computa-
tional cost, because a part of passage region is usually involved
in an image from a high camera position of a robot.

The above conditions are checked for each of the local regions
in the scene. According to the validity of the conditions, the
experimentally determined scores are given to pixels in the region.
The result is considered to be the reliabile representaion of a local
region which is passage region.

Fig.3.8 shows the passage extraction algorithm. Using the condi-
tions (b) and (c) in the extraction of passage region, it is decided
whether or not an edge is contained in a local region. If an edge
is not contained, the condition (d) is used to calculate the aver-
age and the variance of the intensity in the region. If the results
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do not differ greatly from the reference values, which have been
calculated for the specified sample regions in the scene, a score is
given. This process is applied to the lower half of the scene, from
the bottom upward. The reason for this is that when the optical
axes of stereo cameras are parallel to the floor, the passage is only
projected to the lower half of an image.

When the robot is moving, the average value in the previous pro-
cess is used as the reference value continuously. Finally, the region
whose total score is higher than the threshold value, which is set
experimentally, is extracted. Using the condition (a), the con-
nected region with the maximum area is extracted as a passage
region. Among edge segments matched by the predicted disparity,
those with the lower ends contained, or in contact with the above
passage region are interpreted as the candidates for obstacles.

3.2.3 Measurement of obstacle position

For the moving robot to plan a route to avoid the detected obstacles,
the position of the obstacles in the world (environment) coordinate
system is calculated, using

(1) the position of the lower end of the obstacle edge,

(2) the distance between the camera and the edge determined from
the disparity at the match, and

(3) the self-location measurement result of the robot itself, which is
built into the robot as a part of the visual navigation system shown in
Fig.1.2. ,

Fig.3.9 shows the schematic diagram of measuring obstacle position.
Let the distance and the direction of the stereo cameras in regard to
the passage border be L and G, respectively. Let the distance between
the camera and the obstacle determined from the disparity prediction
be D, and the deviation of the obstacle from the optical axes be K.
Then the distance W between the passage border and the obstacle is
given by the following formula:

W =L—DsinG— KcosG (3.1)

where L and G are given by the self-location measurement subsystem.
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Thresholding]
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Figure 3.8: Algorithm of passage extraction.

66



K is determined by distance between the image center and the lowest

end point of the matched edge segment connected with the matched
. . . . D .

Ifertu;lal edges and multiplying the distance by %, where F' is the focal

ength.

Passage boundary

Obstacle

Constant disparity plane

KcosG| DsinG

L Stereo cameras

Figure 3.9: Measurement of obstacle position.

Fig.3.10 shows the total flowchart of the DPS method described
above.

3.3 Experimental results

To evaluate the performance of the DPS Method in regard to the com-
plexity in shape, obstacle detection experiments using both five arti-
ficial straight and curved objects (cubes, cylinders, triangular cones,
circular cones and tori) and humans have been done.

The DPS software was implemented on a workstation (Toshiba
AS4260) with an additional hardware TOSPIX-II[53] for image pro-
cessing and edge segment description. As the stereo cameras, two CCD
cameras with 560 x 350(196,000) pixels (Ikegami FCK-10) were em-
ployed. The focal length of lenses was 12.5mm and the distance between
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Figure 3.10: Detailed flowchart of the DPS method.
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two cameras was 20.0cm.

The obstacles were set to stand on a tile floor with a uniform color
(green) and the distance ranges from stereo cameras were varied from
2.0m to 4.0m by 50.0 cm. The experiments have been done five times for
each object and each distance range (120 times in total) by randomly
varying the positions of the obstacles.

According to the extraction status for the matched edge segments
contained in passage region, the results are divided into five cases as
follows: '

1. Both ends of the obstacle are successfully detected without false
matches.

2. One end of the obstacle fails to be detected without false matches.

3. Both ends of the obstacle are detected with an edge other than
the detected obstacle (false matches occur).

4. One end of the obstacle fails to be detected, and an edge other
than the detected obstacle is detected (false matches occur)

5. The obstacle wholly fails to be detected.

Table 3.1 shows the results. A denominator in each cell shows a
total trial number(5) and a numerator shows a successful trial number.

The error of detecting only one side of object boundary (case-2)
occurred four times, that is, once for a torus (350cm to 400cm) and
three times for humans (300cm to 400cm). The main reasons for missing
in detecting one end of obstacles were that edge segments of curved
boundary part at far distance were extracted disconnected due to low
intensity, because the stereo cameras approached too close to vertically
installed pipes and entered shadow). Missing in detecting obstacles
caused by false matching did not occur.

The success rate of perfect detection was 96.7%.

Figs.3.11 ~ 3.15 show examples of the obstacle detection results.
In an obstacle detection result, a left original image, a passage extrac-
tion result and detected obstacle edge segments involved in the passage
region are shown overlapping. Boundary edges of objects involved in
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Table 3.1: Experimental results of collision-free space detection using
Disparity Prediction Stereopsis Method.

200~25Q,,,| 250~30Q,,,| 300~350,,| 350~400cm
cube 5/5 5/5 5/5 5/5
cylinder 5/5 5/5 5/5 5/5
circular cone 5/5 S5 5/5 5/5
triangular cylinder 5/5 5/5 5/5 5/5
torus 5/5 5/5 5/5 4/5
human 5/5 5/5 4/5 3/5

passage regions were successfully detected for all cases, while detection
of passage regions partially failed due to low-contrast and shadows as
shown in Fig.3.11. In many cases, only edge segments in passage re-
gions were detected because feature edges were divided to independent
segments at the boundary of passage region, and the edge matching
and the examination of interaction with passage regions were done in-
dependently. In the case of humans (Fig.3.14, Fig.3.15), the borders of
feet, which are contained in passage regions, are extracted successfully.
The processing time was 7 seconds on average.

Next, obstacle detection experiments in an environment simulating
a nuclear power plant were executed.

The passage was composed of a tile floor painted green, as in the ex-
periments described above. The background contained a power distri-
bution box and measuring instruments. In addition to the background
complexity, the scenes were affected greatly by the reflection from the
floor and shadows cast by other objects. Consequently, a false match
may frequently occur and make it difficult to detect obstacles with cer-
tainty. The obstacle was an orthogonal box placed 3 to 4m in front of
the stereo cameras, which corresponded to the disparity from 90 to 65
pixels.
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Here, two examples are shown. In the first case, an obstacle (cube)
is involved in both stereo images. In the second case, the right side of
the cube in the left image is occluded.

Fig.3.16 and Fig.3.20 show both original and edge images.

In the first case, the total numbers of edges in the left and right
images were 674 and 481, feature edges were 59 and 72, edge segments
were 2458 and 1780, and vertical edge segments for initial matching
were 33 and 33, respectively.

In the second case, the total numbers of edges in the left and right
images were 724 and 531, feature edges were 70 and 73, edge segments
were 2479 and 1859, and vertical edge segments for initial matching
were 28 and 28, respectively.

Fig.3.17 and Fig.3.21 are the results of vertical edge matching in
the cross sections containing an obstacle with the disparity from 90 to
65 pixels by 3 pixels shift. At this stage, a false match, at a region
involving the power distribution box, occurred.

Fig.3.18 and Fig.3.22 are results of extracting passage regions. The
passage was extracted almost correctly, except for miss-detection of
part of the box caused by disconnection of the lower edge due to shadow
effect.

Finally, Fig.3.19 and Fig.3.23 are the edges detected as obstacles
at the final stage, overlapped with the left image. The false match
of the power distribution box was eliminated because it was not be
contained in passage region, and only the both boundaries of the box
were successfully detected.

In another experiment, when the box was placed nearer and its right
side was out of left view, the left boundary was successfully detected.
The processing time for those cases was approximately 10 seconds.

From real navigation experiments using the clover-type vehicle AIMARS
developed by Toshiba Corp., shown in Fig.3.24, to which stereo cam-
eras were attached, obstacles in the scene were reliably detected 110
times and stable navigation at a speed of 500 m/h could be achieved.
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(a) Left original image (b) Right original image

(d) Right edge image

(e) Obstacle detection results

Figure 3.11: Obstacle (cylinder) detection example. Edge segments
detected as obstacles are shown as white lines in (e). White region
below the cylinder is a result of passage detection process.



(a) Left original image (b) Right original image

(c) Left edge image (d) Right edge image

(e) Obstacle detection results

Figure 3.12: Obstacle (circular cone) detection example.
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) Left original image (b) Right original image

(d) Right edge image

(e) Obstacle detection results

Figure 3.13: Obstacle (torus) detection example.
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(a) Left original image (b) Right original image

(c) Left edge image (d) Right edge image

(e) Obstacle detection results

Figure 3.14: Obstacle (human) detection example No.1.



(a) Left original image

(c) Left edge image (d) Right edge image

(e) Obstacle detection results

Figure 3.15: Obstacle (human) detection example No.2.
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3.3.1 Discussions

From these experimental results in indoor scenes, passage regions were
almost always extracted correctly when the floor had monochrome
color. Standing obstacles could be stably detected even if false matches
occurred in front of a wall, because only matched edge segments, whose
lower ends were involved in the passage region, were selected as candi-
dates of obstacles.

In the proposed method, passage regions are extracted by using
the conditions set in a heuristic way, and the predetermined score is
added. After applying this procedure to the lower half of an image, the
threshold processing is applied. Then the connected region with the
maximum area is defined as the passage region.

This method is useful when the floor is monochrome and obstacles
are located at a relatively long distance, as in the series of experiments
executed in this study. However, the detection becomes difficult when a
robot approaches obstacles and occlusion of floor by obstacles becomes
large. In addition, the probability of incorrect obstacle detection in-
creases when a floor contains a high contrast shadow or texture. To
solve this problem, the use of time continuity and the use of height
information have been examined.

It is not always true that an object, in the space where a robot is
moving, is contained in passage regions. When an obstacle is close and
the bottom part is out of view, or it is located higher from a floor, the
lower part may be projected in the upper half of an image. To manage
this problem, an improvement of the system considering the view angle
is necessary so that the search space is set at a sufficiently long distance
in front, and detection and matching are executed continuously.

The matching time for one cross section by the DPS method was
approximately 0.02 seconds using a standard engineering workstation.
On the other hand, a long processing time is necessary for extracting
passage regions. It is necessary to reduce total processing time in order
to achieve real-time navigation. '
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(a) Left original image (b) Right original image

(c) Left edge image (d) Right edge image

Figure 3.16: Obstacle detection in simulated nuclear plant example
No.l : original and edge images. The total numbers of edges in the
left and right images were 674 and 481, respectively. The number of
vertical edge segments used in the matching process were 2458 and
1780, respectively.
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(g) 72 (h) 69 (i) 65

Figure 3.17: Vertical edge matching example No.l for a cross section.



Figure 3.18: Obstacle detection in simulated nuclear plant example
No.1 : passage region extraction results. White region shows the result
of passage extraction.

Figure 3.19: Obstacle edge detection result example No.l. Detected
obstacle edges are shown as white lines.
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(a) Left original image (b) Right original image

(c) Left edge image (d) Right edge image

Figure 3.20: Obstacle detection in simulated nuclear plant No.2 : orig-
inal and edge images. The total numbers of edges in the left and right
images were 724 and 531, respectively. The number of vertical edge seg-
ments used in the matching process were 2479 and 1859, respectively.
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Figure 3.21: Vertical edge matching example No.2 for a cross section.
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Figure 3.22: Obstacle detection in simulated nuclear plant example
No.2 : passage region extraction results. White region shows the result
of passage extraction.

Figure 3.23: Obstacle edge detection result example No.2. Detected
obstacle edges are shown as white lines.
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(a) Motion sequence (t=1) (b) Motion sequence (t=2)

Figure 3.24: The overview of AIMARS.
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3.4 Planar Projection Stereopsis Method

The above-mentioned problems regarding the extraction of passage re-
gions, Onoguchi, the author and Takeda. have proposed a road re-
gion extraction method, the Planar Projection Stereopsis (PPS)
Method[54] which extracts collision-free space on a road by using
height information.

Since a road area can be assumed to be a sequence of flat planes in
front of a vehicle, the height information is useful for extracting a road
area.

By using the PPS Method, the decision, whether each point in stereo
images exists on the road or not, can be easily done.

At first, PPS calculates a planar equation representing a road area
by using height and pose of stereo cameras on a vehicle.

Next, stereo images are projected to the plane, where correspond-
ing points are projected to the same positions on a certain road area if
they really exist on a road plane as shown in Fig.3.25, while correspond-
ing points with different heights from the road plane are projected to
different positions in each stereo image as shown in Fig.3.26.

A Planar Projection Description is obtained by a subtraction be-
tween projected images from a set of stereo images and a road area can
be represented by a set of points with small values.

"Experimental results for real road scenes have shown the effective-
ness of the PPS method as shown in Figs.3.27 ~ 3.28. By checking
whether parts of edges detected by the DPS Method are involved in
a region detected by the PPS method or not in image planes, only
obstacles on a ground passage can be effectively extracted.
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P:

camera center

Figure 3.25: Projection of a point on a road plane. Stereo images are
projected to the plane, where corresponding points are projected to
the same positions on a certain road area if they really exist on a road
plane.

camera center
Figure 3.26: Projection of a point whose height is different from a road

plane. Corresponding points with different heights from the road plane
are projected to different positions in each stereo image.
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(a) left image (b) right image

(c) Results of PPS method (d) Manually detected road region

Figure 3.27: Experimental result of PPS method No.1.
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(c) Results of PPS method (d) Manually detected road region

Figure 3.28: Experimental result of PPS method No.2.
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Chapter 4

Moving object recognition
by monocular vision

In the case of static obstacles, the existence of an obstacle in a space,
where a robot is due to move, is the minimal necessary information for
route establishment, as described in the previous chapter, because it
does not move and stays in the same position. On the other hand, in
the case of moving obstacles in the navigation environments, not only
the obstacle detection but also the obstacle recognition processes are
required for achieving intelligent avoidance, because the prediction of
route interference between a robot and the obstacle is necessary for
achieving intelligent obstacle avoidance capability.

In this chapter, obstacle detection and recognition method MO-
ROFA by analyzing optical flow information is described.

First, optical flow field is detected in image sequences from a camera
on a moving observer and moving object candidates are extracted by
using a square residual error value that is calculated in the process of
estimating the FOE (Focus of Expansion).

Next, the optical flow directions and intensity values are stored for
pixels involved in each candidate region, to calculate the distribution
width values around the principal axes of inertia and the direction of
the principal axes.

Finally, each candidate is classified into a category of object that is
expected to appear in the scene, by comparing the proportion and the
direction values with standard data ranges for the objects which are
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determined by preliminary experiments.
Experimental results of car/bicycle/pedestrian recognition in real
outdoor environments have shown the effectiveness of the method.

4.1 Related work

e Obstacle detection

Conventional vision-based moving obstacle detection methods are
classified into two groups: those which do not use motion analysis
and those which use motion analysis.

The former group is further divided into two groups; that is,
stereo-based method group mentioned in the previous chapter in
which just an existence of obstacles is detected without distinc-
tion of moving obstacles and static obstacles, and tracking-based
method group in which a moving obstacle is detected as a tempo-
ral or spatial difference in a local window and tracked to examine
if the change is really due to an obstacle or not.

In the VaMoRs vechicle[55], local windows were set in image
planes to detect obstacle edges. When some edges were detected,
they were tracked continuously as edges of passing vehicles. A
real-time vision system BVV3 was developed for the purpose [56].

In the case of stereo-based detection, segmentation process among
static objects(background) and moving obstacles is necessary, though
the process is difficult to achieve and computationally expensive.

In the case of tracking-based detection, false tracking frequently
happens due to various intensity patterns such as, pedestrian
crossing marks or shadows of parking cars, that result in detection
errors.

On the other hand, in the latter motion-based obstacle detection
group, region segmentation process is generally required before
detection.

Adiv has developed an optical flow field segmentation method[57]
to extract independent moving objects by applying Hough trans-
formation methods to optical flow fields. The approach is based
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on two main stages. In the first stage, the flow field is partitioned
into connected segments of flow vectors, where each segment is
consistent with a rigid motion of a roughly planar surface us-
ing a Hough transformation. In the second stage, segments are
grouped under a hypothesis that they are induced by a single,
rigidly moving object. Each hypothesis is tested by searching
for three-dimensional motion parameters which are compatible
with all the segments in the corresponding group. The advan-
tage of the Hough transformation is the robustness against noise
in optical flow fields. On the other hand, incorrect segmenta-
tion leads to inaccurate motion estimation, that induces failure
of obstacle detection. In addition, enormous memory is necessary
for the Hough transformation with multiple parameters, where
five unknown parameters exist for structure from motion (SFM)
problem.

Tian and Shah presented a method to determine 3D motion of
multiple objects from two perspective views[58]: In the method,
segmentation is determined based on the 3D rigidity constraint.
First, an input image is divided into overlapping patches, and
for each sample of the translation parameter space, the rota-
tion parameters of patches are computed using least-squares fit-
ting. Every patch votes for a sample in the translation parameter
space. For a patch containing multiple motions, an M-estimator
is used to compute rotation parameters of a dominant motion.
The Adaptive Hough Transformation method is used to refine
the relevant parameter space in a coarse to fine fashion. By using
this method, an optical flow field can be reasonably segmented,
and a memory burden can be greatly reduced by using the Adap-
tive Hough Transformation, because a small accumulator is used
with the iterative coarse to fine accumulation and search strategy.
However, its calculation cost is very expensive because a camera
motion has to be estimated in every local image patch and the
estimation is carried out by iterative operations.

Ohta has proposed a method which uses inconsistency and esti-
mation errors computed in estimating the SFM[59]. Using the
assumption that a region of moving obstacle is sufficiently small
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in an image, a region which satisfies at least one of these three
conditions is extracted as a moving obstacle. The conditions are,

(1) square error value of the SFM process is large,
(2) estimated distance to an object has negative sign, and
(3) estimated distance is large.

This method requires camera motion parameters, though they are
difficult to estimate. In addition, precise optical flow estimation
results are necessary for the SFM process.

Object recognition

Conventional motion analysis research on obstacle avoidance has
been focused on the detection of obstacle existence and only a
few attempts have been done for moving object recognition.

For object recognition, most conventional methods are shape-
based, that is, those methods have used the features related to
shape of the objects.

In the ACRONYM system[60] for recognizing airport scenes, 7¢b-
bons description which are 2-D projections of 3-D models is gener-
ated from extracted edge segments. Then, a generalized cylinder
description is generated to match the 3D shape model for air-
planes. ACRONYM is one of the most successful model-based
vision systems. The main problem with ACRONYM, however,
is that it takes a long time to match features extracted from an
image with a 3-D model.

Kuno, Okamoto and Okada presented an efficient object recog-
nition system which automatically generates a recognition strat-
egy from a 3D shape model, and recognizes the object using this
strategy[61]. In the system, the appearances of an object from
various viewpoints are described with visible 2-D features, such as
parallel lines and ellipses. Then, the features in the appearances
are ranked according to the number of viewpoints from which
they are visible. The rank and the feature extraction cost for
each feature are used to generate a tree-like strategy graph. The
system searches for features in the order indicated by the graph.
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After detection, the system compares the line representation gen-
erated from the 3-D model and the image features to localize the
object.

There are three common problems for shape-based recognition.

The first problem is the difficulty for non-rigid objects, such as a
human whose shape changes with time, because an enormous pos-
sibility of 2-D feature combinations exists for non-rigid objects.
In addition, it is very difficult to create complex models, such as
a non-rigid human shape model.

The second problem is the robustness against occlusions. If a part
of an object is occluded by other objects, the recognition becomes
unstable because false features easily occur at the boundary of
these objects.

The third problem is the computational cost. Conventional sys-
tems consist of complex processes such as the model creation pro-
cess, feature extracting process, description generation process
and model matching process. When the shape of the object to
be recognized becomes complex, the computational cost increases
rapidly.

From the viewpoint of psychological physics, recognition using
motion information has been studied for many years.

For example, Johansson showed that a human could recognize
the shape and motion of a human in a short time using discrete
moving light displays (MLD)[62]. A typical way of producing
an MLD is to attach small glass bead reflectors to a person’s
major joints (shoulders, elbows, wrists, hips, knees or ankles)
and focus a strong light on the person. From a sequence of im-
ages involving these few discrete points, a human can recognize
a pedestrian, and describe the type of motion, such as walking
backward, jumping, or walking left. Complicated scenes, such as
several independently moving bodies and couples dancing, can be
recognized[63].

The velocity field, that represents the motion of object points
across an image, is called the optical flow field. Optical flow
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results from relative motion between a camera and objects in the
scene.

Conventional optical flow estimation methods have been classified
into three groups[64].

The first group consists of methods using differential methods
(gradient-based)[65][66], that compute optical flow velocity from
spatio-temporal derivatives of image intensity, or filtered versions
of the image (using low-pass or band-pass filters).

The methods involved in the second group use correspondences
(matching technique)[67] as the stereopsis method, that finds the
best match position for each image point where a similarity mea-
sure, such as the cross-correlation, becomes maximum, and es-
timates the flow vector as the positional difference between the
original point and the best match point.

The third group of optical flow estimation methods is based on
the energy outputs of velocity-tuned filters[68], or phase outputs
of band-pass filters[69)].

The performance measurements of these methods were presented
in [70].

As for motion-based moving object recognition, Yasutomi, Mori
and Kiyohiro proposed a pedestrian detection method using rhythm
information of walking[71]. In this method, rhythms and strides
of walking are measured by using change of intensity in a local
window of differential images between successive frames. The
measurement is robust against variation of clothes, physique and
hair styles because the local window is set where a moving ob-
ject touches a ground. However the recognition ability is limited
to pedestrians from a static camera, because a periodic inten-
sity change is frequently observed from a moving observer (for
example, periodic pedestrian crossing patterns on a road).

Nelson and Aloimonos developed a qualitative obstacle detection
method[72] by using the directional divergence of the 2-D optical
flow fields. The process is done following the steps:
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1. Creation of partial maps on the basis of gradient direction,
and computation of spatial and temporal derivatives.

2. Computation of the parallel component of optical flow for
each partial map. ‘

3. Temporal accumulation of information by combining sep-
arately computed estimates of the flow at several closely
spaced times.

4. Approximation of the directional divergence from partial
flow maps in each principal direction.

5. Combination of directional divergence maps to produce a
hazard map.

6. Segmentation of an image into three regions: safe(magnitude
of value in the hazard map is less than the expected error of
the computation), danger(magnitude of value in the hazard
map is greater than the expected error of the computation)
and caution(no divergence can be computed due to lack of
information in the hazard map).

Though the process can be implemented in a highly parallel, lay-
ered architecture, the acquired results are only a /danger/safe/caution
segmentation.

Camus, Cooms, Herman and Hong implemented the algorithm
on a single ordinary UNIX workstation without the benefit of
real-time operating system support, and navigated a robot in a
laboratory at a speed of 20cm/h for as long as 26 minutes without
collision|[73].

4.2 Object recognition by optical flow anal-
ysis

Our main aim was the development of an algorithm that could effi-

ciently detect moving objects in a scene from a moving observer.

Though several tracking-based approaches have been studied[74],
their applications are limited in the case of single (camera) motion in
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a scene. On the other hand, the problem to solve here is: Detect and
recognize a moving independent object which appears in front during
navigation of a moving observer.

A possible direct method to solve the above problem is to separate
an optical flow field into multiple regions with inherent optical flow
patterns and find regions that do not belong to the background, as
shown in several related work referred to in the last section.

The main problem in using this method is the weakness against
errors in optical flow fields. In real situations, considerable errors are
involved in results of optical flow estimation. As a result, boundary
detection of inherent moving regions, and estimation of 3D motion pa-
rameters from optical flow vectors involved in a local region, are hard
to achieve. In addition, the flow segmentation process requires a lot of
computation time.

The author, Takeda and Onoguchi propose a recognition method
MOROFA (Moving Object Recognition by Optical Flow Analysis)[75]
which can detect and recognize moving objects from a moving observer
by analyzing optical flow information acquired from dynamic images.

Fig.4.1 shows the block diagram of the MOROFA method.

Optical flow calculation
}

Moving object candidate detection

!

Moving object recognition

Figure 4.1: Block diagram of the MOROFA method.

First, optical flow field is detected in image sequences from a camera
on a moving observer and moving object candidates are extracted by
using a square residual error value that is calculated in the process of
estimating the FOE.
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Next, the optical flow directions and intensity values are stored for
pixels involved in each candidate region, to calculate the distribution
width values around the principal axes of inertia and the direction of
the principal axes.

Finally, each candidate is classified into a category of object that is
expected to appear in the scene, by comparing the proportion and the
direction values with standard data ranges for the objects which are
determined by preliminary experiments. '

The MOROFA method is robust against errors occurring in the op-
tical flow fields and in detection of moving object candidates. This
method can be applied to many industrial areas in addition to intel-
ligent mobile robots (for example, an intelligent machine surveillance
system), because few parameters need to be adjusted for recognition.

4.2.1 Optical flow detection

We used the improved gradient-based method developed by Weber and
Malik[76] because it showed the highest efficiency in preliminary exper-
iments.

The flow vector v is calculated by solving the simultaneous equa-
tion shown below, which is composed of multi-scale space-time filtering
outputs.

Il:v Ily Ilt

I, I I
Av+L=0 A= " 1=|"* (4.1)

Inar: Iny Int

Here, I;, is the output of i—th space-time filter and v = (u,v) is
the optical flow vector to be calculated.
The solution of (4.1) is given as follows:

v=—(ATA - NI) AL, (4.2)

Here, the parameter A3 is the smallest singular value of the mea-
surement matrix [A|I;]. In the present system, five space-time filters
with three scales are used.
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Figure 4.2: Example of optical flow detection : original image se-
quences. A numeral in the upper-left of each figure is a frame number.
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Figure 4.3: Example of optical flow detection : results. Flow vectors
are shown at an interval of four pixels.

Example of optical flow detection is shown in Fig.4.2 and Fig.4.3.
In the scene, a car traverses in front, while an observer is moving
straight ahead.

4.2.2 Moving obstacle candidate detection

As an observer moves through a world of static objects, the visual
world projected on the retina seems to flow past. In fact, for a given
direction of translatory motion and direction of gaze, the world seems to
be flowing out of one particular retinal point called Focus of Expansion
(FOE) as shown in Fig.4.4. Each direction of motion and gaze induces
a unique FOE, which is a point at infinity if the motion is parallel to
an image plane.

If an observer is moving with instantaneous velocity (—u, —v, —w),
keeping the coordinate system attached to the viewpoint gives points in
a stationary world a relative velocity (u,v,w). Consider a point located
at (zo, Yo, 20) at some initial time. After a time interval ¢, its position

99



in an image will be,

T+ ut yo+ vt
20 + wt’ 2o+ wt

) (4.3)

(ze,9:) = (

under the perspective projection condition.
Then, the position of the FOE is given as,

) (4.4)

As shown in Fig.4.5, when there is no obstacle, every line which
is an extension of an optical flow vector passes through a common
intersection point which corresponds to the FOE. When an obstacle
suddenly appears, on the other hand, the lines have no common inter-
section point. As a result, the residual error calculated in the process
of estimating the FOE greatly changes, in the case when an obstacle
appears, relative to the case when there is no obstacle.

Thus, the appearance of a moving obstacle is efficiently detected by
using a square residual error calculated in the process of estimating the
FOE[77).

If a point(z;,y;) has an optical flow vector (u;,v;), the equation of
the extended flow vector is as follows:

Uu

v
(xfoea yfoe) = (w, E

a;r+by+c=0 (4.5)
Here,

s
e Y
a; =

bi = _t_'—-u:;+vi2 (46)

ci = UY; —VT;
‘ uil4v?
The coefficient matrix A and the constant vector ¢ are determined
such as,

a; b
es b

A=| 27 (4.7)
a, bn



Figure 4.4: Focus of Expansion (FOE). When an observer moves
through a world of static objects, the visual world projected on the
retina seems to be flowing out of one particular retinal point called
Focus of Expansion (FOE).
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Residual

AN N

(a) )

Figure 4.5: Basic idea of moving obstacle detection using FOE residual
error. When there is no obstacle, every line which is an extension of
the optical flow vector passes through a common intersection point
which corresponds to the FOE. When an obstacle suddenly appears,
on the other hand, the lines have no common intersection point. As
a result, the residual error calculated in the process of estimating the
FOE greatly changes, in the case when an obstacle appears relative to
the case when there is no obstacle.
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Optical flow calculation

Block size establishment

Residual error calculation

Block sliding and addition|

No Final p®

Yes

Block size change

Final block? No

Yes

Thresholding

A

Region with high residual
error extraction

Figure 4.6: Algorithm of the moving object candidate detection process.
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c=[cl Co ... Cp ]T (4.8)

Here, n is the number of flow vectors used for estimating the FOE.
Then, the solution X of the following equation,

Ax+c=0 (4.9)

which is given as,

x=—Atc (4.10)

is the estimated FOE
Here, A7 is the pseudo inverse matrix of A.
Then, a square residual error E is calculated as follows:

E =A% + | (4.11)

There are three main possibilities when the square residual error for
a region containing a moving obstacle is falsely small instead of large:

(1) The block contains almost all flow vectors caused by the motion
of an obstacle.

(2) The boundary of a block touches the boundary of an obstacle.

(3) A size of an obstacle is smaller than the size of a block.

To detect the obstacle in the three cases stably, rectangular sliding-
blocks of multiple sizes are used. The reason for using rectangular
blocks is just simplicity. When the background region is sufficiently
larger than each region of moving obstacles, appropriate rectangular
blocks which involve both a background region and an obstacle region,
and covered the obstacle region, can be set in the image. The block
sizes are experimentally determined according to the sizes, the minimal
distances to detect and velocity of moving objects.

A square residual error is first calculated in a block by using (4.11)
and normalized by the number of flow vector. Then, the normalized
square residual error value is additionally voted at corresponding points
of the block in a memory (we call it a residual image), which has the
same size as an image. This process is repeatedly executed with sliding
the block and changing the size of the block. Values in overlapped
regions among multiple blocks are averaged and voted.
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(a) Optical flow field (b) Residual image

Figure 4.7: Example of a residual image. Brightness of the residual
image is proportional to an amount of the square residual error values.
In (b) the region of an obstacle(car) has a high residual error value in
comparison with the background region.

An example of moving obstacle candidate detection is shown in
Fig.4.7, where Fig.4.7(a) shows an optical flow field extracted by using
the Weber-Malik method shown in the last section, and the residual
image is in Fig.4.7(Db).

Brightness of the image is proportional to an amount of the square
residual error values. This figure clearly shows that the region of the
obstacle has a high residual error value in comparison with the back-
ground region.

In order to suppress noise in the residual image caused by erroneous
flow vectors, a sequence of residual images is convoluted with a temporal
low-pass filter. Finally, regions which have larger values than a thresh-
old value are extracted as obstacle candidate regions. The threshold
value is determined experimentally.
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4.2.3 Moving object recognition

We propose a simple moving object recognition method which analyzes
optical flow information.

In this method, the moving object recognition problem is formulated
as the analysis of differences in local motion that are inherent to the
categories of an object to be recognized. We use the following practical
assumption:’ parts with independent motion are projected to regions
which have separated patterns in optical flow field. As a result, the
distribution patterns in some feature space show inherent aspects, that
are useful for recognition.

The distribution pattern in the 2D feature (optical flow direction,
intensity) space is schematically shown in Fig.4.8.

When the independent moving part of an object is one, such as a
car, the optical flow directions are similar for components, such as a
body frame, window glasses or wheels, because all components move
together. As a result, a distribution pattern only expands in the inten-
sity direction. On the other hand, the number of independent moving
parts, such as humans or bicycles, increases and the distribution pat-
tern expands in the intensity direction and the optical flow direction.

The observed distribution patterns involved in obstacle candidate
detection results are not separated as in Fig.4.8, but blurred (con-
nected) as in Fig.4.9. The reasons are as follows:

e The distribution pattern blurs in the intensity direction, because
a result of optical flow estimation also blurs due to using spatio-
temporal filters, and the detection units are rectangular blocks
which also involve background regions.

e The distribution pattern blurs in the optical flow direction due to
errors in estimating optical flow.

e False patterns due to failure of obstacle candidates detection are
mixed in the feature space.

To extract the difference of distribution characteristics in the 2D
feature space in spite of these problems, we used the distribution width
values around the principal axes of inertia and the direction of the
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optical flow direction
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intensity

optical flow direction

optical flow direction

intensity

Figure 4.8: Schematic distribution pattern in flow direction-intensity
space. Color of an ellipse in a distribution pattern graph at right side
of the figure corresponds to the intensity of an element in an object.
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optical flow direction
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optical flow direction

intensity

Figure 4.9: Observed distribution pattern in flow direction-intensity
space. The real observed distribution patterns are not separated as in
Fig.4.8 but connected.
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principal axes in the distribution pattern that are calculated by the
principal component analysis.

The moving object recognition process is shown in Fig.4.10.

First, the directions of optical flow and intensity values are stored
for the pixels involved in each candidate region during a few frames just
after moving object candidates are initially detected. Using the stored
data, the proportion (coefficient of determination) and the direction
values of the first principal components are calculated by using the
principal component analysis.

The general process of principal component analysis is shown below.

From the n data {z;;},¢=1,2,...,p,7 = 1,2,...,n, the covariance
matrix S is calculated as follows:

2
51 S12 S
2
S12 S22 - Sy
S=| . T ) (4.12)
2
Slp szp . e sp

Next, the eigenvalue A of S is estimated by solving the following
characteristic equation.

812 - A S12 s Sip
S12 spi—A .- Sop
det i ) . ] =0 (4.13)
S1p S9p R

The solution A; of (4.13) is all positive definite, that is,

M2z 2220 (4.14)

Finally, an eigenvector a; = (a1, a;2, -+, @ip) Which corresponds to
each eigenvalue )\; is calculated by solving (4.15).

Sa; = \;a4 (4.15)

Here,
ai>+ap+---+ a,-p2 =1 (4.16)
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of the first principal component
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Figure 4.10: Algorithm of the moving object recognition process.
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As a result, the i-th principal component Z; can be represented as
follows:

Z; = a1 + @2 + -+ + ATy (4.17)

The proportion value p; of the i-th principal component Z; repre-
sents the ratio of original information described by the principal com-
ponent. '

Ai

= 4.18
MA At o+ A (4.18)

D

By applying the above analysis for two-dimensional data (n = 2), the
local motion information of multiple points involved in moving object
candidate regions can be efficiently described by the first dominant
component as shown in Fig.4.11.

Even if parts of background are mixed in the candidate regions, the
results of the principal component analysis are not be affected so much.

In the MOROFA method, each candidate is classified into a cate-
gory of object that is expected to appear in the scene, by comparing
the following two kinds of values with standard data ranges, that is,
the direction values of the eigenvectors which correspond to the first
eigenvalues d(a;) and the proportion values py given by (4.18).

Y

In MOROFA method, objects to be recognized in outdoor environ-
ments are classified into four categories; cars, bicycles, pedestrians and
unknown objects.

When the independent moving part of an object is one, the first
principal component represents the unique motion which coincides with
the moving direction of the object itself and the proportion value pq,
which indicates the inverse of the variance, is nearly 1.0. The direction
of the first principal component d(a;) is nearly 0.0 because most points
involved in the moving object candidate region have similar optical flow
directions.

While the number of independent moving parts increases, the pro-
portion value py decreases from 1.0 because several optical flow patterns

(4.19)

p1
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are mixed and the variance around the principal axis in the distribution
pattern becomes larger. In addition, the direction of the first principal
component d(a) also increases. Consequently, the recognition of mov-
ing objects can be efficiently realized by analyzing the proportion value
and the direction of the first principal component as shown in Fig.4.11.

optical flow direction

distribution of unique moving part
180 \
(X X X ¥ X XY -
b( R ),(\ X% X XX ) » } small variance
The first principal component
90 A
principal component
large variance
distribution of multiple moving parts
intensity
0 128 255

Figure 4.11: The principal components of distribution patterns in the
feature space.

The recognition is executed by checking if both the values (p; and
d(ay)) are involved in some predetermined cluster as shown in Fig.4.12.
Distribution patterns of cars have larger (py values and smaller d(a;)
values, on the other hand, those of humans have smaller p; values
and larger d(ay) values. Those of bicycles are located in the middle.
A distribution pattern in other regions is judged as a pattern of an
unknown object.
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Bicycle
Pyf----------- |
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direction value : d(al)

Figure 4.12: The clusters for recognition. Parameters Pz, Py, Pz, Dz
and Dy are determined by preliminary experiments.
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The MOROFA method is stable against errors occurring in optical
flow fields and in the detection of moving object candidates because
the method is based on the statistical analysis and does not use shape
information for recognition as do conventional recognition methods. In
addition, the MOROFA method can recognize a moving object effi-
ciently, because no apparent motion segmentation process is necessary
such as in [57]. Owing to the small number of the parameters requir-
ing adjustment, this method can be applied to many industrial fields
(for example, an intelligent machine surveillance system or an obstacle
detection system for an autonomous vehicle).

4.3 Experimental results

In this section, experimental results using real images in two factories
of Toshiba Corp. (Osaka, Fuchu) are presented. Images for the experi-
ments were taken from a camera attached to the roof of an automobile
which was driven manually at the speed of 10 Km/h.

The number of independent local moving part is one in the case of
cars, three in the case of bicycles (the bicycle, the leg of the rider and
the hand of the rider) and five in the case of pedestrians (the upper
half of a body, the left hand, the right hand, the left leg and the right
leg).

At first, the range parameters for the distribution width values
around the principal axes of inertia and the direction values of the
principal axes shown in Fig.4.12 were experimentally determined using
the data of five scenes (scene 1, 2, 4, 6 and 7) in the Osaka factory
as shown in Table tbl:obst-param. The length of the data storage pe-
riod was determined as 10 frames. The same parameter values were
available for the remaining scenes.

For moving obstacle candidate detection, we used three sizes of slid-
ing blocks as shown in Table.4.1, that were determined experimentally.

The configuration of the scenes is shown in Table 4.3. Scene 1 ~ 14
were taken in the Osaka factory and scene 15 ~ 25 were taken in the
Fuchu factory.
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Table 4.1: Sliding-block configuration.

r | size | sub-sampling interval leiding intervm
block 1 | 32 x 32 4x4 4
block 2 | 64 x 64 8 x 8 4
block 3 | 96 x 96 12 x 12 4

Table 4.2: Values of parameters for recognition.

proportion parameters directi(()gegiggfl eters
Px Py Pz Dx Dy
0.75 0.60 0.50 30 5

Examples of distribution pattern in flow direction-intensity space
are shown in Fig.4.13 ~ Fig.4.15.

Those patterns qualitatively coincide with the schematic patterns
shown in Fig.4.9.

Examples of detecting moving object candidates (nine successive
frames) are shown in Fig.4.16, Fig.4.17 and Fig.4.18. The shadowed
regions are detection results of moving object candidates.

Though detection of moving object candidates is generally correct
in scenes 1 ~ 8, several errors such as missing of objects or detection
of a part of road occur in scenes 9 ~ 25.

The result of the recognition is shown in Table 4.4.

The average rate of the successful recognition was 84%, and the
average rate of the recognition failure was 8%.

As to those scenes whose results of moving object candidates de-
tection are generally correct (scenes 1 ~ 8), the rate of the successful
recognition was 100%.
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Table 4.3: Scene configuration.

[ moving object category |

moving direction

scene 1 Car horizontal crossing (from right to left)
scene 2 Car horizontal crossing (from left to right)
scene 3 Car turning to the right

scene 4 Bicycle horizontal crossing (from left to right)
scene 5 Bicycle oblique crossing (from left deep to right shallow)
scene 6 Pedestrian approaching (left side of road)

scene 7 Pedestrian horizontal crossing (from left to right)
scene 8 Pedestrian horizontal crossing (from right to left)
scene 9 Car preceding

scene 10 Car turning to the left

scene 11 Car turning to the right

scene 12 Car preceding

scene 13 Bicycle approaching (left side of road)

scene 14 Bicycle oblique crossing (from left shallow to right deep)
scene 15 Bicycle horizontal crossing (from right to left)
scene 16 Bicycle oblique crossing (from right shallow to left deep)
scene 17 Bicycle going away (left side of road)

scene 18 Bicycle oblique crossing (from right deep to left shallow)
scene 19 Pedestrian going away

scene 20 Pedestrian oblique crossing (from left deep to right shallow)
scene 21 Pedestrian oblique crossing (from left shallow to right deep)
scene 22 Pedestrian horizontal crossing (from left to right)
scene 23 Pedestrian oblique crossing (from left shallow to right deep)
scene 24 Pedestrian approaching (left side of road)

scene 25 Pedestrian going away (left side of road)
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Figure 4.13: Example of distribution pattern (car, turning to the right

in scene 3).
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Figure 4.14: Example of distribution pattern (bicycle, oblique crossing

in scene 5).
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The bright regions are results of moving object candidate detection.

Figure 4.16: Moving object candidates detection results (car in'scene
2).
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The bright regions are results of moving object candidate detection.

Figure 4.17: Moving object candidates detection results (bicycle in
scene 4).
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The bright regions are results of moving object candidate detection.

Figure 4.18: Moving object candidates detection results (pedestrian in
scene 6).
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Table 4.4: Recognition results of the MOROFA method.

| moving object category | recognition result ]

scene 1 Car Car
scene 2 Car Car
scene 3 Car Car
scene 4 Bicycle Bicycle
scene 5 Bicycle Bicycle
scene 6 Pedestrian Pedestrian
scene 7 Pedestrian Pedestrian
scene 8 Pedestrian Pedestrian
scene 9 Car Car
scene 10 Car Car
scene 11 Car Car
scene 12 Car Car
scene 13 Bicycle Pedestrian
scene 14 Bicycle unknown object
scene 15 Bicycle Pedestrian
scene 16 Bicycle Bicycle
scene 17 Bicycle Bicycle
scene 18 Bicycle Bicycle
scene 19 Pedestrian Pedestrian
scene 20 Pedestrian Pedestrian
scene 21 Pedestrian unknown object
scene 22 Pedestrian Pedestrian
scene 23 Pedestrian Pedestrian
scene 24 Pedestrian Pedestrian
scene 25 Pedestrian Pedestrian
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The processing time was about 29 seconds when a test program
written in C language was used on a standard engineering workstation;
the time for optical flow calculation was 13 seconds per frame, moving
object candidate detection was 15 seconds per frame and moving object
recognition was less than 1 second.

4.3.1 Discussions

One of the main reasons for recognition failure is the coincidence of the
moving directions of the moving observer and the moving object (scene
13). That is, the detection of a moving object becomes difficult when
the FOE positions of a moving observer and that of a moving object ap-
proach each other. To overcome this problem, we have been improving
the object candidate detection process by using directional information
from the optical flow field in addition to the FOE position. Even in
such difficult cases, the recognition could be performed correctly when
the major part of moving object regions were detected (scenes 6, 9, 12,
17, 19, 24 and 25). '

Another reason for recognition failure is the partial deficit in the
detected moving object candidate region. In the case of scenes 14, 15
and 21, the recognition failed because not enough local motion infor-
mation for recognition could be acquired as a result of the missing of
objects and detection failure for a part of road. To counter this prob-
lem and improve the recognition ability, we have been investigating
the use of inherent shape information (for example, circles of wheels in
the case of bicycles and cars), for verification in addition to the MO-
ROFA method. If the number of objects to be recognized increases, the
addition of features should be also investigated.

There are several problems in applying this method to real applica-
tions. The main problems and solution plans are as follows:

e Camera vibration caused by motion oscillation of observer:

Because the effect of camera vibration influences the whole image,
the obstacle candidates detection process using a square residual
error is not influenced by the translational motion component of
camera vibration. To eliminate the rotational motion component
of camera vibration, flow vector subtraction at far background,
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such as cloud region in the sky, where the translational component
of optical flow vectors becomes nearly 0, is possible.

Existence of multiple obstacles:

Generally, the regions of obstacle candidates are separated when
they appear. In that case, the kinds of obstacles are successfully
recognized by using optical flow information involved in each can-
didate region independently.

Eristence of shadows:

The optical flow vectors due to shadow of moving observer dis-
turb the obstacle candidate detection and recognition process. In
that case, the optical flow vector involved in shadow candidate
region, which is detected by using intensity information or height
information (shadow is projected on the road plane), is eliminated
before the obstacle candidate detection process.

Correspondence of moving direction between observer and obsta-
cles:

When the moving direction of an observer and an obstacle be-
comes similar, that is, an obstacle approaches from front direc-
tion, the obstacle candidate detection becomes difficult because
FOE position of background and that of the obstacle approach
each other. Even in such a difficult case, the optical flow of the
obstacle can be discriminated from that of background region by
using the length information of optical flow vectors, because the
obstacle is much nearer than background region and has long flow
vectors.

Speed up

When an observer is moving at 20 Km/h (normal speed in a
factory) and an obstacle traverses 50m in front of the observer,
the obstacle detection and recognition process has to be finished
within 8 seconds.

We have improved the optical flow calculation process and the
obstacle detection candidate detection process. The time required
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for optical flow calculation is 4.4 seconds per frame and the time
required for obstacle candidate detection is 3.4 seconds per frame.
We intend to develop hardware to detect the optical flow field in
real-time. '
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Chapter 5

Conclusion

The subject of this thesis is research and development conducted with
a view to realizing an autonomous mobile robot able to work in an
unstructured dynamic environment such as an office, a street or a home.
Specially, this thesis describes an architecture of a controller and vision-
based obstacle detection and recognition methods.

To attain both efficient navigation to a final goal and robustness
against various kinds of failures that may occur in a dynamic environ-
ment, a task-oriented three-grouped control architecture, which consists
of Reflexive Behavior Agent Group for self-continuance, Purposive Nav-
igation Behavior Agent Group and Adaptive Behavior Agent Group,
has been proposed.

The Reflexive Behavior Agent Group, consists of agents with con-
tact, infrared and ultrasonic ranging sensors, which maintain the min-
imal safety of the robot and humans at least.

The role of the Purposive Navigation Behavior Agent Group is to
efficiently navigate the robot to a final goal. Several target searching
and tracking agents in accordance with subgoals, such as a wall or an
intersection, have been installed.

The Adaptive Behavior Agent Group, consisting of Free-Space-Explorer,
Obstacle-Boundary-Follower, Open-Space-Explorer and Wall-Follower,
has been developed to recover from failures in the Purposive Navigation
Behavior agents or infinite-loop motion sequence situations.

An extended energy-minimizing method is developed to produce an
appropriate velocity and steering commands for the robot navigation
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using multiple sensor readings.

These grouped agents are directly connected to a navigation actu-
ator controller named Motion Executor, which determines the motion
(velocity and steering) command of the robot. Independent agent-
arbitration means are prepared in the Motion Executor.

In addition to conducting simulation experiments to prove the ef-
fectiveness of the proposed architecture, we have developed a small
cart-type robot BIRDIE and have done several indoor navigation ex-
periments, such as moving obstacle (human) avoidance, intersection
tracking and total navigation in an office, successfully.

As for the attainment of the vision-based obstacle detection and
recognition abilities, two kinds of methods have been proposed.

At first, to realize the vision-based free space detection function,
which is important for attaining safe navigation, the Disparity Predic-
tion Stereopsis (DPS) method using binocular stereo cameras has been
proposed for static obstacle detection.

The DPS method consists of four parts: the feature edge extraction
part, the vertical edge matching part, the obstacle prediction region
establishment part and the collision-free space detection part. The
existence of obstacles in the space where a robot is due to move can be
efficiently examined without making a depth map for the whole scene.

Experimental results of detecting several static obstacles in indoor
environments and the carrying out, more than 100 times, of real nav-
igation experiments using a clover-type vehicle AIMARS have demon-
strated the effectiveness of the DPS method.

Next, a vision-based moving obstacle detection and recognition method
which is important for attaining both safety and flexibility in navigation
has been described.

To realize these requirements, the MOROFA method which analyzes
optical flow information has been proposed.

The MOROFA method consists of three parts: the optical flow cal-
culation part, the moving object candidate detection part and the mov-
ing object recognition part. The candidates of moving obstacles can be
effectively detected by calculating the square residual errors in the pro-
cess of estimating the FOE in local windows, without estimating the
motion parameters which would impose a large computational cost and
it is not robust against noise. In addition, the types of the objects can
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be robustly recognized by analyzing the optical flow information in 2D
feature space.

Experimental results of moving obstacle (cars, bicycles, and pedes-
trians) recognition in two factories have demonstrated the effectiveness
of the proposed method.

The remaining problems include attainment of environment learning
ability for adaptation and reactive planning ability for flexible driving
command determination.

The author believes that, in the 21st century, practical intelligent
mobile robots will be working cooperatively with humans in several
domains, for example, as guides for aged persons or as personal as-
sistants in offices, as a result of the combination of three strands of
robotics research, namely pursuit of navigation performance, acquisi-
tion of adaptability and realization of reactive robustness.
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