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Chapter 1

Introduction

A convex polytope is a convex hull of finite points of a Euclidian space, and if these
points have integer coordinates, then one is called an integral convez polytope. (See
the books [20] and [78]). Integral convex polytopes are interesting objects related
to many branches of mathematics. In this thesis, we pick up aspects of integral
convex polytopes having close connections with combinatorics, algebraic geometry
and commutative algebra. In particular, we focus on the following three topics in
the studies of integral convex polytopes, Ehrhart polynomials, Fano polytopes and
affine semigroup rings.

Three topics in the studies of integral convex poly-
topes

First, in the area of enumerative combinatorics, Ehrhart polynomials of integral
convex polytopes appear as enumerative functions of several important combinato-
rial objects, for example, magic squares, Latin squares or domino tilings, etc. (See [6]
and [69] for more detailed information.) In this thesis, we will give a combinatorial
characterization of the Ehrhart polynomials of integral convex polytopes.

Secondly, many toric varieties can be constructed from integral convex polytopes.
In particular, a toric Fano variety is constructed from, so-called, a Fano polytope,
which is a full-dimensional integral convex polytope containing the origin in its
interior as a unique integer point. Since a toric Fano variety is defined from a Fano
polytope completely, it has a lot of information of a toric Fano variety. Thus, from
a viewpoint of algebraic geometry, Fano polytopes are a useful combinatorial object
to understand toric Fano varieties. In fact, many results on toric Fano varieties are
obtained by using Fano polytopes ([42, 43, 52, 53]). In this thesis, we will construct
some new examples of smooth Fano polytopes.

Thirdly, from an integral convex polytope, we can define an affine semigroup
ring. By considering affine semigroup rings arising from integral convex polytopes,



we obtain several interesting examples of commutative algebra. (Many results re-
lated with affine semigroup rings are described in the books [12], [49] and [72].) In
this thesis, we will study some new classes of affine semigroup rings arising from
integral convex polytopes.

Those topics themselves are not only interesting and crucial in each field but also
closely related to each other. For example, Ehrhart polynomials of Fano polytopes
express some properties on toric Fano varieties. A lot of properties on Ehrhart
polynomials are proved by considering the Ehrhart ring, which is an affine semigroup
ring arising from an integral convex polytope. As is well known, it often happens
that we find a deep relationship between some properties on toric Fano varieties and
affine semigroup rings associated with Fano polytopes.

Structure of this thesis

The organization of this thesis is as follows. We divide this thesis into three parts.
Each part includes the author’s results on each topic.

e Part I is devoted to the studies on Ehrhart polynomials and the author’s
results on Ehrhart polynomials are presented. There are three chapters in
Part I. The first one is an introduction to Ehrhart polynomials. In the second
one, we concentrate on the classification problems of Ehrhart polynomials. In
the third one, we discuss root distributions of Ehrhart polynomials. This part
contains the results of [34, 35, 36, 37, 38, 40, 41, 48|.

e Part II is devoted to the studies on Fano polytopes and there are two chapters,
the first one of which is an introduction. The second one is spent to estab-
lish examples of Fano polytopes via some combinatorial methods. This part
contains the results of [29, 39].

e Part III is devoted to the studies on affine semigroup rings and is divided into
three chapters, while the first one is an introduction. In the second one and
third one, we investigate the properties on affine semigroup rings arising from
graphs and cyclic polytopes, respectively. This part contains the results of
(32, 33, 30, 31].
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Chapter 2

Introduction to Ehrhart
polynomials

In this part, as the first aspect of the studies on integral convex polytopes, we will
consider the Ehrhart polynomials of integral convex polytopes. Ehrhart polynomials
often appear in the area of enumerative combinatorics. Thus, to study the Ehrhart
polynomials of integral convex polytopes are very important and interesting.

We will summarize some basic notions, notation and some results on Ehrhart
polynomials.

First, let us review basic definitions and the studies on the classifications of
Ehrhart polynomials. Let P C RY be an integral convex polytope of dimension d
and let 9P denote the boundary of P. Given a positive integer n, we define the
numerical functions i(P,n) and i*(P,n) by setting

i(P,n) = [nPNZ"| and i*(P,n) = |n(P — OP)NZ"|.

Here nP = {na : a € P} and | X| is the cardinality of a finite set X.
The systematic study of i(P,n) originated in the work of Ehrhart [16], who
established the following fundamental properties:

(a) i(P,n) is a polynomial in n of degree d; (Thus, in particular, i(P,n) can be
defined for every integer n.)

(b) i(P,0) = 1;
(c) (loi de réciprocité) i*(P,n) = (—1)%(P, —n) for every integer n > 0.

We say that i(P,n) is the Ehrhart polynomial of P. We refer the reader to [6,
Chapter 3] and [26, Part I1] for an introduction to the theory of Ehrhart polynomials.
We define the sequence g, 1, o, . . . of integers by the formula

(1— )% ii(?, n)A\" = idw. (2.1)

13



From the basic facts (a) and (b) on ¢(P,n) together with a fundamental result on
generating function ([69, Corollary 4.3.1]), we have ¢; = 0 for every i > d. We say
that the sequence

(S(P) - (50, 51, ceey 6d)
which appears in (2.1) is the §-vector of P and the polynomial

d
Op(t) = it
=0

is the d-polynomial of P. Thus &y = 1 and 6, = [P NZN| — (d + 1). It follows from
the reciprocity law (c) that

0o d+1 ;
% n = 5 *i)\z

E i"(P,n)A\" = %. (2.2)

n=1

In particular,

5a=|(P —aP)NZV|.

Hence 6; > d4. Remark that if 0; = d4, then P is always a simplex. It also follows
from (2.2) that

max{j : §; # 0} + min{k : k(P —OP)NZN # 0} =d + 1. (2.3)

Moreover, each §; is nonnegative ([68]). In addition, if (P —dP)NZ" is nonempty,
then one has §; < §; for every 1 <i <d—1 ([28]).

When d = N, the leading coefficient X7 8;/d! of i(P,n) is equal to the usual
volume of P ([69, Proposition 4.6.30]). In general, the positive integer vol(P) =
Z?:o d; is said to be the normalized volume of P.

When d < 2, the Ehrhart polynomials are completely classified. In fact, the
possible d-vectors of integral convex polytopes of dimension 2 are known in Scott
[67]. When d > 3, however, the classification is still unknown. Note that studying
Ehrhart polynomials is equivalent to studying d-vectors. The d-vectors of integral
convex polytopes have been studied intensively. For example, see [61, 73, 74].

Next, let us review the studies on roots of Ehrhart polynomials. Let P C RY be
an integral convex polytope of dimension d and (P, n) its Ehrhart polynomial. A
complex number « € C is called a root of i(P,n) if i(P,«a) = 0.

Many papers on integral convex polytopes, including [5, 7, 8, 9, 23, 24, 62], discuss
roots of Ehrhart polynomials. Root distribution of Ehrhart polynomials is one of
the current topics on computational commutative algebra. It is well known that the
coefficients of the Ehrhart polynomial reflect combinatorial and geometric properties
such as the volume of an integral convex polytope in the leading coefficient, gathered
information about its faces in the second coefficient, etc. The roots of Ehrhart
polynomials should also reflect properties on integral convex polytopes that are hard
to elicit just from the coefficients. Beck et al. [5] propose the following remarkable

14



Conjecture 2.0.1 ([5, Conjecture 1.4]). All roots o of Ehrhart polynomials of d-
dimensional integral convex polytopes satisfy —d < Re(a) < d — 1, where Re(«)
denotes the real part of o € C.

This conjecture has been solved when d < 5 in [9]. It is also known ([8]) that

every root is contained in
1 1
-1 <d({d—=]¢.

{ZEC:

Compared with this bound, the strip in the conjecture puts a tight restriction on
the distribution of roots for any Ehrhart polynomial.

A Fano polytope is an integral convex polytope P C R? of dimension d such that
the origin of R? is a unique integer point belonging to the interior of P. A Fano
polytope is called Gorenstein if its dual polytope is integral. (Recall that the dual
polytope PV of a Fano polytope P is the convex polytope which consists of those
r € R? such that (z,y) <1 for all y € P, where (x,y) is the usual inner product of
R?) Further information on Fano polytopes is written in Part II.

Let P C R? be a Fano polytope with §(P) = (&, 01,...,dq) its d-vector. Tt
follows from [3] and [27] that the following conditions are equivalent:

e P is Gorenstein;
e §(P) is symmetric, i.e., ; = §4—; for every 0 < j < d;
o i(P,n)=(—1)%(P,—n—1).

A combinatorial characterization of for the d-vectors to be symmetric is studied in
[15] and [27].

When P C R? is a Gorenstein Fano polytope, since i(P,n) = (—1)%(P, —n —1),
the roots of i(P,n) are distributed symmetrically in the complex plane with respect
to the line Re(z) = —%. Thus, in particular, if d is odd, then —% is a root of i(P,n).
In fact, since d is odd, the number of real roots of i(P,n) is odd. If a real root «
of i(P,n) is not equal to —%, then —a — 1 is also a real root. Hence —3 must be a
root.

It is known in [7, Proposition 1.8] that, if all roots @ € C of i(P,n) of an integral
convex polytope P C R? of dimension d satisfy Re(a) = —%, then P is unimodular
equivalent with a Gorenstein Fano polytope whose volume is at most 2%. In a recent
work [23], the roots of the Ehrhart polynomials of smooth Fano polytopes with small
dimensions are completely determined.

If each of the roots of the Ehrhart polynomial of an integral convex polytope
P has the real part —%, then P must be Gorenstein since the function equation
i(P,n) = (—1)%(P, —n — 1) must be held. On the contrary, each of all the roots of
Gorenstein Fano polytopes o does not always satisfy Re(a) = —%. Hence, it is also
meaningful to investigate roots of Gorenstein Fano polytopes.

15



The structure of the rest of this part is as follows. In Chapter 3, we will discuss
the classification probelm on the Ehrhart polynomials of integral convex polytopes.
Essentially, we will classify their possible d-vectors. In particular, we will consider
the d-vectors of integral convex polytopes whose normalized volumes are small. In
Chapter 4, we will discuss root distributions of the Ehrhart polynomials. Especially,
we will present counterexamples of Conjecture 2.0.1. Moreover, we will also focus
on roots of the Ehrhart polynomials of Gorenstein Fano polytopes.

16



Chapter 3

Classification problems on Ehrhart
polynomials

In this chapter, we will study the classification problems on the Ehrhart polynomials
of integral convex polytopes. Especially, we will consentrate on the case where they
are simplices, which is a crucial case in some sence.

After reviewing the well-known technique how to compute the d-vectors of in-
tegral simplices in Section 3.1, we will consider the classification problem on the
Ehrhart polynomials of integral convex polytopes whose normalized volumes are at
most 3 in Section 3.2, are 4 in Section 3.3 and at least 5 and prime in Section 3.4,
respectively. Most parts of them will be devoted to discussing the Ehrhart poly-
nomials of integral simplices. Finally, in Section 3.5, we will consider the specific
class of d-vectors and study some properties on integral convex polytopes with such
d-vectors.

3.1 Review on the computation of the )-vector of
a simplex

First of all, let us recall the well-known combinatorial technique to compute the
d-vector of an integral simplex.

Given an integral simplex F C R” of dimension d with the vertices vy, v1, .. ., v4,
we set

d
S(P) = {Zn(vi,l) eRYM:0< < 1} aVARE
=0
and
d
S*(P):{ ri(v,»,l)ERN+1:0<r,-§1}ﬁZN+1,
i=0

We define the degree of an integer point (a,n) € S by deg(a,n) = n, where a € ZV
and n € Zsq. Let 6; = [{a € S(P) : dega = i}| and 6} = [{a € S*(P) : degax = i }|.

17



Then we have

d(F) = (60,61, -.,0q)

and
5;:(503_,_1_2‘ for Zzl,,d+1

Notice that the elements of S(P) form an abelian group with a unit (0,...,0).
For o and (3 in S(P) with o = Z?:o ri(v;, 1) and § = Z?:o si(v;, 1), where 14,5, € Q
with 0 < r;,s; < 1, we define the operation in S(P) by setting a @ 3 := Zfzo{ri +
siHwv;, 1), where {r} = r — |r] denotes the fractional part of a rational number r.
(Throughout this section, in order to distinguish the operation in S from the usual
addition, we use the notation &.)

3.2 The case where Z?:o 9; <3

In this section, we classify the possible d-vectors of integral convex polytopes with
S48 <3

For our classification, we present two well-known inequalities on J-vectors. Let
s = max{i : §; # 0}. Stanley [71] shows the inequalities

50+(51+"‘+5,‘§53+5s_1+"'—|—55_i, OSZS[S/Q] (31)
by using the theory of Cohen-Macaulay rings. On the other hand, the inequalities
dag+0a—1+ - +0a—i <6 +0a+-+4, 0<i<[d-1)/2] (3.2)

appear in [28, Remark (1.4)].
Somewhat surprisingly, when Z?:o 9; < 3, the above inequalities (3.1) together
with (3.2) give a characterization of the possible d-vectors. In fact,

Theorem 3.2.1 ([35, Theorem 0.1]). Given a finite sequence (3o, 1, - ..,04) of non-
negative integers, where g = 1, which satisfies Z?:o 0; < 3, there exists an integral
conver polytope P C R of dimension d whose §-vector coincides with (8o, 1, .. ., 6,)
if and only if (3o, 01, ...,04) satisfies all inequalities (3.1) and (3.2). Moreover, all
such polytopes can be chosen to be simplices.

Note that the “Only if” part of Theorem 3.2.1 is obvious. In addition, no dis-
cussion will be required for the case where Zj:o 0; = 1.

On the other hand, the following example shows that Theorem 3.2.1 is no longer
true for the case of Z?:o 5; = 4.

Example 3.2.2. We claim that the sequence (1,0,1,0,1,1,0,0) cannot be the 6-
vector of an integral convex polytope of dimension 7. Suppose, on the contrary,
there exists an integral convex polytope P C RY of dimension 7 with §(P) =

18



(09, 01,...,07) =(1,0,1,0,1,1,0,0). Since §; = 0, we know that P is a simplex. Let
Vg, V1, . - . , U7 be the vertices of P. By using the discussions described above, one has

S(P) = {(07 s 70)7 (a’ 2)’ (ﬁ7 4)7 (775)}

and

S*(P) ={(/,3),(8,4), (7.6), (Zvi, )}

Write o/ = 3.7_ ryv; with each 0 < r; < 1. Since (o, 3) & S(P), there is 0 < j < 7
with 7; = 1. If there are 0 < k < ¢ < 7 with r, = ry = 1, say, ro = m = 1, then
0<r,<1foreach2<gq<7and Y.__,7 = 1. Hence (o/ — vy —vy,1) € S(P),
a contradiction. Thus there is a unique 0 < j < 7 with r; = 1, say, 7o = 1. Then
o= 25:1 r;v; and v = ZZ:1<1 —1;)v;. Let F denote the facet of P whose vertices
are vy, vy, . .., vy with 6(F) = (83,01,...,05) € Z7. Then 8, = o, = 1. Since &} < §;
for each 0 < i < 6, it follows that 6(F) = (1,0,1,0,0,1,0). This contradicts the
inequalities (3.1).

3.2.1 A proof of Theorem 3.2.1 when Zf:o 0; =2

The goal of this subsection is to prove the “If” part of Theorem 3.2.1 when Z?:o 0; =
2. First of all, we recall the following well-known

Lemma 3.2.3 ([6, Theorem 2.4]). Suppose that (5o, 01, ...,dq) is the d-vector of
an integral convex polytope of dimension d. Then there exists an integral convex
polytope of dimension d + 1 whose §-vector is (5o, 1, ... ,04,0).

Note that the required d-vector is obtained by forming the pyramid over the
integral convex polytope.

We study a finite sequence (dg,d1,...,04) of nonnegative integers with 6y = 1
which satisfies all inequalities (3.2) together with Z?:o 0; = 2. Since 6y = 1, 01 > dq4
and 37 6; = 2, one has 6, = 0. Hence there is an integer i € {1,...,[(d+1)/2]}
such that (g, d1,...,04) = (1,0,...,0, 1 ,0,...,0), where _ 1  stands for §; = 1.

< -
By virtue of Lemma 3.2.3, our work is to find an integral convex polytopes P of

dimension d with (1,0,...,0, 1 ,0,...,0) € Z¥1 its d-vector.
—~—

((d+1)/2)th
Let P C R? be the integral simplex of dimension d whose vertices vy, v1, ..., vq
are
e+ ey, ’izl,...7d—1,
v = q €1+ eq, i =d,
(0,0,...... ,0), i=0.
When d is odd, one has vol(P) = 2 by using an elementary linear algebra. Since

%{(UO, Dt (o, 1) 4+ g, ) = (1,1, 1, (d+ 1)/2) € Z4+,

19



Section 3.1 says that d4_1),1 > 1. Thus, since vol(P) = 2, one has

as desired.

3.2.2 A proof of Theorem 3.2.1 when Zgl:o 9, =3

The goal of this section is to prove the “If” part of Theorem 3.2.1 when Z?:o 0; = 3.
Suppose that a finite sequence (d,d1,...,d4) of nonnegative integers with g = 1
satisfies all inequalities (3.1) and (3.2) together with Z?:o 9; = 3.

When there is 1 < ¢ < d with §; = 2, the same discussion as in the previous
subsection can be applied. In fact, instead of the vertices of the convex polytope
arising in the last paragraph of the previous subsection, we may consider the convex
polytope whose vertices vg, vy, ..., v are

e +e1, i:17...,d—1,
v; 1= { 2e;1 + ey, 1 =d,
(0,0,...... ,0), i=0

Now, in what follows, a sequence (dg,d1,...,04) with each 6; € {0,1}, where
do = 1 which satisfies all inequalities (3.1) and (3.2) together with Z?:o 9; = 3 will
be considered.

If 6, = 1, then §; = 1. Thus this happens only when d = 2 and (1,1,1) is a
possible §-vector. If §; = 1, then 6, = 1 by (3.1). Clearly, (1,1,1,0,...,0) € Z*+!
is also a possible §-vector. Thus we will assume that 6; = 9, = 0. Let §,, =6, = 1
withl<m<n<d Letp=m—1,¢g=n—m—1,and r =d —n. By (3.1) one
has 0 < ¢ < p. Moreover, by (3.2) one has p < r. Consequently,

0<q¢<p<r, p+q+r=d—2. (3.3)

Our work is to construct an integral convex polytope P with dimension d whose
d-vector coincides with §(P) = (1,0,...,0,1,0,...,0,1,0,...,0) for an arbitrary
—_— = =
q r

p
integer 1 < m < n < d satisfying the conditions (3.3).

Lemma 3.2.4. Let d = 3k + 2. There exists an integral convex polytope P of
dimension d whose d-vector coincides with

(1,0,...,0,1,0,...,0,1,0,...,0) € Z*.
N—_—— N—_—— N——

20



Proof. When k > 1, let P C R? be the integral simplex of dimension d with the
vertices vg, vy, . .., vq, Where

e +tei1+te s 1=1,...,d—2,
e +ey4 1+ ey, 1=d—1,

e +e+ ey, 1 =d,
(0,0,...,0), 1 =0.

V; =

By using the induction on £, it follows that vol(P) = 3. Since

1
g{(’ljo,l)—F(Ul,l)+"'+<Ud,1)}:(1,1,...,1,]{4—1)EZdJrl,

Section 3.1 guarantees that 0,y > 1 and 0;,; > 1. Hence 6;41 = 1 and dgp12 = 1,
as required. O

Lemma 3.2.5. Letd = 3k + 2, ¢ > 0 and d = d+ 20. There exists an integral
simplex P C RY of dimension d’ whose §-vector coincides with

(1,0,...,0,1,0,...,0,1,0,...,0) € 24+,
—— —— ——
k+¢ k k+¢

Proof. First Step. Let k = 0. Thus d = 2 and & = 20 + 2. Let P C R¥ be an

integer convex polytope of dimension d’ whose vertices vg, vy, ..., Vg0 are
(2e; + ey, i=1,
2ey + e, 1= 2,
Vi =4 € + €1, 1=3,...,2l + 1,
e + ey, 1=2l+ 2,
\(O,...,O), 1 =0.

As usual, a routine computation says that vol(P) = 3. Let v € R¥+! be the point

1 1 /41 2 /41
3 {(vo, 1) + (v1, 1) + (w2, 1)} + 3 ;(?&qv 1)+ 3 ;(Uqua 1)

belonging to RY. Then
v=(1,1,...,1,0+1) € 24+,

Thus Section 3.1 guarantees that d,4; > 1 and 67, ; > 1. Hence 0y = dp42 = 1, as
required.
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Second Step. Let & > 1. We write P C R? for the integral simplex of

dimension d’ with the vertices vg, v, ..., U320t as follows:
( .
(0,0,...,0), i=0,
€] + € + €3+ €33 + €3544 + - + €, =1,
€ + €3+ €4+ €33+ €344 + - 1+ €, 1=2,

€ +€y1+ e 2tespztesyst - +er, i=3,4,5,...,3k,

he € + €e3pr1 + e3pp2 +e3pq3 te3pys+ - +eg1, @=3k+1,
€ + e+ egpiot €33t €35+ -+ €, i =3k + 2,
e t+e ot ---t+ey_q, 1=3k+3,3k+5,...,3k+20+1,
(€ + €1+ +eqy, 1 =3k+4,3k+6,...,3k+ 20+ 2.

Let A denote the (3k + 2

~—

X (3k 4 2) matrix

1 1 1 0 0
0O 1 1 1 O
A S
O 1 1 1
1 0 1 1
1 1 0 - 01
(3k+2) x (3k+2)

Then a simple computation on determinants enables us to show that

A >k
i) - A5
O .

(3k+2+20) x (3k+2+20)

One has

1 2
3 {(vo, 1) + (v1,1) + -+ - + (U344, 1)}+§ {(vskt5,1) + (Vsks7, 1) + - - + (Vskt2e41, 1) }

1
+§ {(vskr6,1) + (Vargs, 1) + -+ + (Uskraes2, 1)}
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= (1, Lk+1,1Lk+21,. . k+01,k+0+1) ez

Hence 0gi¢411 = dopyer2 = 1, as required. O

In order to complete a proof of the “If” part of Theorem 3.2.1 when Z?:o 0; = 3,
we must show the existence of an integral convex polytope P C R of dimension
d whose d-vector coincides with (1,0,...,0, 1 0,...,0, 1 ,0,...,0), where 1 <

~~~ ~~~
mth nth

m<n<dandn-m-1<m-1<d-—n.
First, Lemma 3.2.4 says that there exists an integral convex polytope whose
d-vector coincides with

(1707""0’ 1 70""707 1 ’O’...’0)623n—3m+3‘
~—
(n—m)th (2n—2m)th

Second, Lemma 3.2.5 guarantees that there exists an integral convex polytope
whose d-vector coincides with

(1707-.‘,07 1 ,07...70’ 1 707’0)€Zn+m+3
h th
mt n

Finally, by using Lemma 3.2.3, there exists an integral convex polytope P of
dimension d with

— d+1
5(P)=(10,...,0,_.1 ,0,...,0,.1 0,...,0) € Z°,

mth nth

as desired.

3.3 The case where Y7 4§, = 4

When Zg:o d; < 3, the inequalities (3.1) and (3.2) are necessary and sufficient
conditions for a sequence of nonnegative integers (g, 01, .. .,d0q) € Z4 with 6y = 1
to be a d-vector of an integral convex polytope of dimension d. However, when
Z?:o 0; = 4, as shown in Example 3.2.2, there exists a counterexample, namely,
(3.1) and (3.2) are not sufficient. Thus, we have to impose more restrictions on
(09,01, - .., 04). In this section, we will give the complete classification of the possible
0-vectors with Zj:o 0; = 4, see Theorem 3.3.6 below. Moreover, similar to the case
Z?:o 0; < 3, it turns out that all the possible d-vectors with Zfzo 0; = 4 can be
chosen to be integral simplices. Such a result does not hold when Z?:o 0; = B, see
Remark 3.3.8.
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3.3.1 An approach to a classification of integral simplices
with a given J/-vector

Let Z%? denote the set of d x d integral matrices. Recall that a matrix A € Z%*4
is unimodular if det(A) = #1. Given integral convex polytopes P and Q in R¢
of dimension d, we say that P and Q are unimodularly equivalent if there exists a
unimodular matrix U € Z%¢ and an integral vector w such that Q = fy(P) + w,
where fy is the linear transformation in R? defined by U, i.e., fy(v) = vU for
all v.e R% Clearly, if P and Q are unimodularly equivalent, then §(P) = §(Q).
Conversely, given a vector v € Zi’sl, it is natural to ask for a description of all the
integral polytopes P under unimodular equivalence, such that §(P) = v.

We will focus on the above problem for simplices with one vertex at the origin. In
addition, we do not allow any shifts in the equivalence, i.e., integral convex polytopes
P and QO of dimension d are equivalent if there exists a unimodular matrix U, such
that Q@ = fy(P). By considering the d-vectors of all the integral simplices up to this
equivalence, whose normalized volumes are 4, we obtain Theorem 3.3.6.

To discuss the representative under this equivalence of the integral simplices with
one vertex at the origin, we consider Hermite normal forms.

Let P C R? be an integral simplex of dimension d whose the vertices are
(0,...,0),v1,...,v4. Define M(P) € Z%*¢ to be the matrix with the row vectors
v1,...,v4. Then we have the following connection between the matrix M (P) and
the d-vector of P: |det(M(P))| = > 500 = vol(P). In this setting, P and P’
are equivalent if and only if M(P) and M (P’) have the same Hermite normal form.
Here, the Hermite normal form of a nonsingular integral square matrix B is a unique
nonnegative lower triangular matrix A = (a;;) € Z%5% such that A = BU for some
unimodular matrix U € Z%¢ and 0 < a;; < ay; for all 1 < j < i, see [66, Chapter 4].
In other words, we can pick the Hermite normal form as the representative in each
equivalence class and study the following

Problem 3.3.1. Given a vector v € Z‘;gl, classify all possible d x d matrices A €
7% which are in Hermite normal form with §(P) = (8, 01,...,d4) = v, where

P C R?is the integral simplex whose vertices are the row vectors of A together with
the origin in R%.

3.3.2 An algorithm for the computation of the )-vector of a
simplex

In this subsection, we introduce an algorithm for calculating the d-vector of integral
simplices arising from Hermite normal forms.

Let M € 2% We write P(M) for the integral simplex whose vertices are the
row vectors of M together with the origin in R?. We will present an algorithm to
compute the d-vector of P(M). To make the notation clear, we assume d = 3. The
general case is completely analogous. Let A be the Hermite normal form of M. We
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have that {P(M) N Z%} is in bijection with {P(A) N Z}. By definition,

a1 0 0
A= laxn axp 0 )
31 dzz G33

where each a;; is a nonnegative integer.
For a vector A = (A1, Aa, A3), consider

b(A) := (A1, Ao, Ag) A = (a11 A1 + a21\a + azi A3, agada + agas, assAs).
Then it is clear that the set of interior points inside P(A) ((P(A) —0OP(A))NZ3) is

in bijection with the set
{, A2, A3) [ A >0, A+ A+ A3 < 1, b(\) € Z°}.

We observe that for any n € N, n(P(A) — 9P(A)) N Z? is in bijection with
{1, A2, A3) | Ai > 0, A+ da + A3 <, b(A) € Z%}

We first consider all positive vectors A satisfying b()\) € Z3. By the lower trian-
gularity of the Hermite normal form, we can start from the last coefficient of b(\)
and move forward. Then it is not hard to see that each vector A has the following
form:

k . - )\k
S S P VRO v/ Pk %1 PN

ass a22
and
y i — {ag M + az \E
Ay = ARk {aaiXy” + azi Az} s
ai
for some nonnegative integers ks, ko, k1, where k € {1,2,...,a33}, j € {1,2,..., a2},

i€ {1,2,... a1} and X7F = \UFO NIE — \IEO K — ABOWe call all the vectors
with the same index (i, j, k) the congruence class of (i, j, k).

Now we consider the condition \; + Ay + A3 < n in the above bijection. As n
increases, we wish to know when it is the first time that a congruence class (1, j, k)
produces interior points inside nP(A). In other words, for a fixed (i, j, k) we want
to find the smallest n such that A\ + Ay + A3 < n with Ay, Ay, A3 > 0. It is clear
that this happens when ki = ks = k3 = 0 and

n= [N NF 4] 1= s

Finally, when n grows larger than s;;,, we want to consider how many interior
points this fixed congruence class produces. Let n = s;;;, + £, so each interior point
corresponds to a choice of k1 > 0,ky > 0, k3 > 0 in the formula of )\ij k’kl, )\Qj’kz and
)\é’k3 such that k; + ko + k3 < £. There are (d+€) choices in total.

¢
In summary, the following two facts hold for each congruence class (i, j,k), k €

{1,2,...,&33},j€ {1,2,...,(122},2'6 {1,2,...7(111}2
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1. si;, is the smallest n such that this congruence class contributes interior points
in the n-th dilation of P(A);

2. In the (s, + £)-th dilation of P(A), this congruence class contributes (dy)
interior points.

The previous considerations imply the d = 3 instance of the following theorem. The
general d case follows in analogous manner.

Theorem 3.3.2 ([34, Theorem 2.1]). Let P(A) be a simplex of dimension d cor-
responding to a d x d matriv A = (a;;) € Z¥. Then the generating function for
i*(P(A),n) is given by

o0
Zi*(P(A),n)t” =(1- t)*(d+1) Z $oi1ia
n=1 (i1,vid)
1<i;<ai;
where
k=1
with |
N —
add’
and
. , d N '
o gt { 3w}, g i
h=k+1

By the reciprocity law (2.2), we have

()= 3
(i

1yeeyid)

—_ = O =

Then, for 1 <i<2and 1 <j <3,
Ao=1-{0) A =1-{8 + 4}
where
=108 N =1 )
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From this we compute
511 = 2, S91 = 3, S12 = 2, S92 = 3, 813 = 3, S93 = 5,
so that

=S = 1 4 3% + 213,

3 2
=1

Spay(t) =
i=1 j
and thus
d(P(A)) = (1,0,3,2,0).

3.3.3 “One row” Hermite normal forms

In this subsection, we study the d-vectors for some special Hermite normal forms.
Results in this section are direct applications of the algorithm developed in the
previous section.

Consider all dx d matrices with positive determinant D and the following Hermite

normal form.
1

AD ay -+ Ap—1 D € ZdXd (34)

1

for some k € {1,2,...,d}, where ay,...,a,_1 are nonnegative integers smaller than
D and all other entries are zero. Let d; denote the number of j’s among these a;’s,
for y = 1,...,D — 1. Then we can simplify Theorem 3.3.2 for these “one row”
Hermite normal forms.

Corollary 3.3.4. Let M € 7% with det(M) = D and P(M) be the corresponding
integral simplex. If its Hermite normal form is of the form as in (3.4), then we have

D

Opqan(t) = D 17,

i=1

where
i = [ij
Proof. Consider
b(A) = (Ah R )\k‘a R )\d)AD - ()\1 + a/lAka R Ak—l + ak—lAka D)\k;, Ak-‘rl) sty Ad)
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Using the notation from the proof of Theorem 3.3.2, we have, for i = 1,2,..., D,

22%, )\}:1—{@@%}, fore=1,....,k—1
and ' |
)\/;C+1:"':>\,Ld:1.
Therefore, s, = L+ L+ 4 23] = | 5 =~ S5 { B}y |+ -

Assume, in addition, that dp_; = d — 1 in Corollary 3.3.4, i.e., the Hermite
normal form takes the form

D-1 D—-1 --- D—-1 D
Then we have

Corollary 3.3.5 (All D — 1). For a matriz M € Z%? with Hermite normal form
(3.6), we have

D .
d
dpny(t) = thﬂ’si, where s; = VEJ + 1.

i=1

3.3.4 Classification of Hermite normal forms with a given
d-vector

In this subsection, by applying the algorithm Theorem 3.3.2, we consider Problem
3.3.1 with the assumption that the matrix A € Z?*? has prime determinant, i.e., A is
of the form (3.4), with only one general row. By Corollary 3.3.4, in order to classify
all possible Hermite normal forms (3.4) with a given d-vector (Jg, 91, . .., dq), we need
to find all nonnegative integer solutions (dy,ds, ...,dp_1) with dy+da+---+dp_1 <
d — 1 such that

Hi:d+1—s;, =7 fori=1,...,D}| =9, for j=0,...,d.

By Corollary 3.3.4, we can build equations with “floor” expressions for (dy, ds, ..., dp_1).
Removing the “floor” expressions, we obtain D linear equations of (dy,ds,...,dp_1)
with different constant terms but the same D x D coefficient matrix M. Then we
first find all integer solutions (d;,ds,...,dp_1) and check every candidate using the
restrictions of nonnegativity and dy + dy + --- +dp_1 < d — 1.

For D = 2 and 3, the coefficient matrix M is nonsingular, so we can write down
the complete solutions, as presented in the first two subsections. For larger primes,
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the coefficient matrix becomes singular, so there are free variables in the integer
solutions (dy,ds, ...,dp_1), which make it very hard to simplify the final solutions
after the test.

The idea is similar for Hermite normal forms with non prime determinant. In-
stead of using Corollary 3.3.4, we need to use the formulas in Theorem 3.3.2. We
will also present the complete solution for D = 4 below.

A solution of Problem 3.3.1 when Y7 4§, = 2.

First, we give a solution of Problem 3.3.1 when Z?:o 0; = 2, i.e., given a 0-
vector (dp, 01, .. .,0dq) with Z?:o 0; = 2, we classify all the integral simplices with
(09,01, . ..,04) arising from Hermite normal forms with determinant 2.

We consider all Hermite normal forms (3.4) with D = 2, namely,

1
Ay = | x * 2 : (3.7)
1
1
where there are d; 1’s among the aq,...,a;_1. Notice that the position of the row

with a 2 does not affect the d-vector, so the only variable is d;. By Corollary 3.3.4,
we have a formula for the d-vector of this integral simplex P(Az). Denote

k:1—{1_mj
2
Then one has g = 9, = 1.

By this formula, we can characterize all Hermite normal forms with a given 9-
vector. Let §p = &; = 1. Then by solving the equation i = 1 — [(1 —d;)/2], we
obtain d; = 2i — 2 and d; = 2i — 1, both cases will give us the desired d-vector.

Notice that there is a constraint on d; given by 0 < d; < d— 1. Not all d-vectors
are obtained from simplices. But we can easily get the appropriate conditions on ¢
and the corresponding d; as follows (by d; > 0, we have ¢ > 1):

1. If ¢ < d/2, dy = 20 —2 and d; = 2i — 1 both work, and these give all the
matrices with this d-vector.

2. Ifi=(d+1)/2,only dy =2i —2 =d — 1 works.
3. If i > (d + 1)/2, there is no solution.

Now, this result has been obtained essentially in Theorem 3.2.1. In fact, the
inequality i < (d + 1)/2 means that the J-vector satisfies (3.2).
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A solution of Problem 3.3.1 when Z?:o 9; = 3.
We consider all Hermite normal forms (3.4) with D = 3, namely,

1
A3 = * * 3 ) (3 8)
1
1
where there are d; 1’s and dy 2’s among the aq,...,ax_1. The position of the row

with one 3 does not affect the d-vector, so the only variables are d; and dy. Also,
by Corollary 3.3.4, we have dp(a,)(t) = 1+ t** + t*2, where

1—dy —2d 2—-2dy —d
R A e L)

Then by the formula, we can characterize all Hermite normal forms with a given
0-vector using arguments similar to 2?20 6 = 2. Let Opay)(t) = 1+ ¢ + 7. Set

1—dy —2d 2—-2dy—d
[ |22

(Later reverse the role of i and j if ¢ # j, in both equations and solutions.) The
solutions for (dy,dy) are

d® = h=2j—i d? — hi=2j—i—1 and d® = dy=2j —i
dy =2 — j —1, : dy =2 — j — 2.

In addition, by the restriction on (di,dy) that dy,dy > 0 and dy +dy < d — 1, we
have the following characterizations:

Table 3.1: Characterizations for matrices of the form As
’ 27 \ 2 \ 1+ \ solutions ‘

>i | >j+1| <d dW

>i+1|>j+1|<d+1 d®

>0 | >j+2|<d+1 d®)

1. If 25 >4,2i > j+ 1 and i + j < d, then the solution d¥ will work and this
gives all the matrices with this d-vector.

2. 1f2j>i+1,2i >j+1andi+j <d+1, then the solution d? will work and
this gives all the matrices with this d-vector.
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3. If25 >4,2i > j+2and i+ j < d+ 1, then the solution d® will work and this
gives all the matrices with this d-vector.

4. If {i,j} in the given vector does not satisfy any of the above cases, there is no
matrix with this vector as its d-vector.

Again, this result has been obtained in Theorem 3.2.1. In fact, for example, the
inequality 27 > ¢ means that (3.1) holds and the inequality i + j < d+ 1 means that
(3.2) holds.

Notice that only the solution

d(2): dlzd_]_
d2:0

works when i = (d 4 2)/3 and j = (2d + 1)/3. This happens when d = 1 (mod 3)
and there is only one matrix with d; = d—1 and dy = 0. Similarly, only the solution

d(S): d1:O
do=d—1

works when i = (2d + 2)/3 and j = (d + 1)/3. This happens when d = 2 (mod 3)
and again, there is only one matrix with d; =0 and dy =d — 1.

A solution of Problem 3.3.1 when Z?:o ;= 4.
When the determinant is 4, there are two cases of Hermite normal forms. One is
the Hermite normal forms (3.4) with D = 4, namely,

where there are dy 1’s, dy 2’s and d3 3’s among *’s. where there are d; 1’s, dy 2’s
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and d3 3’s among the aq,...,ai_1. The other hermit normal form takes the form

1
1
* * 2
Al = ! (3.10)
4 ) .
¥ ¥ ¥k * 2
1

where there are d; 1’s (resp. dj 1’s) among *’s (resp. *’s), there are e; 1’s (resp. €]
1’s) among the *’s (resp. *’s) of which the entry of the row of % (resp. *) in the
same column is 0. Also, set d] = e; + €. (For example, a 6 x 6 Hermite normal
form

100000
010000
001000
011200
000010
110112

is a matrix (3.10) with d; = 2,d} =3,e; =1,¢] =2,d{ =3 and x = 1.)
First, we consider the Hermite normal forms A4. Then, by Corollary 3.3.4, we
have dpa,)(t) = 1+ tF1 + t* 4 %3 where

1—d —2dy — 1—d; — — 3d; — 2dy —
klzl_{ dy 4d2 3d3J’k2:1_{ d; d?’Jandk:g:l—r 3d14d2 ng‘

Let dp(ay(t) =1+t + 17 + 5. We get three sets of equations:

1 —dy — 2dy — 3d 1—dy—d —3dy — 2dy — d
i:1—{ : 42 33J,j=1—{—; 3J andkrzl—f) 314 2 3J.

(Later replace the roles of 7, j and k if any of the three are distinct.) The solutions
for (dy,ds,ds3) are

(dy=—i+j+k—1 (dy=—i+j+k
dY = ddy=i—2j+k dP =S dy=i—2j+k
(ds=i+j—k—1, (ds =i+j—k—2,
(dy=—i+j+k (dy = —i+j+Fk
d® ={dy=i—2j+Fk dY =S dy=i—2j+k—1
\ds=i+j—k—1 (ds=i+j—k—1.
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In addition, by the restriction on (dy, do, d3) that dy, ds, d3 > 0 and dy+da+d3 < d—1,
we have the following characterizations:

Table 3.2: Characterizations for matrices of the form Ay
’ Jj+k \ 2j \ 1+ \solutions‘

>i+l][<i+k<d+1]|>k+1 d®
>i | <i+k<d+1|>k+2 d®
> <i+k<d |>k+1 d®
> | <i+k—-1<d|>k+1 d®

1.Ifj4+k>i+1,2]<i+k<d+1andi+j>k+ 1, then the solution dV
will work and this gives all the matrices with this d-vector.

2. Ifj+k>i,2j<i+k<d+1andi+j>k+ 2, then the solution d® will
work and this gives all the matrices with this d-vector.

3. If j+k>i,2)<i+k<dandi+j>k+ 1, then the solution d® will work
and this gives all the matrices with this J-vector.

4. fj4+k>i,2j+1<i+k<d+1andi+j>k+1, then the solution d®
will work and this gives all the matrices with this d-vector.

5. If {4, 4, k} in the given vector does not satisfy any of the above cases, there is
no matrix A, with this vector as its d-vector.

Notice that only the solution

dlz()
d? =dy =0
d3:d—1

works when i = (3d +3)/4,j = (d + 1)/2 and k = (d + 1)/4. This happens when
d = 3 (mod4) and there is only one matrix with ds = d — 1. Similarly, only the
solution

dlzd—l
dY ={dy=0
d3:O

works when i = (d+3)/4,7 = (d+1)/2 and k = (3d + 1)/4. This happens when
d =1 (mod4) and again, there is only one matrix with d; = d — 1.

Next, we consider the Hermite normal forms (3.10). However, we need to consider
two cases, which are the cases where * =0 and * = 1.
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First, we consider the case with * = 0. Notice that the variables are d;,d} and
d}. Obviously we cannot use Corollary 3.3.4, but we apply Theorem 3.3.2 directly.
Thus we have dp(ar)(t) = 1+ t" + tF2 4% where

2 ! 2 1
ky = V1+ J ky = Vlg Jandk’g: V1;3J.

2

Let 0pcar)(t) = 1+t + 7 + tF. We get three sets of equations:

2 ! 2 Ui
Z':Vﬁ J)J,:Ldﬁ Ja’ndk:vﬁgJ‘
2 2 2

or replace the role of 7, j and k if 7, j and k are distinct, in all equations and solutions.
Since dy + d| + d] is even, the solutions for (dy,d;,d}) are

(dy = 2i — 2 (dy =2i—1
dV ={d =25 -1 d? ={d =25 -2
| d} =2k — 3, | d} =2k — 3,
(dy =2i—1 (dy = 2i—2
d¥ =3 d =25 -1 dW = d| =25 -2
(d =2k —2 | d =2k — 2.

In addition, by the restriction on (dy, d},d]) that 0 < dy <d—2,0<d; <d—2,
0<d{<d—-2,dy+dy+d{ <2(d—2),d{ <dy+d}, d] <dy+d and d; < d} +df,
we have the following characterizations:

Table 3.3: Characterizations for matrices of the form (3.10) with * = 0

i | 4 | k[ i+j | itk | j+k [i+j+k]solutions |

<4 <|B] | =2 >k | >j+2|>i+1| <d+1 d®
<14

<|$ | <4 > 2, >k |2j+1|>i+2| <d+1 d®
< %)

<1 <15 <13) | 2k |zit1]ziv1] <d | ¥

<14 | <|g | <|g |zk+1|>j+1|>i+1| <d+1 d®

LIfi<[d/2], j<|[(d-1)/2], 2< k< [(d+1)/2],i+j+k<d+1k<
i+4,j+2<i+kandi+1<j+k, then the solution d) will work and this
gives all the matrices with this d-vector.
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2. Ifi < [(d=1)/2], < |d/2], 2 < k< |(d+1)/2],i+j+k<d+1k<
i+7j,j+1<i+kandi+2<j+k, then the solution d® will work and this
gives all the matrices with this d-vector.

3.If i, < [(d-1)/2), k< |d/2] i+ j+k<dk<i+jj+1<i+kand
i+ 1 < j+ k, then the solution d® will work and this gives all the matrices
with this d-vector.

4. i, 5,k < [d/2],i+j+k < d+1,k+1 <i+j,j+1 <i+kandi+1 < j+k, then
the solution d® will work and this gives all the matrices with this é-vector.

5. If {i, 4, k} in the given vector does not satisfy any of the above cases, there is
no matrix (3.10), where * = 0, with this vector as its d-vector.

Next, we consider the case with * = 1. By Theorem 3.3.2, we have 57>(A21)(t) =
1+ tht 4 tk2 4 ths where

1—d; —2d” 1—-d —d; — 2d,
A T [ ]

Let 0pcar)(t) = 1+t + 7 + tF. We get three sets of equations:

1—dy —2d" 1— —dy —2d
izl—{MJ,jzl—{ QdIJandk:2—{mJ.

4 4

or replace the roles of i, 7 and k if ¢, j and k are distinct. Since d; + d + df is even,
the solutions for (dy,d},d]) are

(d, =25 — 1 (d, =25 — 1
dV =g =9k _i_3 d¥ =Sd =2k —j—2

1 J 1 J
(] =2i—j—2, (df =2i—j—1,

(4, =25 —2 (d, =25 —2
A ={d =2k —j-3 d9 = dy =2k —j—2
(d] =2i—j—1 (df =2i—j—2.

In addition, by the restriction on (dyi,d},d]) that 0 < dy <d—2,0<d} <d—2,
0<d{<d—-2,dy+dy+d{ <2(d—2),d{ <dy+d}, d] <dy+d and d; < d}+df,
we have the following characterizations:

LI j+3<2k<d+7+1,j+2< 20 <d+y3, 2] <d—-1k < i+7y,
2]+2<i4+k<d+1and i+ 1< j+ k, then the solution dY will work and
this gives all the matrices with this d-vector.

2.7 +2<2k<d+j,j+1 < 2i<d+j—-1,2) <d-1, k < i+,
2j+1<i+k<dandi+1<j+Fk, then the solution d® will work and this
gives all the matrices with this d-vector.
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Table 3.4: Characterizations for matrices of the form (3.10) with * =1

[ 2%k ] 2i | 25 | i+j | i+k | j+k |solutions |
> 7+ 3, >i+2 [ <d-1] >k |[>2j+2, |>i+1 dm
<d+j+1| <d+j <d-+1
>+ 2, >j+1, | <d-1| >k |>2j+1,|>i+1 d®?
<d+j |<d+j-1 <d
>j+3, >j+1, <d >k | >2+1, | >i+2 d®
<d+j+1|<d+j—-1 <d+1
> j+2, > j+2, <d |>k+1[>2j+1,|>i+1 d@
<d+j <d+j <d+1

3 U7 +3<2k<d+j+1,j+1 < 2i<d+j—-1 27 <d, k< i+}y,
2j4+1<i+k<d+1andi+2<j+k, then the solution d® will work and
this gives all the matrices with this d-vector.

4. I j+2 <2k <d+j,j+2 <21 <d+j,25 <d, k+1 <i+7,27+1 <i+k < d+1
and i+1 < j+k, then the solution d® will work and this gives all the matrices
with this d-vector.

5. If {i, 4, k} in the given vector does not satisfy any of the above cases, there is
no matrix (3.10) with this vector as its d-vector.

Notice that only the solution

dy=d—2
d¥ =S dj=d—2
df =0

works when ¢ = (d + 2)/4,7 = d/2 and k = (3d + 2)/4. This happens when
d = 2 (mod4) and there is only one matrix with d; = d} = d — 2. Similarly, only
the solution

dlzd—Q
d9 =3d =0
df =d—2

works when ¢ = 3d/4,j = d/2 and k = d/4 + 1. This happens when d = 0 (mod 4)

and again, there is only one matrix with d; = df =d — 2.

3.3.5 A classification of the possible -vectors with Z?:o 0; =
4

Finally, we classify the possible d-vectors with Zf:o 0; = 4 using results from the
previous subsection.
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As described above, we need some new constraints on d-vectors. For explaining
such required constraints, we introduce some notations. Let (dg,d1,...,0d4) be the
0-vector of some integral convex polytope with Z?:o 0; = 4 and let 1+t 4 ¢%2 4 ¢is
with 1 < i; < iy < i3 < d be a polynomial in ¢ satisfying Z?:o Oith = 141 4-t02 433,
Note that (dg, d1, . . ., d04) satisfies the inequalities (3.1) and (3.2) which are necessary
conditions to be a possible d-vector. Then (3.1) and (3.2) lead into the following
inequalities on (i1, iz, i3):

By using these, the classification of possible d-vectors of integral convex polytopes
with Z?:o 0; = 4 is given by the following

Theorem 3.3.6 ([34, Theorem 5.1]). Let 1 + ¢ + 2 + % be a polynomial with
1 < iy < iy < i3 < d. Then there exists an integral convex polytope P C R? of
dimension d whose d-polynomial equals 1 + t% + t2 + % if and only if (i1, is,13)
satisfies (3.11) and the additional condition

2i2 §i1+i3 or i2+i3 S d—|—1 (312)
Moreover, all these polytopes can be chosen to be simplices.

Proof. There are four cases: (1) i1 = is = i3, (2) i3 < iy = i3, (3) i1 = @2 < i3,
(4) i1 < iy < i3. We will show that in each case (3.11) together with (3.12) are the
necessary and sufficient conditions for 1 + ¢ + ¢?2 4+ ¢% to be the J-polynomial of
some integral convex polytope.

(1) Assume i; = iy = i3 = (. By the inequalities (3.11), we have 1 < ¢ <
|(d+1)/2]. Set i = j = k = £. We have

j+k>i+1,2j<i+k<d+landi+j>k+1. (3.13)

Thus, by our result on the classification in the case of a matrix of the form Ay
(Table 3.2, the solution d)), there exists an integral simplex whose d-vector is of
the form (1,0,...,0,3,0,...,0).

On the other hand, if there exists an integral convex polytope with this d-vector,
then (3.11) holds since it is a necessary condition. In this case, both inequalities in
(3.12) hold.

(2) Assume £ =iy < iy =1i3 =/ By (3.11), we have 1 < /¢ < ¢ < |(d+1)/2].
Let j = ¢ and i = k = ¢'. Then the inequalities (3.13) hold. Thus there exists an
integral simplex whose d-vector is (1,0,...,0,1,0,...,0,2,0,...,0).

On the other hand, if there exists an integral convex polytope with this d-vector,
then we have (3.11) and iy + i3 < d + 1 follows from i, < [(d+1)/2].

(3) Assume ¢ =iy =iy <i3 =4/ Set i = and j = k = {. Then it follows from
(3.11) that

j+k>i,27+1<i+k<d+landi+j>k+1.
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Thus, by our result (Table 3.2, the solution d®), there exists an integral simplex
whose d-vector is (1,0,...,0,2,0,...,0,1,0,...,0).

On the other hand, if there exists an integral convex polytope with this d-vector,
then (3.11) holds. In this case, both inequalities in (3.12) hold.

(4) Assume 1 < 4y < iy < i3 < d. Suppose 2iy < i1 + i3 holds. Set i = i3,7 = io
and k =17;. Then we have j+k =1i14+i3 > i3=1,2] =21, <i1+is=i+k <d+1
and ¢ +j = ig+ 13 > 2is+1 > 2iy +3 > i1 +2 = k + 2. Thus, by our result
(Table 3.2, the solution d®), there exists an integral simplex whose é-vector is
(1,0...,0,1,0,...,0,1,0,...,0,1,0,...,0).

Suppose i3 + 13 < d + 1 holds. Set ¢ = i3,57 = i, and k = i. Then we have
Gk =iy iy >y =14,2] =2 <igtiz=itk<dtlanditj=i,t+iz>i+
ig+1 > iy+2 = k+2. Thus, by our result (Table 3.2, the solution d®), there exists
an integral simplex whose d-vector is (1,0...,0,1,0,...,0,1,0,...,0,1,0,...,0).

On the other hand, assume the contrary of (3.12): both 2iy > i3 + i3 and
19 +13 > d+ 1 hold. We claim that there exists no integral convex polytope P with
this d-vector. First we want to show that if there exists such a polytope, it must be
a simplex. Note that the d-vector satisfies (3.11). Suppose i; = 1. It then follows
from (3.11) and iy + i3 > d + 1 that iy = (d + 1)/2 and i3 = (d + 3)/2. However,
this contradicts (3.2). Therefore é; > 1, and thus J; = 0. By the explanation after
equation (2.1), P must be a simplex. Now we can apply our characterization results
for simplices.

If we set j = 13, then 2j = 2i3 > 43 + iy = i + k. If we set j = iy, then
2] =2iy > 11 +i3 =1+ k. If weset j =1y, theni+k =1iy+i3>d+ 1. In any case
there does not exist an Hermite normal form A, whose d-polynomial coincides with
L4t 2 1.

Moreover, since ¢ + j + k = 41 + i3 + i3 > 4o + i3 > d + 1, there does not
exist an Hermite normal form (3.10) with ¥ = 0 whose d-polynomial coincides with
1+t 172 + ¢,

In addition, if we set j = i3, then 2j = 2i3 > iy + 15 =i + k. If we set 7 = 19,
then 25 = 2iy, > i1 +i3 =1+ k. If we set j =iy, then i + k =iy 4+ 13 > d+ 1. Thus
there does not exist an Hermite normal form (3.10) with % = 1 whose d-polynomial
coincides with 1 + ¢ + 72 + ¢, O

Examples 3.3.7. (a) We consider the integer sequence (1,0,1,1,0,1,0). Then
one has i; = 2,is = 3,i3 = 5 and d = 6. Since (3.1) and (3.2) are satisfied and
2i5 < 127 + i3 holds, there is an integral convex polytope whose d-vector coincides
with (1,0,1,1,0,1,0) by Theorem 3.3.6. In fact, let M € Z%< be the Hermite
normal form (3.9) with (dy,ds, ds) = (0,1,4) or (0,0,5). Then we have §(P(M)) =
(1,0,1,1,0,1,0).

(b) There is no integral convex polytope with its d-vector (1,0,1,0,1,1,0,0) since
we have 2iy > i1 +13 and iy +1i3 > d+ 1, although this integer sequence satisfies (3.1)
and (3.2). (See Example 3.2.2.) However, there exists an integral convex polytope
with its d-vector (1,0,1,0,1,1,0,0,0) since is + i3 = d + 1 holds.
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Remark 3.3.8. We see that when Z?:o 0; = 4, all the possible d-vectors can be
obtained by simplices. This is also true for all )-vectors with Zj:o 0; < 3. However,
when Z?:o d; = b, the d-vector (1,3, 1) cannot be obtained from any simplex, while
it is a possible d-vector of an integral convex polygon. In fact, suppose that (1,3,1)
can be obtained from a simplex because of [40, Theorem 0.1].

3.4 Towards the case where Z?:o 0; > 5

As shown in Remark 3.3.8, not all the possible d-vectors can be realized as the 9-
vectors of integral simplices when Z?:o 0; > 5. Therefore, for the classification of

the d-vectors with Z?:o 0; > b, it is natural to investigate the d-vectors of integral

simplices. In particular, the case where Z?:o 0; is prime is of interest, which we
shall explain precisely in this section.

3.4.1 New inequalities on ¢-vectors of integral simplices with
prime volumes

In this subsection, we present new inequalities on J-vectors of integral simplices
whose normlized prime volumes are prime. Concretely, we establish the following

Theorem 3.4.1 ([40, Theorem 0.1]). Let P be an integral simplex of dimension d
and §(P) = (8,01, ..,04) its d-vector. Suppose that Y\ 6 = p is an odd prime
number. Let i1, ...,1,-1 be the positive integers such that Z?:o Stt =1+t 4.+
o1 with 1 <i; <--- < ip—1 < d. Then,

(a) one has
i Fipo1 =l +lpg =" =1lp_1)2+ip)e<d+1;
(b) one has
lg 1 > tpre for 1<k<{l<p—1 with k+{<p-—1.

Proof. Let vy, vy, ...,v4 be the vertices of the integral simplex P and S(P) the group
appearing in Section 3.1. Then, since vol(P) = p is prime, it follows that the order
of S(P) is also prime. In particular, S(P) = Z/pZ.

(a) Write g;,,...,95,_, € S(P)\ {(0,...,0)} for (p — 1) distinct elements with
deg(g;;) = ij for 1 < j < p — 1, that is, S( ) =1{0,...,0),9i,---,9i, .} Then,
for each g;,, there exists its inverse —g;, in S(P) \ {( ,...,0)}. Let —g;, = g 1

gi; has the expression g;, = Zj:o r4(vq, 1), where r, € Q with 0 < r, < 1, then its

inverse has the expression gy = ijo{l — 1r4}(vg, 1). Thus, one has

deg(gi,) + deg(giy) = Y (rg+ {1 —rg}) <

q=0 q=0

MQ“

rq+1 =d+1
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forall1<j7<p-1.
= o : d (
For ji,ja € {1,...,p — 1} with ji # ja, let g, = S0 i (v,,1) and g;,, =
ZZZO T(SZ) (vg,1). Since S(P) = Z/pZ, g, generates S(P), which implies that we can
write g;;, and gir, as follows:

gijQ :gijl ®"'®gij17 gz = gy @@gzg

t t

for some integer ¢t € {2,...,p — 1}. Thus, we have

d
> +{1—r}) = deg(gi,,) + deg(gy,)

q=0

d
= deg(giy, -+ @ gy, ) +deglgy, & Dy ) => ({tr} + {t@ =i},
A ~ N~ q:0
t

t

Moreover, g;;, @+ @®g;, = (0,...,0) holds. Thus, we have {prél)} = 0 for all

0 <q <d. Again, psmce p is prime, it follows that the denomlnator of each rational
number ri"” must be p. Hence, if 0 < ri" < 1 (resp. 0 < {1 — r! } < 1), then 0 <
{trg"} <1 (resp. 0 < {t(1 —rg”)} <1),s0r? +{1-r"} = (e} +{t(1—r)} =
L. In addltlon 0bV1ously, if ) = ={1- 7’((,1)} = 0, then {trél)} ={t(1 - rél))} =0,
so r) 4+ {1 =Y = (Y + {t(1 = 7)Y = 0. Thus, deg(gi;, ) + deg(glg_l) =
deg(gi,,) + deg(gs ), L.e., ij, +ij =ij, +ij,. Hence, we obtain

i1y = = deny2 + o) (= dprye iy = = o1 T i) A+ L

Our work is to show that i, =i, ; forall 1 <j < (p—1)/2.
First, we consider #]. Suppose that ¢] # i,_;. Then, there is m € {1,...,p — 2}
with i} = ¢,, <i,—1. Thus, it follows that

. i . i . . . . i .
lp—1F+ 2 =1+ =0+l <21+ < lp1 T p—1,

a contradiction. Thus, #{ must be i,_;. Next, we consider i,. Since g;; # ¢;; and
2
9i, # Yi,_,, We may consider i, among {ia,...,ip—2}. Then, the same discussion can
R . i g o
be done. Hence, @, = i, 5. Similarly, we have ¢ =14,_3,... Up—1y2 = bp+1)/2-
Therefore, we obtain the desired conditions

it ip1 =ta+lpo=""=1lp-1)2+tips, <d+1

(b) Write g;,, ..., 95, € S(P)\{(0,...,0)} for £ distinct elements with deg(g;,) =
ij for 1 < j < ¢ Let A = {gi,...,9;,}. Then there are k distinct elements
h; h;, in A with deg(h;;) = i; for 1 < j < k satisfying |A|+|B| = k+{ < p—1,

AR
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where B = {h;,,...,h; } C A. Moreover, foreach g c A@B={a®b:ac Abe
B}, g satisfies deg(g) < i + 4. In fact, for g;; € A and h;, € B, if they have the
expressions

d

d
9, = qu(vq, 1) and h,;, = Zr;(vq, 1),
q=0

q=0

where ry, 77, € Q with 0 < rg, 7} <1, then one has

d
deggz @hz/ Z{Tq‘f“rl} qu—f‘T —ij‘f‘ij/éik—i-ig.
q=0

Now, by applying the well-known theorem, so-called Cauchy-Davenport theorem
(cf. [50]), it follows that there exist at least k elements in A@ B\ AU{(0,...,0)}.
In addition, each g;; in A satisfies deg(gij) < iy < i + 4. Thus, we can say that

there exist at least (k+ ¢) distinct elements in S(P)\ {(0,...,0)} whose degrees are
at most 7 4 ¢,. From the definition of 4, ...,7,_1, this means that I +1p > lgay, S
desired. [
Remark 3.4.2. (a) When 4y + 4,1 = -+ = ip_1)/2 + i(p+1)/2 = d + 1, the d-vector is

shifted symmetric. Shifted symmetric d-vectors are studied in [37]. Moreover, the
theorem [37, Theorem 2.3] says that if i1 +4,_; = d + 1, then we have i; + i, =
= -2 Tipayp =d+ 1
(b) The inequalities i; + i, > i,y1 are not new. In fact, for example, when
iy < -+ <'ip_1, by (3.1), one has

O0g+---+ (51-1 < (51'1771 + -+ 52',;71—1'1‘
Thus, we obtain 4,1 — %1 < 4,9, i.€., 7 + 49 > %,—1. Similarly, one has
50 + oo+ (51-2 S 5ip71 + -+ 5@‘,;71—1’2’

Thus, we obtain i, 1 — i3 < 7, 3. Since 41 + 4,1 = 72 + 7,9, this is equivalent to
i1 + ip—3 > 1p—o. In the same way, we can obtain all inequalities 7; + iy > 4¢11. On
the other hand, when k& > 2, there are many new inequalities.

Remark 3.4.3. We note that we cannot characterize the possible d-vectors of integral
simplices with higher prime normalized volumes only by Theorem 3.4.1. In fact,
since the volume of an integral convex polytope containing a unique integer point
in its interior has an upper bound, if p is a sufficiently large prime number, then
the integer sequence (1,1,p — 3, 1) cannot be a J-vector of some integral simplex of
dimension 3, although (1,1,p — 3,1) satisfies all the conditions of Theorem 3.4.1.
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3.4.2 A classification of the possible /-vectors of integral
simplices with Zgl:() d; =5

As an application of Theorem 3.4.1, we give a complete characterization of the
possible d-vectors of integral simplices when Zj:o 0; = 5.

Theorem 3.4.4 (|40, Theorem 0.2]). Given a finite sequence (3o, 1, .. .,04) of non-
negative integers, where o9 = 1 and Z?:o 0; = b, there exists an integral simplex
P C RY of dimension d whose §-vector coincides with (8o, 1, . ..,04) if and only if
i1, .,04 Satisfy iy + 14 = 1o+ 13 < d+1 and ix + 1y > gy for 1 < k< 1 < 4
with k + ¢ < 4, where 11,...,14 are the positive integers such that Z?:o st =
L+t 4ot withl <4 <--- <y <d.

By virtue of Theorem 3.4.1, the “Only if” parts of Theorem 3.4.4 are obvious.
In this subsection, we give a proof of the “If” part of Theorem 3.4.4, i.e., we classify
all the possible d-vectors of integral simplices whose normalized volume is 5.

Let (dg, 01, - - ., 04) be a nonnegative integer sequence with o = 1 and Zf:o ;=5
which satisfies 11 +14 = io+i3 < d+1, 247 > iy and i1 +i9 > 73, where 74, ..., 44 are the
positive integers such that Z?:o Sitt =14+t 4+t with1 <4y <--- <4y <d.
Since iy + i4 = U9 + i3, we notice that iy + i3 > iy (resp. 2iy > i4) is equivalent
to 2i; > iy (resp. iy + iy > i3). From the conditions §y = 1, Z?:o 0; = 5 and
11 + 14 = i3 + i3, the possible sequences are only the following forms:

) (1,0,...,0,4,0,...,0):
) (1,0,...,0,2,0,...,0,2,0,...,0);
(i) (1,0,...,0,1,0,...,0,2,0,...,0,1,0,...,0):
) (1,0,...,0,1,0,...,0,1,0,...,0,1,0,...,0,1,0,...,0).

Our work is to find integral simplices whose d-vectors are of the above forms.
To construct integral simplices, we define the following integer matrix

1
A5(d1,...,d4) =% --- x b 5 (314)
1
1
where there are d; j’s among the x’s for j = 1,...,4 and the rest of the entries

are all 0. Note that (3.14) is nothing but the Hermite normal form (3.4) with
D = 5. Then, clearly, it must be d; > 0 and d; 4 --- +dy < d — 1. By determining
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dy,...,dy, we obtain an integer matrix As(di,...,ds) and we define the integral
simplex Ps(dy, ..., dy) from the matrix as follows:

Ps(dy, ..., dy) = conv({(0,...,0),vy,...,v4}) C RY,

where v; is the ith row vector of As(dy,...,d,).

The case (i). Let i; =iy = i3 =44y = i. Thus, onehasi—1 > 0and 2i—2 < d—1
from our conditions. Hence, we can define P5(0,7 — 1,7 — 1,0). Then, by Corollary
3.3.4, §(P5(0,7 — 1,7 — 1,0)) coincides with (i) since s; = $9 = 53 = 54 = —i + 1.

The case (ii). Let iy = iy = i and i3 = iy = j. Thus, one has 2i > j,
2j—2i—2>0andi+j—2 < d—1. Hence, we can define P5(0,,2i — j, 2j — 2i — 2)
and its d-vector coincides with (ii) since s; = so = —j + 1 and s3 = s4 = —i + 1.

The case (iii). Let iy = 7,1 = i3 = j and iy = k. Thus, one has 2i > j,
37 —3i—2>0and 2j —2 < d— 1. Hence, we can define P5(0,2i — j,4,37 — 3i — 2)
and its d-vector coincides with (iii) since sy = —2j+i+1 = —k+1, 59 = s3 = —j+1
and sy = —i + 1.

The case (iv). In this case, one has 2iy > iy, i1 414y > i3,i5+2i3—3i;—2 > 0 and
ia+i3—2 < d—1. Hence, we can define Ps5(0, 2i1 — i, i1 +iy— i3, ia+2i3—3i; —2) and
its d-vector coincides with (iv) since sy = i1 —ig—ig+1 = —iy+ 1,80 = —ig+ 1,53 =
—iz +1 and Sq4 — —il + 1.

Remark 3.4.5. The inequalities 2i; > i and i; +is > i3 can be obtained from (3.1) as
we mentioned in Remark 3.4.2 (b). Thus, the possible d-vectors of integral simplices
with normalized volume 5 can be essentially characterized only by Theorem 3.4.1
(a) and the inequalities (3.1).

3.4.3 A classification of the possible J-vectors of integral
simplices with Z?:o 0; =17

Similar to the previous subsection, we give a complete characterization of the pos-
sible d-vectors of integral simplices when Z?:o 0; = 7, that is,

Theorem 3.4.6 ([40, Theorem 0.3]). Given a finite sequence (dg, 1, . .., 04) of non-
negative integers, where 69 = 1 and Z?:o 0; = 7, there exists an integral simplex
P C R? of dimension d whose 6-vector coincides with (8o,01,...,04) if and only
if i1,...,10¢ satisfy iy +ig = 1o +i5 = i3+ 14 < d+ 1 and ix + iy > igye for
1 <k </l <6 with k+ 0 <6, where iy,...,1g are the positive integers such that
SOt =14 t1 s with 1 <y < -+ <dg < d.

By virtue of Theorem 3.4.1, the “Only if” parts of Theorem 3.4.6 are obvious.
In this subsection, similarly to the previous one, we give a proof of the “If” part of
Theorem 3.4.6, i.e., we classify all the possible d-vectors of integral simplices whose
normalized volume is 7.

Let (dg, 01, - - ., 04) be a nonnegative integer sequence with o = 1 and Z?:o 0; =17
which satisfies 11 +ig = 19+15 = i3+14 < d+1, 91+2 > 4549 for 1 <1 < 3 and 245 > iy,
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where iy, ..., 176 are the positive integers such that Z?:o St = 141" + - - -+t with
1 <4 < - <ig < d. Since iy + 16 = iy + i5 = i3 + 14, we need not consider the
inequalities il + ’i4 > 1'5, il + i5 > i(j, ’ig + i3 > i5, ig + i4 > /iﬁ and 223 > 7:6. From the
conditions 9y = 1, Z?:o 0; = 7 and i1 + ig = 1o + 15 = 13 + 14, the possible sequences
are only the following forms:

(i) (1,0,...,0,6,0,...,0);
(i) (1, .,0,3,0,...,0,3,0,...,0);
(iii) (1, .,0,1,0,...,0,4,0,...,0,1,0,...,0);
(iv) (1,0,...,0,2,0,...,0,2,0,...,0,2,0,...,0);
(v) (1,0,...,0,1,0,...,0,2,0,...,0,2,0,...,0,1,0,...,0);
(vi) (1,0,...,0,2,0,...,0,1,0,...,0,1,0,...,0,2,0,...,0);
(vii) (1,0,...,0,1,0,...,0,1,...,0,2,0,...,0,1,0,...,0,1,0,...,0);
(vii) (1,0,...,0,1,0,...,0,1,...,0,1,0,...,0,1,0,...,0,1,0,...,0,1,0,...,0).

In the same way as the previous section, we define the following integer matrix:

1
A7(d1,...,d6) =% -+ % 7 y (315)
1
1
where there are d; j’s among the *’s for j = 1,...,6 and the rest of the entries are

all 0. Then it must be d; > 0 and d; + --- +ds < d — 1. By determining d, ..., ds,
we obtain the integral simplex

737(d1, ceey dﬁ) = CODV({(O, .. ,0),1)1, c. ,’Ud}) C Rd,

where v; is the ith row vector of Az(dy,...,dg).

The case (i). Let iy =--- =ig =1¢. Thus,onehasi—1>0and 2i —2<d—1
from our conditions. Hence, we can define P;(0,0,i — 1,7 — 1,0,0). Then, by
Corollary 3.3.4, 6(P;(0,0,i — 1, — 1,0,0)) coincides with (i) since s; = -+ = 55 =
—i 4 1.

The case (ii). Let iy = -+ = i3 =i and iy = --- = ig = j. Thus, one has

j—1>0,2t > 3,2 —2i—2>0and i+ j —2 < d-— 1. Hence, we can define
P:(0,7 —i,2i — 5,20 — j,0,25 — 2i — 2) and its d-vector coincides with (ii) since
S1=8 =83=—j+1and s, = s5 = s¢ = —1 + 1.
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The case (iii). Let i; = i,iy = --- = i5 = j and ig = k. Thus, one has
1+7>kk—757>0k—i—1>07i—12>0andt+k—2 < d— 1. Hence,
we can define P7(i + j — k,k — j,k —i— 1,0,0,7 — 1) and its d-vector coincides
with (i) since s; = == 41 = —j 4 1,5 = = 4] = k4 1,53 =
—5i+$j—5k_|_1:_j+1’84: —2i—§j—2k+1:_j+1’35:——6i—72j+’“+1:—z'—|—1 and

so= 2= 4 1= —j 4+ 1.

The case (iv). Let iy = iy = i,i3 = iy = j and i5 = ig = k. Thus, one has
i—1>0,i+j>k3k—3—1>0and 2% —2j+2k—2=i+k—2<d—1. Hence,
we can define P7(0,0,i — 1,7+ j — k,0,3k — 35 — 1) and its d-vector coincides with
(iv) since s; =s9 = —i1+2j—2k+1=—-k+1l,s3=s4=—i+j—k+1=—j+1
and s5 = sg = —1 + 1.

The case (v). Let iy = ky,iy = i3 = kg,i4 = i5 = k3 and ig = k4. Thus, one has
2]{31 Z k‘z,k‘z—k’1 Z 0,k71+/{52 Z k3,2k3—2k1—2 Z 0 and l{2+]€3—2 S d—1. Hence, we
can define P7(0, 2k; — ko, 0, ko — k1, k1 +ko— k3, 2ks—2k; —2) and its d-vector coincides
with (v) since sy = k1 —ky —ks+1 = —ks+ 1,80 =853 = —ks+ 1,84 =85 = —ka+ 1
and sg = —k; + 1.

The case (vi). Let i; =iy = ky,i3 = ko, iy = k3 and i5 = ig = k4. Thus, one has
ks—ko—1>0,ki+ky > ks, 2k1 > ks, ko +2ks—3k;—1>0and ko +ks—2 < d—1.
Hence, we can define P;(0, ks — ko — 1, ky + ko — k3, 2ky — k3,0, ko + 2k3 — 3k; — 1)
and its d-vector coincides with (vi) since sy = so =k; —ka —ks+1=—ks+ 1,53 =
—k3+ 1,84 = —ko+1and s5 = s = —k; + 1.

The case (vii). Let iy = ky,io = ko,i3 = 14 = k3, i5 = ks and ig = k5. Thus,
one has 2k > ko, k1 + ko > k3, ko —ky > 0,3ks—2k1 —ko—2 > 0 and 2k3—2 < d—1.
Hence, we can define P;(0,0, 2k; — ko, k1 + ko — k3, ko — k1, 3ks — 2k — ko — 2) and its
d-vector coincides with (vii) since s = ky —2ks + 1= —ks+ 1,50 = ko —2k3 + 1 =
—k4—|—1,83 = 5S4 = —]{?3+1,S5 = —k?2—|—1 and S1 = —k'1+1.

The case (viii). In this case, one has iy + iy > 13,20y > iy,i3 + 20y — 211 —
19 — 2 > 0,20y > i9,i1 + 13 > 44 and 13 + 14 — 2 < d — 1. Hence, we can define
P(0,d1 + iy — i3, 01 + i3 — 2i9,0, 2iy — 4,13 + 204 — 21y — g — 2) if iy + i3 > 2i5 and
P7(0,2iy —ig, 0,269 — iy — i3, i1 + i3 — iy, i3+ 204 — 20 — Ig — 2) 11 + i3 < 2i5. Moreover,
each of d-vectors of them coincides with (viii) since s; = i3 —ig — iy + 1 = —ig + 1,
So 222—23—Z4+1 = —i5+1, S3 = —i4+1, S4 = —i3+1, Sy = —Zg—f—l and
S = —il + 1.

Remark 3.4.7. When we discuss the cases of (vi) and (viii), we need the new in-
equality 2is > i4. In fact, for example, the sequence (1,0,2,0,1,1,0,2,0) cannot be
the d-vector of an integral simplex, although this satisfies i; +14; > ;44,0 =1,...,3.
Similarly, the sequence (1,0,1,1,0,1,0,1,0,1,1,0) also cannot be the d-vector of an
integral simplex, although this satisfies ¢; +4; > 4;.1,0 =1,...,3.
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3.5 Shifted symmetric J-vectors of convex poly-
topes

In this section, we introduce shifted symmetric d-vectors of integral convex polytopes
and discuss some properties.

A §-vector 6(P) = (dg,01,...,04) is called symmetric if the equalities hold in
(3.1) for each 0 < i < [s/2], i.e., ; = 05_; for each 0 < i < [s/2]. The d-vector 6(P)
of P is symmetric if and only if the Ehrhart ring [26, Chapter X] of P is Gorenstein.
A combinatorial characterization for the d-vector to be symmetric is studied in [15]
and [27].

We say that a d-vector §(P) = (o, 91, . . ., 0q4) is shifted symmetric if the equalities
hold in (3.2) for each 0 <1 < [(d—1)/2], i.e., dq—; = ;41 for each 0 < i < [(d—1)/2].
It seems likely that an integral convex polytope with a shifted symmetric d-vector is
quite rare. Thus it is reasonable to study properties of and to find a natural family
of integral convex polytopes with shifted symmetric §-vectors. We note that since
01 = g4, integral convex polytopes with shifted symmetric d-vectors are always a
d-simplex.

Examples 3.5.1. (a) We define v; € R? for i = 0,1,...,d by setting v; = e;
with ¢ = 1,...,d and vy = (—e,...,—e), where e is some nonnegative integer. Let
P = conv({vg,v1,...,0q}). Then one has vol(P) = ed + 1 by using an elementary
linear algebra. When e = 0, it is clear that §(P) = (1,0,0,...,0). When e is
positive, we know that

ISH

(e—j)d+1 . . :
j>1 (Uo,l):(]—e,j—e,...,j—e,l)
and 0 < ed{rl, (e;ﬁdlﬂ < 1 for every 1 < 57 < e. Then, from Section 3.1, we have
01,04 > e. Since §; > 6; for 1 < i < d —1 and vol(P) = ed + 1, we obtain

I(P)=(1,e,e,...,e).

(b) Let d 2 3. We define v; € R? for i = 0,1,...,d by setting v; = e;
with ¢ = 1,...,d and vy = (e,...,e), where e is some positive integer. Let
P = conv({vg,v1,...,vq}). Then one has vol(P) = ed — 1 by using an elemen-
tary linear algebra. And we know that

. d .
ke+ e—j)d—l—k B , . .
gvz, 1 (vo,1)=(e—j,e—j,...,e—j,k+1)

and 0 < ketd ZDELTk ) for every 0 < j < e—1and 0 < k < d — 2 with

(7,k) # (0,0). Hence one has 6(P) = (1,e — 1,e,e,...,e,e — 1) by Section 3.1.
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3.5.1 Some characterizations of integral convex polytopes
with shifted symmetric )-vectors

In this subsection, two results on integral convex polytopes with shifted symmetric
d-vectors are given.

Theorem 3.5.2 ([37, Theorem 2.1]). Let P be a d-simplex whose vertices are
V0, V1, .. .,vg € R and S(P) the set which appears in Section 3.1. Then the fol-
lowing conditions are equivalent:

(a) d(P) is shifted symmetric;
(b) the normalized volume of all facets of P is equal to 1;

(c) each element (a,n) € S(P)\{(0,...,0,0)} has a unique expression on the
form:

d
(a,n) =Y ri(v;,1) with 0<r; <1 for j=0,1,....d, (3.16)

j=0
where o € Z% and n € Z.

Proof. ((a) < (c)) If each element = € S(P)\{(0,...,0)} has the form (3.16), then
each inverse of x also belongs to S(P), which means that §(P) is shifted symmetric.
On the other hand, suppose that there exists an element z € S(P)\{(0,...,0)}
which does not have the form (3.16). Then one has deg(x)+deg(—z) < d+ 1, which
implies obviously that §(P) is not shifted symmetric.

((b) & (c)) Let 6(P) = (8o, 1, - - -,0a) € Z4 be the d-vector of P and §(F) =
(66,04, ...,0" 1) € Z% the d-vector of a facet F of P. Then one has &, < §; for 0 <
i <d—1. If there is a facet F with vol(F) # 1, say, its vertices are vy, vy, ..., V4_1,
then there exists an element («,n) € S(P) with a = Z?;é rjv; +0-vg and n > 0.
This implies that there exists an element of S(P)\{(0,...,0)} which does not have
the form (3.16). On the other hand, suppose that there exists an element (a,n) €
S(P)\{(0,...,0)} which does not have the form (3.16), i.e., (o,n) = Zj:o ri(vj, 1)
and there is 0 < j < d with r; = 0, say, 4 = 0. Then the normalized volume of the
facet whose vertices are vg, v1,...,v4_1 is not equal to 1. O

Remark 3.5.3. In the language of [73], a §-vector is shifted symmetric if and only if
a(t) = 1+t+---+t% In fact, when P is shifted symmetric, Box(o#) N N’ is empty,
where () £ F C P is a face of P, which means that the normalized volume of F is
equal to 1. In addition, since P is a simplex, one has hx(t) = Z?;Olfdim(ﬂ t'. Thus
it follows that

> Br(t)hr(t) = By(t)ho(t) =1+t + - + 1%,
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3.5.2 A family of (0,1)-polytopes with shifted symmetric J-
vectors

In this subsection, a family of (0, 1)-polytopes with shifted symmetric d-vectors is
studied. We classify completely the d-vectors of those polytopes. Moreover, we
consider when those d-vectors are both symmetric and shifted symmetric.

Let m be a positive integer with 1 < m < d. We study the d-vector of the
integral convex polytope P C R? whose vertices are of the form

(3.17)

- ei+ei+1+"'+ei+m—17 i:17"'7d7
' (0,...,0), i =0,

where e, ; = e;.
The normalized volume of P is equal to the absolute value of the determinant of
the circulant matrix

1 (3.18)

Vg
This determinant (3.18) can be calculated easily. In fact,

Proposition 3.5.4. When (m,d) = 1, the determinant (3.18) is equal to +m. And
when (m,d) # 1, the determinant (3.18) is equal to 0. Here (m,d) denotes the
greatest common divisor of m and d.

A proof of this proposition can be given by the formula of the determinant of
the circulant matrix. Thus one has vol(P) = m when (m,d) = 1. We assume only
the case of (m,d) = 1.

For j = 1,2,...,d — 1, let ¢; be the quotient of jm divided by d and r; its
remainder i.e., one has the equalities

jm =gqjd+r; for j=1,2,...,d—-1.
It then follows from (m,d) = 1 that
0<g<m-1,1<r;<d-1

and

ry#F oy if j#
for every 1 < j, 7' < d—1. In addition, for k =1,2,... ., m—1,let j, € {1,2,....d—1}
be the integer with r;, = k, i.e., one has the equalities

Jgkm =g d+r;, =q¢,d+k for k=12...,m—1.
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Then gj;, > 0. Thus one has
1 <gqj,rj, <m-—1

forevery 1 <k <m —1.
For an integer a, let @ denote the residue class in Z/dZ.

Theorem 3.5.5 ([37, Theorem 3.2]). Let P be the integral convex polytope whose
vertices are of the form (3.17) and §(P) = (09,01, ...,0q) its d-vector. For each
1 <i<d, one has im € {1,2,...,m — 1} if and only if one has 6; = 1. Moreover,
d(P) is shifted symmetric, i.e., ;11 = dq—; for each 0 <i < [(d—1)/2].

Proof. By using the above notations, we obtain

ﬁ {(UL 1) + (U27 1) + -+ (Ud; 1)} + ﬁ(UOa 1) = <QJk7 s 7ija]k) € Zd+1
and 0 < %7 % < 1 for every 1 < k < m — 1. Then Section 3.1 guarantees that one
has ¢;, > 1for k =1,...,m — 1. Considering Z?:o 0; = m by Proposition 3.5.4, it
turns out that 6(P) coincides with

5 — 1 i:07j17j27"'7jm—17
‘ 0 otherwise.
Now im € {1,2,...,m — 1} is equivalent with i € {j1,...,jm_1}. Therefore one has
§; = 1 if and only if im € {1,2,...,m — 1} for each 1 <i < d.
In addition, by virtue of Theorem 3.5.2, §(P) is shifted symmetric, as required.
O

Corollary 3.5.6. Let P be the integral convex polytope whose vertices are of the
form (5.17) and §(P) = (0,01, ...,04) ils d-vector. Then 6(P) is symmetric, i.e.,
d; = 0s—i for each 0 < i < [s/2] if and only if one has d =m — 1 (mod m).

Proof. Let p be the quotient of d divided by m and r its remainder, i.e., one has
d = mp+r. And let j; = min{ji, jo,. .., Jm—1}. On the one hand, one has jym = d+t.
On the other hand, one has (p+1)m =d+m—rand 1 <m—r <m—1. It
then follows from Theorem 3.5.5 that p + 1 = j; = min{i : §; # 0,7 > 0}. Hence
d—p=s=max{i:J; # 0} since §(P) is shifted symmetric.

When d =m — 1 (mod m), i.e., r =m — 1, we can obtain the equalities

d—p=mp+r—p=mp+m—1—p=m-—1)(p+1).

In addition, for nonnegative integers I(p + 1), [ = 1,2,...,m — 1, the following
equalities hold:

Ip+1m=Illmp+m)=Imp+m—1)+l=Ild+1=1€{1,2,...,m—1}.
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Thus it turns out that §(P) coincides with

s 1 i=0p+12(p+ 1), (m=1D(p+1),
0 otherwise,

by Theorem 3.5.5. It then follows that

Ok(p+1) = O(m—1-k)(p+1) = Os—k(p+1) = 1

for every 0 < k <m —1 and
0; =05 =10
for every 0 < i < s with i # k(p+ 1), k = 0,1,...,m — 1. These equalities imply
that §(P) is symmetric.
Suppose that §(P) is symmetric. Our work is to show that » = m — 1. Then one
has
00 = 0s = 6d—p = Om-1)p4r = 1.

Since §(P) is also shifted symmetric, one has O(m-_1)ptr = Opp1. Hence one has

5p+1 = 5(m_2)p+7,_1 = 5 2(p+1) = ° = 5[ (m—=1)/2)(p+1)= 1 since (5(73) is both symmetric
and shifted symmetric When m is odd, one has d— = 2=L(p + 1) since §(P) is
symmetric. Thus 7 = m — 1. When m is even, one ha il = Z(p+ 1) since 6(P)
is shifted symmetric. Thus r=m—1.

Therefore §(P) is symmetric if and only if d =m — 1 (mod m), as desired. [

3.5.3 Shifted symmetric )-vectors of Hermite normal forms

In this subsection, we consider the problem when the integral simplices arising from
(3.4) have shifted symmetric d-vectors. By using Corollary 3.3.4, we deduce a sym-
metry property of the d-vectors.

Proposition 3.5.7 (Shifted symmetry for “one row”). For a matriz M € Z%*? with
Hermite normal form (3.4), we have s; + sp_; =d+ 1, fori=1,...,D — 1, which
implies 6; = 0q11-; by reciprocity, if and only if the following three conditions hold:

(a) Zf:_lljdj — 1 is coprime with D;
b) d; =0 for all 3 which is not coprime with D;
( j J
D-1
(C) Zj:l dj =d-—1.

Proof. Let us consider s; + sp_;. For an integer a, let @ denote its residue class in
Z/DZ. Then we have

e AR L

7=1 7=1
= . D—i— Y77 (D —4i)jd; o
B D D '
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Since

i X5y = i(1 = S5 ;) (mod D), 519
D—i= Y5 (D= jd; = (D=i)(1= 77 jd;) (mod D). |

if the condition (a) is not satisfied, then one has

D -0 (i + (D —1i)j)d,

Si+Sp_; = D + 2d
D—-1— s
ij+ (D —1i)j
7j=1
D-1
>2d+1-Y dj>d+2>d+1
j=1

for some i with 1 < ¢ < D — 1. Thus, the condition (a) is a necessary condition
to have s; + sp_; = d + 1 for all 7. On the other hand, when the condition (a) is
satisfied, again from (3.19), we have

D=0 (i + (D —1i)j)d;
5 +2d -1

Si+Sp_; =

D—-1—

W+ (D—1)j
_2g-y 200,
j=1
=2d- Y d;.
D/ ij
If the condition (b) is not satisfied, then we have
S;i+ Sp_; = 2d — Z dj >d+1
DJij

for some ¢ with 1 < ¢ < D—1. Hence, the condition (b) is also a necessary condition.
In addition, if the condition (c) is not satisfied, then we have s; + sp_; > d + 1.
Thus, the condition (c) is also a necessary condition. On the other hand, when the
conditions (a), (b) and (c) are all satisfied, we have s; + sp_; = D + 1 for all i. [

In particular, if we assume in addition that dp_; = d —1 in Corollary 3.3.4, then
we have

Proposition 3.5.8 (Shifted symmetry for “all D —1 one row”). Let M € Z%*? with
Hermite normal form (3.6). Then

(a) 6; = d4r1-i if and only if D and d are coprime.
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(b) When D = kd, for k € N and k > 2, the §-vector is

(Lk,... kk—1),
—

d—1

which is not shifted symmetric. But for k = 2, we have 0 = 64—k (i-e€.,
symmetric).
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Chapter 4

Roots of Ehrhart polynomials

In this chapter, we will study roots of the Ehrhart polynomials of integral convex
polytopes. As we described above, Conjecture 2.0.1 is an outstanding and important
problem, which we will discuss. Moreover, we will also concentrate on roots of the
Ehrhart polynomials of Gorenstein Fano polytopes.

In Section 4.1, in order to examine whether Conjecture 2.0.1 is affirmative, we
will investigate roots of the Ehrhart polynomials of integral convex polytopes aris-
ing from graphs. We will discuss them in terms of graphs. However, in Section
4.2, counterexamples for Conjecture 2.0.1 will appear. Moreover, Section 4.3 will be
devoted to studying roots of the Ehrhart polynomials of Gorenstein Fano polytopes.
Finally, we will also consider roots of SSNN polynomials, which are generalized
Ehrhart polynomials of Gorenstein Fano polytopes, i.e., a class of polynomials con-
taining all their Ehrhart polynomials.

4.1 The conjecture on roots of Ehrhart polyno-
mials

First, let us consider roots of the Ehrhart polynomials of integral convex polytopes
arising from finite connected simple graphs, which we call edge polytopes. Con-
cretely, the aim of this section is to provide evidence for Conjecture 2.0.1 for the
Ehrhart polynomials of edge polytopes constructed from connected simple graphs,
mainly by computational means.

4.1.1 Exhaustive computation of roots of Ehrhart polyno-
mials arising from graphs

Let G be a graph having no multiple edges on the vertex set V(G) = {1,...,d} and

the edge set E(G) = {e1,...,em} C V(G)>. Graphs may have loops in their edge

sets unless explicitly excluded; in which case the graphs are called simple graphs.
We refer the reader to e.g., [77] for the introduction to graph theory.
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Figure 4.1: V§*

Definition 4.1.1. For an edge e = {i, j} of G, we define p(e) = e;+e;. In particular,
for a loop e = {i,i} at i € V(G), one has p(e) = 2e;. The edge polytope of G is the
convex polytope Pg C R?, which is the convex hull of the finite set

{per), ... pem)}-

The dimension of Py equals to d—2 if the graph G is a connected bipartite graph,
or d — 1, other connected graphs [54]. The edge polytopes of complete multipartite
graphs are studied in [56]. Note that if the graph G is a complete graph, the edge
polytope Pg is also called the second hypersimplex in [75, Section 9].

Let C[X] denote the polynomial ring in one variable over C. Given a polynomial
[ = f(X) € C[X], we write V(f) for the set of roots of f, i.e.,

V(f) ={acC]| f(a) =0}.

We computed the Ehrhart polynomial i(Pg,n) of each edge polytope Pg for
connected simple graphs G of orders up to nine; there are 1,2, ...,261080 connected
simple graphs of orders 2,3,...,9". Then, we solved each equation i(Pg, X) = 0 in
C.

Let V¢ denote | V(i(Pg,m)), where the union runs over all connected simple
graphs G of order d. Figure 4.1 plots points of V§°, as a representative of all results.
For all connected simple graphs of order 2-9, Conjecture 2.0.1 holds.

Since an edge polytope is a kind of 0/1-polytope, the points in Figure 4.1 for
V§® are similar to those in Figure 6 of [5]. However, the former has many more
points, which form three clusters: one on the real axis, and other two being complex

!These numbers of such graphs are known; see, e.g., [22, Chapter 4] or A001349 of the On-Line
Encyclopedia of Integer Sequences.
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conjugates of each other and located nearer to the imaginary axis than the first
cluster. The interesting thing is that no roots appear in the right half plane of the
figure. The closest points to the imaginary axis are approximately —0.583002 +
0.6457751 € V£°, —0.213574 £ 2.4690657 € V§°, and —0.001610 % 2.3245057 € V§°.
A polynomial with roots only in the left half plane is called a stable polynomial.
This observation raises an open question:

Question 4.1.2. For any d and any connected simple graph G of order d, is i(Pg, n)
always a stable polynomial ?

For a few infinite families of graphs, rigorous proofs are known, e.g., Proposi-
tion 4.1.3 and Examples below.

Proposition 4.1.3. A root a of the Ehrhart polynomial i(Pg,,n) of the complete
graph Ky satisfies

1. ae{-1,-2}ifd=3 or
2. =4 <Re(a) <0 ifd>4.

Proof. The Ehrhart polynomial i(Pk,,n) of the complete graph K is given in [75,

Corollary 9.6]:
. d+2m—1 m+d—2
z(PKd,n):( J_1 )—d( J_1 )

In cases where d = 2 or 3, the Ehrhart polynomials are binomial coefficients, since
the edge polytopes are simplices. Actually, they are:

2
i(Pky,n) =1 and i(Pg,,n) = (m;— )

Thus, there are no roots for d = 2, whereas {—1, —2} are the roots for d = 3.

Hereafter, we assume d > 4. It is easy to see that {—1,—-2,...,— L%J} are
included in V(i(Pg,,n)).

We shall first prove that Re(a) < 0. Let qc(ll)(n) =2n+d-1)---2n+1)
and qc(lz)(n) = d(n+d—2)---n. Then for a complex number z, i(Pg,,z) = 0
if and only if qfll)(z) = qfiz)(z), since qc(ll)(z) - qff)(z) is (d — 1)1i(Pk,, z). Let us
prove |q0(ll)(z)\ > |q§2)(z)| for any complex number z with a nonnegative real part by
mathematical induction on d > 4.

If d = 4,

167(2)] = |22+ 3) (22 +2)(22 + 1)| = |22+ 3|z + 1|[42 + 2|
> |z 42|z + 1]J42] = |62 (2)]

holds for any complex number z with Re(z) > 0.
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Assume for d that |q(1)( )| > |qc(f)(z)| is true for any complex number z with

Re(z) > 0.
Then, by
4 () = 122+ d)|d"(2)]
d + 1
4% (2)] = 2+ d—1]]¢P(2)]
and

12dz + d?| > [(d+1)z+d*> 1|
from 2d > d + 1 and d? > d? — 1, one can deduce

dlgi) ()] = |12dz +d|¢"(2)]
> |(d+1)z+d> —1][¢P (=)
|

= (d+1)]z+d—1]lq(z

)
d+1
— 2+ d 1|7 (=) = dlg?,(2)].

Thus, \qéi)l(z)] > \qc(li)l(z)] holds for any complex number z with Re(z) > 0.

Therefore, for any d > 4, the inequality |qél)(z)| > |q§2)(z)] holds for any complex
number z with a nonnegative real part. This implies that the real part of any
complex root of i(Pk,,n) is negative.

We shall also prove the other half, that —% < Re(a). To this end, it suffices to

show that all roots of js(I) = i (Pr,,—l — %) have negative real parts. Let 7“( (1)
and 7“((12)(l) be

r) = (=) Y (—z - g) =@ +1)--- @2 +d—1)

(2) d-1_(2) d d—4 d
= (-1 1-Z)= R I 2.
ry (1) (—1)" g, ( [ 2) d (l 5 ) (l+ 5
Then for a complex number z, it holds that
Jji(2) =0 — rc(ll)(z) = r((iz)(z).

Let us prove |7’C(ll)(z)\ > ]rff)(z)| for any complex number z with a nonnegative real
part by mathematical induction on d > 4.
For d = 4, it immediately follows from the inequality between q4 ) and q4 :

1 1 2 2
M) =10 @) > 16 )] = P )
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And so we need d = 5 also as a base case:
PV = 22+ 1]|22 + 2|[22 + 322 + 4]
5
> Z|Z+ 1]|2z + 1]|22 + 3||2z + 4]

5
> 4_1|Z_ %||22—|— 1\|2z+3|]z+§|

1
Z__

2
= P

Assume for d the validity of |7’C(ll)(z)\ > \rf)(z)] for any complex number z with
Re(z) > 0.
Then, from the fact that

b}
2+ =

z - |7 -
2 2

= 5 5

() = 22+ d|)22 + d+ 1P (2)]
d-+2 d d
(| = —= |z =5+ 1|z 45 + 117
it follows that
diri)y(2)] = d|2z +d||22 +d + 1|} ()]

> d2z 4 d| |z + 2+ 1] PP (2)]
2dz + & |2 + 4+ 1| 7P (2)
> [(d+2)z+d® — 4|2+ L+ 1|rP ()]
d—2

zZ - —

2

> (d+2)

= dr&L)l

Thus, |7’C(llJ22(z)| > |r((1%22(z)\ holds for any complex number z with Re(z) > 0.

d
s g4 )

Therefore, for any d > 4, the inequality |r((11)(z)| > |r((j2)(z)] holds for any complex
number z with a nonnegative real part. This implies that any complex root of j4({)
has a negative real part. O]

Next, we comput the roots of the Ehrhart polynomials i(Pg,n) of complete
multipartite graphs G as well. A complete multipartite graph of type (q1,...,q),
denoted by K, _,,, is constructed as follows. Let V(K ,) = ., V; be a disjoint
union of vertices with |V;| = ¢; for each ¢ and the edge set E(K,, .. ,) be {{u,v} | u €
Vi, veV; (i #j)}. The graph K, is unique up to isomorphism.

The Ehrhart polynomials for complete multipartite graphs are explicitly given
in [56]:

, d+2n—1 j—i+n—1\/d—j7+n—1
z@bm):( ) ( o )( , ) (4.1)
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where d = 3", _, qx is a partition of d and G = K,
Another simpler formula is newly obtained.

Proposition 4.1.4. The Ehrhart polynomial i(Pg,n) of the edge polytope of a com-
plete multipartite graph G = K, 18

i(PG7n) = f(n7 d7 d) - Zf(na d7 Qk)>
k=1

where d =Y ,_, qx and
J
f(nid, ) =Y p(n;d. k)

with

Proof. Let G denote a complete multipartite graph K,
formula (4.1).
First, it holds that

- We start from the

-----

d+2n—1
( i1 )Zf(n;d,d)-

On the one hand, (dff_"; 1) is the number of combinations with repetitions choosing

2n elements from a set of cardinality d. On the other hand,
d j+n—1\[/d—j+n—-1
id,d) =
Jsdd ;( j-1 )( a-j )

counts the same number of combinations as the sum of the number of combinations
in which the (n + 1)th smallest number is j.

Second, it holds that

: j—itn—1\(d—j+n—1 :

>3 (YY) ~ S st
— Jj—1 d—j

k=1 1<i<j<q k=1

Since the outermost summations are the same on both sides, it suffices to show that
j—i4+n—1\/d—j+n—1
> ( . >( : = f(n;d, qx).
— Jj—1 d—j
1<i<j<qr
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The summation of the left-hand side can be transformed as follows:

1<i<j<qi J—1
j=1 i=1 J—i
B qz’“(d—j—i—n—l
j=1 d=J
B qz’“(d—jJrn—l
i=1 d=J
dk
= ) p(nid,j)
j=1
= f(nd, q)

-1

)
)

Finally, substituting these transformed terms into the original formula (4.1) gives

the desired result.

O

By the new formula above, we computed the roots of Ehrhart polynomials. Let
V27 denote |JV(i(Pg,n)), where the union runs over all complete multipartite
graphs G of order d. Figure 4.2 plots the points of V5", For all complete multipartite
graphs of order 10-22, Conjecture 2.0.1 holds.

4

3k

2+

oOF + + + + + + + + + +

Figure 4.2: V3

Figure 4.2, for Vo', shows that the noninteger roots lie in the circle }z
This fact is not exclusive to 22 alone, but similar conditions hold for all

conjecture the following
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Conjecture 4.1.5. For any d > 3,
VP c{zeC| |z+4 <4u{-(d-1),...,-2,—1}.

Remark 4.1.6. (1) The leftmost point —(d — 1) can only be attained by Kj; this is
shown in Proposition 4.1.10. Therefore, if we choose d > 4, the set of negative inte-
gers in the statement can be replaced with the set {—(d—2),...,—2,—1}. However,
—(d — 2) can be attained by the tree K, for any d; see Example 4.1.7 below.

(2) Since 0 can never be a root of an Ehrhart polynomial, Conjecture 4.1.5 an-
swers Question 4.1.2 in the affirmative for complete multipartite graphs. Moreover,
if Conjecture 4.1.5 holds, then Conjecture 2.0.1 holds for those graphs.

(3) The method of Pfeifle [62] might be useful if the J-vector can be determined
for edge polytopes of complete multipartite graphs.

Example 4.1.7. The Ehrhart polynomial for complete bipartite graph K, , is given
in, e.g., [56, Corollary 2.7 (b)]:

. n+p—1\/n+qg—1
Z(PK”’q’n):< pfl )( qgl )

and thus the roots are
V(i(Pk,,,n) ={-1,...,—max(p— 1, — 1)}
and all of them are negative integers satisfying the condition in Conjecture 4.1.5.

Example 4.1.8. The edge polytope of a complete 3-partite graph Pk, , , for m > 2

can be obtained as a pyramid from P, , by adjoining a vertex. Therefore, its
Ehrhart polynomial is the following:

3

Each term on the right-hand side is given in Example 4.1.7 above. By some elemen-
tary algebraic manipulations of binomial coefficients, it becomes,

i(PKmJJ?n) = (

m+n>nm+m+1

m m—+1

The noninteger root % is a real number in the circle of Conjecture 4.1.5.
Now we prepare the following lemma for proving Proposition 4.1.10.

Lemma 4.1.9. For any integer 1 < 5 < g, the polynomial p(n;d,j) in Proposi-
tion 4.1.4 satisfies:

p(n;d,d - j) = (g - 1) p(n;d, j).
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Proof. 1t is an easy transformation:

gy = () (1)

(d=j+n—=1\(j+n—-1

B d—j—1 J

_ d—j(d—j—l—n—l)(j—l—n—l)
J d—j J—1
d .

= (3—1) p(nid, j).

Proposition 4.1.10. Let (qq,...,q:) be a partition of d > 3, satisfying 1 > q2 >
- > q;. The Ehrhart polynomial i(Pg,n) of the edge polytope of the complete
multipartite graph G = K, ,, does not have a root at —(d — 1) except when the

graph is K.

[]

Proof. From Proposition 4.1.4, the Ehrhart polynomial of the edge polytope of G =

q1y---s qt
i(Pg,n) = f(n;d,d)— anqu
d—1 t gk
= p(nsd,d)+ Y p(nid,j) =Y > p(n;d, j)
j=1 k=1 j=1

Since p(n;d, d) has —(d — 1) as one of its roots, it suffices to show that the rest of
the expression does not have —(d — 1) as one of its roots.
We evaluate p(n;d, j) at —(d — 1) for j from 1 to d — 1:

p(—(d—1):d,j) = G ) Cf) <d_—jj)

by the definition of p(n;d,j). If j > 1, its sign is (=1)7 """ = (=1)%" since
j—d<0and —j < 0. In case where 7 = 1, since j — 1 is zero,

p(—(d—1):d,1) = (d—_ll) (L

gives the same sign with other values of j.
By the conjugate partition (qi,...,qy) of (qi,...,q:), which is given by ¢; =
{i <t|q > j}|, we obtain

d—1 d—1
> p(nid, j) ZZP (n;d,j) = > (1-q})p(n;d,j), (4.2)
j=1 k=1 j=1 j=1
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where we set, for simplicity, ¢; = 0 for j > ¢'.

We show that all the coefficients of p(n;d, j) are nonnegative for any j from 1 to
d — 1 and there is at least one positive coefficient among them.
(D) > %1
The coefficients of p(n;d,j) are zero for ¢ > j > d — ¢, unless d = ¢ + ¢o, i.e.,
when the graph is a complete bipartite graph; the exceptional case will be discussed
later. We assume, therefore, ¢go < d — ¢; for a while. Though equation (4.2) gives
the coefficient of p(n;d, j) as 1 for d > j > ¢, by using Lemma 4.1.9, we are able to
let them be zero and the coefficient of p(n;d, j) be ‘Ji — ¢ for d — g1 > j > 0. Then
all the coefficients of p(n;d, j)’s are positive, since the occurrence of integers greater
than or equal to j in a partition of d — ¢; cannot be greater than < j‘“
(II) g < 5
Each coefficient of p(n;d, j) in equation (4.2) is 1 for d > j > %. By Lemma 4.1.9,
we transfer them to lower j terms so as to make the coefficients for g > 7 >0 be
;—,l — ¢j. Then all the coefficients of p(n; d, j)’s are nonnegative, since the occurrence
of integers greater than or equal to j in a partition of d cannot be greater than
;—?. Moreover, the coefficient is zero for at most one j, less than %l. If d =3 and
q1 = q2 = q3 = 1, i.e., in case of K3, there does not remain a positive coefficient.
This exceptional case will be discussed later.

For both (I) and (II), ignoring the exceptional cases, the terms on the right-
hand side of equation (4.2) are all nonnegative when d = 1 (mod 2), or nonpositive
otherwise, and there is at least one nonzero term. That is, —(d — 1) is not a root of

d—1
Z (n;d, 7) Zandj
j=1 k=1 j5=1

The Ehrhart polynomial i(Pg,n) is a sum of a polynomial whose roots include
—(d — 1) and another polynomial whose roots do not include —(d — 1). Therefore,
—(d — 1) is not a root of i(Pg,n).

Finally, we discuss the exceptional cases. The complete bipartite graphs are
treated in Example 4.1.7. In these cases, —(d — 1) is not a root of the Ehrhart

polynomials. However, —(d — 1) = —2 is actually a root of the Ehrhart polyno-
mial of the edge polytope constructed from the complete graph K3, as shown in
Proposition 4.1.3 (1). O

4.1.2 Roots of Ehrhart polynomials of edge polytopes with
loops

In this subsection, we will investigate roots of the Ehrhart polynomials of edge
polytopes allowing loops.

A convex polytope P of dimension d is simple if each vertex of P belongs to
exactly d edges of P. A simple polytope P is smooth if at each vertex of P, the
primitive edge directions form a lattice basis.
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Now, if e = {4, j} is an edge of G, then p(e) cannot be a vertex of Pg if and only
if i # 7 and G has a loop at each of the vertices ¢ and j. Suppose that G has a loop
at i € V(G) and j € V(G) and that {i,j} is not an edge of G. Then Pg = Py for
the graph G’ defined by E(G') = E(G)U{{i,j}}. Considering this fact, throughout

this section, we assume that G satisfies the following condition:

(%) If 4, 7 € V(G) and if G has a loop at each of i and j, then the edge {i,;}
belongs to G.

The graphs G (allowing loops) whose edge polytope Pg is simple are completely
classified by the following

Theorem 4.1.11 ([59, Theorem 1.8]). Let W denote the set of vertices i € V(G)
such that G has no loop at i and let G' denote the induced subgraph of G on W.
Then the following conditions are equivalent :

(i) Pg is simple, but not a simplex;
(ii) Pg is smooth, but not a simplex;
(111)) W # 0 and G is one of the following graphs:

(o) G is a complete bipartite graph with at least one cycle of length 4;

(B) G has ezactly one loop, G' is a complete bipartite graph and if G has a
loop at i, then {i,j} € E(G) for all j € W;
(v) G has at least two loops, G' has no edge and if G has a loop at i, then
{i,j} € E(G) forall j € W.
From the theory of Grébner bases, we obtain the Ehrhart polynomial i(Pg,n)
of the edge polytope Pg above. In fact,

Theorem 4.1.12 ([59, Theorem 3.1]). Let G be a graph as in Theorem 4.1.11 (iii).
Let W denote the set of vertices i € V(G) such that G has no loop at i and let G’
denote the induced subgraph of G on W. Then the Ehrhart polynomial i(Pg,n) of
the edge polytope Pg are as follows:

(a) If G is the complete bipartite graph on the vertex set Vi U Vy with [Vi| = p and
|Va| = q, then we have

. n—1\/g+n—1
Z(Pa’n):(ppﬁl )(qqﬁl >;

(B) If G' is the complete bipartite graph on the vertex set Vi UV, with |Vi| = p and

|Va| = q, then we have
p q
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(v) If G possesses p loops and |V (G)| = d, then we have

505 )(0)

J=1

The goal of this section is to discuss the roots of Ehrhart polynomials of sim-
ple edge polytopes in Theorem 4.1.11 (Theorems 4.1.15, 4.1.16, and 4.1.17). The
consequences of the theorems above support Conjecture 2.0.1.

Example 4.1.13. The Ehrhart polynomial for a graph G, the induced subgraph G’
of which is a complete bipartite graph K, ,, is given in Theorem 4.1.12 (/3):

p q
and thus the roots are

v <(p;”) (qzn)) —{—1,-2,..., —max(p,q)}.

Example 4.1.14. Explicit computation of the roots of the Ehrhart polynomials
obtained in Theorem 4.1.12 () seems, in general, to be rather difficult.

Let p = 2. Then
n—1\/d—1+n n\/(d—2+n
(o) () =05
d—1+n d—24+n
- () ()
d—1+n d—2+n
- ( d—1 +">< d—2 )

dntd—1,d—2+n
d—1 d—2 )
Thus,
) d—1
V (i(Pg,n)) = {—1,—2,...,—(4_2)’_7}'
Let p = 3. Then

(30 O ()0
= () () e ()

_ ((d—(;t%g:?n) +nd;i—12—n+n(n2+1)> <d;i—§n)
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and
(d—14n)(d—2+n) d—2+n n(n+1)
d—1)d-2 " M"ai—2 T3
2d—1+n)d=24n)+2(d—1)n(d—2+n)+ (d—1)(d—2)n(n + 1)

2(d —1)(d — 2)
(P —d+2)n? 4 (3d® — 5d)n + (2d* — 6d + 4)
B 2(d —1)(d —2) '

Let
f(n) = (d* —d +2)n* + (3d*> — 5d)n + (2d* — 6d + 4).

Since d > p = 3, one has

f(0) = 2d*> —6d+4=2(d—1)(d—2) > 0;
f(=1) = (d*—d+2)— (3d* — 5d) + (2d*> — 6d +4) = —2d + 6 < 0;
f(=2) = 4(d®>—d+2)—2(3d*> - 5d) + (2d*> — 6d +4) =12 > 0.

Hence,

V(Z(PG7n)) = {_17 _27 ) _<d - 3)7a7ﬁ}
where —2 < a < -1 < (3 <0.

We try to find information about the roots of the Ehrhart polynomials obtained
in Theorem 4.1.12 () with d > p > 2.

Theorem 4.1.15 ([48, Theorem 2.5]). Let d and p be integers with d > p > 2 and

let
= (jtn—=2\(d—j+n
fd”’(”)_;< j-1 )( d—j )

be a polynomial of degree d — 1 in the variable n. Then
{-1,-2,...,—(d—p)} C V(fap)NR C [—(d—2),0).

Proof. 1t is easy to see that f;,(0) =1 and f4,(n) > 0 for all n > 0.
From Example 4.1.14, we may assume that 4 < p < d. Then

fdm(n)
d—1+n d—2+n P (j4+n—=2\[d—j+n
- (L) (SR
d—1+n d—2+n i+ n=2\[(d—j+n
- () ()20
_ nd+d-1(d—2+n +i j+.n—2 d—j+'n |
d—1 d—2 = 7 —1 d—j
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Ifn < —(d—2),thenn+d—2 < 0, nd+d—1 < —(d—2)d+d—1= —(d—3)d—1 < 0,
n+d—7 < n4+d—-3<0
n+7—2 < n+p—2<n+d-—3<0

for each j = 3,4,...,p. Hence, we have (—1)%"1f;,(n) > 0 for all n < —(d — 2).
Thus, we have V(fz,) "R C [—(d —2),0).
Since

= (15") Z I e =

d—p

it follows that

v((d;f;”» = {~1,-2,...,—(d =)} T V(fap)-

]

Theorem 4.1.16 ([48, Theorem 2.6]). Let d and p be integers with d > p > 2 and
let fap(m) be the polynomial defined above. If d —2p +2 > 0, then

V(fip) =1{-1,-2,...,—(d—p),01,00,...,p1}
where
—p—-1)<ap1<—-(pP—-2)<a2<—(p—3)<---<—-1<my<0.
Proof. Let

fap(m) Zp:(j+n—2)(d—j—i—n)~~~(d—p—|—1—|—n)‘

Jap(n) = () = i—1 (d=j)-(d=p+1)

d—p j=1

It is enough to show that
(—1)"gap(k) > 0
for k=0,—-1,-2,....,—(p—1).

First Step. We claim that (—1)"®"Yg, (—(p — 1)) > 0. A routine computation
on binomial coefficients yields the equalities

gap(—=(p —1))

(O TS (@ =) [T (d =k = (p— 1))
d=1)--(d—p+1)

and

i=1 =1

= (1) p—1p---(2p—3).

(-1 (j_l)ﬁ —zjjd k- (p- 1)
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Hence,
(p—1Lp---(2p—3)
(d—1)---(d—p+1

(—1)P ' gap(—(p—1)) = > 0.

Second Step. Working with induction on p, we now show that
(=1)*gap(k) > 0

for k =0,—1,—-2,...,—(p — 2). Again, a routine computation on binomial coeffi-
cients yields

p+n—2 d—p+1+n
gap(n) = ( ) Ldoptlen, .

p—1 d—p+1
Hence,
d—p+1+k
(—1)*gap(k) = m(—l)kgd,pﬂ (k).

Since d — 2p + 2 > 0, one has
d—p+1+k>d—p+1—-(p—2)=d—2p+3>0.

By virtue of (—=1)~®"Vg, (= (p—1)) > 0, together with the hypothesis of induction,
it follows that

(=1)*gap_1(k) > 0.
Thus,
(=1)"gap(k) > 0,
as desired. ]

If d—2p+ 2 >0, then it follows that
d—1
— | <d-p.

In this case, around half of the elements of V(f;,) are negative integers. This fact
remains true even if d — 2p 4+ 2 < 0.

Theorem 4.1.17 ([48, Theorem 2.7]). Let d and p be integers with d > p > 2 and
let fap(n) be the polynomial defined above. Then

R, (1] P
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Proof. If d —2p 42 > 0, then it follows from Theorem 4.1.15. (Note that if p = 2,
thend —2p+2=d—-2>0.)

Work with induction on p. Let d —2p + 2 < 0. By Theorem 4.1.15, it is enough
to show that gq,(k) =0 for all k = —(d —p+1),...,— |%]. As in the proof of
Theorem 4.1.16, we have

_(ptn—2 d—p+1+n
) = (77T L o)

Since d — 2p + 2 < 0, it follows that L%J < p— 2. Thus,

d—p+1+k
9ap(k) = mgd,p—l(k)~
By virtue of
0
gap(—(d—p+1)) = mgd,p—l(—(d —p+1))=0

together with the hypothesis of induction, it follows that g4,(k) = 0 for all k
—(d-p+1),....— |F].
Example 4.1.18. Let d = 12. Then d — 2p + 2 > 0 if and only if p < 7. For p =

2,3,...,7, the roots of the Ehrhart polynomials are —1,—-2,...,—(d —p) =p — 12,
together with the real numbers listed as follows:

]

p=2 —0.92

p=3 —192 —0.85

p=4 —-290 —1.83 —0.80

p=>5 —383 277 —-1.74 —-0.76

p=6 —4.67 —3.65 —2.60 —1.66 —0.72

p=7 —531 —442 —-3.47 —-253 —-1.58 —0.69

For p = 8,9,10, 11, the roots of the Ehrhart polynomials are —1, -2, -3, —4, —5 =
— L%J, together with the following complex numbers:

p=8 —5.56 —-4.19 —-3.31 —-2.41 —1.51 —-0.65
p=9 —547 —-4.79 -3.16 —2.29 —1.43 -0.62
p=10 —-5.51 —4.16+0.187 —4.16 —0.18¢ —2.16 —1.34 -0.59
p=11 —5.50 —4.53 —-3.084+0.06c —3.08—-0.06: —1.24 —0.55

(Computed by Maxima.) Thus, in particular, the real parts of all roots are negative.

4.2 Counterexamples of Conjecture 2.0.1

However, we discover counterexamples of Conjecture 2.0.1.
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4.2.1 A significant family of integral simplices

This section is devoted to giving some counterexamples of Conjecture 2.0.1. First,
we prove

Theorem 4.2.1 ([38, Theorem 2.1)). Let m,d, k € Z~q be arbitrary positive integers
satisfying

m>1,d>2 and 1<k <|(d+1)/2]. (4.3)

Then there exists an integral convex polytope whose Ehrhart polynomial coincides

with
(d;n>+m<d+z—kz)‘ »

Proof. We may show that there exists an integral convex polytope of dimension d
whose d-vector coincides with

1, =0,
5@' == m, 1= k‘,
0 otherwise.
When k = 1, it is obvious that (1,m,0,...,0) is a d-vector. Thus, we assume

that £ > 2. By Lemma 3.2.3, it is enough to construct an integral convex polytope
of dimension d with its J-vector

1 1 =0,
di=<m, i=(d+1)/2,
0 otherwise,

for any positive integer m and any odd number d with d > 3.

Let d > 3 be an odd number and ¢ = (d — 1)/2. We define the integral simplex
P C R? of dimension d by setting the convex hull of the integer points vy, v1, . .., v4 €
Z¢, which are of the form

€, 1=1,...,d—1,
V=40 le]—l—zj crime; +(m+1lleq, i=d,
(0,0,...,0), 1 =0,
where e, e,, ..., e; denote the unit coordinate vectors of R?. In other words, for
1 =1,...,d, v; is equal to the ¢th row vector of the d x d lower triangular integer
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matrix

1 0 0
0 1
, (4.5)
0 ««+ oo oo 0 1 0
r -1 m -~ m m+l1

where there are ¢ 1’s and ¢ m’s in the dth row. Then we notice that vol(P) = m+1,
which coincides with the determinant of (4.5).

For j =1,2,...,m, since
“m1—j L
— (v, 1 D) = (1,1,...,1,5,4,...,j,c+1) e Z¢H!

z; w1 )+Z+:1m+1(v )= ( Jods--ngct 1)

= = c c+1
and 41 ,

o< g o<,
m—+1 m—+1

we have d.,1 > m. Moreover, from vol(P) = m + 1 together with the nonnegativity
of d-vectors, we obtain d(q41)/2 = m. Therefore, we conclude that /P has the required
0-vector. m

We consider the roots of the polynomial (4.4) given in Theorem 4.2.1.
Let f(n) be the polynomial (4.4) in n of degree d. Since

f(MIW( 11 <n+j>+mﬁ<n—j>>,

j=d—k+1 Jj=0
negative integers —1,—2,..., —d + k are always the roots of f(n). Let
d k-1
gmar(m) =[] +5)+m][[(n-2)
j=d—k+1 Jj=0

be a polynomial in n of degree k. We consider the roots of g, ax(n).

Example 4.2.2. Let us consider the polynomial g,,1558(n). When 1 < m < 8,
all its roots satisfy (4.7). On the other hand, when m = 9, its eight roots are
approximately

14.37537447 £+ 25.02096544+/—1, —0.77681486 + 10.23552765v —1,
—2.56596317 + 4.52757516v/ —1 and — 3.03259644 + 1.31223697v/ —1.
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By virtue of Theorem 4.2.1, this implies that there exists a counterexample of Con-
jecture 2.0.1. Moreover, it can be verified that for every 15 < d < 100, gg 4, (d+1)/2 (n)
possesses a root which violates (4.7), that is, there exists a counterexample of Con-
jecture 2.0.1 for each dimension 15 < d < 100. There also seems to exist a coun-
terexample when d > 101. In addition, we remark that when d > 17, we can verify
that g a,|(a+1)/2)(n) possesses a root whose real part is greater than d. (Those are
computed by Maple and Maxima.)

These computational results are also supported theoretically. For example on
the roots of g 155(n), by applying the Routh-Hurwitz stability criterion, (e.g., [18,
pp. 226-233],) we can check that go15(n + 14.3) possesses a root whose real part is
nonnegative but gg15s(n + 14.4) possesses no root whose real part is nonnegative.
Of course, this means that gg155(n) possesses a root o with 14.3 < Re(«) < 14.4.

Remark 4.2.3. On the order of the largest real part of the non-real roots of gg 4| (441)/2/ (1),
the order seems not to be linear on d. For example, when d = 30, 50, 100 and 200,
the largest real parts of non-real roots of gg 4 |(4+1)/2)(n) are as follows:

d | approximate real part
30 60
50 174

100 722

200 2940

Thus, it is more natural to claim that the real parts of roots of Ehrhart polynomials
are bounded with O(d?), which is known as the best possible norm bound of roots
of Ehrhart polynomials.

Remark 4.2.4. (a) When m = 1, the real parts of all the roots of ¢y 4x(n) are
(—d + k — 1)/2, which satisfies —d < (—d+ k —1)/2 < —1/2. In fact, since all the
roots of 1+ A\¥ are on the unit circle in the complex plane, we can apply the theorem
of [64] to the polynomial (":lrd) -+ (”+g_k). On the other hand, when m = 2, we can
obtain other counterexample of Conjecture 2.0.1 when d = 37 and k = 19.

(b) When k = 1, one has ¢, 41(n) = (m + 1)n + d. Thus, its root is —d/(m + 1),
which satisfies —d < —d/(m+1) < 0. When k = 2, one has g, 42(n) = (m+1)n*+
(2d —m — 1)n 4+ d(d — 1). If its discriminant is negative, then the real part of its
roots is —d/(m + 1) + 1/2, which satisfies —d + 1/2 < —d/(m + 1) +1/2 < 1/2.
Remark 4.2.5. Finally, we remark that there exists other counterexample of Con-
jecture 2.0.1. In [60], Ohsugi and Shibata found an integral convex polytope of
dimension 124 which is a certain counterexample.

4.3 Roots of Ehrhart polynomials of Gorenstein
Fano polytopes

In this section, we discuss roots of the Ehrhart polynomials of Gorenstein Fano
polytopes, which have many interesting distribution.
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4.3.1 Gorenstein Fano polytopes arising from graphs

Let us study roots of Ehrhart polynomials of Gorenstein Fano polytopes arising from
finite connected simple graphs. Throughout this subsection, G denotes a simple
graph on the vertex set V(G) = {1,...,d} with E(G) = {e1, ..., en} being the edge
set.

Definition 4.3.1. Given an edge e = {i, j} € E(G), we define o(e) = e; —e; € R%.
Moreover, we write 77?5 C R? for the convex hull of

{£o(e) e € E(G)},

which we call an symmetric edge polytope.

Let H C R? denote the hyperplane defined by the equation z; +zy4---+z4 = 0.
Now, since the integral points £o(e;), ..., £o(ey,) lie on the hyperplane H, we have
dim(PZ) < d — 1.

Proposition 4.3.2. One has dim(Pé) =d — 1 if and only if G is connected.

Proof. Suppose that G is not connected. Let Gi,...,Gy with & > 1 denote the
connected components of G. Let, say, {1,...,d;} be the vertex set of G; and
{di +1,...,dy} the vertex set of G5. Then Pé lies on two hyperplanes defined by
the equations z, + - + 24, = 0 and x4, 11 + -+ + 24, = 0. Thus, dim(PZ) < d — 1.

Next, we assume that G is connected. Suppose that 7325 lies on the hyperplane
defined by the equation a;xy + -+ + agry = b with ay,...,a4,0 € Z. Let e = {i,j}
be an edge of G. Then because o(e) lies on this hyperplane together with —o(e),
we obtain

a; — CLJ‘ = —<CLi — CLJ') =b.

Thus a; = a; and b = 0. For all edges of G, since G is connected, we have a; = ay =
.-+ =ag and b = 0. Therefore, 73275 lies only on the hyperplane z; + x5 + -+ 4+ x4 =
0. O

For the rest of this section, we assume that G is connected.

Proposition 4.3.3. Let 73215 be a symmetric edge polytope of a graph G. Then
775 C H is a Gorenstein Fano polytope of dimension d — 1.

Proof. Let ¢ : R4~ — H be the bijective homomorphism with

So(ylv s ayd—l) = (ylﬂ e Yd-1, _(yl + -+ yd—l))~

Thus, we can identify H with R4!. Therefore, ¢~ (PZ) is isomorphic to PZ.
Since one has

m m

— > ale)+ 5= (—a(e;) =(0,...,0) e RY,

j=1 j=1
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the origin of R? is contained in the relative interior of 735 C 'H. Moreover, since
PEC{(ry,...,2g) €ERY| —1< ;< 1i=1,...,d},

it is not possible for an integral point to exist anywhere in the interior of 778;5 except
at the origin. Thus, 73275 C 'H is a Fano polytope of dimension d — 1.

Next, we prove that Pét is Gorenstein. Let M be an integer matrix whose row
vectors are o(e) or —o(e) with e € FE(G). Then M is a totally unimodular matrix.
From the theory of totally unimodular matrices ([66, Chapter 9]), it follows that a
system of equations yA = (1,...,1) has integral solutions, where A is a submatrix
of M. This implies that the equation of each supporting hyperplane of 73?5 is of the
form a;z1 + - -+ 4+ agrqy = 1 with each a; € Z. In other words, the dual polytope of
775 is integral. Hence, Pé is Gorenstein, as required. O

We consider the conditions under which 732,5 is unimodular equivalent with 735,
for graphs G and G'.

Recall that for a connected graph G, we call G a 2-connected graph if the induced
subgraph with the vertex set V(G)\{i} is still connected for any vertex i of G.

Let us say a Fano polytope P C R? splits into P; and P if P is the convex hull
of the two Fano polytopes P; C R% and P, C R% with d = d; + do. That is, by
arranging the numbering of coordinates, we have

P = conv({(a1,0) € R | a; € Pi}U{(0,00) € RY | oy € Py }).
Lemma 4.3.4. Pé cannot split if and only if G is 2-connected.

Proof. (“Only if”) Suppose that G is not 2-connected, i.e., there is a vertex i of
G such that the induced subgraph G’ of G with the vertex set V(G)\{i} is not
connected. For a matrix

a(er)

—o(er)
: (4.6)

o(em)

_U(em)

whose row vectors are the vertices of PZ, we add all the columns of (4.6) except
the ith column to the 7th column. Then the ith column vector becomes equal to
the zero vector. Let, say, {1,...,i — 1} and {i + 1,...,d} denote the vertex set
of the connected components of G’. Then, by arranging the row vectors of (4.6) if
necessary, the matrix (4.6) can be transformed into

M, O
0 My)"
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This means that 775 splits into P; and P, where the vertex set of P; (resp, Ps)
constitutes the row vectors of M; (resp. Ms).

(“If”) We assume that G is 2-connected. Suppose that P5 splits into Py, ..., P,
and each P; cannot split, where ¢ > 1. Then by arranging the row vectors if
necessary, the matrix (4.6) can be transformed into

M, 0

0 M,

Now, for a row vector v of each matrix M;, —v is also a row vector of M;. Let
’Uil, e ,’Ul‘ki, _Uip ey, U

denote the row vectors of M;, where ¢;,, ..., €, are the edges of G with v;; = a(eij)
or v;; = —o(e;;), and G; denote the subgraph of G with the edge set {e;,,. .. ,eiki}.
Then for the subgraphs Gy, ...,G, of G, one has

V(G| + -+ V(G| = d+2(¢ - 1), (4.7)

where V(G;) is the vertex set of G;.

(In fact, the inequality (4.7) follows by induction on q. When ¢ = 2, since G is 2-
connected, G1 and G5 share at least two vertices. Thus, one has [V (G1)|+|V (Ga2)| >
d+ 2. When ¢ = k + 1, since G is 2-connected, one has

(U V(G)) NV (Grn)] = 2.

Let d’ be the sum of the numbers of the columns of M, ..., M;_; and M, and d”
be the number of the columns of M, where d’' + d” = d. Then one has

V(GO + -+ + V(GO + [V(Grr)l = d'+2(k = 1) +[V(Gria))|
> d+d"+2k—-1)+2=d+2k
by the hypothesis of induction.)
In addition, each Pé:i cannot split. Thus one has dim(P(i;i) = |V(G;)| — 1 since each

G is connected by the proof of the “only if” part. It then follows from this equality
and the inequality (4.7) that

d=1 = dim(PE)+ -+ dim(PE) = [V(G1)| + -+ V(G| — g
> d+2q—2—q=d+q—-2>d (¢>2),
a contradiction. Therefore, 7325 cannot split. ]

Lemma 4.3.5. Let G be a 2-connected graph. Then, for a graph G’, 735 1S unimod-
ular equivalent with Pg, as an integral convex polytope if and only if G is isomorphic
to G' as a graph.
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Proof. If |V (G)| = 2, the statement is obvious. Thus, we assume that |V (G)| > 2.
(“Only if”) Suppose that Pé[ is unimodular equivalent with Pg,. Let Mg (resp.
M¢) denote the matrix whose row vectors are the vertices of Pz (resp. PZ,). Then
there is a unimodular transformation U such that one has

MaU = Mg (4.8)

Thus, each row vector of Mg, i.e., each edge of GG, one-to-one corresponds to each
edge of G'. Hence, G and G’ have the same number of edges. Moreover, since GG
is 2-connected, Pé cannot split by Lemma 4.3.4. Thus, 773, also cannot split; that
is to say, G’ is also 2-connected. In addition, if we suppose that G and G’ do not
have the same number of vertices, then dim(PZ) # dim(PZ,) since G and G’ are
connected, a contradiction. Thus, the number of the vertices of G is equal to that
of G'.

Now an arbitrary 2-connected graph with |V(G)| > 2 can be obtained by the
following method: start from a cycle and repeatedly append an H-path to a graph
H that has been already constructed. (Consult, e.g., [77].) In other words, there is
one cycle C and (¢ — 1) paths I'y, ..., I, such that

Under the assumption that G is 2-connected and one has the equality (4.8), we show
that G is isomorphic to G’ by induction on q.

If ¢ =1, 1ie., Gis a cycle, then G has d edges. Let a;,7 = 1,...,d denote the
degree of each vertex i of G'. Then one has

a1+a2+~~~+ad:2d.

If there is ¢ with a; = 1, then G’ is not 2-connected. Thus, a; > 2 for ¢ =1,...,d.
Hence, a; = --- = aq = 2. It then follows that G’ is also a cycle of the same length
as GG, which implies that G is isomorphic to G'.

When ¢ = k + 1, we assume (4.9). Let G denote the subgraph of G with

G=0,UlU---UTYy.

Then G is a 2-connected graph. Since each edge of G has one-to-one correspondence
with each edge of G/, there is a subgraph G’ of G’ each of whose edges corresponds
to those of G. Then one has MU = Mg, where Mg (resp. Mg, ) is a submatrix
of Mg (resp. Mg) whose row vectors are the vertices of Pg (resp. Péf,). Thus,

G is isomorphic to G’ by the hypothesis of induction. Let Liv1 = (loy ity .-, 10p)
with ig <y < --- <, and e;, = {4;_1,79},l = 1,...,p denote the edges of I'y;;. In

addition, let e; , ... e‘p denote the edges of G’ corresponding to the edges e;,, ..., e;

P2 P

of G. Here, the edges €; ,...,¢e; of G' are not the edges of G’. Since 4y and ip are

)

distinct vertices of G and G is connected, there is a path T’ = (05 15925 -+ 3 Jg—1,1p)
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with ig = jo < j1 <Jjo < <Jg1 <Jjg=1p, in G. Let ej, = {ji-1,0}, 1 =1,...,¢q
denote the edges of I'. Then by renumbering the vertices of G’ if necessary, there is
a path I = (ig, j1, Ja, - - -, Jo 1, 8,) With ig = jo < j) < jp < --- < joy < jo =1, in
G’ since G is isomorphic to G’. Let ¢, ={ji_1,J1}, 1 = 1,...,q denote the edges of
I''. However, by (4.8), each edge e;, of G has one-to-one correspondence with each
edge e of G'. Thus, each edge e}, of G’ has one-to-one correspondence with each

edge ¢} of G'. In other words, one has

{ef,:1=1,....qy={ej : 1=1,...,q}.
Since there are I'y;; and I' that are paths from ¢ to %,, one has

p q

S alen) = D olen) (410)

=1 =1

On the one hand, if we multiply the left-hand side of the equation (4.10) with U,

then we have
p p

Z o(e;,)U = Z o(e;,).

=1 =1

On the other hand, if we multiply the right-hand side of the equation (4.10) with
U, then we have

q q q
- "y Iy
g o(e;,)U = g o(ef) = g o(e),) = ey —eq.
=1 =1 =1
D / _ 3 !/ / !
Hence, we have ) ), o(e} ) = e, — €, . This means that the edges ¢;,,...,¢; of G

/

> Which is isomorphic to I'y11. Therefore,

construct a path from the vertex i to ¢
G is isomorphic to G'.
(* if ”) Suppose that G is isomorphic to G'. Then by renumbering the vertices if

necessary, it can be easily verified that 775 is unimodular equivalent with 7325,. m

Theorem 4.3.6 ([48, Theorem 3.5]). For a connected simple graph G (resp. G'),
let Gy,...,Gq (resp. GYy,...,G,) denote the 2-connected components of G (resp.
G'). Then 73275 s unimodular equivalent with Pg, if and only if ¢ = ¢' and G; is
isomorphic to G’ by renumbering if necessary.

Proof. 1t is clear from Lemma 4.3.4 and Lemma 4.3.5. If G; is isomorphic to G for
1 =1,...,q, by virtue of Lemma 4.3.4 and Lemma 4.3.5, then Pét is unimodular
equivalent with 735,. On the contrary, suppose that Pé is unimodular equivalent

/

with Pé,. If ¢ # ¢, one has a contradiction by Lemma 4.3.4. Thus, m = m/.
Moreover, by our assumption, GG; is isomorphic to G} by Lemma 4.3.5. [

Now, we study the Ehrhart polynomials of Pci; and their roots.
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Proposition 4.3.7. If G is a tree, then Pg 15 unimodular equivalent with
conv({+ey,...,+e; 1}). (4.11)

Proof. 1f G is a tree, then any 2-connected component of GG consists of one edge and
G possesses (d — 1) 2-connected components. Thus, by Theorem 4.3.6, for any tree
G, Pé is unimodular equivalent. Hence we should prove only the case where G is a
path, i.e., the edge set of G is {{i,i +1}:i=1,...,d —1}.

Let

o(er)
—o(e1)

o(eq-1)
—o(eq—1)

denote the matrix whose row vectors are the vertices of 735, where e; = {i,i+1},i =
1,...,d — 1 are the edges of G. If we add the dth column to the (d — 1)th column,
the (d — 1)th column to the (d — 2)th column, ..., and the second column to the
first column, then the above matrix is transformed into

0 M 0
0 O M

where M is the 2 x 1 matrix <_1

with (4.11). O

1 o . . :
). This implies that 735 is unimodular equivalent

Let (0o, 01,...,04-1) € Z% be the §-vector of (4.11). Then it can be calculated

that g1
5i:< B >,i=0,1,...,d—1.
(3

It then follows from the well-known theorem [64] that if G is tree, the real parts

of all the roots of i(Pg,n) are equal to —%. That is to say, all the roots « of

i(PZ,n) lie on the vertical line Re(z) = —1, which is the bisector of the vertical

strip —(d — 1) < Re(z) < d — 2. i

We consider the other two classes of graphs. Let G be a complete bipartite graph
of type (2,d—2), i.e., the edges of G are either {1, j} or {2, 5} with 3 < j < d. Then
the d-polynomial of Pé[ coincides with

(1+0)%3(1+2(d - 2)t + 7).
By computational experiences, we propose the following:
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Conjecture 4.3.8. Let G be a complete bipartite graph of type (2,d —2). Then the

real parts of all the roots of i(P%,n) are equal to —%.

Let G be a complete graph with d vertices and 0(P%) = (&, 1, - -

S-vector. In [1, Theorem 13], the §(PZ) is calculated; that is,

d—1\2
5,:( , ),z’:O,l,...,d—l.

1

By computational experiences, we also propose the following;:

., 04-1) be its

Conjecture 4.3.9. Let G be a complete graph. Then the real parts of all the roots

of i(PZ,n) are equal to —31.

In addition, by computational results, we can say the following:

Proposition 4.3.10. If d < 6, then the real parts of all the roots of i(PéE,n) are

equal to —% for any graph with d vertices.

However, it is not true for d = 7 or d = 8. In fact, there are some counterexam-
ples. The following Figures 4.3 and 4.4 illustrate how the roots are distanced from

the line Re(z) = —%. (They are computed by CoCoA and Maple.)

3H
2_
+ +, Lt +
s
1_
]
O_
]
K1
P
+ +* M +
k2
I‘3_| T T T T
K2 K1 0 1

Figure 4.3: d =7

Let GG be a cycle of length d. When d < 6, although the real parts of all the
roots of i(Pé, n) are equal to —%, there are also some counterexamples when d > 7.
The following Figure 4.5 illustrates the behavior of the roots for 7 < d < 30.

However, in the range of graphs which we computed, all the roots z of i(Pé, n)
whose real parts are not equal to —3 satisfy —(d — 1) < Re(z) < d — 2. In more
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Figure 4.4: d =8
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Figure 4.5: all cycles 7 < d < 30
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detail, they satisfy —d—gl < Re(z) < % — 1, though we do not know the general
case. Then we propose the following:

Conjecture 4.3.11. All roots o of the Ehrhart polynomials of Gorenstein Fano
polytopes of dimension d satisfy —% < Re(a) < ¢ — 1.

In the table drawn below, in the second row, the number of connected simple
graphs with d(< 8) vertices, up to isomorphism, is written. In the third row,
among these, the number of graphs, up to unimodular equivalence, i.e., satisfying
the condition in Theorem 4.3.6, is written. In the fourth row, among these, in turn,
the number of graphs that are counterexamples, i.e., there is a root of i(Pé, n) whose
real part is not equal to —%, is written.

d=2|d=3|d=4|d=5|d=6|d=7|d=38

Connected graphs 1 2 6 21 112 853 | 11117
Non equivalent 1 2 ) 16 75 560 | 7772
Counterexamples 0 0 0 0 0 12 1092

4.3.2 An interesting root distribution of Gorenstein Fano
polytopes

There is an interesting result on roots of the Ehrhart polynomials of Gorenstein
Fano polytopes. In fact,

Theorem 4.3.12 ([36, Theorem 0.1]). Given arbitrary nonnegative integers k and
d with 0 < 2k < d, there exists a Gorenstein Fano polytope P C R? of dimension d
such that

(i) i(P,n) possesses d distinct roots;

(ii) i(P,n) possesses exactly 2k non-real roots and d — 2k real roots;
(iii) the real part of each of the non-real roots is equal to —1/2;
)

(iv) all of the real roots belong to the open interval (—1,0).

Proof. Let Q@ C R? be the convex polytope which is the convex hull of ey, ..., ey
and —(e; + -+ -+ eqg). Then Q is an integral convex polytope of dimension 2k with
§5(Q) = (1,1,...,1) € Z*+1,

In general, when F C R¥ is an integral convex polytope of dimension d, if we
define 7 C RV*! by setting the convex hull of F U {ey,1}, then one has

i(Fn) =1+ ii(f, k).

It then follows that
§(F") = (8(F),0) € Z+2.
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Let Q¢ C R be the convex polytope which is the convex hull of QU{eo 1, - ., €4}
Then §(Q°) = (6(Q),0,...,0) € Z41. Hence, by (2.3), the convex polytope
(d — 2k +1)Q° possesses a unique integer point a in its interior. Now, write P C R?
for the integral convex polytope (d — 2k + 1)Q°¢ — a. Then P is a Fano polytope.

Since

il i LEAF AT A
(1—)\)d+1 !

n=0

<d+¢) ZQZk(dJr(n;Qk)Jri)
d+n—( 2k:—1)) :22’“(71+;l—¢>

i=0
n+d—i+1 B n+d—1
‘ d+1 d+1
B +d+1 B n+d-— 2k
n d+1 d+1

1 d—2k 2k 2k
acESY H(n+z') (H(n+d+1—i)—H(n—i)>.

9
S

|
NE

i

1§
3

[
[M] %

.
Il

N

k

I
(]

-
(

> L

i=0 i=0
Since
i(P,m) = i((d — 2%+ 1)@, n) = i(Q", (d — 2k + 1)n),
one has
, (d — 2k + 1)d+1 2 i
e - F
i(P,n) d+ 1) 11 s ) RS
where

2k

d+1—i 2t i
F = I -
Q q(”+d—2k+1> 11(” d—2k+1)

1=

2% : 2% :
B d+1—(2k—1) i
B H(n+ d—2k+1 )_il_!<n_d—2k;+1>'

=0

Thus we obtain the following equalities:

dﬁk N B “kdﬁk d—2k+1—i
d—2k+1) d—2k+1

i=1

d—2k

= 0 T (e )
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= d+1-i\ B i
—n— — —n— — - )= -1 -
Fl=n—1) II( " 1+d—2k+1) 1%( " d—2k+1)

1=0

2k .
d—2%+1—d—1+i
_(_1)2k+1
(=1) g<”+ d—2k+1 )
2 d—2k+1+i
_(—1)2k+1 -
(=1) ll<"+ d—2k+1)

2k . 2k .
d—2k+1+i 2% — i
— _12k o _12k -
(=1) 11(’” d—2k+1 ) (=1) 11(" d—2k+1>

_ (_Uzki (4 ) - (—1>%ﬁ (- a=ar1)
= (=1)*F(n).

It then follows that
(=1)%(P,—n —1) =i(P,n),

which implies that P is Gorenstein. Hence our work is to show that P enjoys the
required properties (i) — (iv).

Now, since
d+1—(2k—z’)<_1< 7
d—2k+1 2 d—2k+1
and since
d+1—(2k —1) 1

=1
d—2k+1 +d—2k;+1 ’

Lemma 4.3.13 below guarantees that F'(n) possesses 2k distinct roots and each of
them is a non-real root with —1/2 its real part. Finally, the real roots of i(P,n) are

?

—_ 1<i<d-—2k.
d—2k+1 ~='=
Each of those roots belongs to the open interval (—1,0), as desired.
m
Lemma 4.3.13. Let ag, aq, ..., a9, and By, B, - .., Bor be rational numbers satisfy-

ing a; < —1/2 < B; and a; + B; = —1 for alli. Let

HORS  CEXOR § (CE)

be a polynomial in x of degree 2k. Then f(x) possesses 2k distinct roots and each
of them is a non-real root with —1/2 its real part.
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Proof. We employ a basis technique appearing in [64]. Let a € C with Re(a) >
—1/2. Since «; < B; and «; + §; = —1, it follows that

o — i —|a— G| = (Re(a) — a;)* — (Re(a) — £;)°
(2Re(a) — a; — Bi)(8; — i)
= (2Re(a) + 1)(B; — )
> 0.

Hence we have |a — a;| > |a — 3i|. Thus H?io la — a;] > H?io la — (;]. Hence
f(a) # 0. Similarly, if a € C with Re(a) < —1/2, then |a — ;| < |a — 3] for all 1.
Thus [, |a — au| < [, |a — Bi]. Hence f(a) # 0. Consequently, all roots a € C
of f(x) satisfy Re(a) = —1/2.

Substituting y = x + 1/2 and v; = 3; + 1/2 in f(x), it follows that each of the
roots a € C of the polynomial

2k

9(y) = H(% +y) + | (vi —v)

in y of degree 2k satisfies Re(a) = 0. Since 7; > 0, one has g(0) # 0. Hence g(y)
possesses no real root. Thus all roots of f(x) are non-real roots.

What we must prove is that g(y) possesses 2k distinct roots. Let b € R and 6;(b)
the argument of v; + by/—1, where —7/2 < ;(b) < m/2. Then by/—1 is a root of
g(y) if and only if

2k 2k
[[eV70® = —J[ev100.
=0 =0

In other words, by/—1 is a root of g(y) if and only if

2%
He2\/j19i(b) =1,
i=0

which is equivalent to saying that

2k

Z@i(b) = g (mod ).

=0

Now, we study the function h(y) = Zfio 0;(y) with y € R. Since 7; > 0, it follows
that h(y) is strictly increasing with

lim A(y) = kr+7/2, lim h(y)=—(k+ 1)m +7/2.

Y—00 Yy——00

Hence the equation

h(y) = g (mod )

possesses 2k distinct real roots, as desired. O
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Here is an example of Theorem 4.3.12.

Example 4.3.14. Let k =1 and d = 4. Then there exists a 4-dimensional Goren-
stein Fano polytope P C R?* such that i(P,n) satisfies the properties (i)—(iv) of
Theorem 4.3.12. In fact, we define Q° by setting the convex hull of

{(1,0,0,0), (0,1,0,0), (—1,—1,0,0), (0,0, 1,0), (0,0,0,1)}.

Then 3Q° contains a unique integer point (0,0,1,1) in its interior. Thus P :=
3Q°—(0,0,1,1) is a Gorenstein Fano polytope, which is the convex hull of

{(3,0,—1,-1),(0,3,—1,—1),(=3,-3,—1,-1),(0,0,2, —1), (0,0, —1,2)}.

It can be computed easily that the Ehrhart polynomial of P is equal to

81 81 135 27
—ntt =P+ =+ n+1

8 4 8 4
and its roots are
1 2 1 /=7 1 V-7
——, —=,—=+ and — = — ——.
373 2 6 2 6

Remark 4.3.15. (a) It is disproved in [23] that all of the roots « of the Hilbert poly-
nomial of any Fano variety satisfy —1 < Re(a) < 0, so-called the canonical strip
hypothesis, which is stated in [19]. On Theorem 4.3.12, however, all of the roots
of Ehrhart polynomials of our Gorenstein Fano polytopes satisfy this condition. In
more detail, they satisfy the narrowed canonical strip hypothesis, which is the con-
dition =1+ 1/(d + 1) < Re(a) < —1/(d + 1). Moreover, if we set 2k = d when d is
even or 2k = d—1 when d is odd, then they also satisfy the canonical line hypothesis,
which is the condition Re(a) = —1/2.

(b) It should be considered that we speculate the connections of the Ehrhart polyno-
mials of our Gorenstein Fano polytopes with L-functions. Let i(P, s) be the Ehrhart
polynomial of our Gorenstein Fano polytope P with 2k = d when d is even or with
2k = d—1 when d is odd. Then we set z(s) = i(P, —s). Then the function equation

2(1 —5) = (—1)%(s)

holds and all of its roots « satisfy Re(a) = 1/2, which is, of course, the Reimann
zeta function.

4.4 Roots of SSNN polynomials

On the conjecture on roots of the Ehrhart polynomials of Gorenstein Fano polytopes,
which is Conjecture 4.3.11, there is a partial answer. In this section, we will show
this.

On many results of the studies on roots of Ehrhart polynomials, Stanley’s non-
negativity of d-vectors [68] plays a crucial role. (For example, see [7, 8, 9].) Derived
from the definition [9, Definition 1.2], we define the following polynomial.
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da) €

|, we

Definition 4.4.1. Given a sequence of nonnegative real numbers (dg, d1, - . .
ngl which satisfies these numbers are symmetric, i.e., §; = d4—; for 0 < i < |

define the polynomial
d .
n+d—1
-\,
s =3 (" g7

1=0

)
d
2

in n of degree d. We call f(n) a symmetric Stanley’s nonnegative or SSNN polyno-
mial of degree d.

We remark that this class of polynomials is mentioned in [62, Remark 2.2],
although it is not pursued deeply there.

In this section, we study roots of SSNN polynomials. We consider the following
question as a generalized form of Conjecture 4.3.11.

Question 4.4.2. Do all roots a of an SSNN polynomial of degree d satisfy

d d
—§§Re(a)§§—1?
This is true when the roots are real numbers or when d < 5. In fact,

Theorem 4.4.3 ([41, Theorem 0.5]). Let f(n) be an SSNN polynomial of degree d
and « € C an arbitrary root of f(n).
(a) If a € R, then « satisfies —% < o < 4 — 1, more strictly,

sl

(b) If d < 5, then « satisfies —% < Re(a) <

] e 2] 1

4.4.1 A proof of Theorem 4.4.3

(IS

— 1, more strictly,

This subsection is devoted to giving a proof of Theorem 4.4.3.

Let f(n) = Z?:o i ("+§_i) be an SSNN polynomial of degree d. First of all, we

verify that f(n) satisfies

fn) = (=1)"f(=n—1). (4.12)
Let d—1 d—1
Nin) =[[(n+d—i—j)+[[(n+i—J)



for 0 <i<[%]—1and

N _ H;l;é(n + %l - j)? if d is even,
12y () = YTt L d S i odd
Hj:(](n+ 2 7))+ 1T (n+ 5 7), if d is odd.

It then follows that

1=0
Since one has
d-1 d-1
(“D)'Ni(-n—1) = (-D)*'[[(-n—-1+d—i—j)+ ()*'J[(-n—1+i-)
j=0 Jj=0
d—1 d—1
= [[n+1-d+i+j)+][tn+1-i+))
j=0 Jj=0
d—1 d—1
= [[n+i-i)+]][(n+d—i—j)=Nin)
i §=0
for 0 < i < [¢] -1 and (—1)dNL%J(—n —-1) = NL%J(n), we obtain f(n) =

(=1)%f(=n—1).
We prove Theorem 4.4.3 (a) by using the above notations.

Proof of Theorem 4.4.3 (a). Let

1 L5 1
g(n) =df (n— 5) = ;&Ni <n— 5) :

Then, it suffices to prove that all the real roots of g(n) are contained in the closed
interval [—|4] + 3, [4] — 4]. It follows from (4.12) that

2 20 L2
g(n) = (=1)"g(=n). (4.13)
For N; (n —1),0 <i < |2], we have the following:

d—1

1 o 1 1
N(n_1) = L S
z(n 2) 4:0(n—|—d 5 ¢ j)—l—[[o(n 2+z j)

<

where



and e
1 - da 1
Nyg) (”—5) =11 (”+§—§—J>

j=0
when d is even. Let o be a real number with o > [¢| — 1. On the coefficients of
n?,0 < j <d-—2i—1,in M;(n), it is obvious that those are all nonnegative. Thus,
we have M;(a) > 0 since a > 0. In addition, one has [ (= (3—-i+1)) >0
since 0 <1 <2i—1and0<i<|%]. Hence, a cannot be a root of g(n) from the
nonnegativity of dg, dy, ..., 5L%J‘ Moreover, by virtue of (4.13), for a real number /3

with 6 < — L%lj + %, [ cannot be a root of g(n), as desired. ]

In the rest of this subsection, we prove Theorem 4.4.3 (b).
The case where d =2 and 3.

e An SSNN polynomial of degree 2 has two roots. If both of them are real
numbers, then the assertion holds from Theorem 4.4.3 (a). If both of them
are non-real numbers, then it follows from (4.12) that each of their real parts

1

1S —5-

e An SSNN polynomial of degree 3 has three roots and one is —%. On the other
roots, the same discussion as the case where d = 2 can be done.

The case where d = 4.
Let f(n) = 2No(n)+ 2 Ni(n)+ £ Na(n), where a,b,c € Rsq. Then f(n) has four
roots and the possible cases are as follows:

(i) those four roots are all real numbers;
(ii) two of them are real numbers and the others are non-real numbers;
(ili) those four roots are all non-real numbers.

We do not have to discuss the cases (i) and (ii) by virtue of Theorem 4.4.3 (a).
Thus, we consider the case (iii), i.e., we assume that f(n) has four non-real roots.
Moreover, we may also assume that a # 0 since both 0 and —1 are their roots when
a = 0. In addition, we may set a = 1 since the roots of f(n) exactly coincide with
those of @

We define

— ——b+ —c

5 , 105 15 9
n b+ )
8 8 16

g(n)=A4lf (n—%) = (2+2b+c)n + (43—1—76—50

Our work is to show that if the roots a of g(n) are all non-real numbers, then «
satisfies —3 < Re(a) < 2. Let

1 1
G(X)=(2+2b+)X*+ (43+7b—gc>X+%_§5b+1%c_
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We consider the roots of G(X). Let o and § (resp. D(G(X))) be the roots (resp.
the discriminant) of G(X). By our assumption, we may set D(G(X)) < 0. In fact,
when D(G(X)) > 0, i.e., both a and [ are real numbers, then the roots of g(n)
are ++/a, £v/f. Even if a (resp. ) is positive or negative, ++/a (resp. £v/3) are
either real numbers or pure imaginary numbers.

Let, say, @ = re®V~1 with r > 0 and 0 < § < 7. Then f = @ = re =1, Thus
the roots of g(n) are \/re*5V"1 and /re*™2V=1 Hence, it is enough to show that

0 1 0 g 3
0 < RelyetV) = v cos s = \/_\/% _ \/% <3

Since G(X) = (2+2b+ ¢)(X — a)(X — ), we have

_1\/210—301)+96 d g_ 1 86+14b—5c
"TAV T o e M T T T T ot e
By the way, one has
5\’ 105 15, 9
DG(X)) = (4 —Ze) —4(2+2 —_=
(G(X)) (3+7b 20) 2+ b+c)(8 8b 16)

= 4(c® — 4(2b + 17)c + 4(4b* + 32b + 109)).
Let h(c) = M Then one has h(c) < 0 and the range of ¢ satisfying h(c) < 0 is

2204 17) — 12vb + 5 < ¢ < 2(2b+ 17) + 12Vb + 5.

When b and c satisfy this, we have the following:

4(r +rcosf) =

\/210—30b+9c 86 + 14b — 5¢
2+2+¢c 242+ ¢

\/ —4 L, b+d N
2—|—2b+c 2+2b+c
b—4
< 9—48-
\/ 24+20+2(20+17) +12/b+5
b+4 L5
24 2b+2(2b+17) + 120+ b

b—4 b+4
= 4/9-8- — 4. +5 (= H(b
\/ b1 612viTs  broravirs 0 oA

4 dH (b
< 9-8%- —4- + 5, (since ()<0When620,)
6+2\/_ 6+2v/5 db

V5 — 2.

Il
W
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Therefore, one has

0 45 — 2 2v5—1 3
|J et V-2 V2ol 3 (4.14)
2 8 2 2
as required.

The case where d = 5. Finally, we consider the case where d = 5.
Let f(n) = &£No(n) + ZNi(n) + £Na(n). When d =5, f(n) has five roots and
one of them is —%. For the other roots, the possible cases are as follows:

(i) the other four roots are all real numbers;
(ii) two of them are real numbers and the rests are non-real numbers;
(iii) those four roots are all non-real numbers.

Similarly to the case where d = 4, we discuss only the case (iii) and assume that
a=1.
We define g(n) by setting

o) = 5f (n—é)

1689 71 9
= n (2(1+b—|—c)n4+5(23+7b—0)n2—|—T - §b+§c) ,
et 1689 71 9
gn) =2(14+b+c)n* +5(23 +7b —c)n® + = gb + 3¢

Our work is to show that if the roots « of g(n) are all non-real numbers, then «
satisfies —2 < Re(a) < 2. Let G(X) be the polynomial replacing n* of g(n) with
X, that is,

1689 71, 9
G(X)=2(1+b+)X*+5(23+7b— )X + —— — —b+ cc

We consider the roots of G(X). Similarly to the case where d = 4, we assume that

D(G(X)) < 0 and prove that
|7+ 1 cost < §’
2 -2

where a = re?V=1(r > 0,0 < 6 < ) is one of the roots of G(X).
Since G(X) = 2(1 + b+ ¢)(X — a)(X — 3), where § = a = re V=1, we have

- %_%b+gc_1\/1689—71b+90
V200 4b+e) 4 1+b+c
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and
—5(23 +7b — ¢) 1 —115—35b+ 5¢
rcosf = = . .
41+b+c) 4 1+b+c

By the way, one has

D(G(X)) = 25(23+Th—c)® —8(1+b+c) (%—78—1@ Z)

= 16(810* — 6(3c — 67)b + ¢* — 178¢ + 721).

Let h(b) = %. Then h(b) < 0 by our assumption. The range of b with h(b) < 0
is as follows:

3¢— 67— /D) _, _ 3c—67+/D(h(b))
27 27 ’

where 4 - D(h(b)) = 4 - 60%(3c — 5) is the discriminant of h(b). (In particular, it
must be ¢ > 5.) Moreover, since b > 0, it must be % V3emd ). Thus,
¢ > 89 — 60v2(> 2). Hence, the condition D(G(X)) < 0 is equivalent to the

followings:

w

¢ >89 — 60V2
and
0 < b < eOT20VES when 89 — 60v/2 < ¢ < 89 + 60+/2, (4.15)
—30 67-20y/3c—5 <b< M, when ¢ > 89 + 60v/2. '

When b and ¢ satisfy the first condition of (4.15), we have

Ttbtre | 1tb+te
B \/—71(1+b+c)+800+1760 N —35(1+b+c) +40c — 80

\/1689 —T71b+9¢ —115—35b+ 5¢

1+b+c 1+b+c
99 _9
:\/—71+80-L+40-C——35
1+b+c 1+b+c

\/ T1+80- C+212 zﬁ (=: H(c))
<\~

41+22+40 41 -2
I+1 41 +1

71+ 80 -

H
(Slnce d( > 0 when ¢ < 41 and d d(c) < 0 when ¢ > 41,>
c

260 64

:\/—71+120+7—35— - < 18.
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Thus, one has

r+7"cos€< 18 1_3
\ 2 Va1 272

On the other hand, when b and ¢ satisfy the second condition of (4.15), we have

1689 — 71b 22
9 o lg. CF22
1+b+c 1+b+c
c+ 22
< —=71+80-
3c—67—20+/3c—5
8620865 | (4
27 22
— 7148 (c+22)
3c—4—2y3c—5
27(89 + 60v/2 + 22
< —T7T1+8- (89 +60v2 +22)

3(89 + 60VZ) — 4 — 2,/3(89 + 60V2) — 5

H
(since d d(c) < 0 when ¢ > 89 + 60\/§,>

C

< 81.

Therefore, one has

r+rcosf 1 /1689 — 716+ 9¢\ i 3
RS = 2 41
2 =Vr 2( 1+b+c ) D) (4.16)

4.4.2 The case where d > 6

as required.

In this subsection, in order to observe that Theorem 4.4.3 seems to be also true
when d = 6 and 7, we make computational experiments. Moreover, we present an
example which shows that Theorem 4.4.3 is no longer true when d = 8. In addition,
we suggest a possible counterexample of Conjecture 4.3.11 with d = 10, while such
example is already known in [60].

Our method how to make experiments, say, d = 6, is as follows. We produce 4
nonnegative real numbers a, b, ¢, d at random, construct the polynomial

(057) (0 (7))
()5 ()

compute its roots and plot them on the complex plane. Figure 4.6 drawn below
shows the root distributions of a large sample (approximately 20,000) of SSNN
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polynomials of degree 6. Similarly, in Figure 4.7, we see the root distributions of a
large sample (approximately 20,000) of SSNN polynomials

(O G (7)) (7))
(7)) () (7))

with random nonnegative real numbers a, b, ¢, d. (Those are computed by Maple.)

Figure 4.6: d =6

Remark 4.4.4. There is an SSNN polynomial of degree 8 one of whose root a does
not satisfy —4 < Re(«) < 3. In fact, if we set (Jo, d1,...,ds) = (1,0,0,0,14,0,0,0,1)

and f(n) =>4 ("*577), then the roots of f(n) are approximately

—0.5 £ 0.44480014v/ -1, —0.5 £ 1.78738687v —1,
3.00099518 + 5.29723208v —1 and —4.00099518 +£ 5.29723208v/ —1,

while f(n) cannot be the Ehrhart polynomial of some Gorenstein Fano polytope of
dimension 8 since d; < dg. When d = 10, however, there are some possible candi-
dates of counterexamples of Conjecture 4.3.11. For example, let (Jo,d1,...,d10) =
(1,1,1,1,1,23,1,1,1,1,1) and f(n) = 32,2, 8:(""97%). Then one of approximate
roots of f(n) is

4.02470021 + 8.22732653v/—1.

On the other hand, in a recent paper [60], a certain counterexample of Conjecture
4.3.11 is provided. There exists a Gorenstein Fano polytope of dimension 34 whose
Ehrhart polynomial has a root o which violates —17 < Re(«a) < 16.
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_10_
Figure 4.7: d =17

4.4.3 Some comparisons of SSNN polynomials with Ehrhart
polynomials of Gorenstein Fano polytopes

In this subsection, we discuss some differences of root distributions between the
Ehrhart polynomials of Gorenstein Fano polytopes and SSNN polynomials when
d < 4. We determine the complete range of the roots of SSNN polynomials and
Ehrhart polynomials of Gorenstein Fano polytopes when d = 2 and 3 (Proposition
4.4.5 and 4.4.6). Moreover, we see in Theorem 4.4.8 that the real numbers in the

closed interval [—2, ¢ — 1] are all the real roots of SSNN polynomials of degree d.
272 y g

Proposition 4.4.5. (a) The set of the roots of the Ehrhart polynomials of Goren-
stein Fano polytopes of dimension 2 coincides with

2 1 1 11 6=
- - - —— 4+ = v —1 e =1,2,... .
{ 372 S}U{ yEa\ iy tetii=t ’5}

(b) The set of the roots of SSNN polynomials of degree 2 coincides with

[—1,0]U {a € C: Re(a) = —%, 0 < |Im(a)] < ?}

Proof. Let f(n) = ("1?) +b("3") + (3). Then 2f(n) = (b+2)n* + (b+ 2)n + 2.

Thus its roots are

-0+ £/ +2)0-6) 1,1 [b-6
n= 20+ 2) BT Ay
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It is well known that (1,b,1) € Z3 is the d-vector of some Gorenstein Fano
polytope of dimension 2 if and only if b € {1,2,...,7}. Hence we obtain the assertion
(a).

On the other hand, when b € R, the set of the roots of f(n) coincides with

1 3
(—1,0)U {oz € C: Re(a) = —5 0 < |Im(a)] < £} .

2
In fact, the funct10n Z +g is monotone increasing and lim,_, ;o ; er—g = % when
b > 6, and 1 b +2 is monotone decreasing when 0 < b < 6. Moreover, —1 and 0 are
the roots of ("2'). Therefore, the assertion (b) holds, as desired. O

Proposition 4.4.6. (a) The set of the roots of the Ehrhart polynomials of Goren-
stein Fano polytopes of dimension 3 coincides with

1 1 [i—2
{——i§ L 3ER:@':23,24,...,32,35}U

2 1+ 1

1.1
4=
{ 2 2

(b) The set of the roots of SSNN polynomials of degree 3 coincides with

[—1,0] U {Oz € C: Re(a) = —%, 0 < |Im(a)] < @}

J_ C: .,22}.

Proof. Let f(n) = ("5)+b("3*) +0("s") + (3). Then 3!f(n) = 2n+1)((b+1)n*+
(b+1)n + 6). Thus its roots are n = —1 and

b—23

—(b+1)£/(b+1)(b—23) 1

1
2(b+1) o272V b+

By the complete classification of Kreuzer and Skarke [46], we know that (1,b,b,1) €
Z* is the é-vector of some Gorenstein Fano polytope of dimension 3 if and only if
be{l,2,...,35}\{33,34}. (See also http://tphl6.tuwien.ac.at/kreuzer/CY/.)
The rest parts are similar to Proposition 4.4.5. O

By (4.14) and (4.16) together with the norm bound [8], we also obtain the fol-
lowing

Proposition 4.4.7. (a) The roots of SSNN polynomials of degree 4 are contained

mn
1 1 2v5 —1
— 2| <14, IR il [P il O
o 2‘_ ,‘e(a)—l—Q‘_ 5 }

[—2,1]U{0¢EC\R:
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(b) The roots of SSNN polynomials of degree 5 are contained in

11_&}_

[—2,1]U{a€C\R: a—l‘g—, ‘Re(a)+ <
2 2 2

The complete classification of Gorenstein Fano polytopes of dimension 4 also
exists [47], but the number of them are too enormous (473,800,776). The following
Figure 4.8 (resp. Figure 4.9) shows the root distribution of a large sample (approx-
imately 20,000) of Ehrhart polynomials of Gorenstein Fano polytopes of dimension
4 (resp. SSNN polynomials of degree 4). From the following figures, we notice that
the above Proposition 4.4.7 is not so sharp.

Figure 4.8: Ehrhart polynomials of Gorenstein Fano polytopes of dimension 4

Finally, we prove the following. All the real numbers in [—%l, g— 1] can be realized
as roots of SSNN polynomials of degree d.

Theorem 4.4.8 ([41, Theorem 3.4]). The set of the real roots of SSNN polynomials
of degree d coincides with the closed interval [—[2], 4] —1].

Proof. First, let us consider the case where d is even. Let k = %l and

foln) = n+k+1 n n+k N n+k—1
A “\ «a d )
where a is a real numer with a > % Then fo(n) is an SSNN polynomial of
degree d. Let
d!
g0(n) = == .
H?:ikz—ﬂ(n +J)

fo(n) = (a+2)n° + (a+2)n + ak(—k + 1) + 2k°.
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Figure 4.9: SSNN polynomials of degree 4

From a > 2(22::1) and

D(go(n)) = (2k — 1)(a + 2)((2k — 1)a — 2(2k + 1)),

we have D(go(n)) > 0. Thus the roots of go(n) are all real numbers and those are

—(a+2) £ /(2k—1)(a+2)((2k — 1)a — 2(2k + 1))

"o 2(a + 2)
_ _lil\/@k‘—l)((?ks—1)a—2<2k+1))
22 a+2
(zz—%immn.

Now the function hg(a) on a is monotone increasing and

) 2k -1 1
aEIfth(a) = :k_ﬁ'

Hence, for a > %, all the roots of each fy(n) are contained in the open interval
(—k,k—1). Moreover, —k and k—1 are roots of (”;k), which is an SSNN polynomial

of degree d.
Next, let us consider the case where d is odd. Let k& = % and

n+k+2 n+k+1 n+k n+k—1
po= (")) () < ()
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where a is a real number with a > 12’(“22;% Then fi(n) is an SSNN polynomial
of degree d. Let
d!

(2n + 1) Hfzikﬂ(n—l—j)ﬁ(n) = (a+1)n°+(a+1)n+ak(—k+1)+3k(k+1).

g1(n) =

12k2+12k—1
From a > 0T and

D(gi(n)) = (a + 1)((2k — 1)%a — (12k* + 12k — 1)),

we have D(g1(n)) > 0. Thus the roots of ¢g;(n) are all real numbers and those are

—(a+1) £ /(a+ 1)((2k — 1)2a — (12k2 + 12k — 1))

T 2(a+ 1)
B _lil\/(%—l)?a—(12k2+12k—1)
272 a+1
1
( = —Eihl(a) ).

Now the function hy(a) on a is monotone increasing and

2k—1 1
lim hi(a) = b :k_ﬁ'

a—-+o0 2

Hence, for a > %, all the roots of each fi(n) are contained in the open
interval (—k,k — 1). Moreover, —k and k — 1 are roots of ("+5+1) + (”;k), which is

an SSNN polynomial of degree d.
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Part 11

Fano polytopes
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Chapter 5

Introduction to Fano polytopes

In this part, as the second aspect of the studies on integral convex polytopes, we
will consider Fano polytopes. Fano polytope is an integral convex polytopes arising
naturally from a toric Fano variety, which is of significance in algebraic geometry.

We will summarize some basic notions, definitions and some recent studies on
Fano polytopes or toric Fano varieties.

Let P C RY be an integral convex polytope of dimension d.

e We say that P is a Fano polytope if the origin of R is a unique integer point
belonging to the interior of P.

e A Fano polytope P is called terminal if each integer point belonging to the
boundary of P is a vertex of P.

e A Fano polytope is called Gorenstein if its dual polytope is integral. (Recall
that the dual polytope PV of a Fano polytope P is the convex polytope which
consists of those x € R? such that (x,y) <1 for all y € P, where (z,y) is the
usual inner product of R%.)

e A Fano polytope is called Q-factorial if it is simplicial, i.e., each of its faces is
a simplex.

e A smooth Fano polytope is a Fano polytope such that the vertices of each facet
form a Z-basis of Z¢.

Thus, in particular, a smooth Fano polytope is Q-factorial, Gorenstein and terminal.

Example 5.0.9. Among four pictures drawn below, the 2-dimensional Fano poly-
tope depicted on the upper left-hand side is terminal, the 3-dimensional Fano poly-
tope depicted on the upper right-hand side is Q-factorial, the 3-dimensional Fano
polytope depicted on the lower left-hand side is Gorenstein and the 3-dimensional
Fano polytope depicted on the lower right-hand side is smooth. The dual polytope
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of the lower left-hand side one coinsides with the lower right-hand side one.
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M. Obro [53] succeeded in finding an algorithm which yields the classification
list of the smooth Fano polytopes for given d. It is proved in Casagrande [13] that
the number of vertices of a Gorenstein Q-factorial Fano polytope is at most 3d if d
is even, and at most 3d — 1 if d is odd. B. Nill and M. @bro [52] classified the Goren-
stein Q-factorial Fano polytopes of dimension d with 3d — 1 vertices. Gorenstein
Fano polytopes are classified when d < 4 by Kreuzer and Skarke [46, 47] and the
relevance of Gorenstein Fano polytopes to Mirror Symmetry was studied by Batyrev
[3]. Gorenstein Fano polytope is often said to be a reflexive polytope. We refer the
reader to [42, 45, 46, 47, 51] on the related works on toric Fano varieties or Goren-
stein toric Fano varieties. The study of the classification of terminal or canonical
Fano polytopes was done by Kasprzyk [42, 43]. The combinatorial conditions for
what it implies to be terminal and canonical are explained in Reid [63].

On the rest of this part Chapter 6, we will introduce Fano polytopes arising from
finite posets in Section 6.1 and study the problem of which finite posets yield smooth
Fano polytopes. Similarly, in Section 6.2, we will also present Fano polytopes arising
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from finite directed graphs and consider the problem of which finite directed graphs
yield smooth Fano polytopes. Moreover, by using them, we will construct many
examples of smooth Fano polytopes.
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Chapter 6

Examples of smooth Fano
polytopes

In this chapter, we will establish two classes of Fano polytoes arising from combina-
torial objects, finte posets (Section 6.1) and finite directed graphs (Section 6.2). To
give many uselful examples of smooth Fano polytopes is very important. Hence, the
descriptions how to construct smooth Fano polytopes via combinatorial methods
written in this chapter are meaningful.

6.1 Smooth Fano polytopes arising from posets

In this section, we introduce Fano polytopes arising from posets and consider the
problem of which poset yields smooth Fano polytopes.

6.1.1 Fano polytopes arising from posets

Let P ={y1,...,yq} be a finite poset and
P =PuU{0,1},

where 0 (resp. 1) is a unique minimal (resp. maximal) element of P with 0 ¢ P (resp.
1¢P). Let yp = 0 and Yar1 = 1. We say that e = {vi,y;}, where 0 <1, j < d+1
with i # 7, is an edge of P if e is an edge of the Hasse diagram of P. (The Hasse
diagram of a finite poset can be regarded as a finite nondirected graph) In other
words, e = {y;,y;} is an edge of P if y; and y; are comparable in P, say, y; < Y,
and there is no z € P with y; < z < y;.

Definition 6.1.1. Let P = {yo,y1,...,Ya, Yas1} be a finite poset with yo = 0 and
Yir1 = 1. Let e; denote the ith canonical unit coordinate vector of R%. Given an
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edge e = {y;, y; } of P with y; < y;, we define p(e) € RY by setting

p(e): —€; Zf ZZO)
€ — €5 Zf 1§Z,j§d

Moreover, we write Qp C R? for the convex hull of the finite set
{ple) : e is an edge of P}.

Example 6.1.2. Let P = {y,y2,y3} be the finite poset with the partial order y, <
ya. Then P together with p(e)’s and Qp are drawn below:

Let P be a finite poset. A subset () of P is called a chain of P if () is a totally
ordered subset of P. The length of a chain @Q is ¢(Q) = #(Q) — 1. A chain @ of P is
saturated if x,y € Q with x < y, then there is no z € P with z < z < y. A maximal
chain of P is a saturated chain Q of P with {0,1} c Q.

Lemma 6.1.3. The convex polytope Qp is a Fano polytope.
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Proof. Let e = {y;,y;} be an edge of P with y; < y;. Let c. denote the number of
maximal chains @) of P with {y;,y;} C Q. If {yi,,¥i,, .., ¥i,} is a maximal chain
of P with yo =v;, < i, <...<UYi,, = Ydt1, then

m—1
> p{wi, v, 3) = (0,...0).
7j=1

Hence

S ceple) = (0,...0),

where e ranges all edges of P. Thus the origin of R? belongs to the interior of
Qp. Since Qp is a convex polytope which is contained in the convex hull of the
finite set {>°7  &ie; - &; € {0,1,—1}} in R, it follows that the origin of R is the
unique integer point belonging to the interior of Qp. Thus Op is a Fano polytope,
as desired. O

Lemma 6.1.4. The Fano polytope Qp is terminal.

Proof. Suppose that Qp contains an integer point o = (ay,...,qaq) € Z* with
a # (0,...,0). Then, obviously, ay,...,aq € {=1,0,1}. Let, say, a; = 1. Let
€1,...,6p be all edges of P and €ips - - €, the edges with gy € ¢;; for j =1,...,m
If we set e;;, = {yij,yij,} with y;; < y;,, since a belongs to the convex hull of
{p(e1),...,p(e,)}, then one has

m
E Ti;Gi; = a1 =1,
j=1

where 0 <7;,...,7, <land g, =1 (resp. ¢;;, = —1) if y1 < Yi, (resp. yi; < y1).
By removing all r;; with r;; = 0, we may assume that

/

Zﬁj%‘j =1,

j=1
where 0 < 7y,...,7; , < 1. Since Z;n:ll ri; < 1, there is no j with ¢;;, = —1. Hence
Z;n:ll ri; = 1. If m" > 1, then 0 <r;,...,r; , < 1. Thus ZJ 1rljp(elj) =a ¢ 74
Hence m’ = 1. In other words, if Qp contains an integer point o # (0, ...,0), then
a must be one of p(ey),...,p(e,) and p(ey),...,p(e,) are precisely the Vertices of
Qp. O

Lemma 6.1.5. The Fano polytope Qp is Gorenstein.

Proof. Via the theory of totally unimodular matrices ([66, Chapter 19]), it follows
that the equation of each supporting hyperplane of Qp is of the form a;z; + --- +
aqgrqy = 1 with each a; € Z. In other words, the dual polytope of Qp is integral.
Hence Qp is Gorenstein, as required. O
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Remark 6.1.6. There is a well-known integral convex polytope arising from a finite
poset P, which is called an order polytope Op. (See [69, Chapter 3] and [70].) One
can verify immediately that the primitive outer normals of each facet of Op one-
to-one corresponds to each vertex of Qp. Now Op is Gorenstein if and only if P
is pure, i.e., all maximal chains of P have the same length. When P is pure, let
[ denote the length of each maximal chain of P. Then the dilated polytope [Op
contains a unique integer point a € Z?, where d is the cardinality of P, belonging
to the interior of [Op. Then the dual polytope of the Gorenstein Fano polytope
lOp — « coincides with Qp. Thus, when P is pure, we can associate Qp with the
dual polytope of an order polytope Op.

6.1.2 When is Qp smooth ?

Let P = {yi1,...,yq} be a finite poset and P=Pu {Y0, Yar1}, where yo = 0 and
Yar1 = 1. A sequence I' = (yi,, Yi, - - -, Yi,, ) is called a path in P if " is a path in the
Hasse diagram of P. In other words, I' = (v, ¥s,, - - - » ¥i,,) is a path in P if y;. # y;,

for all 1 <j <k < m and if {y;,, ¥, } is an edge of Pforall1<j<m-—1. In

particular, if {y; , ;. } is also an edge of P, then T is called a cycle. The length of
apath T' = (Yi,, Yin, - -, Yi,,) IS L(I) =m — T or £(T') =m if T is a cycle.
A path I' = (v, Yiss - - -, Yinnyy ) 1s called special if

ﬂ{]ylj <yij+171 Sj Sm_]‘}:ﬂ{k:yik >yik+171 Skgm_l}
Given a special path I' = (v;,, iy, - - -, ¥i,, ), there exists a unique function

Hr - {yiﬂyiQ?‘ e 7yim} - {0,1,2, .. }
such that

b /’Lr(y’i]’+1) = /’Lr(yij) +1 (resp. Mf(yij) = MF(yin) + 1) if Yij < Yij (resp.
Yi; > yij+1);
o min{ur(yi,), ur(Yiz), - - 1r (%)} = 0.

In particular, T is special if and only if pr(y;,) = pr(yi,,)-
Similary, a special cycle is defined and given a special cycle C, there exists a
unique function pe which is defined the same way as above.

Example 6.1.7. Among the two paths and three cycles drawn below, the three ones
depicted on the left-hand side (one path and two cycles) are special; the remaining
two ones (one path and one cycle) are not.
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We say that a path I' = (yi,, %y, - - - s Yinyr) OF @ cycle C' = (Yiy, Yigs - - -+ Yir,) Of P
belongs to a facet of Qp if there is a facet F of Qp with p({y;,,vi,.,}) € F for all
1 <j5<m, wherey; . = .

We say that a cycle C' = (yi,, Yip, - - -, Yi,,) 18 very special if C' is special and if
{yOa yd-i—l} ¢ {yiuyiz? s 7yim}‘

Lemma 6.1.8. (a) Let C = (Y, Yi,s---,%i,) be a cycle in P. If C belongs to a
facet of Op, then C is a special cycle. In particular, C is a very special cycle or C
contains a special path (Y, Yigs - - - Yiryr) With yi, = Yo and Y., = Yai1.

(b) Let T = (i, Yin, - - - Yir,) with i, = yo and yi,, = yas1 be a path in P. If T
belongs to a facet of Qp, then I' is a special path.

Proof. (a) Let ajz1 + -+ - + agxq = 1, where each a; € Q, denote the equation of the
supporting hyperplane of Qp which defines the facet. Since {y;;,;,,,} are edges of
P for 1 < j <m, where y;,., = ¥y, it follows that a;;, — a;;,, = q;, where ¢; = 1 if
Yi; < Yi;, and q; = =1 if y;, > ;. Now,

qu = Z(ai]‘ - aij+1) = 0.

i=1 i=1
Hence C' must be special.

Suppose that {yo, ya+1} C {yil,yig, o Yin b Let g, = yo and y;, | = Yg41. Since
{i; vi,.. 1, 1 < j <r, are edges of P, one has —a;, =1, a;, = 1 and a;, —a;;,, = ¢;
for 7 =2,3,...,7 — 1. On the one hand, one has

—a;, + E alj a,]H + a;, = 0.

On the other hand, one has

r—1
—aj, +Z a;; — Clz]“ +a;, = 1—|—qu +1
7j=2
r—1
= —po(yo) + o (i) + > (o Yiy,) — 1o(iy) + e (an) — ne(y,)
j=2

= pc(Yar1) — to(Yo)-

It then follows that one must be pc(yo) = pe(Yar1). Let T' = (Ui Yiny - -5 Yirsr)-
Then it is clear that pr(yo) = pr(ya+1). Thus I' is a special path. Hence C' contains
a special path I'.

(b) A proof can be given by the similar way of a proof of (a). O

Let P be a finite poset and y, z € P with y < z. The distance of y and z in P is
the smallest integer s for which there is a saturated chain @ = {z, 21, ..., zs} with

Yy=20<z <--<z5=2.
Let dist 5(y, z) denote the distance of y and z in P.
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Theorem 6.1.9 ([29, TheoremA2.3]). Let P = {y1,...,ya} be a finite poset and
P = PU{yo,Yar1}, where yo = 0 and yg1 = 1. Then the following conditions are
equivalent:

(i) Qp is Q-factorial;
(ii) Qp is smooth;

(111) P possesses no very special cycle C = (Yiys -+ Yi,,) such that

pe(Yi) — pe(ys,) < distp(ys,, Yia) (6.1)

forall1 < a, b <m with y;, <y, and

po(Yi,) — po(ys,) < distp(yo, yi,) + dist 5(vi, , Yat+1) (6.2)

for all 1 < a, b < m, and no special path T' = (y;,, ..., y;,,) with y;, = yo and
Yin, = Ya+1 Such that

pr(Yin) — pr(yi,) < distp(yi,, via) (6.3)
foralll <a, b <m with y;, <yi,.

Proof. ((i) = (iii)) If C = (y;,,...,y;,) is a cycle in P with Yinir = Y1, then

qu p({yi; vi;00 1) = (0,...,0),

where ¢; = 1 if y;; < y;,;,, and ¢; = —1if y;; > y;,,,- Thus in particular
p({¥i;s ¥i,o 1), 1 < j < 'm, cannot be affinely independent if C' is special.

Now, suppose that P possesses a very special cycle C' = (y;,, ..., ¥, ) which sat-
isfies the inequalities (6.1) and (6.2). Our work is to show that Qp is not simplicial.
Let v; = p({%i;,¥i; 11 1), 1 < j < m, where y;, ., = y;,. Since vy,..., v, cannot be
affinely independent, to show that Qp is not simplicial, what we must prove is the
existence of a face of Qp which contains the vertices vy, ..., vy,.

Let aq,...,aq be integers. Write H C R? for the hyperplane defined by the
equation a;x; + -+ + aqgrg = 1 and H™) c R? for the closed half-space defined
by the inequality a;xq + -+ + agrg < 1. We will determine aq,...,a, such that
H is a supporting hyperplane of a face F of Qp with {v,...,v,,} C F and with
Op C H(+).

First Step. 1t follows from (6.2) that

max (e (yi,) — distp(vo, ¥i,)) < min (pe(yi,) + dist (v, Yas1))- (6.4)

1<a<m ~ 1<b<m

By using (6.1), if yo € {¥i,,.--, i, }, then the left-hand side of (6.4) is equal to
te(yo). Similarly, if ygi1 € {yi,,- -, ¥, }, then the right-hand side of (6.4) is equal

to pc(Yat1)-
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Now, fix an arbitrary integer a with

max (pe(yi,) — distp(yo, ¥i,)) < a < min (uc(ys,) + distp(Yiy,, Yar1))-

1<a<m T 1<b<m

However, exceptionally, if yo € {i,, -, i, }, thena = pc(yo). U yarr € {yir, - Yin }
then a = po(yar1). Let a;; = a — pe(ys;) for 1 < j < m. Then one has

—a;; < distp(yo, ¥i;),  ai; < distp(Yi;, Yarr)- (6.5)

Moreover, it follows easily that each v; lies on the hyperplane of R? defined by the

equation
Z (Iij fL’Z‘j =1.
i;#{0,d+1}

Second Step. Let A = P \ {vo, Yar1} YU{viys---,vs,}) and y; € A.

e Suppose that there is y;; with y;; < y; and that there is no y;, with y;, > y;.
Then we define a; by setting

a; = max({a;, — dists(yi;, ¥s) : vi, < yiy U{0}).

e Suppose that there is no y;, with y;; < y; and that there is y;, with y;, > ;.
Then we define a; by setting

a; = min({a;, + distp(vi, vi,) * ¥i < vi,, } U{0}).

e Suppose that there is y;; with y;; < y; and that there is y;, with y;, > ;.
Then either

bi = max({a;, — dist p(vi,, y:) : vi, < vi} U{0})

or
¢; = min({a;, + distp(vi, vi,) 1 ¥i < i,y U{0})
must be zero. In fact, if b; # 0 and ¢; # 0, then there are j and k with

aj; > diStp(yz‘j,yz‘) and —a;, > distp(y;,y;, ). Since Mc(yik)_ﬂc(yz‘j) = Q4; — A4y,
and since dist 5 (ys,, vi) + dist 5 (ys, yi,,) > distp(ys;, ¥, ), it follows that

Mc(ylk) - :uC<ylj) > diStP(yijvyik)'

This contradicts (6.1). Hence either b; = 0 or ¢; = 0. If b; # 0, then we set
a; = b;. If ¢; # 0, then we set a; = ¢;. If b; = ¢; = 0, then we set a; = 0.

e Suppose that there is no y;, with y;; < y; and that there is no y;, with y;, > ;.
Then we set a; = 0.
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Third Step. Finally, we finish determining the integers ay,...,aq. Let H C R¢
denote the hyperplane defined by the equation a;xy + ...+ aqrqy = 1 and HE) ¢ R?
the closed half-space defined by the inequality ayz1 + ... + aqzq < 1. Since each v;
lies on the hyperplane H, in order for 7 = HN Qp to be a face of Qp, it is required
to show Qp C H™). Let {y;,y;} with y; < y; be an edge of P.

o Let Yi € {yi17 B 7yim} with Yj ¢ {yin s >yim}' If Y 7é Yd+1, then
a; > max{a; — 1,0},

where ay = 0. Thus a; —a; < 1. If y; = yay41, then by using (6.5) one has
a; < 1, as desired.

o Let y; € {4y, Yin ) With i € {viy, .-, ¥i, }- If Yi # Yo, then
a; < min{a; + 1,0},

where 441 = 0. Thus a; —a; < 1. If y; = yo, then by using (6.5) one has
—a; <1, as desired.

Let A = P\ {yi,,...,y;, }. Write B for the subset of A’ consisting of those
y; € A’ such that there is j with y;; < y;. Write C for the subset of A’ consisting of
those y; € A’ such that there is k with y; < y;,. Again, let e = {y;, y;} with y; < y;

be an edge of P. In each of the nine cases below, a routine computation easily yields
that p(e) € H™.

e y, € B\Candy,; € B\C,
e y,€cC\Bandy; €C\B;
e y,€cC\Bandy; € B\C;
e y,€cC\Bandy; € BNC,
ey €cC\Bandy, ¢ BUC,
ey, €c BNC and y; € BNC,
e y,€c BNC and y; € B\ C,
ey, BUC and y; € B\ C,
oy, ZBUC and y;  BUC.

For example, in the first case, a routine computation is as follows. Let y; # ya41.
Let a; = 0. Then, since a; > 0, one has a; —a; < 1. Let a; > 0. Then, since
a; > a; — 1, one has a; —a; < 1. Let y; = ys41 and a; > 0. Then there is j
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with a; = a;; — distp(y;;,¥:). By using (6.5) one has a;; < distp(yi;, yar1). Thus
a; < dist p(yi;, Yar1) — dist p(yi,, ys). Hence a; < 1, as required.

Fourth step. Suppose that P possesses a special path I' = (Yiys Yigy - -+ Yi,,, ) With
Yi, = Yo and y;,, = Y441 which satisfies the inequalities (6.3). Then one has

m—1
S 4 0wy i }) = (0., 0),
7j=1

where ¢; = 1if y;, < i, and ¢ = —1if y;, > ... Thus p({ys,, ¥i0 1), 1 <
j < m — 1, cannot be affinely independent. Our work is to show that Qp is not
simplicial. In this case, however, the same discussion can be given as the case which
P possesses a very special cycle. (We should set a = pur(yo) (= pir(yas1)).)

((iii) = (i)) Now, suppose that Qp is not Q-factorial. Thus Qp possesses a
facet F which is not a simplex. Let vy, ..., v, denote the vertices of F, where n > d,
and e; the edge of P with v; = ple;) for 1 < j < mn. Let ayzq + -+ + agrqg = 1
denote the equation of the supporting hyperplane H C R? of Qp with F = Qp N'H
and with Qp C H™), where H+) c R? is the closed-half space defined by the
inequality a;z1+- - -+aqrqy < 1. Since vy, ..., v, are not affinely independent, there is
(r1,...,7rn) € Z" with (ry,...,r,) # (0,...,0) such that rv1+- - -+r,v, = (0,...,0).
By removing r; with r; = 0, we may assume that v, +--- + rpvy = (0,...,0),
where r; # 0 for 1 < j < n' with 71 + -+ 7y = 0. Let ¢; = {y;;,4;,} with
1 <ijiy < d. If either y;; or Yi, appears only in e; among the edges ey, ..., ey,
then r; = 0. Hence both y;, and Yi, must appear in at least two edges among
€1,...,ey. Let G denote the subgraph of the Hasse diagram of P with the edges
€1,...,6y. Then there is no end point of G in P. Thus G possesses a cycle of P
or (G is a path of P from Yo tO Ygqi1. Since vy, ..., v, are contained in the facet F,
Lemma 6.1.8 says that every cycle in G is very special or else G' contains a special
path.

Suppose that G possesses a very special cycle C' = (Y, Yiy, - - -, Uiy, ). Our goal is
to show that C satisfies the inequalities (6.1) and (6.2).

Let yr, < yg, < -+ <y, be a saturated chain of P with ¢ = dist 5 (Yo, Yk, ) such
that each of yy, and vy, belongs to {yi,, ¥iy, - -, ¥i, }. We claim

2% (yk[) — HC (yko) S dlStP (ykm ykg) .

o Let yo # Yk, and Y1 # Yk, Since ey, —ey,,, € Qp, one has ay, —ay,,, <1
for each 0 < 7 < /¢ — 1. Hence ay, — ar, < ¢. On the other hand, ay, — ax, =

pe(Ur,) — po(Uny)- Thus pe(yr,) — to(Yr,) < dist p(Yros Yk, )-

o Let yo = i, and ygr1 # yi,. Since —ei, € Qp, one has —az, < 1. Since
er, — €., € Qp, one has a, —ay,,, < 1foreach 1 < j </ —1. Hence

ag, —ag, < £—1. Thus —ay, < ¢. On the other hand, —ax, = pc(yk,) — e (Y, )-
Thus pue(yr,) — e (Yr) < distp(Yro, Y, )-
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o Let yo # yr, and yay1 = Yg,. Since ey, — ey, € Qp, one has ag;, —ap,;,, <1
for each 0 < j < ¢ — 2. Hence ay, —ay,_, < {—1. Since e;,_, € Qp, one has
ag,_, < 1. Hence ay, < ¢. On the other hand, ay, = nc(yr,) — po(Yr,). Thus
o (Yr,) — te(Yre) < distp(Yng s Yr,)-

Finally, fix arbitrary y;, and y;, with po(yi;) < pe(ys,). Then —a;, < dist 5 (yo, ¥i,)
and a;, < distp(ys;, yar1). We claim

pe(Yi,) — po(yi;) < distp(Yo, yiy,) + dist p(Yi; s Yas1)-

If 4, # yo and y;, # Yar1, then a;; — a;, = pe(ys,) — pe(y;). Iy, = yo and
Yi, # Ya+1, then —a = po(yi) — pe(yy). Iy, # yo and y;, = yar1, then
ai; = pe(Yi,) — 1o (ys,). Hence the required inequality follows immediately.

Suppose that G contains a special path I' = (v, ¥iy, - - -, ¥i,,) With y;;, = yo and
Ui, = Yar1. Our goal is to show that C' satisfies the inequalities (6.3). Now the same
discussion can be given as above.

((i) = (ii)) If P is a totally ordered set, then Qp is a d-simplex with the vertices,
say, —ej,e; —€s,...,€4_1 — €4,€4. Thus in particular Qp is smooth.

Now, suppose that P is not a totally ordered set. Then P possesses a cycle. Let
C = (yi,,...,y:,) be a cycle in P. If C is not special, then Lemma 6.1.8 (a) says
that C cannot belong to a facet of Qp. If C' is special, then as was shown in the
proof of (i) = (iii) it follows that p({ys,,vi; ., }), 1 < j < m, where y;,,,, = y;,, are
not affinely independent. Hence there is no facet F of Qp with p({;,,vi,,,}) € F
forall 1 <7 <m.

Let F be an arbitrary facet of Qp with d vertices v; = p(e;), 1 < j < d. Let
G denote the subgraph of the Hasse diagram of P with the edges e, ..., eq and
V(G) the vertex set of G. Since F is of dimension d — 1, it follows that, for each
1 <i < d, there is a vertex of F whose ith coordinate is nonzero. Hence P C V(G).
Suppose that P = V(G). Since G has d edges, it follows that G possesses a cycle, a
contradiction. Hence either yy € V(G) or ya41 € V(G).

What we must prove is that the determinant

U1
(6.6)
Uq

is equal to +1. Let, say, e; = {y1,¥4+1}. Thus v; = (1,0,...,0). Now, since G is a
forest, by arranging the numbering of the elements of P if necessary, one has

ay; 0 - oo 0
U1 as; Gz ' :
= )
Ud e ()
Q41 Q42 -+ - QAdd
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where each a;; € {1,0, —1}. Since the determinant (6.6) is nonzero, it follows that
the determinant (6.6) is equal to £1, as desired.

((ii) = (i)) In general, every smooth Fano polytope is Q-factorial. O

Corollary 6.1.10. Suppose that a finite poset P is pure. Then the following condi-
tions are equivalent:

(i) Qp is Q-factorial;
(ii) Qp is smooth;
(iii) P is a disjoint union of chains;
(iv) The polytope Qp is the free sum of smooth Fano simplices.

Proof. If P is pure, then every cycle of P is special and, in addition, satisfies the
inequalities (6.1) and (6.2). Moreover, every path from y, to y4.1 cannot be special.
Hence Qp is Q-factorial if and only if there is no very special cycle, i.e., every cycle
of P possesses both 0 and 1. Now if there is a connected component of P which is
not a chain, then P possesses a very special cycle. Thus Qp is Q-factorial if and only
if P does not possess a connected component which is not a chain. In other words,
Qp is Q-factorial if and only if P is a disjoint union of chains. Furthermore, smooth
Fano simplices arising from finite posets are constructed from only totally ordered
sets. That is to say, P is a disjoint union of chains if and only if the polytope Qp is
the free sum of smooth Fano simplices, as desired. O

Example 6.1.11. Among the five finite posets drawn below, the three finite posets
depicted on the left-hand side yield a Q-factorial Fano polytope; the remaining two
finite posets do not yield a Q-factorial Fano polytope.

SEOR{IRNE

Let P and P’ be finite posets. Then one can verify easily that Qp is isomorphic
with Qp/ as a convex polytope if and only if P is isomorphic with P’ or with the
dual finite poset of P’ as a finite poset. (For example, a proof can be given by the
induction on the number of maximal chains of P. )

On the following table drawn below, the number of finite posets with d(< 8)
elements, up to isomorphic and up to isomorphic with dual finite posets, is written
in the second row. Moreover, among those, the number of finite posets constructing
smooth Fano polytopes is written in the third row.

d=1|d=2|d=3|d=4|d=5|d=6|d=7|d=38
Posets 1 2 4 12 39 184 | 1082 | 8746
Smooth 1 2 3 6 12 31 83 266
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6.2 Smooth Fano polytopes arising from directed
graphs

In this section, we introduce the Fano polytopes arising from directed graphs and
consider the problem of which directed graphs yiled smooth Fano polytopes. Note
that as written in Remark 6.2.6, Fano polytopes arising from directed graphs are a
generalization of ones arising from posets in the previous section.

6.2.1 Fano polytopes associated with directed graphs

In this subsection, we construct an integral convex polytope associated with a finite
directed graph and discuss the condition of which directed graph yields a Fano
polytope. Most parts of this section are refered from [29, 48, 54, 57].

Let G be a finite directed graph on the vertex set V(G) = {1,...,d}. An ordered
pair of vertices € = (1, 7) is said to be an arrow of G and a pair without ordering
e = {i,j} is said to be an edge of G. Remark that we regard (i,j) and (j,7) as
two distinct arrows. Let A(G) (resp. E(G)) denote the arrow set (resp. the edge
set) of G. Throughout this paper, we allow the case where both (i, j) and (j,7) are
contained in A(G) and assume that G is connected.

Definition 6.2.1. Let e; denote the i-th unit vector of R%. Given an arrow € = (4, j)
in G, we define p(€) € R? by setting p(¢) = e; — e;. Moreover, we write Pg C R?
for the convex hull of {p(€) : € € A(G)}.

Remark 6.2.2. In [57], Pg is introduced for a tournament graph G, which is called
the edge polytope of G, and some properties on Pg are studied in [57, Section 1].
Similarly, in [48, Section 4|, Pg is also defined for a symmetric graph G, which is
denoted by 73275 and said to be the symmetric edge polytope of G.

Let H C R? denote the hyperplane defined by the equation z; + - -+ + x4 = 0.
Since each integer point of {p(€) : € € A(G)} lies on H, one has Pg C H. Thus,
dim(Pg) < d — 1. First of all, we discuss the dimension of Pg.

A sequence I' = (iy, ..., 14;) of vertices of G is called a cycle of length [ in G with
the arrows é1,...,€ if e; = {ij,4;41} for 1 < j <[ with 441 = 4; and i; # i; for
1 < j < j <1 In other words, the edges eq,...,e form a cycle in G. For short,
we often write I' = (é7,...,€;). For a cycle I' = (€3,...,€;) in G, let A(F+) ={¢; €
{e1,...,ée1} 1 € = (ij,4;41)} and A(F_) = {ei,...,e}\ A(F+). Then we may assume
that |A§+)| > ]Aﬁ_)| without loss of generality. A cycle I' is called nonhomogeneous
if |A1(~+)| > |A§:)] and homogeneous if \A£ﬂ+)| = |A1(f)|. Note that two arrows (i, j)
and (j,7) form a nonhomogeneous cycle of length 2. In particular, every odd cycle
is nonhomogeneous. The following result can be proved by using similar techniques
appearing in the proof of [54, Proposition 1.3].

Proposition 6.2.3 (See also [57, Lemma 1.1]). One has dim(Pg) = d — 1 if and
only if G has a nonhomogeneous cycle.
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We assume that G has at least one nonhomogeneous cycle.

Next, we consider the problem of which directed graphs construct Fano poly-
topes. Once we know that G constructs a Fano polytope, one can verify that Pg is
terminal and Gorenstein ([29, Lemma 1.4 and 1.5]). A proof of the following result
can be also given by using similar techniques used in the proofs of [57, Lemma 1.2]
and [48, Proposition 4.2].

Proposition 6.2.4. P; C H is a terminal Gorenstein Fano polytope of dimension
d — 1 if and only if every arrow of G appears in a directed cycle in G.

Here, a cycle T is called a directed cycle if A({) is empty.

Hereafter, we assume that every arrow of G appears in a directed cycle in G.
Then we notice that G has a nonhomogeneous cycle since every directed cycle is
nonhomogeneous.

Example 6.2.5. Let G be a directed graph on the vertex set {1,2,3} with the
arrow set {(1,2),(2,1),(2,3),(3,1)}. Then G, p(€)’s and Pg are drawn below:

1
(—1,1,0)
G (17_170)
9 (0,1,-1)
P
3 —-1,0,1
( ) (1,1 (0,1)
convex hull
. (_170 Cx
(17_1)

Remark that the arrows (1,2),(2,3),(3,1) and the arrows (1,2),(2,1) form di-
rected cycles. Before having the convex hull of p(€)’s, we ignore the third element
of each integer point. Then the convex polytope Pg of this example becomes a
terminal Gorenstein Fano polytope of dimension 2, in particular, smooth.

Remark 6.2.6. In [29], terminal Gorenstein Fano polytopes arising from finite par-
tially ordered sets Qp are introduced. Let P = {yi,...,y4} be a partially ordered
set and P = P U {yo, a1}, where o = 0 and y4,1 = 1. Then we can regard P as
the directed graph on the vertex set {0,1,...,d + 1} with the arrow set

{(2,7) : y; covers y;}.
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Identifying 0 with d + 1 as the same vertex, we construct the directed graph on the
vertex set {1,...,d + 1}. Let Gp denote such directed graph. Then Qp is nothing
but Pg,. Therefore, terminal Gorenstein Fano polytopes associated with directed
graphs are a natural generalization of those defined in [29] and we can consider the
problem studying in section 2 in the similar way.

6.2.2 When is Pz smooth ?

In this section, we consider the problem of which directed graphs yield smooth Fano
polytopes.
First, we prove the following

Lemma 6.2.7. (a) Let C' = (€1,...,€]) be a cycle in G. If there exists a facet F of
Pe with {p(€1),...,p(é)} C F, then C is homogeneous.

(b) For (i,j) € A(G), suppose that (j,i) € A(G). If p((i,7)) is contained in some
facet F of Pg, then p((4,1)) is never contained in F.

Proof. (a) Let ajxy + -+ + agxq = 1, where each a; € Q, denote the equation of
the supporting hyperplane of P which defines a facet F. Let e; = {i;,4,;41} for
1 <j <, where i;,; = i;. It then follows that

l

Z(aij - aij+1) = Z (aij - aij+1) - Z (aij+1 - aij) = |A(C+)| - |A(C’_)| = 0.

i=1 Geald ceal)

Hence, C' must be homogeneous.

(b) We set ajz1 + - - - + aqgzy = 1 as above and suppose that p((z, 7)) lies on this
supporting hyperplane. Then one has a; —a; = 1. Thus, a; —a; = —1. This implies
that p((7,4)) cannot be contained in the same supporting hyperplane. O]

Next, we prepare two notions, uc and distg.
Let C' = (€1, ..., €) be a homogeneous cycle of length [, where e; = {i;,;+1} for
1 < j < with ¢;51 = 7;. Then there exists a unique function

Ue {ilv"'ail} - ZZO
such that

o yic(iji1) = peliz) — 1 (vesp. polijyr) = pe(ij) + 1) if € = (ij,i541) (resp.
€; = (ij41,15)) for 1 < j <1,
o min({pc(in), .. ne(@)}) = 0.

For two distinct vertices ¢ and j of G, the distance from i to j, denoted by
distg (4, 7), is the length of the directed shortest path in G from ¢ to j. If there exists
no directed path from ¢ to j, then we define the distance from ¢ to j by infinity.

We now come to the position to prove the following
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Theorem 6.2.8 ([39, Theorem 2.2]). Let G be a connected directed graph on the
vertex set {1,...,d} satisfying that every arrow of G appears in a directed cycle of
G. Then the following conditions are equivalent:

(i) P is Q-factorial;
(i1) Pg is smooth;
(iii) G possesses no homogeneous cycle C = (é1,...,€;) such that
pe(ia) — peiy) < distg(ia, i) (6.7)
forall1 < a,b <, where ej = {ij,ij11} for 1 <j <1 with i1 = 1;.

Proof. ((i) = (iii)) Suppose that G possesses a homogeneous cycle C' in G which
satisfies (6.7) and let C' = (éq,...,€;) be such homogeneous cycle, where e; =
{ij,ij41} for 1 < j < with i;;; = ¢;. Then one has

qup(e_}) = (07 ) 0>7

where ¢; = 1 (resp. ¢; = —1) if €; = (4;,4;41) (rvesp. if €; = (ij41,4;)) for 1 < j <.
Since C' is homogeneous, one has Z;zl ¢; = 0, which implies that the integer points
p(€1),...,p(€é) are not affinely independent.

Let v; = p(€;) for 1 < j <. In order to show that Pg is not simplicial, we may
find a face of Py containing vy, ..., v;.

Let ai,...,aq be integers. We write H C R¢ for the hyperplane defined by the
equation a;zy + -+ - 4+ agrqg = 1 and HH C R? for the closed half space defined
by the inequality a;z1 + - -+ + aqrqy < 1. By determining aq,...,ay, we make H a
supporting hyperplane of a face F of Pg satisfying {vy,...,v} C F and Pg C HF).

First, let a;; = pc(i;) for 1 < j < I It then follows easily that v; lies on the
hyperplane defined by the equation 22:1 ai;x;; = 1.

Next, we determine a;, with k € A, where A ={1,...,d}\ {i1,...,4}. We set

ap, = max({a;, — distg(i;,k)} U {0}).

In particular, we have a; = 0 when there is no i; with distg(i;, k) < co. Here, we
notice that one has

a < ay, (6.8)
where aj, = min({a; , +distg(k, iy)}). Infact, if ax > aj, then there are i; and i; such
that distq(i;, k) < oo, distg(k,iy) < oo and a;; — distq(i;, k) > a;, + diste(k, iy).
Since distg (i, k) + distg(k, i;:) > diste(i4, ), one has

,uC(ij) — Mc(ij/) = ai]. — (Iij, > diStg(ij7 k?) + diStg(k’, ij/) Z diStg<ij7ij/).

119



This contradicts (6.7).

We finish determining the integers ay, ..., aq. Since each v; lies on H, in order
for F = P N'H, we may prove Pg C HH.

Let (7,7) € A(G). When ¢ € {iy,...,4} and j € A, then one has a; > max({a; —
1,0}) by the definition of a;. Hence, a; —a; < 1. When i € A and j € {iy,...,%},
then one has a; < a; + 1 by (6.8). Hence, a; —a; < 1.

Let

B = {k € A : there is i; with distg(i;, k) < oo}

and
C = {k € A : there is iy with distg(k,i;) < oo}

Again, let (i,j) € A(G). In each case of the nine cases below, a routine computation
easily leads that p((4,7)) € H™.

(1)ie B\ C and je B\C, (2)ie C\B and jeC\ B,
(3)ie C\B and je B\C, (4)ie C\B and je BNC;
(5)ie C\B and j ¢ BUC; (6)ie BNC and je€ B\ C;
(7)ie BNC and j € BNC; 8)igBUC and j € B\C;
(9)i¢ BUC and j¢ BUC.

For example, a routine computation of (1) is as follows. When a; = 0, since
a; > 0, one has a; —a; <0 < 1. When a; > 0, since a; > a; — 1, one has a; —a; < 1.

Therefore, it follows that H is a supporting hyperplane of a face of Pg which is
not a simplex.

((iii) = (i)) Suppose that Pg is not simplicial, i.e., Pg possesses a facet F
which is not a simplex. Let vy,...,v, denote the vertices of F, where n > d — 1,
and €3, ..., €, the arrows with v; = p(e;) for 1 < j < n. We write H C R? for
the supporting hyperplane ayz; + - - - + agrgy = 1 defining F. Since vy, ..., v, are
not affinely independent, there is (ry,...,r,) € R™ with (r,...,7r,) # (0,...,0)
satisfying 37, r; = 0 and > 7 rju; = (0,...,0). By removing r; with r; = 0,
we may assume that Z;il rjv; = (0,...,0), where r; # 0 for 1 < j < n' with

Z;il r; = 0. Let € = (ij,1}) with 1 < i;,4; < d and let G’ denote the subgraph of
G with the arrow set {ej,...,ex}. If degg(i;) = 1 or degg (if) = 1, then r; = 0,
a contradiction. Thus, degs/(i;) > 2 and degg (i) > 2. By Lemma 6.2.7 (b),
since {p(€1),...,p(en)} C F, it cannot happen that e; = e, with 1 < j # k < n/.
Moreover, since every vertex in G’ is at least degree 2, there are many cycles in
G'. Now, Lemma 6.2.7 (a) says that G’ cannot contain any nonhomogeneous cycle.
Hence, there is at least one homogeneous cycle in G.

Let C = (€1,...,€) be a homogeneous cycle in G, where e; = {i;,4;11} for
1 <j <l with i;41 = 4. Our goal is to show that C' satisfies the inequality (6.7).

Let T' = (ko, k1, ..., kmn) be the directed shortest path in G of length m, where
ko and k,,, belong to {i1,...,4}. On the one hand, since ey, — e,,, € Pg, one has
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ap;—ay,,, < 1for0 < j < m—1. Hence, ax,—ay,, < m = distg(ko, k). On the other
hand, we have ay, —ay,, = po(ko) — pe(km). Thus, pe (ko) — pe(km) < diste(ko, km)-
Therefore, the required inequality (6.7) holds.

((i) = (ii)) Suppose that Pg is simplicial. Then there are just d — 1 vertices in

U1
each facet which are linearly independent. Let M = : be the matrix whose
Vd—-1
row vectors vy, . ..,v4_1 € Z% are the vertices of an arbitrary facet of Py and M’ the

(d —1) x (d — 1) submatrix of M ignoring the d-th column of M. From the theory
of totally unimodular matrices [66], the determinant of M’ is equal to £1, which
means that Pg is smooth.

((ii) = (i)) In general, every smooth Fano polytope is Q-factorial. O

For a directed graph G, we say that G is symmetric if both (i,7) and (j,7) are
contained in A(G), that is, 2|E(G)| = |A(G)|. Note that when G is symmetric,
every arrow of (G is contained in a directed cycle of length 2, so Pg is always a
terminal Gorenstein Fano polytope.

Recall that for a connected graph G, we say that G is 2-connected if the induced
subgraph with the vertex set V(G)\{i} is still connected for any vertex i € V(G)
and a subgraph of G is a 2-connected component of G if it is a maximal 2-connected
subgraph in G.

For symmetric directed graphs, we obtain the following

Corollary 6.2.9. Let G be a connected symmetric directed graph. Then the follow-
ing conditions are equivalent:

(i) Pg is Q-factorial;
(i1) Pq is smooth;
(iii) G contains no even cycle;
(v) every 2-connected component of G is either one edge or an odd cycle.

Proof. ((i) < (ii)) It is obvious from the proof of Theorem 6.2.8.

((i) = (iii)) Suppose that G possesses an even cycle C' in G of length 2. Let
C = (ei,...,€y,) be a cycle, where e; = {i;j,i;41} for 1 < j < 21 with iy = 5.
Since G is symmetric, there are arrows of GG

(Z'27 il)? (7:27 i3)7 (i47 Z'3)7 (i47 7:5>7 ety <i2l7 Z'2l—1)7 (7:217 7’1)

We define vy, ..., vy € R? by setting

Vi = p((ij+17ij))> j:1,3,...,2l—1,
’ p((ij,7541)), j=2,4,...,2l



Then one has

l l
Z’Ugj_l + Z(—l)vgj = (0, N ,O)
1 7j=1

j=

Thus, vq,...,vy are not affinely independent. Hence, we may show that there is a
face F of Pg with {vy,... vy} C F.
Now, we have vg; | = —e;,, | + €, and vy; = e;, —e;,. ., for 1 < j < [. Thus,

V1, .., Uy lie on the hyperplane H C R? defined by the equation Tiy+Tiy+- -+, =
1. In addition, it is clear that p(€) is contained in H*) C R? for any arrow € of G.
Hence, H is a supporting hyperplane defining a face F of Pg with {vy, ..., vy} C F.
Therefore, Pg is not simplicial.

((iii) = (iv)) We prove this implication by elementary graph theory. Suppose
that there is a 2-connected component of G which is neither one edge nor an odd
cycle. Let GG’ be such 2-connected subgraph of G. Now, an arbitrary 2-connected
graph with at least 3 vertices can be obtained by the following method: starting
from a cycle and repeatedly appending an H-path to a graph H that has been
already constructed. (Consult, e.g., [77].) Since G’ is not one edge, G’ has at least
3 vertices. Thus, there is one cycle C; and (m — 1) paths I'y,..., T, such that
G'=CiUl'yU---UTl,,. Since G’ is not an odd cycle, one has G' = C;, where C,
is an even cycle, or m > 1. Suppose that m > 1 and C} is an odd cycle. Let v and
w be distinct two vertices of C; which are intersected with I'y. Then there are two
paths in C from v to w. Since C] is odd, the parities of the lengths of such two
paths are different. By attaching the path I'y to one or another of such two paths,
we can construct an even cycle. Therefore, there exists an even cycle.

((iv) = (i)) Suppose that each 2-connected component of G is either one edge
or an odd cycle. Then there is no homogeneous cycle in G. Hence, by Theorem
6.2.8, P¢ is simplicial. O

Let G and G’ be connected symmetric directed graphs. The conditions under
which Pg is unimodular equivalent to Pgr are discussed in [48, Section 4.2]. As its
analogue, we obtain the following

Theorem 6.2.10 (See [48, Theorem 4.5)). For a directed graph G (resp. G'), let
Gi,...,Gp (resp. GY,..., G ) denote the 2-connected components of G (resp. G').
Then Pg is unimodular equivalent to Pgr if and only if m = m' and G; is isomorphic
to G, by renumbering if necessary.

Example 6.2.11. (a) When G is a directed cycle of length d 4 1, Pg is a smooth
Fano polytope, whose corresponding toric Fano variety is a d-dimensional complex
projective space P?. Moreover, each 2-connected component of a directed graph
corresponds to each direct factor of a corresponding toric Fano variety. For example,
the graph depicted on the left-hand side (resp. right-hand side) yields a smooth Fano
polytope which corresponds to P° (resp. P3 x P3).
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N
(b) When G is a symmetric directed graph without even cycle, Pg is a smooth
Fano polytope, whose corresponding toric Fano variety is a direct product of copies
of P! or del Pezzo variety V2. (See Section 3.) For example, the graph depicted

on the left-hand side (resp. right-hand side) yields a smooth Fano polytope which
corresponds to V* (resp. P! x P! x V?).

£k cood

6.2.3 The case where G possesses no even cycle

In this subsection, we show that every pseudo symmetric smooth Fano polytope can
be obtained from some directed graph with no even cycle. This fact includes the
case of centrally symmetric smooth Fano polytopes.

Let P C R? be a Fano polytope.
o We call P centrally symmetric if P = —-P ={—a:«a € P}.

e We call P pseudo symmetric if there is a facet F of P such that —F is also
a facet of P. By the definition, every centrally symmetric Fano polytope is
pseudo symmetric.

e A del Pezzo polytope of dimension 2k is a convex polytope
conv({tey,...,+ey, t(e; + - +exu)}),

whose corresponding variety is so-called a del Pezzo variety V?*. In particular,
del Pezzo polytopes are centrally symmetric smooth Fano polytopes.

o A pseudo del Pezzo polytope of dimension 2k is a convex polytope
conv({*ey,...,teq, €1+ -+ ex}),

whose corresponding variety is so-called a pseudo del Pezzo variety V2. In
particular, pseudo del Pezzo polytopes are pseudo symmetric smooth Fano
polytopes.

There is a well-known fact on the characterization of centrally symmetric or
pseudo symmetric smooth Fano polytopes.
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Theorem 6.2.12 ([76]). Any centrally symmetric smooth Fano polytope splits into
copies of the closed interval [—1,1] or a del Pezzo polytope.

Theorem 6.2.13 ([17, 76]). Any pseudo symmetric smooth Fano polytope splits into
copies of the closed interval [—1,1] or a del Pezzo polytope or a pseudo del Pezzo

polytope.

Somewhat surprisingly, we also give the complete characterization of centrally
symmetric or pseudo symmetric smooth Fano polytopes by means of directed graphs.
In fact,

Theorem 6.2.14 ([39, Theorem 3.3]). (i) Any centrally symmetric smooth Fano
polytope can be obtained from a symmetric directed graph with no even cycle.

(ii) Any pseudo symmetric smooth Fano polytope can be obtained from a directed
graph with no even cycle.

Proof. First, we prove (ii). Let P be an arbitrary pseudo symmetric smooth Fano
polytope of dimension d. By Theorem 6.2.13, P splits into Py, ..., P, which are
copies of [—1,1] or a del Pezzo polytope or a pseudo del Pezzo polytope. Let
Pi,...,Pns be del Pezzo polytopes, Pyi1,..., Pm pseudo del Pezzo polytopes
and Ppyry1, ..., P the closed intervals [—1,1]. Then the following arguments easily
follow.

e Let, say, P; be a del Pezzo polytope of dimension 2k; and G; a symmetric
directed graph with its arrow set

AGY) = {(1,2),(2,1), ..., (21, 2k +1), (21 +1,2k1), (2k1 +1,1), (1, 2k, + 1)}

Then G is an odd cycle, i.e., there is no even cycle, so Pg, is smooth by
Corollary 6.2.9 and we can check that Pg, is unimodular equivalent to P;.

e Let, say, P41 be a pseudo del Pezzo polytope of dimension 2k; and G a
directed graph with its arrow set

A(GY) = AG) \ {(2, 1)},

i.e., we miss one arrow from (1. Then we can also check that P is unimodular
equivalent to P,y 1.

e A directed graph consisting of only one symmetric edge yields the smooth
Fano polytope of dimension 1, which is nothing but the closed interval [—1, 1].

By connecting the above graphs with one vertex, we obtain the directed graph with
no even cycle which yields the required smooth Fano polytope P.

Moreover, del Pezzo polytopes and the closed interval [—1, 1] are constructed by
symmetric directed graphs. Therefore, in the similar way to the above construction,
by Theorem 6.2.12, we can also find the symmetric directed graph G with no even
cycle such that Pg is unimodular equivalent to P for any centrally symmetric smooth
Fano polytope P. O
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Example 6.2.15. The graph depicted on the left-hand side (resp. right-hand side)
yields a smooth Fano polytope which corresponds to V4 (resp. P! x V2 x V?).

Example 6.2.16. In [4], a symmetric (not centrally symmetric) smooth toric Fano
variety is given, which is important from the viewpoint whether smooth toric Fano
variety admits an Einstein-K&hler metric, and some examples of symmetric smooth
Fano varieties are provided in [4, Example 4.2 — 4.4]. Note that smooth toric Fano
varieties corresponding to centrally symmetric smooth Fano polytopes and direct
products of copies of complex projective spaces are always symmetric.

Let m be a positive integer and G a directed graph with its arrow set

A(Gh) =1{(1,2),(2,3),....,2m+1,2m +2),(2m+2,1), (1, m + 2),(m + 2,1)}.

Then Pg, is a smooth Fano polytope of dimension 2m + 1 which corresponds to the
example of the case where k = 1 described in [4, Example 4.2].
Let G5 be a directed graph with its arrow set

A(Gy) = A(Gr) U{(1,2m +3),(2m + 3,1),(m +2,2m + 3),(2m + 3, m + 2)}.

Then Pg, is a smooth Fano polytope of dimension 2m + 2 which is the example of
the case where k = 1 described in [4, Example 4.3].

6.2.4 Primitive collections of Pg

In this section, we describe the primitive collections of Pg in terms of directed
graphs, where we assume that Pg is smooth.

Primitive collections, introduced by Batyrev [2], are very important and con-
venient for investigating smooth toric Fano varieties. We refer the reader to, e.g.,
[65], for some aspects on algebraic geometry of smooth toric Fano varieties using
primitive collections.

Let P be a smooth Fano polytope and V(P) the set of its vertices. A nonempty
subset P C V(P) is called a primitive collection of P if conv(P) is not a face of P
but conv(P \ {v}) is a face of P for every v € P.

Theorem 6.2.17 ([39, Theorem 4.1]). Let G be a connected directed graph on the
vertex set {1,...,d} such that Pg is a smooth Fano polytope of dimension d — 1.
Let Ag C 24 be the set consisting of A C A(G) which satisfies that there exists
some nonhomogeneous cycle C' in G with A(;) C A. Then there is a one-to-one
correspondence between the primitive collections of Pa and the minimal elements in
Ag by inclusion.
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Proof. For A C A(G), let (A) = {p(€) : € € A}. Since Pg is terminal, there is a
one-to-one correspondence between the vertices of Py and the arrows of G. Thus,
it suffices to show that for every A € Ag, (A) is not contained in any face of Pg,
and that for every A’ € 24\ Ag, there exists a face of Pg containing (A’).

For A € Ag, suppose that there exists a face containing (A) and let H be a
supporting hyperplane of such face defined by a;z1 +- - - +aqzry = 1 with Pg € HP),
where a; € Q. Since A € Ag, there exists a nonhomogeneous cycle C' = (€7, ..., ¢€])
in G, where e; = {i;,4;41} for 1 < j <[ with 441 = 4y, such that Ag) C A. Then
(A(C+)) C (A) C H and (Aé—)) C H™). Thus, one has

l
0= Z(aij - aij+1) = Z (a’ij - aij+1) - Z (aij+1 - aij) > |A(C'+)| - |A(C_)| > 07

i=1 Geald) eal)

a contradiction. Hence, (A) is not contained in any face of Pg. In particular, this
assertion holds for every minimal element in Ag.

Moreover, by Lemma 9.1.11 below, for every A’ € 24(@) \ Ag, there exists a
face of Py containing (A’). In particular, for every minimal element A in Ag, there
exists a face containing (A \ {€}), where € is an arbitrary arrow in A. This implies
that if A is minimal in Ag, then (A) is a primitive collection of Pg. On the other
hand, we know that if A" C A(G) is not a minimal element in Ag, then A’ cannot
be a primitive collection of P.

Therefore, we conclude that there is a one-to-one correspondence between the
primitive collections of Pg and the minimal elements in Ag. ]

Lemma 6.2.18. Work with the same notations as in Theorem 6.2.17. For every
A € 24N\ Ag, there exists a face of Pg containing (A').

Proof. For A" € 24\ Ag, let G’ denote the subgraph in G with A(G’) = A’ and

..., G connected components of G'. Then there is no cycle in each G/, i.e.,
each G is a tree. In fact, there is no nonhomogeneous cycle since A’ ¢ As and no
homogeneous cycle since Pg is simplicial. (See the proof of ((i) = (iii)) of Theorem
6.2.8.)

Let aq,...,aq be integers and let H C R? and HH) c R denote as in the proof
of ((i) = (iii)) of Theorem 6.2.8. In order to find a face of Pg containing (A’), we
determine ag, ..., aq such that H becomes a supporting hyperplane of a face F of
Pe with (A/) C F and Ps C H.

The first step. In this step and the next step, we determine a; for all j € V(G").

Let V(G)) = {qy),...,q,(c?} for 1 < i < m and cy,...,c, some integers. We

choose one vertex from each G, say, q%l), e ,q%m), and set am = ;. For1<i<m
1

and 2 < j < k;, we define a, by setting
J

aq(j-) -1, if (q](»f), q§i)) € A(G;‘)>
a s = J . i) (i

4q; aqm +1, if (C_IJ( )7 Q§/)) S A(G;)'
51
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Notice that since G is a tree, each a g is uniquely determined. It then follows that
(A) is contained in the hyperplane deﬁned by D cjchi1<icm @ Ty = 1.

The second setp. Next, we give the exact values of a () 'S by determining
integers c¢q,...,cy,. For this, we define a directed graph. Let H be (not necessary
connected) a directed graph on the vertex set {1,...,m} with the arrow set A(H)

consisting of (i, j), where 1 <4, j < m, such that there exists a directed path in G
from some vertex of G} to some vertex of (. Remark that H may have some loops.

And we give a weight b;; on every arrow (i, j) € A(H) defined by
bi; = max({a, — ag — distg(a, B) + 1 — (¢; — ¢;)}),
where a € V(G}) and 3 € V(G). Then we have

l
> bii, (6.9)
j=1

for every directed cycle C' = (i1, ...,4) in H of length [ > 1. In fact, for 1 < j <,
let bii, = o, — g, — distq (v, Bijy,) +1— (ci; — ciyy, ), where oy, € V(G ) and
Bis € V(G],,,). Since each G is a tree, there is a unique path in G}, from f;; to
iy, say, I = (e, ,eklj_l), where ey, = {Vk,, Yk } € E(GY) for 1 <a <1l —1
with v, = ;, and Vhy, = Qi Then we notice that there is a cycle

C= (., [, T 0T

R R PRI > R i
in G, where I';, is a directed path from «;; to 3;,,, of length distg (o, 5;,,,). Let
5(4‘)

i, (resp. 52-(]__)) denote the number of arrows such that e, = (Y&, Vko.r) (resp.

€ka = (Vkay1s Tha)). By the definitions of ag, and aq, , we have ag, —aq, = 51(;) —51-(],_).
Moreover, by our assumption, we have '

l l
-215 + Zldlstg i, Bi ) > Z
j= J j=1

otherwise C' becomes a nonhomogeneous cycle satisfying A(C+) C Ué»zlA(G;j) = A.
Hence, we have

I I
—+ . .

Z 5( ) — ) +dista(ay,, Bi,,,)) = Z(aﬂij+1 — G, + dista (o, Bi4,))

j=1 j=1

l

!
= Z(_bijiwrl +1= (e —ciyp)) =1 = Z bijijn 20
j=1

Jj=1

By considering the directed graph H, we give the exact values of ci,...,cpm.
(Here, even if H is not connected, we may do the same operations as the following
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to each connected component, so we assume the connectedness of H.) In H, if
there are some directed cycles, then we pick up one C = (11,...,1;) satisfying that
a nonnegative integer [ — 22:1 bi;i;,, 1s the smallest. And, for 1 < j <1 —1, we set
Cij —Cijpy = 1— bwﬁl Next, we do this to other directed cycle C' = (¢, ...,4,) in H
such that [ — Z - b“/+1 is the second smallest. If C' and C’ are distinct in H, then
we find a path in H from some vertex of C' to some vertex of C', say, (i, ... ip)
with ¢] = iy and ¢}, = 4}, and we also define Cin — Cyyr, | = bmu+1 in the s1mllar
way. After this, similarly, we define Cii, = Cyp | = 1-— bzﬁJ+ In this way, we define
ca — ¢ for all 1 < a,b < m with (a,b) € A(H).
After all, thanks to (6.9), it is easy to see that we have

!
¢ —¢; < min <{l — Zbkjkj+1}> (6.10)
=1

for every (i, j) € A(H), where [ is the length of some directed path (ky, ..., k1) in
H from i = ki to j = kyy1.
Finally, we set

min({aq(i) 1< <k, 1<i<m})=0.

J

Then we obtain the exact values of all a @) ’s.
The third step. In this step, we determme ay for all k € V(G) \ V(G'). For
ke V(G)\V(G), let
ar = max({a, — distg(a, k) } U {0}),

where o € V(G!) for some 1 < i < m. In particular, we have a; = 0 when there is
no « with distg(a, k) < co. Then one has

ar < ay, (6.11)

where a;, = min({ag + distq(k, 8)}) with 8 € V(G) for some 1 < j < m. In fact, if
ar > a, then there exist o and [ such that distg(o, k) < oo and distg(k, §) < .
Since diste(a, k) + distg(k, 5) > distg(a, 3), one has

ag + distg(k, B) — an + distg(a, k)

ag — a, + diste (o, B)

—b;j +1—(¢; —¢;) (by the definition of b;;)

—bij +1—(1=by) (by (9.7))

0,

0> aj, — ay

AVARAVARLY]

a contradiction.

The fourth step. By the previous three steps, we finish determining the integers
ai,...,aq. Thus, what we need is to prove P C H+). However, since the definition
of ay for k € V(G)\ V(G’) is the same as the proof of ((i) = (iii)) and we also have

(6.11), the rest parts are also the same, proving the assertion. O
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Example 6.2.19. Let us consider the primitive collections of the del Pezzo polytope
of dimension 2, whose corresponding directed graph is the following:

2 3

Then there are 9 primitive collections, which correspond to

{(1,2),(2,D)},{(2,3),(3,2)},{(1,3), 3, 1)},
{(1,2),(2,3)},{(2,3), 3, D}, {(3,1), (1, 2)},
{ 17 7(372)}7{(372 ? 271 }7{(271 ? ) }
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Part 111

Affine semigroup rings
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Chapter 7

Introduction to affine semigroup
rings

In this part, as the third aspect of the studies on integral convex polytopes, we
consider affine semigroup rings associated with integral convex polytopes. Affine
semigroup rings often appear and play several important roles in the area of not
only commutative algebra but also combinatorics and other fields.

We will summarize some basic notions, definitions and well-known results on
affine semigroup rings. Most parts are refered from [12, Chapter 6.

An affine semigroup C is a finitely generated semigroup which for some n is
isomorphic to a subsemigroup of Z" containing 0. Let K be a field. We write K[C]
for the vector space whose basis consists of all the elemnts of C, which is denoted
by X¢ for ¢ € C. Then K[C] carries also a natural multiplication whose table is
given by X°X¢ = Xt Thus, in particular, K[C] is a K-algebra, which we call
an affine semigroup ring.

An affine semigroup C' is called normal if it satisfies the following condition:
if mz € C for some z € ZC and m € Z-g, then z € C. One sees immediately
that C' must be normal if K[C] is a normal domain. Then it is well known (e.g.
[12, Theorem 6.1.4]) that K[C] is normal if and only if C' is a normal semigroup.
Moreover, it is also well known as Hochster’s Theorem (e.g. [12, Theorem 6.3.5])
that when C' is normal, then K[C] is Cohen-Macaulay.

Let P C RY be an integral convex polytope. A typical example of normal
semigroup rings is the Ehrhart ring of P, which is constructed as follows. We define
P* C R¥*L to be the convex hull of all points (1,a) € R¥*! with a € P and let
Ap = P*NZN*! denote the set of integer points in P*. Then RsoAp NZN T is a
normal semigroup and so K[Rs¢Ap N ZY¥*1] is a normal semigroup ring, which is
called the Ehrhart ring of P.

On the rest of this part, we will discuss the affine semigroup rings associated
graphs, which we call edge rings, in Chapter 8. We will study depth of edge rings.
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In Chapter 9, we will consider the affine semigroup rings arising from cyclic poly-
topes. We will study their normality, non-very ampleness, Cohen—Macaualyness and
Gorensteinness. And we will also introduce the other affine semigroup rings arising
from cyclic polytopes, which are generated only by their vertices, and discuss their
properties.
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Chapter 8

Affine semigroup rings arising
from graphs

In this chapter, we will study the depth of edge rings. In Section 8.1, we will consider
the depth of edge rings (toric ideals) of non-normal graphs. Note that when graphs
are normal, then their edge rings are always Cohen—Macaulay, which means that
the depth is equal to its Krull dimension. In Section 8.2, we will discuss the depth
of initial ideals of toric ideals of normal graphs.

8.1 Depth of non-normal edge ring

First, we consider the depth of non-normal edge rings.

Let G be a finite simple graph on the vertex set [d] = {1,...,d} and E(G) =
{e1,...,en} its edge set. Let K[t] = K[t1,...,t4] be the polynomial ring in d vari-
ables over a field K and write K[G] for the subring of K|[t] generated by those
squarefree quadratic monomials t¢ = ¢;¢t; with e = {i,j} € E(G). The affine semi-
group ring K[G] is called the edge ring of G. Let Krull-dim K [G] denote the Krull
dimension of K[G] and depth K[G] the depth of K[G]. Let K[x| = K[x1,...,Zpn]
be the polynomial ring in m variables over a field K. The kernel I of the surjective
homomorphism 7 : K[x] — K[G] defined by setting m(x;) = t% for i = 1,...,m is
called the toric ideal of G. One has K[G] = K|[x|/Is. If G is connected and is non-
bipartite (resp. bipartite), then Krull-dim K[G] = d (resp. Krull-dim K[G] = d—1).

The criterion of normality [54, Corollary 2.3] of edge rings guarantees that K[G]
is normal if either G is bipartite or d < 6. If d = 7, then there exists a finite
graph G for which K[G] is nonnormal. However, it follows easily that K[G] is
Cohen—Macaulay whenever d < 7. Computing depth of edge rings of all connected
nonbipartite graphs G with 7 vertices shows that the depth of K[G] is at least 7.
Moreover, our computational experiment would naturally lead the authors into the
temptation to give the following

Conjecture 8.1.1. Let G be a finite graph on [d] with d > 7. Then depth K[G] > 7.
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Now, even though Conjecture 8.1.1 is completely open, by taking Conjecture
8.1.1 into consideration, this section will be devoted to proving the following

Theorem 8.1.2 ([32, Theorem 0.2]). Given integers f and d with 7 < f < d, there
ezists a finite graph G on [d] with depth K[G] = f and with Krull-dim K[G] = d.

Let k > 1 be an arbitrary integer and Gy¢ the finite graph on [k + 6] of Figure
8.1. The essential part of a proof of Theorem 8.1.2 is to show that

depth K[Gy4¢] = depth K[x| /I, ., = 7. (8.1)

In Subsection 8.1.1, by virtue of the formula given in [10, Theorem 2.1], the in-
equality depth K[Gris] < 7 will be proved. In Subection 8.1.2, we compute a
Grobner basis of I, ., and an initial ideal in(/g, , ) of /¢, ,,, and show the inequality
depth K'[x]/in(/g,,,) > 7. In general, one has depth K[x|/I¢, , > depth K[x]/in(/g,,,)
(e.g., 25, Theorem 3.3.4 (d)]). Thus the desired equality (8.1) follows.

Figure 8.1 (finite graph Gy.¢)

Once we know that depth K[Gyi¢] = 7, to prove Theorem 8.1.2 is straightfor-
ward. In fact, given integers f and d with 7 < f < d, let I denote the finite graph
Ga—f+7 on [d — f + 7] and write G for the finite graph on [d] obtained from I' by
adding f — 7 edges

{1,d— f+8},{l,d— f+9},....{1,d}

to I'. It then follows that depth K[G] = depth K[I'] + f — 7. Since depth K[I'] =7,
one has depth K[G] = f, as required.
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8.1.1 Proof of depth K[Gji6] <7

Let G = Gy of Figure 8.1. In this section, we prove that depth K[G] < 7. Since
the number of edges of G is m = 2(k — 1) + 8, Auslander—Buchsbaum formula
implies that we may prove pd K[G] > m — 7 = 2k — 1, where pd K[x]/I stands for
the projective dimension of K|x|/I.

Let S be the semigroup arising from G. Let Ag = {ai,...,a,} be the set of
columns of the incidence matrix of GG, where a; corresponds to the edge e; which
corresponds to the variable x;. Actually, S¢ = Z>¢Ag.

To prove pd K[G] > 2k — 1, we use the following theorem due to Briales,
Campillo, Marijuén, and Pison [10]. For s € Sg, we define the simplicial complex

A;={F C|r] : s—npr€ Sg},

where np = >, - a;. We denote by 3; ((K[G]), the ith multi-graded Betti number
of K[G] in multi-degree s.

Lemma 8.1.3 ([10, Theorem 2.1]). Let G be a finite simple graph. Then
Bis1s(K[G)) = dimg H;(Ay; K).
We consider the case where
s=(1,1Lk+1,k+1,1,1,2,2,...,2).
By Lemma 8.1.3, it is sufficient to prove the following
Lemma 8.1.4. Set s = (1,1,k+1,k+1,1,1,2,2,...,2). Then
dimg Hop_o(Ay; K) # 0.
Let A = A,. Before proving Lemma 8.1.4, we find all the facets of A.

Lemma 8.1.5. A subset F' C [r] is a facet of Ag if and onlyl if F is one of the
following ones :

Fii={1,4578, ... 20— 1) +8\ {26 —1)+8}, i=1,...k
Fo; ={2,3,6,7,8,...,2(k— 1) +8\ {2 - 1) +7}, j=1,...k

Proof. Since s — np,, = ay;—1y+7 € Sa, we have I1; € A, = A. (It follows that
s € Sg.) Similarly, we have F5; € A.
To prove that there are no facet other than [ ;, I5 j, it is enough to show that

b {17 2}7 {17 3}? {47 6}7 {5> 6} ¢ A
o {1,6} ¢ A;
o {2,4},{2,5},{3,4},{3,5} ¢ A;
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o Fy={7,8,....2(k—1)+8} ¢ A,

Since the first entry of s — ng 9y is —1 < 0, it follows that s — np 2y ¢ Sa.
Therefore {1,2} ¢ A. By the symmetry, we also have {1,3}, {4,6},{5,6} ¢ A.
Second we show that {1,6} ¢ A. Suppose, on the contrary, that {1,6} € A, i.e.,

s—npe = (0,0,k+1,k+1,0,0,2,2,...,2) € S¢.

Then we can write s — ng 6y = >.,_, a; where ¢; € Z>q. Since (s — ny )1 =
(s—nqi,6))2 = 0 and (s—nq16y)3 = k+1, where (a); means the ith entry of a € Z", we
have ¢; = ¢ = ¢3 = 0 and Zle Ca(i—1)+7 = k-+1. Similarly, we have ¢4 = ¢5 = ¢g = 0
and Zle Caj—1)+s = k + 1. Then Zle Ca(i—1)+7 + Zle Caj—1)+s = 2(k + 1), but it
must be 2k. This is a contradiction.

Next we show that {2,4},{2,5},{3,4},{3,5} ¢ A. Suppose that {2,4} € A,
ie.,

S —n{274} = (071,l€,l€70,1,2,2,...,2> c Sg.
Then we can write s —nga43 = »_,_; Ga; where ¢; € Zxg. Since (s —ng243)1 = 0 and
(s —ng24y)2 = 1, we have c3 = 1. Similarly, we have ¢5 = 1. Thus

0,0,k —1,k—1,0,0,2,2,...,2) € Sq.

Then the similar argument on the proof of {1,6} ¢ A yields a contradiction. There-
fore {2,4} ¢ A. By the symmetry, we also have {2,5},{3,4},{3,5} ¢ A.
Last, we show Fy ¢ A. Tt follows from

s—np =(1,1,1,1,1,1,0,0,...,0) ¢ S¢.

Now we prove Lemma 8.1.4.

Proof of Lemma 8.1.4. Let Ay (resp. Ajy) be the subcomplex of A whose facets are
Firi,i=1,...,k, (resp. Fpj, j=1,...,k). Then A = A; UA,. Also facets of the
simplicial complex A; N Ay are

(7.8, 20— 1)+ 8\ {2 — D)+ 7,26 - 1)+ 8}, ij=1,....k

In particular, dim(A; NAs) = 2k — 3. Note that both of A; and A, are cone of some
simplicial complexes and reduced homologies of these all vanish (cf. [12, Exercise
5.3.10]). Therefore, Mayer—Vietoris exact sequence

K) — F[Z-(A;K)

— ﬁi_l(Al NAyK) — FIi(Al;K) ﬁ(
i & Hoor (B K) —s -

(AT NAyK) — ~1‘71(A1; K)

yields . )
HZ(A, K) = Hi—l(Al N A27 K) for all i.
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One can see that ﬁgk,g(Al N Ag; K) # 0 by considering the alternating sum of
all facets of Ay N Ay, which is

D (=0){T8, 2k — 1) + 8P\ {2( — 1)+ 7,2(i — 1) + 8}

1<i,j<k

This implies that Hoj_o(A; K) # 0, as desired. ]

8.1.2 Proof of depth K[Gyi6] > 7

Let, as before, G = Gj.¢ as in Figure 8.1. In this subsection, we prove another
inequality depth K[G] > 7.

We set C7 = (eq, €1, e3) and Cy = (ey, €, €5), both of which are 3-cycles of G. By
[55, Lemma 3.2], there are three kinds of primitive even closed walks " of G up to
the way:

(I) a 4-cycle: I' = (62(¢—1)+77 €2(i—1)4+85 €2(j—1)+8, 62(]'—1)-1—7)7 where ¢ < j;

(IT) a walk on two 3-cycles Cy, Cy and the same path combining C} and Cy: ' =
(01, €2(i—1)4+75 €2(i—1)+8, Cs, €2(i—1)+8> 62(171)+7), where 1 = 1,... k;

(III) a walk on two 3-cycles Cy, Cy and the different paths combining C; and Cs:
I' = (C4, ea3i—1)+7, €2(i—1)+8; Ca, €2(j—1) 48 €2(j—1)47), Where i < j.

It was proved in [55, Lemma 3.1] that binomials corresponding to these primitive
even closed walks generate the toric ideal /. Let us consider the lexicographic order
<=<ex Induced with 21 > 9 > 23> -+ > T2(k—1)+8-

Lemma 8.1.6. The set of binomials corresponding to primitive even closed walks
(I), (IT), (II1) is a Grébner basis of Ig with respect to <jex.

Proof. The result follows from a straightforward application of Buchberger’s algo-
rithm to the set of generators of I5 corresponding to the primitive even closed
walks listed above. Let f and g be two such generators. We will prove that the
S-polynomial, S(f, g), yielding from Buchberger’s algorithm will reduce to 0 by gen-
erators of type (I), (II) and (III). For convenience of notation, we will assume that
1,7,p, and q are all odd integers such that 7 <i < 5,7 <p <q.

Case 1. Let f = 2,241 — 217, and g = 2,7441 — Tp124 be generators of type
(I). If i # p and j # q, then the leading terms of f and g are relatively prime and
thus the S-polynomial S(f,g) will reduce to 0 (e.g., [25, Lemma 2.3.1]). Suppose
1 = p, then

_lem(f,9) lem(f, g)
S(fag) — LT<lex<f) _LT<lex(g)g

= $q+1(~"€ﬂj+1 - $i+1l‘j) - 13j+1(l‘z'$€q+1 - xz’ﬂxq)

= Tit1Zj+12q — Li41LjTg+1

= Tit1(Tj41Tg — TiTqr1)-
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Note that, up to sign, x; 112, — ;2,41 is a generator of I of type (I) and therefore
S(f,g) will reduce to 0. The case of j = ¢ is similar.

Case 2. Let f be the same as above and g = x1242527 — 22232625, | & generator
of type (II). If i # p, then the leading terms of f and g are relatively prime and
therefore negligible. If ¢+ = p, then

S(f.9) = mixgwse(xivjp — T xj) — $j+1(x1x4$5x? — $2.’L’3x6.1'?+1>
= ZE2I3$GZE?+IZL‘]‘+1 — L1T4T5T; L5415
= —$¢+1(I1$41’5$i5€j - I2$3$6$z’+1%‘+1)7
where 2124257, — LaT3%62;412 ;41 1S a generator of type (III).
Case 3. Again, we assume that f is the same as above. Now assume g is of

type (III), g = miz4x52p0, — T2T326Tp11T441. If © # p, g, then the leading terms of
f and g will be relatively prime. Suppose ¢ = p, then

S(fa g) = $1$4I5$q($i$j+1 - %’+1Ij) - $j+1($1$4$5$i$q - $2I3$6$z’+1$q+1)
= —$¢+1($1l‘4$59€q$j - $2$3$61’q+1$j+1)
and again we have that z1240520,20; — 2230624412511 1 a type either (II) or (III)
generator of I;. The case of 1 = ¢ is similar.

Case 4. Now let f and g both be generators of type (II), f = zjx4z507 —
ToT3TeTyy 1, § = T124T52; — TaT3ex; ;. Then the S-polynomial

S(f,g9) = -T?(ilﬁll"ﬂsﬂ%2 - 51729633365512“) - 'T?(f’flﬂhifsﬂ?? - $2933$6x?+1)

22 2 2
Tow326 (T 2511 — L))

= Zox3%6(Tij 41 + Tig1%5)(TiTj1 — Tip125)

is a multiple of a type (I) generator.
Case 5. Let f be the same as in Case 4 and g = 2124057,T; — T2T3T6Tp11Lq+1
of type (III). First suppose that i # p, q. Let us consider the case of i < p. Then

S(ﬂ 9) = xp$q(xlz4x5$? - 96296355693,2+1) - 513?(%15174935%% - 5529335569€p+1$q+1)
= 132%31?6(95?33p+195q+1 - x?ﬂl’p%)
= 2ox3%6(TiTq 41 (TiTpi1 — Tig1Tp) + Tili1TpTgin — x?—s—lxpxq)
= 203%6(TiTgy1(TiTpr1 — Tit1Tp) + Tig1Tp(TiTgs1 — Tiy17,))

and so S(f,g) reduce to 0 by two type (I) generators. The cases of p < i < ¢ and
q < i are similar.
Now suppose i = p, then the S-polynomial

S(f,g9) = xq(x1x4x5x? — I’QZE3I6$Z2+1) — T (212425205 — T2X3TeTi41Tg41)

= $2I3$6$i+1(1’z‘$q+1 - $i+1~"€q)-

is a multiple of a type (I) generator. The case of i = ¢ is similar.
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Case 6. Finally, we consider the case that both f and g are of type (III):
f = T1T4T5T;T5 — X2X3TeLi+1Lj+1, § = T1T4T5TpTg — L2X3L6Lp41Lg+1- We may
assume that ¢ < p. Let us first suppose that i, j # p,q. Then

S(f7 9) = $p$q(l‘1x4$5$i$j - $2I3$6$¢+1$j+1) - xixj(xlx4x5xpxq - $2$3$6$p+1$q+1)
= TT3T6(TiTjTp11Tq1 — Tig125417pTq)

= L2326 (7L 11(Tipr1 — Tiv1Tp) + Tip1Tp(2jTg1 — Tj117,)).
Now let 2 = p. We then have

S(f; 9) = xqf — Tj§ = —TqTaX3TeTi+1T 11 T TjT2T3T6Ti11T g1

LoX3LeLjt1 ([IZ']'[L'qul — l'j+1l’q).

The cases of 7 = p and j = ¢ are similar. O]

Now we prove that depth K[G] > 7. We denote by in(/s), the initial ideal of I
with respect to <jec. Since

depth K[G] = depth K[x]/Is > depth K[x]/in(I¢),
it is sufficient to prove the following
Lemma 8.1.7. depthy g K[x]/in(lg) > 7.

Proof. First, we compute in(Ig).
The binomials corresponding to type (I) are

T2>i—1)47L2(j—1)4+8 — L2>i—1)+8L2(j—1)+7> where 7 < j.

The initial term of this binomial is @a;—1)+7%2¢j-1)+s (1 < j). We denote by I’, the
ideal generated by these monomials. Note that zg and xp;_1)47 do not appear in
the minimal system of monomial generators of I'.

The binomials corresponding to types (II), (III) are

ToT3TEL2(i—1)4+-8L2(j—1)+8 — L1L4L5L2(1—1)+7L2(j—1)+75 where 7 < j.

The initial term of this binomial is —$1$4l’5$2(i_1)+7$2(j_1)+7 (Z S j)
Therefore,

in(lg) = fL‘lfL‘4l‘5<l’7, L9, ... ,$2(k_1)+7)2 —f— ]/
= (($7, Lo, ... ,.Tg(k_1)+7)2 + I/) N ((I1$4I5) + I/)

We set
I = (z7, %9, ..., Tog1ysr)” + I, Iy = (wy2azs) + 1.
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By the short exact sequence 0 — K[x]/I, N Iy — K[x]/I, ® K[x]/I, — K[x]/(I, +
I;) — 0, we have

depth K[x]/in(I¢) > max{depth K[x]/I,depth K[x]|/I5,depth K'[x]/(I; + I5) + 1}.
(8.2)
We investigate each of depth K[x]/I,depth K[x]/I5,depth K[x]/(I; + I5).

First, it is easy to see that depth K[x|/I; > 7 because z1,x9,x3, T4, x5, T and
xg do not appear in G(I;), where G(I) stands for a minimal system of generators
of an ideal I C K[x]|. Moreover, since z1x475 is a K[x]/I;-regular element, we have
depth K[x]/I, = depth K[x]/I' — 1. Then 1, ..., %, s, Tok—1)4+7 do not appear in
G(I'). Thus, depth K[x|/I, > 7. Similarly, we also have depth K'[x|/(I; + I5) > 6,
proving the assertion. O

8.2 Depth of initial ideals of normal edge rings

Following the previous section, the topic of this section is the depth of initial ideals
of normal edge rings.

We refer the reader to [25, Chapter 2| for fundamental materials on Grobner
bases. Let < be a monomial order on K|[x| and in.(Ig) the initial ideal of Ig
with respect to <. The topic of this section is depth K[x]/in.(/¢), the depth of
K[x]/inc(Ig), when K[G] is normal. Computational experience yields the following

Conjecture 8.2.1. Let G be a finite connected nonbipartite graph on [d] with d > 6
and suppose that its edge ring K[G] is normal. Then depth K[x]/in.(Ig) > 6 for
any monomial order < on K[x].

Now, even though Conjecture 8.2.1 is completely open, by taking Conjecture
8.2.1 into consideration, we prove the following

Theorem 8.2.2 ([33, Theorem 0.2]). Given integers f and d with 6 < f < d,
there exists a finite connected nonbipartite graph G on [d] together with a reverse
lezicographic order <,e, on K[xX] and a lexicographic order <i on K[X] such that

(i) K[G] is normal with Krull-dim K[G] = d;
(ii) depth K[x]/inc,,,(Ic) = f;
(ili) K[x|/in., (Ig) is Cohen—-Macaulay.
Let k£ > 1 be an arbitrary integer. We introduce the finite connected nonbipartite
graph Hy,5 on [k+5] which is drawn in Figure 8.2. Clearly, the edge ring K[Hj. 5] is

normal. It will turn out that Hy 5 plays an important role in our proof of Theorem
8.2.2.

142



€2k+1

k+3 €k+2

3 €2k+3 4

Figure 8.2 (finite graph H; 5)

The essential step in order to prove Theorem 8.2.2 is to show the following

Lemma 8.2.3. Let <., (Tesp. <ix) denote the reverse lexicographic order (resp.
the lezicographic order) on K[x] = Klxy,...,Zo45] induced by the ordering x; >
o+ > Xopas of the variables. Then

(i) depthK[x]/in<rev (IHk+5) = 6;
(i) K[x]/inc. (In,,,) is Cohen-Macaulay.

Once we establish Lemma 8.2.3, to prove Theorem 8.2.2 is straightforward. In
fact, given integers f and d with 6 < f < d, we define the finite graph I' on
[d — f + 6] to be Hy_y.¢ with the edges eq, €, ..., es4—s)4+7 and then introduce the
finite connected nonbipartite graph G on [d] which is obtained from I' by adding
f — 6 edges

exd—fy+r4i = L, d—f+64+1i}, i=1,...,f—6
to I'. Clearly, both edge rings K[I'] and K[G] are normal, and
I = Ir(K[zy,. .., 22— f41]).
Thus, in particular,
inc(Ig) = inc(Ir)(K[z1, . .., Tog—f+1])s

where < is any monomial order on K|z, ..., Zaq—f+1]. Thus Lemma 8.2.3 guarantees
that

depth K[z1, ..., x2q—y+1]/in<,., (Ic) = f

and Klzi,...,224-511]/in< (Ig) is Cohen-Macaulay, as desired.
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8.2.1 Preliminaries

Let H = Hj5. In this subsection, we will find a Grobner basis of I and a set of
generators of the initial ideal of I with respect to the reverse lexicographic order.

Let K[x] = Klz1,...,To5] be the polynomial ring in 2k + 5 variables over a
field K. There are 4 kinds of primitive even closed walks of H:

(I) a4-cycle: (€;, €xt1+i; €ht144,€5), Where 2 <@ < j < k;

(IT) a walk on two 3-cycles and the same edge eg 43 combining two cycles:
(€1, €11, €2k 14, Cok135 Chi2, €2k 425 €2kt 5 €2t 3);

(HI) a 6-cycle: (61, Ck41+i5 Ck+25 €243, €2k44, €k+1) or (ei, €41+ €2k+2, €2k+5, €2k+3, 61),
where 2 <1 < k;

(VI) a walk on two 3-cycles and the length 2 paths combining two cycles:
(Ekt2: €245, €2k+2, €t 14is €iy €1, €2kt d, €1, €j, €pt14j), Where 2 <4 < j < k.

It was proved in [55, Lemma 3.1] that the binomials corresponding to these
primitive even closed walks generate the toric ideal Iy. Let <,., be the reverse
lexicographic order with xy > z9 > -+ > Xoky5.

Lemma 8.2.4. The set of binomials corresponding to primitive even closed walks
(I), (IT), (IT), (VI) is a Grébner basis of Iy with respect t0 <yey.

Proof. Similar to Lemma 8.1.6, the result follows from a direct application of Buch-
berger’s criterion. Let f and g be two such generators. We can prove that the
S-polynomial S(f, g) will reduce to 0 by generators of type (I), (II), (III) and (VI).
Let 4,j,p,q be integers with 2 < 4,7,p,q < k. On the following proof, we will
underline the leading monomial of a binomial with respect to <;.

Case 1. Let f = 2;Tp414; — TjTht14i and § = TpTpr14q — TqTht14p DE generators
of type (I), where ¢ < j and p < ¢. If i # p and j # ¢, then the leading monomials
of f and g are coprime. Thus S(f, g) will reduce to 0. We assume that i = p. Then

S(ﬁ g9) = —xq(mixkﬂﬂ' - ﬂfjilsz+1+i) - (—xj)(:z:,-xk+1+q - xqﬂsz+1+z’)

= —i(TgThi14j — TjThi14q)-

Note that, up to sign, z,&5+14; — T;Tk+144 is a generator of I of type (I). Therefore
S(f,g) will reduce to 0. The case of j = ¢ is similar.
Case 2. Let f be the same as above and g = x1 21 0Tok 1 4Tok 15 —xk+1m2k+2x§k+3

a generator of type (II). Since 2 < i < j < k, the leading monomials of f and g are
always coprime.

Case 3. Again, we set that f is the same as above. Let g be of type (III). First,
let ¢ = xpxpioTopta — Thp1Zps14pTokts. 1f ¢ # p, then the leading monomials of f
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and g are coprime. We assume that ¢+ = p. Then

S(fag) = —$k+1l’2k+3f_(_xj)g
= —TTpp1Tk41+jT2k+3 T TiTjTht2Tok+4

xi(xjxk+2962k+4 - xk+1$k+1+j$2k+3)7

where @;Tp19Tok4a — Tpp1Th+145T2k+3 1S of type (3). Next, let ¢ = 2,Top10%ok4+3 —
T1Zp+14+pT2k+s5- 1 § # p, then the leading monomials of f and g are coprime. We
assume that 7 = p. Then

S(f,9) = —ToproTortsf — Trr14i9

= —$k+1+j($i$2k+2l‘2k+3 - 561£Uk+1+z‘5132k+5)

and again we have that x;xor,0%ok13 — T1Tk1 1425 1S of type (III).

Case 4. Again, we assume that f is the same as above. Let g = 2,7,%) 10Tk 2% 2k 44—
T1T 1Tkt 14+pTh+14qT2k+5 De of type (VI), where p < ¢. If j # p and j # ¢, then the
leading monomials of f and g are coprime. If j = p, then

S(fvg) = —$q$k+2$2k+2$2k+4f—$k+1+i9

—Lk414j ($i$q$k+2x2k+2$2k+4 - $1$k+136k+1+z'$k+1+q562k+5)7

which is a multiple of type (VI) generator. The case of j = ¢ is similar.
Case 5. Let f = 217 0%op 1 4Toks5 — xk+1x2k+2x§k+3 be a generator of type (II),

and g a generator of type (III). First we consider the case where g = z,2; 122544 —
Th41Tk+14pTok+3- Lhen

S(fag) = —$k+1+pf—(—$2k+2$2k+3)g

= -73k+2332k+4(xp372k+2$2k+3 - $1$k+1+p3?2k+5)>

where ,Top 0Tk +3 — T1Tkr14pTak+s 18 Of type (3). Next, let ¢ = x,Top 0Tk 43 —
T1T+14pTok+s. Lhen

S(f,g) = _xpf—$k+1$2k+3g

—$1$2k+5($pxk+2$2k+4 - Ik+1xk+1+p$2k+3)

and we have that )Ty 0%k 414 — Tpt125+14pTo+3 is of type (III).
Case 6. Let f be the same as in Case 5 and g = 2pTTi+oTop12T2k+a —
T1T 1Tkt 14+pTht1+qT2k+5 De of type (VI) generator, where p < ¢. Then

S(f»Q) = —Ip$q$k+2$2k+4f—$k+1$§k+39

_ 2 2 2 2
= _$1x2k+5(xpquk+2x2k+4 - xk+1xk+1+pxk+1+qx2k+3)

= —x1$2k+5{9€k+1$k+1+q$2k+3($p$k+21’2k+4 - $k+1xk+1+p$2k+3)

+Xp Tt 2Tok+a(TqlhroTokra — Thp1Thi14qT2k+3) }-
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Thus S(f,g) reduce to 0 by generators of type (III).
Case 7. We assume that both f and g are of type (III). First, we consider the

case where f = ;T4 2T okt4—Tht 1 T 14iT2k43 ANA § = TpTpi2Tok4a— T 1 T 14pT2k+35
where ¢ # p. Then

S(f,9) = —Tps14pf — (—Tht144)9

—$k+2$2k+4($i$k+1+p - $p$k+1+z'),
which is a multiple of type (I) generator. Next, let f be the same one and g =
Tplok42X2k+3 — L1+ 14+pL2k+5- Then
S(f,9) = —xpTortaf — Thi1Thy11ig
= —($i$p$k+29€2k+21‘2k+4 - xlxk+1xk+1+ixk+l+px2k+5)7

which is a generator of type (VI) up to sign. Finally, let f = x;rop 0%or13 —
T\ Tpq14iTok+5 aNd § = TpTopioTops3 — T1Tht14pT2k+s, Where ¢ # p. Then

S(f,9) = apf —myg
= $1$2k+5($i$k+1+p - $p$k+1+z‘)-
Case 8. Let f be of type (III) and g = &p%q@ 42025428 2k44 = T1Lk-t1 Ll 1 +pT -t 14qL2%+5
be of type (VI) with p < ¢. First, we set that f = x;xp 0Top1a — Tho1Tki11iTok13-

Then the leading monomials of f and ¢ are coprime. Next, we set that f =
TiTogtoTokis — T1Tki11iTokrs. 1 @ # p and i # ¢, then

S(f,g) = xp33qflfk+2$2k+4f—$il’2k+3g

= 901$2k+5($i$k+1$k+1+p$k+1+q$2k+3 - $p$q$k+2$k+1+i$2k+4)

= $1$2k+5{—$z‘$k+1+q(ﬁﬁp$k+2$2k+4 - $k+1$k+1+p$2k+3)

+ZpTht2Tokta(Tilht14qg — TqTht14i) }-

Thus S(f, g) reduce to 0 by generators of type (I) and (III). If ¢ = p, then

S(f,g) = $q$k+2$2k+4f—$2k+3g

U1 T k4 1+iL2k4-5 ($qu+2$2k+4 - Ik+1$k+1+q$2k+3)-

The case of i = ¢ is similar.

Case 9. Finally, we consider the case that both f and g are of type (VI). Let
= LT T4 2U2%4-2L2k+4 — L1TE41 T k414 L4145V 2k45 and
9 = TpTglhi2Tok 2Tk 44— T1Th 41Tk 11pThe14qT2k+5, Where i < jand p < ¢g. Without
loss of generality, we may assume that j > ¢. First, we assume that j > ¢(> p). If
1 # p and i # ¢, then

S(f.g) = TpTof — 15149

T1Tho4 10245 (LT Tk 14pTht14q — TpTqTh1+iThi+1+5)

= 11 T2k 45{ —TiTht14q(TpThi14j — TiThi14p) + TpThirs (TiTht14q — TgTrri+i) }-
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Thus we have that S(f,g) reduce to 0 by generators of type (I). If i = p, then
S(f.9) = wf —zg
= $1$k+1$k+1+i$2k+5(xj$k+1+q - quk+1+j)-

The case of ¢ = ¢ is similar. Next, we consider the case where j = ¢q. Then i # p
and

S(f,g) = xpf_xig

$1£Uk+133k+1+j$2k+5($i$k+1+p - $p37k+1+i)7
which is a multiple of type (I) generator. O

Corollary 8.2.5. The initial ideal of I with respect to <,e, 1S generated by the
following monomials:

LTt 1415 2<i< 7 < ]{7,

$k+1$2k+2$§k+3,

Th 1 Thg 147 T2k43, Trlopyo2Torts, 271 <K,
TpTqTpyolopt2Tokrs, 2p<q<k.

For the rest part of this section, we will denote by I, the initial ideal of Iy with
respect to <iey.

8.2.2 Proof of depth K[x]/in._ (Ig) <6

In this subsection, we will prove that depth K[x]/I < 6. Since the number of edges
of G, which coincides with 2k + 5, is equal to the number of variables of K[x], we
may prove that pd K[x|/I > 2k — 1.

First, we recall from [49] the fundamental technique to compute the Betti num-
bers of (non-squarefree) monomial ideals.

For a monomial ideal J and a multi degree a € Z%, define

K?(J) = {squarefree vectors o : x* ™ € J}

to be the Koszul simplicial compler of J in degree a, where a squarefree vector a
means that each entry of « is 0 or 1.

Lemma 8.2.6 ([49, Theorem 1.34]). Let S be a polynomial ring, J a monomial
ideal of S and a € Z%, a vector. Then the Betti numbers of J and S/.J in degree a
can be expressed as

ﬁi,a(‘]) = ﬁiﬂ,a(S/J) = dimg F[i—l(Ka(‘]); K)-

By virtue of Lemma 8.2.6, in order to prove that pd K[x]|/I > 2k — 1, we may
show the following
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Lemma 8.2.7. Let a = Z?:Z(ej -+ ek+1+]’) + €py1 + €2x42 + 2€2k+3 € ZQZk0+5, where

e; € R¥+5 js the ith unit vector of R%*%5. Then
dimK ﬁgk_;g(Ka(I); K) 7é 0.

Proof. Let A be the simplicial complex on the vertex set [2k + 5] which is obtained
by identifying a squarefree vector o € K2(I) with the set of coordinates where the
entries of a are 1. To prove the assertion, we may show that dimg .Hgk_g(A; K) # 0.
Let I (resp. I3) be the monomial ideal generated by the monomials

TjTk+1+i, 2 S 1< ] S k,

Tt 1Tt 140 L2%+3, Trlopiolokrs, 21 <Kk

(resp. by the monomial xkﬂazzkwa:%k +3). We denote by Aj, As, the subcomplexes
of A corresponding to K2(I;), K?(I,), respectively. Since (a),yo = 0, one has A =
A1 UA,. Moreover, one can verify that all the facets of A; contain a common vertex
2k + 3. In other words, A; is a cone over some simplicial complex. In addition, Ay
has only one facet

{2,3,.. .,k k+3k+4,...,2k+ 1},

which is a (2k — 3)-dimensional simplex. Thus the reduced homologies of both of
A7 and A, all vanish. Hence Mayer—Vietoris exact sequence

— ]:—Ii—l(Al NAy K) — ﬁi—1<A1§K) @]:-’i—l(A%K) —

yields

H,L(A, K) = Hifl(Al N AQ, K) for all 7.

Now we note that subsets

{2,3,.. .,k k+3,k+4,....2k+ 1} \ {¢}, i=2,...,k,
{2,3,.. . k,k+3,k+4,...,2k+ 1} \ {k+ 1+ 7}, ji=2,...,k

are faces of Ay and {2,3,...,k,k+3,k+4,...,2k+1} is not a face of A;. Thus the

above subsets are the facets of AjNA,. In particular, one has dim(A;NAy) = 2k—4.

Since A;NAs contains all facets of the (2k—3)-dimensional simplex Ay, the geometric

realization of Ay N Ay is homeomorphic to the boundary complex of the simplex A,,
i.e., A N Ay is a simplicial (2k — 4)-sphere.

Therefore one has dimg ]:ng_g(A; K) = dimg I:.fgk_4(A1 NAg; K) # 0, as desired.

O

8.2.3 Proof of depth K[x]|/in._ (Ig) > 6

In this subsection, we will prove the following
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Lemma 8.2.8. depth K[x]|/I > 6.
Before proving Lemma 8.2.8, we prepare the following two lemmata.

Lemma 8.2.9. Let S = Klzy,...,x,] be the polynomial ring in n variables and
J C S a monomial ideal of S.

(i) If only m(< n) variables appear in the elements of G(J), then depth S/J >
n—m.

(ii) If only m variables appear in the elements of G(J) and the variables x;,, ..., x;
do not appear in there, then depthS/J" > n —m, where J' = x; ---x; J.

T

T

Proof. Without loss of generality, we may assume that only the variables zq, ..., z,,
appear in the elements of G(J).
(i) Since the variables x,, 1, ..., 2, do not appear in the elements of G(J), the
sequence Ty, 11, ..., T, is an S/J-regular sequence. Thus one has depth S/J > n—m.
(ii) Set z;, = xppqe for £ =1,...,r and J" = (Zpq1- - Tingr) C S. Then, by the
short exact sequence 0 — S/JNJ" — S/J& S/J" — S/(J+ J") — 0, we have

depth S/J" = depth S/J N J” > min{depth S/J, depth S/J" depth S/(J + J") + 1}.

Now we have depth S/J > n —m by (i) and depth S/J” = n — 1. In addition, since

Tty - -+, Tmar do not appear in the elements of G(J), the monomial z,, .1 - - - Ty

is an S/J-regular element. Hence one has depth S/(J + J”) = depthS/J — 1 >

n—m— 1. [l
Let

I = (2j2p140: 2 <0 < j < k),

2
Iy = (Tps1Tok205), 3),

I3 = ToptoTorts(T2, X3, . .., T),

Iy = Tpp 1T 3(Ts 3y Thoay - - - Tokt1)s
2

I5 = TpyoZopyoTopya(®a, T3, ..., Tp)".

Then]:]1+[2—|—---+l5.
The following lemma can be obtained by elementary computations.

Lemma 8.2.10. Let J, = I3+ 14, Jo = J1+ 11 and J3 = Jo + I5. Then

(1) I3 N I4 == $k+1I2k+2I2k+3($2, Ce 7$k)(ZEk+3, e ,[L’2k+1>.

(ii) J1 N1 = Torts(Ths1, Tows2)

(111) J2 N 15 = $k+2x2k+2$2k+4(3727 N ,l‘k)(l‘gk+3(l’2, ce ,l'k) + [1)
(Vi) Js N Iy = Tps1Tokso®3yy5(Ta, - ooy Ty Thas, - -, Topg)-

Now we will prove Lemma 8.2.8.
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Proof of Lemma 8.2.8. Work with the same notations as in Lemma 8.2.10. By the
short exact sequence

0— K[x]/Js NI — K[x]/Js @ K[x]/I, — K[x]/(Js + I,) — 0,

one has

depth K'[x|/I = depth K[x]/(J3 + I2)
> min{depth K[x]/J3, depth K [x]|/I5, depth K[x]/J; N Iy — 1}.

Thus what we must prove is that the inequalities depth K [x]/J; > 6, depth K[x]/I5 >
6 and depth K[x]/J; N Iy > 7. Obviously, depth K[x]/Is = 2k + 4 > 6. Moreover,
by Lemmata 8.2.10 (vi) and 8.2.9 (ii), we can easily see that depth K[x]|/Js N Iy >
(2k +5) —2(k — 1) = 7. Thus we investigate depth K[x]/Js.

First step. By the short exact sequence

0— K[X]/[gm]4 — K[X]/Ig@K[X]/I4 — K[X]/(13+[4) — O,

one has

depth K [x]/J; = depth K[x]/(I3 + I4)
> min{depth K[x]/I3, depth K[x]/I4,depth K[x]/I3 N I, — 1}.

By Lemma 8.2.9 (ii), one has depth K'[x]/I3 > k+6 > 6 and depth K [x]/I4 > k+6 >
6. Since [3 N [4 = $k+1$2k+2x2k+3(x27 c >$k)(-1'k+37 c. ,:L‘QkJrl) by Lemma 8.2.10 (1)
and g1, Togt2, Toptrs do not appear in the elements of G((z2, .. ., k) (Tra3, - - -, Tops1)),
one has depth K[x]/I3 NIy > (2k +5) —2(k — 1) = 7 by Lemma 8.2.9 (ii). Hence

one has depth K[x|/.J; > 6.
Second step. Again, by the short exact sequence

O—>K[X]/J1ﬂll ﬁK[X]/JlEDK[X]/Il —>K[X]/(J1+Il) —>O,

one has

depth K[x|/Jy = depth K[x]/(J1 + I1)
> min{depth K[x]/J;,depth K[x]/I,,depth K[x]|/Jy NI} — 1}.

By Lemma 8.2.9 (i), depth K[x|/I; > (2k +5) — 2(k — 2) > 6. Also by Lemma
8.2.10 (ii), one has J1 NI} = X9k 3(Tkr1, Tok+2)l1. Since only 2k — 2 variables appear
in the elements of G((xgy1,Zok+2)l1), and x93 does not appear in there, one has
depth K [x]/JiNI; > 7 by Lemma 8.2.9 (ii). In addition, one has depth K [x]/.J; > 6
by the first step. Hence one has depth K[x]/J> > 6.

Third step. Similarly, by the short exact sequences

O—>K[X]/J2mj5HK[X]/JQ@K[X]/I5 HK[X]/(J2+I5> —>O,
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one has

depth K'[x|/J5 = depth K[x]/(J2 + I5)
> min{depth K[x|/Js, depth K[x]/I5,depth K[x]|/Jo N I5 — 1}.

By Lemma 8.2.9 (ii), one has depth K[x|/I5 > k+6 > 6. For depth K[x|/JoN I5, by

Lemma 8.2.10 (iii), one has Jo N[5 = Tpi0TokioTokia(Ta, . .., Tx) (Toprs(T2, . oy xp) +
I,). Notice that only 2k — 2 variables appear and xj 2, Tog12, Togrs do nOt appear
in the elements of G((xa,...,xk)(Toks3(x2,...,2k) + I1)). Thus, again by Lemma

8.2.9 (ii), one has depth K[x]/J, N I5 > 7. Combining these results with the second
step, one has depth K[x]/J3 > 6.
Therefore, one has depth K[x|/I > 6, as required. O

8.2.4 Cohen—Macaulayness of K|[x|/in.,_(Ig)

In this subsection, we will prove the following

Lemma 8.2.11. Let <o denote the lezicographic order on K|[x| induced by the or-
dering xy > - -+ > Topys of the variables. Then K[x|/in.,  (Ig) is Cohen-Macaulay.

First of all, we need to know the generators of in.,_ (Iy). As an analogue of
Lemmata 8.1.6 and 8.2.4, we can prove the following

Lemma 8.2.12. The set of binomials corresponding to primitive even closed walks
(I), (II), (III), (VI) appeared in the previous subsection is a Grobner basis of Iy with
respect 10 <jex-

Corollary 8.2.13. The initial ideal of I with respect to <iex s generated by the
following monomials:

TiTp14g, 2<1<j <Kk,
(b) L1 X p+4+2T2k+4L2k+5,

TrThy2lokrd, T1Thi1trlokts, 2 ST <K
In particular, in., Iy is a squarefree monomial ideal.

Note that we can exclude the initial term of the binomial corresponding to the
even closed walk of type (VI).

Let I’ be the initial ideal of Iy with respect to <jex. Since I’ is squarefree, we
can define a simplicial complex A’ on [2k + 5] whose Stanley—Reisner ideal coincides
with I’. In order to prove that K|[x|/I" is Cohen-Macaulay, we will show that A’ is
shellable.

We recall the definition of the shellable simplicial complex. Let A be a simplicial
complex. We call A is pure if every facets (maximal faces) of A have the same
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dimension. A pure simplicial complex A of dimension d — 1 is called shellable if all
its facets can be listed

F17F27"‘7Fs
in such a way that
i—1 i—1
UEnnEm) (=UJEnE)
j=1 j=1

is pure of dimension d — 2 for every 1 < i < s. Here (F;) :={oc € A:0 C F;}. Itis
known that if A is shellable, then K[A] is Cohen—-Macaulay for any field K.

To show that A’ is shellable, we investigate the facets of A’. Let F(A’) be the
set of facets of A’. Then the standard primary decomposition of I’ = I/ is

[A’— ﬂ PF7

FeF(A)

where F is the complement of F in [2k + 5] and Pp = (z; : i € F); see [25, Lemma
1.5.4]. Hence we can obtain F'(A’) from the standard primary decomposition of I’.

Lemma 8.2.14. The standard primary decomposition of I' is the intersection of the
following prime ideals:

x1) + (29,23, . ., xk), (Topas) + (T2, 23, ..., Tk),

Thi2) + (Thys, Thrdy - - - Tokt1), (Toria) + (Trgs, Thgds - - - Tops1),
Ty, Tpy2) + 1, 2 <l <k,

Ty, Topea) + 1), 2 <0<k,

Thao, Topss) + 1), 2 <0<k,

Topyd, Togrs) + I, 2 <L <k,

(
(
(
(#) (
(
(

/
where 1) = (To, ..., X1, Thiotos -, Topy1) for £ =2,... k.

Proof. Since there is no relation of inclusion among the prime ideals on (), it is
enough to prove that the intersection of these prime ideals coincides with I’.
First, we consider the case where k = 1. Then G(I') = {x1232627} and (§) consist
of only the first 2 rows: (z1), (z7), (z3), and (xg). Thus the assertion trivially holds.
Next, we consider the case where k = 2. Note that I}, = 0. Then the ideal I’ is

I' = (21242829, ¥1T5T9, ToTyXs)
= (21, 22) N (21, 24) N (21, 28) N (24, 25) N (24, 39) N (25, 25) N (25, T9) N (z9, T2)
= (5617 .flfg) N (5697 .flfg) N <x47 xS) N <x87 xS) N (xla x4) N (xla .flfg) N (l’4, .I'g) N (x87 l’g),

as desired.
Hence we may assume that & > 3. Then the intersection of the prime ideals on
the first row of (f) is

($1$2k+5, Lo, T3, ... ,{L‘k)
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and that on the second row of (%) is

(Thi2Toktas Thiss Thidy - -+ > Tapr1)-
For ¢ =2,... k, the intersection of the prime ideals on the last 4 rows of (f) is
(@1, 2re2) + 1) N (21, 22n4a) + 1) O (@r2, T2pr5) + 15) O (2r4a, Tonrs) + 1)

=((z1, ryoorta) + I;) N (TgproTokta, Torts) + 1))

=(T1%2k+5, Thy2Torta) + I
Hence, the intersection of the prime ideals on the last 4 rows of (§) for all ¢ is

k

!
(1% 2k+5, ThtoTogra) + ﬂ I,.
=2

Therefore the intersection of all prime ideals of (f) is

$1$2k+5($k+2$2k+4, Tk+3) Thtdy - - - ,$2k+1) + $k+2$2k+4($19€2k+57 T2, T3y - - ,Ik)

k
+ (ﬂ ]2) N ($1$2k+5, T2, T3, ... 7$k) N ($k+2$2k+4, Tp43, L4y - - - ,€E2k+1)'
=2

(8.3)
The ideal on the first row of (8.3) coincides with the one generated by monomials on
the last 2 rows of (b). Since I} = (Tgia, Ty, - - -, Topy1) and I}, = (v2, T3, ..., Tp—1),
the ideal on the second row of (8.3) coincides with ﬂ’;zz I;. Hence, we may prove
that

k
ﬂ[é = ('Tixk:—{—l—{—j 1 2<i< ] < /{3)
=2
To show this equality, we prove
kl
m [2 = (xixk—i-l—i-j s 2<1< j < k’l) -+ ($k+2+k’7 ce ,l’2k+1) (84)
=2

for ¥ =2,..., k. When k' = k, we obtain the desired equality. We use induction on
k' > 2. The case of k' = 2 is trivial. When (8.4) holds for &', we have

k'+1 K

ﬂ Ié = (ﬂ ]2) N Il/€'+1

(=2 (=2
= (($i$k+1+]’ 1 2<i1<y < ]{,) + (l‘k+2+k/, e ,$2k+1)) N (xz, ey Tkt Tl 347
= ($¢Ik+1+j : 2 S 1< j S ]{?,) + xk+2+k;’($2, ce ,ZL’k/) + (xk+3+k’; . ,ng_H)
= (Tpg4y 0 250 < <K+ 1)+ (Thysinrs - - Targ1),

as desired. O]
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Now we are in the position to prove Lemma 8.2.11.

Proof of Lemma 8.2.11. By Lemma 8.2.14, F(A’) consists of the following subsets
of [2k + 5]:

Fy={1}uU{2,3,...,k}, o ={2k+5}U{2,3,...,k},
Fs={k+2}U{k+3,k+4,...,2k+ 1},
Fy={2k+4} U{k+3,k+4,...,2k+ 1},

Gre=A UG, 2<(<k

Gz,z:m, 2 <0<k,

Gse=AsUG), 2<(<k,

G4,e:m, 2<(<E,

where G, = {2,... .0 —1L,k+2+/(,....2k+ 1} for 2 < ¢ < k, Ay = {1,k + 2},
Ay ={1,2k +4}, A3 = {k+2,2k+5}, Ay = {2k + 4,2k +5} and F = [2k + 5]\ F.
Note that Gy, NA; = 0 and #(Gye) = k—2. In particular, A’ is pure of dimension
k+ 4.

Now we define the ordering on F/(A’) as follows:

G1,27 SR Gl,ka G2,27 SR G?,ka G3,27 SR G3,k7 G4,27 SR G47k7 Fla FQa F37 F4- (85>

We will prove A’ satisfies the condition of shellability with this ordering. For F, G €
F(A), we write G < F' if G lies in previous to F on (8.5).

First, we investigate Apy := (Ug~q,, ,(G") N (Gme) = Ugrza,, (G0N Gy for
m=1,2,3,4. For ¢ </, one has

Gme NGy = AnUG,NA,UG,
(A, UG,) U (A, UG)
= A,U{2,... -2/ -1 k+24+0k+3+0,...,2k+1}
C A U{2,...0—-20—-1k+1+0Ek+2+1(,....2k+1}
= Gm,éflme,E

and G, -1 N Gy is a (k + 3)-dimensional face. Then we can conclude that A, is
pure of dimension k + 3. Assume that m = 2,3,4. For m’ < m, one has

GuoNGny = AwUGL,NA,UG),
= (A UG, U((A,UG)
c (A, UA,)UG),

When m = 2, then m’ = 1 and

(AL UA) UG, ={1,k+2,2k+4} UG, = G1, N Gay,
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which is (k+3)-dimensional. Therefore, we can conclude that A, 4 is a pure simplicial
complex of dimension k 4 3. Similarly, we can see that A,,, is pure of dimension
k+ 3 for m = 3,4 since e.g., Ay U A3 D A; U A3 = {1,k + 2,2k + 5}.

Next, we investigate A, := (Jg_p (G N Fy) for s = 1,2,3,4. It is easy to see
that Gy, N Fy (resp. Go N Fy) contains Gy N Fy and Gs N Fy (resp. G N Fy and
G4NFy). Thus facets of Ay are Gy ,NFy and Go ;N Fy, those are (k+3)-dimensional.

Similarly, we can see that the facets of Ay are Gg; N Fy, Gap N Fy, and Fy N Fy,
those are also (k + 3)-dimensional.

For As, we can verify that Gy 2N F3 (resp. G32NF3) is a (k+ 3)-dimensional face
containing Gy, N F3, Goy N Fy and Fy N Fy (resp. G N F3, G4y N F3 and F, N F3).
Therefore, Ag is pure of dimension k + 3.

Similarly, we can see that Ay is also a pure simplicial complex of dimension £+ 3
whose facets are G0 N Fy, G42 N Fy, and F5 N Fy. O
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Chapter 9

Affine semigroup rings arising
from cyclic polytopes

Following the previous chapter, in this chapter, we will study some properties on
the affine semigroup ring arising from cyclic polytopes. In Section 9.1, we will
consider the normality and non-very ampleness of affine semigroup rings arising
from cyclic polytopes. In Section 9.2, we will investigate their Cohen-Macaualyness
and Gorensteinness. Finally, in Section 9.3, we will study the other semigroup rings
arising from cyclic polytopes, which are generated only by the vertices of cyclic
polytopes.

9.1 Normality and non-very ampleness of cyclic
polytopes

The cyclic polytope is one of the most distinguished polytopes and played the essen-
tial role in the classical theory of convex polytopes ([20]). Let d and n be positive
integers with n > d+ 1 and 74, ..., 7, real numbers with 74 < --- < 7,. The convex
polytope Cy(1, ..., 7,) which is the convex hull of the finite set

{(r, 72,710, (1,72, T} C RY
is called a cyclic polytope. 1t is known that Cy(ry,...,7,) is a simplicial polytope of
dimension d with n vertices. The combinatorial type of Cy(7y,...,7,) is independent
of the particular choice of real numbers 71, ..., 7,.

The present section is devoted to the study on integral cyclic polytopes. A convex
polytope is called integral if all of its vertices have integer coordinate. The integral
convex polytope has established an active area lying between combinatorics and
commutative algebra ([26, 72]).

We say that P is normal if one has

ZZ().Ap = Z.Ap N RzoAp.
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Moreover, P is called very ample if the set
(ZAp "R Ap) \ Z>oAp

is finite. One of the most fundamental questions on integral convex polytopes is to
determine if given an integral convex polytope is normal ([54]).

On the other hand, we say that an integral convex polytope P C R¥ has the
integer decomposition property if, for each m = 1,2, ... and for each « € mP N Z¥,
there exist a,...,a,, belonging to P N Z" such that & = a; + --- + a,,. Here
mP = {ma : a € P}. If P has the integer decomposition property, then P is
normal. However, the converse is false. For example, the tetrahedron 73 C R3
with the vertices (0,0,0), (1,1,0),(1,0,1) and (0,1,1) is normal, but cannot have
the integer decomposition property because (1,1,1) € 27;. If P C R? is an integral
convex polytope of dimension d with Z(P* N Z41) = Z*! then P has the integer
decomposition property if and only if P is normal. Lemma 9.1.7 says that every
integral cyclic polytope P C R? satisfies Z(P* N Z%*!) = Z4*L. In particular it
follows that an integral cyclic polytope is normal if and only if it has the integer
decomposition property.

Let, as before, d and n be positive integers with n > d + 1. Given integers
Tiy..., Ty With 71 < -+ < 7,, we wish to examine whether Cy(7y,...,7,) is normal
or not. Thus our final goal is to classify the integers 7,..., 7, with ry < --- < 7, for
which Cy(m,...,7,) is normal. Even though to find a complete classification seems
to be rather difficult, many fascinating problems arise in the natural way. As a first
step toward our goal, we are interested in finding the smallest integer 7, such that
if 7,01 — 7 > g for 1 <i <mn, then Cy(ry,...,7,) is normal. It follows immediately
from [21, Theorem 1.3 (b)] that one has 74 < d(d + 1). In the present section, a
new inequality 74 < d*> — 1 is proved (Theorem 9.1.9). Moreover, it is shown that if
d >4 with 73 — 7o = 1, then Cy(m,...,7,) is non-very ample (Theorem 9.1.14).

9.1.1 Preliminaries

In this subsection, we prepare notation and lemmata for our theorems, Theorem
9.1.9 and Theorem 9.1.14.

First of all, we will review some fundamental facts on cyclic polytopes. Let
d and n be positive integers with n > d + 1. It is convenient to work with a
homogeneous version of the cyclic polytopes, hence, throughout the present paper,
we consider CJ(y,...,7,) instead of Cy(7y,...,7,). For n real numbers 7,...,7,
with 71 < --- < 7,, we set

vi = (1,75, 72,..., 7 € R¥ for 1<i<n.

In other words, Ci(71,...,7,) = conv({v; : 1 < i < n}) C R¥L Unless stated
otherwise, we will always assume the indices are ordered like 77 < ... < 7,. See [78,
Chapter 0] for some basic properties of cyclic polytopes. We will use a well-known
characterization of their facets. (See, e.g., [78, Theorem 0.7]).
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Let [n] := {1,...,n} and let us say that aset S C [n| forms a facet of C(7y,...,7,)
if conv({v; : i € S}) is its facet.

Proposition 9.1.1 (Gale’s evenness condition). A set S C [n] with d elements
forms a facet of C3(7,...,7,) if and only if S satisfies the following condition: If i
and j with v < j are not in S, then the number of elements of S between i and j is
even. In other words,
2|1#{keS|i<k<j},

where #X stands for the number of elements contained in a finite set X.

Moreover, we also know the precise information on other faces of cyclic polytopes.
Recall that the cyclic polytope Cj(7,...,7,) is simplicial. Hence its boundary
complex is just a (d — 1)-dimensional simplicial complex on {vy,...,v,}. Assigning
i to v; for each 7, we can regard the simplicial complex as the one on [n]. Let
Ly(71,...,7,) denote this simplicial complex on [n]. The faces of Ty(my,...,7,) are
completely characterized in terms of their type. A non-empty subset W C [n] is
said to be contiguous if W = {i,i+1,...,j} for some positive integers i and j with
1 <i<j<mn,and to be an end set if either W = {1,...,i} or W = {i,...,n} for
some ¢ with 1 < i < n. We set max() := 1 and min () := n. Any subset W C [n] has
unique decomposition

W=YuXuXoU---UX; UYs, (9.1)
such that

1. Yy, Y5 are empty or end sets, and each X; is contiguous;

2. max X; < min X;y; for all ¢ with 0 < ¢ < ¢, where we set Xy := Y; and
X1 = Yo

The subset W is said to be of type (r,s) where r = #W and s = #{i : #X, is odd}.

Proposition 9.1.2 (cf. [12, pp. 226-227]). Let W be a subset of [n]. The following
statements hold.

(i) Any d + 1 elements of vy, ..., v, are linearly independent over R.
(i) If #W < |d/2], then W is a face of Uy(71,..., 7).

(iii) The subset W is a face of Tgq(71,...,7,) of dimension #W — 1 if and only if
0 <H#W < d and W is a type (#W, s) for some integer s with 0 < s < d—#W.
Hereafter, we will assume that 71, ..., 7, are integers.
Let A;; == 7, — 7; for i,j € [n]. The proof of Proposition 9.1.1 yields a de-
scription of the inequality of the supporting hyperplane defining each facet. Let
S ={ki,...,kq} C [n] and consider the polynomial

d
ZCSﬂ'ti = H(t — Ti) .
=0

i€S
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Then all d vectors vy, ..., vk, vanish by the linear form
d
d
gg . R +l > (’LUo,”wl, c. ,U)d) — ch’iwi € R,
i=0

thus it defines the hyperplane spanned by them. Note that we index the first coor-
dinate by 0. Hence, if the set S forms a facet F of P* = CJj(m,...,T,), then og is
the linear form defining F, which means that og(z) > 0 if x is in P* and og(z) =0
if z is in F. For every j € [n]\ S, it holds og(v;) = [],cg Ai;- This has a useful
implication, that is, if we write a vector z € Z! as z = Y, ¢ Aoy + A\ju; with
rational coefficients \;, then the denominator of \; is a divisor of [ [, 4 Ayj, because
os(x) = A\j[[;,cg Aij is an integer.

We introduce a special representation of cyclic polytopes which is sometimes

helpful. Write the vectors vy, ..., v, as row vectors into a matrix, namely,
o 1 o2 ... 78
V2 1 T2 T22 c. Tg
=1. . - (9.2)
Up, 1 7, 72 7d

Lemma 9.1.3. The aforementioned matriz can be transformed to the following ma-
triz by using a unimodular transformation:

1 0 0

1 Ap 0

L A JASEVAUS:

: : : 0 (9.3)
I Avgrr AvariDogn Hizl A at1

1 A Al [Tics Ak

In particular, the convex hull of the row vectors of this matriz is unimodularly equiv-
alent to C(m, ..., ™).

A proof of the above lemma is essentially the same as a proof of the well-known
Vandermonde determinant. Note that Lemma 9.1.3 is valid for any ordering of the
parameters T, ..., T,, i.e., any ordering of vy, ..., v,.

Let us identify a special case where the polytopes are indeed unimodularly equiv-
alent.

Lemma 9.1.4. An integral cyclic polytope C(11, ..., 7q) is unimodularly equivalent
to C5(=Tny...,—71). Moreover, for any integer m, C5(T,...,7q4) is unimodularly
equivalent to C(11 +m, ..., T, +m).
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Proof. The replacement 7; — —7; corresponds to a multiplication with —1 in every
column of (9.2) with an odd exponent. This is a unimodular transformation. The
second statement is immediate from Lemma 9.1.3, because the matrix (9.3) depends
only on the differences A;; = 7, — 7. O

We define a certain class of vectors which we will use in the sequel. Let S =
{i1,...,iq} C[n] be a non-empty set, where i; < --- < 4,. Then we define

1 q —1)k+1
e

bg =

Vi,

where bg = v;; when ¢ =1, i.e., #5 = 1. If S is small, we will sometimes omit the
brackets around the elements, thus we write, for example, b;; = by; ;3. However, the
vector does not depend on the order of the indices.

Example 9.1.5. Let us write down bg’s for small sets S. Assume 1 <i < j <k <

l <n. Then
b, = v;,
1 1
bij = A—Uvz - A—ij’Uj,
! 1 1 N 1
ik = v; — Vj + ——— Uk,
T AGA T Dl T Mgy
1 1 1 1

Uj"’

bzu = —7; — V. — (R
T A AGAL T AAAy T A A Ay ¢ MDAy

The sign changes are due to a reordering of the indices since N;; = —Aj;. If
Vi, Vj, Vg, U are given in the form (9.3), i.e., if

o 1 0 . . e .0
Uj _ 1 Aij 0 :
Uk 1 Ap Al e e 7
Ui I Ag AglAji AgAjyAy 0 - 0

then bz = (1,0,...,0), bij = (O,—l,O,...,O), bijk = (0,0,1,0,...,0) and bijkl =
(0,0,0,—1,0,...,0). In general, by,bia,...,b12.qr1 look like (0,...,0,£1,0,...,0)
when vy, ..., v441 are of the form (9.3).

The following proposition collects the basic properties on these vectors.
Proposition 9.1.6. (i) For any non-empty set S C [n], one has bg € Z4TL.
(i) Let S C [n] and a,b € S with a # b. Then we have a recursion formula

1 1

bg = b\ fa b .
ST A, S\{a} T A S\{b}
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(iii) For any distinct d + 1 indices iy,...,iq41 € [n] (not necessarily ordered), the

vectors
b

form a Z-basis for Z4H1.

biyiy, b

419 Yi112 Yigigigy - - - 7bi1---’id+1

(v) If #S > d+ 2, then bg = 0.

Proof. The second statement can be verified by elementary computations, using
A+ Ay = Ay for 0,5,k € [n]. To prove the first statement, we consider the
components of bg as rational functions in 7;,7 € S. By induction on #S, we prove the
following statement. The components of bg are symmetric polynomials in 7;,7 € S,
and their coefficients depend only on #5S.

If #S = 1, then bg = b; = v; = (1,73, 72,...,7¢), thus the claim holds. Now
consider a set S with at least two distinct elements a, b. Let

fj(TauTiui € S)? fj(TbaThi € S)

be the j-th components of bg\,, bs\q, respectively. Then the difference between these
polynomials is zero if we set 7, = 73, hence the quotient

fj(Ta,Ti,’i < S) - fj(TlnTi,i c S)

Ta — Tb

is a polynomial as claimed. It is obviously symmetric in a and b. Since we are free
to choose any two elements of S, it is symmetric in all variables. The coefficients
of the polynomial depend only on #5, so the claim is proven. Note that the degree
of the polynomial decreases by one by taking the quotient. Since the degree of the
components of v; is at most d + 1, we conclude that bg = 0 for #5 > d + 2.

To prove the third statement, we first note that the vertices v;,,...,v;,,, are
linearly independent. Take an element x € Z*! and write it as © = > Ajvi;. By

considering 0{1'1,...71'4}(90)7 we can say that the coefficient A;,,, is of the form

\ k
fav1 . 1qd A
Hj:l Aijid+1

for an integer k. Thus, z+ (—1)dkbil,,,id+1 € Z%1 is a vector in the subspace spanned
by v, ..., v;,. These vectors define a (d—1)-dimensional cyclic polytope again, so we
can proceed by induction and obtain a representation of x as a Z-linear combination
of the b;,,b; iy, ..., b [

il---id+1 .

We apply this construction to prove another useful fact on cyclic polytopes.

Lemma 9.1.7. For an integral cyclic polytope P C R¢ of dimension d, one has

ZAp = 75
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Proof. First, we notice that ZAp C Z%*! is obvious. To prove another inclusion,
we construct a basis of Z%*! from d + 1 points in Ap. We choose d + 1 vertices
vy, . ..,Uqp1 of P* and consider the vectors

bid+1 ) bid+1 + bidid+17 bid+1 + bidid+1 + bid—1idid+17 SRR E :bil---id+1'

Let us denote them by ¢; := Z;lijl bi,...iqy, for j=1,...,d+1. By Proposition 9.1.6
(i), they constitute a Z-basis of Z*™. Hence, if each ¢; is contained in P*, then our
claim follows. For this, let us consider the coefficient of a vertex v;, in the sequence
of

by bii b b

1q5 Vigia41 Yid—1%dtdy1 * c 00 Vil dgyn

The coefficient of v;, appears first in b;,.;,,,, where it has a positive sign. After
that, its sign is alternating and the absolute value is non-increasing since the de-
nominators increase. Hence, the sum of those coefficients and thus the coefficient in

c; is nonnegative. So, ¢; is a convex combination of the vertices of P*. O
Finally, we discuss the normality of integral cyclic polytopes.

Lemma 9.1.8. Let P be an integral cyclic polytope of dimension d. If any simplex
of dimension d whose vertices are chosen from those of P is normal, then P itself
15 also normal.

Proof. Let vy,...,v, be the vertices of P*. A proof is a direct application of
Carathéodory’s Theorem (see, e.g., [66, Section 7]). Let z € ZAp N R Ap. Now,
Carathéodory’s Theorem guarantees that there exist d + 1 vertices v;,,...,v;,,, of
P* such that z € ZAgNR>0Ag, where Q = conv({v;,,...,v;,,, }). Here we use that
ZAp = 74 = ZAg by Lemma 9.1.7. If Q is normal, then we have x € Zs¢Ag, in
particular, x € Z>¢Ap. This implies that P is normal. ]

9.1.2 Normal cyclic polytopes

Our goal of this subsection is to prove

Theorem 9.1.9 ([30, Theorem 2.1]). Work with the same notations as in the pre-
vious section 1. If A, ;11 > d>—1 for1 <i<n-—1, then P = Cy(ri,...,7n) is
normal. In particular, v4 < d* — 1.

Most parts of this section are devoted to proving the simplex case. In fact, once
we know that P is always normal when n =d+1 and A, ;41 > d?>—1forl<i<d,
Theorem 9.1.9 follows immediately from Lemma 9.1.8.

Before giving a proof, we prepare two lemmata, Lemma 9.1.11 and Lemma 9.1.12.
First, for Lemma 9.1.11, we start from proving
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Proposition 9.1.10. Let (r1,79,...,74:1) € Q¥ satisfying

d+1
0<rm<r<--<rgu <1l and Y ri=m
i=1

Then one has

(a) Z 17 = % and  (b) >21_ Tat2-i > %
for any integer 7 with 1 < 7 <d+ 1.

Proof. We prove by induction on j.

First, we show ri < J%5. Suppose that 4 > J%5. Then one has r; > 7 for all

1<i<d+1byr <ry<-- <rg. Thusm Zdjlln > (d+1) - dH—m,a
contradiction. Similarly, we also have rq41 > 5.

Now, we assume that the assertions (a) and (b) hold for any integer j* with
1 < j' < j, where j is some integer with 2 < j < d+ 1. Let d+ 1 = kj + ¢, where
k is a positive integer and 0 < ¢ < j — 1, i.e., k (resp. ¢) is a quotient (resp. a

remainder) of d + 1 divided by j. Suppose that Y /_, r; > jj_"l Then one has

J .
ZT(’C 1J+2>Zrk Q)J—H_ ZZT¢>£.

Moreover by the hypothesis of induction, one also has il o= S Tara—i >

i=kj4+1"?
1> when ¢ # 0. Hence, we obtain

a contradiction. Therefore, the assertion (a) also holds for j. Similarly, we also have
the assertion (b) for j, as required. O

Lemma 9.1.11. Let d be a positive integer and (rl,rg, o, Tay1) € QUL satisfying
that 0 < ry < ro < --- < rgy1 <1 and that Z 1 r; 18 an integer which is greater
than 1. Then one has

! -1

1

i1 <ig iy <AL, {ZT] ZTJ - } = d+1 ©-4)
2<1<d J=1 J=1

Proof. Let m = Y%"" ;. When m > d, it must be satisfied that r; = 1 for 1 < i <

d+ 1 and m = d+ 1 by our assumption. Thus, we may assume that 2 < m < d.
Let M denote the value of the left-hand side of (9.4).
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The first step Assume that m — 1 > [di;J Then, by Proposition 9.1.10, one

has rq + 7441 > d+1’ while r4 < 1. Hence,

2 2 d+1 2 d 1
Mzrtranz s 2 (| ) 2 2 (5 = e

—d+1 d+1 2 “d+1 d+1

The second step. Assume that m — 1 < L%J and let d + 1 = km + ¢, where
k is a positive integer and 0 < ¢ < m — 1, i.e., k (resp. ¢) is a quotient (resp. a
remainder) of d + 1 divided by m.

If we suppose that Zf;é Tjm+q+1 > 1, then one has

L< erm—l—qH < Zrﬂn+q+2 << erm-&-q—km-

dil d+1 o
>N ; . we hav
Thus, m = + P > 1 r; > m, a contradiction. Hence, we have

1=q+1
k—1
E Tjmtg+1 < 1.
J=0

The third step. If we assume that ¢ # m — 1, that is, 0 < ¢ < m — 2, then one
has Zf_g Timtgr2 < d*qd*—f(’;‘“. In fact, on the contrary, suppose that Z?;g Tjmtqt2 >
dzl—mﬂ Then,

q

k—2

k-2
d— q -—m+1
< Z Tjmtqte < Z Tjmtqts = ° S ) Timtqim+1-
7=0

k-1 1 d—g—m+1 1
Thus, S F-Umratt .  md—aomtl) = \oreover, since S0 = m — S0 ;) we

1=q+2 d—q = q+2
also have Z k Vmtgta i 2 (m—1)(m d_qzl':l “ by Proposition 9.1.10. Hence,
q+1 d+1 +1
m(d—qg—m+1) (m—1)(m—->31"r)
m— Y 1= ri > + ‘

1

m(d—q) (m—1) qull i o

_ i= > m — E ‘
d—q d—q =m i

m—+q <2m — 2 <d+ 1, which means that ’Z}T_ql < 1. Thus, one has

a contradiction. Here, since m — 1 < L%j < % and 0 < ¢ < m — 2 < d, we have

k—2

d—qg—m-+1
D Timearr € —————
=0 ¢
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Similarly, if we assume that ¢ = m — 1, then one has

The fourth step. In this step, we prove that
k—1 1
Zij+q+1 +rap > 1+ i 1
7=0
We assume that 0 < ¢ < m—2. Suppose, on the contrary, Z] o Timiqr1TTar <
1+ d_+1 Then Zj:l Tim4q+1 + Td+1 <1+ d_H — Tg+1 <14+ = dfq — Tg+1- Thus,

] k-1 k-1
1+dT—7"q+1> E Tim+q+1 T Thmtq = E Tim+q + Tkmtq—1 = *
g =1 =1
k1 k—2
> E Tim+q+l—(m—2) T Tkmtq—(m—2) = E Tim+q+3 + T(k=1)m+q+2-
j=1 7=0

Moreover, by the third step, we also have Zf;g Pimiqre < =44 Hence,

d—q
q+1 d+1
m—1 d—qg—m+1
UED ST DETT I PR SIS ELUES
i=1 i=q+2 —q
q+1

=m—(m—1Drg <m—(¢g+ 1)ren Sm—Zri,

i=1

a contradiction. Similarly, when ¢ = m—1, if we suppose that Z?Zl Tim+Thmtm—1 <
1+ ﬁ, then

k—1
1
d—l—l > E T]m_’_rkm—l—m 1 > E Tjm— 1+Tkm+m 2 = > - 2 E rjm+2+rkm+l
Jj=1 Jj=0

and foé Tims1 < dd:[‘;r? by the third step, so we obtain m = Zfﬂl r<m-—1+

m 4 &= m+2 = m, a contradiction.

The ﬁfth step. Thanks to the second and fourth steps, we have

k-1
1
M > jgorjm-i-q—H +rap =1+ m,
as desired. O
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We also prepare another

Lemma 9.1.12. Let | be an integer with [ > 2 and iy, ...,1; distinct integers. We
set

j—1 j—1 j—1
_ Hk:l Aikij D+ Hk:l Aikij+1 Pigi o+ i::l Aiyiy n
= j J

ngkzgl,k;éj |Aikij| ngkﬁhk;ﬁj-&-l |Aikij+1| ngkgl,k;ﬁl |Aikil|
for2 < 5 <I. Then, for any 2 < 5 <1 —1, we have

j—1

_ Hi;:l Azk"]

ngkzgl,k#j |Aikij|

Z1(5)

Z1(5)

Z(G+1) - Zi(5+2)+

1
A i5ij+2

iji+1

pj +

A A

ij1+41

-+ (_1)l*j+1 1

— 7).
1
Hk:j-H Aijik

A proof is given by elementary computations.

Now, Lemma 9.1.12 says that if Z;(j+1),..., Z;(l) are integers, then there exists
an integer p; such that Z;(j) becomes an integer. In fact, since

1 P
Zl(l) = 57

1 ‘
LG +1) = (D) e —
Az‘jij+1 Hk:j+1 Aijik

where P is some integer and C' = Hﬁc:j +11A4,i,], and the numerator (resp. the
Hi;i Aikij

[Th<hzints [ Bigis ]

exists an integer p; such that Z;(j) becomes an integer.

denominator) of is either 1 or —1 (resp. ('), it is obvious that there

Let Q@ C RY be an integral convex polytope of dimension d. In general, when
ZAg = ZN*! in order to prove that Q is normal, it suffices to show that for any
a = (myay,...,ay) € ZAg NRspdg = Rspdg NZNT! with m > 2, we find
o € Q' NZNT and o € RsygAdg NZYT! with a = o/ + «”. (This is equivalent
to prove that Q satisfies the integer decomposition property.) In particular, when
Q is a simplex, since there exists a unique (r1,...,7411) € Q%! such that a =
Zf;l r;u; and Zfill r; = m, where uy, ..., uq.1 are the vertices of Q*, we may find
(rl,...,7h) € QT with S, € QN ZN and (7Y, .. ) € Q! with
S, € Rag Ao NZNT satisying 7+ = r; for 1 <4 < d + 1.

Hence, it is enough to show that for any a = 32" ru; € Rug Ao NZN*! with
S e > 2, there exists (], ..., 7,.,) € Q¥ such that

d+1 d+1
Zrézl, 0<7ri<r; for1<i<d+1 and nguiEZNH.
i=1 i=1

Now, we come to the position to verify the normality of integral cyclic polytopes
in the case where n =d+1 and A, ;1; > d?> —1for 1 <i<d. Let P be such cyclic
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polytope. Let m be an integer with m > 2 and a an element in ZAp N RsoAp =
R>0ApNZ**! with the first coordinate m. Since P* is a simplex of dimension d, there

exists a unique (71, ..., 7441) € QT where S r; = m, such that a = ZdJrll Ti0;.
Then what we must do is to show that there exists (r},...,7;) € Q™ such that
d+1 d+1
Zrézl, 0<ri<r; for1<i<d+1 and ZT;WEZC[—H. (9.5)

i=1 =1

The first step If there exists r; with r; > 1, say, ry, then we may set r} =1
and vy = --- =1, ; = 0. Moreover, when m > d—l—l since Z i =mand r; >0,
there is at least one r; with r; > 1. Thus, we may assume that

2<m<d and 0<r <1 for 1<i<d+1.

The second step. By Lemma 9.1.11, there exist r;,, ..., r;, among (r1,...,74+1)
such that 23:1 ri, > 1+ # and Zé_:ll ri, <1, where 0 <7 <--- <7r; <1and
2 < I < d, although we do not know whether 1 < 4, < -+ <4 < d+ 1. Let
Tiys-..,7; be such ones. However, we assume that 0 <r;, <7r;  <--- <1, <1,

Zrl <1 and Znﬂ_ m

Let D = d® — 1. Thus, |A;j| > D for any 1 < i # j < d+ 1. Now, we set
e(l) = & for 2 < 1 < d. Then it is easy to see that €(l) enjoys the following
properties

i.e., we have

l
1 1
ez)zZDH, T D> ed=1) > > (), (9.6)
a=2
l—j+1
e(z)—Dg—j (j—1) for 3<j<l.

In the following two steps, by induction on [, we prove that if 22:1 ri; > 1+€(l)
and Zé _,ri; <1, then there is (], ..., 7 ;) € Q™ which satisﬁes (9.5). Once we
know this, we obtain the required assertion from 2 <1 < d and 55 +1 = e(d) > €(1).

The third step. Assume that [ = 2, i.e., we have r;, +7;, > 1+ & 5, Where
OST'Z'QST};I Sl
Let p be a nonnegative integer satisfying
p p+1
e <y, <
|Ai1i2| ’ |Ai1i2|
Then it is clear that there exists such a unique nonnegative integer p. Let rj, =
E— ri, = 1—r, and v} = 0 for any j with j € [d+ 1]\ {71, i2}. Thus, Zerll ri=1

[Aiag]? 0
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and 0 < rj, <r;,. Moreover, since r;, <1, we have rj, =1—1r;, > 1 -1, >0. In
addition, by r;, + 7, > 1+ & and |A;,;,| > D, we also have

P 1 P p+1

=7r;, — 1+ > — 7, + >
" |A21%2| * ‘Ai1i2| |Ai1i2|

/
Ty, — Ty — 15 > 0.

On the other hand, by Proposition 9.1.3, we may consider v;, and v;, as v;; =
(1,0,...,0) and wv;, = (1,A44,,0,...,0). Obviously, S v, € Z4+!,

The fourth step. Assume that l 2 3. For each j with 2 < j <[, we define each
nonnegative integer p; as follows. Let p; be a nonnegative integer which satisfies

pz <r Pz +1
>~ Ty
| J VAV H A |

and for 2 < j <[ —1, let p; be an integer which satisfies Z;(j) € Z and

!
Dj < pj + Hk=j+1 A |
ngkgl,k;éj 1A — ngkﬁhk;ﬁj Ay |

where Z;(j) is as in Lemma 9.1.12. Thanks to Lemma 9.1.12, if Z;(j+1),..., Z(l) €
Z, then there exists an integer p; with Z;(j) € Z and each p; is uniquely determined
by the above inequalities. Remark that we do not know whether p; is nonnegative
except for p;. However, in our case, we may assume that ps,...,p,_1 are all non-
negative because of the following discussions. In fact, on the contrary, suppose that
there is j' with p;; < 0. Let ¢; € Z>( be a minimal nonnegative integer satisfying

1= A 1 . 1 .
i |kAJ. YA Z(7 ) - x4l T2+
1<k<l,k#5" 1= ity i1ty Lty 41 T 2
y 1
ce (_1)l—J +1 —Zl(l) €.

l
Hk:j’—H Aij/ik

In particular, it follows from the minimality of ¢;» that 0 < ¢; < H;:j,+1 |Aij,ik\.

. q.r
By our assumption, one has / > r; . Thus
Y p ’ Ii<w<i i Ay vy ’
IT; 1A 1 1
iy, <<y 45 < k=j+1 1=yl <
TS My Bl ™ Mhenenon ol ~ [0S (B, ~ D70
1<k<l k] | =i 1<k<l k5" |Diniy | ixi |

so one has Zl i1 T 1 7i; > 1+ €(l) and (9.6), we have

= -5 +1
Zrij >14¢€(l) — D]—>1+€(j —1)

j=1
when j" > 3. Hence, we may skip such case by the hypothesis of induction. When

j' =2, one has r;, > 1+ ¢(l) — =t = 1, a contradiction.
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By using the above p;’s, we define 71, ...

(

Pj

,Tqp1 by setting

A R ifa:ijé{’ig,...,il},
ngkgl,k;ﬁj | w]‘
i
/ — . .
Ta = 1—27";],, if a = 11,
=2
L0, otherwise.
In particular, ZZJ“} r, = 1. By definition of 7 ,... 7, we have 0 < r’ < 1y
for 2 < j < [. Moreover, from Z] QTZ < 1, we also have rj, =1 — Z] 2 Ti, =

1- ZJ _,7i; > 0. In addition, from Z

l

175, = 1+ €(l) and (9.6), we also have

Pj Pj
T R O J T J
' ' ' i [Li<k k] |Azkzj| Z ’ 2 [Ti<k o] | Ay |
l
Z pj P Z Pi + iy [ A5, .
= ngkgl,k;éj |Aikij‘ Di—1 a =2 ngkgl,k;éj ’Aikij’ ’
> 0.
Finally, we verify that Zd+11 riv; € Z4T1. Again, by Proposition 9.1.3, we may
consider v;,, ..., v;, as follows:
0 0
Via 1 Ai, 0
Uig
| T Aus Bailii
v, Do : 171.' : :
1 Ahil AhizAiziz k=1 Aikil 0 0
Hence, it is easy to check that
d+1
> v = Zr v, = (1, 202), Z(3), ..., Z:(1),0,...,0) € Z,
i=1

proving the assertion.

Remark 9.1.13. Since each lattice length o

f an edge conv({v;,v,}) of P* coincides

with A;;, where ¢ < j, it follows immediately from [21, Theorem 1.3 (b)] that P

is normal if A;;1q1 > d(d+ 1) for 1 <

i < n-—1. (We are grateful to Gabor

Hegediis for informing us the result [21, Theorem 1.3 (b)].) Thus, our constraint

Aiiv1 > d*> — 1 on integral cyclic polyt
this bound is still very rough. For examp
Alg = Azg = A34 =1<8. Slmllarly, 04
has A1y = Ays = 1 and Agz = Azy = 2.

17

opes is better than a general case, but
le, C5(0,1,2,3) is normal, while we have
(0,1,3,5,6) is also normal, although one

0



9.1.3 Non-very ample cyclic polytopes

Our goal of this subsection is to prove

Theorem 9.1.14 ([30, Theorem 3.1]). Let d and n be positive integers satisfying
n>d+1andd>4. If Ay =1 o0r Ao,y =1, then Cy(m1,...,7,) is not very
ample.

We obtain Theorem 9.1.14 as a conclusion of Proposition 9.1.15 and Corollary
9.1.16 below.

Proposition 9.1.15. Let P = Cy(71,..., 7). If Do =1 or Ao, =1, then P
15 not very ample.

Proof. Thanks to Lemma 9.1.4, by symmetry, we assume Agz = 1. Consider the set
Ap 3= {x—vgszP*ﬂZ5}.

We will prove that the monoid Zs>oAp 3 is not normal, thus there exists a vector
p € ZAp3 NRsoAps = RogAps N Z° such that p ¢ ZsoApz. Then, for every
integer k > 1, it holds that kvs + p € (ZAp NR>0Ap) \ Z>oAp, see [11, Excercise
2.23]. Hence, P is not very ample.

In the sequel, we denote the facet of P* spanned by the vertices v;, v}, vy and v,
with Fijr. Moreover, we denote the corresponding linear form with o;;,;. Note that
every facet of P* containing vs defines also a facet of R>o.Ap 3.

The following vector has the required properties:

p = bas + b134 + b12345

A12A15 + 1 + 1 <1 1 ) 1 (1 + A23A35 - 1)
= v — | U2 — — — | v
ApAAyA L Ao ApAolgs ) 2 Ay A13AgiAgs )
AgyAys — 1 1

-+ V4 + V.
ADoiAsiDgs - AisAosAgsAys

First, one has p € Z° from Proposition 9.1.6 (i). Then, by the second representation
of p, it is a positive linear combination of the vectors v; — v3, vo — v3,v4 — v3 and
vs — v3. Thus, p € R>oAp 3. Moreover, since we assume Ay = 1, the coefficient of
vs is less than —1. Hence, p lies beyond the facet Fio45 which is a facet of P* by
Gale’s evenness condition (Proposition 9.1.1). Thus, we have p ¢ Ap 3.

It remains to show that p cannot be written as a sum ) w; with w; € Aps.
Suppose that we have such a representation. Then we remark that p has at least
two summands. Consider a facet Fiogs. Then o1934(p) = malgm(vg) = 1.
Since o1934(w;) > 0, 01934(w;) = 0 for every summand w; except one. Choose one
w; # 0 with 01234(w;) = 0 and denote it by w. Further, we set v’ := p—w € Z>oAp3

the remaining sum. By Carathéodory’s Theorem, there exist vertices v;,,...,v;, of
P* and nonnegative numbers A\; > 0, such that v’ = Z?:l Aj(vi; —vs3). Let iy be
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the greatest of those indices. Since oj934(w') =1 and o1934(vi,) = Avi, Doi, Asiy Asiy

we conclude that {

M A A A A,
But the vertices v;,,...,v;, and v3 define an integral cyclic polytope, thus the de-
nominator of the coefficient of v;, has to be a divisor of A;;, Aiyi,AigiyAsiy. This
is only possible if {iy,is,i3} = {1,2,4}. Thus, w’ lies in the cone generated by
V] — U3, Uy — U3, U4 — v3 and v;, — v3. Note that gi934(w) = 0 implies that w lies in
the cone generated by v; — vs, vo — v3 and vy — v3. Thus we can replace the polytope
P* by the polytope Q* whose vertices are vy, ...,vs5 and v;,. The reason for doing
this is that we know the facets of Q*. Here, i4 = 5 is possible.
We consider the representation

W = a1bs + agbas + agbias + asbio34

with integer coefficients aj, as, as,as. This is possible from Proposition 9.1.6 (iii).
Since w is in the cone generated by vy — v3, v, — v3 and vy — v3, we have a; = 0.
Now consider a facet Fio3;, of Q. We compute

1 1

01231, (P) = A—(A24A45 — 1Ay, + A—Am = A9y Ay, — 1.

45 45
Moreover, y93;, (W) = —agAy;,. From 0 < oy93;,(w) < 0193, (p), we conclude 0 <
—ay < Agy — 1. Here we used that a4 is an integer. Next, consider a facet Fazys.
We compute o9345(w) = azA14A15 + asAqs and o9345(p) = A12A15 + 1. As before,
we conclude that 0 < azA4 + ay < Ajs. However, these two constraints can only
be satisfied by a3 = a4 = 0, because A1y = Ajs + Agy and Ay > 1. Finally, we
consider a facet Fizq;,. By computing o34, (w) = aaA19A04As;, and o344, (p) =
A13A24As;, — 1, we conclude that as = 0. But this means w = 0, a contradiction to
w # 0. m

By using this proposition, we also obtain

Corollary 9.1.16. Let P = Cy(m1,...,Ts), where d > 5. If there is some i with
2 <1< n—2such that A, ;11 =1, then P is not very ample.

Proof. We prove this by induction on d.

When d = 5, let F; = conv({vy, v;,Vir1, Viga, vip3}) for 2 < i < n — 3 and
Fno = conv({vn_4,Vn_3,Vn_2,0n_1,0,}). By Gale’s evenness condition, each F; is
a facet of P*. When A,;;4; = 1 for some ¢ with 2 < ¢ < n — 2, it then follows
from Proposition 9.1.15 that F; is not very ample. Thus, P itself is non-very ample,
either. (See [54, Lemma 1].)

Now, let d > 6. For 2 <i<n —d+ 2, we set

conv({v;_1,v;,...,01q-2}), when dis even.

£ {conv({’ul, Uiy ooy Vitd—2}), when d is odd,
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Again, Gale’s evenness condition guarantees that each F; is a facet of P*. When
A; i1 = 1 for some ¢ with 2 <4 < n — 2, since each facet is also an integral cyclic
polytope of dimension d — 1, either F; or F4_, 12 is not very ample by the hypothesis
of induction. Therefore, P is non-very ample. O

On the case where d = 2, it is well known that there exists a unimodular tri-
angulation for every integral convex polytope of dimension 2. Therefore, integral
convex polytopes of dimension 2 are always normal.

On the case where d = 3, exhaustive computational experiences lead us to give
the following

Conjecture 9.1.17. All cyclic polytopes of dimension 3 are normal.

Moreover, by computational experiences together with Proposition 9.1.15, we

also conjecture a complete characterization of normal cyclic polytopes of dimension
4.

Conjecture 9.1.18. A cyclic polytope of dimension 4 is normal if and only if we
have
Ag3 > 2 and Ap_9p1 > 2.

By considering the foregoing two conjectures and Theorem 9.1.9, the following
statement seems to be natural for us.

Conjecture 9.1.19. If P = Cy(m1,...,7,) is normal and P' = Cy(7y, ..., 7)) satis-
fies TJ’. — 71/ > A forall1 <i<j<n, then P' is also normal.

Finally, we also state

Conjecture 9.1.20. If an integral cyclic polytope is very ample, then it is also
normal.

Actually, it often happens that a very ample integral convex polytope is also
normal, that is to say, the normality of an integral convex polytope is equivalent to
what it is very ample. Hence, the above conjecture occurs in the natural way. On
the other hand, it is also known that there exists an integral convex polytope which
is not normal but very ample. See [11, Exercise 2.24].

9.2 Cohen—Macaulayness and Gorensteinness of
toric rings arising from cyclic polytopes

In the previous section, we discussed the normality of (toric rings of) cyclic polytopes

P and gave a sufficient condition (Theorem 9.1.9) and a necessary one (Theorem

9.1.14) for P to be normal. This section is devoted to the continuation of the study
of P.
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Let K be a field and P C R an integral cyclic polytope of dimension d. Let
Z>oAp be as above. Then ZsAp is an affine semigroup contained in Z**!, which is
generated by the set of integer points in P*. For simplicity, set Q := Qq(71, -+ , 7).
Following usual convention, let K[P] denote the affine semigroup K-algebra of
Z>oAp. The K-algebra K[P| is just the K-subalgebra of the polynomial ring
Klto, t1,...,tq] such that

K[Pl= @ K-t
a€Z>oAp
where we set (& = 5019 --- 1% for a = (ag, ay,...,aq) € Z'. Note that K[P] is
nothing other than the toric ring of P, and as is well known, P is normal if and
only if so is K[P].

In this section, we will consider the Cohen-Macaulayness and Gorensteinness
of K[P] (Theorem 9.2.3 and Theorem 9.2.5, respectively). We prove that K[P]
always satisfies Serre’s condition (R;), which implies that K[P] is Cohen-Macaulay
if and only if it is normal. This means that the characterization of the normality
of integral cyclic polytopes is also that of its Cohen-Macaulayness. Moreover, it
will turn out that K[P] is Gorenstein if and only if one has d = 2, n = 3 and
(o — 11,73 — 7o) = (2,1) or (1,2), which says that there is essentially only one
Gorenstein integral cyclic polytope, see Lemma 9.1.4.

9.2.1 Serre’s (R;) property

In this subsection, we prove that K[P] always satisfies Serre’s Condition (R;). More-
over, this fact enables us to claim that the Cohen-Macaulayness of K[P] is equivalent
to its normality.

Recall that a Noetherian ring R is said to satisfy (S5,,) if

depth R, > min{n, dim R,}

for all p € Spec(R), and satisfy (R,,) if Ry is a regular local ring for all p € Spec(R)
with dim R, < n. The conditions (5,) and (R,) are called Serre’s conditions.

The well-known criterion for normality of a Noetherian ring, Serre’s Criterion
(cf. [12, Theorem 2.2.22]), says that a Noetherian ring is normal if and only if it
satisfies (R;) and (S2).

We use the following combinatorial criterion of (R;), which can be found in [11,
Exercises 4.15 and 4.16].

Proposition 9.2.1 ([11]). Let M be an affine monoid, K a field and K[M] its
semigroup K-algebra. Then K[M)] satisfies (Ry) if and only if every facet F of M
satisfies the following two conditions:

1. Z(M N F)=7ZMNH, where H is the supporting hyperplane of F;

2. there exists © € M such that ox(x) = 1, where oF is a support form of F with
integer coefficients.
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Using this, we can prove

Proposition 9.2.2. Let P be an integral cyclic polytope. Then K[P] always satisfies
the condition (Ry).

Proof. First, note that the facets of P* are in bijection with the facets of the monoid
Z>oAp. Let F be a facet of P* with vertices v;,,...,v;,, where i; < ... < ig4.
Using the same construction as in the proof of Lemma 9.1.7, we get a family ¢; :=
Z;jzj b;, i, of integer points in F that is part of a basis of Z4'. This implies that
every element x € Z9t! N H can be written as a Z-linear combination of them.
Therefore, the first condition of Proposition 9.2.1 follows.

For the second condition, pick any vertex v, of P* that is not in F. Consider
the set S := {k,i1,...,iq} C [n] with its natural ordering. If the position of k in
S is even (i.e., if there is an odd number of j such that i; < k), then let ' C §
be the set of elements of odd position. Otherwise (i.e., if the position of k in S is
odd), let F be the set of elements of even position. In any case, k ¢ F. We write
F ={ji,...,jr}. We want to do a similar construction to the one above, but this
time we need to analyse it more closely. Consider the vector

T
/ P . .
- : :b.]lm]r .
=1

By the reasoning above, we know that this is an integer point in F, but we claim
that it has the additional property that the coefficient of each v, is strictly positive.
Indeed, if s is an odd number, then the coefficient of v;, is an alternating sum of
non-increasing values, starting and ending with a positive value. Thus it is positive
and we only need to consider the case that s is even. For this, we compute the
coeflicient of v, in 2"

l+1

1
an lA Z |Hm lAJst‘ Z |Hm lA]s]m| ( |Ajsjll|).

JsJm

By our choice of F', for every two indices in s; < s in F', there is an index in s3 € S
between them s; < s3 < s3. Thus every A, Gy in above formula is at least 2. Hence
the coefficient of v;, cannot be zero. Now we define

x =2 + bg,

where the sign is “+” if the position of £ in S is odd and “—” if it is even. This
ensures that oz(z) = 1. It remains to show that x is contained in P*, that is that
the coefficients of all v;,7 € S are nonnegative. Now for i € S\ F, the coefficient of
v; is positive by construction. For ¢ € F, the coefficient in 2’ is positive and thus at
least | [];cpm iy Aijl ™"+ But the coefficient in bs is —[ [ jcq iy Aijl ™!, so their sum
(i.e., the coefficient in x) is nonegative, because F' C S. O
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As a consequence of this proposition, we obtain

Theorem 9.2.3 ([31, Theorem 2.3]). Let P be an integral cyclic polytope and K[P]
its associated semigroup K-algebra. Then the following conditions are equivalent:

(i) K[P] is normal;
(i) K[P] is Cohen—Macaulay;
(111) K[P] satisfies (S2).

Proof. By Hochster’s Theorem (see, e.g., [11, Theorem 6.10]), normality implies
Cohen—Macaulayness. Moreover, Serre’s Criterion states that normality is equiva-
lent to Serre’s conditions (R;) and (S2). On the other hand, Cohen—-Macaulayness
implies (52), see [12, p. 62], and thus the claim follows. O

Remark 9.2.4. Using the same methods as employed above, one can also prove that
an integral cyclic polytope is normal if and only if it is seminormal. See [11, p. 66]
for the definition and basic properties of seminormality. We use the notation from
that book. Now, assume that P is not normal. Then there exists a point m in
R>0Ap NZsoAp which is not contained in ZxoAp. This point m lies in the interior
of a unique face F of Z>¢Ap. But using the same construction as above, we can
show that Z(ZsoAp N F) = Z* N'H, where ‘H is the linear subspace spanned by
F. Thus m € Z(Z>oAp N F) is an exceptional point, and therefore (Z>oAp N F).
is not normal. Hence, P is not seminormal.

9.2.2 When is K[P| Gorenstein ?

The goal of this subsection is to characterize completely when K[P] is Gorenstein,
that is, this section is devoted to proving

Theorem 9.2.5 ([31, Theorem 3.1]). Let P = Cy(7,...,74) be an integral cyclic
polytope and K[P] its associated semigroup K-algebra. Then K[P] is Gorenstein if
and only if d =2, n =3 and

(Alg, Agg) = (17 2) or (2, ].)

Thus, by Proposition 9.1.4, there is essentially only one case where K[P] is
Gorenstein.

Before giving a proof, we prepare the following:

o Let
11 ]
0 Ay Ay - Aj g
(v, . vg1) = | 5 7 Alag oo ApginAogy | € zZ@HXED
0o --- o 0 HZ:I Akt
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and P* = conv({vy, ..., Vg41})-

o Let
d+1 d+1
( HAIJ, HAU,..., 1A g1, (— 1)6’“) e 74,
d+1 d+1
ai=10....0 IT 2= ] 2o (CD)™2A g, ()5 | € 2
J =i+1 J=i+2

fori=2,...,d+ 1.

e Let H; be the closed half space in R%*! defined by the inequality

d+1
(a1, x <HA1], for 1 =1,

(a;, >>0, for i=2,...,d+1,

where x = (29, 71, ...,2q) € R and (a;,x) stands for the usual inner prod-
uct in R4FL,

e By using the above, we have

d+1
= (N Hin{x e R : 2o =1}, (9.7)

=1

A proof of (9.7) is given by elemtary computations. This establishes an explicit
description of the supporting hyperplanes of an integral cyclic polytope with n =
d+ 1, i.e., a simplex case.

Proof of Theorem 9.2.5. First, we can check easily that K[P] is Gorenstein when
P = CQ(Tl,T2,7'3) with (Alg, Agg) = (1, 2) or (Alg, A23) = (2, 1)

Thus, what we must do is to show that K[P] is never Gorenstein in other cases.
Mostly, we concentrate on the case where P is a simplex.

The first step. Suppose that K[P] is not normal. Then, from Theorem 9.2.3,
K[P] is not Cohen—Macaulay. In particular, K[P] cannot be Gorenstein.

Hence, in the remaining parts, we assume that K[P] is normal. Since ZAp =
741 by Lemma 9.1.7, we notice that K[P] is nothing but the Ehrhart ring of P
when K[P] is normal (cf. [12, pp. 275-278]). In addition, it is neccesary for the
Ehrhart ring K[P] to be Gorenstein that P contains only one integer point in its
relative interior when P\ 0P # (. (See, e.g., [15].) In the following, we verify that
there is no such (7,...,7,).

The second step. Assume that d = 2 and let us consider when n = 3. Suppose
that (Ajg, Agg) is neither (2,1) nor (1,2). From Proposition 9.1.4, we may assume
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that Ao > Agz. When (Ajs, Agz) = (1,1), we can check that P is not Gorenstein.
Hence, we assume that either Ajp > Agz > 2 or Ajp > 3 and Ayz = 1 is satisfied.
Recall from the above statements that

Hy: Ay — 29 < ApAgz, Hy i Aggwy — a2 >0, Hz:xzp >0.
Then it is enough to that there exist at least two integer points py, p» € Z? such that
<(A13, —1),p1> < A12A13, <(A23, _1)7p1> >0 and <(O, 1),pl> <0 fOI' 1= 1,2

e When Ay > Agg > 2, the integer points (1,1, 1) and (1,2, 2) are contained in
P\ OP*. In fact,

Alg —1< Alg < A12A13, Agg —1> 0, 1> O,
Az —2< A3 < A12A13, 2053 — 2 > 0, 2>0.

e When Ay > 3 and Ays = 1, the integer points (1,2,1) and (1,3,1) are
contained in the interior. In fact,

2A13 — 1 < 2A 3 < A12A13, 2N93 — 1 > 0, 1>0,
3A13 —1< 3A13 < A12A13, 3A23 —-1>0, 1>0.

Thus, P is not Gorenstein when n = 3 except the case where (Aja, Agz) = (2,1) or
(1,2).

When n = 4 and (Ajs, Agg, Azy) = (1,1,1), then we can also check that P is
not Gorenstein. Moreover, when n = 4 and there is at least one 1 < ¢ < 3 with
A1 > 2, since either 3 — 7 > 2and 7y — 13 >20r3—7 >3and 7y — 713 =1
are satisfied, P’ = Cy(71, 73, 74) has at least two integer points in P'\ 9P’ C P\ P
as discussed above, which implies that P is not Gorenstein. Similarly, when n > 5,
since 74, — 71 > 3 and 75 — 73, > 1, P is not Gorenstein.

The third step. Assume that d = 3 and let us consider the case where n = 4.
When (Ajs, Aoz, Asy) = (1,1, 1), we can check P is not Gorenstein. Thus, we assume
that there is at least one 1 < i < 3 with A, ;11 > 2. Recall that

Hi o A1sArary — Ao + 23 < AppAisAry,  Ho t AogAoyzy — Agywg + 23 > 0,
H31A341‘2—$320, H4ZZL’320.

e When Ays > 2, the integer points (1, Aja+1,A13+1,1) and (1, Ao+ 1, A3+
1,2) are contained in P*\ 9P*. In fact,

AsAg(Ap +1) = Au(Az + 1) + ¢ = ApAgAiy — Ay + ¢ < A1aA 1301y,
Ao3Agg (A +1) — Agy (A3 +1) + g > A1pAgy — Agy +¢ > 0,
Agy(A13+1)—¢>0, ¢>0,

where ¢ is 1 or 2.
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e When Ay; = 1 and Ay > 2 and Ay > 2, the integer points (1,2,2,1) and
(1,2,2,2) are contained in the interior. In fact,

2013014 — 2014 + ¢ = 2019014 + ¢ < A12A3A 4,
2093004 — 2004 +q=q > 0, 2A34 —q > 0, q >0,

where ¢ is 1 or 2.

e When Ay > 2 and Agy = Aszy = 1, the integer points (Ajz, Ajz, 1) and
(A1p + 1, A1p + 2,3) are contained in the interior. In fact,

A12A13A14 - A12A14 + 1< A12A13A147
A12A23A24 - A12A24 -+ 1 == 1 > 0, A12A34 - 1 = A12 - 1 > 0, 1 > O

and

Ap3Ay (A +1) — Apy(Ap +2) + 3 = A1 AysAyy — Ay + 3 < ApAq3Ayy,
A23A24(A12 + 1) — A24(A12 + 2) +3=—-2A9+3>0,
A34(A12+2)—3IA12—1>0, 3> 0.

Thus, P is not Gorenstein when n = 4. Remark that we need not consider the case
where Agy > 2 and Ajs = Agg = 1 because of Proposition 9.1.4 again.

On the other hand, when n > 5, let P’ = Cs(my, 73, 74,75). Since 73 — 11 > 2,
there exist at least two integer points in P’ \ 9P’ C P \ 0P, which means that P is
not Gorestein.

The fourth step. Assume that d > 4 and d is even. Let us consider

Qq = (1, A12 -+ 1, A13 + 1, s ,Al’dfl —+ 1, Al,da q) - ZdJrl

for ¢ = 1 and 2. We show that oy and «ay are contained in P*\ OP*.
Now, we have

d+1 d+1 d+1 d+1
al,aq HAIJ HAIJ (H ALj + HAl’j) +
w an
<H A1]+HA13> dHAIJ d+1

j=d—1
d+1 d+1 d+1

_HAIJ d+1q_HA1g—Q<HA1p
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dt1 dt1 dt1 dt1
(a;, aq) = Ay H AN H Ay — (Al,i—i—l H A+ H Ai,j) +

j=i+1 j=i+1 Jj=i+2 Jj=i+2
d+1 d+1
(1) (Ald 1HAH + HA”> DAL A g1 + (1) g
d+1 d+1 d+1
= A ] sz 1)tk ( IT 20— 2w ] A”) —)*
Jj=i+1 j=k+1 j=k+2
d+1 d+1
= AU H A” Jrz z+1<;—1 (Al,i H Ai,j) +(_1)d+z—1
j=i+1 j=k+2
d+1 d+1 d+1 d+1
= Ay, < IT 25— ] Ai,j> + Ay < IT 25— ]1 Am) +
j=i+1 j=i+2 j=i+3 j=i+4
d+1 d+1
(H Az] HA13)+A11 i,d+1 = >0
j=d—1

when 7 is even and
d+1 d+1 d+1 d+1
(ai, Oéq Al K ( H Azj H A@j) + te + ALi (H Az’,j - H A@j) + q > O
Jj=i+1 J=i+2 j=d j=d+1

when 7 is odd.
The fifth step. Assume that d > 5 and d is odd. Let us consider

By= (1, A+ 1L, A +1,..., A1 g+1,A1 401 —q) € 2!

for ¢ = 1 and 2. Similar to the fourth step, it is easy to see that

d+1
(ay, f,) < HALJ and (a;,0,) >0 for i=2,...,d+1.
j=2
In other word, both (3; and 35 are contained in the interior, as desired. O

9.3 The semigroup ring associated only with ver-
tices of a cyclic polytope

In this section, we will study the semigroup K-algebra generated only by the vertices
of integral cyclic polytopes. That is to say, we will consider the affine semigroup
K-algebra arising from

Qd(Tl,...,Tn):ZZO{(l,Ti,Tf,...,Tid) EZd+1:i:1,...,n}.
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(Throughout this section, ) denotes the affine semigroup Qu(7i,...,7,).) Let K[Q]
be the K-subalgebra of K[to,t1,...,tq] with K[Q] = @,cq K -t*. It is just the toric
ring associated with the configuration (9.2). In this section, we study the normality
of K[Q] (Theorem 9.3.3).

Let S = Klx1,...,x,] be the polynomial ring over a field K. Let Iy be the
kernel of the surjective ring homomorphism S — K[Q] sending each z; to t¥. The
ideal I is just the toric ideal associated with the matrix (9.2). In particular, it is
homogeneous with respect to the usual Z-grading on S. Recall that the matrix (9.2)
can be transformed into the form (9.3).

By Proposition 9.1.2 (i), K[Q)] is regular when n = d 4+ 1 and in particular is
normal. When d = 1, the matrix (9.2) transformed as is stated above is of the
following form:

1 0
? A:“ (9.8)
1 A,
Since [ is preserved even if we divide a common divisor of A; 5,..., Ay, out of the
second row, we may assume the greatest common divisor of A; o, -, Ay, is equal

to 1. The ideal I is a defining ideal of a projective monomial curve in P"~! and it
is well known (cf. [14]) that the corresponding curve is normal if and only if it is a
rational normal curve of degree n—1, that is, Ay ; =i—1foralli—1with2 <7 <n
(after the above transformation and re-setting each A; ;). Consequently, in the case
d =1, the ring K[Q] is normal if and only if . — 7y =13 — T =+ =7, — Tp_1.

We will show that K[Q)] is never normal if d > 2 and n = d + 2. Our strategy is
to make use of the following criterion.

Lemma 9.3.1 ([58, Lemma 6.1]). Let R be a toric ring such that the corresponding
toric ideal I is homogeneous. Suppose I has a minimal system of binomial generators
that contains a binomial consisting of non-squarefree monomials. Then R is not
normal.

Set I' :=T'4(m1,...,7n). Note that there is a one-to-one correspondence between
the faces of I and the proper faces of R>(Q); a subset W C [n] is a (d—1)-dimensional
face of I' if and only if R>g - {v; : i € W} is a d-dimensional face of R>¢Q. In the
sequel, we tacitly use this correspondence.

If n = d+ 2, then I is principal, and we can determine the supports of both
monomials appearing in the binomial generator of /. Following the usual conven-
tion, we set supp(u) := {i € [n] : z; | u}.

Lemma 9.3.2. Assume n = d + 2. Then K[Q] = S/(u — v) for some monomials
u,v € S such that supp(u) = {i € [n] : ¢ is odd} and supp(v) = {i € [n] : i is even}.
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Proof. Since the rank of ZQ is equal to dimR>¢Cy(m,...,7,) = d + 1, the kernel
of the Q-linear map defined by (9.2) is of dimension 1. It is then clear that I
is principal. Choose a generator u — v of Ip. Obviously supp(u) N supp(v) = 0.
Moreover neither supp(u) nor supp(v) is a face of I'. Indeed, by the choice of u — v,

Z a;V; = Z bjUj (*)
)

1€supp(u) jé€supp(v

for some positive integers a;, b;, and hence if one of supp(u) and supp(v) is a face

of I', say W, then the corresponding cone R>oW of R>(() contains all the v; and v,

appearing in (x). This implies (%) is just a relation among vertices in R>oW, which

contradicts (i) of Proposition 9.1.2. Since n = d+2, applying (i) of Proposition 9.1.2

again, it follows from (x) that supp(u) Usupp(v) = [n]. Thus supp(u) and supp(v)

give a partition of [n] by non-faces of I, i.e., subsets of [n] which are not in I
Without loss of generality, we may assume that 1 € supp(u). Set

A={F &) e@"\D)x2"M\I):1e F,FNG=0,FUG = [n]}.

Then (supp(u),supp(v)) € A. On the other hand, the pair (U, V), where U := {i €
[n] : 7is odd} and V := {i € [n] : i is even}, also belongs to A; indeed, U and V
does not satisfy the condition in (iii) of Proposition 9.1.2. Thus what we have only
to show to complete the proof is #A = 1. Note that by [44, Proposition 5.1], T is
combinatorially equivalent to the join of the boundary complexes of two simplexes
I'1, I's. Hence we may identify I with OI'y % OI'y to prove #A = 1, and may assume
1 € Fy. It is straightforward to verify that A = {(F}, F»)}. O

Now we will prove the following.

Theorem 9.3.3 ([31, Theorem 4.3]). Assume d > 2 and n = d + 2. Then K[Q)] is
never normal.

Proof. Set U :={i € [n] :iis odd} and V := {i € [n] : i is even}. By Lemma 9.3.2,

K[Q) =S/ (H =11 @v) .

iU jev
Set u =[],y 2f" and v = [[ oy, x?’ By Lemma 9.3.1, it suffices to show that neither
u nor v is squarefree. Note that the following equality holds.
1 7 - Tld
1 7 72 - 78
(Cll,—bg,ag,—b4,...7) 2 2 == (0,0, ,0) € Zd+1
1 7, 72 7



By Lemma 9.1.3,

1 0 0 0
1 Ap 0 0

1 Az Az (0,0 0)

(ala _an as, _b47 sy )

d
Avgrr Di1alog -+ Tlie; Dkast
d
1 Alvn AlvnA27n T Hk}:l Ak,’l’l/

(9.9)
For a proof by contradiction, suppose either u or v is squarefree. This is equiva-
lent to say that >, a; = #U or >, by = #V. By the equation (9.9), it follows

that
Y ai=> b (9.10)
e JjeV
The case d is even. Then d = 2[ for some positive integer [, n = 2[ + 2,
#U = #V =1+ 1, which implies both of v and v are squarefree. By the equation
(9.9), we have HZ=1 Apar1 = szl Ay, = 0, while clearly HZ=1 App > ngl Apat1
holds, a contradiction.
The case d is odd. Then d = 2/ — 1 for some integer [ with [ > 1, n =
2l +1 and #U = #V + 1 = [ + 1, which implies that v cannot be squarefree since
Y icv @ = #U. Thus u is squarefree, that is, a; = 1 for all 7 € U. Moreover
one of the b; is 2 and the others are 1. On the other hand, it follows from (9.9)
that — HZ:I Ak,d_;_lby + Hi:l Akmaglﬂ = 0. Since HZ:I Ak,d+1 < HZ:I Ak,m we
conclude that by, = 2 and hence

d d
H A =2 H AVRISP
k=1 k=1

For simplicity, we set ¢; = a; for odd i and ¢; = —b; for even 7. Hence ¢; = ¢3 =
c=cp=1,c0=c4 =+ =c,3=—1,and ¢,_; = —2. By the equation (9.9)
again,

n n i—1 n—1 n
0= E Al,ici = E Aj,jJrl G = E Aj,j+1 E C;
i=2 i=2 \j=1 j=1 i=j+1

Since n > 5 by the hypothesis that n is odd and d > 2, we may divide the last
summation in the above equality as follows. Set

n—3 n
S1 :E E Ci Aj,j+17
j=1 \i=j+1

and
S9 = An—?,n—l(cn—l + Cn) + An—l,ncn - _Ad,d—H + Ad—&—l,n
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Then s; + s3 = Z?:ll Aji (Zf:jﬂ ci) = 0. An easy observation shows that each
coefficient Z?:j 1 Gof Ay in sy is 0if j is even and otherwise negative. Hence
the inequality s; < 0 follows since n — 3 > 2. We will show that s, < 0. If this
is the case, then s; + sy < 0 holds on the contrary to the fact s; + sy = 0, which
completes the proof.

Suppose s; > 0. Then
Tn — Tar1 = Darin > Dadr1 = Tar1 — Ta,

and hence 7, — 7y > 2(7,_1 — 74). It follows that

H Apn = (1 — 1) (T, — Ta—1) -+ (T — T1)

d
> 2(Tp-1 — Ta)(Tne1 — Ta—1) -+ (Tper — 1) = QHAk,n—h
k=1

which is absurd. O

As is stated above Lemma 9.3.1, the K-algebra K|[Q)] is normal if and only if
To—T| =T3— Ty ="+ =Ty, —Tn_1, When d = 1. Though we do not have a complete

answer on the normality of K[Q] when n > d + 2, we strongly believe the following
holds.

Conjecture 9.3.4. The K-algebra K|[Q] is normal only in one of the following
cases:

(i) n=d+1;
(i) d=1and 7o — T =T3 — Ty = +++ = Tpy — Ty1.

The following proposition tells us that there are a lot of K[Q] which are not
normal when n > d + 3.

Proposition 9.3.5. Assumen > d+3. If Hizl AVIFIRE HZ:1 Ay s for some s with
d+2 < s <mn, then K[Q)] is not normal.

Proof. Suppose @ is normal. Since the subset {1, ..., d} of [n] satisfies the condition
in (iii) of Proposition 9.1.2, the cone generated by vy, ..., v4 forms a facet of R>(Q).
Let F denote this facet. Then () together with F satisfies the condition in Propo-
sition 9.2.1, and in particular, there exists an element x € @ such that ox(z) = 1,
where o is a support form of F with integer coefficients.

We will describe o7 explicitly. Let ‘H be the supporting hyperplane of F. Note
that we can freely identify () with the affine semigroup associated with the matrix in
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Lemma 9.1.3. After this identification, the vector ag = (0,...,0,1) € Z4! defines
‘H as is stated below of Theorem 9.2.5. Thus

H = {z € R™ : (ag,z) = 0},

and (ag,x) € Zso for all z € Q \ F. We set ZQy = ZQ/ZQ N'H. Note that
7Qy = 7. Let vg € Z() be an element whose image in ZQ)y is a free basis of ZQy.
Then the support form o of () and F is defined as

<ad’ l‘>
<ad7 U0>

0'_7:(.13) =

for all z € R¥! and ox(x) = 0 for x € QN F and ox(x) € Zsy for z € Q \ F
(see [11, Remark 1.72 and p.55| for the construction and the property of a support
form). Recall that there exists an element x € @) such that oz(z) = 1. Since F is
generated by vy, ..., v4, the element x can be written as x = y+Z?:d+1 A;v; for some
i € Z>p and y € QN F. By definition, (ag,v;) = szl Ap;fori=d+1,...,n, and
(ag,y) = 0. Since [0_, Apar1 < [Tie; Arasa < -+ < [10_, Agn, it follows that
0 < (ag,vg41) < -+ < (aq,vn), and hence

L=0r(x) > (Y M)or(va) > 0.

Therefore ox(vgr1) = 1 and © = y+ vgy1. Thus we can replace vy by vgy1. However
it follows from the fact v, € () that

d
EPWAVEN ag, Us
1_d[k_1 & = d< < > = Uf(vs) S Za
Hk:l Ak‘,cl—i-l Hk:l A/’c,d+1
contrary to the hypothesis HZ:1 JAVIFIRE ( HZ=1 Ay s. O

Since there exists a lot of non-normal K[Q)], it is natural to ask when K|[Q)] is
Cohen-Macaulay. Clearly if n = d + 2, then K[Q] is a complete intersection, and
hence in particular, Cohen-Macaulay. So far, we have never found an example of
K[Q] which is Cohen-Macaulay, in the case d > 2 and n > d 4+ 2. Thus we expect
the following

Conjecture 9.3.6. The K-algebra K[Q)] is never Cohen-Macaulay if d > 2 and
n>d+ 2.
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