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Chapter 1

Introduction

A convex polytope is a convex hull of finite points of a Euclidian space, and if these
points have integer coordinates, then one is called an integral convex polytope. (See
the books [20] and [78]). Integral convex polytopes are interesting objects related
to many branches of mathematics. In this thesis, we pick up aspects of integral
convex polytopes having close connections with combinatorics, algebraic geometry
and commutative algebra. In particular, we focus on the following three topics in
the studies of integral convex polytopes, Ehrhart polynomials, Fano polytopes and
affine semigroup rings.

Three topics in the studies of integral convex poly-

topes

First, in the area of enumerative combinatorics, Ehrhart polynomials of integral
convex polytopes appear as enumerative functions of several important combinato-
rial objects, for example, magic squares, Latin squares or domino tilings, etc. (See [6]
and [69] for more detailed information.) In this thesis, we will give a combinatorial
characterization of the Ehrhart polynomials of integral convex polytopes.

Secondly, many toric varieties can be constructed from integral convex polytopes.
In particular, a toric Fano variety is constructed from, so-called, a Fano polytope,
which is a full-dimensional integral convex polytope containing the origin in its
interior as a unique integer point. Since a toric Fano variety is defined from a Fano
polytope completely, it has a lot of information of a toric Fano variety. Thus, from
a viewpoint of algebraic geometry, Fano polytopes are a useful combinatorial object
to understand toric Fano varieties. In fact, many results on toric Fano varieties are
obtained by using Fano polytopes ([42, 43, 52, 53]). In this thesis, we will construct
some new examples of smooth Fano polytopes.

Thirdly, from an integral convex polytope, we can define an affine semigroup
ring. By considering affine semigroup rings arising from integral convex polytopes,
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we obtain several interesting examples of commutative algebra. (Many results re-
lated with affine semigroup rings are described in the books [12], [49] and [72].) In
this thesis, we will study some new classes of affine semigroup rings arising from
integral convex polytopes.

Those topics themselves are not only interesting and crucial in each field but also
closely related to each other. For example, Ehrhart polynomials of Fano polytopes
express some properties on toric Fano varieties. A lot of properties on Ehrhart
polynomials are proved by considering the Ehrhart ring, which is an affine semigroup
ring arising from an integral convex polytope. As is well known, it often happens
that we find a deep relationship between some properties on toric Fano varieties and
affine semigroup rings associated with Fano polytopes.

Structure of this thesis

The organization of this thesis is as follows. We divide this thesis into three parts.
Each part includes the author’s results on each topic.

• Part I is devoted to the studies on Ehrhart polynomials and the author’s
results on Ehrhart polynomials are presented. There are three chapters in
Part I. The first one is an introduction to Ehrhart polynomials. In the second
one, we concentrate on the classification problems of Ehrhart polynomials. In
the third one, we discuss root distributions of Ehrhart polynomials. This part
contains the results of [34, 35, 36, 37, 38, 40, 41, 48].

• Part II is devoted to the studies on Fano polytopes and there are two chapters,
the first one of which is an introduction. The second one is spent to estab-
lish examples of Fano polytopes via some combinatorial methods. This part
contains the results of [29, 39].

• Part III is devoted to the studies on affine semigroup rings and is divided into
three chapters, while the first one is an introduction. In the second one and
third one, we investigate the properties on affine semigroup rings arising from
graphs and cyclic polytopes, respectively. This part contains the results of
[32, 33, 30, 31].
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Chapter 2

Introduction to Ehrhart
polynomials

In this part, as the first aspect of the studies on integral convex polytopes, we will
consider the Ehrhart polynomials of integral convex polytopes. Ehrhart polynomials
often appear in the area of enumerative combinatorics. Thus, to study the Ehrhart
polynomials of integral convex polytopes are very important and interesting.

We will summarize some basic notions, notation and some results on Ehrhart
polynomials.

First, let us review basic definitions and the studies on the classifications of
Ehrhart polynomials. Let P ⊂ RN be an integral convex polytope of dimension d
and let ∂P denote the boundary of P . Given a positive integer n, we define the
numerical functions i(P , n) and i∗(P , n) by setting

i(P , n) = |nP ∩ ZN | and i∗(P , n) = |n(P − ∂P) ∩ ZN |.

Here nP = {nα : α ∈ P} and |X| is the cardinality of a finite set X.
The systematic study of i(P , n) originated in the work of Ehrhart [16], who

established the following fundamental properties:

(a) i(P , n) is a polynomial in n of degree d; (Thus, in particular, i(P , n) can be
defined for every integer n.)

(b) i(P , 0) = 1;

(c) (loi de réciprocité) i∗(P , n) = (−1)di(P ,−n) for every integer n > 0.

We say that i(P , n) is the Ehrhart polynomial of P . We refer the reader to [6,
Chapter 3] and [26, Part II] for an introduction to the theory of Ehrhart polynomials.

We define the sequence δ0, δ1, δ2, . . . of integers by the formula

(1 − λ)d+1

∞∑
n=0

i(P , n)λn =
∞∑
i=0

δiλ
i. (2.1)
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From the basic facts (a) and (b) on i(P , n) together with a fundamental result on
generating function ([69, Corollary 4.3.1]), we have δi = 0 for every i > d. We say
that the sequence

δ(P) = (δ0, δ1, . . . , δd)

which appears in (2.1) is the δ-vector of P and the polynomial

δP(t) =
d∑

i=0

δit
i

is the δ-polynomial of P . Thus δ0 = 1 and δ1 = |P ∩ ZN | − (d + 1). It follows from
the reciprocity law (c) that

∞∑
n=1

i∗(P, n)λn =

∑d+1
i=1 δd+1−iλ

i

(1 − λ)d+1
. (2.2)

In particular,
δd = |(P − ∂P) ∩ ZN |.

Hence δ1 ≥ δd. Remark that if δ1 = δd, then P is always a simplex. It also follows
from (2.2) that

max{j : δj 6= 0} + min{k : k(P − ∂P) ∩ ZN 6= ∅} = d + 1. (2.3)

Moreover, each δi is nonnegative ([68]). In addition, if (P − ∂P)∩ZN is nonempty,
then one has δ1 ≤ δi for every 1 ≤ i ≤ d − 1 ([28]).

When d = N , the leading coefficient
∑d

i=0 δi/d! of i(P , n) is equal to the usual
volume of P ([69, Proposition 4.6.30]). In general, the positive integer vol(P) =∑d

i=0 δi is said to be the normalized volume of P .
When d ≤ 2, the Ehrhart polynomials are completely classified. In fact, the

possible δ-vectors of integral convex polytopes of dimension 2 are known in Scott
[67]. When d ≥ 3, however, the classification is still unknown. Note that studying
Ehrhart polynomials is equivalent to studying δ-vectors. The δ-vectors of integral
convex polytopes have been studied intensively. For example, see [61, 73, 74].

Next, let us review the studies on roots of Ehrhart polynomials. Let P ⊂ RN be
an integral convex polytope of dimension d and i(P , n) its Ehrhart polynomial. A
complex number α ∈ C is called a root of i(P , n) if i(P , α) = 0.

Many papers on integral convex polytopes, including [5, 7, 8, 9, 23, 24, 62], discuss
roots of Ehrhart polynomials. Root distribution of Ehrhart polynomials is one of
the current topics on computational commutative algebra. It is well known that the
coefficients of the Ehrhart polynomial reflect combinatorial and geometric properties
such as the volume of an integral convex polytope in the leading coefficient, gathered
information about its faces in the second coefficient, etc. The roots of Ehrhart
polynomials should also reflect properties on integral convex polytopes that are hard
to elicit just from the coefficients. Beck et al. [5] propose the following remarkable
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Conjecture 2.0.1 ([5, Conjecture 1.4]). All roots α of Ehrhart polynomials of d-
dimensional integral convex polytopes satisfy −d ≤ Re(α) ≤ d − 1, where Re(α)
denotes the real part of α ∈ C.

This conjecture has been solved when d ≤ 5 in [9]. It is also known ([8]) that
every root is contained in{

z ∈ C :

∣∣∣∣z +
1

2

∣∣∣∣ ≤ d

(
d − 1

2

)}
.

Compared with this bound, the strip in the conjecture puts a tight restriction on
the distribution of roots for any Ehrhart polynomial.

A Fano polytope is an integral convex polytope P ⊂ Rd of dimension d such that
the origin of Rd is a unique integer point belonging to the interior of P . A Fano
polytope is called Gorenstein if its dual polytope is integral. (Recall that the dual
polytope P∨ of a Fano polytope P is the convex polytope which consists of those
x ∈ Rd such that 〈x, y〉 ≤ 1 for all y ∈ P , where 〈x, y〉 is the usual inner product of
Rd.) Further information on Fano polytopes is written in Part II.

Let P ⊂ Rd be a Fano polytope with δ(P) = (δ0, δ1, . . . , δd) its δ-vector. It
follows from [3] and [27] that the following conditions are equivalent:

• P is Gorenstein;

• δ(P) is symmetric, i.e., δj = δd−j for every 0 ≤ j ≤ d;

• i(P , n) = (−1)di(P ,−n − 1).

A combinatorial characterization of for the δ-vectors to be symmetric is studied in
[15] and [27].

When P ⊂ Rd is a Gorenstein Fano polytope, since i(P , n) = (−1)di(P ,−n−1),
the roots of i(P , n) are distributed symmetrically in the complex plane with respect
to the line Re(z) = −1

2
. Thus, in particular, if d is odd, then −1

2
is a root of i(P, n).

In fact, since d is odd, the number of real roots of i(P , n) is odd. If a real root α
of i(P , n) is not equal to −1

2
, then −α − 1 is also a real root. Hence −1

2
must be a

root.
It is known in [7, Proposition 1.8] that, if all roots α ∈ C of i(P , n) of an integral

convex polytope P ⊂ Rd of dimension d satisfy Re(α) = −1
2
, then P is unimodular

equivalent with a Gorenstein Fano polytope whose volume is at most 2d. In a recent
work [23], the roots of the Ehrhart polynomials of smooth Fano polytopes with small
dimensions are completely determined.

If each of the roots of the Ehrhart polynomial of an integral convex polytope
P has the real part −1

2
, then P must be Gorenstein since the function equation

i(P , n) = (−1)di(P,−n− 1) must be held. On the contrary, each of all the roots of
Gorenstein Fano polytopes α does not always satisfy Re(α) = −1

2
. Hence, it is also

meaningful to investigate roots of Gorenstein Fano polytopes.
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The structure of the rest of this part is as follows. In Chapter 3, we will discuss
the classification probelm on the Ehrhart polynomials of integral convex polytopes.
Essentially, we will classify their possible δ-vectors. In particular, we will consider
the δ-vectors of integral convex polytopes whose normalized volumes are small. In
Chapter 4, we will discuss root distributions of the Ehrhart polynomials. Especially,
we will present counterexamples of Conjecture 2.0.1. Moreover, we will also focus
on roots of the Ehrhart polynomials of Gorenstein Fano polytopes.
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Chapter 3

Classification problems on Ehrhart
polynomials

In this chapter, we will study the classification problems on the Ehrhart polynomials
of integral convex polytopes. Especially, we will consentrate on the case where they
are simplices, which is a crucial case in some sence.

After reviewing the well-known technique how to compute the δ-vectors of in-
tegral simplices in Section 3.1, we will consider the classification problem on the
Ehrhart polynomials of integral convex polytopes whose normalized volumes are at
most 3 in Section 3.2, are 4 in Section 3.3 and at least 5 and prime in Section 3.4,
respectively. Most parts of them will be devoted to discussing the Ehrhart poly-
nomials of integral simplices. Finally, in Section 3.5, we will consider the specific
class of δ-vectors and study some properties on integral convex polytopes with such
δ-vectors.

3.1 Review on the computation of the δ-vector of

a simplex

First of all, let us recall the well-known combinatorial technique to compute the
δ-vector of an integral simplex.

Given an integral simplex F ⊂ RN of dimension d with the vertices v0, v1, . . . , vd,
we set

S(P) =

{
d∑

i=0

ri(vi, 1) ∈ RN+1 : 0 ≤ ri < 1

}
∩ ZN+1

and

S∗(P) =

{
d∑

i=0

ri(vi, 1) ∈ RN+1 : 0 < ri ≤ 1

}
∩ ZN+1.

We define the degree of an integer point (α, n) ∈ S by deg(α, n) = n, where α ∈ ZN

and n ∈ Z≥0. Let δi = |{α ∈ S(P) : deg α = i}| and δ∗i = |{α ∈ S∗(P) : deg α = i}|.

17



Then we have

δ(F) = (δ0, δ1, . . . , δd)

and

δ∗i = δd+1−i for i = 1, . . . , d + 1.

Notice that the elements of S(P) form an abelian group with a unit (0, . . . , 0).
For α and β in S(P) with α =

∑d
i=0 ri(vi, 1) and β =

∑d
i=0 si(vi, 1), where ri, si ∈ Q

with 0 ≤ ri, si < 1, we define the operation in S(P) by setting α ⊕ β :=
∑d

i=0{ri +
si}(vi, 1), where {r} = r − brc denotes the fractional part of a rational number r.
(Throughout this section, in order to distinguish the operation in S from the usual
addition, we use the notation ⊕.)

3.2 The case where
∑d

i=0 δi ≤ 3

In this section, we classify the possible δ-vectors of integral convex polytopes with∑d
i=0 δi ≤ 3.
For our classification, we present two well-known inequalities on δ-vectors. Let

s = max{i : δi 6= 0}. Stanley [71] shows the inequalities

δ0 + δ1 + · · · + δi ≤ δs + δs−1 + · · · + δs−i, 0 ≤ i ≤ [s/2] (3.1)

by using the theory of Cohen–Macaulay rings. On the other hand, the inequalities

δd + δd−1 + · · · + δd−i ≤ δ1 + δ2 + · · · + δi+1, 0 ≤ i ≤ [(d − 1)/2] (3.2)

appear in [28, Remark (1.4)].
Somewhat surprisingly, when

∑d
i=0 δi ≤ 3, the above inequalities (3.1) together

with (3.2) give a characterization of the possible δ-vectors. In fact,

Theorem 3.2.1 ([35, Theorem 0.1]). Given a finite sequence (δ0, δ1, . . . , δd) of non-
negative integers, where δ0 = 1, which satisfies

∑d
i=0 δi ≤ 3, there exists an integral

convex polytope P ⊂ Rd of dimension d whose δ-vector coincides with (δ0, δ1, . . . , δd)
if and only if (δ0, δ1, . . . , δd) satisfies all inequalities (3.1) and (3.2). Moreover, all
such polytopes can be chosen to be simplices.

Note that the “Only if” part of Theorem 3.2.1 is obvious. In addition, no dis-
cussion will be required for the case where

∑d
i=0 δi = 1.

On the other hand, the following example shows that Theorem 3.2.1 is no longer
true for the case of

∑d
i=0 δi = 4.

Example 3.2.2. We claim that the sequence (1, 0, 1, 0, 1, 1, 0, 0) cannot be the δ-
vector of an integral convex polytope of dimension 7. Suppose, on the contrary,
there exists an integral convex polytope P ⊂ RN of dimension 7 with δ(P) =

18



(δ0, δ1, . . . , δ7) = (1, 0, 1, 0, 1, 1, 0, 0). Since δ1 = 0, we know that P is a simplex. Let
v0, v1, . . . , v7 be the vertices of P . By using the discussions described above, one has

S(P) = {(0, . . . , 0), (α, 2), (β, 4), (γ, 5)}

and

S∗(P) = {(α′, 3), (β′, 4), (γ′, 6), (
7∑

i=0

vi, 7)}.

Write α′ =
∑7

i=0 rivi with each 0 < ri ≤ 1. Since (α′, 3) 6∈ S(P), there is 0 ≤ j ≤ 7
with rj = 1. If there are 0 ≤ k < ` ≤ 7 with rk = r` = 1, say, r0 = r1 = 1, then
0 < rq < 1 for each 2 ≤ q ≤ 7 and

∑7
i=2 ri = 1. Hence (α′ − v0 − v1, 1) ∈ S(P),

a contradiction. Thus there is a unique 0 ≤ j ≤ 7 with rj = 1, say, r0 = 1. Then
α =

∑7
i=1 rivi and γ =

∑7
i=1(1 − ri)vi. Let F denote the facet of P whose vertices

are v1, v2, . . . , v7 with δ(F) = (δ′0, δ
′
1, . . . , δ

′
6) ∈ Z7. Then δ′2 = δ′5 = 1. Since δ′i ≤ δi

for each 0 ≤ i ≤ 6, it follows that δ(F) = (1, 0, 1, 0, 0, 1, 0). This contradicts the
inequalities (3.1).

3.2.1 A proof of Theorem 3.2.1 when
∑d

i=0 δi = 2

The goal of this subsection is to prove the “If” part of Theorem 3.2.1 when
∑d

i=0 δi =
2. First of all, we recall the following well-known

Lemma 3.2.3 ([6, Theorem 2.4]). Suppose that (δ0, δ1, . . . , δd) is the δ-vector of
an integral convex polytope of dimension d. Then there exists an integral convex
polytope of dimension d + 1 whose δ-vector is (δ0, δ1, . . . , δd, 0).

Note that the required δ-vector is obtained by forming the pyramid over the
integral convex polytope.

We study a finite sequence (δ0, δ1, . . . , δd) of nonnegative integers with δ0 = 1
which satisfies all inequalities (3.2) together with

∑d
i=0 δi = 2. Since δ0 = 1, δ1 ≥ δd

and
∑d

i=0 δi = 2, one has δd = 0. Hence there is an integer i ∈ {1, . . . , [(d + 1)/2]}
such that (δ0, δ1, . . . , δd) = (1, 0, . . . , 0, 1︸︷︷︸

ith

, 0, . . . , 0), where 1︸︷︷︸
ith

stands for δi = 1.

By virtue of Lemma 3.2.3, our work is to find an integral convex polytopes P of
dimension d with (1, 0, . . . , 0, 1︸︷︷︸

((d+1)/2)th

, 0, . . . , 0) ∈ Zd+1 its δ-vector.

Let P ⊂ Rd be the integral simplex of dimension d whose vertices v0, v1, . . . , vd

are

vi =


ei + ei+1, i = 1, . . . , d − 1,

e1 + ed, i = d,

(0, 0, . . . . . . , 0), i = 0.

When d is odd, one has vol(P) = 2 by using an elementary linear algebra. Since

1

2
{(v0, 1) + (v1, 1) + · · · + (vd, 1)} = (1, 1, . . . , 1, (d + 1)/2) ∈ Zd+1,
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Section 3.1 says that δ(d−1)/1 ≥ 1. Thus, since vol(P) = 2, one has

δ(P) = (1, 0, . . . , 0, 1︸︷︷︸
((d+1)/2)th

, 0, . . . , 0),

as desired.

3.2.2 A proof of Theorem 3.2.1 when
∑d

i=0 δi = 3

The goal of this section is to prove the “If” part of Theorem 3.2.1 when
∑d

i=0 δi = 3.
Suppose that a finite sequence (δ0, δ1, . . . , δd) of nonnegative integers with δ0 = 1
satisfies all inequalities (3.1) and (3.2) together with

∑d
i=0 δi = 3.

When there is 1 ≤ i ≤ d with δi = 2, the same discussion as in the previous
subsection can be applied. In fact, instead of the vertices of the convex polytope
arising in the last paragraph of the previous subsection, we may consider the convex
polytope whose vertices v0, v1, . . . , vd are

vi :=


ei + ei+1, i = 1, . . . , d − 1,

2e1 + ed, i = d,

(0, 0, . . . . . . , 0), i = 0.

Now, in what follows, a sequence (δ0, δ1, . . . , δd) with each δi ∈ {0, 1}, where
δ0 = 1 which satisfies all inequalities (3.1) and (3.2) together with

∑d
i=0 δi = 3 will

be considered.

If δd = 1, then δ1 = 1. Thus this happens only when d = 2 and (1, 1, 1) is a
possible δ-vector. If δ1 = 1, then δ2 = 1 by (3.1). Clearly, (1, 1, 1, 0, . . . , 0) ∈ Zd+1

is also a possible δ-vector. Thus we will assume that δ1 = δd = 0. Let δm = δn = 1
with 1 < m < n < d. Let p = m − 1, q = n − m − 1, and r = d − n. By (3.1) one
has 0 ≤ q ≤ p. Moreover, by (3.2) one has p ≤ r. Consequently,

0 ≤ q ≤ p ≤ r, p + q + r = d − 2. (3.3)

Our work is to construct an integral convex polytope P with dimension d whose
δ-vector coincides with δ(P) = (1, 0, . . . , 0︸ ︷︷ ︸

p

, 1, 0, . . . , 0︸ ︷︷ ︸
q

, 1, 0, . . . , 0︸ ︷︷ ︸
r

) for an arbitrary

integer 1 < m < n < d satisfying the conditions (3.3).

Lemma 3.2.4. Let d = 3k + 2. There exists an integral convex polytope P of
dimension d whose δ-vector coincides with

(1, 0, . . . , 0︸ ︷︷ ︸
k

, 1, 0, . . . , 0︸ ︷︷ ︸
k

, 1, 0, . . . , 0︸ ︷︷ ︸
k

) ∈ Zd+1.
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Proof. When k ≥ 1, let P ⊂ Rd be the integral simplex of dimension d with the
vertices v0, v1, . . . , vd, where

vi =


ei + ei+1 + ei+2, i = 1, . . . , d − 2,

e1 + ed−1 + ed, i = d − 1,

e1 + e2 + ed, i = d,

(0, 0, . . . , 0), i = 0.

By using the induction on k, it follows that vol(P) = 3. Since

1

3
{(v0, 1) + (v1, 1) + · · · + (vd, 1)} = (1, 1, . . . , 1, k + 1) ∈ Zd+1,

Section 3.1 guarantees that δk+1 ≥ 1 and δ∗k+1 ≥ 1. Hence δk+1 = 1 and δ2k+2 = 1,
as required.

Lemma 3.2.5. Let d = 3k + 2, ` > 0 and d′ = d + 2`. There exists an integral
simplex P ⊂ Rd′ of dimension d′ whose δ-vector coincides with

(1, 0, . . . , 0︸ ︷︷ ︸
k+`

, 1, 0, . . . , 0︸ ︷︷ ︸
k

, 1, 0, . . . , 0︸ ︷︷ ︸
k+`

) ∈ Zd′+1.

Proof. First Step. Let k = 0. Thus d = 2 and d′ = 2` + 2. Let P ⊂ Rd′ be an
integer convex polytope of dimension d′ whose vertices v0, v1, . . . , v2`+2 are

vi =



2e1 + e2, i = 1,

2e2 + e3, i = 2,

ei + ei+1, i = 3, . . . , 2l + 1,

e1 + ed, i = 2l + 2,

(0, . . . , 0), i = 0.

As usual, a routine computation says that vol(P) = 3. Let v ∈ Rd′+1 be the point

1

3
{(v0, 1) + (v1, 1) + (v2, 1)} +

1

3

`+1∑
q=2

(v2q, 1) +
2

3

`+1∑
q=2

(v2q−1, 1)

belonging to Rd′ . Then

v = (1, 1, . . . , 1, ` + 1) ∈ Zd′+1.

Thus Section 3.1 guarantees that δ`+1 ≥ 1 and δ∗`+1 ≥ 1. Hence δ`+1 = δ`+2 = 1, as
required.
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Second Step. Let k ≥ 1. We write P ⊂ Rd′ for the integral simplex of
dimension d′ with the vertices v0, v1, . . . , v3k+2`+2 as follows:

vi =



(0, 0, . . . , 0), i = 0,

e1 + e2 + e3 + e3k+3 + e3k+4 + · · · + ed′ , i = 1,

e2 + e3 + e4 + e3k+3 + e3k+4 + · · · + ed′ , i = 2,

ei + ei+1 + ei+2 + e3k+3 + e3k+5 + · · · + ed′−1, i = 3, 4, 5, . . . , 3k,

e1 + e3k+1 + e3k+2 + e3k+3 + e3k+5 + · · · + ed′−1, i = 3k + 1,

e1 + e2 + e3k+2 + e3k+3 + e3k+5 + · · · + ed′−1, i = 3k + 2,

ei + ei+2 + · · · + ed′−1, i = 3k + 3, 3k + 5, . . . , 3k + 2` + 1,

ei + ei+1 + · · · + ed′−1, i = 3k + 4, 3k + 6, . . . , 3k + 2` + 2.

Let A denote the (3k + 2) × (3k + 2) matrix

∣∣∣∣A∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 0 · · · · · · · · · 0

0 1 1 1
. . . 0 ...

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . 0

0 0 . . . 1 1 1
1 0 1 1
1 1 0 · · · · · · · · · 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(3k+2)×(3k+2)

.

Then a simple computation on determinants enables us to show that

vol(P) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A *
1

0 . . .

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(3k+2+2`)×(3k+2+2`)

=

∣∣∣∣A∣∣∣∣ = 3.

One has

1

3
{(v0, 1) + (v1, 1) + · · · + (v3k+4, 1)}+2

3
{(v3k+5, 1) + (v3k+7, 1) + · · · + (v3k+2`+1, 1)}

+
1

3
{(v3k+6, 1) + (v3k+8, 1) + · · · + (v3k+2`+2, 1)}
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= (1, . . . , 1, k + 1, 1, k + 2, 1, . . . , k + `, 1, k + ` + 1) ∈ Zd′+1.

Hence δk+`+1 = δ2k+`+2 = 1, as required.

In order to complete a proof of the “If” part of Theorem 3.2.1 when
∑d

i=0 δi = 3,
we must show the existence of an integral convex polytope P ⊂ Rd of dimension
d whose δ-vector coincides with (1, 0, . . . , 0, 1︸︷︷︸

mth

, 0, . . . , 0, 1︸︷︷︸
nth

, 0, . . . , 0), where 1 <

m < n < d and n − m − 1 ≤ m − 1 ≤ d − n.

First, Lemma 3.2.4 says that there exists an integral convex polytope whose
δ-vector coincides with

(1, 0, . . . , 0, 1︸︷︷︸
(n−m)th

, 0, . . . , 0, 1︸︷︷︸
(2n−2m)th

, 0, . . . , 0) ∈ Z3n−3m+3.

Second, Lemma 3.2.5 guarantees that there exists an integral convex polytope
whose δ-vector coincides with

(1, 0, . . . , 0, 1︸︷︷︸
mth

, 0, . . . , 0, 1︸︷︷︸
nth

, 0, . . . , 0) ∈ Zn+m+3.

Finally, by using Lemma 3.2.3, there exists an integral convex polytope P of
dimension d with

δ(P) = (1, 0, . . . , 0, 1︸︷︷︸
mth

, 0, . . . , 0, 1︸︷︷︸
nth

, 0, . . . , 0) ∈ Zd+1,

as desired.

3.3 The case where
∑d

i=0 δi = 4

When
∑d

i=0 δi ≤ 3, the inequalities (3.1) and (3.2) are necessary and sufficient
conditions for a sequence of nonnegative integers (δ0, δ1, . . . , δd) ∈ Zd+1 with δ0 = 1
to be a δ-vector of an integral convex polytope of dimension d. However, when∑d

i=0 δi = 4, as shown in Example 3.2.2, there exists a counterexample, namely,
(3.1) and (3.2) are not sufficient. Thus, we have to impose more restrictions on
(δ0, δ1, . . . , δd). In this section, we will give the complete classification of the possible
δ-vectors with

∑d
i=0 δi = 4, see Theorem 3.3.6 below. Moreover, similar to the case∑d

i=0 δi ≤ 3, it turns out that all the possible δ-vectors with
∑d

i=0 δi = 4 can be

chosen to be integral simplices. Such a result does not hold when
∑d

i=0 δi = 5, see
Remark 3.3.8.
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3.3.1 An approach to a classification of integral simplices
with a given δ-vector

Let Zd×d denote the set of d × d integral matrices. Recall that a matrix A ∈ Zd×d

is unimodular if det(A) = ±1. Given integral convex polytopes P and Q in Rd

of dimension d, we say that P and Q are unimodularly equivalent if there exists a
unimodular matrix U ∈ Zd×d and an integral vector w such that Q = fU(P) + w,
where fU is the linear transformation in Rd defined by U , i.e., fU(v) = vU for
all v ∈ Rd. Clearly, if P and Q are unimodularly equivalent, then δ(P) = δ(Q).
Conversely, given a vector v ∈ Zd+1

≥0 , it is natural to ask for a description of all the
integral polytopes P under unimodular equivalence, such that δ(P) = v.

We will focus on the above problem for simplices with one vertex at the origin. In
addition, we do not allow any shifts in the equivalence, i.e., integral convex polytopes
P and Q of dimension d are equivalent if there exists a unimodular matrix U , such
that Q = fU(P). By considering the δ-vectors of all the integral simplices up to this
equivalence, whose normalized volumes are 4, we obtain Theorem 3.3.6.

To discuss the representative under this equivalence of the integral simplices with
one vertex at the origin, we consider Hermite normal forms.

Let P ⊂ Rd be an integral simplex of dimension d whose the vertices are
(0, . . . , 0), v1, . . . , vd. Define M(P) ∈ Zd×d to be the matrix with the row vectors
v1, . . . , vd. Then we have the following connection between the matrix M(P) and
the δ-vector of P : | det(M(P))| =

∑
i≥0 δi = vol(P). In this setting, P and P ′

are equivalent if and only if M(P) and M(P ′) have the same Hermite normal form.
Here, the Hermite normal form of a nonsingular integral square matrix B is a unique
nonnegative lower triangular matrix A = (aij) ∈ Zd×d

≥0 such that A = BU for some
unimodular matrix U ∈ Zd×d and 0 ≤ aij < aii for all 1 ≤ j < i, see [66, Chapter 4].
In other words, we can pick the Hermite normal form as the representative in each
equivalence class and study the following

Problem 3.3.1. Given a vector v ∈ Zd+1
≥0 , classify all possible d × d matrices A ∈

Zd×d which are in Hermite normal form with δ(P) = (δ0, δ1, . . . , δd) = v, where
P ⊂ Rd is the integral simplex whose vertices are the row vectors of A together with
the origin in Rd.

3.3.2 An algorithm for the computation of the δ-vector of a
simplex

In this subsection, we introduce an algorithm for calculating the δ-vector of integral
simplices arising from Hermite normal forms.

Let M ∈ Zd×d. We write P(M) for the integral simplex whose vertices are the
row vectors of M together with the origin in Rd. We will present an algorithm to
compute the δ-vector of P(M). To make the notation clear, we assume d = 3. The
general case is completely analogous. Let A be the Hermite normal form of M . We

24



have that {P(M) ∩ Zd} is in bijection with {P(A) ∩ Zd}. By definition,

A =

a11 0 0
a21 a22 0
a31 a32 a33

 ,

where each aij is a nonnegative integer.
For a vector λ = (λ1, λ2, λ3), consider

b(λ) := (λ1, λ2, λ3)A = (a11λ1 + a21λ2 + a31λ3, a22λ2 + a32λ3, a33λ3).

Then it is clear that the set of interior points inside P(A) ((P(A)− ∂P(A))∩Z3) is
in bijection with the set

{(λ1, λ2, λ3) | λi > 0, λ1 + λ2 + λ3 < 1, b(λ) ∈ Z3}.

We observe that for any n ∈ N, n(P(A) − ∂P(A)) ∩ Z3 is in bijection with

{(λ1, λ2, λ3) | λi > 0, λ1 + λ2 + λ3 < n, b(λ) ∈ Z3}.

We first consider all positive vectors λ satisfying b(λ) ∈ Z3. By the lower trian-
gularity of the Hermite normal form, we can start from the last coefficient of b(λ)
and move forward. Then it is not hard to see that each vector λ has the following
form:

λ3 = λk,k3

3 :=
k

a33

+ k3, λ2 = λjk,k2

2 :=
j − {a32λ

k
3}

a22

+ k2

and

λ1 = λijk,k1

1 :=
i − {a21λ

jk
2 + a31λ

k
3}

a11

+ k1

for some nonnegative integers k3, k2, k1, where k ∈ {1, 2, . . . , a33}, j ∈ {1, 2, . . . , a22},
i ∈ {1, 2, . . . , a11} and λijk

1 = λijk,0
1 , λjk

2 = λjk,0
2 , λk

3 = λk,0
3 . We call all the vectors λ

with the same index (i, j, k) the congruence class of (i, j, k).
Now we consider the condition λ1 + λ2 + λ3 < n in the above bijection. As n

increases, we wish to know when it is the first time that a congruence class (i, j, k)
produces interior points inside nP(A). In other words, for a fixed (i, j, k) we want
to find the smallest n such that λ1 + λ2 + λ3 < n with λ1, λ2, λ3 > 0. It is clear
that this happens when k1 = k2 = k3 = 0 and

n = bλijk
1 + λjk

2 + λk
3c + 1 =: sijk.

Finally, when n grows larger than sijk, we want to consider how many interior
points this fixed congruence class produces. Let n = sijk + `, so each interior point

corresponds to a choice of k1 ≥ 0, k2 ≥ 0, k3 ≥ 0 in the formula of λijk,k1

1 , λij,k2

2 and
λi,k3

3 such that k1 + k2 + k3 ≤ `. There are
(

d+`
`

)
choices in total.

In summary, the following two facts hold for each congruence class (i, j, k), k ∈
{1, 2, . . . , a33}, j ∈ {1, 2, . . . , a22}, i ∈ {1, 2, . . . , a11}:
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1. sijk is the smallest n such that this congruence class contributes interior points
in the n-th dilation of P(A);

2. In the (sijk + `)-th dilation of P(A), this congruence class contributes
(

d+`
`

)
interior points.

The previous considerations imply the d = 3 instance of the following theorem. The
general d case follows in analogous manner.

Theorem 3.3.2 ([34, Theorem 2.1]). Let P(A) be a simplex of dimension d cor-
responding to a d × d matrix A = (aij) ∈ Zd×d. Then the generating function for
i∗(P(A), n) is given by

∞∑
n=1

i∗(P(A), n)tn = (1 − t)−(d+1)
∑

(i1,...,id)
1≤ij≤aij

tsi1···id ,

where

si1···id =

⌊ d∑
k=1

λ
ik,ik+1,...id
k

⌋
+ 1,

with

λid
d =

id
add

,

and

λ
ik,ik+1,...id
k = a−1

kk

(
ik −

{ d∑
h=k+1

ahkλ
ihih+1...id
h

})
, for 1 ≤ k < d.

By the reciprocity law (2.2), we have

δP(A)(t) =
∑

(i1,...,id)
1≤ij≤aij

td+1−si1...id .

Example 3.3.3. Let A be the 4 × 4 matrix
1 0 0 0
0 1 0 0
1 1 2 0
1 0 1 3

 .

Then, for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3,

λij
2 = 1 − {λij

3 }, λij
1 = 1 − {λij

3 + λj
4},

where

λj
4 =

j

3
, λij

3 =
i − {λj

4}
2

, λij
2 = 1 − {λij

3 }, λij
1 = 1 − {λij

3 + λj
4}.
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From this we compute

s11 = 2, s21 = 3, s12 = 2, s22 = 3, s13 = 3, s23 = 5,

so that

δP(A)(t) =
3∑

i=1

2∑
j=1

td+1−sij = 1 + 3t2 + 2t3,

and thus
δ(P(A)) = (1, 0, 3, 2, 0).

3.3.3 “One row” Hermite normal forms

In this subsection, we study the δ-vectors for some special Hermite normal forms.
Results in this section are direct applications of the algorithm developed in the
previous section.

Consider all d×d matrices with positive determinant D and the following Hermite
normal form.

AD =



1
. . .

1
a1 · · · ak−1 D

1
. . .

1


∈ Zd×d (3.4)

for some k ∈ {1, 2, . . . , d}, where a1, . . . , ak−1 are nonnegative integers smaller than
D and all other entries are zero. Let dj denote the number of j’s among these a`’s,
for j = 1, . . . , D − 1. Then we can simplify Theorem 3.3.2 for these “one row”
Hermite normal forms.

Corollary 3.3.4. Let M ∈ Zd×d with det(M) = D and P(M) be the corresponding
integral simplex. If its Hermite normal form is of the form as in (3.4), then we have

δP(M)(t) =
D∑

i=1

td+1−si ,

where

si =

⌊
i

D
−

D−1∑
j=1

{
ij

D

}
dj

⌋
+ d. (3.5)

Proof. Consider

b(λ) = (λ1, . . . , λk, . . . , λd)AD = (λ1 + a1λk, . . . , λk−1 + ak−1λk, Dλk, λk+1, . . . , λd).
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Using the notation from the proof of Theorem 3.3.2, we have, for i = 1, 2, . . . , D,

λi
k =

i

D
, λi

` = 1 −
{

a`
i

D

}
, for ` = 1, . . . , k − 1

and
λi

k+1 = · · · = λi
d = 1.

Therefore, si = 1 + bλi
1 + · · · + λi

dc =

⌊
i
D
−

∑D−1
j=1

{
ij
D

}
dj

⌋
+ d.

Assume, in addition, that dD−1 = d − 1 in Corollary 3.3.4, i.e., the Hermite
normal form takes the form

1
1

. . .

1
D − 1 D − 1 · · · D − 1 D

 . (3.6)

Then we have

Corollary 3.3.5 (All D − 1). For a matrix M ∈ Zd×d with Hermite normal form
(3.6), we have

δP(M)(t) =
D∑

i=1

td+1−si , where si =

⌊
id

D

⌋
+ 1.

3.3.4 Classification of Hermite normal forms with a given
δ-vector

In this subsection, by applying the algorithm Theorem 3.3.2, we consider Problem
3.3.1 with the assumption that the matrix A ∈ Zd×d has prime determinant, i.e., A is
of the form (3.4), with only one general row. By Corollary 3.3.4, in order to classify
all possible Hermite normal forms (3.4) with a given δ-vector (δ0, δ1, . . . , δd), we need
to find all nonnegative integer solutions (d1, d2, . . . , dD−1) with d1+d2+ · · ·+dD−1 ≤
d − 1 such that

|{i : d + 1 − si = j, for i = 1, . . . , D}| = δj, for j = 0, . . . , d.

By Corollary 3.3.4, we can build equations with “floor” expressions for (d1, d2, . . . , dD−1).
Removing the “floor” expressions, we obtain D linear equations of (d1, d2, . . . , dD−1)
with different constant terms but the same D × D coefficient matrix M . Then we
first find all integer solutions (d1, d2, . . . , dD−1) and check every candidate using the
restrictions of nonnegativity and d1 + d2 + · · · + dD−1 ≤ d − 1.

For D = 2 and 3, the coefficient matrix M is nonsingular, so we can write down
the complete solutions, as presented in the first two subsections. For larger primes,
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the coefficient matrix becomes singular, so there are free variables in the integer
solutions (d1, d2, . . . , dD−1), which make it very hard to simplify the final solutions
after the test.

The idea is similar for Hermite normal forms with non prime determinant. In-
stead of using Corollary 3.3.4, we need to use the formulas in Theorem 3.3.2. We
will also present the complete solution for D = 4 below.

A solution of Problem 3.3.1 when
∑d

i=0 δi = 2.

First, we give a solution of Problem 3.3.1 when
∑d

i=0 δi = 2, i.e., given a δ-

vector (δ0, δ1, . . . , δd) with
∑d

i=0 δi = 2, we classify all the integral simplices with
(δ0, δ1, . . . , δd) arising from Hermite normal forms with determinant 2.

We consider all Hermite normal forms (3.4) with D = 2, namely,

A2 =



1
. . .

1
∗ · · · ∗ 2

1
. . .

1


, (3.7)

where there are d1 1’s among the a1, . . . , ak−1. Notice that the position of the row
with a 2 does not affect the δ-vector, so the only variable is d1. By Corollary 3.3.4,
we have a formula for the δ-vector of this integral simplex P(A2). Denote

k = 1 −
⌊

1 − d1

2

⌋
.

Then one has δ0 = δk = 1.
By this formula, we can characterize all Hermite normal forms with a given δ-

vector. Let δ0 = δi = 1. Then by solving the equation i = 1 − b(1 − d1)/2c, we
obtain d1 = 2i − 2 and d1 = 2i − 1, both cases will give us the desired δ-vector.

Notice that there is a constraint on d1 given by 0 ≤ d1 ≤ d− 1. Not all δ-vectors
are obtained from simplices. But we can easily get the appropriate conditions on i
and the corresponding d1 as follows (by d1 ≥ 0, we have i ≥ 1):

1. If i ≤ d/2, d1 = 2i − 2 and d1 = 2i − 1 both work, and these give all the
matrices with this δ-vector.

2. If i = (d + 1)/2, only d1 = 2i − 2 = d − 1 works.

3. If i > (d + 1)/2, there is no solution.

Now, this result has been obtained essentially in Theorem 3.2.1. In fact, the
inequality i ≤ (d + 1)/2 means that the δ-vector satisfies (3.2).
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A solution of Problem 3.3.1 when
∑d

i=0 δi = 3.
We consider all Hermite normal forms (3.4) with D = 3, namely,

A3 =



1
. . .

1
∗ · · · ∗ 3

1
. . .

1


, (3.8)

where there are d1 1’s and d2 2’s among the a1, . . . , ak−1. The position of the row
with one 3 does not affect the δ-vector, so the only variables are d1 and d2. Also,
by Corollary 3.3.4, we have δP(A3)(t) = 1 + tk1 + tk2 , where

k1 = 1 −
⌊

1 − d1 − 2d2

3

⌋
and k2 = 1 −

⌊
2 − 2d1 − d2

3

⌋
.

Then by the formula, we can characterize all Hermite normal forms with a given
δ-vector using arguments similar to

∑d
i=0 δi = 2. Let δP(A3)(t) = 1 + ti + tj. Set

i = 1 −
⌊

1 − d1 − 2d2

3

⌋
and j = 1 −

⌊
2 − 2d1 − d2

3

⌋
.

(Later reverse the role of i and j if i 6= j, in both equations and solutions.) The
solutions for (d1, d2) are

d(1) =

{
d1 = 2j − i

d2 = 2i − j − 1,
d(2) =

{
d1 = 2j − i − 1

d2 = 2i − j − 1
and d(3) =

{
d1 = 2j − i

d2 = 2i − j − 2.

In addition, by the restriction on (d1, d2) that d1, d2 ≥ 0 and d1 + d2 ≤ d − 1, we
have the following characterizations:

Table 3.1: Characterizations for matrices of the form A3

2j 2i i + j solutions

≥ i ≥ j + 1 ≤ d d(1)

≥ i + 1 ≥ j + 1 ≤ d + 1 d(2)

≥ i ≥ j + 2 ≤ d + 1 d(3)

1. If 2j ≥ i, 2i ≥ j + 1 and i + j ≤ d, then the solution d(1) will work and this
gives all the matrices with this δ-vector.

2. If 2j ≥ i + 1, 2i ≥ j + 1 and i + j ≤ d + 1, then the solution d(2) will work and
this gives all the matrices with this δ-vector.
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3. If 2j ≥ i, 2i ≥ j +2 and i+ j ≤ d+1, then the solution d(3) will work and this
gives all the matrices with this δ-vector.

4. If {i, j} in the given vector does not satisfy any of the above cases, there is no
matrix with this vector as its δ-vector.

Again, this result has been obtained in Theorem 3.2.1. In fact, for example, the
inequality 2j ≥ i means that (3.1) holds and the inequality i+ j ≤ d+1 means that
(3.2) holds.

Notice that only the solution

d(2) =

{
d1 = d − 1

d2 = 0

works when i = (d + 2)/3 and j = (2d + 1)/3. This happens when d ≡ 1 (mod 3)
and there is only one matrix with d1 = d−1 and d2 = 0. Similarly, only the solution

d(3) =

{
d1 = 0

d2 = d − 1

works when i = (2d + 2)/3 and j = (d + 1)/3. This happens when d ≡ 2 (mod 3)
and again, there is only one matrix with d1 = 0 and d2 = d − 1.

A solution of Problem 3.3.1 when
∑d

i=0 δi = 4.
When the determinant is 4, there are two cases of Hermite normal forms. One is
the Hermite normal forms (3.4) with D = 4, namely,

A4 =



1
. . .

1
∗ · · · ∗ 4

1
. . .

1


, (3.9)

where there are d1 1’s, d2 2’s and d3 3’s among ∗’s. where there are d1 1’s, d2 2’s
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and d3 3’s among the a1, . . . , ak−1. The other hermit normal form takes the form

A′
4 =



1
. . .

1
∗ · · · ∗ 2

1
. . .

1
∗̇ · · · ∗̇ ∗̄ ∗̇ · · · ∗̇ 2

1
. . .


, (3.10)

where there are d1 1’s (resp. d′
1 1’s) among ∗’s (resp. ∗̇’s), there are e1 1’s (resp. e′1

1’s) among the ∗’s (resp. ∗̇’s) of which the entry of the row of ∗̇ (resp. ∗) in the
same column is 0. Also, set d′′

1 = e1 + e′1. (For example, a 6 × 6 Hermite normal
form 

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 1 2 0 0
0 0 0 0 1 0
1 1 0 1 1 2


is a matrix (3.10) with d1 = 2, d′

1 = 3, e1 = 1, e′1 = 2, d′′
1 = 3 and ∗̄ = 1.)

First, we consider the Hermite normal forms A4. Then, by Corollary 3.3.4, we
have δP(A4)(t) = 1 + tk1 + tk2 + tk3 , where

k1 = 1−
⌊

1 − d1 − 2d2 − 3d3

4

⌋
, k2 = 1−

⌊
1 − d1 − d3

2

⌋
and k3 = 1−

⌊
3 − 3d1 − 2d2 − d3

4

⌋
.

Let δP(A4)(t) = 1 + ti + tj + tk. We get three sets of equations:

i = 1−
⌊

1 − d1 − 2d2 − 3d3

4

⌋
, j = 1−

⌊
1 − d1 − d3

2

⌋
and k = 1−

⌊
3 − 3d1 − 2d2 − d3

4

⌋
.

(Later replace the roles of i, j and k if any of the three are distinct.) The solutions
for (d1, d2, d3) are

d(1) =


d1 = −i + j + k − 1

d2 = i − 2j + k

d3 = i + j − k − 1,

d(2) =


d1 = −i + j + k

d2 = i − 2j + k

d3 = i + j − k − 2,

d(3) =


d1 = −i + j + k

d2 = i − 2j + k

d3 = i + j − k − 1

d(4) =


d1 = −i + j + k

d2 = i − 2j + k − 1

d3 = i + j − k − 1.
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In addition, by the restriction on (d1, d2, d3) that d1, d2, d3 ≥ 0 and d1+d2+d3 ≤ d−1,
we have the following characterizations:

Table 3.2: Characterizations for matrices of the form A4

j + k 2j i + j solutions

≥ i + 1 ≤ i + k ≤ d + 1 ≥ k + 1 d(1)

≥ i ≤ i + k ≤ d + 1 ≥ k + 2 d(2)

≥ i ≤ i + k ≤ d ≥ k + 1 d(3)

≥ i ≤ i + k − 1 ≤ d ≥ k + 1 d(4)

1. If j + k ≥ i + 1, 2j ≤ i + k ≤ d + 1 and i + j ≥ k + 1, then the solution d(1)

will work and this gives all the matrices with this δ-vector.

2. If j + k ≥ i, 2j ≤ i + k ≤ d + 1 and i + j ≥ k + 2, then the solution d(2) will
work and this gives all the matrices with this δ-vector.

3. If j + k ≥ i, 2j ≤ i + k ≤ d and i + j ≥ k + 1, then the solution d(3) will work
and this gives all the matrices with this δ-vector.

4. If j + k ≥ i, 2j + 1 ≤ i + k ≤ d + 1 and i + j ≥ k + 1, then the solution d(4)

will work and this gives all the matrices with this δ-vector.

5. If {i, j, k} in the given vector does not satisfy any of the above cases, there is
no matrix A4 with this vector as its δ-vector.

Notice that only the solution

d(2) =


d1 = 0

d2 = 0

d3 = d − 1

works when i = (3d + 3)/4, j = (d + 1)/2 and k = (d + 1)/4. This happens when
d ≡ 3 (mod 4) and there is only one matrix with d3 = d − 1. Similarly, only the
solution

d(1) =


d1 = d − 1

d2 = 0

d3 = 0

works when i = (d + 3)/4, j = (d + 1)/2 and k = (3d + 1)/4. This happens when
d ≡ 1 (mod 4) and again, there is only one matrix with d1 = d − 1.

Next, we consider the Hermite normal forms (3.10). However, we need to consider
two cases, which are the cases where ∗̄ = 0 and ∗̄ = 1.
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First, we consider the case with ∗̄ = 0. Notice that the variables are d1, d
′
1 and

d′′
1. Obviously we cannot use Corollary 3.3.4, but we apply Theorem 3.3.2 directly.

Thus we have δP(A′
4)(t) = 1 + tk1 + tk2 + tk3 , where

k1 =

⌊
d1 + 2

2

⌋
, k2 =

⌊
d′

1 + 2

2

⌋
and k3 =

⌊
d′′

1 + 3

2

⌋
.

Let δP(A′
4)(t) = 1 + ti + tj + tk. We get three sets of equations:

i =

⌊
d1 + 2

2

⌋
, j =

⌊
d′

1 + 2

2

⌋
and k =

⌊
d′′

1 + 3

2

⌋
.

or replace the role of i, j and k if i, j and k are distinct, in all equations and solutions.
Since d1 + d′

1 + d′′
1 is even, the solutions for (d1, d

′
1, d

′′
1) are

d(1) =


d1 = 2i − 2

d′
1 = 2j − 1

d′′
1 = 2k − 3,

d(2) =


d1 = 2i − 1

d′
1 = 2j − 2

d′′
1 = 2k − 3,

d(3) =


d1 = 2i − 1

d′
1 = 2j − 1

d′′
1 = 2k − 2

d(4) =


d1 = 2i − 2

d′
1 = 2j − 2

d′′
1 = 2k − 2.

In addition, by the restriction on (d1, d
′
1, d

′′
1) that 0 ≤ d1 ≤ d− 2, 0 ≤ d′

1 ≤ d− 2,
0 ≤ d′′

1 ≤ d− 2, d1 + d′
1 + d′′

1 ≤ 2(d− 2), d′′
1 ≤ d1 + d′

1, d′
1 ≤ d1 + d′′

1 and d1 ≤ d′
1 + d′′

1,
we have the following characterizations:

Table 3.3: Characterizations for matrices of the form (3.10) with ∗̄ = 0
i j k i + j i + k j + k i + j + k solutions

≤
⌊

d
2

⌋
≤

⌊
d−1
2

⌋
≥ 2, ≥ k ≥ j + 2 ≥ i + 1 ≤ d + 1 d(1)

≤
⌊

d+1
2

⌋
≤

⌊
d−1
2

⌋
≤

⌊
d
2

⌋
≥ 2, ≥ k ≥ j + 1 ≥ i + 2 ≤ d + 1 d(2)

≤
⌊

d+1
2

⌋
≤

⌊
d−1
2

⌋
≤

⌊
d−1
2

⌋
≤

⌊
d
2

⌋
≥ k ≥ j + 1 ≥ i + 1 ≤ d d(3)

≤
⌊

d
2

⌋
≤

⌊
d
2

⌋
≤

⌊
d
2

⌋
≥ k + 1 ≥ j + 1 ≥ i + 1 ≤ d + 1 d(4)

1. If i ≤ bd/2c, j ≤ b(d − 1)/2c, 2 ≤ k ≤ b(d + 1)/2c, i + j + k ≤ d + 1, k ≤
i + j, j + 2 ≤ i + k and i + 1 ≤ j + k, then the solution d(1) will work and this
gives all the matrices with this δ-vector.
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2. If i ≤ b(d − 1)/2c, j ≤ bd/2c, 2 ≤ k ≤ b(d + 1)/2c, i + j + k ≤ d + 1, k ≤
i + j, j + 1 ≤ i + k and i + 2 ≤ j + k, then the solution d(2) will work and this
gives all the matrices with this δ-vector.

3. If i, j ≤ b(d − 1)/2c, k ≤ bd/2c i + j + k ≤ d, k ≤ i + j, j + 1 ≤ i + k and
i + 1 ≤ j + k, then the solution d(3) will work and this gives all the matrices
with this δ-vector.

4. If i, j, k ≤ bd/2c, i+j+k ≤ d+1, k+1 ≤ i+j, j+1 ≤ i+k and i+1 ≤ j+k, then
the solution d(4) will work and this gives all the matrices with this δ-vector.

5. If {i, j, k} in the given vector does not satisfy any of the above cases, there is
no matrix (3.10), where ∗̄ = 0, with this vector as its δ-vector.

Next, we consider the case with ∗̄ = 1. By Theorem 3.3.2, we have δP(A′
4)(t) =

1 + tk1 + tk2 + tk3 , where

k1 = 1 −
⌊

1 − d1 − 2d′′
1

4

⌋
, k2 = 1 −

⌊
1 − d1

2

⌋
and k3 = 2 −

⌊
3 − d1 − 2d′

1

4

⌋
.

Let δP(A′
4)(t) = 1 + ti + tj + tk. We get three sets of equations:

i = 1 −
⌊

1 − d1 − 2d′′
1

4

⌋
, j = 1 −

⌊
1 − d1

2

⌋
and k = 2 −

⌊
3 − d1 − 2d′

1

4

⌋
.

or replace the roles of i, j and k if i, j and k are distinct. Since d1 + d′
1 + d′′

1 is even,
the solutions for (d1, d

′
1, d

′′
1) are

d(1) =


d1 = 2j − 1

d′
1 = 2k − j − 3

d′′
1 = 2i − j − 2,

d(2) =


d1 = 2j − 1

d′
1 = 2k − j − 2

d′′
1 = 2i − j − 1,

d(3) =


d1 = 2j − 2

d′
1 = 2k − j − 3

d′′
1 = 2i − j − 1

d(4) =


d1 = 2j − 2

d′
1 = 2k − j − 2

d′′
1 = 2i − j − 2.

In addition, by the restriction on (d1, d
′
1, d

′′
1) that 0 ≤ d1 ≤ d − 2, 0 ≤ d′

1 ≤ d − 2,
0 ≤ d′′

1 ≤ d− 2, d1 + d′
1 + d′′

1 ≤ 2(d− 2), d′′
1 ≤ d1 + d′

1, d′
1 ≤ d1 + d′′

1 and d1 ≤ d′
1 + d′′

1,
we have the following characterizations:

1. If j + 3 ≤ 2k ≤ d + j + 1, j + 2 ≤ 2i ≤ d + j, 2j ≤ d − 1, k ≤ i + j,
2j + 2 ≤ i + k ≤ d + 1 and i + 1 ≤ j + k, then the solution d(1) will work and
this gives all the matrices with this δ-vector.

2. If j + 2 ≤ 2k ≤ d + j, j + 1 ≤ 2i ≤ d + j − 1, 2j ≤ d − 1, k ≤ i + j,
2j + 1 ≤ i + k ≤ d and i + 1 ≤ j + k, then the solution d(2) will work and this
gives all the matrices with this δ-vector.
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Table 3.4: Characterizations for matrices of the form (3.10) with ∗̄ = 1
2k 2i 2j i + j i + k j + k solutions

≥ j + 3, ≥ j + 2, ≤ d − 1 ≥ k ≥ 2j + 2, ≥ i + 1 d(1)

≤ d + j + 1 ≤ d + j ≤ d + 1

≥ j + 2, ≥ j + 1, ≤ d − 1 ≥ k ≥ 2j + 1, ≥ i + 1 d(2)

≤ d + j ≤ d + j − 1 ≤ d

≥ j + 3, ≥ j + 1, ≤ d ≥ k ≥ 2j + 1, ≥ i + 2 d(3)

≤ d + j + 1 ≤ d + j − 1 ≤ d + 1

≥ j + 2, ≥ j + 2, ≤ d ≥ k + 1 ≥ 2j + 1, ≥ i + 1 d(4)

≤ d + j ≤ d + j ≤ d + 1

3. If j + 3 ≤ 2k ≤ d + j + 1, j + 1 ≤ 2i ≤ d + j − 1, 2j ≤ d, k ≤ i + j,
2j + 1 ≤ i + k ≤ d + 1 and i + 2 ≤ j + k, then the solution d(3) will work and
this gives all the matrices with this δ-vector.

4. If j+2 ≤ 2k ≤ d+j, j+2 ≤ 2i ≤ d+j, 2j ≤ d, k+1 ≤ i+j, 2j+1 ≤ i+k ≤ d+1
and i+1 ≤ j+k, then the solution d(4) will work and this gives all the matrices
with this δ-vector.

5. If {i, j, k} in the given vector does not satisfy any of the above cases, there is
no matrix (3.10) with this vector as its δ-vector.

Notice that only the solution

d(3) =


d1 = d − 2

d′
1 = d − 2

d′′
1 = 0

works when i = (d + 2)/4, j = d/2 and k = (3d + 2)/4. This happens when
d ≡ 2 (mod 4) and there is only one matrix with d1 = d′

1 = d − 2. Similarly, only
the solution

d(4) =


d1 = d − 2

d′
1 = 0

d′′
1 = d − 2

works when i = 3d/4, j = d/2 and k = d/4 + 1. This happens when d ≡ 0 (mod 4)
and again, there is only one matrix with d1 = d′′

1 = d − 2.

3.3.5 A classification of the possible δ-vectors with
∑d

i=0 δi =
4

Finally, we classify the possible δ-vectors with
∑d

i=0 δi = 4 using results from the
previous subsection.
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As described above, we need some new constraints on δ-vectors. For explaining
such required constraints, we introduce some notations. Let (δ0, δ1, . . . , δd) be the
δ-vector of some integral convex polytope with

∑d
i=0 δi = 4 and let 1 + ti1 + ti2 + ti3

with 1 ≤ i1 ≤ i2 ≤ i3 ≤ d be a polynomial in t satisfying
∑d

i=0 δit
i = 1+ti1 +ti2 +ti3 .

Note that (δ0, δ1, . . . , δd) satisfies the inequalities (3.1) and (3.2) which are necessary
conditions to be a possible δ-vector. Then (3.1) and (3.2) lead into the following
inequalities on (i1, i2, i3):

i3 ≤ i1 + i2, i1 + i3 ≤ d + 1 and i2 ≤ b(d + 1)/2c. (3.11)

By using these, the classification of possible δ-vectors of integral convex polytopes
with

∑d
i=0 δi = 4 is given by the following

Theorem 3.3.6 ([34, Theorem 5.1]). Let 1 + ti1 + ti2 + ti3 be a polynomial with
1 ≤ i1 ≤ i2 ≤ i3 ≤ d. Then there exists an integral convex polytope P ⊂ Rd of
dimension d whose δ-polynomial equals 1 + ti1 + ti2 + ti3 if and only if (i1, i2, i3)
satisfies (3.11) and the additional condition

2i2 ≤ i1 + i3 or i2 + i3 ≤ d + 1. (3.12)

Moreover, all these polytopes can be chosen to be simplices.

Proof. There are four cases: (1) i1 = i2 = i3, (2) i1 < i2 = i3, (3) i1 = i2 < i3,
(4) i1 < i2 < i3. We will show that in each case (3.11) together with (3.12) are the
necessary and sufficient conditions for 1 + ti1 + ti2 + ti3 to be the δ-polynomial of
some integral convex polytope.

(1) Assume i1 = i2 = i3 = `. By the inequalities (3.11), we have 1 ≤ ` ≤
b(d + 1)/2c. Set i = j = k = `. We have

j + k ≥ i + 1, 2j ≤ i + k ≤ d + 1 and i + j ≥ k + 1. (3.13)

Thus, by our result on the classification in the case of a matrix of the form A4

(Table 3.2, the solution d(1)), there exists an integral simplex whose δ-vector is of
the form (1, 0, . . . , 0, 3, 0, . . . , 0).

On the other hand, if there exists an integral convex polytope with this δ-vector,
then (3.11) holds since it is a necessary condition. In this case, both inequalities in
(3.12) hold.

(2) Assume ` = i1 < i2 = i3 = `′. By (3.11), we have 1 ≤ ` < `′ ≤ b(d + 1)/2c.
Let j = ` and i = k = `′. Then the inequalities (3.13) hold. Thus there exists an
integral simplex whose δ-vector is (1, 0, . . . , 0, 1, 0, . . . , 0, 2, 0, . . . , 0).

On the other hand, if there exists an integral convex polytope with this δ-vector,
then we have (3.11) and i2 + i3 ≤ d + 1 follows from i2 ≤ b(d + 1)/2c.

(3) Assume ` = i1 = i2 < i3 = `′. Set i = `′ and j = k = `. Then it follows from
(3.11) that

j + k ≥ i, 2j + 1 ≤ i + k ≤ d + 1 and i + j ≥ k + 1.
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Thus, by our result (Table 3.2, the solution d(4)), there exists an integral simplex
whose δ-vector is (1, 0, . . . , 0, 2, 0, . . . , 0, 1, 0, . . . , 0).

On the other hand, if there exists an integral convex polytope with this δ-vector,
then (3.11) holds. In this case, both inequalities in (3.12) hold.

(4) Assume 1 ≤ i1 < i2 < i3 ≤ d. Suppose 2i2 ≤ i1 + i3 holds. Set i = i3, j = i2
and k = i1. Then we have j + k = i1 + i2 ≥ i3 = i, 2j = 2i2 ≤ i1 + i3 = i+ k ≤ d+1
and i + j = i2 + i3 ≥ 2i2 + 1 ≥ 2i1 + 3 > i1 + 2 = k + 2. Thus, by our result
(Table 3.2, the solution d(2)), there exists an integral simplex whose δ-vector is
(1, 0 . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0).

Suppose i2 + i3 ≤ d + 1 holds. Set i = i3, j = i1 and k = i2. Then we have
j + k = i1 + i2 ≥ i3 = i, 2j = 2i1 < i2 + i3 = i + k ≤ d + 1 and i + j = i1 + i3 ≥ i1 +
i2 +1 ≥ i2 +2 = k+2. Thus, by our result (Table 3.2, the solution d(2)), there exists
an integral simplex whose δ-vector is (1, 0 . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0).

On the other hand, assume the contrary of (3.12): both 2i2 > i1 + i3 and
i2 + i3 > d + 1 hold. We claim that there exists no integral convex polytope P with
this δ-vector. First we want to show that if there exists such a polytope, it must be
a simplex. Note that the δ-vector satisfies (3.11). Suppose i1 = 1. It then follows
from (3.11) and i2 + i3 > d + 1 that i2 = (d + 1)/2 and i3 = (d + 3)/2. However,
this contradicts (3.2). Therefore i1 > 1, and thus δ1 = 0. By the explanation after
equation (2.1), P must be a simplex. Now we can apply our characterization results
for simplices.

If we set j = i3, then 2j = 2i3 > i1 + i2 = i + k. If we set j = i2, then
2j = 2i2 > i1 + i3 = i + k. If we set j = i1, then i + k = i2 + i3 > d + 1. In any case
there does not exist an Hermite normal form A4 whose δ-polynomial coincides with
1 + ti1 + ti2 + ti3 .

Moreover, since i + j + k = i1 + i2 + i3 > i2 + i3 > d + 1, there does not
exist an Hermite normal form (3.10) with ∗̄ = 0 whose δ-polynomial coincides with
1 + ti1 + ti2 + ti3 .

In addition, if we set j = i3, then 2j = 2i3 > i1 + i2 = i + k. If we set j = i2,
then 2j = 2i2 > i1 + i3 = i + k. If we set j = i1, then i + k = i2 + i3 > d + 1. Thus
there does not exist an Hermite normal form (3.10) with ∗̄ = 1 whose δ-polynomial
coincides with 1 + ti1 + ti2 + ti3 .

Examples 3.3.7. (a) We consider the integer sequence (1, 0, 1, 1, 0, 1, 0). Then
one has i1 = 2, i2 = 3, i3 = 5 and d = 6. Since (3.1) and (3.2) are satisfied and
2i2 ≤ i1 + i3 holds, there is an integral convex polytope whose δ-vector coincides
with (1, 0, 1, 1, 0, 1, 0) by Theorem 3.3.6. In fact, let M ∈ Z6×6 be the Hermite
normal form (3.9) with (d1, d2, d3) = (0, 1, 4) or (0, 0, 5). Then we have δ(P(M)) =
(1, 0, 1, 1, 0, 1, 0).

(b) There is no integral convex polytope with its δ-vector (1, 0, 1, 0, 1, 1, 0, 0) since
we have 2i2 > i1 + i3 and i2 + i3 > d+1, although this integer sequence satisfies (3.1)
and (3.2). (See Example 3.2.2.) However, there exists an integral convex polytope
with its δ-vector (1, 0, 1, 0, 1, 1, 0, 0, 0) since i2 + i3 = d + 1 holds.
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Remark 3.3.8. We see that when
∑d

i=0 δi = 4, all the possible δ-vectors can be

obtained by simplices. This is also true for all δ-vectors with
∑d

i=0 δi ≤ 3. However,

when
∑d

i=0 δi = 5, the δ-vector (1, 3, 1) cannot be obtained from any simplex, while
it is a possible δ-vector of an integral convex polygon. In fact, suppose that (1, 3, 1)
can be obtained from a simplex because of [40, Theorem 0.1].

3.4 Towards the case where
∑d

i=0 δi ≥ 5

As shown in Remark 3.3.8, not all the possible δ-vectors can be realized as the δ-
vectors of integral simplices when

∑d
i=0 δi ≥ 5. Therefore, for the classification of

the δ-vectors with
∑d

i=0 δi ≥ 5, it is natural to investigate the δ-vectors of integral

simplices. In particular, the case where
∑d

i=0 δi is prime is of interest, which we
shall explain precisely in this section.

3.4.1 New inequalities on δ-vectors of integral simplices with
prime volumes

In this subsection, we present new inequalities on δ-vectors of integral simplices
whose normlized prime volumes are prime. Concretely, we establish the following

Theorem 3.4.1 ([40, Theorem 0.1]). Let P be an integral simplex of dimension d
and δ(P) = (δ0, δ1, . . . , δd) its δ-vector. Suppose that

∑d
i=0 δi = p is an odd prime

number. Let i1, . . . , ip−1 be the positive integers such that
∑d

i=0 δit
i = 1 + ti1 + · · ·+

tip−1 with 1 ≤ i1 ≤ · · · ≤ ip−1 ≤ d. Then,

(a) one has

i1 + ip−1 = i2 + ip−2 = · · · = i(p−1)/2 + i(p+1)/2 ≤ d + 1;

(b) one has

ik + i` ≥ ik+` for 1 ≤ k ≤ ` ≤ p − 1 with k + ` ≤ p − 1.

Proof. Let v0, v1, . . . , vd be the vertices of the integral simplex P and S(P) the group
appearing in Section 3.1. Then, since vol(P) = p is prime, it follows that the order
of S(P) is also prime. In particular, S(P) ∼= Z/pZ.

(a) Write gi1 , . . . , gip−1 ∈ S(P) \ {(0, . . . , 0)} for (p − 1) distinct elements with
deg(gij) = ij for 1 ≤ j ≤ p − 1, that is, S(P) = {(0, . . . , 0), gi1 , . . . , gip−1}. Then,
for each gij , there exists its inverse −gij in S(P) \ {(0, . . . , 0)}. Let −gij = gi′j

. If

gij has the expression gij =
∑d

q=0 rq(vq, 1), where rq ∈ Q with 0 ≤ rq < 1, then its

inverse has the expression gi′j
=

∑d
q=0{1 − rq}(vq, 1). Thus, one has

deg(gij) + deg(gi′j
) =

d∑
q=0

(rq + {1 − rq}) ≤
d∑

q=0

(rq + 1 − rq) = d + 1
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for all 1 ≤ j ≤ p − 1.
For j1, j2 ∈ {1, . . . , p − 1} with j1 6= j2, let gij1

=
∑d

q=0 r
(1)
q (vq, 1) and gij2

=∑d
q=0 r

(2)
q (vq, 1). Since S(P) ∼= Z/pZ, gij1

generates S(P), which implies that we can
write gij2

and gi′j2
as follows:

gij2
= gij1

⊕ · · · ⊕ gij1︸ ︷︷ ︸
t

, gi′j2
= gi′j1

⊕ · · · ⊕ gi′j1︸ ︷︷ ︸
t

for some integer t ∈ {2, . . . , p − 1}. Thus, we have

d∑
q=0

(r(2)
q + {1 − r(2)

q }) = deg(gij2
) + deg(gi′j2

)

= deg(gij1
⊕ · · · ⊕ gij1︸ ︷︷ ︸

t

) + deg(gi′j1
⊕ · · · ⊕ gi′j1︸ ︷︷ ︸

t

) =
d∑

q=0

({tr(1)
q } + {t(1 − r(1)

q )}).

Moreover, gij1
⊕ · · · ⊕ gij1︸ ︷︷ ︸

p

= (0, . . . , 0) holds. Thus, we have {pr(1)
q } = 0 for all

0 ≤ q ≤ d. Again, since p is prime, it follows that the denominator of each rational
number r

(1)
q must be p. Hence, if 0 < r

(1)
q < 1 (resp. 0 < {1 − r

(1)
q } < 1), then 0 <

{tr(1)
q } < 1 (resp. 0 < {t(1−r

(1)
q )} < 1), so r

(1)
q +{1−r

(1)
q } = {tr(1)

q }+{t(1−r
(1)
q )} =

1. In addition, obviously, if r
(1)
q = {1 − r

(1)
q } = 0, then {tr(1)

q } = {t(1 − r
(1)
q )} = 0,

so r
(1)
q + {1 − r

(1)
q } = {tr(1)

q } + {t(1 − r
(1)
q )} = 0. Thus, deg(gij1

) + deg(gi′j1
) =

deg(gij2
) + deg(gi′j2

), i.e., ij1 + i′j1 = ij2 + i′j2 . Hence, we obtain

i1 + i′1 = · · · = i(p−1)/2 + i′(p−1)/2(= i(p+1)/2 + i′(p+1)/2 = · · · = ip−1 + i′p−1) ≤ d + 1.

Our work is to show that i′j = ip−j for all 1 ≤ j ≤ (p − 1)/2.
First, we consider i′1. Suppose that i′1 6= ip−1. Then, there is m ∈ {1, . . . , p − 2}

with i′1 = im < ip−1. Thus, it follows that

ip−1 + i′p−1 = i1 + i′1 = i1 + im < i1 + ip−1 ≤ i′p−1 + ip−1,

a contradiction. Thus, i′1 must be ip−1. Next, we consider i′2. Since gi′2
6= gi1 and

gi′2
6= gip−1 , we may consider i′2 among {i2, . . . , ip−2}. Then, the same discussion can

be done. Hence, i′2 = ip−2. Similarly, we have i′3 = ip−3, . . . , i
′
(p−1)/2 = i(p+1)/2.

Therefore, we obtain the desired conditions

i1 + ip−1 = i2 + ip−2 = · · · = i(p−1)/2 + i(p+1)/2 ≤ d + 1.

(b) Write gi1 , . . . , gi` ∈ S(P)\{(0, . . . , 0)} for ` distinct elements with deg(gij) =
ij for 1 ≤ j ≤ `. Let A = {gi1 , . . . , gi`}. Then there are k distinct elements
hi1 , . . . , hik in A with deg(hij) = ij for 1 ≤ j ≤ k satisfying |A|+ |B| = k+` ≤ p−1,
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where B = {hi1 , . . . , hik} ⊂ A. Moreover, for each g ∈ A ⊕ B = {a ⊕ b : a ∈ A, b ∈
B}, g satisfies deg(g) ≤ ik + i`. In fact, for gij ∈ A and hij′ ∈ B, if they have the
expressions

gij =
d∑

q=0

rq(vq, 1) and hij′ =
d∑

q=0

r′q(vq, 1),

where rq, r
′
q ∈ Q with 0 ≤ rq, r

′
q < 1, then one has

deg(gij ⊕ hij′ ) =
d∑

q=0

{rq + r′q} ≤
d∑

q=0

(rq + r′q) = ij + ij′ ≤ ik + i`.

Now, by applying the well-known theorem, so-called Cauchy-Davenport theorem
(cf. [50]), it follows that there exist at least k elements in A ⊕ B \ A ∪ {(0, . . . , 0)}.
In addition, each gij in A satisfies deg(gij) ≤ i` ≤ ik + i`. Thus, we can say that
there exist at least (k + `) distinct elements in S(P)\{(0, . . . , 0)} whose degrees are
at most ik + i`. From the definition of i1, . . . , ip−1, this means that ik + i` ≥ ik+`, as
desired.

Remark 3.4.2. (a) When i1 + ip−1 = · · · = i(p−1)/2 + i(p+1)/2 = d + 1, the δ-vector is
shifted symmetric. Shifted symmetric δ-vectors are studied in [37]. Moreover, the
theorem [37, Theorem 2.3] says that if i1 + ip−1 = d + 1, then we have i1 + ip−1 =
· · · = i(p−1)/2 + i(p+1)/2 = d + 1.

(b) The inequalities i1 + i` ≥ i`+1 are not new. In fact, for example, when
i1 < · · · < ip−1, by (3.1), one has

δ0 + · · · + δi1 ≤ δip−1 + · · · + δip−1−i1 .

Thus, we obtain ip−1 − i1 ≤ ip−2, i.e., i1 + ip−2 ≥ ip−1. Similarly, one has

δ0 + · · · + δi2 ≤ δip−1 + · · · + δip−1−i2 .

Thus, we obtain ip−1 − i2 ≤ ip−3. Since i1 + ip−1 = i2 + ip−2, this is equivalent to
i1 + ip−3 ≥ ip−2. In the same way, we can obtain all inequalities i1 + i` ≥ i`+1. On
the other hand, when k ≥ 2, there are many new inequalities.

Remark 3.4.3. We note that we cannot characterize the possible δ-vectors of integral
simplices with higher prime normalized volumes only by Theorem 3.4.1. In fact,
since the volume of an integral convex polytope containing a unique integer point
in its interior has an upper bound, if p is a sufficiently large prime number, then
the integer sequence (1, 1, p − 3, 1) cannot be a δ-vector of some integral simplex of
dimension 3, although (1, 1, p − 3, 1) satisfies all the conditions of Theorem 3.4.1.
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3.4.2 A classification of the possible δ-vectors of integral
simplices with

∑d
i=0 δi = 5

As an application of Theorem 3.4.1, we give a complete characterization of the
possible δ-vectors of integral simplices when

∑d
i=0 δi = 5.

Theorem 3.4.4 ([40, Theorem 0.2]). Given a finite sequence (δ0, δ1, . . . , δd) of non-
negative integers, where δ0 = 1 and

∑d
i=0 δi = 5, there exists an integral simplex

P ⊂ Rd of dimension d whose δ-vector coincides with (δ0, δ1, . . . , δd) if and only if
i1, . . . , i4 satisfy i1 + i4 = i2 + i3 ≤ d + 1 and ik + i` ≥ ik+` for 1 ≤ k ≤ ` ≤ 4
with k + ` ≤ 4, where i1, . . . , i4 are the positive integers such that

∑d
i=0 δit

i =
1 + ti1 + · · · + ti4 with 1 ≤ i1 ≤ · · · ≤ i4 ≤ d.

By virtue of Theorem 3.4.1, the “Only if” parts of Theorem 3.4.4 are obvious.
In this subsection, we give a proof of the “If” part of Theorem 3.4.4, i.e., we classify
all the possible δ-vectors of integral simplices whose normalized volume is 5.

Let (δ0, δ1, . . . , δd) be a nonnegative integer sequence with δ0 = 1 and
∑d

i=0 δi = 5
which satisfies i1+i4 = i2+i3 ≤ d+1, 2i1 ≥ i2 and i1+i2 ≥ i3, where i1, . . . , i4 are the
positive integers such that

∑d
i=0 δit

i = 1 + ti1 + · · · + ti4 with 1 ≤ i1 ≤ · · · ≤ i4 ≤ d.
Since i1 + i4 = i2 + i3, we notice that i1 + i3 ≥ i4 (resp. 2i2 ≥ i4) is equivalent
to 2i1 ≥ i2 (resp. i1 + i2 ≥ i3). From the conditions δ0 = 1,

∑d
i=0 δi = 5 and

i1 + i4 = i2 + i3, the possible sequences are only the following forms:

(i) (1, 0, . . . , 0, 4, 0, . . . , 0);

(ii) (1, 0, . . . , 0, 2, 0, . . . , 0, 2, 0, . . . , 0);

(iii) (1, 0, . . . , 0, 1, 0, . . . , 0, 2, 0, . . . , 0, 1, 0, . . . , 0);

(iv) (1, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0).

Our work is to find integral simplices whose δ-vectors are of the above forms.
To construct integral simplices, we define the following integer matrix

A5(d1, . . . , d4) =



1
. . .

1
∗ · · · ∗ 5

1
. . .

1


, (3.14)

where there are dj j’s among the ∗’s for j = 1, . . . , 4 and the rest of the entries
are all 0. Note that (3.14) is nothing but the Hermite normal form (3.4) with
D = 5. Then, clearly, it must be dj ≥ 0 and d1 + · · · + d4 ≤ d − 1. By determining
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d1, . . . , d4, we obtain an integer matrix A5(d1, . . . , d4) and we define the integral
simplex P5(d1, . . . , d4) from the matrix as follows:

P5(d1, . . . , d4) = conv({(0, . . . , 0), v1, . . . , vd}) ⊂ Rd,

where vi is the ith row vector of A5(d1, . . . , d4).
The case (i). Let i1 = i2 = i3 = i4 = i. Thus, one has i−1 ≥ 0 and 2i−2 ≤ d−1

from our conditions. Hence, we can define P5(0, i − 1, i − 1, 0). Then, by Corollary
3.3.4, δ(P5(0, i − 1, i − 1, 0)) coincides with (i) since s1 = s2 = s3 = s4 = −i + 1.

The case (ii). Let i1 = i2 = i and i3 = i4 = j. Thus, one has 2i ≥ j,
2j−2i−2 ≥ 0 and i+ j−2 ≤ d−1. Hence, we can define P5(0, i, 2i− j, 2j−2i−2)
and its δ-vector coincides with (ii) since s1 = s2 = −j + 1 and s3 = s4 = −i + 1.

The case (iii). Let i1 = i, i2 = i3 = j and i4 = k. Thus, one has 2i ≥ j,
3j − 3i− 2 ≥ 0 and 2j − 2 ≤ d− 1. Hence, we can define P5(0, 2i− j, i, 3j − 3i− 2)
and its δ-vector coincides with (iii) since s1 = −2j+i+1 = −k+1, s2 = s3 = −j+1
and s4 = −i + 1.

The case (iv). In this case, one has 2i1 ≥ i2, i1+i2 ≥ i3, i2+2i3−3i1−2 ≥ 0 and
i2+i3−2 ≤ d−1. Hence, we can define P5(0, 2i1−i2, i1+i2−i3, i2+2i3−3i1−2) and
its δ-vector coincides with (iv) since s1 = i1− i2− i3 +1 = −i4 +1, s2 = −i3 +1, s3 =
−i2 + 1 and s4 = −i1 + 1.

Remark 3.4.5. The inequalities 2i1 ≥ i2 and i1+i2 ≥ i3 can be obtained from (3.1) as
we mentioned in Remark 3.4.2 (b). Thus, the possible δ-vectors of integral simplices
with normalized volume 5 can be essentially characterized only by Theorem 3.4.1
(a) and the inequalities (3.1).

3.4.3 A classification of the possible δ-vectors of integral
simplices with

∑d
i=0 δi = 7

Similar to the previous subsection, we give a complete characterization of the pos-
sible δ-vectors of integral simplices when

∑d
i=0 δi = 7, that is,

Theorem 3.4.6 ([40, Theorem 0.3]). Given a finite sequence (δ0, δ1, . . . , δd) of non-
negative integers, where δ0 = 1 and

∑d
i=0 δi = 7, there exists an integral simplex

P ⊂ Rd of dimension d whose δ-vector coincides with (δ0, δ1, . . . , δd) if and only
if i1, . . . , i6 satisfy i1 + i6 = i2 + i5 = i3 + i4 ≤ d + 1 and ik + i` ≥ ik+` for
1 ≤ k ≤ ` ≤ 6 with k + ` ≤ 6, where i1, . . . , i6 are the positive integers such that∑d

i=0 δit
i = 1 + ti1 + · · · + ti6 with 1 ≤ i1 ≤ · · · ≤ i6 ≤ d.

By virtue of Theorem 3.4.1, the “Only if” parts of Theorem 3.4.6 are obvious.
In this subsection, similarly to the previous one, we give a proof of the “If” part of
Theorem 3.4.6, i.e., we classify all the possible δ-vectors of integral simplices whose
normalized volume is 7.

Let (δ0, δ1, . . . , δd) be a nonnegative integer sequence with δ0 = 1 and
∑d

i=0 δi = 7
which satisfies i1+i6 = i2+i5 = i3+i4 ≤ d+1, i1+il ≥ il+1 for 1 ≤ l ≤ 3 and 2i2 ≥ i4,
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where i1, . . . , i6 are the positive integers such that
∑d

i=0 δit
i = 1+ ti1 + · · ·+ ti6 with

1 ≤ i1 ≤ · · · ≤ i6 ≤ d. Since i1 + i6 = i2 + i5 = i3 + i4, we need not consider the
inequalities i1 + i4 ≥ i5, i1 + i5 ≥ i6, i2 + i3 ≥ i5, i2 + i4 ≥ i6 and 2i3 ≥ i6. From the
conditions δ0 = 1,

∑d
i=0 δi = 7 and i1 + i6 = i2 + i5 = i3 + i4, the possible sequences

are only the following forms:

(i) (1, 0, . . . , 0, 6, 0, . . . , 0);

(ii) (1, 0, . . . , 0, 3, 0, . . . , 0, 3, 0, . . . , 0);

(iii) (1, 0, . . . , 0, 1, 0, . . . , 0, 4, 0, . . . , 0, 1, 0, . . . , 0);

(iv) (1, 0, . . . , 0, 2, 0, . . . , 0, 2, 0, . . . , 0, 2, 0, . . . , 0);

(v) (1, 0, . . . , 0, 1, 0, . . . , 0, 2, 0, . . . , 0, 2, 0, . . . , 0, 1, 0, . . . , 0);

(vi) (1, 0, . . . , 0, 2, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0, 2, 0, . . . , 0);

(vii) (1, 0, . . . , 0, 1, 0, . . . , 0, 1, . . . , 0, 2, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0);

(viii) (1, 0, . . . , 0, 1, 0, . . . , 0, 1, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0).

In the same way as the previous section, we define the following integer matrix:

A7(d1, . . . , d6) =



1
. . .

1
∗ · · · ∗ 7

1
. . .

1


, (3.15)

where there are dj j’s among the ∗’s for j = 1, . . . , 6 and the rest of the entries are
all 0. Then it must be dj ≥ 0 and d1 + · · · + d6 ≤ d − 1. By determining d1, . . . , d6,
we obtain the integral simplex

P7(d1, . . . , d6) = conv({(0, . . . , 0), v1, . . . , vd}) ⊂ Rd,

where vi is the ith row vector of A7(d1, . . . , d6).
The case (i). Let i1 = · · · = i6 = i. Thus, one has i− 1 ≥ 0 and 2i− 2 ≤ d− 1

from our conditions. Hence, we can define P7(0, 0, i − 1, i − 1, 0, 0). Then, by
Corollary 3.3.4, δ(P7(0, 0, i − 1, i − 1, 0, 0)) coincides with (i) since s1 = · · · = s6 =
−i + 1.

The case (ii). Let i1 = · · · = i3 = i and i4 = · · · = i6 = j. Thus, one has
j − i ≥ 0, 2i ≥ j, 2j − 2i − 2 ≥ 0 and i + j − 2 ≤ d − 1. Hence, we can define
P7(0, j − i, 2i − j, 2i − j, 0, 2j − 2i − 2) and its δ-vector coincides with (ii) since
s1 = s2 = s3 = −j + 1 and s4 = s5 = s6 = −i + 1.
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The case (iii). Let i1 = i, i2 = · · · = i5 = j and i6 = k. Thus, one has
i + j ≥ k, k − j ≥ 0, k − i − 1 ≥ 0, i − 1 ≥ 0 and i + k − 2 ≤ d − 1. Hence,
we can define P7(i + j − k, k − j, k − i − 1, 0, 0, i − 1) and its δ-vector coincides
with (iii) since s1 = −4i+j−4k

7
+ 1 = −j + 1, s2 = −i+2j−8k

7
+ 1 = −k + 1, s3 =

−5i+3j−5k
7

+ 1 = −j + 1, s4 = −2i−3j−2k
7

+ 1 = −j + 1, s5 = −6i−2j+k
7

+ 1 = −i + 1 and

s6 = −3i−j−3k
7

+ 1 = −j + 1.

The case (iv). Let i1 = i2 = i, i3 = i4 = j and i5 = i6 = k. Thus, one has
i− 1 ≥ 0, i + j ≥ k, 3k− 3j − 1 ≥ 0 and 2i− 2j + 2k− 2 = i + k− 2 ≤ d− 1. Hence,
we can define P7(0, 0, i − 1, i + j − k, 0, 3k − 3j − 1) and its δ-vector coincides with
(iv) since s1 = s2 = −i + 2j − 2k + 1 = −k + 1, s3 = s4 = −i + j − k + 1 = −j + 1
and s5 = s6 = −i + 1.

The case (v). Let i1 = k1, i2 = i3 = k2, i4 = i5 = k3 and i6 = k4. Thus, one has
2k1 ≥ k2, k2−k1 ≥ 0, k1+k2 ≥ k3, 2k3−2k1−2 ≥ 0 and k2+k3−2 ≤ d−1. Hence, we
can define P7(0, 2k1−k2, 0, k2−k1, k1+k2−k3, 2k3−2k1−2) and its δ-vector coincides
with (v) since s1 = k1 − k2 − k3 + 1 = −k4 + 1, s2 = s3 = −k3 + 1, s4 = s5 = −k2 + 1
and s6 = −k1 + 1.

The case (vi). Let i1 = i2 = k1, i3 = k2, i4 = k3 and i5 = i6 = k4. Thus, one has
k3−k2−1 ≥ 0, k1 +k2 ≥ k3, 2k1 ≥ k3, k2 +2k3−3k1−1 ≥ 0 and k2 +k3−2 ≤ d−1.
Hence, we can define P7(0, k3 − k2 − 1, k1 + k2 − k3, 2k1 − k3, 0, k2 + 2k3 − 3k1 − 1)
and its δ-vector coincides with (vi) since s1 = s2 = k1 − k2 − k3 + 1 = −k4 + 1, s3 =
−k3 + 1, s4 = −k2 + 1 and s5 = s6 = −k1 + 1.

The case (vii). Let i1 = k1, i2 = k2, i3 = i4 = k3, i5 = k4 and i6 = k5. Thus,
one has 2k1 ≥ k2, k1 +k2 ≥ k3, k2−k1 ≥ 0, 3k3−2k1−k2−2 ≥ 0 and 2k3−2 ≤ d−1.
Hence, we can define P7(0, 0, 2k1−k2, k1 +k2−k3, k2−k1, 3k3−2k1−k2−2) and its
δ-vector coincides with (vii) since s1 = k1 − 2k3 + 1 = −k5 + 1, s2 = k2 − 2k3 + 1 =
−k4 + 1, s3 = s4 = −k3 + 1, s5 = −k2 + 1 and s1 = −k1 + 1.

The case (viii). In this case, one has i1 + i2 ≥ i3, 2i2 ≥ i4, i3 + 2i4 − 2i1 −
i2 − 2 ≥ 0, 2i1 ≥ i2, i1 + i3 ≥ i4 and i3 + i4 − 2 ≤ d − 1. Hence, we can define
P7(0, i1 + i2 − i3, i1 + i3 − 2i2, 0, 2i2 − i4, i3 + 2i4 − 2i1 − i2 − 2) if i1 + i3 ≥ 2i2 and
P7(0, 2i1− i2, 0, 2i2− i1− i3, i1 + i3− i4, i3 +2i4−2i1− i2−2) i1 + i3 ≤ 2i2. Moreover,
each of δ-vectors of them coincides with (viii) since s1 = i1 − i3 − i4 + 1 = −i6 + 1,
s2 = i2 − i3 − i4 + 1 = −i5 + 1, s3 = −i4 + 1, s4 = −i3 + 1, s5 = −i2 + 1 and
s6 = −i1 + 1.

Remark 3.4.7. When we discuss the cases of (vi) and (viii), we need the new in-
equality 2i2 ≥ i4. In fact, for example, the sequence (1, 0, 2, 0, 1, 1, 0, 2, 0) cannot be
the δ-vector of an integral simplex, although this satisfies i1 + il ≥ il+1, l = 1, . . . , 3.
Similarly, the sequence (1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0) also cannot be the δ-vector of an
integral simplex, although this satisfies i1 + il ≥ il+1, l = 1, . . . , 3.
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3.5 Shifted symmetric δ-vectors of convex poly-

topes

In this section, we introduce shifted symmetric δ-vectors of integral convex polytopes
and discuss some properties.

A δ-vector δ(P) = (δ0, δ1, . . . , δd) is called symmetric if the equalities hold in
(3.1) for each 0 ≤ i ≤ [s/2], i.e., δi = δs−i for each 0 ≤ i ≤ [s/2]. The δ-vector δ(P)
of P is symmetric if and only if the Ehrhart ring [26, Chapter X] of P is Gorenstein.
A combinatorial characterization for the δ-vector to be symmetric is studied in [15]
and [27].

We say that a δ-vector δ(P) = (δ0, δ1, . . . , δd) is shifted symmetric if the equalities
hold in (3.2) for each 0 ≤ i ≤ [(d−1)/2], i.e., δd−i = δi+1 for each 0 ≤ i ≤ [(d−1)/2].
It seems likely that an integral convex polytope with a shifted symmetric δ-vector is
quite rare. Thus it is reasonable to study properties of and to find a natural family
of integral convex polytopes with shifted symmetric δ-vectors. We note that since
δ1 = δd, integral convex polytopes with shifted symmetric δ-vectors are always a
d-simplex.

Examples 3.5.1. (a) We define vi ∈ Rd for i = 0, 1, . . . , d by setting vi = ei

with i = 1, . . . , d and v0 = (−e, . . . ,−e), where e is some nonnegative integer. Let
P = conv({v0, v1, . . . , vd}). Then one has vol(P) = ed + 1 by using an elementary
linear algebra. When e = 0, it is clear that δ(P) = (1, 0, 0, . . . , 0). When e is
positive, we know that

j

ed + 1

d∑
i=1

(vi, 1) +
(e − j)d + 1

ed + 1
(v0, 1) = (j − e, j − e, . . . , j − e, 1)

and 0 < j
ed+1

, (e−j)d+1
ed+1

< 1 for every 1 ≤ j ≤ e. Then, from Section 3.1, we have
δ1, δd ≥ e. Since δi ≥ δ1 for 1 ≤ i ≤ d − 1 and vol(P) = ed + 1, we obtain
δ(P) = (1, e, e, . . . , e).

(b) Let d ≥ 3. We define vi ∈ Rd for i = 0, 1, . . . , d by setting vi = ei

with i = 1, . . . , d and v0 = (e, . . . , e), where e is some positive integer. Let
P = conv({v0, v1, . . . , vd}). Then one has vol(P) = ed − 1 by using an elemen-
tary linear algebra. And we know that

ke + j

ed − 1

d∑
i=1

(vi, 1) +
(e − j)d − 1 − k

ed − 1
(v0, 1) = (e − j, e − j, . . . , e − j, k + 1)

and 0 < ke+j
ed−1

, (e−j)d−1−k
ed−1

< 1 for every 0 ≤ j ≤ e − 1 and 0 ≤ k ≤ d − 2 with
(j, k) 6= (0, 0). Hence one has δ(P) = (1, e − 1, e, e, . . . , e, e − 1) by Section 3.1.
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3.5.1 Some characterizations of integral convex polytopes
with shifted symmetric δ-vectors

In this subsection, two results on integral convex polytopes with shifted symmetric
δ-vectors are given.

Theorem 3.5.2 ([37, Theorem 2.1]). Let P be a d-simplex whose vertices are
v0, v1, . . . , vd ∈ Rd and S(P) the set which appears in Section 3.1. Then the fol-
lowing conditions are equivalent:

(a) δ(P) is shifted symmetric;

(b) the normalized volume of all facets of P is equal to 1;

(c) each element (α, n) ∈ S(P)\{(0, . . . , 0, 0)} has a unique expression on the
form:

(α, n) =
d∑

j=0

rj(vj, 1) with 0 < rj < 1 for j = 0, 1, . . . , d, (3.16)

where α ∈ Zd and n ∈ Z.

Proof. ((a) ⇔ (c)) If each element x ∈ S(P)\{(0, . . . , 0)} has the form (3.16), then
each inverse of x also belongs to S(P), which means that δ(P) is shifted symmetric.
On the other hand, suppose that there exists an element x ∈ S(P)\{(0, . . . , 0)}
which does not have the form (3.16). Then one has deg(x)+deg(−x) < d+1, which
implies obviously that δ(P) is not shifted symmetric.

((b) ⇔ (c)) Let δ(P) = (δ0, δ1, . . . , δd) ∈ Zd+1 be the δ-vector of P and δ(F) =
(δ′0, δ

′
1, . . . , δ

′
d−1) ∈ Zd the δ-vector of a facet F of P . Then one has δ′i ≤ δi for 0 ≤

i ≤ d− 1. If there is a facet F with vol(F) 6= 1, say, its vertices are v0, v1, . . . , vd−1,
then there exists an element (α, n) ∈ S(P) with α =

∑d−1
j=0 rjvj + 0 · vd and n > 0.

This implies that there exists an element of S(P)\{(0, . . . , 0)} which does not have
the form (3.16). On the other hand, suppose that there exists an element (α, n) ∈
S(P)\{(0, . . . , 0)} which does not have the form (3.16), i.e., (α, n) =

∑d
j=0 rj(vj, 1)

and there is 0 ≤ j ≤ d with rj = 0, say, rd = 0. Then the normalized volume of the
facet whose vertices are v0, v1, . . . , vd−1 is not equal to 1.

Remark 3.5.3. In the language of [73], a δ-vector is shifted symmetric if and only if
a(t) = 1+ t+ · · ·+ td. In fact, when P is shifted symmetric, Box(σF)∩N ′ is empty,
where ∅ 6= F ( P is a face of P , which means that the normalized volume of F is
equal to 1. In addition, since P is a simplex, one has hF(t) =

∑d−1−dim(F)
i=0 ti. Thus

it follows that ∑
F∈T

BF(t)hF(t) = B∅(t)h∅(t) = 1 + t + · · · + td.
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3.5.2 A family of (0, 1)-polytopes with shifted symmetric δ-
vectors

In this subsection, a family of (0, 1)-polytopes with shifted symmetric δ-vectors is
studied. We classify completely the δ-vectors of those polytopes. Moreover, we
consider when those δ-vectors are both symmetric and shifted symmetric.

Let m be a positive integer with 1 ≤ m < d. We study the δ-vector of the
integral convex polytope P ⊂ Rd whose vertices are of the form

vi =

{
ei + ei+1 + · · · + ei+m−1, i = 1, . . . , d,

(0, . . . , 0), i = 0,
(3.17)

where ed+i = ei.
The normalized volume of P is equal to the absolute value of the determinant of

the circulant matrix ∣∣∣∣∣∣∣
v1
...
vd

∣∣∣∣∣∣∣ . (3.18)

This determinant (3.18) can be calculated easily. In fact,

Proposition 3.5.4. When (m, d) = 1, the determinant (3.18) is equal to ±m. And
when (m, d) 6= 1, the determinant (3.18) is equal to 0. Here (m, d) denotes the
greatest common divisor of m and d.

A proof of this proposition can be given by the formula of the determinant of
the circulant matrix. Thus one has vol(P) = m when (m, d) = 1. We assume only
the case of (m, d) = 1.

For j = 1, 2, . . . , d − 1, let qj be the quotient of jm divided by d and rj its
remainder i.e., one has the equalities

jm = qjd + rj for j = 1, 2, . . . , d − 1.

It then follows from (m, d) = 1 that

0 ≤ qj ≤ m − 1, 1 ≤ rj ≤ d − 1

and

rj 6= rj′ if j 6= j′

for every 1 ≤ j, j′ ≤ d−1. In addition, for k = 1, 2, . . . ,m−1, let jk ∈ {1, 2, . . . .d−1}
be the integer with rjk

= k, i.e., one has the equalities

jkm = qjk
d + rjk

= qjk
d + k for k = 1, 2, . . . ,m − 1.
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Then qjk
> 0. Thus one has

1 ≤ qjk
, rjk

≤ m − 1

for every 1 ≤ k ≤ m − 1.
For an integer a, let a denote the residue class in Z/dZ.

Theorem 3.5.5 ([37, Theorem 3.2]). Let P be the integral convex polytope whose
vertices are of the form (3.17) and δ(P) = (δ0, δ1, . . . , δd) its δ-vector. For each
1 ≤ i ≤ d, one has im ∈ {1, 2, . . . , m − 1} if and only if one has δi = 1. Moreover,
δ(P) is shifted symmetric, i.e., δi+1 = δd−i for each 0 ≤ i ≤ [(d − 1)/2].

Proof. By using the above notations, we obtain

qjk

m
{(v1, 1) + (v2, 1) + · · · + (vd, 1)} +

rjk

m
(v0, 1) = (qjk

, . . . , qjk
, jk) ∈ Zd+1

and 0 <
qjk

m
,

rjk

m
< 1 for every 1 ≤ k ≤ m− 1. Then Section 3.1 guarantees that one

has δjk
≥ 1 for k = 1, . . . ,m − 1. Considering

∑d
i=0 δi = m by Proposition 3.5.4, it

turns out that δ(P) coincides with

δi =

{
1 i = 0, j1, j2, . . . , jm−1,

0 otherwise.

Now im ∈ {1, 2, . . . , m − 1} is equivalent with i ∈ {j1, . . . , jm−1}. Therefore one has
δi = 1 if and only if im ∈ {1, 2, . . . , m − 1} for each 1 ≤ i ≤ d.

In addition, by virtue of Theorem 3.5.2, δ(P) is shifted symmetric, as required.

Corollary 3.5.6. Let P be the integral convex polytope whose vertices are of the
form (3.17) and δ(P) = (δ0, δ1, . . . , δd) its δ-vector. Then δ(P) is symmetric, i.e.,
δi = δs−i for each 0 ≤ i ≤ [s/2] if and only if one has d ≡ m − 1 (mod m).

Proof. Let p be the quotient of d divided by m and r its remainder, i.e., one has
d = mp+r. And let jt = min{j1, j2, . . . , jm−1}. On the one hand, one has jtm = d+t.
On the other hand, one has (p + 1)m = d + m − r and 1 ≤ m − r ≤ m − 1. It
then follows from Theorem 3.5.5 that p + 1 = jt = min{i : δi 6= 0, i > 0}. Hence
d − p = s = max{i : δi 6= 0} since δ(P) is shifted symmetric.

When d ≡ m − 1 (mod m), i.e., r = m − 1, we can obtain the equalities

d − p = mp + r − p = mp + m − 1 − p = (m − 1)(p + 1).

In addition, for nonnegative integers l(p + 1), l = 1, 2, . . . ,m − 1, the following
equalities hold:

l(p + 1)m = l(mp + m) = l(mp + m − 1) + l = ld + l = l ∈ {1, 2, . . . , m − 1}.
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Thus it turns out that δ(P) coincides with

δi =

{
1 i = 0, p + 1, 2(p + 1), . . . , (m − 1)(p + 1),

0 otherwise,

by Theorem 3.5.5. It then follows that

δk(p+1) = δ(m−1−k)(p+1) = δs−k(p+1) = 1

for every 0 ≤ k ≤ m − 1 and
δi = δs−i = 0

for every 0 ≤ i ≤ s with i 6= k(p + 1), k = 0, 1, . . . ,m − 1. These equalities imply
that δ(P) is symmetric.

Suppose that δ(P) is symmetric. Our work is to show that r = m− 1. Then one
has

δ0 = δs = δd−p = δ(m−1)p+r = 1.

Since δ(P) is also shifted symmetric, one has δ(m−1)p+r = δp+1. Hence one has
δp+1 = δ(m−2)p+r−1 = δ2(p+1) = · · · = δ[(m−1)/2](p+1)=1 since δ(P) is both symmetric

and shifted symmetric. When m is odd, one has d−p
2

= m−1
2

(p + 1) since δ(P) is
symmetric. Thus r = m − 1. When m is even, one has d+1

2
= m

2
(p + 1) since δ(P)

is shifted symmetric. Thus r = m − 1.
Therefore δ(P) is symmetric if and only if d ≡ m − 1 (mod m), as desired.

3.5.3 Shifted symmetric δ-vectors of Hermite normal forms

In this subsection, we consider the problem when the integral simplices arising from
(3.4) have shifted symmetric δ-vectors. By using Corollary 3.3.4, we deduce a sym-
metry property of the δ-vectors.

Proposition 3.5.7 (Shifted symmetry for “one row”). For a matrix M ∈ Zd×d with
Hermite normal form (3.4), we have si + sD−i = d + 1, for i = 1, . . . , D − 1, which
implies δi = δd+1−i by reciprocity, if and only if the following three conditions hold:

(a)
∑D−1

j=1 jdj − 1 is coprime with D;

(b) dj = 0 for all j which is not coprime with D;

(c)
∑D−1

j=1 dj = d − 1.

Proof. Let us consider si + sD−i. For an integer a, let a denote its residue class in
Z/DZ. Then we have

si + sD−i =

⌊
i

D
−

D−1∑
j=1

{
ij

D

}
dj

⌋
+

⌊
D − i

D
−

D−1∑
j=1

{
(D − i)j

D

}
dj

⌋
+ 2d

=

⌊
i −

∑D−1
j=1 ijdj

D

⌋
+

⌊
D − i −

∑D−1
j=1 (D − i)jdj

D

⌋
+ 2d.

50



Sincei −
∑D−1

j=1 ijdj ≡ i
(
1 −

∑D−1
j=1 jdj

)
(mod D),

D − i −
∑D−1

j=1 (D − i)jdj ≡ (D − i)
(
1 −

∑D−1
j=1 jdj

)
(mod D),

(3.19)

if the condition (a) is not satisfied, then one has

si + sD−i =
D −

∑D−1
j=1

(
ij + (D − i)j

)
dj

D
+ 2d

= 2d + 1 −
D−1∑
j=1

ij + (D − i)j

D
dj

≥ 2d + 1 −
D−1∑
j=1

dj ≥ d + 2 > d + 1

for some i with 1 ≤ i ≤ D − 1. Thus, the condition (a) is a necessary condition
to have si + sD−i = d + 1 for all i. On the other hand, when the condition (a) is
satisfied, again from (3.19), we have

si + sD−i =
D −

∑D−1
j=1

(
ij + (D − i)j

)
dj

D
+ 2d − 1

= 2d −
D−1∑
j=1

ij + (D − i)j

D
dj

= 2d −
∑
D |/ ij

dj.

If the condition (b) is not satisfied, then we have

si + sD−i = 2d −
∑
D |/ ij

dj > d + 1

for some i with 1 ≤ i ≤ D−1. Hence, the condition (b) is also a necessary condition.
In addition, if the condition (c) is not satisfied, then we have si + sD−i > d + 1.
Thus, the condition (c) is also a necessary condition. On the other hand, when the
conditions (a), (b) and (c) are all satisfied, we have si + sD−i = D + 1 for all i.

In particular, if we assume in addition that dD−1 = d−1 in Corollary 3.3.4, then
we have

Proposition 3.5.8 (Shifted symmetry for “all D−1 one row”). Let M ∈ Zd×d with
Hermite normal form (3.6). Then

(a) δi = δd+1−i if and only if D and d are coprime.
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(b) When D = kd, for k ∈ N and k ≥ 2, the δ-vector is

(1, k, . . . , k︸ ︷︷ ︸
d−1

, k − 1),

which is not shifted symmetric. But for k = 2, we have δk = δd−k (i.e.,
symmetric).
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Chapter 4

Roots of Ehrhart polynomials

In this chapter, we will study roots of the Ehrhart polynomials of integral convex
polytopes. As we described above, Conjecture 2.0.1 is an outstanding and important
problem, which we will discuss. Moreover, we will also concentrate on roots of the
Ehrhart polynomials of Gorenstein Fano polytopes.

In Section 4.1, in order to examine whether Conjecture 2.0.1 is affirmative, we
will investigate roots of the Ehrhart polynomials of integral convex polytopes aris-
ing from graphs. We will discuss them in terms of graphs. However, in Section
4.2, counterexamples for Conjecture 2.0.1 will appear. Moreover, Section 4.3 will be
devoted to studying roots of the Ehrhart polynomials of Gorenstein Fano polytopes.
Finally, we will also consider roots of SSNN polynomials, which are generalized
Ehrhart polynomials of Gorenstein Fano polytopes, i.e., a class of polynomials con-
taining all their Ehrhart polynomials.

4.1 The conjecture on roots of Ehrhart polyno-

mials

First, let us consider roots of the Ehrhart polynomials of integral convex polytopes
arising from finite connected simple graphs, which we call edge polytopes. Con-
cretely, the aim of this section is to provide evidence for Conjecture 2.0.1 for the
Ehrhart polynomials of edge polytopes constructed from connected simple graphs,
mainly by computational means.

4.1.1 Exhaustive computation of roots of Ehrhart polyno-
mials arising from graphs

Let G be a graph having no multiple edges on the vertex set V (G) = {1, . . . , d} and
the edge set E(G) = {e1, . . . , em} ⊂ V (G)2. Graphs may have loops in their edge
sets unless explicitly excluded; in which case the graphs are called simple graphs.
We refer the reader to e.g., [77] for the introduction to graph theory.
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Figure 4.1: Vcs
9

Definition 4.1.1. For an edge e = {i, j} of G, we define ρ(e) = ei+ej. In particular,
for a loop e = {i, i} at i ∈ V (G), one has ρ(e) = 2ei. The edge polytope of G is the
convex polytope PG ⊂ Rd, which is the convex hull of the finite set

{ρ(e1), . . . , ρ(em)}.

The dimension of PG equals to d−2 if the graph G is a connected bipartite graph,
or d − 1, other connected graphs [54]. The edge polytopes of complete multipartite
graphs are studied in [56]. Note that if the graph G is a complete graph, the edge
polytope PG is also called the second hypersimplex in [75, Section 9].

Let C[X] denote the polynomial ring in one variable over C. Given a polynomial
f = f(X) ∈ C[X], we write V(f) for the set of roots of f , i.e.,

V(f) = {a ∈ C | f(a) = 0}.

We computed the Ehrhart polynomial i(PG, n) of each edge polytope PG for
connected simple graphs G of orders up to nine; there are 1, 2, . . . , 261080 connected
simple graphs of orders 2, 3, . . . , 91. Then, we solved each equation i(PG, X) = 0 in
C.

Let Vcs
d denote

⋃
V(i(PG,m)), where the union runs over all connected simple

graphs G of order d. Figure 4.1 plots points of Vcs
9 , as a representative of all results.

For all connected simple graphs of order 2–9, Conjecture 2.0.1 holds.
Since an edge polytope is a kind of 0/1-polytope, the points in Figure 4.1 for

Vcs
9 are similar to those in Figure 6 of [5]. However, the former has many more

points, which form three clusters: one on the real axis, and other two being complex

1These numbers of such graphs are known; see, e.g., [22, Chapter 4] or A001349 of the On-Line
Encyclopedia of Integer Sequences.
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conjugates of each other and located nearer to the imaginary axis than the first
cluster. The interesting thing is that no roots appear in the right half plane of the
figure. The closest points to the imaginary axis are approximately −0.583002 ±
0.645775i ∈ Vcs

7 , −0.213574 ± 2.469065i ∈ Vcs
8 , and −0.001610 ± 2.324505i ∈ Vcs

9 .
A polynomial with roots only in the left half plane is called a stable polynomial.
This observation raises an open question:

Question 4.1.2. For any d and any connected simple graph G of order d, is i(PG, n)
always a stable polynomial ?

For a few infinite families of graphs, rigorous proofs are known, e.g., Proposi-
tion 4.1.3 and Examples below.

Proposition 4.1.3. A root α of the Ehrhart polynomial i(PKd
, n) of the complete

graph Kd satisfies

1. α ∈ {−1,−2} if d = 3 or

2. −d
2

< Re(α) < 0 if d ≥ 4.

Proof. The Ehrhart polynomial i(PKd
, n) of the complete graph Kd is given in [75,

Corollary 9.6]:

i(PKd
, n) =

(
d + 2m − 1

d − 1

)
− d

(
m + d − 2

d − 1

)
.

In cases where d = 2 or 3, the Ehrhart polynomials are binomial coefficients, since
the edge polytopes are simplices. Actually, they are:

i(PK2 , n) = 1 and i(PK3 , n) =

(
m + 2

2

)
.

Thus, there are no roots for d = 2, whereas {−1,−2} are the roots for d = 3.
Hereafter, we assume d ≥ 4. It is easy to see that {−1,−2, . . . ,−

⌊
d−1
2

⌋
} are

included in V(i(PKd
, n)).

We shall first prove that Re(α) < 0. Let q
(1)
d (n) = (2n + d − 1) · · · (2n + 1)

and q
(2)
d (n) = d(n + d − 2) · · ·n. Then for a complex number z, i(PKd

, z) = 0

if and only if q
(1)
d (z) = q

(2)
d (z), since q

(1)
d (z) − q

(2)
d (z) is (d − 1)! i(PKd

, z). Let us

prove |q(1)
d (z)| > |q(2)

d (z)| for any complex number z with a nonnegative real part by
mathematical induction on d ≥ 4.

If d = 4,

|q(1)
4 (z)| = |(2z + 3)(2z + 2)(2z + 1)| = |2z + 3||z + 1||4z + 2|

> |z + 2||z + 1||4z| = |q(2)
4 (z)|

holds for any complex number z with Re(z) ≥ 0.
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Assume for d that |q(1)
d (z)| > |q(2)

d (z)| is true for any complex number z with
Re(z) ≥ 0.

Then, by

|q(1)
d+1(z)| = |2z + d||q(1)

d (z)|

|q(2)
d+1(z)| =

d + 1

d
|z + d − 1||q(2)

d (z)|

and

|2dz + d2| > |(d + 1)z + d2 − 1|

from 2d > d + 1 and d2 > d2 − 1, one can deduce

d|q(1)
d+1(z)| = |2dz + d2||q(1)

d (z)|
> |(d + 1)z + d2 − 1||q(2)

d (z)|
= (d + 1)|z + d − 1||q(2)

d (z)|

= d
d + 1

d
|z + d − 1||q(2)

d (z)| = d|q(2)
d+1(z)|.

Thus, |q(1)
d+1(z)| > |q(2)

d+1(z)| holds for any complex number z with Re(z) ≥ 0.

Therefore, for any d ≥ 4, the inequality |q(1)
d (z)| > |q(2)

d (z)| holds for any complex
number z with a nonnegative real part. This implies that the real part of any
complex root of i(PKd

, n) is negative.

We shall also prove the other half, that −d
2

< Re(α). To this end, it suffices to

show that all roots of jd(l) = i
(
PKd

,−l − d
2

)
have negative real parts. Let r

(1)
d (l)

and r
(2)
d (l) be

r
(1)
d (l) = (−1)d−1q

(1)
d

(
−l − d

2

)
= (2l + 1) · · · (2l + d − 1)

r
(2)
d (l) = (−1)d−1q

(2)
d

(
−l − d

2

)
= d

(
l − d − 4

2

)
· · ·

(
l +

d

2

)
.

Then for a complex number z, it holds that

jd(z) = 0 ⇐⇒ r
(1)
d (z) = r

(2)
d (z).

Let us prove |r(1)
d (z)| > |r(2)

d (z)| for any complex number z with a nonnegative real
part by mathematical induction on d ≥ 4.

For d = 4, it immediately follows from the inequality between q
(1)
4 and q

(2)
4 :

|r(1)
4 (z)| = |q(1)

4 (z)| > |q(2)
4 (z)| = |r(2)

4 (z)|.
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And so we need d = 5 also as a base case:

|r(1)
5 (z)| = |2z + 1||2z + 2||2z + 3||2z + 4|

>
5

4
|z + 1||2z + 1||2z + 3||2z + 4|

>
5

4
|z − 1

2
||2z + 1||2z + 3||z + 5

2
|

= 5

∣∣∣∣z − 1

2

∣∣∣∣ ∣∣∣∣z +
1

2

∣∣∣∣ ∣∣∣∣z +
3

2

∣∣∣∣ ∣∣∣∣z +
5

2

∣∣∣∣
= |r(2)

5 (z)|.

Assume for d the validity of |r(1)
d (z)| > |r(2)

d (z)| for any complex number z with
Re(z) ≥ 0.

Then, from the fact that

|r(1)
d+2(z)| = |2z + d||2z + d + 1||r(1)

d (z)|

|r(2)
d+2(z)| =

d + 2

d

∣∣∣∣z − d

2
+ 1

∣∣∣∣ ∣∣∣∣z +
d

2
+ 1

∣∣∣∣ |r(2)
d (z)|,

it follows that

d|r(1)
d+2(z)| = d|2z + d||2z + d + 1||r(1)

d (z)|
> d|2z + d|

∣∣z + d
2

+ 1
∣∣ |r(2)

d (z)|
= |2dz + d2|

∣∣z + d
2

+ 1
∣∣ |r(2)

d (z)|
> |(d + 2)z + d2 − 4|

∣∣z + d
2

+ 1
∣∣ |r(2)

d (z)|

> (d + 2)

∣∣∣∣z − d − 2

2

∣∣∣∣ ∣∣∣∣z +
d

2
+ 1

∣∣∣∣ |r(2)
d (z)|

= d|r(2)
d+2(z)|.

Thus, |r(1)
d+2(z)| > |r(2)

d+2(z)| holds for any complex number z with Re(z) ≥ 0.

Therefore, for any d ≥ 4, the inequality |r(1)
d (z)| > |r(2)

d (z)| holds for any complex
number z with a nonnegative real part. This implies that any complex root of jd(l)
has a negative real part.

Next, we comput the roots of the Ehrhart polynomials i(PG, n) of complete
multipartite graphs G as well. A complete multipartite graph of type (q1, . . . , qt),
denoted by Kq1,...,qt , is constructed as follows. Let V (Kq1,...,qt) =

⋃t
i=1 Vi be a disjoint

union of vertices with |Vi| = qi for each i and the edge set E(Kq1,...,qt) be {{u, v} | u ∈
Vi, v ∈ Vj (i 6= j)}. The graph Kq1,...,qt is unique up to isomorphism.

The Ehrhart polynomials for complete multipartite graphs are explicitly given
in [56]:

i(PG, n) =

(
d + 2n − 1

d − 1

)
−

t∑
k=1

∑
1≤i≤j≤qk

(
j − i + n − 1

j − i

)(
d − j + n − 1

d − j

)
(4.1)
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where d =
∑t

k=1 qk is a partition of d and G = Kq1,...,qt .

Another simpler formula is newly obtained.

Proposition 4.1.4. The Ehrhart polynomial i(PG, n) of the edge polytope of a com-
plete multipartite graph G = Kq1,...,qt is

i(PG, n) = f(n; d, d) −
t∑

k=1

f(n; d, qk),

where d =
∑t

k=1 qk and

f(n; d, j) =

j∑
k=1

p(n; d, k)

with

p(n; d, j) =

(
j + n − 1

j − 1

)(
d − j + n − 1

d − j

)
.

Proof. Let G denote a complete multipartite graph Kq1,...,qt . We start from the
formula (4.1).

First, it holds that (
d + 2n − 1

d − 1

)
= f(n; d, d).

On the one hand,
(

d+2n−1
d−1

)
is the number of combinations with repetitions choosing

2n elements from a set of cardinality d. On the other hand,

f(n; d, d) =
d∑

j=1

(
j + n − 1

j − 1

)(
d − j + n − 1

d − j

)

counts the same number of combinations as the sum of the number of combinations
in which the (n + 1)th smallest number is j.

Second, it holds that

t∑
k=1

∑
1≤i≤j≤qk

(
j − i + n − 1

j − i

)(
d − j + n − 1

d − j

)
=

t∑
k=1

f(n; d, qk).

Since the outermost summations are the same on both sides, it suffices to show that

∑
1≤i≤j≤qk

(
j − i + n − 1

j − i

)(
d − j + n − 1

d − j

)
= f(n; d, qk).
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The summation of the left-hand side can be transformed as follows:∑
1≤i≤j≤qk

(
j − i + n − 1

j − i

)(
d − j + n − 1

d − j

)

=

qk∑
j=1

j∑
i=1

(
j − i + n − 1

j − i

)(
d − j + n − 1

d − j

)

=

qk∑
j=1

(
d − j + n − 1

d − j

) j∑
i=1

(
j − i + n − 1

j − i

)

=

qk∑
j=1

(
d − j + n − 1

d − j

)(
n + j − 1

j − 1

)

=

qk∑
j=1

p(n; d, j)

= f(n; d, qk)

Finally, substituting these transformed terms into the original formula (4.1) gives
the desired result.

By the new formula above, we computed the roots of Ehrhart polynomials. Let
Vmp

d denote
⋃

V(i(PG, n)), where the union runs over all complete multipartite
graphs G of order d. Figure 4.2 plots the points of Vmp

22 . For all complete multipartite
graphs of order 10–22, Conjecture 2.0.1 holds.

Figure 4.2: Vmp
22

Figure 4.2, for Vmp
22 , shows that the noninteger roots lie in the circle

∣∣z + 11
2

∣∣ ≤ 11
2
.

This fact is not exclusive to 22 alone, but similar conditions hold for all d ≤ 22. We
conjecture the following
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Conjecture 4.1.5. For any d ≥ 3,

Vmp
d ⊂

{
z ∈ C |

∣∣z + d
4

∣∣ ≤ d
4

}
∪ {−(d − 1), . . . ,−2,−1}.

Remark 4.1.6. (1) The leftmost point −(d − 1) can only be attained by K3; this is
shown in Proposition 4.1.10. Therefore, if we choose d ≥ 4, the set of negative inte-
gers in the statement can be replaced with the set {−(d−2), . . . ,−2,−1}. However,
−(d − 2) can be attained by the tree Kd−1,1 for any d; see Example 4.1.7 below.

(2) Since 0 can never be a root of an Ehrhart polynomial, Conjecture 4.1.5 an-
swers Question 4.1.2 in the affirmative for complete multipartite graphs. Moreover,
if Conjecture 4.1.5 holds, then Conjecture 2.0.1 holds for those graphs.

(3) The method of Pfeifle [62] might be useful if the δ-vector can be determined
for edge polytopes of complete multipartite graphs.

Example 4.1.7. The Ehrhart polynomial for complete bipartite graph Kp,q is given
in, e.g., [56, Corollary 2.7 (b)]:

i(PKp,q , n) =

(
n + p − 1

p − 1

)(
n + q − 1

q − 1

)
,

and thus the roots are

V(i(PKp,q , n)) = {−1, . . . ,−max(p − 1, q − 1)}

and all of them are negative integers satisfying the condition in Conjecture 4.1.5.

Example 4.1.8. The edge polytope of a complete 3-partite graph PKm,1,1 for m ≥ 2
can be obtained as a pyramid from PKm,2 by adjoining a vertex. Therefore, its
Ehrhart polynomial is the following:

i(PKm,1,1 , n) =
n∑

j=0

i(PKm,2 , j).

Each term on the right-hand side is given in Example 4.1.7 above. By some elemen-
tary algebraic manipulations of binomial coefficients, it becomes,

i(PKm,1,1 , n) =

(
m + n

m

)
nm + m + 1

m + 1
.

The noninteger root −(m+1)
m

is a real number in the circle of Conjecture 4.1.5.

Now we prepare the following lemma for proving Proposition 4.1.10.

Lemma 4.1.9. For any integer 1 ≤ j ≤ d
2
, the polynomial p(n; d, j) in Proposi-

tion 4.1.4 satisfies:

p(n; d, d − j) =

(
d

j
− 1

)
p(n; d, j).
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Proof. It is an easy transformation:

p(n; d, d − j) =

(
(d − j) + n − 1

(d − j) − 1

)(
d − (d − j) + n − 1

d − (d − j)

)
=

(
d − j + n − 1

d − j − 1

)(
j + n − 1

j

)
=

d − j

j

(
d − j + n − 1

d − j

)(
j + n − 1

j − 1

)
=

(
d

j
− 1

)
p(n; d, j).

Proposition 4.1.10. Let (q1, . . . , qt) be a partition of d ≥ 3, satisfying q1 ≥ q2 ≥
· · · ≥ qt. The Ehrhart polynomial i(PG, n) of the edge polytope of the complete
multipartite graph G = Kq1,...,qt does not have a root at −(d − 1) except when the
graph is K3.

Proof. From Proposition 4.1.4, the Ehrhart polynomial of the edge polytope of G =
Kq1,...,qt is

i(PG, n) = f(n; d, d) −
t∑

k=1

f(n; d, qk)

= p(n; d, d) +
d−1∑
j=1

p(n; d, j) −
t∑

k=1

qk∑
j=1

p(n; d, j)

Since p(n; d, d) has −(d − 1) as one of its roots, it suffices to show that the rest of
the expression does not have −(d − 1) as one of its roots.

We evaluate p(n; d, j) at −(d − 1) for j from 1 to d − 1:

p(−(d − 1); d, j) =

(
j − d

j − 1

)(
−j

d − j

)
by the definition of p(n; d, j). If j > 1, its sign is (−1)j−1+d−j = (−1)d−1 since
j − d < 0 and −j < 0. In case where j = 1, since j − 1 is zero,

p(−(d − 1); d, 1) =

(
−1

d − 1

)
= (−1)d−1

gives the same sign with other values of j.
By the conjugate partition (q′1, . . . , q

′
t′) of (q1, . . . , qt), which is given by q′j =

|{i ≤ t | qi ≥ j}|, we obtain

d−1∑
j=1

p(n; d, j) −
t∑

k=1

qk∑
j=1

p(n; d, j) =
d−1∑
j=1

(
1 − q′j

)
p(n; d, j), (4.2)
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where we set, for simplicity, q′j = 0 for j > t′.
We show that all the coefficients of p(n; d, j) are nonnegative for any j from 1 to

d − 1 and there is at least one positive coefficient among them.
(I) q1 ≥ d

2
:

The coefficients of p(n; d, j) are zero for q1 ≥ j ≥ d − q1, unless d = q1 + q2, i.e.,
when the graph is a complete bipartite graph; the exceptional case will be discussed
later. We assume, therefore, q2 < d − q1 for a while. Though equation (4.2) gives
the coefficient of p(n; d, j) as 1 for d > j > q1, by using Lemma 4.1.9, we are able to
let them be zero and the coefficient of p(n; d, j) be d

j
− q′j for d − q1 > j > 0. Then

all the coefficients of p(n; d, j)’s are positive, since the occurrence of integers greater
than or equal to j in a partition of d − q1 cannot be greater than d−q1

j
.

(II) q1 < d
2
:

Each coefficient of p(n; d, j) in equation (4.2) is 1 for d > j > d
2
. By Lemma 4.1.9,

we transfer them to lower j terms so as to make the coefficients for d
2

> j > 0 be
d
j
− q′j. Then all the coefficients of p(n; d, j)’s are nonnegative, since the occurrence

of integers greater than or equal to j in a partition of d cannot be greater than
d
j
. Moreover, the coefficient is zero for at most one j, less than d

2
. If d = 3 and

q1 = q2 = q3 = 1, i.e., in case of K3, there does not remain a positive coefficient.
This exceptional case will be discussed later.

For both (I) and (II), ignoring the exceptional cases, the terms on the right-
hand side of equation (4.2) are all nonnegative when d ≡ 1 (mod 2), or nonpositive
otherwise, and there is at least one nonzero term. That is, −(d− 1) is not a root of

d−1∑
j=1

p(n; d, j) −
t∑

k=1

qk∑
j=1

p(n; d, j).

The Ehrhart polynomial i(PG, n) is a sum of a polynomial whose roots include
−(d − 1) and another polynomial whose roots do not include −(d − 1). Therefore,
−(d − 1) is not a root of i(PG, n).

Finally, we discuss the exceptional cases. The complete bipartite graphs are
treated in Example 4.1.7. In these cases, −(d − 1) is not a root of the Ehrhart
polynomials. However, −(d − 1) = −2 is actually a root of the Ehrhart polyno-
mial of the edge polytope constructed from the complete graph K3, as shown in
Proposition 4.1.3 (1).

4.1.2 Roots of Ehrhart polynomials of edge polytopes with
loops

In this subsection, we will investigate roots of the Ehrhart polynomials of edge
polytopes allowing loops.

A convex polytope P of dimension d is simple if each vertex of P belongs to
exactly d edges of P . A simple polytope P is smooth if at each vertex of P, the
primitive edge directions form a lattice basis.
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Now, if e = {i, j} is an edge of G, then ρ(e) cannot be a vertex of PG if and only
if i 6= j and G has a loop at each of the vertices i and j. Suppose that G has a loop
at i ∈ V (G) and j ∈ V (G) and that {i, j} is not an edge of G. Then PG = PG′ for
the graph G′ defined by E(G′) = E(G)∪{{i, j}}. Considering this fact, throughout
this section, we assume that G satisfies the following condition:

(∗) If i, j ∈ V (G) and if G has a loop at each of i and j, then the edge {i, j}
belongs to G.

The graphs G (allowing loops) whose edge polytope PG is simple are completely
classified by the following

Theorem 4.1.11 ([59, Theorem 1.8]). Let W denote the set of vertices i ∈ V (G)
such that G has no loop at i and let G′ denote the induced subgraph of G on W .
Then the following conditions are equivalent :

(i) PG is simple, but not a simplex;

(ii) PG is smooth, but not a simplex;

(iii) W 6= ∅ and G is one of the following graphs:

(α) G is a complete bipartite graph with at least one cycle of length 4;

(β) G has exactly one loop, G′ is a complete bipartite graph and if G has a
loop at i, then {i, j} ∈ E(G) for all j ∈ W ;

(γ) G has at least two loops, G′ has no edge and if G has a loop at i, then
{i, j} ∈ E(G) for all j ∈ W .

From the theory of Gröbner bases, we obtain the Ehrhart polynomial i(PG, n)
of the edge polytope PG above. In fact,

Theorem 4.1.12 ([59, Theorem 3.1]). Let G be a graph as in Theorem 4.1.11 (iii).
Let W denote the set of vertices i ∈ V (G) such that G has no loop at i and let G′

denote the induced subgraph of G on W . Then the Ehrhart polynomial i(PG, n) of
the edge polytope PG are as follows:

(α) If G is the complete bipartite graph on the vertex set V1 ∪V2 with |V1| = p and
|V2| = q, then we have

i(PG, n) =

(
p + n − 1

p − 1

)(
q + n − 1

q − 1

)
;

(β) If G′ is the complete bipartite graph on the vertex set V1∪V2 with |V1| = p and
|V2| = q, then we have

i(PG, n) =

(
p + n

p

)(
q + n

q

)
;
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(γ) If G possesses p loops and |V (G)| = d, then we have

i(PG, n) =

p∑
j=1

(
j + n − 2

j − 1

)(
d − j + n

d − j

)
.

The goal of this section is to discuss the roots of Ehrhart polynomials of sim-
ple edge polytopes in Theorem 4.1.11 (Theorems 4.1.15, 4.1.16, and 4.1.17). The
consequences of the theorems above support Conjecture 2.0.1.

Example 4.1.13. The Ehrhart polynomial for a graph G, the induced subgraph G′

of which is a complete bipartite graph Kp,q, is given in Theorem 4.1.12 (β):

i(PG, n) =

(
p + n

p

)(
q + n

q

)
,

and thus the roots are

V

((
p + n

p

)(
q + n

q

))
= {−1,−2, . . . ,−max(p, q)}.

Example 4.1.14. Explicit computation of the roots of the Ehrhart polynomials
obtained in Theorem 4.1.12 (γ) seems, in general, to be rather difficult.

Let p = 2. Then (
n − 1

0

)(
d − 1 + n

d − 1

)
+

(
n

1

)(
d − 2 + n

d − 2

)
=

(
d − 1 + n

d − 1

)
+ n

(
d − 2 + n

d − 2

)
=

(
d − 1 + n

d − 1
+ n

)(
d − 2 + n

d − 2

)
=

dn + d − 1

d − 1

(
d − 2 + n

d − 2

)
.

Thus,

V (i(PG, n)) =

{
−1,−2, . . . ,−(d − 2),−d − 1

d

}
.

Let p = 3. Then(
n − 1

0

)(
d − 1 + n

d − 1

)
+

(
n

1

)(
d − 2 + n

d − 2

)
+

(
n + 1

2

)(
d − 3 + n

d − 3

)
=

(
d − 1 + n

d − 1

)
+ n

(
d − 2 + n

d − 2

)
+

n(n + 1)

2

(
d − 3 + n

d − 3

)
=

(
(d − 1 + n)(d − 2 + n)

(d − 1)(d − 2)
+ n

d − 2 + n

d − 2
+

n(n + 1)

2

)(
d − 3 + n

d − 3

)
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and

(d − 1 + n)(d − 2 + n)

(d − 1)(d − 2)
+ m

d − 2 + n

d − 2
+

n(n + 1)

2

=
2(d − 1 + n)(d − 2 + n) + 2(d − 1)n(d − 2 + n) + (d − 1)(d − 2)n(n + 1)

2(d − 1)(d − 2)

=
(d2 − d + 2)n2 + (3d2 − 5d)n + (2d2 − 6d + 4)

2(d − 1)(d − 2)
.

Let
f(n) = (d2 − d + 2)n2 + (3d2 − 5d)n + (2d2 − 6d + 4).

Since d > p = 3, one has

f(0) = 2d2 − 6d + 4 = 2(d − 1)(d − 2) > 0;

f(−1) = (d2 − d + 2) − (3d2 − 5d) + (2d2 − 6d + 4) = −2d + 6 < 0;

f(−2) = 4(d2 − d + 2) − 2(3d2 − 5d) + (2d2 − 6d + 4) = 12 > 0.

Hence,
V (i(PG, n)) = {−1,−2, . . . ,−(d − 3), α, β}

where −2 < α < −1 < β < 0.

We try to find information about the roots of the Ehrhart polynomials obtained
in Theorem 4.1.12 (γ) with d > p ≥ 2.

Theorem 4.1.15 ([48, Theorem 2.5]). Let d and p be integers with d > p ≥ 2 and
let

fd,p(n) =

p∑
j=1

(
j + n − 2

j − 1

)(
d − j + n

d − j

)
be a polynomial of degree d − 1 in the variable n. Then

{−1,−2, . . . ,−(d − p)} ⊂ V(fd,p) ∩ R ⊂ [−(d − 2), 0).

Proof. It is easy to see that fd,p(0) = 1 and fd,p(n) > 0 for all n > 0.
From Example 4.1.14, we may assume that 4 ≤ p < d. Then

fd,p(n)

=

(
d − 1 + n

d − 1

)
+ n

(
d − 2 + n

d − 2

)
+

p∑
j=3

(
j + n − 2

j − 1

)(
d − j + n

d − j

)

=

(
d − 1 + n

d − 1
+ n

)(
d − 2 + n

d − 2

)
+

p∑
j=3

(
j + n − 2

j − 1

)(
d − j + n

d − j

)

=
nd + d − 1

d − 1

(
d − 2 + n

d − 2

)
+

p∑
j=3

(
j + n − 2

j − 1

)(
d − j + n

d − j

)
.
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If n < −(d−2), then n+d−2 < 0, nd+d−1 < −(d−2)d+d−1 = −(d−3)d−1 < 0,

n + d − j ≤ n + d − 3 < 0

n + j − 2 ≤ n + p − 2 ≤ n + d − 3 < 0

for each j = 3, 4, . . . , p. Hence, we have (−1)d−1fd,p(n) > 0 for all n < −(d − 2).
Thus, we have V(fd,p) ∩ R ⊂ [−(d − 2), 0).

Since

fd,p(n) =

(
d − p + n

d − p

) p∑
j=1

(
j + n − 2

j − 1

)
(d − j + n) · · · (d − p + 1 + n)

(d − j) · · · (d − p + 1)
,

it follows that

V

((
d − p + n

d − p

))
= {−1,−2, . . . ,−(d − p)} ⊂ V(fd,p).

Theorem 4.1.16 ([48, Theorem 2.6]). Let d and p be integers with d > p ≥ 2 and
let fd,p(m) be the polynomial defined above. If d − 2p + 2 ≥ 0, then

V(fd,p) = {−1,−2, . . . ,−(d − p), α1, α2, . . . , αp−1}

where

−(p − 1) < αp−1 < −(p − 2) < αp−2 < −(p − 3) < · · · < −1 < α1 < 0.

Proof. Let

gd,p(n) =
fd,p(m)(
d−p+n

d−p

) =

p∑
j=1

(
j + n − 2

j − 1

)
(d − j + n) · · · (d − p + 1 + n)

(d − j) · · · (d − p + 1)
.

It is enough to show that
(−1)kgd,p(k) > 0

for k = 0,−1,−2, . . . ,−(p − 1).

First Step. We claim that (−1)−(p−1)gd,p(−(p − 1)) > 0. A routine computation
on binomial coefficients yields the equalities

gd,p(−(p − 1))

=

∑p
j=1(−1)j−1

(
p−1
j−1

) ∏j−1
i=1 (d − i)

∏p−1
k=j(d − k − (p − 1))

(d − 1) · · · (d − p + 1)

and

p∑
j=1

(−1)j−1

(
p − 1

j − 1

) j−1∏
i=1

(d − i)

p−1∏
k=j

(d − k − (p − 1))

= (−1)p−1(p − 1)p · · · (2p − 3).
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Hence,

(−1)p−1gd,p(−(p − 1)) =
(p − 1)p · · · (2p − 3)

(d − 1) · · · (d − p + 1)
> 0.

Second Step. Working with induction on p, we now show that

(−1)kgd,p(k) > 0

for k = 0,−1,−2, . . . ,−(p − 2). Again, a routine computation on binomial coeffi-
cients yields

gd,p(n) =

(
p + n − 2

p − 1

)
+

d − p + 1 + n

d − p + 1
gd,p−1(n).

Hence,

(−1)kgd,p(k) =
d − p + 1 + k

d − p + 1
(−1)kgd,p−1(k).

Since d − 2p + 2 ≥ 0, one has

d − p + 1 + k ≥ d − p + 1 − (p − 2) = d − 2p + 3 > 0.

By virtue of (−1)−(p−1)gd,p(−(p−1)) > 0, together with the hypothesis of induction,
it follows that

(−1)kgd,p−1(k) > 0.

Thus,

(−1)kgd,p(k) > 0,

as desired.

If d − 2p + 2 ≥ 0, then it follows that⌊
d − 1

2

⌋
≤ d − p.

In this case, around half of the elements of V(fd,p) are negative integers. This fact
remains true even if d − 2p + 2 < 0.

Theorem 4.1.17 ([48, Theorem 2.7]). Let d and p be integers with d > p ≥ 2 and
let fd,p(n) be the polynomial defined above. Then{

−1,−2, . . . ,−
⌊

d − 1

2

⌋}
⊂ V(fd,p).
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Proof. If d − 2p + 2 ≥ 0, then it follows from Theorem 4.1.15. (Note that if p = 2,
then d − 2p + 2 = d − 2 > 0.)

Work with induction on p. Let d− 2p + 2 < 0. By Theorem 4.1.15, it is enough
to show that gd,p(k) = 0 for all k = −(d − p + 1), . . . ,−

⌊
d−1
2

⌋
. As in the proof of

Theorem 4.1.16, we have

gd,p(n) =

(
p + n − 2

p − 1

)
+

d − p + 1 + n

d − p + 1
gd,p−1(n).

Since d − 2p + 2 < 0, it follows that
⌊

d−1
2

⌋
≤ p − 2. Thus,

gd,p(k) =
d − p + 1 + k

d − p + 1
gd,p−1(k).

By virtue of

gd,p(−(d − p + 1)) =
0

d − p + 1
gd,p−1(−(d − p + 1)) = 0

together with the hypothesis of induction, it follows that gd,p(k) = 0 for all k =
−(d − p + 1), . . . ,−

⌊
d−1
2

⌋
.

Example 4.1.18. Let d = 12. Then d − 2p + 2 ≥ 0 if and only if p ≤ 7. For p =
2, 3, . . . , 7, the roots of the Ehrhart polynomials are −1,−2, . . . ,−(d − p) = p − 12,
together with the real numbers listed as follows:

p = 2 −0.92
p = 3 −1.92 −0.85
p = 4 −2.90 −1.83 −0.80
p = 5 −3.83 −2.77 −1.74 −0.76
p = 6 −4.67 −3.65 −2.65 −1.66 −0.72
p = 7 −5.31 −4.42 −3.47 −2.53 −1.58 −0.69

For p = 8, 9, 10, 11, the roots of the Ehrhart polynomials are −1,−2,−3,−4,−5 =
−

⌊
d−1
2

⌋
, together with the following complex numbers:

p = 8 −5.56 −4.19 −3.31 −2.41 −1.51 −0.65
p = 9 −5.47 −4.79 −3.16 −2.29 −1.43 −0.62
p = 10 −5.51 −4.16 + 0.18i −4.16 − 0.18i −2.16 −1.34 −0.59
p = 11 −5.50 −4.53 −3.08 + 0.06i −3.08 − 0.06i −1.24 −0.55

(Computed by Maxima.) Thus, in particular, the real parts of all roots are negative.

4.2 Counterexamples of Conjecture 2.0.1

However, we discover counterexamples of Conjecture 2.0.1.
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4.2.1 A significant family of integral simplices

This section is devoted to giving some counterexamples of Conjecture 2.0.1. First,
we prove

Theorem 4.2.1 ([38, Theorem 2.1]). Let m, d, k ∈ Z>0 be arbitrary positive integers
satisfying

m ≥ 1, d ≥ 2 and 1 ≤ k ≤ b(d + 1)/2c. (4.3)

Then there exists an integral convex polytope whose Ehrhart polynomial coincides
with (

d + n

d

)
+ m

(
d + n − k

d

)
. (4.4)

Proof. We may show that there exists an integral convex polytope of dimension d
whose δ-vector coincides with

δi =


1, i = 0,

m, i = k,

0, otherwise.

When k = 1, it is obvious that (1, m, 0, . . . , 0) is a δ-vector. Thus, we assume
that k ≥ 2. By Lemma 3.2.3, it is enough to construct an integral convex polytope
of dimension d with its δ-vector

δi =


1, i = 0,

m, i = (d + 1)/2,

0, otherwise,

for any positive integer m and any odd number d with d ≥ 3.

Let d ≥ 3 be an odd number and c = (d − 1)/2. We define the integral simplex
P ⊂ Rd of dimension d by setting the convex hull of the integer points v0, v1, . . . , vd ∈
Zd, which are of the form

vi =


ei, i = 1, . . . , d − 1,∑c

j=1 ej +
∑2c

j=c+1 mej + (m + 1)ed, i = d,

(0, 0, . . . , 0), i = 0,

where e1, e2, . . . , ed denote the unit coordinate vectors of Rd. In other words, for
i = 1, . . . , d, vi is equal to the ith row vector of the d × d lower triangular integer
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matrix 

1 0 · · · · · · · · · · · · 0

0 1
. . .

...
...

. . . . . . . . .
...

...
. . . . . . . . .

...
...

. . . . . . . . .
...

0 · · · · · · · · · 0 1 0
1 · · · 1 m · · · m m + 1


, (4.5)

where there are c 1’s and c m’s in the dth row. Then we notice that vol(P) = m+1,
which coincides with the determinant of (4.5).

For j = 1, 2, . . . ,m, since

c∑
i=0

m + 1 − j

m + 1
(vi, 1) +

d∑
i=c+1

j

m + 1
(vi, 1) = (1, 1, . . . , 1︸ ︷︷ ︸

c

, j, j, . . . , j︸ ︷︷ ︸
c+1

, c + 1) ∈ Zd+1

and

0 ≤ m + 1 − j

m + 1
< 1, 0 ≤ j

m + 1
< 1,

we have δc+1 ≥ m. Moreover, from vol(P) = m + 1 together with the nonnegativity
of δ-vectors, we obtain δ(d+1)/2 = m. Therefore, we conclude that P has the required
δ-vector.

We consider the roots of the polynomial (4.4) given in Theorem 4.2.1.
Let f(n) be the polynomial (4.4) in n of degree d. Since

f(n) =

∏d−k
j=1(n + j)

d!

(
d∏

j=d−k+1

(n + j) + m
k−1∏
j=0

(n − j)

)
,

negative integers −1,−2, . . . ,−d + k are always the roots of f(n). Let

gm,d,k(n) =
d∏

j=d−k+1

(n + j) + m
k−1∏
j=0

(n − j)

be a polynomial in n of degree k. We consider the roots of gm,d,k(n).

Example 4.2.2. Let us consider the polynomial gm,15,8(n). When 1 ≤ m ≤ 8,
all its roots satisfy (4.7). On the other hand, when m = 9, its eight roots are
approximately

14.37537447 ± 25.02096544
√
−1, −0.77681486 ± 10.23552765

√
−1,

−2.56596317 ± 4.52757516
√
−1 and − 3.03259644 ± 1.31223697

√
−1.
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By virtue of Theorem 4.2.1, this implies that there exists a counterexample of Con-
jecture 2.0.1. Moreover, it can be verified that for every 15 ≤ d ≤ 100, g9,d,b(d+1)/2c(n)
possesses a root which violates (4.7), that is, there exists a counterexample of Con-
jecture 2.0.1 for each dimension 15 ≤ d ≤ 100. There also seems to exist a coun-
terexample when d ≥ 101. In addition, we remark that when d ≥ 17, we can verify
that g9,d,b(d+1)/2c(n) possesses a root whose real part is greater than d. (Those are
computed by Maple and Maxima.)

These computational results are also supported theoretically. For example on
the roots of g9,15,8(n), by applying the Routh-Hurwitz stability criterion, (e.g., [18,
pp. 226–233],) we can check that g9,15,8(n+14.3) possesses a root whose real part is
nonnegative but g9,15,8(n + 14.4) possesses no root whose real part is nonnegative.
Of course, this means that g9,15,8(n) possesses a root α with 14.3 ≤ Re(α) < 14.4.

Remark 4.2.3. On the order of the largest real part of the non-real roots of g9,d,b(d+1)/2c(n),
the order seems not to be linear on d. For example, when d = 30, 50, 100 and 200,
the largest real parts of non-real roots of g9,d,b(d+1)/2c(n) are as follows:

d approximate real part
30 60
50 174
100 722
200 2940

Thus, it is more natural to claim that the real parts of roots of Ehrhart polynomials
are bounded with O(d2), which is known as the best possible norm bound of roots
of Ehrhart polynomials.

Remark 4.2.4. (a) When m = 1, the real parts of all the roots of g1,d,k(n) are
(−d + k − 1)/2, which satisfies −d < (−d + k − 1)/2 < −1/2. In fact, since all the
roots of 1+λk are on the unit circle in the complex plane, we can apply the theorem
of [64] to the polynomial

(
n+d

d

)
+

(
n+d−k

d

)
. On the other hand, when m = 2, we can

obtain other counterexample of Conjecture 2.0.1 when d = 37 and k = 19.
(b) When k = 1, one has gm,d,1(n) = (m + 1)n + d. Thus, its root is −d/(m + 1),
which satisfies −d < −d/(m+1) < 0. When k = 2, one has gm,d,2(n) = (m+1)n2 +
(2d − m − 1)n + d(d − 1). If its discriminant is negative, then the real part of its
roots is −d/(m + 1) + 1/2, which satisfies −d + 1/2 < −d/(m + 1) + 1/2 < 1/2.

Remark 4.2.5. Finally, we remark that there exists other counterexample of Con-
jecture 2.0.1. In [60], Ohsugi and Shibata found an integral convex polytope of
dimension 124 which is a certain counterexample.

4.3 Roots of Ehrhart polynomials of Gorenstein

Fano polytopes

In this section, we discuss roots of the Ehrhart polynomials of Gorenstein Fano
polytopes, which have many interesting distribution.
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4.3.1 Gorenstein Fano polytopes arising from graphs

Let us study roots of Ehrhart polynomials of Gorenstein Fano polytopes arising from
finite connected simple graphs. Throughout this subsection, G denotes a simple
graph on the vertex set V (G) = {1, . . . , d} with E(G) = {e1, . . . , em} being the edge
set.

Definition 4.3.1. Given an edge e = {i, j} ∈ E(G), we define σ(e) = ei − ej ∈ Rd.
Moreover, we write P±

G ⊂ Rd for the convex hull of

{±σ(e) : e ∈ E(G)},

which we call an symmetric edge polytope.
Let H ⊂ Rd denote the hyperplane defined by the equation x1+x2+ · · ·+xd = 0.

Now, since the integral points ±σ(e1), . . . ,±σ(em) lie on the hyperplane H, we have
dim(P±

G ) ≤ d − 1.

Proposition 4.3.2. One has dim(P±
G ) = d − 1 if and only if G is connected.

Proof. Suppose that G is not connected. Let G1, . . . , Gk with k > 1 denote the
connected components of G. Let, say, {1, . . . , d1} be the vertex set of G1 and
{d1 + 1, . . . , d2} the vertex set of G2. Then P±

G lies on two hyperplanes defined by
the equations x1 + · · ·+ xd1 = 0 and xd1+1 + · · ·+ xd2 = 0. Thus, dim(P±

G ) < d− 1.
Next, we assume that G is connected. Suppose that P±

G lies on the hyperplane
defined by the equation a1x1 + · · · + adxd = b with a1, . . . , ad, b ∈ Z. Let e = {i, j}
be an edge of G. Then because σ(e) lies on this hyperplane together with −σ(e),
we obtain

ai − aj = −(ai − aj) = b.

Thus ai = aj and b = 0. For all edges of G, since G is connected, we have a1 = a2 =
· · · = ad and b = 0. Therefore, P±

G lies only on the hyperplane x1 + x2 + · · · + xd =
0.

For the rest of this section, we assume that G is connected.

Proposition 4.3.3. Let P±
G be a symmetric edge polytope of a graph G. Then

P±
G ⊂ H is a Gorenstein Fano polytope of dimension d − 1.

Proof. Let ϕ : Rd−1 → H be the bijective homomorphism with

ϕ(y1, . . . , yd−1) = (y1, . . . , yd−1,−(y1 + · · · + yd−1)).

Thus, we can identify H with Rd−1. Therefore, ϕ−1(P±
G ) is isomorphic to P±

G .
Since one has

1

2m

m∑
j=1

σ(ej) +
1

2m

m∑
j=1

(−σ(ej)) = (0, . . . , 0) ∈ Rd,
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the origin of Rd is contained in the relative interior of P±
G ⊂ H. Moreover, since

P±
G ⊂ {(x1, . . . , xd) ∈ Rd | − 1 ≤ xi ≤ 1, i = 1, . . . , d},

it is not possible for an integral point to exist anywhere in the interior of P±
G except

at the origin. Thus, P±
G ⊂ H is a Fano polytope of dimension d − 1.

Next, we prove that P±
G is Gorenstein. Let M be an integer matrix whose row

vectors are σ(e) or −σ(e) with e ∈ E(G). Then M is a totally unimodular matrix.
From the theory of totally unimodular matrices ([66, Chapter 9]), it follows that a
system of equations yA = (1, . . . , 1) has integral solutions, where A is a submatrix
of M . This implies that the equation of each supporting hyperplane of P±

G is of the
form a1x1 + · · · + adxd = 1 with each ai ∈ Z. In other words, the dual polytope of
P±

G is integral. Hence, P±
G is Gorenstein, as required.

We consider the conditions under which P±
G is unimodular equivalent with P±

G′

for graphs G and G′.
Recall that for a connected graph G, we call G a 2-connected graph if the induced

subgraph with the vertex set V (G)\{i} is still connected for any vertex i of G.
Let us say a Fano polytope P ⊂ Rd splits into P1 and P2 if P is the convex hull

of the two Fano polytopes P1 ⊂ Rd1 and P2 ⊂ Rd2 with d = d1 + d2. That is, by
arranging the numbering of coordinates, we have

P = conv({(α1,0) ∈ Rd | α1 ∈ P1} ∪ {(0, α2) ∈ Rd | α2 ∈ P2}).

Lemma 4.3.4. P±
G cannot split if and only if G is 2-connected.

Proof. (“Only if”) Suppose that G is not 2-connected, i.e., there is a vertex i of
G such that the induced subgraph G′ of G with the vertex set V (G)\{i} is not
connected. For a matrix 

σ(e1)
−σ(e1)

...
σ(em)
−σ(em)

 (4.6)

whose row vectors are the vertices of P±
G , we add all the columns of (4.6) except

the ith column to the ith column. Then the ith column vector becomes equal to
the zero vector. Let, say, {1, . . . , i − 1} and {i + 1, . . . , d} denote the vertex set
of the connected components of G′. Then, by arranging the row vectors of (4.6) if
necessary, the matrix (4.6) can be transformed into(

M1 0
0 M2

)
.
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This means that P±
G splits into P1 and P2, where the vertex set of P1 (resp, P2)

constitutes the row vectors of M1 (resp. M2).
(“If”) We assume that G is 2-connected. Suppose that P±

G splits into P1, . . . ,Pq

and each Pi cannot split, where q > 1. Then by arranging the row vectors if
necessary, the matrix (4.6) can be transformed into M1 0

. . .

0 Mq

 .

Now, for a row vector v of each matrix Mi, −v is also a row vector of Mi. Let

vi1 , . . . , viki
,−vi1 , . . . ,−viki

denote the row vectors of Mi, where ei1 , . . . , eiki
are the edges of G with vij = σ(eij)

or vij = −σ(eij), and Gi denote the subgraph of G with the edge set {ei1 , . . . , eiki
}.

Then for the subgraphs G1, . . . , Gq of G, one has

|V (G1)| + · · · + |V (Gq)| ≥ d + 2(q − 1), (4.7)

where V (Gi) is the vertex set of Gi.
(In fact, the inequality (4.7) follows by induction on q. When q = 2, since G is 2-
connected, G1 and G2 share at least two vertices. Thus, one has |V (G1)|+|V (G2)| ≥
d + 2. When q = k + 1, since G is 2-connected, one has∣∣(∪k

i=1V (Gi)) ∩ V (Gk+1)
∣∣ ≥ 2.

Let d′ be the sum of the numbers of the columns of M1, . . . ,Mk−1 and Mk and d′′

be the number of the columns of Mk+1, where d′ + d′′ = d. Then one has

|V (G1)| + · · · + |V (Gk)| + |V (Gk+1)| ≥ d′ + 2(k − 1) + |V (Gk+1)|
≥ d′ + d′′ + 2(k − 1) + 2 = d + 2k

by the hypothesis of induction.)
In addition, each P±

Gi
cannot split. Thus one has dim(P±

Gi
) = |V (Gi)| − 1 since each

Gi is connected by the proof of the “only if” part. It then follows from this equality
and the inequality (4.7) that

d − 1 = dim(P±
G1

) + · · · + dim(P±
Gq

) = |V (G1)| + · · · + |V (Gq)| − q

≥ d + 2q − 2 − q = d + q − 2 ≥ d (q ≥ 2),

a contradiction. Therefore, P±
G cannot split.

Lemma 4.3.5. Let G be a 2-connected graph. Then, for a graph G′, P±
G is unimod-

ular equivalent with P±
G′ as an integral convex polytope if and only if G is isomorphic

to G′ as a graph.
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Proof. If |V (G)| = 2, the statement is obvious. Thus, we assume that |V (G)| > 2.
(“Only if”) Suppose that P±

G is unimodular equivalent with P±
G′ . Let MG (resp.

MG′) denote the matrix whose row vectors are the vertices of P±
G (resp. P±

G′). Then
there is a unimodular transformation U such that one has

MGU = MG′ . (4.8)

Thus, each row vector of MG, i.e., each edge of G, one-to-one corresponds to each
edge of G′. Hence, G and G′ have the same number of edges. Moreover, since G
is 2-connected, P±

G cannot split by Lemma 4.3.4. Thus, P±
G′ also cannot split; that

is to say, G′ is also 2-connected. In addition, if we suppose that G and G′ do not
have the same number of vertices, then dim(P±

G ) 6= dim(P±
G′) since G and G′ are

connected, a contradiction. Thus, the number of the vertices of G is equal to that
of G′.

Now an arbitrary 2-connected graph with |V (G)| > 2 can be obtained by the
following method: start from a cycle and repeatedly append an H-path to a graph
H that has been already constructed. (Consult, e.g., [77].) In other words, there is
one cycle C1 and (q − 1) paths Γ2, . . . , Γq such that

G = C1 ∪ Γ2 ∪ · · · ∪ Γq. (4.9)

Under the assumption that G is 2-connected and one has the equality (4.8), we show
that G is isomorphic to G′ by induction on q.

If q = 1, i.e., G is a cycle, then G has d edges. Let ai, i = 1, . . . , d denote the
degree of each vertex i of G′. Then one has

a1 + a2 + · · · + ad = 2d.

If there is i with ai = 1, then G′ is not 2-connected. Thus, ai ≥ 2 for i = 1, . . . , d.
Hence, a1 = · · · = ad = 2. It then follows that G′ is also a cycle of the same length
as G, which implies that G is isomorphic to G′.

When q = k + 1, we assume (4.9). Let G̃ denote the subgraph of G with

G̃ = C1 ∪ Γ2 ∪ · · · ∪ Γk.

Then G̃ is a 2-connected graph. Since each edge of G has one-to-one correspondence
with each edge of G′, there is a subgraph G̃′ of G′ each of whose edges corresponds
to those of G̃. Then one has MG̃U = MG̃′ , where MG̃ (resp. MG̃′) is a submatrix
of MG (resp. MG′) whose row vectors are the vertices of P±

G̃
(resp. P±

G̃′). Thus,

G̃ is isomorphic to G̃′ by the hypothesis of induction. Let Γk+1 = (i0, i1, . . . , ip)
with i0 < i1 < · · · < ip and eil = {il−1, il}, l = 1, . . . , p denote the edges of Γk+1. In
addition, let e′i1 , . . . , e

′
ip denote the edges of G′ corresponding to the edges ei1 , . . . , eip

of G. Here, the edges e′i1 , . . . , e
′
ip of G′ are not the edges of G̃′. Since i0 and ip are

distinct vertices of G̃ and G̃ is connected, there is a path Γ = (i0, j1, j2, . . . , jq−1, ip)
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with i0 = j0 < j1 < j2 < · · · < jq−1 < jq = ip in G̃. Let ejl
= {jl−1, jl}, l = 1, . . . , q

denote the edges of Γ. Then by renumbering the vertices of G̃′ if necessary, there is
a path Γ′ = (i′0, j

′
1, j

′
2, . . . , j

′
q−1, i

′
p) with i′0 = j′0 < j′1 < j′2 < · · · < j′q−1 < j′q = i′p in

G̃′ since G̃ is isomorphic to G̃′. Let e′jl
= {j′l−1, j

′
l}, l = 1, . . . , q denote the edges of

Γ′. However, by (4.8), each edge ejl
of G̃ has one-to-one correspondence with each

edge e′′jl
of G̃′. Thus, each edge e′jl

of G̃′ has one-to-one correspondence with each

edge e′′jl
of G̃′. In other words, one has

{e′jl
: l = 1, . . . , q} = {e′′jl

: l = 1, . . . , q}.

Since there are Γk+1 and Γ that are paths from i0 to ip, one has

p∑
l=1

σ(eil) =

q∑
l=1

σ(ejl
). (4.10)

On the one hand, if we multiply the left-hand side of the equation (4.10) with U ,
then we have

p∑
l=1

σ(eil)U =

p∑
l=1

σ(e′il).

On the other hand, if we multiply the right-hand side of the equation (4.10) with
U , then we have

q∑
l=1

σ(ejl
)U =

q∑
l=1

σ(e′′jl
) =

q∑
l=1

σ(e′jl
) = ei′0

− ei′p .

Hence, we have
∑p

l=1 σ(e′il) = ei′0
− ei′p . This means that the edges e′i1 , . . . , e

′
ip of G′

construct a path from the vertex i′0 to i′p, which is isomorphic to Γk+1. Therefore,
G is isomorphic to G′.
(“ if ”) Suppose that G is isomorphic to G′. Then by renumbering the vertices if
necessary, it can be easily verified that P±

G is unimodular equivalent with P±
G′ .

Theorem 4.3.6 ([48, Theorem 3.5]). For a connected simple graph G (resp. G′),
let G1, . . . , Gq (resp. G′

1, . . . , G
′
q′) denote the 2-connected components of G (resp.

G′). Then P±
G is unimodular equivalent with P±

G′ if and only if q = q′ and Gi is
isomorphic to G′

i by renumbering if necessary.

Proof. It is clear from Lemma 4.3.4 and Lemma 4.3.5. If Gi is isomorphic to G′
i for

i = 1, . . . , q, by virtue of Lemma 4.3.4 and Lemma 4.3.5, then P±
G is unimodular

equivalent with P±
G′ . On the contrary, suppose that P±

G is unimodular equivalent
with P±

G′ . If q 6= q′, one has a contradiction by Lemma 4.3.4. Thus, m = m′.
Moreover, by our assumption, Gi is isomorphic to G′

i by Lemma 4.3.5.

Now, we study the Ehrhart polynomials of P±
G and their roots.
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Proposition 4.3.7. If G is a tree, then P±
G is unimodular equivalent with

conv({±e1, . . . ,±ed−1}). (4.11)

Proof. If G is a tree, then any 2-connected component of G consists of one edge and
G possesses (d − 1) 2-connected components. Thus, by Theorem 4.3.6, for any tree
G, P±

G is unimodular equivalent. Hence we should prove only the case where G is a
path, i.e., the edge set of G is {{i, i + 1} : i = 1, . . . , d − 1}.

Let 
σ(e1)
−σ(e1)

...
σ(ed−1)
−σ(ed−1)


denote the matrix whose row vectors are the vertices of P±

G , where ei = {i, i+1}, i =
1, . . . , d − 1 are the edges of G. If we add the dth column to the (d − 1)th column,
the (d − 1)th column to the (d − 2)th column, . . ., and the second column to the
first column, then the above matrix is transformed into 0 M 0

...
. . .

0 0 M

 ,

where M is the 2× 1 matrix

(
−1
1

)
. This implies that P±

G is unimodular equivalent

with (4.11).

Let (δ0, δ1, . . . , δd−1) ∈ Zd be the δ-vector of (4.11). Then it can be calculated
that

δi =

(
d − 1

i

)
, i = 0, 1, . . . , d − 1.

It then follows from the well-known theorem [64] that if G is tree, the real parts
of all the roots of i(P±

G , n) are equal to −1
2
. That is to say, all the roots α of

i(P±
G , n) lie on the vertical line Re(z) = −1

2
, which is the bisector of the vertical

strip −(d − 1) ≤ Re(z) ≤ d − 2.
We consider the other two classes of graphs. Let G be a complete bipartite graph

of type (2, d−2), i.e., the edges of G are either {1, j} or {2, j} with 3 ≤ j ≤ d. Then
the δ-polynomial of P±

G coincides with

(1 + t)d−3(1 + 2(d − 2)t + t2).

By computational experiences, we propose the following:
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Conjecture 4.3.8. Let G be a complete bipartite graph of type (2, d− 2). Then the
real parts of all the roots of i(P±

G , n) are equal to −1
2
.

Let G be a complete graph with d vertices and δ(P±
G ) = (δ0, δ1, . . . , δd−1) be its

δ-vector. In [1, Theorem 13], the δ(P±
G ) is calculated; that is,

δi =

(
d − 1

i

)2

, i = 0, 1, . . . , d − 1.

By computational experiences, we also propose the following:

Conjecture 4.3.9. Let G be a complete graph. Then the real parts of all the roots
of i(P±

G , n) are equal to −1
2
.

In addition, by computational results, we can say the following:

Proposition 4.3.10. If d ≤ 6, then the real parts of all the roots of i(P±
G , n) are

equal to −1
2

for any graph with d vertices.

However, it is not true for d = 7 or d = 8. In fact, there are some counterexam-
ples. The following Figures 4.3 and 4.4 illustrate how the roots are distanced from
the line Re(z) = −1

2
. (They are computed by CoCoA and Maple.)

Figure 4.3: d = 7

Let G be a cycle of length d. When d ≤ 6, although the real parts of all the
roots of i(P±

G , n) are equal to −1
2
, there are also some counterexamples when d ≥ 7.

The following Figure 4.5 illustrates the behavior of the roots for 7 ≤ d ≤ 30.
However, in the range of graphs which we computed, all the roots z of i(P±

G , n)
whose real parts are not equal to −1

2
satisfy −(d − 1) ≤ Re(z) ≤ d − 2. In more
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Figure 4.4: d = 8

Figure 4.5: all cycles 7 ≤ d ≤ 30
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detail, they satisfy −d−1
2

≤ Re(z) ≤ d−1
2

− 1, though we do not know the general
case. Then we propose the following:

Conjecture 4.3.11. All roots α of the Ehrhart polynomials of Gorenstein Fano
polytopes of dimension d satisfy −d

2
≤ Re(α) ≤ d

2
− 1.

In the table drawn below, in the second row, the number of connected simple
graphs with d(≤ 8) vertices, up to isomorphism, is written. In the third row,
among these, the number of graphs, up to unimodular equivalence, i.e., satisfying
the condition in Theorem 4.3.6, is written. In the fourth row, among these, in turn,
the number of graphs that are counterexamples, i.e., there is a root of i(P±

G , n) whose
real part is not equal to −1

2
, is written.

d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8
Connected graphs 1 2 6 21 112 853 11117
Non equivalent 1 2 5 16 75 560 7772

Counterexamples 0 0 0 0 0 12 1092

4.3.2 An interesting root distribution of Gorenstein Fano
polytopes

There is an interesting result on roots of the Ehrhart polynomials of Gorenstein
Fano polytopes. In fact,

Theorem 4.3.12 ([36, Theorem 0.1]). Given arbitrary nonnegative integers k and
d with 0 ≤ 2k ≤ d, there exists a Gorenstein Fano polytope P ⊂ Rd of dimension d
such that

(i) i(P , n) possesses d distinct roots;

(ii) i(P , n) possesses exactly 2k non-real roots and d − 2k real roots;

(iii) the real part of each of the non-real roots is equal to −1/2;

(iv) all of the real roots belong to the open interval (−1, 0).

Proof. Let Q ⊂ Rd be the convex polytope which is the convex hull of e1, . . . , e2k

and −(e1 + · · ·+ e2k). Then Q is an integral convex polytope of dimension 2k with
δ(Q) = (1, 1, . . . , 1) ∈ Z2k+1.

In general, when F ⊂ RN is an integral convex polytope of dimension d, if we
define F ′ ⊂ RN+1 by setting the convex hull of F ∪ {eN+1}, then one has

i(F ′, n) = 1 +
n∑

k=1

i(F , k).

It then follows that
δ(F ′) = (δ(F), 0) ∈ Zd+2.
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Let Qc ⊂ Rd be the convex polytope which is the convex hull of Q∪{e2k+1, . . . , ed}.
Then δ(Qc) = (δ(Q), 0, . . . , 0) ∈ Zd+1. Hence, by (2.3), the convex polytope
(d− 2k +1)Qc possesses a unique integer point a in its interior. Now, write P ⊂ Rd

for the integral convex polytope (d − 2k + 1)Qc − a. Then P is a Fano polytope.
Since

∞∑
n=0

i(Qc, n)λn =
1 + λ + λ2 + · · · + λ2k

(1 − λ)d+1
,

one has

i(Qc, n) =
n∑

i=n−2k

(
d + i

d

)
=

2k∑
i=0

(
d + (n − 2k) + i

d

)

=
2k∑
i=0

(
d + n − (2k − i)

d

)
=

2k∑
i=0

(
n + d − i

d

)

=
2k∑
i=0

((
n + d − i + 1

d + 1

)
−

(
n + d − i

d + 1

))
=

(
n + d + 1

d + 1

)
−

(
n + d − 2k

d + 1

)
=

1

(d + 1)!

d−2k∏
i=1

(n + i)

(
2k∏
i=0

(n + d + 1 − i) −
2k∏
i=0

(n − i)

)
.

Since
i(P , n) = i((d − 2k + 1)Qc, n) = i(Qc, (d − 2k + 1)n),

one has

i(P , n) =
(d − 2k + 1)d+1

(d + 1)!

d−2k∏
i=1

(
n +

i

d − 2k + 1

)
F (n),

where

F (n) =
2k∏
i=0

(
n +

d + 1 − i

d − 2k + 1

)
−

2k∏
i=0

(
n − i

d − 2k + 1

)

=
2k∏
i=0

(
n +

d + 1 − (2k − i)

d − 2k + 1

)
−

2k∏
i=0

(
n − i

d − 2k + 1

)
.

Thus we obtain the following equalities:

d−2k∏
i=1

(
−n − 1 +

i

d − 2k + 1

)
= (−1)d−2k

d−2k∏
i=1

(
n +

d − 2k + 1 − i

d − 2k + 1

)

= (−1)d−2k

d−2k∏
i=1

(
n +

i

d − 2k + 1

)
;
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F (−n − 1) =
2k∏
i=0

(
−n − 1 +

d + 1 − i

d − 2k + 1

)
−

2k∏
i=0

(
−n − 1 − i

d − 2k + 1

)

= (−1)2k+1

2k∏
i=0

(
n +

d − 2k + 1 − d − 1 + i

d − 2k + 1

)

−(−1)2k+1

2k∏
i=0

(
n +

d − 2k + 1 + i

d − 2k + 1

)

= (−1)2k

2k∏
i=0

(
n +

d − 2k + 1 + i

d − 2k + 1

)
− (−1)2k

2k∏
i=0

(
n − 2k − i

d − 2k + 1

)

= (−1)2k

2k∏
i=0

(
n +

d + 1 − i

d − 2k + 1

)
− (−1)2k

2k∏
i=0

(
n − i

d − 2k + 1

)
= (−1)2kF (n).

It then follows that

(−1)di(P ,−n − 1) = i(P , n),

which implies that P is Gorenstein. Hence our work is to show that P enjoys the
required properties (i) – (iv).

Now, since

−d + 1 − (2k − i)

d − 2k + 1
< −1

2
<

i

d − 2k + 1

and since

−d + 1 − (2k − i)

d − 2k + 1
+

i

d − 2k + 1
= −1,

Lemma 4.3.13 below guarantees that F (n) possesses 2k distinct roots and each of
them is a non-real root with −1/2 its real part. Finally, the real roots of i(P , n) are

− i

d − 2k + 1
, 1 ≤ i ≤ d − 2k.

Each of those roots belongs to the open interval (−1, 0), as desired.

Lemma 4.3.13. Let α0, α1, . . . , α2k and β0, β1, . . . , β2k be rational numbers satisfy-
ing αi < −1/2 < βi and αi + βi = −1 for all i. Let

f(x) =
2k∏
i=0

(x − αi) −
2k∏
i=0

(x − βi)

be a polynomial in x of degree 2k. Then f(x) possesses 2k distinct roots and each
of them is a non-real root with −1/2 its real part.
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Proof. We employ a basis technique appearing in [64]. Let a ∈ C with Re(a) >
−1/2. Since αi < βi and αi + βi = −1, it follows that

|a − αi|2 − |a − βi|2 = (Re(a) − αi)
2 − (Re(a) − βi)

2

= (2 Re(a) − αi − βi)(βi − αi)

= (2 Re(a) + 1)(βi − αi)

> 0.

Hence we have |a − αi| > |a − βi|. Thus
∏2k

i=0 |a − αi| >
∏2k

i=0 |a − βi|. Hence
f(a) 6= 0. Similarly, if a ∈ C with Re(a) < −1/2, then |a − αi| < |a − βi| for all i.
Thus

∏2k
i=0 |a − αi| <

∏2k
i=0 |a − βi|. Hence f(a) 6= 0. Consequently, all roots a ∈ C

of f(x) satisfy Re(a) = −1/2.
Substituting y = x + 1/2 and γi = βi + 1/2 in f(x), it follows that each of the

roots a ∈ C of the polynomial

g(y) =
2k∏
i=0

(γi + y) +
2k∏
i=0

(γi − y)

in y of degree 2k satisfies Re(a) = 0. Since γi > 0, one has g(0) 6= 0. Hence g(y)
possesses no real root. Thus all roots of f(x) are non-real roots.

What we must prove is that g(y) possesses 2k distinct roots. Let b ∈ R and θi(b)
the argument of γi + b

√
−1, where −π/2 < θi(b) < π/2. Then b

√
−1 is a root of

g(y) if and only if
2k∏
i=0

e
√
−1 θi(b) = −

2k∏
i=0

e−
√
−1 θi(b).

In other words, b
√
−1 is a root of g(y) if and only if

2k∏
i=0

e2
√
−1 θi(b) = −1,

which is equivalent to saying that

2k∑
i=0

θi(b) ≡
π

2
(mod π).

Now, we study the function h(y) =
∑2k

i=0 θi(y) with y ∈ R. Since γi > 0, it follows
that h(y) is strictly increasing with

lim
y→∞

h(y) = kπ + π/2, lim
y→−∞

h(y) = −(k + 1)π + π/2.

Hence the equation

h(y) ≡ π

2
(mod π)

possesses 2k distinct real roots, as desired.
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Here is an example of Theorem 4.3.12.

Example 4.3.14. Let k = 1 and d = 4. Then there exists a 4-dimensional Goren-
stein Fano polytope P ⊂ R4 such that i(P , n) satisfies the properties (i)–(iv) of
Theorem 4.3.12. In fact, we define Qc by setting the convex hull of

{(1, 0, 0, 0), (0, 1, 0, 0), (−1,−1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}.

Then 3Qc contains a unique integer point (0, 0, 1, 1) in its interior. Thus P :=
3Qc − (0, 0, 1, 1) is a Gorenstein Fano polytope, which is the convex hull of

{(3, 0,−1,−1), (0, 3,−1,−1), (−3,−3,−1,−1), (0, 0, 2,−1), (0, 0,−1, 2)}.

It can be computed easily that the Ehrhart polynomial of P is equal to

81

8
n4 +

81

4
n3 +

135

8
n2 +

27

4
n + 1

and its roots are

−1

3
,−2

3
,−1

2
+

√
−7

6
and − 1

2
−

√
−7

6
.

Remark 4.3.15. (a) It is disproved in [23] that all of the roots α of the Hilbert poly-
nomial of any Fano variety satisfy −1 < Re(α) < 0, so-called the canonical strip
hypothesis, which is stated in [19]. On Theorem 4.3.12, however, all of the roots
of Ehrhart polynomials of our Gorenstein Fano polytopes satisfy this condition. In
more detail, they satisfy the narrowed canonical strip hypothesis, which is the con-
dition −1 + 1/(d + 1) ≤ Re(α) ≤ −1/(d + 1). Moreover, if we set 2k = d when d is
even or 2k = d−1 when d is odd, then they also satisfy the canonical line hypothesis,
which is the condition Re(α) = −1/2.
(b) It should be considered that we speculate the connections of the Ehrhart polyno-
mials of our Gorenstein Fano polytopes with L-functions. Let i(P , s) be the Ehrhart
polynomial of our Gorenstein Fano polytope P with 2k = d when d is even or with
2k = d− 1 when d is odd. Then we set z(s) = i(P ,−s). Then the function equation

z(1 − s) = (−1)dz(s)

holds and all of its roots α satisfy Re(α) = 1/2, which is, of course, the Reimann
zeta function.

4.4 Roots of SSNN polynomials

On the conjecture on roots of the Ehrhart polynomials of Gorenstein Fano polytopes,
which is Conjecture 4.3.11, there is a partial answer. In this section, we will show
this.

On many results of the studies on roots of Ehrhart polynomials, Stanley’s non-
negativity of δ-vectors [68] plays a crucial role. (For example, see [7, 8, 9].) Derived
from the definition [9, Definition 1.2], we define the following polynomial.
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Definition 4.4.1. Given a sequence of nonnegative real numbers (δ0, δ1, . . . , δd) ∈
Rd+1

≥0 which satisfies these numbers are symmetric, i.e., δi = δd−i for 0 ≤ i ≤ bd
2
c, we

define the polynomial

f(n) =
d∑

i=0

δi

(
n + d − i

d

)
in n of degree d. We call f(n) a symmetric Stanley’s nonnegative or SSNN polyno-
mial of degree d.

We remark that this class of polynomials is mentioned in [62, Remark 2.2],
although it is not pursued deeply there.

In this section, we study roots of SSNN polynomials. We consider the following
question as a generalized form of Conjecture 4.3.11.

Question 4.4.2. Do all roots α of an SSNN polynomial of degree d satisfy

−d

2
≤ Re(α) ≤ d

2
− 1 ?

This is true when the roots are real numbers or when d ≤ 5. In fact,

Theorem 4.4.3 ([41, Theorem 0.5]). Let f(n) be an SSNN polynomial of degree d
and α ∈ C an arbitrary root of f(n).
(a) If α ∈ R, then α satisfies −d

2
≤ α ≤ d

2
− 1, more strictly,

−
⌊

d

2

⌋
≤ α ≤

⌊
d

2

⌋
− 1.

(b) If d ≤ 5, then α satisfies −d
2
≤ Re(α) ≤ d

2
− 1, more strictly,

−
⌊

d

2

⌋
≤ Re(α) ≤

⌊
d

2

⌋
− 1.

4.4.1 A proof of Theorem 4.4.3

This subsection is devoted to giving a proof of Theorem 4.4.3.

Let f(n) =
∑d

i=0 δi

(
n+d−i

d

)
be an SSNN polynomial of degree d. First of all, we

verify that f(n) satisfies

f(n) = (−1)df(−n − 1). (4.12)

Let

Ni(n) =
d−1∏
j=0

(n + d − i − j) +
d−1∏
j=0

(n + i − j)
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for 0 ≤ i ≤ bd
2
c − 1 and

Nb d
2
c(n) =

{∏d−1
j=0(n + d

2
− j), if d is even,∏d−1

j=0(n + d+1
2

− j) +
∏d

j=1(n + d−1
2

− j), if d is odd.

It then follows that

f(n) =

b d
2
c∑

i=0

δiNi(n)

d!
.

Since one has

(−1)dNi(−n − 1) = (−1)d

d−1∏
j=0

(−n − 1 + d − i − j) + (−1)d

d−1∏
j=0

(−n − 1 + i − j)

=
d−1∏
j=0

(n + 1 − d + i + j) +
d−1∏
j=0

(n + 1 − i + j)

=
d−1∏
j=0

(n + i − j) +
d−1∏
j=0

(n + d − i − j) = Ni(n)

for 0 ≤ i ≤ bd
2
c − 1 and (−1)dNb d

2
c(−n − 1) = Nb d

2
c(n), we obtain f(n) =

(−1)df(−n − 1).
We prove Theorem 4.4.3 (a) by using the above notations.

Proof of Theorem 4.4.3 (a). Let

g(n) = d!f

(
n − 1

2

)
=

b d
2
c∑

i=0

δiNi

(
n − 1

2

)
.

Then, it suffices to prove that all the real roots of g(n) are contained in the closed
interval [−bd

2
c + 1

2
, bd

2
c − 1

2
]. It follows from (4.12) that

g(n) = (−1)dg(−n). (4.13)

For Ni

(
n − 1

2

)
, 0 ≤ i ≤ bd

2
c, we have the following:

Ni

(
n − 1

2

)
=

d−1∏
j=0

(
n + d − 1

2
− i − j

)
+

d−1∏
j=0

(
n − 1

2
+ i − j

)

=
2i−1∏
l=0

(
n − 1

2
+ i − l

)
Mi(n),

where

Mi(n) =
d−2i−1∏

j=0

(
n +

1

2
+ i + j

)
+

d−2i−1∏
j=0

(
n − 1

2
− i − j

)
,
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and

Nb d
2
c

(
n − 1

2

)
=

d−1∏
j=0

(
n +

d

2
− 1

2
− j

)
when d is even. Let α be a real number with α > bd

2
c − 1

2
. On the coefficients of

nj, 0 ≤ j ≤ d − 2i − 1, in Mi(n), it is obvious that those are all nonnegative. Thus,
we have Mi(α) > 0 since α > 0. In addition, one has

∏2i−1
l=0

(
α −

(
1
2
− i + l

))
> 0

since 0 ≤ l ≤ 2i − 1 and 0 ≤ i ≤ bd
2
c. Hence, α cannot be a root of g(n) from the

nonnegativity of δ0, δ1, . . . , δb d
2
c. Moreover, by virtue of (4.13), for a real number β

with β < −
⌊

d
2

⌋
+ 1

2
, β cannot be a root of g(n), as desired.

In the rest of this subsection, we prove Theorem 4.4.3 (b).
The case where d = 2 and 3.

• An SSNN polynomial of degree 2 has two roots. If both of them are real
numbers, then the assertion holds from Theorem 4.4.3 (a). If both of them
are non-real numbers, then it follows from (4.12) that each of their real parts
is −1

2
.

• An SSNN polynomial of degree 3 has three roots and one is −1
2
. On the other

roots, the same discussion as the case where d = 2 can be done.

The case where d = 4.
Let f(n) = a

4!
N0(n)+ b

4!
N1(n)+ c

4!
N2(n), where a, b, c ∈ R≥0. Then f(n) has four

roots and the possible cases are as follows:

(i) those four roots are all real numbers;

(ii) two of them are real numbers and the others are non-real numbers;

(iii) those four roots are all non-real numbers.

We do not have to discuss the cases (i) and (ii) by virtue of Theorem 4.4.3 (a).
Thus, we consider the case (iii), i.e., we assume that f(n) has four non-real roots.
Moreover, we may also assume that a 6= 0 since both 0 and −1 are their roots when
a = 0. In addition, we may set a = 1 since the roots of f(n) exactly coincide with

those of f(n)
a

.
We define

g(n) = 4!f

(
n − 1

2

)
= (2 + 2b + c)n4 +

(
43 + 7b − 5

2
c

)
n2 +

105

8
− 15

8
b +

9

16
c.

Our work is to show that if the roots α of g(n) are all non-real numbers, then α
satisfies −3

2
≤ Re(α) ≤ 3

2
. Let

G(X) = (2 + 2b + c)X2 +

(
43 + 7b − 5

2
c

)
X +

105

8
− 15

8
b +

9

16
c.
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We consider the roots of G(X). Let α and β (resp. D(G(X))) be the roots (resp.
the discriminant) of G(X). By our assumption, we may set D(G(X)) < 0. In fact,
when D(G(X)) ≥ 0, i.e., both α and β are real numbers, then the roots of g(n)
are ±

√
α,±

√
β. Even if α (resp. β) is positive or negative, ±

√
α (resp. ±

√
β) are

either real numbers or pure imaginary numbers.
Let, say, α = reθ

√
−1 with r > 0 and 0 < θ < π. Then β = ᾱ = re−θ

√
−1. Thus

the roots of g(n) are
√

re±
θ
2

√
−1 and

√
re±(π− θ

2
)
√
−1. Hence, it is enough to show that

0 < Re(
√

re
θ
2

√
−1) =

√
r cos

θ

2
=

√
r

√
1 + cos θ

2
=

√
r + r cos θ

2
≤ 3

2
.

Since G(X) = (2 + 2b + c)(X − α)(X − β), we have

r =
1

4

√
210 − 30b + 9c

2 + 2b + c
and r cos θ = −1

4
· 86 + 14b − 5c

2 + 2b + c
.

By the way, one has

D(G(X)) =

(
43 + 7b − 5

2
c

)2

− 4(2 + 2b + c)

(
105

8
− 15

8
b +

9

16
c

)
= 4(c2 − 4(2b + 17)c + 4(4b2 + 32b + 109)).

Let h(c) = D(G(X))
4

. Then one has h(c) < 0 and the range of c satisfying h(c) < 0 is

2(2b + 17) − 12
√

b + 5 < c < 2(2b + 17) + 12
√

b + 5.

When b and c satisfy this, we have the following:

4(r + r cos θ) =

√
210 − 30b + 9c

2 + 2b + c
− 86 + 14b − 5c

2 + 2b + c

=

√
9 − 48 · b − 4

2 + 2b + c
− 24 · b + 4

2 + 2b + c
+ 5

<

√
9 − 48 · b − 4

2 + 2b + 2(2b + 17) + 12
√

b + 5

−24 · b + 4

2 + 2b + 2(2b + 17) + 12
√

b + 5
+ 5

=

√
9 − 8 · b − 4

b + 6 + 2
√

b + 5
− 4 · b + 4

b + 6 + 2
√

b + 5
+ 5 (=: H(b))

≤

√
9 − 8 · −4

6 + 2
√

5
− 4 · 4

6 + 2
√

5
+ 5,

(
since

dH(b)

db
< 0 when b ≥ 0,

)
= 4

√
5 − 2.
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Therefore, one has√
r + r cos θ

2
<

√
4
√

5 − 2

8
=

√
2
√

5 − 1

2
<

3

2
, (4.14)

as required.
The case where d = 5. Finally, we consider the case where d = 5.
Let f(n) = a

5!
N0(n) + b

5!
N1(n) + c

5!
N2(n). When d = 5, f(n) has five roots and

one of them is −1
2
. For the other roots, the possible cases are as follows:

(i) the other four roots are all real numbers;

(ii) two of them are real numbers and the rests are non-real numbers;

(iii) those four roots are all non-real numbers.

Similarly to the case where d = 4, we discuss only the case (iii) and assume that
a = 1.

We define g(n) by setting

g(n) = 5!f

(
n − 1

2

)
= n

(
2(1 + b + c)n4 + 5(23 + 7b − c)n2 +

1689

8
− 71

8
b +

9

8
c

)
.

Let

g̃(n) = 2(1 + b + c)n4 + 5(23 + 7b − c)n2 +
1689

8
− 71

8
b +

9

8
c.

Our work is to show that if the roots α of g̃(n) are all non-real numbers, then α
satisfies −3

2
≤ Re(α) ≤ 3

2
. Let G(X) be the polynomial replacing n2 of g̃(n) with

X, that is,

G(X) = 2(1 + b + c)X2 + 5(23 + 7b − c)X +
1689

8
− 71

8
b +

9

8
c.

We consider the roots of G(X). Similarly to the case where d = 4, we assume that
D(G(X)) < 0 and prove that √

r + r cos θ

2
≤ 3

2
,

where α = reθ
√
−1(r > 0, 0 < θ < π) is one of the roots of G(X).

Since G(X) = 2(1 + b + c)(X − α)(X − β), where β = ᾱ = re−θ
√
−1, we have

r =

√
1689

8
− 71

8
b + 9

8
c

2(1 + b + c)
=

1

4

√
1689 − 71b + 9c

1 + b + c
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and

r cos θ =
−5(23 + 7b − c)

4(1 + b + c)
=

1

4
· −115 − 35b + 5c

1 + b + c
.

By the way, one has

D(G(X)) = 25(23 + 7b − c)2 − 8(1 + b + c)

(
1689

8
− 71

8
b +

9

8
c

)
= 16(81b2 − 6(3c − 67)b + c2 − 178c + 721).

Let h(b) = D(G(X))
16

. Then h(b) < 0 by our assumption. The range of b with h(b) < 0
is as follows:

3c − 67 −
√

D(h(b))

27
< b <

3c − 67 +
√

D(h(b))

27
,

where 4 · D(h(b)) = 4 · 602(3c − 5) is the discriminant of h(b). (In particular, it

must be c ≥ 5
3
.) Moreover, since b ≥ 0, it must be 3c−67+20

√
3c−5

27
> 0. Thus,

c > 89 − 60
√

2(> 5
3
). Hence, the condition D(G(X)) < 0 is equivalent to the

followings:

c > 89 − 60
√

2

and{
0 ≤ b < 3c−67+20

√
3c−5

27
, when 89 − 60

√
2 < c ≤ 89 + 60

√
2,

3c−67−20
√

3c−5
27

< b < 3c−67+20
√

3c−5
27

, when c > 89 + 60
√

2.
(4.15)

When b and c satisfy the first condition of (4.15), we have√
1689 − 71b + 9c

1 + b + c
+

−115 − 35b + 5c

1 + b + c

=

√
−71(1 + b + c) + 80c + 1760

1 + b + c
+

−35(1 + b + c) + 40c − 80

1 + b + c

=

√
−71 + 80 · c + 22

1 + b + c
+ 40 · c − 2

1 + b + c
− 35

≤
√

−71 + 80 · c + 22

c + 1
+ 40 · c − 2

c + 1
− 35(=: H(c))

≤
√

−71 + 80 · 41 + 22

41 + 1
+ 40 · 41 − 2

41 + 1
− 35,(

since
dH(c)

dc
> 0 when c < 41 and

dH(c)

dc
< 0 when c > 41,

)
=

√
−71 + 120 +

260

7
− 35 =

64

7
< 18.
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Thus, one has √
r + r cos θ

2
<

√
18

4
· 1

2
=

3

2
.

On the other hand, when b and c satisfy the second condition of (4.15), we have

1689 − 71b + 9c

1 + b + c
= −71 + 80 · c + 22

1 + b + c

< −71 + 80 · c + 22
3c−67−20

√
3c−5

27
+ c + 1

= −71 + 8 · 27(c + 22)

3c − 4 − 2
√

3c − 5

< −71 + 8 · 27(89 + 60
√

2 + 22)

3(89 + 60
√

2) − 4 − 2
√

3(89 + 60
√

2) − 5(
since

dH(c)

dc
< 0 when c ≥ 89 + 60

√
2,

)
< 81.

Therefore, one has√
r + r cos θ

2
≤

√
r =

1

2

(
1689 − 71b + 9c

1 + b + c

) 1
4

<
3

2
, (4.16)

as required.

4.4.2 The case where d ≥ 6

In this subsection, in order to observe that Theorem 4.4.3 seems to be also true
when d = 6 and 7, we make computational experiments. Moreover, we present an
example which shows that Theorem 4.4.3 is no longer true when d = 8. In addition,
we suggest a possible counterexample of Conjecture 4.3.11 with d = 10, while such
example is already known in [60].

Our method how to make experiments, say, d = 6, is as follows. We produce 4
nonnegative real numbers a, b, c, d at random, construct the polynomial

a

((
n + 6

6

)
+

(
n

6

))
+ b

((
n + 5

6

)
+

(
n + 1

6

))
+

c

((
n + 4

6

)
+

(
n + 2

6

))
+ d

(
n + 3

6

)
,

compute its roots and plot them on the complex plane. Figure 4.6 drawn below
shows the root distributions of a large sample (approximately 20,000) of SSNN
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polynomials of degree 6. Similarly, in Figure 4.7, we see the root distributions of a
large sample (approximately 20,000) of SSNN polynomials

a

((
n + 7

7

)
+

(
n

7

))
+ b

((
n + 6

7

)
+

(
n + 1

7

))
+

c

((
n + 5

7

)
+

(
n + 2

7

))
+ d

((
n + 4

7

)
+

(
n + 3

7

))
with random nonnegative real numbers a, b, c, d. (Those are computed by Maple.)

Figure 4.6: d = 6

Remark 4.4.4. There is an SSNN polynomial of degree 8 one of whose root α does
not satisfy −4 ≤ Re(α) ≤ 3. In fact, if we set (δ0, δ1, . . . , δ8) = (1, 0, 0, 0, 14, 0, 0, 0, 1)
and f(n) =

∑8
i=0 δi

(
n+8−i

8

)
, then the roots of f(n) are approximately

−0.5 ± 0.44480014
√
−1, −0.5 ± 1.78738687

√
−1,

3.00099518 ± 5.29723208
√
−1 and − 4.00099518 ± 5.29723208

√
−1,

while f(n) cannot be the Ehrhart polynomial of some Gorenstein Fano polytope of
dimension 8 since δ1 < δ8. When d = 10, however, there are some possible candi-
dates of counterexamples of Conjecture 4.3.11. For example, let (δ0, δ1, . . . , δ10) =
(1, 1, 1, 1, 1, 23, 1, 1, 1, 1, 1) and f(n) =

∑10
i=0 δi

(
n+10−i

10

)
. Then one of approximate

roots of f(n) is
4.02470021 + 8.22732653

√
−1.

On the other hand, in a recent paper [60], a certain counterexample of Conjecture
4.3.11 is provided. There exists a Gorenstein Fano polytope of dimension 34 whose
Ehrhart polynomial has a root α which violates −17 ≤ Re(α) ≤ 16.
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Figure 4.7: d = 7

4.4.3 Some comparisons of SSNN polynomials with Ehrhart
polynomials of Gorenstein Fano polytopes

In this subsection, we discuss some differences of root distributions between the
Ehrhart polynomials of Gorenstein Fano polytopes and SSNN polynomials when
d ≤ 4. We determine the complete range of the roots of SSNN polynomials and
Ehrhart polynomials of Gorenstein Fano polytopes when d = 2 and 3 (Proposition
4.4.5 and 4.4.6). Moreover, we see in Theorem 4.4.8 that the real numbers in the
closed interval [−d

2
, d

2
− 1] are all the real roots of SSNN polynomials of degree d.

Proposition 4.4.5. (a) The set of the roots of the Ehrhart polynomials of Goren-
stein Fano polytopes of dimension 2 coincides with{

−2

3
,−1

2
,−1

3

}
∪

{
−1

2
± 1

2

√
6 − i

i + 2

√
−1 ∈ C : i = 1, 2, . . . , 5

}
.

(b) The set of the roots of SSNN polynomials of degree 2 coincides with

[−1, 0] ∪

{
α ∈ C : Re(α) = −1

2
, 0 < | Im(α)| ≤

√
3

2

}
.

Proof. Let f(n) =
(

n+2
2

)
+ b

(
n+1

2

)
+

(
n
2

)
. Then 2f(n) = (b + 2)n2 + (b + 2)n + 2.

Thus its roots are

n =
−(b + 2) ±

√
(b + 2)(b − 6)

2(b + 2)
= −1

2
± 1

2

√
b − 6

b + 2
.
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It is well known that (1, b, 1) ∈ Z3 is the δ-vector of some Gorenstein Fano
polytope of dimension 2 if and only if b ∈ {1, 2, . . . , 7}. Hence we obtain the assertion
(a).

On the other hand, when b ∈ R≥0, the set of the roots of f(n) coincides with

(−1, 0) ∪

{
α ∈ C : Re(α) = −1

2
, 0 < | Im(α)| ≤

√
3

2

}
.

In fact, the function 1
2

√
b−6
b+2

is monotone increasing and limb→+∞
1
2

√
b−6
b+2

= 1
2

when

b ≥ 6, and 1
2

√
6−b
b+2

is monotone decreasing when 0 ≤ b < 6. Moreover, −1 and 0 are

the roots of
(

n+1
2

)
. Therefore, the assertion (b) holds, as desired.

Proposition 4.4.6. (a) The set of the roots of the Ehrhart polynomials of Goren-
stein Fano polytopes of dimension 3 coincides with{

−1

2
± 1

2

√
i − 23

i + 1
∈ R : i = 23, 24, . . . , 32, 35

}
∪{

−1

2
± 1

2

√
23 − i

i + 1

√
−1 ∈ C : i = 1, 2, . . . , 22

}
.

(b) The set of the roots of SSNN polynomials of degree 3 coincides with

[−1, 0] ∪

{
α ∈ C : Re(α) = −1

2
, 0 < | Im(α)| ≤

√
23

2

}
.

Proof. Let f(n) =
(

n+3
3

)
+ b

(
n+2

3

)
+ b

(
n+1

3

)
+

(
n
3

)
. Then 3!f(n) = (2n+1)((b+1)n2 +

(b + 1)n + 6). Thus its roots are n = −1
2

and

n =
−(b + 1) ±

√
(b + 1)(b − 23)

2(b + 1)
= −1

2
± 1

2

√
b − 23

b + 1
.

By the complete classification of Kreuzer and Skarke [46], we know that (1, b, b, 1) ∈
Z4 is the δ-vector of some Gorenstein Fano polytope of dimension 3 if and only if
b ∈ {1, 2, . . . , 35}\{33, 34}. (See also http://tph16.tuwien.ac.at/kreuzer/CY/.)

The rest parts are similar to Proposition 4.4.5.

By (4.14) and (4.16) together with the norm bound [8], we also obtain the fol-
lowing

Proposition 4.4.7. (a) The roots of SSNN polynomials of degree 4 are contained
in

[−2, 1] ∪

{
α ∈ C \ R :

∣∣∣∣α − 1

2

∣∣∣∣ ≤ 14,

∣∣∣∣Re(α) +
1

2

∣∣∣∣ ≤
√

2
√

5 − 1

2

}
.
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(b) The roots of SSNN polynomials of degree 5 are contained in

[−2, 1] ∪

{
α ∈ C \ R :

∣∣∣∣α − 1

2

∣∣∣∣ ≤ 45

2
,

∣∣∣∣Re(α) +
1

2

∣∣∣∣ ≤
√

8
√

2 − 7

2

}
.

The complete classification of Gorenstein Fano polytopes of dimension 4 also
exists [47], but the number of them are too enormous (473,800,776). The following
Figure 4.8 (resp. Figure 4.9) shows the root distribution of a large sample (approx-
imately 20,000) of Ehrhart polynomials of Gorenstein Fano polytopes of dimension
4 (resp. SSNN polynomials of degree 4). From the following figures, we notice that
the above Proposition 4.4.7 is not so sharp.

Figure 4.8: Ehrhart polynomials of Gorenstein Fano polytopes of dimension 4

Finally, we prove the following. All the real numbers in [−d
2
, d

2
−1] can be realized

as roots of SSNN polynomials of degree d.

Theorem 4.4.8 ([41, Theorem 3.4]). The set of the real roots of SSNN polynomials
of degree d coincides with the closed interval [−bd

2
c, bd

2
c − 1].

Proof. First, let us consider the case where d is even. Let k = d
2

and

f0(n) =

(
n + k + 1

d

)
+ a

(
n + k

d

)
+

(
n + k − 1

d

)
,

where a is a real numer with a ≥ 2(2k+1)
2k−1

. Then f0(n) is an SSNN polynomial of
degree d. Let

g0(n) =
d!∏k−1

j=−k+2(n + j)
f0(n) = (a + 2)n2 + (a + 2)n + ak(−k + 1) + 2k2.
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Figure 4.9: SSNN polynomials of degree 4

From a ≥ 2(2k+1)
2k−1

and

D(g0(n)) = (2k − 1)(a + 2)((2k − 1)a − 2(2k + 1)),

we have D(g0(n)) ≥ 0. Thus the roots of g0(n) are all real numbers and those are

n =
−(a + 2) ±

√
(2k − 1)(a + 2)((2k − 1)a − 2(2k + 1))

2(a + 2)

= −1

2
± 1

2

√
(2k − 1)((2k − 1)a − 2(2k + 1))

a + 2

( =: −1

2
± h0(a) ).

Now the function h0(a) on a is monotone increasing and

lim
a→+∞

h0(a) =
2k − 1

2
= k − 1

2
.

Hence, for a ≥ 2(2k+1)
2k−1

, all the roots of each f0(n) are contained in the open interval

(−k, k−1). Moreover, −k and k−1 are roots of
(

n+k
d

)
, which is an SSNN polynomial

of degree d.
Next, let us consider the case where d is odd. Let k = d−1

2
and

f1(n) =

(
n + k + 2

d

)
+ a

(
n + k + 1

d

)
+ a

(
n + k

d

)
+

(
n + k − 1

d

)
,
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where a is a real number with a ≥ 12k2+12k−1
(2k−1)2

. Then f1(n) is an SSNN polynomial
of degree d. Let

g1(n) =
d!

(2n + 1)
∏k−1

j=−k+2(n + j)
f2(n) = (a+1)n2+(a+1)n+ak(−k+1)+3k(k+1).

From a ≥ 12k2+12k−1
(2k−1)2

and

D(g1(n)) = (a + 1)((2k − 1)2a − (12k2 + 12k − 1)),

we have D(g1(n)) ≥ 0. Thus the roots of g1(n) are all real numbers and those are

n =
−(a + 1) ±

√
(a + 1)((2k − 1)2a − (12k2 + 12k − 1))

2(a + 1)

= −1

2
± 1

2

√
(2k − 1)2a − (12k2 + 12k − 1)

a + 1

( =: −1

2
± h1(a) ).

Now the function h1(a) on a is monotone increasing and

lim
a→+∞

h1(a) =
2k − 1

2
= k − 1

2
.

Hence, for a ≥ 12k2+12k−1
(2k−1)2

, all the roots of each f1(n) are contained in the open

interval (−k, k − 1). Moreover, −k and k − 1 are roots of
(

n+k+1
d

)
+

(
n+k

d

)
, which is

an SSNN polynomial of degree d.
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Part II

Fano polytopes
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Chapter 5

Introduction to Fano polytopes

In this part, as the second aspect of the studies on integral convex polytopes, we
will consider Fano polytopes. Fano polytope is an integral convex polytopes arising
naturally from a toric Fano variety, which is of significance in algebraic geometry.

We will summarize some basic notions, definitions and some recent studies on
Fano polytopes or toric Fano varieties.

Let P ⊂ Rd be an integral convex polytope of dimension d.

• We say that P is a Fano polytope if the origin of Rd is a unique integer point
belonging to the interior of P.

• A Fano polytope P is called terminal if each integer point belonging to the
boundary of P is a vertex of P .

• A Fano polytope is called Gorenstein if its dual polytope is integral. (Recall
that the dual polytope P∨ of a Fano polytope P is the convex polytope which
consists of those x ∈ Rd such that 〈x, y〉 ≤ 1 for all y ∈ P , where 〈x, y〉 is the
usual inner product of Rd.)

• A Fano polytope is called Q-factorial if it is simplicial, i.e., each of its faces is
a simplex.

• A smooth Fano polytope is a Fano polytope such that the vertices of each facet
form a Z-basis of Zd.

Thus, in particular, a smooth Fano polytope is Q-factorial, Gorenstein and terminal.

Example 5.0.9. Among four pictures drawn below, the 2-dimensional Fano poly-
tope depicted on the upper left-hand side is terminal, the 3-dimensional Fano poly-
tope depicted on the upper right-hand side is Q-factorial, the 3-dimensional Fano
polytope depicted on the lower left-hand side is Gorenstein and the 3-dimensional
Fano polytope depicted on the lower right-hand side is smooth. The dual polytope
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of the lower left-hand side one coinsides with the lower right-hand side one.

terminal

1

1

-1

-1

Q-factorial

(0, 0, 1)

(−1,−1,−1)

(1, 0,−1)

(0, 1,−1)

(0, 0,−1)

Gorenstein

(1,−1,−1)

(1,−1, 1)

(1, 1,−1)

(−1, 1,−1)

(−1, 1, 1)(−1,−1, 1)

(1, 1, 1)

1

1

1 -1

-1

-1

(−1,−1,−1)

smooth

M. Øbro [53] succeeded in finding an algorithm which yields the classification
list of the smooth Fano polytopes for given d. It is proved in Casagrande [13] that
the number of vertices of a Gorenstein Q-factorial Fano polytope is at most 3d if d
is even, and at most 3d−1 if d is odd. B. Nill and M. Øbro [52] classified the Goren-
stein Q-factorial Fano polytopes of dimension d with 3d − 1 vertices. Gorenstein
Fano polytopes are classified when d ≤ 4 by Kreuzer and Skarke [46, 47] and the
relevance of Gorenstein Fano polytopes to Mirror Symmetry was studied by Batyrev
[3]. Gorenstein Fano polytope is often said to be a reflexive polytope. We refer the
reader to [42, 45, 46, 47, 51] on the related works on toric Fano varieties or Goren-
stein toric Fano varieties. The study of the classification of terminal or canonical
Fano polytopes was done by Kasprzyk [42, 43]. The combinatorial conditions for
what it implies to be terminal and canonical are explained in Reid [63].

On the rest of this part Chapter 6, we will introduce Fano polytopes arising from
finite posets in Section 6.1 and study the problem of which finite posets yield smooth
Fano polytopes. Similarly, in Section 6.2, we will also present Fano polytopes arising
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from finite directed graphs and consider the problem of which finite directed graphs
yield smooth Fano polytopes. Moreover, by using them, we will construct many
examples of smooth Fano polytopes.

103





Chapter 6

Examples of smooth Fano
polytopes

In this chapter, we will establish two classes of Fano polytoes arising from combina-
torial objects, finte posets (Section 6.1) and finite directed graphs (Section 6.2). To
give many uselful examples of smooth Fano polytopes is very important. Hence, the
descriptions how to construct smooth Fano polytopes via combinatorial methods
written in this chapter are meaningful.

6.1 Smooth Fano polytopes arising from posets

In this section, we introduce Fano polytopes arising from posets and consider the
problem of which poset yields smooth Fano polytopes.

6.1.1 Fano polytopes arising from posets

Let P = {y1, . . . , yd} be a finite poset and

P̂ = P ∪ {0̂, 1̂},

where 0̂ (resp. 1̂) is a unique minimal (resp. maximal) element of P̂ with 0̂ 6∈ P (resp.
1̂ 6∈ P ). Let y0 = 0̂ and yd+1 = 1̂. We say that e = {yi, yj}, where 0 ≤ i, j ≤ d + 1

with i 6= j, is an edge of P̂ if e is an edge of the Hasse diagram of P̂ . (The Hasse
diagram of a finite poset can be regarded as a finite nondirected graph.) In other
words, e = {yi, yj} is an edge of P̂ if yi and yj are comparable in P̂ , say, yi < yj,
and there is no z ∈ P with yi < z < yj.

Definition 6.1.1. Let P̂ = {y0, y1, . . . , yd, yd+1} be a finite poset with y0 = 0̂ and
yd+1 = 1̂. Let ei denote the ith canonical unit coordinate vector of Rd. Given an
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edge e = {yi, yj} of P̂ with yi < yj, we define ρ(e) ∈ Rd by setting

ρ(e) =


ei if j = d + 1,

−ej if i = 0,

ei − ej if 1 ≤ i, j ≤ d.

Moreover, we write QP ⊂ Rd for the convex hull of the finite set

{ ρ(e) : e is an edge of P̂ }.

Example 6.1.2. Let P = {y1, y2, y3} be the finite poset with the partial order y1 <
y2. Then P̂ together with ρ(e)’s and QP are drawn below:

P =

y2

y1

y3 P̂ =

y2

y1

y3

1̂ = y4

0̂ = y0

(0, 1, 0)
(0, 0, 1)

(0, 0,−1)
(−1, 0, 0)

(1,−1, 0)

e3

e2

e1

-1

1

1

-1

-1

1

QP =

Let P be a finite poset. A subset Q of P is called a chain of P if Q is a totally
ordered subset of P . The length of a chain Q is `(Q) = ](Q)− 1. A chain Q of P is
saturated if x, y ∈ Q with x < y, then there is no z ∈ P with x < z < y. A maximal
chain of P̂ is a saturated chain Q of P̂ with {0̂, 1̂} ⊂ Q.

Lemma 6.1.3. The convex polytope QP is a Fano polytope.
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Proof. Let e = {yi, yj} be an edge of P̂ with yi < yj. Let ce denote the number of

maximal chains Q of P̂ with {yi, yj} ⊂ Q. If {yi1 , yi2 , . . . , yim} is a maximal chain

of P̂ with y0 = yi1 < yi2 < . . . < yim = yd+1, then

m−1∑
j=1

ρ({yij , yij+1
}) = (0, . . . 0).

Hence ∑
e

ceρ(e) = (0, . . . 0),

where e ranges all edges of P̂ . Thus the origin of Rd belongs to the interior of
QP . Since QP is a convex polytope which is contained in the convex hull of the
finite set {

∑d
i=1 εiei : εi ∈ {0, 1,−1}} in Rd, it follows that the origin of Rd is the

unique integer point belonging to the interior of QP . Thus QP is a Fano polytope,
as desired.

Lemma 6.1.4. The Fano polytope QP is terminal.

Proof. Suppose that QP contains an integer point α = (α1, . . . , αd) ∈ Zd with
α 6= (0, . . . , 0). Then, obviously, α1, . . . , αd ∈ {−1, 0, 1}. Let, say, α1 = 1. Let
e1, . . . , en be all edges of P̂ and ei1 , . . . , eim the edges with y1 ∈ eij for j = 1, . . . ,m.
If we set eij = {yij , yij′

} with yij < yij′
, since α belongs to the convex hull of

{ρ(e1), . . . , ρ(en)}, then one has

m∑
j=1

rijqij = α1 = 1,

where 0 ≤ ri1 , . . . , rim ≤ 1 and qij = 1 (resp. qij = −1) if y1 < yij′
(resp. yij < y1).

By removing all rij with rij = 0, we may assume that

m′∑
j=1

rijqij = 1,

where 0 < ri1 , . . . , rim′ ≤ 1. Since
∑m′

j=1 rij ≤ 1, there is no j with qij = −1. Hence∑m′

j=1 rij = 1. If m′ > 1, then 0 < ri1 , . . . , rim′ < 1. Thus
∑m′

j=1 rijρ(eij) = α 6∈ Zd.
Hence m′ = 1. In other words, if QP contains an integer point α 6= (0, . . . , 0), then
α must be one of ρ(e1), . . . , ρ(en) and ρ(e1), . . . , ρ(en) are precisely the vertices of
QP .

Lemma 6.1.5. The Fano polytope QP is Gorenstein.

Proof. Via the theory of totally unimodular matrices ([66, Chapter 19]), it follows
that the equation of each supporting hyperplane of QP is of the form a1x1 + · · · +
adxd = 1 with each ai ∈ Z. In other words, the dual polytope of QP is integral.
Hence QP is Gorenstein, as required.
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Remark 6.1.6. There is a well-known integral convex polytope arising from a finite
poset P , which is called an order polytope OP . (See [69, Chapter 3] and [70].) One
can verify immediately that the primitive outer normals of each facet of OP one-
to-one corresponds to each vertex of QP . Now OP is Gorenstein if and only if P
is pure, i.e., all maximal chains of P̂ have the same length. When P is pure, let
l denote the length of each maximal chain of P̂ . Then the dilated polytope lOP

contains a unique integer point α ∈ Zd, where d is the cardinality of P , belonging
to the interior of lOP . Then the dual polytope of the Gorenstein Fano polytope
lOP − α coincides with QP . Thus, when P is pure, we can associate QP with the
dual polytope of an order polytope OP .

6.1.2 When is QP smooth ?

Let P = {y1, . . . , yd} be a finite poset and P̂ = P ∪ {y0, yd+1}, where y0 = 0̂ and
yd+1 = 1̂. A sequence Γ = (yi1 , yi2 , . . . , yim) is called a path in P̂ if Γ is a path in the
Hasse diagram of P̂ . In other words, Γ = (yi1 , yi2 , . . . , yim) is a path in P̂ if yij 6= yik

for all 1 ≤ j < k ≤ m and if {yij , yij+1
} is an edge of P̂ for all 1 ≤ j ≤ m − 1. In

particular, if {yi1 , yim} is also an edge of P̂ , then Γ is called a cycle. The length of
a path Γ = (yi1 , yi2 , . . . , yim) is `(Γ) = m − 1 or `(Γ) = m if Γ is a cycle.

A path Γ = (yi1 , yi2 , . . . , yim+1) is called special if

]{ j : yij < yij+1
, 1 ≤ j ≤ m − 1 } = ]{ k : yik > yik+1

, 1 ≤ k ≤ m − 1 }.

Given a special path Γ = (yi1 , yi2 , . . . , yim), there exists a unique function

µΓ : {yi1 , yi2 , . . . , yim} → {0, 1, 2, . . .}

such that

• µΓ(yij+1
) = µΓ(yij) + 1 (resp. µΓ(yij) = µΓ(yij+1

) + 1) if yij < yij+1
(resp.

yij > yij+1
);

• min{µΓ(yi1), µΓ(yi2), . . . , µΓ(yim)} = 0.

In particular, Γ is special if and only if µΓ(yi1) = µΓ(yim).
Similary, a special cycle is defined and given a special cycle C, there exists a

unique function µC which is defined the same way as above.

Example 6.1.7. Among the two paths and three cycles drawn below, the three ones
depicted on the left-hand side (one path and two cycles) are special; the remaining
two ones (one path and one cycle) are not.
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We say that a path Γ = (yi1 , yi2 , . . . , yim+1) or a cycle C = (yi1 , yi2 , . . . , yim) of P̂
belongs to a facet of QP if there is a facet F of QP with ρ({yij , yij+1

}) ∈ F for all
1 ≤ j ≤ m, where yim+1 = yi1 .

We say that a cycle C = (yi1 , yi2 , . . . , yim) is very special if C is special and if
{y0, yd+1} 6⊂ {yi1 , yi2 , . . . , yim}.
Lemma 6.1.8. (a) Let C = (yi1 , yi2 , . . . , yim) be a cycle in P̂ . If C belongs to a
facet of QP , then C is a special cycle. In particular, C is a very special cycle or C
contains a special path (yi1 , yi2 , . . . , yir+1) with yi1 = y0 and yir+1 = yd+1.

(b) Let Γ = (yi1 , yi2 , . . . , yim) with yi1 = y0 and yim = yd+1 be a path in P̂ . If Γ
belongs to a facet of QP , then Γ is a special path.

Proof. (a) Let a1x1 + · · ·+ adxd = 1, where each ai ∈ Q, denote the equation of the
supporting hyperplane of QP which defines the facet. Since {yij , yij+1

} are edges of

P̂ for 1 ≤ j ≤ m, where yim+1 = yi1 , it follows that aij − aij+1
= qj, where qj = 1 if

yij < yij+1
and qj = −1 if yij > yij+1

. Now,

m∑
i=1

qj =
m∑

i=1

(aij − aij+1
) = 0.

Hence C must be special.
Suppose that {y0, yd+1} ⊂ {yi1 , yi2 , . . . , yim}. Let yi1 = y0 and yir+1 = yd+1. Since

{yij , yij+1
}, 1 ≤ j ≤ r, are edges of P̂ , one has −ai2 = 1, air = 1 and aij − aij+1

= qj

for j = 2, 3, . . . , r − 1. On the one hand, one has

−ai2 +
r−1∑
j=2

(aij − aij+1
) + air = 0.

On the other hand, one has

−ai2 +
r−1∑
j=2

(aij − aij+1
) + air = 1 +

r−1∑
j=2

qj + 1

= −µC(y0) + µC(yi2) +
r−1∑
j=2

(µC(yij+1
) − µC(yij)) + µC(yd+1) − µC(yir)

= µC(yd+1) − µC(y0).

It then follows that one must be µC(y0) = µC(yd+1). Let Γ = (yi1 , yi2 , . . . , yir+1).
Then it is clear that µΓ(y0) = µΓ(yd+1). Thus Γ is a special path. Hence C contains
a special path Γ.

(b) A proof can be given by the similar way of a proof of (a).

Let P be a finite poset and y, z ∈ P̂ with y < z. The distance of y and z in P̂ is
the smallest integer s for which there is a saturated chain Q = {z0, z1, . . . , zs} with

y = z0 < z1 < · · · < zs = z.

Let distP̂ (y, z) denote the distance of y and z in P̂ .
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Theorem 6.1.9 ([29, Theorem 2.3]). Let P = {y1, . . . , yd} be a finite poset and
P̂ = P ∪ {y0, yd+1}, where y0 = 0̂ and yd+1 = 1̂. Then the following conditions are
equivalent:

(i) QP is Q-factorial;

(ii) QP is smooth;

(iii) P̂ possesses no very special cycle C = (yi1 , . . . , yim) such that

µC(yia) − µC(yib) ≤ distP̂ (yib , yia) (6.1)

for all 1 ≤ a, b ≤ m with yib < yia, and

µC(yia) − µC(yib) ≤ distP̂ (y0, yia) + distP̂ (yib , yd+1) (6.2)

for all 1 ≤ a, b ≤ m, and no special path Γ = (yi1 , . . . , yim) with yi1 = y0 and
yim = yd+1 such that

µΓ(yia) − µΓ(yib) ≤ distP̂ (yib , yia) (6.3)

for all 1 ≤ a, b ≤ m with yib < yia.

Proof. ((i) ⇒ (iii)) If C = (yi1 , . . . , yim) is a cycle in P̂ with yim+1 = y1, then

m∑
j=1

qj ρ({yij , yij+1
}) = (0, . . . , 0),

where qj = 1 if yij < yij+1
and qj = −1 if yij > yij+1

. Thus in particular
ρ({yij , yij+1

}), 1 ≤ j ≤ m, cannot be affinely independent if C is special.

Now, suppose that P̂ possesses a very special cycle C = (yi1 , . . . , yim) which sat-
isfies the inequalities (6.1) and (6.2). Our work is to show that QP is not simplicial.
Let vj = ρ({yij , yij+1

}), 1 ≤ j ≤ m, where yim+1 = yi1 . Since v1, . . . , vm cannot be
affinely independent, to show that QP is not simplicial, what we must prove is the
existence of a face of QP which contains the vertices v1, . . . , vm.

Let a1, . . . , ad be integers. Write H ⊂ Rd for the hyperplane defined by the
equation a1x1 + · · · + adxd = 1 and H(+) ⊂ Rd for the closed half-space defined
by the inequality a1x1 + · · · + adxd ≤ 1. We will determine a1, . . . , ad such that
H is a supporting hyperplane of a face F of QP with {v1, . . . , vm} ⊂ F and with
QP ⊂ H(+).

First Step. It follows from (6.2) that

max
1≤a≤m

(µC(yia) − distP̂ (y0, yia)) ≤ min
1≤b≤m

(µC(yib) + distP̂ (yib , yd+1)). (6.4)

By using (6.1), if y0 ∈ {yi1 , . . . , yim}, then the left-hand side of (6.4) is equal to
µC(y0). Similarly, if yd+1 ∈ {yi1 , . . . , yim}, then the right-hand side of (6.4) is equal
to µC(yd+1).
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Now, fix an arbitrary integer a with

max
1≤a≤m

(µC(yia) − distP̂ (y0, yia)) ≤ a ≤ min
1≤b≤m

(µC(yib) + distP̂ (yib , yd+1)).

However, exceptionally, if y0 ∈ {yi1 , . . . , yim}, then a = µC(y0). If yd+1 ∈ {yi1 , . . . , yim},
then a = µC(yd+1). Let aij = a − µC(yij) for 1 ≤ j ≤ m. Then one has

−aij ≤ distP̂ (y0, yij), aij ≤ distP̂ (yij , yd+1). (6.5)

Moreover, it follows easily that each vj lies on the hyperplane of Rd defined by the
equation ∑

ij 6∈{0, d+1}

aijxij = 1.

Second Step. Let A = P̂ \ ({y0, yd+1} ∪ {yi1 , . . . , yim}) and yi ∈ A.

• Suppose that there is yij with yij < yi and that there is no yik with yik > yi.
Then we define ai by setting

ai = max({aij − distP̂ (yij , yi) : yij < yi} ∪ {0}).

• Suppose that there is no yij with yij < yi and that there is yik with yik > yi.
Then we define ai by setting

ai = min({aik + distP̂ (yi, yik) : yi < yik} ∪ {0}).

• Suppose that there is yij with yij < yi and that there is yik with yik > yi.
Then either

bi = max({aij − distP̂ (yij , yi) : yij < yi} ∪ {0})

or

ci = min({aik + distP̂ (yi, yik) : yi < yik} ∪ {0})

must be zero. In fact, if bi 6= 0 and ci 6= 0, then there are j and k with
aij > distP̂ (yij , yi) and −aik > distP̂ (yi, yik). Since µC(yik)−µC(yij) = aij −aik

and since distP̂ (yij , yi) + distP̂ (yi, yik) ≥ distP̂ (yij , yik), it follows that

µC(yik) − µC(yij) > distP̂ (yij , yik).

This contradicts (6.1). Hence either bi = 0 or ci = 0. If bi 6= 0, then we set
ai = bi. If ci 6= 0, then we set ai = ci. If bi = ci = 0, then we set ai = 0.

• Suppose that there is no yij with yij < yi and that there is no yik with yik > yi.
Then we set ai = 0.
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Third Step. Finally, we finish determining the integers a1, . . . , ad. Let H ⊂ Rd

denote the hyperplane defined by the equation a1x1 + . . .+ adxd = 1 and H(+) ⊂ Rd

the closed half-space defined by the inequality a1x1 + . . . + adxd ≤ 1. Since each vj

lies on the hyperplane H, in order for F = H∩QP to be a face of QP , it is required
to show QP ⊂ H(+). Let {yi, yj} with yi < yj be an edge of P̂ .

• Let yi ∈ {yi1 , . . . , yim} with yj 6∈ {yi1 , . . . , yim}. If yj 6= yd+1, then

aj ≥ max{ai − 1, 0},

where a0 = 0. Thus ai − aj ≤ 1. If yj = yd+1, then by using (6.5) one has
ai ≤ 1, as desired.

• Let yj ∈ {yi1 , . . . , yim} with yi 6∈ {yi1 , . . . , yim}. If yi 6= y0, then

ai ≤ min{aj + 1, 0},

where ad+1 = 0. Thus ai − aj ≤ 1. If yi = y0, then by using (6.5) one has
−aj ≤ 1, as desired.

Let A′ = P̂ \ {yi1 , . . . , yim}. Write B for the subset of A′ consisting of those
yi ∈ A′ such that there is j with yij < yi. Write C for the subset of A′ consisting of
those yi ∈ A′ such that there is k with yi < yik . Again, let e = {yi, yj} with yi < yj

be an edge of P̂ . In each of the nine cases below, a routine computation easily yields
that ρ(e) ∈ H(+).

• yi ∈ B \ C and yj ∈ B \ C;

• yi ∈ C \ B and yj ∈ C \ B;

• yi ∈ C \ B and yj ∈ B \ C;

• yi ∈ C \ B and yj ∈ B ∩ C;

• yi ∈ C \ B and yj 6∈ B ∪ C;

• yi ∈ B ∩ C and yj ∈ B ∩ C;

• yi ∈ B ∩ C and yj ∈ B \ C;

• yi 6∈ B ∪ C and yj ∈ B \ C;

• yi 6∈ B ∪ C and yj 6∈ B ∪ C.

For example, in the first case, a routine computation is as follows. Let yj 6= yd+1.
Let ai = 0. Then, since aj ≥ 0, one has ai − aj ≤ 1. Let ai > 0. Then, since
aj ≥ ai − 1, one has ai − aj ≤ 1. Let yj = yd+1 and ai > 0. Then there is j
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with ai = aij − distP̂ (yij , yi). By using (6.5) one has aij ≤ distP̂ (yij , yd+1). Thus
ai ≤ distP̂ (yij , yd+1) − distP̂ (yij , yi). Hence ai ≤ 1, as required.

Fourth step. Suppose that P̂ possesses a special path Γ = (yi1 , yi2 , . . . , yim) with
yi1 = y0 and yim = yd+1 which satisfies the inequalities (6.3). Then one has

m−1∑
j=1

qj ρ({yij , yij+1
}) = (0, . . . , 0),

where qj = 1 if yij < yij+1
and qj = −1 if yij > yij+1

. Thus ρ({yij , yij+1
}), 1 ≤

j ≤ m − 1, cannot be affinely independent. Our work is to show that QP is not
simplicial. In this case, however, the same discussion can be given as the case which
P̂ possesses a very special cycle. (We should set a = µΓ(y0) (= µΓ(yd+1)).)

((iii) ⇒ (i)) Now, suppose that QP is not Q-factorial. Thus QP possesses a
facet F which is not a simplex. Let v1, . . . , vn denote the vertices of F , where n > d,
and ej the edge of P̂ with vj = ρ(ej) for 1 ≤ j ≤ n. Let a1x1 + · · · + adxd = 1
denote the equation of the supporting hyperplane H ⊂ Rd of QP with F = QP ∩H
and with QP ⊂ H(+), where H(+) ⊂ Rd is the closed-half space defined by the
inequality a1x1+· · ·+adxd ≤ 1. Since v1, . . . , vn are not affinely independent, there is
(r1, . . . , rn) ∈ Zn with (r1, . . . , rn) 6= (0, . . . , 0) such that r1v1+· · ·+rnvn = (0, . . . , 0).
By removing rj with rj = 0, we may assume that r1v1 + · · · + rn′vn′ = (0, . . . , 0),
where rj 6= 0 for 1 ≤ j ≤ n′ with r1 + · · · + rn′ = 0. Let ej = {yij , yij′

} with
1 ≤ ij, ij′ ≤ d. If either yij or yij′ appears only in ej among the edges e1, . . . , en′ ,
then rj = 0. Hence both yij and yij′

must appear in at least two edges among

e1, . . . , en′ . Let G denote the subgraph of the Hasse diagram of P̂ with the edges
e1, . . . , en′ . Then there is no end point of G in P . Thus G possesses a cycle of P̂
or G is a path of P̂ from y0 to yd+1. Since v1, . . . , vn′ are contained in the facet F ,
Lemma 6.1.8 says that every cycle in G is very special or else G contains a special
path.

Suppose that G possesses a very special cycle C = (yi1 , yi2 , . . . , yim). Our goal is
to show that C satisfies the inequalities (6.1) and (6.2).

Let yk0 < yk1 < · · · < yk`
be a saturated chain of P̂ with ` = distP̂ (yk0 , yk`

) such
that each of yk0 and yk`

belongs to {yi1 , yi2 , . . . , yim}. We claim

µC(yk`
) − µC(yk0) ≤ distP̂ (yk0 , yk`

).

• Let y0 6= yk0 and yd+1 6= yk`
. Since ekj

− ekj+1
∈ QP , one has akj

− akj+1
≤ 1

for each 0 ≤ j ≤ ` − 1. Hence ak0 − ak`
≤ `. On the other hand, ak0 − ak`

=
µC(yk`

) − µC(yk0). Thus µC(yk`
) − µC(yk0) ≤ distP̂ (yk0 , yk`

).

• Let y0 = yk0 and yd+1 6= yk`
. Since −ek1 ∈ QP , one has −ak1 ≤ 1. Since

ekj
− ekj+1

∈ QP , one has akj
− akj+1

≤ 1 for each 1 ≤ j ≤ ` − 1. Hence
ak1−ak`

≤ `−1. Thus −ak`
≤ `. On the other hand, −ak`

= µC(yk`
)−µC(yk0).

Thus µC(yk`
) − µC(yk0) ≤ distP̂ (yk0 , yk`

).
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• Let y0 6= yk0 and yd+1 = yk`
. Since ekj

− ekj+1
∈ QP , one has akj

− akj+1
≤ 1

for each 0 ≤ j ≤ ` − 2. Hence ak0 − ak`−1
≤ ` − 1. Since ek`−1

∈ QP , one has
ak`−1

≤ 1. Hence ak0 ≤ `. On the other hand, ak0 = µC(yk`
) − µC(yk0). Thus

µC(yk`
) − µC(yk0) ≤ distP̂ (yk0 , yk`

).

Finally, fix arbitrary yij and yik with µC(yij) < µC(yik). Then −aik ≤ distP̂ (y0, yik)
and aij ≤ distP̂ (yij , yd+1). We claim

µC(yik) − µC(yij) ≤ distP̂ (y0, yik) + distP̂ (yij , yd+1).

If yij 6= y0 and yik 6= yd+1, then aij − aik = µC(yik) − µC(yij). If yij = y0 and
yik 6= yd+1, then −aik = µC(yik) − µC(yij). If yij 6= y0 and yik = yd+1, then
aij = µC(yik) − µC(yij). Hence the required inequality follows immediately.

Suppose that G contains a special path Γ = (yi1 , yi2 , . . . , yim) with yi1 = y0 and
yim = yd+1. Our goal is to show that C satisfies the inequalities (6.3). Now the same
discussion can be given as above.

((i) ⇒ (ii)) If P is a totally ordered set, then QP is a d-simplex with the vertices,
say, −e1, e1 − e2, . . . , ed−1 − ed, ed. Thus in particular QP is smooth.

Now, suppose that P is not a totally ordered set. Then P̂ possesses a cycle. Let
C = (yi1 , . . . , yim) be a cycle in P̂ . If C is not special, then Lemma 6.1.8 (a) says
that C cannot belong to a facet of QP . If C is special, then as was shown in the
proof of (i) ⇒ (iii) it follows that ρ({yij , yij+1

}), 1 ≤ j ≤ m, where yim+1 = yi1 , are
not affinely independent. Hence there is no facet F of QP with ρ({yij , yij+1

}) ∈ F
for all 1 ≤ j ≤ m.

Let F be an arbitrary facet of QP with d vertices vj = ρ(ej), 1 ≤ j ≤ d. Let

G denote the subgraph of the Hasse diagram of P̂ with the edges e1, . . . , ed and
V (G) the vertex set of G. Since F is of dimension d − 1, it follows that, for each
1 ≤ i ≤ d, there is a vertex of F whose ith coordinate is nonzero. Hence P ⊂ V (G).
Suppose that P = V (G). Since G has d edges, it follows that G possesses a cycle, a
contradiction. Hence either y0 ∈ V (G) or yd+1 ∈ V (G).

What we must prove is that the determinant∣∣∣∣∣∣∣
v1
...
vd

∣∣∣∣∣∣∣ (6.6)

is equal to ±1. Let, say, e1 = {y1, yd+1}. Thus v1 = (1, 0, . . . , 0). Now, since G is a
forest, by arranging the numbering of the elements of P if necessary, one has

∣∣∣∣∣∣∣
v1
...
vd

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣

a11 0 · · · · · · 0

a21 a22
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . . . . 0

ad1 ad2 · · · · · · add

∣∣∣∣∣∣∣∣∣∣∣∣
,
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where each aij ∈ {1, 0,−1}. Since the determinant (6.6) is nonzero, it follows that
the determinant (6.6) is equal to ±1, as desired.

((ii) ⇒ (i)) In general, every smooth Fano polytope is Q-factorial.

Corollary 6.1.10. Suppose that a finite poset P is pure. Then the following condi-
tions are equivalent:

(i) QP is Q-factorial;

(ii) QP is smooth;

(iii) P is a disjoint union of chains;

(iv) The polytope QP is the free sum of smooth Fano simplices.

Proof. If P is pure, then every cycle of P̂ is special and, in addition, satisfies the
inequalities (6.1) and (6.2). Moreover, every path from y0 to yd+1 cannot be special.
Hence QP is Q-factorial if and only if there is no very special cycle, i.e., every cycle
of P̂ possesses both 0̂ and 1̂. Now if there is a connected component of P which is
not a chain, then P possesses a very special cycle. Thus QP is Q-factorial if and only
if P does not possess a connected component which is not a chain. In other words,
QP is Q-factorial if and only if P is a disjoint union of chains. Furthermore, smooth
Fano simplices arising from finite posets are constructed from only totally ordered
sets. That is to say, P is a disjoint union of chains if and only if the polytope QP is
the free sum of smooth Fano simplices, as desired.

Example 6.1.11. Among the five finite posets drawn below, the three finite posets
depicted on the left-hand side yield a Q-factorial Fano polytope; the remaining two
finite posets do not yield a Q-factorial Fano polytope.

Let P and P ′ be finite posets. Then one can verify easily that QP is isomorphic
with QP ′ as a convex polytope if and only if P is isomorphic with P ′ or with the
dual finite poset of P ′ as a finite poset. (For example, a proof can be given by the
induction on the number of maximal chains of P̂ . )

On the following table drawn below, the number of finite posets with d(≤ 8)
elements, up to isomorphic and up to isomorphic with dual finite posets, is written
in the second row. Moreover, among those, the number of finite posets constructing
smooth Fano polytopes is written in the third row.

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8
Posets 1 2 4 12 39 184 1082 8746
Smooth 1 2 3 6 12 31 83 266
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6.2 Smooth Fano polytopes arising from directed

graphs

In this section, we introduce the Fano polytopes arising from directed graphs and
consider the problem of which directed graphs yiled smooth Fano polytopes. Note
that as written in Remark 6.2.6, Fano polytopes arising from directed graphs are a
generalization of ones arising from posets in the previous section.

6.2.1 Fano polytopes associated with directed graphs

In this subsection, we construct an integral convex polytope associated with a finite
directed graph and discuss the condition of which directed graph yields a Fano
polytope. Most parts of this section are refered from [29, 48, 54, 57].

Let G be a finite directed graph on the vertex set V (G) = {1, . . . , d}. An ordered
pair of vertices ~e = (i, j) is said to be an arrow of G and a pair without ordering
e = {i, j} is said to be an edge of G. Remark that we regard (i, j) and (j, i) as
two distinct arrows. Let A(G) (resp. E(G)) denote the arrow set (resp. the edge
set) of G. Throughout this paper, we allow the case where both (i, j) and (j, i) are
contained in A(G) and assume that G is connected.

Definition 6.2.1. Let ei denote the i-th unit vector of Rd. Given an arrow ~e = (i, j)
in G, we define ρ(~e) ∈ Rd by setting ρ(~e) = ei − ej. Moreover, we write PG ⊂ Rd

for the convex hull of {ρ(~e) : ~e ∈ A(G)}.

Remark 6.2.2. In [57], PG is introduced for a tournament graph G, which is called
the edge polytope of G, and some properties on PG are studied in [57, Section 1].
Similarly, in [48, Section 4], PG is also defined for a symmetric graph G, which is
denoted by P±

G and said to be the symmetric edge polytope of G.

Let H ⊂ Rd denote the hyperplane defined by the equation x1 + · · · + xd = 0.
Since each integer point of {ρ(~e) : ~e ∈ A(G)} lies on H, one has PG ⊂ H. Thus,
dim(PG) ≤ d − 1. First of all, we discuss the dimension of PG.

A sequence Γ = (i1, . . . , il) of vertices of G is called a cycle of length l in G with
the arrows ~e1, . . . , ~el if ej = {ij, ij+1} for 1 ≤ j ≤ l with il+1 = i1 and ij 6= ij′ for
1 ≤ j < j′ ≤ l. In other words, the edges e1, . . . , el form a cycle in G. For short,
we often write Γ = (~e1, . . . , ~el). For a cycle Γ = (~e1, . . . , ~el) in G, let ∆

(+)
Γ = {~ej ∈

{~e1, . . . , ~el} : ~ej = (ij, ij+1)} and ∆
(−)
Γ = {~e1, . . . , ~el} \ ∆

(+)
Γ . Then we may assume

that |∆(+)
Γ | ≥ |∆(−)

Γ | without loss of generality. A cycle Γ is called nonhomogeneous

if |∆(+)
Γ | > |∆(−)

Γ | and homogeneous if |∆(+)
Γ | = |∆(−)

Γ |. Note that two arrows (i, j)
and (j, i) form a nonhomogeneous cycle of length 2. In particular, every odd cycle
is nonhomogeneous. The following result can be proved by using similar techniques
appearing in the proof of [54, Proposition 1.3].

Proposition 6.2.3 (See also [57, Lemma 1.1]). One has dim(PG) = d − 1 if and
only if G has a nonhomogeneous cycle.
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We assume that G has at least one nonhomogeneous cycle.
Next, we consider the problem of which directed graphs construct Fano poly-

topes. Once we know that G constructs a Fano polytope, one can verify that PG is
terminal and Gorenstein ([29, Lemma 1.4 and 1.5]). A proof of the following result
can be also given by using similar techniques used in the proofs of [57, Lemma 1.2]
and [48, Proposition 4.2].

Proposition 6.2.4. PG ⊂ H is a terminal Gorenstein Fano polytope of dimension
d − 1 if and only if every arrow of G appears in a directed cycle in G.

Here, a cycle Γ is called a directed cycle if ∆
(−)
Γ is empty.

Hereafter, we assume that every arrow of G appears in a directed cycle in G.
Then we notice that G has a nonhomogeneous cycle since every directed cycle is
nonhomogeneous.

Example 6.2.5. Let G be a directed graph on the vertex set {1, 2, 3} with the
arrow set {(1, 2), (2, 1), (2, 3), (3, 1)}. Then G, ρ(~e)’s and PG are drawn below:

2

1

(1,−1, 0)

(−1, 1, 0)

(0, 1,−1)

(−1, 0, 1)3

G

PG

(0, 1)

(1,−1)

(−1, 0)

(−1, 1)

convex hull

Remark that the arrows (1, 2), (2, 3), (3, 1) and the arrows (1, 2), (2, 1) form di-
rected cycles. Before having the convex hull of ρ(~e)’s, we ignore the third element
of each integer point. Then the convex polytope PG of this example becomes a
terminal Gorenstein Fano polytope of dimension 2, in particular, smooth.

Remark 6.2.6. In [29], terminal Gorenstein Fano polytopes arising from finite par-
tially ordered sets QP are introduced. Let P = {y1, . . . , yd} be a partially ordered
set and P̂ = P ∪ {y0, yd+1}, where y0 = 0̂ and yd+1 = 1̂. Then we can regard P̂ as
the directed graph on the vertex set {0, 1, . . . , d + 1} with the arrow set

{(i, j) : yj covers yi}.
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Identifying 0 with d + 1 as the same vertex, we construct the directed graph on the
vertex set {1, . . . , d + 1}. Let GP denote such directed graph. Then QP is nothing
but PGP

. Therefore, terminal Gorenstein Fano polytopes associated with directed
graphs are a natural generalization of those defined in [29] and we can consider the
problem studying in section 2 in the similar way.

6.2.2 When is PG smooth ?

In this section, we consider the problem of which directed graphs yield smooth Fano
polytopes.

First, we prove the following

Lemma 6.2.7. (a) Let C = (~e1, . . . , ~el) be a cycle in G. If there exists a facet F of
PG with {ρ(~e1), . . . , ρ(~el)} ⊂ F , then C is homogeneous.
(b) For (i, j) ∈ A(G), suppose that (j, i) ∈ A(G). If ρ((i, j)) is contained in some
facet F of PG, then ρ((j, i)) is never contained in F .

Proof. (a) Let a1x1 + · · · + adxd = 1, where each ai ∈ Q, denote the equation of
the supporting hyperplane of PG which defines a facet F . Let ej = {ij, ij+1} for
1 ≤ j ≤ l, where il+1 = i1. It then follows that

l∑
j=1

(aij − aij+1
) =

∑
~ej∈∆

(+)
C

(aij − aij+1
) −

∑
~ej∈∆

(−)
C

(aij+1
− aij) = |∆(+)

C | − |∆(−)
C | = 0.

Hence, C must be homogeneous.
(b) We set a1x1 + · · · + adxd = 1 as above and suppose that ρ((i, j)) lies on this

supporting hyperplane. Then one has ai − aj = 1. Thus, aj − ai = −1. This implies
that ρ((j, i)) cannot be contained in the same supporting hyperplane.

Next, we prepare two notions, µC and distG.
Let C = (~e1, . . . , ~el) be a homogeneous cycle of length l, where ej = {ij, ij+1} for

1 ≤ j ≤ l with il+1 = i1. Then there exists a unique function

µC : {i1, . . . , il} → Z≥0

such that

• µC(ij+1) = µC(ij) − 1 (resp. µC(ij+1) = µC(ij) + 1) if ~ej = (ij, ij+1) (resp.
~ej = (ij+1, ij)) for 1 ≤ j ≤ l;

• min({µC(i1), . . . , µC(il)}) = 0.

For two distinct vertices i and j of G, the distance from i to j, denoted by
distG(i, j), is the length of the directed shortest path in G from i to j. If there exists
no directed path from i to j, then we define the distance from i to j by infinity.

We now come to the position to prove the following
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Theorem 6.2.8 ([39, Theorem 2.2]). Let G be a connected directed graph on the
vertex set {1, . . . , d} satisfying that every arrow of G appears in a directed cycle of
G. Then the following conditions are equivalent:

(i) PG is Q-factorial;

(ii) PG is smooth;

(iii) G possesses no homogeneous cycle C = (~e1, . . . , ~el) such that

µC(ia) − µC(ib) ≤ distG(ia, ib) (6.7)

for all 1 ≤ a, b ≤ l, where ej = {ij, ij+1} for 1 ≤ j ≤ l with il+1 = i1.

Proof. ((i) ⇒ (iii)) Suppose that G possesses a homogeneous cycle C in G which
satisfies (6.7) and let C = (~e1, . . . , ~el) be such homogeneous cycle, where ej =
{ij, ij+1} for 1 ≤ j ≤ l with ij+1 = i1. Then one has

l∑
j=1

qjρ(~ej) = (0, . . . , 0),

where qj = 1 (resp. qj = −1) if ~ej = (ij, ij+1) (resp. if ~ej = (ij+1, ij)) for 1 ≤ j ≤ l.

Since C is homogeneous, one has
∑l

j=1 qj = 0, which implies that the integer points
ρ(~e1), . . . , ρ(~el) are not affinely independent.

Let vj = ρ(~ej) for 1 ≤ j ≤ l. In order to show that PG is not simplicial, we may
find a face of PG containing v1, . . . , vl.

Let a1, . . . , ad be integers. We write H ⊂ Rd for the hyperplane defined by the
equation a1x1 + · · · + adxd = 1 and H(+) ⊂ Rd for the closed half space defined
by the inequality a1x1 + · · · + adxd ≤ 1. By determining a1, . . . , ad, we make H a
supporting hyperplane of a face F of PG satisfying {v1, . . . , vl} ⊂ F and PG ⊂ H(+).

First, let aij = µC(ij) for 1 ≤ j ≤ l. It then follows easily that vj lies on the

hyperplane defined by the equation
∑l

j=1 aijxij = 1.
Next, we determine ak with k ∈ A, where A = {1, . . . , d} \ {i1, . . . , il}. We set

ak = max({aij − distG(ij, k)} ∪ {0}).

In particular, we have ak = 0 when there is no ij with distG(ij, k) < ∞. Here, we
notice that one has

ak ≤ a′
k, (6.8)

where a′
k = min({aij′

+distG(k, ij′)}). In fact, if ak > a′
k, then there are ij and ij′ such

that distG(ij, k) < ∞, distG(k, ij′) < ∞ and aij − distG(ij, k) > aij′ + distG(k, ij′).
Since distG(ij, k) + distG(k, ij′) ≥ distG(ij, ij′), one has

µC(ij) − µC(ij′) = aij − aij′ > distG(ij, k) + distG(k, ij′) ≥ distG(ij, ij′).
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This contradicts (6.7).
We finish determining the integers a1, . . . , ad. Since each vj lies on H, in order

for F = PG ∩H, we may prove PG ⊂ H(+).
Let (i, j) ∈ A(G). When i ∈ {i1, . . . , il} and j ∈ A, then one has aj ≥ max({ai−

1, 0}) by the definition of aj. Hence, ai − aj ≤ 1. When i ∈ A and j ∈ {i1, . . . , il},
then one has ai ≤ aj + 1 by (6.8). Hence, ai − aj ≤ 1.

Let

B = {k ∈ A : there is ij with distG(ij, k) < ∞}

and

C = {k ∈ A : there is ij′ with distG(k, ij′) < ∞}.

Again, let (i, j) ∈ A(G). In each case of the nine cases below, a routine computation
easily leads that ρ((i, j)) ∈ H(+).

(1) i ∈ B \ C and j ∈ B \ C; (2) i ∈ C \ B and j ∈ C \ B;

(3) i ∈ C \ B and j ∈ B \ C; (4) i ∈ C \ B and j ∈ B ∩ C;

(5) i ∈ C \ B and j 6∈ B ∪ C; (6) i ∈ B ∩ C and j ∈ B \ C;

(7) i ∈ B ∩ C and j ∈ B ∩ C; (8) i 6∈ B ∪ C and j ∈ B \ C;

(9) i 6∈ B ∪ C and j 6∈ B ∪ C.

For example, a routine computation of (1) is as follows. When ai = 0, since
aj ≥ 0, one has ai −aj ≤ 0 ≤ 1. When ai > 0, since aj ≥ ai −1, one has ai −aj ≤ 1.

Therefore, it follows that H is a supporting hyperplane of a face of PG which is
not a simplex.

((iii) ⇒ (i)) Suppose that PG is not simplicial, i.e., PG possesses a facet F
which is not a simplex. Let v1, . . . , vn denote the vertices of F , where n > d − 1,
and ~e1, . . . , ~en the arrows with vj = ρ(~ej) for 1 ≤ j ≤ n. We write H ⊂ Rd for
the supporting hyperplane a1x1 + · · · + adxd = 1 defining F . Since v1, . . . , vn are
not affinely independent, there is (r1, . . . , rn) ∈ Rn with (r1, . . . , rn) 6= (0, . . . , 0)
satisfying

∑n
j=1 rj = 0 and

∑n
j=1 rjvj = (0, . . . , 0). By removing rj with rj = 0,

we may assume that
∑n′

j=1 rjvj = (0, . . . , 0), where rj 6= 0 for 1 ≤ j ≤ n′ with∑n′

j=1 rj = 0. Let ~ej = (ij, i
′
j) with 1 ≤ ij, i

′
j ≤ d and let G′ denote the subgraph of

G with the arrow set {~e1, . . . , ~en′}. If degG′(ij) = 1 or degG′(i′j) = 1, then rj = 0,
a contradiction. Thus, degG′(ij) ≥ 2 and degG′(i′j) ≥ 2. By Lemma 6.2.7 (b),
since {ρ(~e1), . . . , ρ( ~en′)} ⊂ F , it cannot happen that ej = ek with 1 ≤ j 6= k ≤ n′.
Moreover, since every vertex in G′ is at least degree 2, there are many cycles in
G′. Now, Lemma 6.2.7 (a) says that G′ cannot contain any nonhomogeneous cycle.
Hence, there is at least one homogeneous cycle in G.

Let C = (~e1, . . . , ~el) be a homogeneous cycle in G, where ej = {ij, ij+1} for
1 ≤ j ≤ l with ij+1 = i1. Our goal is to show that C satisfies the inequality (6.7).

Let Γ = (k0, k1, . . . , km) be the directed shortest path in G of length m, where
k0 and km belong to {i1, . . . , il}. On the one hand, since ekj

− ekj+1
∈ PG, one has
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akj
−akj+1

≤ 1 for 0 ≤ j ≤ m−1. Hence, ak0−akm ≤ m = distG(k0, km). On the other
hand, we have ak0 −akm = µC(k0)−µC(km). Thus, µC(k0)−µC(km) ≤ distG(k0, km).
Therefore, the required inequality (6.7) holds.

((i) ⇒ (ii)) Suppose that PG is simplicial. Then there are just d− 1 vertices in

each facet which are linearly independent. Let M =

 v1
...

vd−1

 be the matrix whose

row vectors v1, . . . , vd−1 ∈ Zd are the vertices of an arbitrary facet of PG and M ′ the
(d − 1) × (d − 1) submatrix of M ignoring the d-th column of M . From the theory
of totally unimodular matrices [66], the determinant of M ′ is equal to ±1, which
means that PG is smooth.

((ii) ⇒ (i)) In general, every smooth Fano polytope is Q-factorial.

For a directed graph G, we say that G is symmetric if both (i, j) and (j, i) are
contained in A(G), that is, 2|E(G)| = |A(G)|. Note that when G is symmetric,
every arrow of G is contained in a directed cycle of length 2, so PG is always a
terminal Gorenstein Fano polytope.

Recall that for a connected graph G, we say that G is 2-connected if the induced
subgraph with the vertex set V (G)\{i} is still connected for any vertex i ∈ V (G)
and a subgraph of G is a 2-connected component of G if it is a maximal 2-connected
subgraph in G.

For symmetric directed graphs, we obtain the following

Corollary 6.2.9. Let G be a connected symmetric directed graph. Then the follow-
ing conditions are equivalent:

(i) PG is Q-factorial;

(ii) PG is smooth;

(iii) G contains no even cycle;

(iv) every 2-connected component of G is either one edge or an odd cycle.

Proof. ((i) ⇔ (ii)) It is obvious from the proof of Theorem 6.2.8.
((i) ⇒ (iii)) Suppose that G possesses an even cycle C in G of length 2l. Let

C = (ei1 , . . . , ei2l
) be a cycle, where ej = {ij, ij+1} for 1 ≤ j ≤ 2l with i2l+1 = i1.

Since G is symmetric, there are arrows of G

(i2, i1), (i2, i3), (i4, i3), (i4, i5), . . . , (i2l, i2l−1), (i2l, i1).

We define v1, . . . , v2l ∈ Rd by setting

vj =

{
ρ((ij+1, ij)), j = 1, 3, . . . , 2l − 1,

ρ((ij, ij+1)), j = 2, 4, . . . , 2l.
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Then one has
l∑

j=1

v2j−1 +
l∑

j=1

(−1)v2j = (0, . . . , 0).

Thus, v1, . . . , v2l are not affinely independent. Hence, we may show that there is a
face F of PG with {v1, . . . , v2l} ⊂ F .

Now, we have v2j−1 = −ei2j−1
+ ei2j

and v2j = ei2j
− ei2j+1

for 1 ≤ j ≤ l. Thus,
v1, . . . , v2l lie on the hyperplane H ⊂ Rd defined by the equation xi2+xi4+· · ·+xi2l

=
1. In addition, it is clear that ρ(~e) is contained in H(+) ⊂ Rd for any arrow ~e of G.
Hence, H is a supporting hyperplane defining a face F of PG with {v1, . . . , v2l} ⊂ F .
Therefore, PG is not simplicial.

((iii) ⇒ (iv)) We prove this implication by elementary graph theory. Suppose
that there is a 2-connected component of G which is neither one edge nor an odd
cycle. Let G′ be such 2-connected subgraph of G. Now, an arbitrary 2-connected
graph with at least 3 vertices can be obtained by the following method: starting
from a cycle and repeatedly appending an H-path to a graph H that has been
already constructed. (Consult, e.g., [77].) Since G′ is not one edge, G′ has at least
3 vertices. Thus, there is one cycle C1 and (m − 1) paths Γ2, . . . , Γm such that
G′ = C1 ∪ Γ2 ∪ · · · ∪ Γm. Since G′ is not an odd cycle, one has G′ = C1, where C1

is an even cycle, or m > 1. Suppose that m > 1 and C1 is an odd cycle. Let v and
w be distinct two vertices of C1 which are intersected with Γ2. Then there are two
paths in C1 from v to w. Since C1 is odd, the parities of the lengths of such two
paths are different. By attaching the path Γ2 to one or another of such two paths,
we can construct an even cycle. Therefore, there exists an even cycle.

((iv) ⇒ (i)) Suppose that each 2-connected component of G is either one edge
or an odd cycle. Then there is no homogeneous cycle in G. Hence, by Theorem
6.2.8, PG is simplicial.

Let G and G′ be connected symmetric directed graphs. The conditions under
which PG is unimodular equivalent to PG′ are discussed in [48, Section 4.2]. As its
analogue, we obtain the following

Theorem 6.2.10 (See [48, Theorem 4.5]). For a directed graph G (resp. G′), let
G1, . . . , Gm (resp. G′

1, . . . , G
′
m′) denote the 2-connected components of G (resp. G′).

Then PG is unimodular equivalent to PG′ if and only if m = m′ and Gi is isomorphic
to G′

i by renumbering if necessary.

Example 6.2.11. (a) When G is a directed cycle of length d + 1, PG is a smooth
Fano polytope, whose corresponding toric Fano variety is a d-dimensional complex
projective space Pd. Moreover, each 2-connected component of a directed graph
corresponds to each direct factor of a corresponding toric Fano variety. For example,
the graph depicted on the left-hand side (resp. right-hand side) yields a smooth Fano
polytope which corresponds to P5 (resp. P3 × P3).
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(b) When G is a symmetric directed graph without even cycle, PG is a smooth
Fano polytope, whose corresponding toric Fano variety is a direct product of copies
of P1 or del Pezzo variety V 2k. (See Section 3.) For example, the graph depicted
on the left-hand side (resp. right-hand side) yields a smooth Fano polytope which
corresponds to V 4 (resp. P1 × P1 × V 2).

6.2.3 The case where G possesses no even cycle

In this subsection, we show that every pseudo symmetric smooth Fano polytope can
be obtained from some directed graph with no even cycle. This fact includes the
case of centrally symmetric smooth Fano polytopes.

Let P ⊂ Rd be a Fano polytope.

• We call P centrally symmetric if P = −P = {−α : α ∈ P}.

• We call P pseudo symmetric if there is a facet F of P such that −F is also
a facet of P . By the definition, every centrally symmetric Fano polytope is
pseudo symmetric.

• A del Pezzo polytope of dimension 2k is a convex polytope

conv({±e1, . . . ,±e2k,±(e1 + · · · + e2k)}),

whose corresponding variety is so-called a del Pezzo variety V 2k. In particular,
del Pezzo polytopes are centrally symmetric smooth Fano polytopes.

• A pseudo del Pezzo polytope of dimension 2k is a convex polytope

conv({±e1, . . . ,±e2k, e1 + · · · + e2k}),

whose corresponding variety is so-called a pseudo del Pezzo variety Ṽ 2k. In
particular, pseudo del Pezzo polytopes are pseudo symmetric smooth Fano
polytopes.

There is a well-known fact on the characterization of centrally symmetric or
pseudo symmetric smooth Fano polytopes.
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Theorem 6.2.12 ([76]). Any centrally symmetric smooth Fano polytope splits into
copies of the closed interval [−1, 1] or a del Pezzo polytope.

Theorem 6.2.13 ([17, 76]). Any pseudo symmetric smooth Fano polytope splits into
copies of the closed interval [−1, 1] or a del Pezzo polytope or a pseudo del Pezzo
polytope.

Somewhat surprisingly, we also give the complete characterization of centrally
symmetric or pseudo symmetric smooth Fano polytopes by means of directed graphs.
In fact,

Theorem 6.2.14 ([39, Theorem 3.3]). (i) Any centrally symmetric smooth Fano
polytope can be obtained from a symmetric directed graph with no even cycle.
(ii) Any pseudo symmetric smooth Fano polytope can be obtained from a directed
graph with no even cycle.

Proof. First, we prove (ii). Let P be an arbitrary pseudo symmetric smooth Fano
polytope of dimension d. By Theorem 6.2.13, P splits into P1, . . . ,Pm which are
copies of [−1, 1] or a del Pezzo polytope or a pseudo del Pezzo polytope. Let
P1, . . . ,Pm′ be del Pezzo polytopes, Pm′+1, . . . ,Pm′′ pseudo del Pezzo polytopes
and Pm′′+1, . . . ,Pm the closed intervals [−1, 1]. Then the following arguments easily
follow.

• Let, say, P1 be a del Pezzo polytope of dimension 2k1 and G1 a symmetric
directed graph with its arrow set

A(G1) = {(1, 2), (2, 1), . . . , (2k1, 2k1+1), (2k1+1, 2k1), (2k1+1, 1), (1, 2k1+1)}.

Then G1 is an odd cycle, i.e., there is no even cycle, so PG1 is smooth by
Corollary 6.2.9 and we can check that PG1 is unimodular equivalent to P1.

• Let, say, Pm′+1 be a pseudo del Pezzo polytope of dimension 2k1 and G′
1 a

directed graph with its arrow set

A(G′
1) = A(G1) \ {(2, 1)},

i.e., we miss one arrow from G1. Then we can also check that PG′
1
is unimodular

equivalent to Pm′+1.

• A directed graph consisting of only one symmetric edge yields the smooth
Fano polytope of dimension 1, which is nothing but the closed interval [−1, 1].

By connecting the above graphs with one vertex, we obtain the directed graph with
no even cycle which yields the required smooth Fano polytope P .

Moreover, del Pezzo polytopes and the closed interval [−1, 1] are constructed by
symmetric directed graphs. Therefore, in the similar way to the above construction,
by Theorem 6.2.12, we can also find the symmetric directed graph G with no even
cycle such that PG is unimodular equivalent to P for any centrally symmetric smooth
Fano polytope P .
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Example 6.2.15. The graph depicted on the left-hand side (resp. right-hand side)
yields a smooth Fano polytope which corresponds to Ṽ 4 (resp. P1 × V 2 × Ṽ 2).

Example 6.2.16. In [4], a symmetric (not centrally symmetric) smooth toric Fano
variety is given, which is important from the viewpoint whether smooth toric Fano
variety admits an Einstein-Kähler metric, and some examples of symmetric smooth
Fano varieties are provided in [4, Example 4.2 – 4.4]. Note that smooth toric Fano
varieties corresponding to centrally symmetric smooth Fano polytopes and direct
products of copies of complex projective spaces are always symmetric.

Let m be a positive integer and G1 a directed graph with its arrow set

A(G1) = {(1, 2), (2, 3), . . . , (2m + 1, 2m + 2), (2m + 2, 1), (1, m + 2), (m + 2, 1)}.

Then PG1 is a smooth Fano polytope of dimension 2m+1 which corresponds to the
example of the case where k = 1 described in [4, Example 4.2].

Let G2 be a directed graph with its arrow set

A(G2) = A(G1) ∪ {(1, 2m + 3), (2m + 3, 1), (m + 2, 2m + 3), (2m + 3,m + 2)}.

Then PG2 is a smooth Fano polytope of dimension 2m + 2 which is the example of
the case where k = 1 described in [4, Example 4.3].

6.2.4 Primitive collections of PG

In this section, we describe the primitive collections of PG in terms of directed
graphs, where we assume that PG is smooth.

Primitive collections, introduced by Batyrev [2], are very important and con-
venient for investigating smooth toric Fano varieties. We refer the reader to, e.g.,
[65], for some aspects on algebraic geometry of smooth toric Fano varieties using
primitive collections.

Let P be a smooth Fano polytope and V (P) the set of its vertices. A nonempty
subset P ⊂ V (P) is called a primitive collection of P if conv(P ) is not a face of P
but conv(P \ {v}) is a face of P for every v ∈ P .

Theorem 6.2.17 ([39, Theorem 4.1]). Let G be a connected directed graph on the
vertex set {1, . . . , d} such that PG is a smooth Fano polytope of dimension d − 1.
Let AG ⊂ 2A(G) be the set consisting of A ⊂ A(G) which satisfies that there exists

some nonhomogeneous cycle C in G with ∆
(+)
C ⊂ A. Then there is a one-to-one

correspondence between the primitive collections of PG and the minimal elements in
AG by inclusion.
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Proof. For A ⊂ A(G), let (A) = {ρ(~e) : ~e ∈ A}. Since PG is terminal, there is a
one-to-one correspondence between the vertices of PG and the arrows of G. Thus,
it suffices to show that for every A ∈ AG, (A) is not contained in any face of PG,
and that for every A′ ∈ 2A(G) \ AG, there exists a face of PG containing (A′).

For A ∈ AG, suppose that there exists a face containing (A) and let H be a
supporting hyperplane of such face defined by a1x1 + · · ·+adxd = 1 with PG ⊂ H(+),
where ai ∈ Q. Since A ∈ AG, there exists a nonhomogeneous cycle C = (~e1, . . . , ~el)

in G, where ej = {ij, ij+1} for 1 ≤ j ≤ l with il+1 = i1, such that ∆
(+)
C ⊂ A. Then

(∆
(+)
C ) ⊂ (A) ⊂ H and (∆

(−)
C ) ⊂ H(+). Thus, one has

0 =
l∑

j=1

(aij − aij+1
) =

∑
~ej∈∆

(+)
C

(aij − aij+1
)−

∑
~ej∈∆

(−)
C

(aij+1
− aij) ≥ |∆(+)

C | − |∆(−)
C | > 0,

a contradiction. Hence, (A) is not contained in any face of PG. In particular, this
assertion holds for every minimal element in AG.

Moreover, by Lemma 9.1.11 below, for every A′ ∈ 2A(G) \ AG, there exists a
face of PG containing (A′). In particular, for every minimal element A in AG, there
exists a face containing (A \ {~e}), where ~e is an arbitrary arrow in A. This implies
that if A is minimal in AG, then (A) is a primitive collection of PG. On the other
hand, we know that if A′ ⊂ A(G) is not a minimal element in AG, then A′ cannot
be a primitive collection of P.

Therefore, we conclude that there is a one-to-one correspondence between the
primitive collections of PG and the minimal elements in AG.

Lemma 6.2.18. Work with the same notations as in Theorem 6.2.17. For every
A′ ∈ 2A(G) \ AG, there exists a face of PG containing (A′).

Proof. For A′ ∈ 2A(G) \ AG, let G′ denote the subgraph in G with A(G′) = A′ and
G′

1, . . . , G
′
m connected components of G′. Then there is no cycle in each G′

i, i.e.,
each G′

i is a tree. In fact, there is no nonhomogeneous cycle since A′ 6∈ AG and no
homogeneous cycle since PG is simplicial. (See the proof of ((i) ⇒ (iii)) of Theorem
6.2.8.)

Let a1, . . . , ad be integers and let H ⊂ Rd and H(+) ⊂ Rd denote as in the proof
of ((i) ⇒ (iii)) of Theorem 6.2.8. In order to find a face of PG containing (A′), we
determine a1, . . . , ad such that H becomes a supporting hyperplane of a face F of
PG with (A′) ⊂ F and PG ⊂ H(+).

The first step. In this step and the next step, we determine aj for all j ∈ V (G′).

Let V (G′
i) = {q(i)

1 , . . . , q
(i)
ki
} for 1 ≤ i ≤ m and c1, . . . , cm some integers. We

choose one vertex from each G′
i, say, q

(1)
1 , . . . , q

(m)
1 , and set a

q
(i)
1

= ci. For 1 ≤ i ≤ m

and 2 ≤ j ≤ ki, we define a
q
(i)
j

by setting

a
q
(i)
j

=

a
q
(i)

j′
− 1, if (q

(i)
j′ , q

(i)
j ) ∈ A(G′

i),

a
q
(i)

j′
+ 1, if (q

(i)
j , q

(i)
j′ ) ∈ A(G′

i).

126



Notice that since G′
i is a tree, each a

q
(i)
j

is uniquely determined. It then follows that

(A′) is contained in the hyperplane defined by
∑

1≤j≤ki,1≤i≤m a
q
(i)
j

x
q
(i)
j

= 1.

The second setp. Next, we give the exact values of a
q
(i)
j

’s by determining

integers c1, . . . , cm. For this, we define a directed graph. Let H̃ be (not necessary
connected) a directed graph on the vertex set {1, . . . ,m} with the arrow set A(H̃)
consisting of (i, j), where 1 ≤ i, j ≤ m, such that there exists a directed path in G
from some vertex of G′

i to some vertex of G′
j. Remark that H̃ may have some loops.

And we give a weight bij on every arrow (i, j) ∈ A(H̃) defined by

bij = max({aα − aβ − distG(α, β) + 1 − (ci − cj)}),

where α ∈ V (G′
i) and β ∈ V (G′

j). Then we have

l ≥
l∑

j=1

bijij+1
(6.9)

for every directed cycle C̃ = (i1, . . . , il) in H̃ of length l ≥ 1. In fact, for 1 ≤ j ≤ l,
let bijij+1

= aαij
−aβij+1

−distG(αij , βij+1
)+1− (cij − cij+1

), where αij ∈ V (G′
ij
) and

βij+1
∈ V (G′

ij+1
). Since each G′

ij
is a tree, there is a unique path in G′

ij
from βij to

αij , say, Γ′
ij

= (ek1 , . . . , eklj−1
), where eka = {γka , γka+1} ∈ E(G′

ij
) for 1 ≤ a ≤ lj − 1

with γk1 = βij and γklj
= αij . Then we notice that there is a cycle

C = (Γ′
i1
, Γi1 , Γ

′
i2
, Γi2 , . . . , Γ

′
il
, Γil)

in G, where Γij is a directed path from αij to βij+1
of length distG(αij , βij+1

). Let

δ
(+)
ij

(resp. δ
(−)
ij

) denote the number of arrows such that ~eka = (γka , γka+1) (resp.

~eka = (γka+1 , γka)). By the definitions of aβij
and aαij

, we have aβij
−aαij

= δ
(+)
ij

−δ
(−)
ij

.
Moreover, by our assumption, we have

l∑
j=1

δ
(+)
ij

+
l∑

j=1

distG(αij , βij+1
) ≥

l∑
j=1

δ
(−)
ij

,

otherwise C becomes a nonhomogeneous cycle satisfying ∆
(+)
C ⊂ ∪l

j=1A(G′
ij
) = A′.

Hence, we have

l∑
j=1

(δ
(+)
ij

− δ
(−)
ij

+ distG(αij , βij+1
)) =

l∑
j=1

(aβij+1
− aαij

+ distG(αij , βij+1
))

=
l∑

j=1

(−bijij+1
+ 1 − (cij − cij+1

)) = l −
l∑

j=1

bijij+1
≥ 0.

By considering the directed graph H̃, we give the exact values of c1, . . . , cm.
(Here, even if H̃ is not connected, we may do the same operations as the following
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to each connected component, so we assume the connectedness of H̃.) In H̃, if
there are some directed cycles, then we pick up one C̃ = (i1, . . . , il) satisfying that
a nonnegative integer l −

∑l
j=1 bijij+1

is the smallest. And, for 1 ≤ j ≤ l − 1, we set

cij −cij+1
= 1−bijij+1

. Next, we do this to other directed cycle C̃ ′ = (i′1, . . . , i
′
l′) in H̃

such that l′−
∑l′

j=1 bi′ji′j+1
is the second smallest. If C̃ and C̃ ′ are distinct in H̃, then

we find a path in H̃ from some vertex of C̃ to some vertex of C̃ ′, say, (i′′1, . . . , i
′′
l′′)

with i′′1 = i1 and i′′l′′ = i′1, and we also define ci′′j
− ci′′j+1

= 1 − bi′′j i′′j+1
in the similar

way. After this, similarly, we define ci′j
− ci′j+1

= 1 − bi′ji′j+1
. In this way, we define

ca − cb for all 1 ≤ a, b ≤ m with (a, b) ∈ A(H̃).
After all, thanks to (6.9), it is easy to see that we have

ci − cj ≤ min

({
l −

l∑
j=1

bkjkj+1

})
(6.10)

for every (i, j) ∈ A(H̃), where l is the length of some directed path (k1, . . . , kl+1) in
H̃ from i = k1 to j = kl+1.

Finally, we set

min({a
q
(i)
j

: 1 ≤ j ≤ ki, 1 ≤ i ≤ m}) = 0.

Then we obtain the exact values of all a
q
(i)
j

’s.

The third step. In this step, we determine ak for all k ∈ V (G) \ V (G′). For
k ∈ V (G) \ V (G′), let

ak = max({aα − distG(α, k)} ∪ {0}),

where α ∈ V (G′
i) for some 1 ≤ i ≤ m. In particular, we have ak = 0 when there is

no α with distG(α, k) < ∞. Then one has

ak ≤ a′
k, (6.11)

where a′
k = min({aβ + distG(k, β)}) with β ∈ V (G′

j) for some 1 ≤ j ≤ m. In fact, if
ak > a′

k, then there exist α and β such that distG(α, k) < ∞ and distG(k, β) < ∞.
Since distG(α, k) + distG(k, β) ≥ distG(α, β), one has

0 > a′
k − ak = aβ + distG(k, β) − aα + distG(α, k)

≥ aβ − aα + distG(α, β)

≥ −bij + 1 − (ci − cj) (by the definition of bij)

≥ −bij + 1 − (1 − bij) (by (9.7))

= 0,

a contradiction.
The fourth step. By the previous three steps, we finish determining the integers

a1, . . . , ad. Thus, what we need is to prove P ⊂ H(+). However, since the definition
of ak for k ∈ V (G) \ V (G′) is the same as the proof of ((i) ⇒ (iii)) and we also have
(6.11), the rest parts are also the same, proving the assertion.
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Example 6.2.19. Let us consider the primitive collections of the del Pezzo polytope
of dimension 2, whose corresponding directed graph is the following:

1

2 3

Then there are 9 primitive collections, which correspond to

{(1, 2), (2, 1)}, {(2, 3), (3, 2)}, {(1, 3), (3, 1)},
{(1, 2), (2, 3)}, {(2, 3), (3, 1)}, {(3, 1), (1, 2)},
{(1, 3), (3, 2)}, {(3, 2), (2, 1)}, {(2, 1), (1, 3)}.
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Part III

Affine semigroup rings
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Chapter 7

Introduction to affine semigroup
rings

In this part, as the third aspect of the studies on integral convex polytopes, we
consider affine semigroup rings associated with integral convex polytopes. Affine
semigroup rings often appear and play several important roles in the area of not
only commutative algebra but also combinatorics and other fields.

We will summarize some basic notions, definitions and well-known results on
affine semigroup rings. Most parts are refered from [12, Chapter 6].

An affine semigroup C is a finitely generated semigroup which for some n is
isomorphic to a subsemigroup of Zn containing 0. Let K be a field. We write K[C]
for the vector space whose basis consists of all the elemnts of C, which is denoted
by Xc for c ∈ C. Then K[C] carries also a natural multiplication whose table is
given by XcXc′ = Xc+c′ . Thus, in particular, K[C] is a K-algebra, which we call
an affine semigroup ring.

An affine semigroup C is called normal if it satisfies the following condition:
if mz ∈ C for some z ∈ ZC and m ∈ Z>0, then z ∈ C. One sees immediately
that C must be normal if K[C] is a normal domain. Then it is well known (e.g.
[12, Theorem 6.1.4]) that K[C] is normal if and only if C is a normal semigroup.
Moreover, it is also well known as Hochster’s Theorem (e.g. [12, Theorem 6.3.5])
that when C is normal, then K[C] is Cohen–Macaulay.

Let P ⊂ RN be an integral convex polytope. A typical example of normal
semigroup rings is the Ehrhart ring of P, which is constructed as follows. We define
P∗ ⊂ RN+1 to be the convex hull of all points (1, α) ∈ RN+1 with α ∈ P and let
AP = P∗ ∩ ZN+1 denote the set of integer points in P∗. Then R≥0AP ∩ ZN+1 is a
normal semigroup and so K[R≥0AP ∩ ZN+1] is a normal semigroup ring, which is
called the Ehrhart ring of P .

On the rest of this part, we will discuss the affine semigroup rings associated
graphs, which we call edge rings, in Chapter 8. We will study depth of edge rings.
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In Chapter 9, we will consider the affine semigroup rings arising from cyclic poly-
topes. We will study their normality, non-very ampleness, Cohen–Macaualyness and
Gorensteinness. And we will also introduce the other affine semigroup rings arising
from cyclic polytopes, which are generated only by their vertices, and discuss their
properties.
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Chapter 8

Affine semigroup rings arising
from graphs

In this chapter, we will study the depth of edge rings. In Section 8.1, we will consider
the depth of edge rings (toric ideals) of non-normal graphs. Note that when graphs
are normal, then their edge rings are always Cohen–Macaulay, which means that
the depth is equal to its Krull dimension. In Section 8.2, we will discuss the depth
of initial ideals of toric ideals of normal graphs.

8.1 Depth of non-normal edge ring

First, we consider the depth of non-normal edge rings.
Let G be a finite simple graph on the vertex set [d] = {1, . . . , d} and E(G) =

{e1, . . . , em} its edge set. Let K[t] = K[t1, . . . , td] be the polynomial ring in d vari-
ables over a field K and write K[G] for the subring of K[t] generated by those
squarefree quadratic monomials te = titj with e = {i, j} ∈ E(G). The affine semi-
group ring K[G] is called the edge ring of G. Let Krull-dim K[G] denote the Krull
dimension of K[G] and depth K[G] the depth of K[G]. Let K[x] = K[x1, . . . , xm]
be the polynomial ring in m variables over a field K. The kernel IG of the surjective
homomorphism π : K[x] → K[G] defined by setting π(xi) = tei for i = 1, . . . ,m is
called the toric ideal of G. One has K[G] ∼= K[x]/IG. If G is connected and is non-
bipartite (resp. bipartite), then Krull-dim K[G] = d (resp. Krull-dim K[G] = d−1).

The criterion of normality [54, Corollary 2.3] of edge rings guarantees that K[G]
is normal if either G is bipartite or d ≤ 6. If d = 7, then there exists a finite
graph G for which K[G] is nonnormal. However, it follows easily that K[G] is
Cohen–Macaulay whenever d ≤ 7. Computing depth of edge rings of all connected
nonbipartite graphs G with 7 vertices shows that the depth of K[G] is at least 7.
Moreover, our computational experiment would naturally lead the authors into the
temptation to give the following

Conjecture 8.1.1. Let G be a finite graph on [d] with d ≥ 7. Then depth K[G] ≥ 7.
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Now, even though Conjecture 8.1.1 is completely open, by taking Conjecture
8.1.1 into consideration, this section will be devoted to proving the following

Theorem 8.1.2 ([32, Theorem 0.2]). Given integers f and d with 7 ≤ f ≤ d, there
exists a finite graph G on [d] with depth K[G] = f and with Krull-dim K[G] = d.

Let k ≥ 1 be an arbitrary integer and Gk+6 the finite graph on [k + 6] of Figure
8.1. The essential part of a proof of Theorem 8.1.2 is to show that

depth K[Gk+6] = depth K[x]/IGk+6
= 7. (8.1)

In Subsection 8.1.1, by virtue of the formula given in [10, Theorem 2.1], the in-
equality depth K[Gk+6] ≤ 7 will be proved. In Subection 8.1.2, we compute a
Gröbner basis of IGk+6

and an initial ideal in(IGk+6
) of IGk+6

, and show the inequality
depth K[x]/ in(IGk+6

) ≥ 7. In general, one has depth K[x]/IGk+6
≥ depth K[x]/ in(IGk+6

)
(e.g., [25, Theorem 3.3.4 (d)]). Thus the desired equality (8.1) follows.
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Figure 8.1 (finite graph Gk+6)

Once we know that depth K[Gk+6] = 7, to prove Theorem 8.1.2 is straightfor-
ward. In fact, given integers f and d with 7 ≤ f ≤ d, let Γ denote the finite graph
Gd−f+7 on [d − f + 7] and write G for the finite graph on [d] obtained from Γ by
adding f − 7 edges

{1, d − f + 8}, {1, d − f + 9}, . . . , {1, d}

to Γ. It then follows that depth K[G] = depth K[Γ] + f − 7. Since depth K[Γ] = 7,
one has depth K[G] = f , as required.
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8.1.1 Proof of depth K[Gk+6] ≤ 7

Let G = Gk+6 of Figure 8.1. In this section, we prove that depth K[G] ≤ 7. Since
the number of edges of G is m = 2(k − 1) + 8, Auslander–Buchsbaum formula
implies that we may prove pd K[G] ≥ m − 7 = 2k − 1, where pd K[x]/I stands for
the projective dimension of K[x]/I.

Let SG be the semigroup arising from G. Let AG = {a1, . . . , am} be the set of
columns of the incidence matrix of G, where al corresponds to the edge el which
corresponds to the variable xl. Actually, SG = Z≥0AG.

To prove pd K[G] ≥ 2k − 1, we use the following theorem due to Briales,
Campillo, Marijuán, and Pisón [10]. For s ∈ SG, we define the simplicial complex

∆s = {F ⊂ [r] : s − nF ∈ SG},

where nF =
∑

l∈F al. We denote by βi,s(K[G]), the ith multi-graded Betti number
of K[G] in multi-degree s.

Lemma 8.1.3 ([10, Theorem 2.1]). Let G be a finite simple graph. Then

βj+1,s(K[G]) = dimK H̃j(∆s; K).

We consider the case where

s = (1, 1, k + 1, k + 1, 1, 1, 2, 2, . . . , 2).

By Lemma 8.1.3, it is sufficient to prove the following

Lemma 8.1.4. Set s = (1, 1, k + 1, k + 1, 1, 1, 2, 2, . . . , 2). Then

dimK H̃2k−2(∆s; K) 6= 0.

Let ∆ = ∆s. Before proving Lemma 8.1.4, we find all the facets of ∆.

Lemma 8.1.5. A subset F ⊂ [r] is a facet of ∆s if and onlyl if F is one of the
following ones :

F1,i = {1, 4, 5, 7, 8, . . . , 2(k − 1) + 8} \ {2(i − 1) + 8}, i = 1, . . . , k;

F2,j = {2, 3, 6, 7, 8, . . . , 2(k − 1) + 8} \ {2(j − 1) + 7}, j = 1, . . . , k.

Proof. Since s − nF1,i
= a2(i−1)+7 ∈ SG, we have F1,i ∈ ∆s = ∆. (It follows that

s ∈ SG.) Similarly, we have F2,j ∈ ∆.
To prove that there are no facet other than F1,i, F2,j, it is enough to show that

• {1, 2}, {1, 3}, {4, 6}, {5, 6} /∈ ∆;

• {1, 6} /∈ ∆;

• {2, 4}, {2, 5}, {3, 4}, {3, 5} /∈ ∆;
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• F0 = {7, 8, . . . , 2(k − 1) + 8} /∈ ∆.

Since the first entry of s − n{1,2} is −1 < 0, it follows that s − n{1,2} /∈ SG.
Therefore {1, 2} /∈ ∆. By the symmetry, we also have {1, 3}, {4, 6}, {5, 6} /∈ ∆.

Second we show that {1, 6} /∈ ∆. Suppose, on the contrary, that {1, 6} ∈ ∆, i.e.,

s − n{1,6} = (0, 0, k + 1, k + 1, 0, 0, 2, 2, . . . , 2) ∈ SG.

Then we can write s − n{1,6} =
∑r

l=1 clal where cl ∈ Z≥0. Since (s − n{1,6})1 =
(s−n{1,6})2 = 0 and (s−n{1,6})3 = k+1, where (a)i means the ith entry of a ∈ Zn, we

have c1 = c2 = c3 = 0 and
∑k

i=1 c2(i−1)+7 = k+1. Similarly, we have c4 = c5 = c6 = 0

and
∑k

j=1 c2(j−1)+8 = k + 1. Then
∑k

i=1 c2(i−1)+7 +
∑k

j=1 c2(j−1)+8 = 2(k + 1), but it
must be 2k. This is a contradiction.

Next we show that {2, 4}, {2, 5}, {3, 4}, {3, 5} /∈ ∆. Suppose that {2, 4} ∈ ∆,
i.e.,

s − n{2,4} = (0, 1, k, k, 0, 1, 2, 2, . . . , 2) ∈ SG.

Then we can write s−n{2,4} =
∑r

l=1 clal where cl ∈ Z≥0. Since (s−n{2,4})1 = 0 and
(s − n{2,4})2 = 1, we have c3 = 1. Similarly, we have c5 = 1. Thus

(0, 0, k − 1, k − 1, 0, 0, 2, 2, . . . , 2) ∈ SG.

Then the similar argument on the proof of {1, 6} /∈ ∆ yields a contradiction. There-
fore {2, 4} /∈ ∆. By the symmetry, we also have {2, 5}, {3, 4}, {3, 5} /∈ ∆.

Last, we show F0 /∈ ∆. It follows from

s − nF0 = (1, 1, 1, 1, 1, 1, 0, 0, . . . , 0) /∈ SG.

Now we prove Lemma 8.1.4.

Proof of Lemma 8.1.4. Let ∆1 (resp. ∆2) be the subcomplex of ∆ whose facets are
F1,i, i = 1, . . . , k, (resp. F2,j, j = 1, . . . , k). Then ∆ = ∆1 ∪ ∆2. Also facets of the
simplicial complex ∆1 ∩ ∆2 are

{7, 8, . . . , 2(k − 1) + 8} \ {2(j − 1) + 7, 2(i − 1) + 8}, i, j = 1, . . . , k.

In particular, dim(∆1∩∆2) = 2k−3. Note that both of ∆1 and ∆2 are cone of some
simplicial complexes and reduced homologies of these all vanish (cf. [12, Exercise
5.3.10]). Therefore, Mayer–Vietoris exact sequence

· · · −→ H̃i−1(∆1 ∩ ∆2; K) −→ H̃i(∆1; K) ⊕ H̃i(∆2; K) −→ H̃i(∆; K)

−→ H̃i−1(∆1 ∩ ∆2; K) −→ H̃i−1(∆1; K) ⊕ H̃i−1(∆2; K) −→ · · ·

yields
H̃i(∆; K) ∼= H̃i−1(∆1 ∩ ∆2; K) for all i.
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One can see that H̃2k−3(∆1 ∩ ∆2; K) 6= 0 by considering the alternating sum of
all facets of ∆1 ∩ ∆2, which is∑

1≤i,j≤k

(−1)i+j{7, 8, . . . , 2(k − 1) + 8} \ {2(j − 1) + 7, 2(i − 1) + 8}.

This implies that H̃2k−2(∆; K) 6= 0, as desired.

8.1.2 Proof of depth K[Gk+6] ≥ 7

Let, as before, G = Gk+6 as in Figure 8.1. In this subsection, we prove another
inequality depth K[G] ≥ 7.

We set C1 = (e2, e1, e3) and C2 = (e4, e6, e5), both of which are 3-cycles of G. By
[55, Lemma 3.2], there are three kinds of primitive even closed walks Γ of G up to
the way:

(I) a 4-cycle: Γ = (e2(i−1)+7, e2(i−1)+8, e2(j−1)+8, e2(j−1)+7), where i < j;

(II) a walk on two 3-cycles C1, C2 and the same path combining C1 and C2: Γ =
(C1, e2(i−1)+7, e2(i−1)+8, C2, e2(i−1)+8, e2(i−1)+7), where i = 1, . . . , k;

(III) a walk on two 3-cycles C1, C2 and the different paths combining C1 and C2:
Γ = (C1, e2(i−1)+7, e2(i−1)+8, C2, e2(j−1)+8, e2(j−1)+7), where i < j.

It was proved in [55, Lemma 3.1] that binomials corresponding to these primitive
even closed walks generate the toric ideal IG. Let us consider the lexicographic order
<=<lex induced with x1 > x2 > x3 > · · · > x2(k−1)+8.

Lemma 8.1.6. The set of binomials corresponding to primitive even closed walks
(I), (II), (III) is a Gröbner basis of IG with respect to <lex.

Proof. The result follows from a straightforward application of Buchberger’s algo-
rithm to the set of generators of IG corresponding to the primitive even closed
walks listed above. Let f and g be two such generators. We will prove that the
S-polynomial, S(f, g), yielding from Buchberger’s algorithm will reduce to 0 by gen-
erators of type (I), (II) and (III). For convenience of notation, we will assume that
i, j, p, and q are all odd integers such that 7 ≤ i < j, 7 ≤ p < q.

Case 1. Let f = xixj+1 − xi+1xj and g = xpxq+1 − xp+1xq be generators of type
(I). If i 6= p and j 6= q, then the leading terms of f and g are relatively prime and
thus the S-polynomial S(f, g) will reduce to 0 (e.g., [25, Lemma 2.3.1]). Suppose
i = p, then

S(f, g) =
lcm(f, g)

LT<lex
(f)

f − lcm(f, g)

LT<lex
(g)

g

= xq+1(xixj+1 − xi+1xj) − xj+1(xixq+1 − xi+1xq)

= xi+1xj+1xq − xi+1xjxq+1

= xi+1(xj+1xq − xjxq+1).
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Note that, up to sign, xj+1xq − xjxq+1 is a generator of IG of type (I) and therefore
S(f, g) will reduce to 0. The case of j = q is similar.

Case 2. Let f be the same as above and g = x1x4x5x
2
p−x2x3x6x

2
p+1 a generator

of type (II). If i 6= p, then the leading terms of f and g are relatively prime and
therefore negligible. If i = p, then

S(f, g) = x1x4x5xi(xixj+1 − xi+1xj) − xj+1(x1x4x5x
2
i − x2x3x6x

2
i+1)

= x2x3x6x
2
i+1xj+1 − x1x4x5xixi+1xj

= −xi+1(x1x4x5xixj − x2x3x6xi+1xj+1),

where x1x4x5xixj − x2x3x6xi+1xj+1 is a generator of type (III).
Case 3. Again, we assume that f is the same as above. Now assume g is of

type (III), g = x1x4x5xpxq − x2x3x6xp+1xq+1. If i 6= p, q, then the leading terms of
f and g will be relatively prime. Suppose i = p, then

S(f, g) = x1x4x5xq(xixj+1 − xi+1xj) − xj+1(x1x4x5xixq − x2x3x6xi+1xq+1)

= −xi+1(x1x4x5xqxj − x2x3x6xq+1xj+1)

and again we have that x1x4x5xqxj − x2x3x6xq+1xj+1 is a type either (II) or (III)
generator of IG. The case of i = q is similar.

Case 4. Now let f and g both be generators of type (II), f = x1x4x5x
2
i −

x2x3x6x
2
i+1, g = x1x4x5x

2
j − x2x3x6x

2
j+1. Then the S-polynomial

S(f, g) = x2
j(x1x4x5x

2
i − x2x3x6x

2
i+1) − x2

i (x1x4x5x
2
j − x2x3x6x

2
j+1)

= x2x3x6(x
2
i x

2
j+1 − x2

i+1x
2
j)

= x2x3x6(xixj+1 + xi+1xj)(xixj+1 − xi+1xj)

is a multiple of a type (I) generator.
Case 5. Let f be the same as in Case 4 and g = x1x4x5xpxq − x2x3x6xp+1xq+1

of type (III). First suppose that i 6= p, q. Let us consider the case of i < p. Then

S(f, g) = xpxq(x1x4x5x
2
i − x2x3x6x

2
i+1) − x2

i (x1x4x5xpxq − x2x3x6xp+1xq+1)

= x2x3x6(x
2
i xp+1xq+1 − x2

i+1xpxq)

= x2x3x6(xixq+1(xixp+1 − xi+1xp) + xixi+1xpxq+1 − x2
i+1xpxq)

= x2x3x6(xixq+1(xixp+1 − xi+1xp) + xi+1xp(xixq+1 − xi+1xq))

and so S(f, g) reduce to 0 by two type (I) generators. The cases of p < i < q and
q < i are similar.

Now suppose i = p, then the S-polynomial

S(f, g) = xq(x1x4x5x
2
i − x2x3x6x

2
i+1) − xi(x1x4x5xixq − x2x3x6xi+1xq+1)

= x2x3x6xi+1(xixq+1 − xi+1xq).

is a multiple of a type (I) generator. The case of i = q is similar.
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Case 6. Finally, we consider the case that both f and g are of type (III):
f = x1x4x5xixj − x2x3x6xi+1xj+1, g = x1x4x5xpxq − x2x3x6xp+1xq+1. We may
assume that i ≤ p. Let us first suppose that i, j 6= p, q. Then

S(f, g) = xpxq(x1x4x5xixj − x2x3x6xi+1xj+1) − xixj(x1x4x5xpxq − x2x3x6xp+1xq+1)

= x2x3x6(xixjxp+1xq+1 − xi+1xj+1xpxq)

= x2x3x6(xjxq+1(xixp+1 − xi+1xp) + xi+1xp(xjxq+1 − xj+1xq)).

Now let i = p. We then have

S(f, g) = xqf − xjg = −xqx2x3x6xi+1xj+1 + xjx2x3x6xi+1xq+1

= x2x3x6xi+1(xjxq+1 − xj+1xq).

The cases of j = p and j = q are similar.

Now we prove that depth K[G] ≥ 7. We denote by in(IG), the initial ideal of IG

with respect to <lex. Since

depth K[G] = depth K[x]/IG ≥ depth K[x]/ in(IG),

it is sufficient to prove the following

Lemma 8.1.7. depthK[x] K[x]/ in(IG) ≥ 7.

Proof. First, we compute in(IG).
The binomials corresponding to type (I) are

x2(i−1)+7x2(j−1)+8 − x2(i−1)+8x2(j−1)+7, where i < j.

The initial term of this binomial is x2(i−1)+7x2(j−1)+8 (i < j). We denote by I ′, the
ideal generated by these monomials. Note that x8 and x2(k−1)+7 do not appear in
the minimal system of monomial generators of I ′.

The binomials corresponding to types (II), (III) are

x2x3x6x2(i−1)+8x2(j−1)+8 − x1x4x5x2(i−1)+7x2(j−1)+7, where i ≤ j.

The initial term of this binomial is −x1x4x5x2(i−1)+7x2(j−1)+7 (i ≤ j).
Therefore,

in(IG) = x1x4x5(x7, x9, . . . , x2(k−1)+7)
2 + I ′

= ((x7, x9, . . . , x2(k−1)+7)
2 + I ′) ∩ ((x1x4x5) + I ′).

We set

I1 = (x7, x9, . . . , x2(k−1)+7)
2 + I ′, I2 = (x1x4x5) + I ′.
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By the short exact sequence 0 → K[x]/I1 ∩ I2 → K[x]/I1 ⊕ K[x]/I2 → K[x]/(I1 +
I2) → 0, we have

depth K[x]/ in(IG) ≥ max{depth K[x]/I1, depth K[x]/I2, depth K[x]/(I1 + I2) + 1}.
(8.2)

We investigate each of depth K[x]/I1, depth K[x]/I2, depth K[x]/(I1 + I2).

First, it is easy to see that depth K[x]/I1 ≥ 7 because x1, x2, x3, x4, x5, x6 and
x8 do not appear in G(I1), where G(I) stands for a minimal system of generators
of an ideal I ⊂ K[x]. Moreover, since x1x4x5 is a K[x]/I1-regular element, we have
depth K[x]/I2 = depth K[x]/I ′ − 1. Then x1, . . . , x6, x8, x2(k−1)+7 do not appear in
G(I ′). Thus, depth K[x]/I2 ≥ 7. Similarly, we also have depth K[x]/(I1 + I2) ≥ 6,
proving the assertion.

8.2 Depth of initial ideals of normal edge rings

Following the previous section, the topic of this section is the depth of initial ideals
of normal edge rings.

We refer the reader to [25, Chapter 2] for fundamental materials on Gröbner
bases. Let < be a monomial order on K[x] and in<(IG) the initial ideal of IG

with respect to <. The topic of this section is depth K[x]/ in<(IG), the depth of
K[x]/ in<(IG), when K[G] is normal. Computational experience yields the following

Conjecture 8.2.1. Let G be a finite connected nonbipartite graph on [d] with d ≥ 6
and suppose that its edge ring K[G] is normal. Then depth K[x]/ in<(IG) ≥ 6 for
any monomial order < on K[x].

Now, even though Conjecture 8.2.1 is completely open, by taking Conjecture
8.2.1 into consideration, we prove the following

Theorem 8.2.2 ([33, Theorem 0.2]). Given integers f and d with 6 ≤ f ≤ d,
there exists a finite connected nonbipartite graph G on [d] together with a reverse
lexicographic order <rev on K[x] and a lexicographic order <lex on K[x] such that

(i) K[G] is normal with Krull-dim K[G] = d;

(ii) depth K[x]/ in<rev(IG) = f ;

(iii) K[x]/ in<lex
(IG) is Cohen–Macaulay.

Let k ≥ 1 be an arbitrary integer. We introduce the finite connected nonbipartite
graph Hk+5 on [k+5] which is drawn in Figure 8.2. Clearly, the edge ring K[Hk+5] is
normal. It will turn out that Hk+5 plays an important role in our proof of Theorem
8.2.2.

142



tt
ppp
t

t

t
t

t

t
t

5

6

k + 3

1

3

k + 4

2

4

k + 5

©©©©©©©©

»»»»»»»»

HHHHHHHH

c
c

c
c

c

#
#

#
#

#

HHHHHHHH

XXXXXXXX

©©©©©©©©

#
#

#
#

#

c
c

c
c

c

e2

e3

ek

ek+1

e2k+4

ek+3

ek+4

e2k+1

e2k+2

e2k+5

e1 ek+2

e2k+3

Figure 8.2 (finite graph Hk+5)

The essential step in order to prove Theorem 8.2.2 is to show the following

Lemma 8.2.3. Let <rev (resp. <lex) denote the reverse lexicographic order (resp.
the lexicographic order) on K[x] = K[x1, . . . , x2k+5] induced by the ordering x1 >
· · · > x2k+5 of the variables. Then

(i) depth K[x]/ in<rev(IHk+5
) = 6;

(ii) K[x]/ in<lex
(IHk+5

) is Cohen–Macaulay.

Once we establish Lemma 8.2.3, to prove Theorem 8.2.2 is straightforward. In
fact, given integers f and d with 6 ≤ f ≤ d, we define the finite graph Γ on
[d − f + 6] to be Hd−f+6 with the edges e1, e2, . . . , e2(d−f)+7 and then introduce the
finite connected nonbipartite graph G on [d] which is obtained from Γ by adding
f − 6 edges

e2(d−f)+7+i = {1, d − f + 6 + i}, i = 1, . . . , f − 6

to Γ. Clearly, both edge rings K[Γ] and K[G] are normal, and

IG = IΓ(K[x1, . . . , x2d−f+1]).

Thus, in particular,

in<(IG) = in<(IΓ)(K[x1, . . . , x2d−f+1]),

where < is any monomial order on K[x1, . . . , x2d−f+1]. Thus Lemma 8.2.3 guarantees
that

depth K[x1, . . . , x2d−f+1]/ in<rev(IG) = f

and K[x1, . . . , x2d−f+1]/ in<lex
(IG) is Cohen–Macaulay, as desired.
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8.2.1 Preliminaries

Let H = Hk+5. In this subsection, we will find a Gröbner basis of IG and a set of
generators of the initial ideal of IG with respect to the reverse lexicographic order.

Let K[x] = K[x1, . . . , x2k+5] be the polynomial ring in 2k + 5 variables over a
field K. There are 4 kinds of primitive even closed walks of H:

(I) a 4-cycle: (ei, ek+1+i, ek+1+j, ej), where 2 ≤ i < j ≤ k;

(II) a walk on two 3-cycles and the same edge e2k+3 combining two cycles:
(e1, ek+1, e2k+4, e2k+3, ek+2, e2k+2, e2k+5, e2k+3);

(III) a 6-cycle: (ei, ek+1+i, ek+2, e2k+3, e2k+4, ek+1) or (ei, ek+1+i, e2k+2, e2k+5, e2k+3, e1),
where 2 ≤ i ≤ k;

(VI) a walk on two 3-cycles and the length 2 paths combining two cycles:
(ek+2, e2k+5, e2k+2, ek+1+i, ei, e1, e2k+4, ek+1, ej, ek+1+j), where 2 ≤ i ≤ j ≤ k.

It was proved in [55, Lemma 3.1] that the binomials corresponding to these
primitive even closed walks generate the toric ideal IH . Let <rev be the reverse
lexicographic order with x1 > x2 > · · · > x2k+5.

Lemma 8.2.4. The set of binomials corresponding to primitive even closed walks
(I), (II), (II), (VI) is a Gröbner basis of IH with respect to <rev.

Proof. Similar to Lemma 8.1.6, the result follows from a direct application of Buch-
berger’s criterion. Let f and g be two such generators. We can prove that the
S-polynomial S(f, g) will reduce to 0 by generators of type (I), (II), (III) and (VI).
Let i, j, p, q be integers with 2 ≤ i, j, p, q ≤ k. On the following proof, we will
underline the leading monomial of a binomial with respect to <rev.

Case 1. Let f = xixk+1+j −xjxk+1+i and g = xpxk+1+q−xqxk+1+p be generators

of type (I), where i < j and p < q. If i 6= p and j 6= q, then the leading monomials
of f and g are coprime. Thus S(f, g) will reduce to 0. We assume that i = p. Then

S(f, g) = −xq(xixk+1+j − xjxk+1+i) − (−xj)(xixk+1+q − xqxk+1+i)

= −xi(xqxk+1+j − xjxk+1+q).

Note that, up to sign, xqxk+1+j −xjxk+1+q is a generator of IG of type (I). Therefore
S(f, g) will reduce to 0. The case of j = q is similar.

Case 2. Let f be the same as above and g = x1xk+2x2k+4x2k+5−xk+1x2k+2x
2
2k+3

a generator of type (II). Since 2 ≤ i < j ≤ k, the leading monomials of f and g are
always coprime.

Case 3. Again, we set that f is the same as above. Let g be of type (III). First,
let g = xpxk+2x2k+4 − xk+1xk+1+px2k+3. If i 6= p, then the leading monomials of f
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and g are coprime. We assume that i = p. Then

S(f, g) = −xk+1x2k+3f − (−xj)g

= −xixk+1xk+1+jx2k+3 + xixjxk+2x2k+4

= xi(xjxk+2x2k+4 − xk+1xk+1+jx2k+3),

where xjxk+2x2k+4 − xk+1xk+1+jx2k+3 is of type (3). Next, let g = xpx2k+2x2k+3 −
x1xk+1+px2k+5. If j 6= p, then the leading monomials of f and g are coprime. We
assume that j = p. Then

S(f, g) = −x2k+2x2k+3f − xk+1+ig

= −xk+1+j(xix2k+2x2k+3 − x1xk+1+ix2k+5)

and again we have that xix2k+2x2k+3 − x1xk+1+ix2k+5 is of type (III).
Case 4. Again, we assume that f is the same as above. Let g = xpxqxk+2x2k+2x2k+4−

x1xk+1xk+1+pxk+1+qx2k+5 be of type (VI), where p ≤ q. If j 6= p and j 6= q, then the
leading monomials of f and g are coprime. If j = p, then

S(f, g) = −xqxk+2x2k+2x2k+4f − xk+1+ig

= −xk+1+j(xixqxk+2x2k+2x2k+4 − x1xk+1xk+1+ixk+1+qx2k+5),

which is a multiple of type (VI) generator. The case of j = q is similar.
Case 5. Let f = x1xk+2x2k+4x2k+5 −xk+1x2k+2x

2
2k+3 be a generator of type (II),

and g a generator of type (III). First we consider the case where g = xpxk+2x2k+4 −
xk+1xk+1+px2k+3. Then

S(f, g) = −xk+1+pf − (−x2k+2x2k+3)g

= xk+2x2k+4(xpx2k+2x2k+3 − x1xk+1+px2k+5),

where xpx2k+2x2k+3 − x1xk+1+px2k+5 is of type (3). Next, let g = xpx2k+2x2k+3 −
x1xk+1+px2k+5. Then

S(f, g) = −xpf − xk+1x2k+3g

= −x1x2k+5(xpxk+2x2k+4 − xk+1xk+1+px2k+3)

and we have that xpxk+2x2k+4 − xk+1xk+1+px2k+3 is of type (III).
Case 6. Let f be the same as in Case 5 and g = xpxqxk+2x2k+2x2k+4 −

x1xk+1xk+1+pxk+1+qx2k+5 be of type (VI) generator, where p ≤ q. Then

S(f, g) = −xpxqxk+2x2k+4f − xk+1x
2
2k+3g

= −x1x2k+5(xpxqx
2
k+2x

2
2k+4 − x2

k+1xk+1+pxk+1+qx
2
2k+3)

= −x1x2k+5{xk+1xk+1+qx2k+3(xpxk+2x2k+4 − xk+1xk+1+px2k+3)

+xpxk+2x2k+4(xqxk+2x2k+4 − xk+1xk+1+qx2k+3)}.
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Thus S(f, g) reduce to 0 by generators of type (III).
Case 7. We assume that both f and g are of type (III). First, we consider the

case where f = xixk+2x2k+4−xk+1xk+1+ix2k+3 and g = xpxk+2x2k+4−xk+1xk+1+px2k+3,
where i 6= p. Then

S(f, g) = −xk+1+pf − (−xk+1+i)g

= −xk+2x2k+4(xixk+1+p − xpxk+1+i),

which is a multiple of type (I) generator. Next, let f be the same one and g =
xpx2k+2x2k+3 − x1xk+1+px2k+5. Then

S(f, g) = −xpx2k+2f − xk+1xk+1+ig

= −(xixpxk+2x2k+2x2k+4 − x1xk+1xk+1+ixk+1+px2k+5),

which is a generator of type (VI) up to sign. Finally, let f = xix2k+2x2k+3 −
x1xk+1+ix2k+5 and g = xpx2k+2x2k+3 − x1xk+1+px2k+5, where i 6= p. Then

S(f, g) = xpf − xig

= x1x2k+5(xixk+1+p − xpxk+1+i).

Case 8. Let f be of type (III) and g = xpxqxk+2x2k+2x2k+4−x1xk+1xk+1+pxk+1+qx2k+5

be of type (VI) with p ≤ q. First, we set that f = xixk+2x2k+4 − xk+1xk+1+ix2k+3.
Then the leading monomials of f and g are coprime. Next, we set that f =
xix2k+2x2k+3 − x1xk+1+ix2k+5. If i 6= p and i 6= q, then

S(f, g) = xpxqxk+2x2k+4f − xix2k+3g

= x1x2k+5(xixk+1xk+1+pxk+1+qx2k+3 − xpxqxk+2xk+1+ix2k+4)

= x1x2k+5{−xixk+1+q(xpxk+2x2k+4 − xk+1xk+1+px2k+3)

+xpxk+2x2k+4(xixk+1+q − xqxk+1+i)}.

Thus S(f, g) reduce to 0 by generators of type (I) and (III). If i = p, then

S(f, g) = xqxk+2x2k+4f − x2k+3g

= −x1xk+1+ix2k+5(xqxk+2x2k+4 − xk+1xk+1+qx2k+3).

The case of i = q is similar.
Case 9. Finally, we consider the case that both f and g are of type (VI). Let

f = xixjxk+2x2k+2x2k+4 − x1xk+1xk+1+ixk+1+jx2k+5 and
g = xpxqxk+2x2k+2x2k+4−x1xk+1xk+1+pxk+1+qx2k+5, where i ≤ j and p ≤ q. Without

loss of generality, we may assume that j ≥ q. First, we assume that j > q(≥ p). If
i 6= p and i 6= q, then

S(f, g) = xpxqf − xixjg

= x1xk+1x2k+5(xixjxk+1+pxk+1+q − xpxqxk+1+ixk+1+j)

= x1xk+1x2k+5{−xixk+1+q(xpxk+1+j − xjxk+1+p) + xpxk+1+j(xixk+1+q − xqxk+1+i)}.
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Thus we have that S(f, g) reduce to 0 by generators of type (I). If i = p, then

S(f, g) = xqf − xjg

= x1xk+1xk+1+ix2k+5(xjxk+1+q − xqxk+1+j).

The case of i = q is similar. Next, we consider the case where j = q. Then i 6= p
and

S(f, g) = xpf − xig

= x1xk+1xk+1+jx2k+5(xixk+1+p − xpxk+1+i),

which is a multiple of type (I) generator.

Corollary 8.2.5. The initial ideal of IG with respect to <rev is generated by the
following monomials:

xjxk+1+i, 2 ≤ i < j ≤ k,

xk+1x2k+2x
2
2k+3,

xk+1xk+1+rx2k+3, xrx2k+2x2k+3, 2 ≤ r ≤ k,

xpxqxk+2x2k+2x2k+4, 2 ≤ p ≤ q ≤ k.

For the rest part of this section, we will denote by I, the initial ideal of IH with
respect to <rev.

8.2.2 Proof of depth K[x]/ in<rev
(IG) ≤ 6

In this subsection, we will prove that depth K[x]/I ≤ 6. Since the number of edges
of G, which coincides with 2k + 5, is equal to the number of variables of K[x], we
may prove that pdK[x]/I ≥ 2k − 1.

First, we recall from [49] the fundamental technique to compute the Betti num-
bers of (non-squarefree) monomial ideals.

For a monomial ideal J and a multi degree a ∈ Zn
≥0, define

Ka(J) = {squarefree vectors α : xa−α ∈ J}

to be the Koszul simplicial complex of J in degree a, where a squarefree vector α
means that each entry of α is 0 or 1.

Lemma 8.2.6 ([49, Theorem 1.34]). Let S be a polynomial ring, J a monomial
ideal of S and a ∈ Zn

≥0 a vector. Then the Betti numbers of J and S/J in degree a
can be expressed as

βi,a(J) = βi+1,a(S/J) = dimK H̃i−1(K
a(J); K).

By virtue of Lemma 8.2.6, in order to prove that pd K[x]/I ≥ 2k − 1, we may
show the following
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Lemma 8.2.7. Let a =
∑k

j=2(ej + ek+1+j) + ek+1 + e2k+2 + 2e2k+3 ∈ Z2k+5
≥0 , where

ei ∈ R2k+5 is the ith unit vector of R2k+5. Then

dimK H̃2k−3(K
a(I); K) 6= 0.

Proof. Let ∆ be the simplicial complex on the vertex set [2k + 5] which is obtained
by identifying a squarefree vector α ∈ Ka(I) with the set of coordinates where the
entries of α are 1. To prove the assertion, we may show that dimK H̃2k−3(∆; K) 6= 0.
Let I1 (resp. I2) be the monomial ideal generated by the monomials

xjxk+1+i, 2 ≤ i < j ≤ k,

xk+1xk+1+rx2k+3, xrx2k+2x2k+3, 2 ≤ r ≤ k

(resp. by the monomial xk+1x2k+2x
2
2k+3). We denote by ∆1, ∆2, the subcomplexes

of ∆ corresponding to Ka(I1),K
a(I2), respectively. Since (a)k+2 = 0, one has ∆ =

∆1∪∆2. Moreover, one can verify that all the facets of ∆1 contain a common vertex
2k + 3. In other words, ∆1 is a cone over some simplicial complex. In addition, ∆2

has only one facet
{2, 3, . . . , k, k + 3, k + 4, . . . , 2k + 1},

which is a (2k − 3)-dimensional simplex. Thus the reduced homologies of both of
∆1 and ∆2 all vanish. Hence Mayer–Vietoris exact sequence

· · · −→ H̃i(∆1 ∩ ∆2; K) −→ H̃i(∆1; K) ⊕ H̃i(∆2; K) −→ H̃i(∆; K)

−→ H̃i−1(∆1 ∩ ∆2; K) −→ H̃i−1(∆1; K) ⊕ H̃i−1(∆2; K) −→ · · ·

yields
H̃i(∆; K) ∼= H̃i−1(∆1 ∩ ∆2; K) for all i.

Now we note that subsets

{2, 3, . . . , k, k + 3, k + 4, . . . , 2k + 1} \ {i}, i = 2, . . . , k,

{2, 3, . . . , k, k + 3, k + 4, . . . , 2k + 1} \ {k + 1 + j}, j = 2, . . . , k

are faces of ∆1 and {2, 3, . . . , k, k+3, k+4, . . . , 2k+1} is not a face of ∆1. Thus the
above subsets are the facets of ∆1∩∆2. In particular, one has dim(∆1∩∆2) = 2k−4.
Since ∆1∩∆2 contains all facets of the (2k−3)-dimensional simplex ∆2, the geometric
realization of ∆1∩∆2 is homeomorphic to the boundary complex of the simplex ∆2,
i.e., ∆1 ∩ ∆2 is a simplicial (2k − 4)-sphere.

Therefore one has dimK H̃2k−3(∆; K) = dimK H̃2k−4(∆1∩∆2; K) 6= 0, as desired.

8.2.3 Proof of depth K[x]/ in<rev
(IG) ≥ 6

In this subsection, we will prove the following
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Lemma 8.2.8. depth K[x]/I ≥ 6.

Before proving Lemma 8.2.8, we prepare the following two lemmata.

Lemma 8.2.9. Let S = K[x1, . . . , xn] be the polynomial ring in n variables and
J ⊂ S a monomial ideal of S.

(i) If only m(≤ n) variables appear in the elements of G(J), then depth S/J ≥
n − m.

(ii) If only m variables appear in the elements of G(J) and the variables xi1 , . . . , xir

do not appear in there, then depth S/J ′ ≥ n − m, where J ′ = xi1 · · · xirJ .

Proof. Without loss of generality, we may assume that only the variables x1, . . . , xm

appear in the elements of G(J).
(i) Since the variables xm+1, . . . , xn do not appear in the elements of G(J), the

sequence xm+1, . . . , xn is an S/J-regular sequence. Thus one has depth S/J ≥ n−m.
(ii) Set xi` = xm+` for ` = 1, . . . , r and J ′′ = (xm+1 · · · xm+r) ⊂ S. Then, by the

short exact sequence 0 → S/J ∩ J ′′ → S/J ⊕ S/J ′′ → S/(J + J ′′) → 0, we have

depth S/J ′ = depth S/J ∩ J ′′ ≥ min{depth S/J, depth S/J ′′, depth S/(J + J ′′) + 1}.

Now we have depth S/J ≥ n−m by (i) and depth S/J ′′ = n− 1. In addition, since
xm+1, . . . , xm+r do not appear in the elements of G(J), the monomial xm+1 · · · xm+r

is an S/J-regular element. Hence one has depth S/(J + J ′′) = depth S/J − 1 ≥
n − m − 1.

Let

I1 = (xjxk+1+i : 2 ≤ i < j ≤ k),

I2 = (xk+1x2k+2x
2
2k+3),

I3 = x2k+2x2k+3(x2, x3, . . . , xk),

I4 = xk+1x2k+3(xk+3, xk+4, . . . , x2k+1),

I5 = xk+2x2k+2x2k+4(x2, x3, . . . , xk)
2.

Then I = I1 + I2 + · · · + I5.
The following lemma can be obtained by elementary computations.

Lemma 8.2.10. Let J1 = I3 + I4, J2 = J1 + I1 and J3 = J2 + I5. Then
(i) I3 ∩ I4 = xk+1x2k+2x2k+3(x2, . . . , xk)(xk+3, . . . , x2k+1).
(ii) J1 ∩ I1 = x2k+3(xk+1, x2k+2)I1.
(iii) J2 ∩ I5 = xk+2x2k+2x2k+4(x2, . . . , xk)(x2k+3(x2, . . . , xk) + I1).
(vi) J3 ∩ I2 = xk+1x2k+2x

2
2k+3(x2, . . . , xk, xk+3, . . . , x2k+1).

Now we will prove Lemma 8.2.8.
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Proof of Lemma 8.2.8. Work with the same notations as in Lemma 8.2.10. By the
short exact sequence

0 → K[x]/J3 ∩ I2 → K[x]/J3 ⊕ K[x]/I2 → K[x]/(J3 + I2) → 0,

one has

depth K[x]/I = depth K[x]/(J3 + I2)

≥ min{depth K[x]/J3, depth K[x]/I2, depth K[x]/J3 ∩ I2 − 1}.

Thus what we must prove is that the inequalities depth K[x]/J3 ≥ 6, depth K[x]/I2 ≥
6 and depth K[x]/J3 ∩ I2 ≥ 7. Obviously, depthK[x]/I2 = 2k + 4 ≥ 6. Moreover,
by Lemmata 8.2.10 (vi) and 8.2.9 (ii), we can easily see that depthK[x]/J3 ∩ I2 ≥
(2k + 5) − 2(k − 1) = 7. Thus we investigate depth K[x]/J3.

First step. By the short exact sequence

0 → K[x]/I3 ∩ I4 → K[x]/I3 ⊕ K[x]/I4 → K[x]/(I3 + I4) → 0,

one has

depth K[x]/J1 = depth K[x]/(I3 + I4)

≥ min{depth K[x]/I3, depth K[x]/I4, depth K[x]/I3 ∩ I4 − 1}.

By Lemma 8.2.9 (ii), one has depth K[x]/I3 ≥ k+6 ≥ 6 and depth K[x]/I4 ≥ k+6 ≥
6. Since I3 ∩ I4 = xk+1x2k+2x2k+3(x2, . . . , xk)(xk+3, . . . , x2k+1) by Lemma 8.2.10 (i)
and xk+1, x2k+2, x2k+3 do not appear in the elements of G((x2, . . . , xk)(xk+3, . . . , x2k+1)),
one has depth K[x]/I3 ∩ I4 ≥ (2k + 5) − 2(k − 1) = 7 by Lemma 8.2.9 (ii). Hence
one has depth K[x]/J1 ≥ 6.

Second step. Again, by the short exact sequence

0 → K[x]/J1 ∩ I1 → K[x]/J1 ⊕ K[x]/I1 → K[x]/(J1 + I1) → 0,

one has

depth K[x]/J2 = depth K[x]/(J1 + I1)

≥ min{depth K[x]/J1, depth K[x]/I1, depth K[x]/J1 ∩ I1 − 1}.

By Lemma 8.2.9 (i), depth K[x]/I1 ≥ (2k + 5) − 2(k − 2) ≥ 6. Also by Lemma
8.2.10 (ii), one has J1 ∩ I1 = x2k+3(xk+1, x2k+2)I1. Since only 2k−2 variables appear
in the elements of G((xk+1, x2k+2)I1), and x2k+3 does not appear in there, one has
depth K[x]/J1∩I1 ≥ 7 by Lemma 8.2.9 (ii). In addition, one has depth K[x]/J1 ≥ 6
by the first step. Hence one has depth K[x]/J2 ≥ 6.

Third step. Similarly, by the short exact sequences

0 → K[x]/J2 ∩ I5 → K[x]/J2 ⊕ K[x]/I5 → K[x]/(J2 + I5) → 0,
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one has

depth K[x]/J3 = depth K[x]/(J2 + I5)

≥ min{depth K[x]/J2, depth K[x]/I5, depth K[x]/J2 ∩ I5 − 1}.

By Lemma 8.2.9 (ii), one has depth K[x]/I5 ≥ k+6 ≥ 6. For depth K[x]/J2∩I5, by
Lemma 8.2.10 (iii), one has J2∩ I5 = xk+2x2k+2x2k+4(x2, . . . , xk)(x2k+3(x2, . . . , xk)+
I1). Notice that only 2k − 2 variables appear and xk+2, x2k+2, x2k+4 do not appear
in the elements of G((x2, . . . , xk)(x2k+3(x2, . . . , xk) + I1)). Thus, again by Lemma
8.2.9 (ii), one has depth K[x]/J2 ∩ I5 ≥ 7. Combining these results with the second
step, one has depth K[x]/J3 ≥ 6.

Therefore, one has depth K[x]/I ≥ 6, as required.

8.2.4 Cohen–Macaulayness of K[x]/ in<lex
(IG)

In this subsection, we will prove the following

Lemma 8.2.11. Let <lex denote the lexicographic order on K[x] induced by the or-
dering x1 > · · · > x2k+5 of the variables. Then K[x]/ in<lex

(IH) is Cohen–Macaulay.

First of all, we need to know the generators of in<lex
(IH). As an analogue of

Lemmata 8.1.6 and 8.2.4, we can prove the following

Lemma 8.2.12. The set of binomials corresponding to primitive even closed walks
(I), (II), (III), (VI) appeared in the previous subsection is a Gröbner basis of IH with
respect to <lex.

Corollary 8.2.13. The initial ideal of IG with respect to <lex is generated by the
following monomials:

([)

xixk+1+j, 2 ≤ i < j ≤ k,

x1xk+2x2k+4x2k+5,

xrxk+2x2k+4, x1xk+1+rx2k+5, 2 ≤ r ≤ k.

In particular, in<lex
IH is a squarefree monomial ideal.

Note that we can exclude the initial term of the binomial corresponding to the
even closed walk of type (VI).

Let I ′ be the initial ideal of IH with respect to <lex. Since I ′ is squarefree, we
can define a simplicial complex ∆′ on [2k +5] whose Stanley–Reisner ideal coincides
with I ′. In order to prove that K[x]/I ′ is Cohen–Macaulay, we will show that ∆′ is
shellable.

We recall the definition of the shellable simplicial complex. Let ∆ be a simplicial
complex. We call ∆ is pure if every facets (maximal faces) of ∆ have the same
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dimension. A pure simplicial complex ∆ of dimension d − 1 is called shellable if all
its facets can be listed

F1, F2, . . . , Fs

in such a way that

(
i−1⋃
j=1

〈Fj〉) ∩ 〈Fi〉
(

=
i−1⋃
j=1

〈Fj ∩ Fi〉
)

is pure of dimension d − 2 for every 1 < i ≤ s. Here 〈Fi〉 := {σ ∈ ∆ : σ ⊂ Fi}. It is
known that if ∆ is shellable, then K[∆] is Cohen–Macaulay for any field K.

To show that ∆′ is shellable, we investigate the facets of ∆′. Let F (∆′) be the
set of facets of ∆′. Then the standard primary decomposition of I ′ = I∆′ is

I∆′ =
⋂

F∈F (∆′)

PF̄ ,

where F̄ is the complement of F in [2k + 5] and PF̄ = (xi : i ∈ F̄ ); see [25, Lemma
1.5.4]. Hence we can obtain F (∆′) from the standard primary decomposition of I ′.

Lemma 8.2.14. The standard primary decomposition of I ′ is the intersection of the
following prime ideals:

(])

(x1) + (x2, x3, . . . , xk), (x2k+5) + (x2, x3, . . . , xk),

(xk+2) + (xk+3, xk+4, . . . , x2k+1), (x2k+4) + (xk+3, xk+4, . . . , x2k+1),

(x1, xk+2) + I ′
`, 2 ≤ ` ≤ k,

(x1, x2k+4) + I ′
`, 2 ≤ ` ≤ k,

(xk+2, x2k+5) + I ′
`, 2 ≤ ` ≤ k,

(x2k+4, x2k+5) + I ′
`, 2 ≤ ` ≤ k,

where I ′
` = (x2, . . . , x`−1, xk+2+`, . . . , x2k+1) for ` = 2, . . . , k.

Proof. Since there is no relation of inclusion among the prime ideals on (]), it is
enough to prove that the intersection of these prime ideals coincides with I ′.

First, we consider the case where k = 1. Then G(I ′) = {x1x3x6x7} and (]) consist
of only the first 2 rows: (x1), (x7), (x3), and (x6). Thus the assertion trivially holds.

Next, we consider the case where k = 2. Note that I ′
2 = 0. Then the ideal I ′ is

I ′ = (x1x4x8x9, x1x5x9, x2x4x8)

= (x1, x2) ∩ (x1, x4) ∩ (x1, x8) ∩ (x4, x5) ∩ (x4, x9) ∩ (x8, x5) ∩ (x8, x9) ∩ (x9, x2)

= (x1, x2) ∩ (x9, x2) ∩ (x4, x5) ∩ (x8, x5) ∩ (x1, x4) ∩ (x1, x8) ∩ (x4, x9) ∩ (x8, x9),

as desired.
Hence we may assume that k ≥ 3. Then the intersection of the prime ideals on

the first row of (]) is
(x1x2k+5, x2, x3, . . . , xk)
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and that on the second row of (]) is

(xk+2x2k+4, xk+3, xk+4, . . . , x2k+1).

For ` = 2, . . . , k, the intersection of the prime ideals on the last 4 rows of (]) is

((x1, xk+2) + I ′
`) ∩ ((x1, x2k+4) + I ′

`) ∩ ((xk+2, x2k+5) + I ′
`) ∩ ((x2k+4, x2k+5) + I ′

`)

=((x1, xk+2x2k+4) + I ′
`) ∩ ((xk+2x2k+4, x2k+5) + I ′

`)

=(x1x2k+5, xk+2x2k+4) + I ′
`.

Hence, the intersection of the prime ideals on the last 4 rows of (]) for all ` is

(x1x2k+5, xk+2x2k+4) +
k⋂

`=2

I ′
`.

Therefore the intersection of all prime ideals of (]) is

x1x2k+5(xk+2x2k+4, xk+3, xk+4, . . . , x2k+1) + xk+2x2k+4(x1x2k+5, x2, x3, . . . , xk)

+ (
k⋂

`=2

I ′
`) ∩ (x1x2k+5, x2, x3, . . . , xk) ∩ (xk+2x2k+4, xk+3, xk+4, . . . , x2k+1).

(8.3)
The ideal on the first row of (8.3) coincides with the one generated by monomials on
the last 2 rows of ([). Since I ′

2 = (xk+4, xk+5, . . . , x2k+1) and I ′
k = (x2, x3, . . . , xk−1),

the ideal on the second row of (8.3) coincides with
⋂k

`=2 I ′
`. Hence, we may prove

that
k⋂

`=2

I ′
` = (xixk+1+j : 2 ≤ i < j ≤ k).

To show this equality, we prove

k′⋂
`=2

I ′
` = (xixk+1+j : 2 ≤ i < j ≤ k′) + (xk+2+k′ , . . . , x2k+1) (8.4)

for k′ = 2, . . . , k. When k′ = k, we obtain the desired equality. We use induction on
k′ ≥ 2. The case of k′ = 2 is trivial. When (8.4) holds for k′, we have

k′+1⋂
`=2

I ′
` = (

k′⋂
`=2

I ′
`) ∩ I ′

k′+1

= ((xixk+1+j : 2 ≤ i < j ≤ k′) + (xk+2+k′ , . . . , x2k+1)) ∩ (x2, . . . , xk′ , xk+3+k′ , . . . , x2k+1)

= (xixk+1+j : 2 ≤ i < j ≤ k′) + xk+2+k′(x2, . . . , xk′) + (xk+3+k′ , . . . , x2k+1)

= (xixk+1+j : 2 ≤ i < j ≤ k′ + 1) + (xk+3+k′ , . . . , x2k+1),

as desired.
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Now we are in the position to prove Lemma 8.2.11.

Proof of Lemma 8.2.11. By Lemma 8.2.14, F (∆′) consists of the following subsets
of [2k + 5]:

F1 = {1} ∪ {2, 3, . . . , k}, F2 = {2k + 5} ∪ {2, 3, . . . , k},
F3 = {k + 2} ∪ {k + 3, k + 4, . . . , 2k + 1},
F4 = {2k + 4} ∪ {k + 3, k + 4, . . . , 2k + 1},
G1,` = A1 ∪ G′

`, 2 ≤ ` ≤ k,

G2,` = A2 ∪ G′
`, 2 ≤ ` ≤ k,

G3,` = A3 ∪ G′
`, 2 ≤ ` ≤ k,

G4,` = A4 ∪ G′
`, 2 ≤ ` ≤ k,

where G′
` = {2, . . . , ` − 1, k + 2 + `, . . . , 2k + 1} for 2 ≤ ` ≤ k, A1 = {1, k + 2},

A2 = {1, 2k + 4}, A3 = {k + 2, 2k + 5}, A4 = {2k + 4, 2k + 5} and F = [2k + 5] \F .
Note that Gm,`∩Aj = ∅ and #(Gm,`) = k−2. In particular, ∆′ is pure of dimension
k + 4.

Now we define the ordering on F (∆′) as follows:

G1,2, . . . , G1,k, G2,2, . . . , G2,k, G3,2, . . . , G3,k, G4,2, . . . , G4,k, F1, F2, F3, F4. (8.5)

We will prove ∆′ satisfies the condition of shellability with this ordering. For F,G ∈
F (∆), we write G ≺ F if G lies in previous to F on (8.5).

First, we investigate ∆m,` := (
⋃

G′≺Gm,`
〈G′〉) ∩ 〈Gm,`〉 =

⋃
G′≺Gm,`

〈G′ ∩ Gm,`〉 for

m = 1, 2, 3, 4. For `′ < `, one has

Gm,`′ ∩ Gm,` = Am ∪ G′
`′ ∩ Am ∪ G′

`

= (Am ∪ G′
`′) ∪ (Am ∪ G′

`)

= Am ∪ {2, . . . , ` − 2, ` − 1, k + 2 + `′, k + 3 + `′, . . . , 2k + 1}
⊂ Am ∪ {2, . . . , ` − 2, ` − 1, k + 1 + `, k + 2 + `, . . . , 2k + 1}
= Gm,`−1 ∩ Gm,`

and Gm,`−1 ∩ Gm,` is a (k + 3)-dimensional face. Then we can conclude that ∆1,` is
pure of dimension k + 3. Assume that m = 2, 3, 4. For m′ < m, one has

Gm′,`′ ∩ Gm,` = Am′ ∪ G′
`′ ∩ Am ∪ G′

`

= (Am′ ∪ G′
`′) ∪ (Am ∪ G′

`)

⊂ (Am′ ∪ Am) ∪ G′
`.

When m = 2, then m′ = 1 and

(A1 ∪ A2) ∪ G′
` = {1, k + 2, 2k + 4} ∪ G′

` = G1,` ∩ G2,`,
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which is (k+3)-dimensional. Therefore, we can conclude that ∆2,` is a pure simplicial
complex of dimension k + 3. Similarly, we can see that ∆m,` is pure of dimension
k + 3 for m = 3, 4 since e.g., A2 ∪ A3 ⊃ A1 ∪ A3 = {1, k + 2, 2k + 5}.

Next, we investigate ∆s :=
⋃

G≺Fs
〈G ∩ Fs〉 for s = 1, 2, 3, 4. It is easy to see

that G1,k ∩F1 (resp. G2,k ∩F1) contains G1,` ∩F1 and G3,` ∩F1 (resp. G2,` ∩F1 and
G4,`∩F1). Thus facets of ∆1 are G1,k∩F1 and G2,k∩F1, those are (k+3)-dimensional.

Similarly, we can see that the facets of ∆2 are G3,k ∩ F1, G4,k ∩ F1, and F1 ∩ F2,
those are also (k + 3)-dimensional.

For ∆3, we can verify that G1,2∩F3 (resp. G3,2∩F3) is a (k+3)-dimensional face
containing G1,` ∩ F3, G2,` ∩ F3 and F1 ∩ F3 (resp. G3,` ∩ F3, G4,` ∩ F3 and F2 ∩ F3).
Therefore, ∆3 is pure of dimension k + 3.

Similarly, we can see that ∆4 is also a pure simplicial complex of dimension k+3
whose facets are G2,2 ∩ F4, G4,2 ∩ F4, and F3 ∩ F4.
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Chapter 9

Affine semigroup rings arising
from cyclic polytopes

Following the previous chapter, in this chapter, we will study some properties on
the affine semigroup ring arising from cyclic polytopes. In Section 9.1, we will
consider the normality and non-very ampleness of affine semigroup rings arising
from cyclic polytopes. In Section 9.2, we will investigate their Cohen–Macaualyness
and Gorensteinness. Finally, in Section 9.3, we will study the other semigroup rings
arising from cyclic polytopes, which are generated only by the vertices of cyclic
polytopes.

9.1 Normality and non-very ampleness of cyclic

polytopes

The cyclic polytope is one of the most distinguished polytopes and played the essen-
tial role in the classical theory of convex polytopes ([20]). Let d and n be positive
integers with n ≥ d + 1 and τ1, . . . , τn real numbers with τ1 < · · · < τn. The convex
polytope Cd(τ1, . . . , τn) which is the convex hull of the finite set

{(τ1, τ
2
1 , . . . , τ d

1 ), . . . , (τn, τ 2
n, . . . , τ d

n)} ⊂ Rd

is called a cyclic polytope. It is known that Cd(τ1, . . . , τn) is a simplicial polytope of
dimension d with n vertices. The combinatorial type of Cd(τ1, . . . , τn) is independent
of the particular choice of real numbers τ1, . . . , τn.

The present section is devoted to the study on integral cyclic polytopes. A convex
polytope is called integral if all of its vertices have integer coordinate. The integral
convex polytope has established an active area lying between combinatorics and
commutative algebra ([26, 72]).

We say that P is normal if one has

Z≥0AP = ZAP ∩ R≥0AP .
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Moreover, P is called very ample if the set

(ZAP ∩ R≥0AP) \ Z≥0AP

is finite. One of the most fundamental questions on integral convex polytopes is to
determine if given an integral convex polytope is normal ([54]).

On the other hand, we say that an integral convex polytope P ⊂ RN has the
integer decomposition property if, for each m = 1, 2, . . . and for each α ∈ mP ∩ ZN ,
there exist α1, . . . , αm belonging to P ∩ ZN such that α = α1 + · · · + αm. Here
mP = {mα : α ∈ P }. If P has the integer decomposition property, then P is
normal. However, the converse is false. For example, the tetrahedron T3 ⊂ R3

with the vertices (0, 0, 0), (1, 1, 0), (1, 0, 1) and (0, 1, 1) is normal, but cannot have
the integer decomposition property because (1, 1, 1) ∈ 2T3. If P ⊂ Rd is an integral
convex polytope of dimension d with Z(P∗ ∩ Zd+1) = Zd+1, then P has the integer
decomposition property if and only if P is normal. Lemma 9.1.7 says that every
integral cyclic polytope P ⊂ Rd satisfies Z(P∗ ∩ Zd+1) = Zd+1. In particular it
follows that an integral cyclic polytope is normal if and only if it has the integer
decomposition property.

Let, as before, d and n be positive integers with n ≥ d + 1. Given integers
τ1, . . . , τn with τ1 < · · · < τn, we wish to examine whether Cd(τ1, . . . , τn) is normal
or not. Thus our final goal is to classify the integers τ1, . . . , τn with τ1 < · · · < τn for
which Cd(τ1, . . . , τn) is normal. Even though to find a complete classification seems
to be rather difficult, many fascinating problems arise in the natural way. As a first
step toward our goal, we are interested in finding the smallest integer γd such that
if τi+1 − τi ≥ γd for 1 ≤ i < n, then Cd(τ1, . . . , τn) is normal. It follows immediately
from [21, Theorem 1.3 (b)] that one has γd ≤ d(d + 1). In the present section, a
new inequality γd ≤ d2 − 1 is proved (Theorem 9.1.9). Moreover, it is shown that if
d ≥ 4 with τ3 − τ2 = 1, then Cd(τ1, . . . , τn) is non-very ample (Theorem 9.1.14).

9.1.1 Preliminaries

In this subsection, we prepare notation and lemmata for our theorems, Theorem
9.1.9 and Theorem 9.1.14.

First of all, we will review some fundamental facts on cyclic polytopes. Let
d and n be positive integers with n ≥ d + 1. It is convenient to work with a
homogeneous version of the cyclic polytopes, hence, throughout the present paper,
we consider C∗

d(τ1, . . . , τn) instead of Cd(τ1, . . . , τn). For n real numbers τ1, . . . , τn

with τ1 < · · · < τn, we set

vi := (1, τi, τ
2
i , . . . , τ d

i ) ∈ Rd+1 for 1 ≤ i ≤ n.

In other words, C∗
d(τ1, . . . , τn) = conv({vi : 1 ≤ i ≤ n}) ⊂ Rd+1. Unless stated

otherwise, we will always assume the indices are ordered like τ1 < . . . < τn. See [78,
Chapter 0] for some basic properties of cyclic polytopes. We will use a well-known
characterization of their facets. (See, e.g., [78, Theorem 0.7]).
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Let [n] := {1, . . . , n} and let us say that a set S ⊂ [n] forms a facet of C∗
d(τ1, . . . , τn)

if conv({vi : i ∈ S}) is its facet.

Proposition 9.1.1 (Gale’s evenness condition). A set S ⊂ [n] with d elements
forms a facet of C∗

d(τ1, . . . , τn) if and only if S satisfies the following condition: If i
and j with i < j are not in S, then the number of elements of S between i and j is
even. In other words,

2 # {k ∈ S i < k < j} ,

where #X stands for the number of elements contained in a finite set X.

Moreover, we also know the precise information on other faces of cyclic polytopes.
Recall that the cyclic polytope C∗

d(τ1, . . . , τn) is simplicial. Hence its boundary
complex is just a (d− 1)-dimensional simplicial complex on {v1, . . . , vn}. Assigning
i to vi for each i, we can regard the simplicial complex as the one on [n]. Let
Γd(τ1, . . . , τn) denote this simplicial complex on [n]. The faces of Γd(τ1, . . . , τn) are
completely characterized in terms of their type. A non-empty subset W ⊂ [n] is
said to be contiguous if W = {i, i + 1, . . . , j} for some positive integers i and j with
1 < i ≤ j < n, and to be an end set if either W = {1, . . . , i} or W = {i, . . . , n} for
some i with 1 ≤ i ≤ n. We set max ∅ := 1 and min ∅ := n. Any subset W ⊂ [n] has
unique decomposition

W := Y1 t X1 t X2 t · · · t Xt t Y2, (9.1)

such that

1. Y1, Y2 are empty or end sets, and each Xi is contiguous;

2. max Xi < min Xi+1 for all i with 0 ≤ i ≤ t, where we set X0 := Y1 and
Xt+1 := Y2.

The subset W is said to be of type (r, s) where r = #W and s = #{i : #Xi is odd}.

Proposition 9.1.2 (cf. [12, pp. 226–227]). Let W be a subset of [n]. The following
statements hold.

(i) Any d + 1 elements of v1, . . . , vn are linearly independent over R.

(ii) If #W ≤ bd/2c, then W is a face of Γd(τ1, . . . , τn).

(iii) The subset W is a face of Γd(τ1, . . . , τn) of dimension #W − 1 if and only if
0 ≤ #W ≤ d and W is a type (#W, s) for some integer s with 0 ≤ s ≤ d−#W .

Hereafter, we will assume that τ1, . . . , τn are integers.
Let ∆ij := τj − τi for i, j ∈ [n]. The proof of Proposition 9.1.1 yields a de-

scription of the inequality of the supporting hyperplane defining each facet. Let
S = {k1, . . . , kd} ⊂ [n] and consider the polynomial

d∑
i=0

cS,it
i :=

∏
i∈S

(t − τi) .
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Then all d vectors vk1 , . . . , vkd
vanish by the linear form

σS : Rd+1 3 (w0, w1, . . . , wd) 7→
d∑

i=0

cS,iwi ∈ R ,

thus it defines the hyperplane spanned by them. Note that we index the first coor-
dinate by 0. Hence, if the set S forms a facet F of P∗ = C∗

d(τ1, . . . , τn), then σS is
the linear form defining F , which means that σS(x) ≥ 0 if x is in P∗ and σS(x) = 0
if x is in F . For every j ∈ [n] \ S, it holds σS(vj) =

∏
i∈S ∆ij. This has a useful

implication, that is, if we write a vector x ∈ Zd+1 as x =
∑

i∈S λivi + λjvj with
rational coefficients λi, then the denominator of λj is a divisor of

∏
i∈S ∆ij, because

σS(x) = λj

∏
i∈S ∆ij is an integer.

We introduce a special representation of cyclic polytopes which is sometimes
helpful. Write the vectors v1, . . . , vn as row vectors into a matrix, namely,

v1

v2
...

vn

 =


1 τ1 τ 2

1 . . . τ d
1

1 τ2 τ 2
2 . . . τ d

2
...

...
...

1 τn τ 2
n . . . τ d

n

 . (9.2)

Lemma 9.1.3. The aforementioned matrix can be transformed to the following ma-
trix by using a unimodular transformation:

1 0 · · · · · · 0

1 ∆12 0
. . .

...

1 ∆13 ∆13∆23
. . .

...
...

...
...

. . . 0

1 ∆1,d+1 ∆1,d+1∆2,d+1 . . .
∏d

k=1 ∆k,d+1
...

...
...

...

1 ∆1,n ∆1,n∆2,n . . .
∏d

k=1 ∆k,n


. (9.3)

In particular, the convex hull of the row vectors of this matrix is unimodularly equiv-
alent to C∗

d(τ1, . . . , τn).

A proof of the above lemma is essentially the same as a proof of the well-known
Vandermonde determinant. Note that Lemma 9.1.3 is valid for any ordering of the
parameters τ1, . . . , τn, i.e., any ordering of v1, . . . , vn.

Let us identify a special case where the polytopes are indeed unimodularly equiv-
alent.

Lemma 9.1.4. An integral cyclic polytope C∗
d(τ1, . . . , τd) is unimodularly equivalent

to C∗
d(−τn, . . . ,−τ1). Moreover, for any integer m, C∗

d(τ1, . . . , τd) is unimodularly
equivalent to C∗

d(τ1 + m, . . . , τn + m).
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Proof. The replacement τi 7→ −τi corresponds to a multiplication with −1 in every
column of (9.2) with an odd exponent. This is a unimodular transformation. The
second statement is immediate from Lemma 9.1.3, because the matrix (9.3) depends
only on the differences ∆ij = τj − τi.

We define a certain class of vectors which we will use in the sequel. Let S =
{i1, . . . , iq} ⊂ [n] be a non-empty set, where i1 < · · · < iq. Then we define

bS :=
∑
i∈S

1∏
j∈S\{i} ∆ij

vi =

q∑
k=1

(−1)k+1∏
j∈S\{ik} |∆ikj|

vik ,

where bS = vi1 when q = 1, i.e., #S = 1. If S is small, we will sometimes omit the
brackets around the elements, thus we write, for example, bij = b{i,j}. However, the
vector does not depend on the order of the indices.

Example 9.1.5. Let us write down bS’s for small sets S. Assume 1 ≤ i < j < k <
l ≤ n. Then

bi = vi,

bij =
1

∆ij

vi −
1

∆ij

vj,

bijk =
1

∆ij∆ik

vi −
1

∆ij∆jk

vj +
1

∆ik∆jk

vk,

bijkl =
1

∆ij∆ik∆il

vi −
1

∆ij∆jk∆jl

vj +
1

∆ik∆jk∆kl

vk −
1

∆il∆jl∆kl

vl.

The sign changes are due to a reordering of the indices since ∆ij = −∆ji. If
vi, vj, vk, vl are given in the form (9.3), i.e., if

vi

vj

vk

vl

 =


1 0 · · · · · · · · · · · · 0

1 ∆ij 0
. . . · · · · · · ...

1 ∆ik ∆ik∆jk
. . . · · · · · · ...

1 ∆il ∆il∆jl ∆il∆jl∆kl 0 · · · 0

 ,

then bi = (1, 0, . . . , 0), bij = (0,−1, 0, . . . , 0), bijk = (0, 0, 1, 0, . . . , 0) and bijkl =
(0, 0, 0,−1, 0, . . . , 0). In general, b1, b12, . . . , b12···d+1 look like (0, . . . , 0,±1, 0, . . . , 0)
when v1, . . . , vd+1 are of the form (9.3).

The following proposition collects the basic properties on these vectors.

Proposition 9.1.6. (i) For any non-empty set S ⊂ [n], one has bS ∈ Zd+1.

(ii) Let S ⊂ [n] and a, b ∈ S with a 6= b. Then we have a recursion formula

bS =
1

∆ba

bS\{a} +
1

∆ab

bS\{b}.
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(iii) For any distinct d + 1 indices i1, . . . , id+1 ∈ [n] (not necessarily ordered), the
vectors

bi1 , bi1i2 , bi1i2i3 , . . . , bi1···id+1

form a Z-basis for Zd+1.

(iv) If #S ≥ d + 2, then bS = 0.

Proof. The second statement can be verified by elementary computations, using
∆ij + ∆jk = ∆ik for i, j, k ∈ [n]. To prove the first statement, we consider the
components of bS as rational functions in τi, i ∈ S. By induction on #S, we prove the
following statement. The components of bS are symmetric polynomials in τi, i ∈ S,
and their coefficients depend only on #S.

If #S = 1, then bS = bi = vi = (1, τi, τ
2
i , . . . , τ d

i ), thus the claim holds. Now
consider a set S with at least two distinct elements a, b. Let

fj(τa, τi, i ∈ S), fj(τb, τi, i ∈ S)

be the j-th components of bS\b, bS\a, respectively. Then the difference between these
polynomials is zero if we set τa = τb, hence the quotient

fj(τa, τi, i ∈ S) − fj(τb, τi, i ∈ S)

τa − τb

is a polynomial as claimed. It is obviously symmetric in a and b. Since we are free
to choose any two elements of S, it is symmetric in all variables. The coefficients
of the polynomial depend only on #S, so the claim is proven. Note that the degree
of the polynomial decreases by one by taking the quotient. Since the degree of the
components of vi is at most d + 1, we conclude that bS = 0 for #S ≥ d + 2.

To prove the third statement, we first note that the vertices vi1 , . . . , vid+1
are

linearly independent. Take an element x ∈ Zd+1 and write it as x =
∑

λjvij . By
considering σ{i1,...,id}(x), we can say that the coefficient λid+1

is of the form

λid+1
=

k∏d
j=1 ∆ijid+1

for an integer k. Thus, x+(−1)dkbi1...id+1
∈ Zd+1 is a vector in the subspace spanned

by vi1 , . . . , vid . These vectors define a (d−1)-dimensional cyclic polytope again, so we
can proceed by induction and obtain a representation of x as a Z-linear combination
of the bi1 , bi1i2 , . . . , bi1...id+1

.

We apply this construction to prove another useful fact on cyclic polytopes.

Lemma 9.1.7. For an integral cyclic polytope P ⊂ Rd of dimension d, one has

ZAP = Zd+1 .
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Proof. First, we notice that ZAP ⊂ Zd+1 is obvious. To prove another inclusion,
we construct a basis of Zd+1 from d + 1 points in AP . We choose d + 1 vertices
v1, . . . , vd+1 of P∗ and consider the vectors

bid+1
, bid+1

+ bidid+1
, bid+1

+ bidid+1
+ bid−1idid+1

, . . . ,

d+1∑
l=1

bil...id+1
.

Let us denote them by cj :=
∑d+1

l=j bil...id+1
for j = 1, . . . , d + 1. By Proposition 9.1.6

(iii), they constitute a Z-basis of Zd+1. Hence, if each cj is contained in P∗, then our
claim follows. For this, let us consider the coefficient of a vertex vik in the sequence
of

bid , bidid+1
, bid−1idid+1

, . . . , bi1...id+1
.

The coefficient of vik appears first in bik...id+1
, where it has a positive sign. After

that, its sign is alternating and the absolute value is non-increasing since the de-
nominators increase. Hence, the sum of those coefficients and thus the coefficient in
cj is nonnegative. So, cj is a convex combination of the vertices of P∗.

Finally, we discuss the normality of integral cyclic polytopes.

Lemma 9.1.8. Let P be an integral cyclic polytope of dimension d. If any simplex
of dimension d whose vertices are chosen from those of P is normal, then P itself
is also normal.

Proof. Let v1, . . . , vn be the vertices of P∗. A proof is a direct application of
Carathéodory’s Theorem (see, e.g., [66, Section 7]). Let x ∈ ZAP ∩ R≥0AP . Now,
Carathéodory’s Theorem guarantees that there exist d + 1 vertices vi1 , . . . , vid+1

of
P∗ such that x ∈ ZAQ∩R≥0AQ, where Q = conv(

{
vi1 , . . . , vid+1

}
). Here we use that

ZAP = Zd+1 = ZAQ by Lemma 9.1.7. If Q is normal, then we have x ∈ Z≥0AQ, in
particular, x ∈ Z≥0AP . This implies that P is normal.

9.1.2 Normal cyclic polytopes

Our goal of this subsection is to prove

Theorem 9.1.9 ([30, Theorem 2.1]). Work with the same notations as in the pre-
vious section 1. If ∆i,i+1 ≥ d2 − 1 for 1 ≤ i ≤ n − 1, then P = Cd(τ1, . . . , τn) is
normal. In particular, γd ≤ d2 − 1.

Most parts of this section are devoted to proving the simplex case. In fact, once
we know that P is always normal when n = d + 1 and ∆i,i+1 ≥ d2 − 1 for 1 ≤ i ≤ d,
Theorem 9.1.9 follows immediately from Lemma 9.1.8.

Before giving a proof, we prepare two lemmata, Lemma 9.1.11 and Lemma 9.1.12.
First, for Lemma 9.1.11, we start from proving
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Proposition 9.1.10. Let (r1, r2, . . . , rd+1) ∈ Qd+1 satisfying

0 ≤ r1 ≤ r2 ≤ · · · ≤ rd+1 ≤ 1 and
d+1∑
i=1

ri = m.

Then one has

(a)
∑j

i=1 ri ≤ jm
d+1

and (b)
∑j

i=1 rd+2−i ≥ jm
d+1

for any integer j with 1 ≤ j ≤ d + 1.

Proof. We prove by induction on j.
First, we show r1 ≤ m

d+1
. Suppose that r1 > m

d+1
. Then one has ri > m

d+1
for all

1 ≤ i ≤ d + 1 by r1 ≤ r2 ≤ · · · ≤ rd+1. Thus, m =
∑d+1

i=1 ri > (d + 1) · m
d+1

= m, a
contradiction. Similarly, we also have rd+1 ≥ m

d+1
.

Now, we assume that the assertions (a) and (b) hold for any integer j′ with
1 ≤ j′ < j, where j is some integer with 2 ≤ j ≤ d + 1. Let d + 1 = kj + q, where
k is a positive integer and 0 ≤ q ≤ j − 1, i.e., k (resp. q) is a quotient (resp. a
remainder) of d + 1 divided by j. Suppose that

∑j
i=1 ri > jm

d+1
. Then one has

j∑
i=1

r(k−1)j+i ≥
j∑

i=1

r(k−2)j+i ≥ · · · ≥
j∑

i=1

ri >
jm

d + 1
.

Moreover, by the hypothesis of induction, one also has
∑d+1

i=kj+1 ri =
∑q

i=1 rd+2−i ≥
mq
d+1

when q 6= 0. Hence, we obtain

m =
d+1∑
i=1

ri > k · jm

d + 1
+

mq

d + 1
= m · kj + q

d + 1
= m,

a contradiction. Therefore, the assertion (a) also holds for j. Similarly, we also have
the assertion (b) for j, as required.

Lemma 9.1.11. Let d be a positive integer and (r1, r2, . . . , rd+1) ∈ Qd+1 satisfying
that 0 ≤ r1 ≤ r2 ≤ · · · ≤ rd+1 ≤ 1 and that

∑d+1
i=1 ri is an integer which is greater

than 1. Then one has

max
1≤i1<i2<···<il≤d+1,

2≤l≤d

{
l∑

j=1

rij :
l−1∑
j=1

rij ≤ 1

}
≥ 1 +

1

d + 1
. (9.4)

Proof. Let m =
∑d+1

i=1 ri. When m > d, it must be satisfied that ri = 1 for 1 ≤ i ≤
d + 1 and m = d + 1 by our assumption. Thus, we may assume that 2 ≤ m ≤ d.
Let M denote the value of the left-hand side of (9.4).
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The first step. Assume that m − 1 > bd+1
2
c. Then, by Proposition 9.1.10, one

has rd + rd+1 ≥ 2m
d+1

, while rd ≤ 1. Hence,

M ≥ rd + rd+1 ≥
2m

d + 1
>

2

d + 1

(⌊
d + 1

2

⌋
+ 1

)
≥ 2

d + 1

(
d

2
+ 1

)
= 1 +

1

d + 1
.

The second step. Assume that m − 1 ≤ bd+1
2
c and let d + 1 = km + q, where

k is a positive integer and 0 ≤ q ≤ m − 1, i.e., k (resp. q) is a quotient (resp. a
remainder) of d + 1 divided by m.

If we suppose that
∑k−1

j=0 rjm+q+1 > 1, then one has

1 <
k−1∑
j=0

rjm+q+1 ≤
k−1∑
j=0

rjm+q+2 ≤ · · · ≤
k−1∑
j=0

rjm+q+m.

Thus, m =
∑d+1

i=1 ri ≥
∑d+1

i=q+1 ri > m, a contradiction. Hence, we have

k−1∑
j=0

rjm+q+1 ≤ 1.

The third step. If we assume that q 6= m− 1, that is, 0 ≤ q ≤ m− 2, then one
has

∑k−2
j=0 rjm+q+2 ≤ d−q−m+1

d−q
. In fact, on the contrary, suppose that

∑k−2
j=0 rjm+q+2 >

d−q−m+1
d−q

. Then,

d − q − m + 1

d − q
<

k−2∑
j=0

rjm+q+2 ≤
k−2∑
j=0

rjm+q+3 ≤ · · · ≤
k−2∑
j=0

rjm+q+m+1.

Thus,
∑(k−1)m+q+1

i=q+2 ri > m(d−q−m+1)
d−q

. Moreover, since
∑d+1

i=q+2 ri = m −
∑q+1

i=1 ri, we

also have
∑d+1

i=(k−1)m+q+2 ri ≥ (m−1)(m−
Pq+1

i=1 ri)

d−q
by Proposition 9.1.10. Hence,

m −
q+1∑
i=1

ri =
d+1∑

i=q+2

ri >
m(d − q − m + 1)

d − q
+

(m − 1)(m −
∑q+1

i=1 ri)

d − q

=
m(d − q)

d − q
− (m − 1)

∑q+1
i=1 ri

d − q
≥ m −

q+1∑
i=1

ri,

a contradiction. Here, since m − 1 ≤ bd+1
2
c ≤ d+1

2
and 0 ≤ q ≤ m − 2 < d, we have

m + q ≤ 2m − 2 ≤ d + 1, which means that m−1
d−q

≤ 1. Thus, one has

k−2∑
j=0

rjm+q+2 ≤
d − q − m + 1

d − q
.
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Similarly, if we assume that q = m − 1, then one has

k−1∑
j=0

rjm+1 ≤
d − m + 2

d + 1
.

The fourth step. In this step, we prove that

k−1∑
j=0

rjm+q+1 + rd+1 ≥ 1 +
1

d + 1
.

We assume that 0 ≤ q ≤ m−2. Suppose, on the contrary,
∑k−1

j=0 rjm+q+1+rd+1 <

1 + 1
d+1

. Then
∑k−1

j=1 rjm+q+1 + rd+1 < 1 + 1
d+1

− rq+1 < 1 + 1
d−q

− rq+1. Thus,

1 +
1

d − q
− rq+1 >

k−1∑
j=1

rjm+q+1 + rkm+q ≥
k−1∑
j=1

rjm+q + rkm+q−1 ≥ · · ·

≥
k−1∑
j=1

rjm+q+1−(m−2) + rkm+q−(m−2) =
k−2∑
j=0

rjm+q+3 + r(k−1)m+q+2.

Moreover, by the third step, we also have
∑k−2

j=0 rjm+q+2 ≤ d−q−m+1
d−q

. Hence,

m −
q+1∑
i=1

ri =
d+1∑

i=q+2

ri < m − 1 +
m − 1

d − q
− (m − 1)rq+1 +

d − q − m + 1

d − q

= m − (m − 1)rq+1 ≤ m − (q + 1)rq+1 ≤ m −
q+1∑
i=1

ri,

a contradiction. Similarly, when q = m−1, if we suppose that
∑k

j=1 rjm+rkm+m−1 <

1 + 1
d+1

, then

1 +
1

d + 1
>

k∑
j=1

rjm + rkm+m−1 ≥
k∑

j=1

rjm−1 + rkm+m−2 ≥ · · · ≥
k−1∑
j=0

rjm+2 + rkm+1

and
∑k−1

j=0 rjm+1 ≤ d−m+2
d+1

by the third step, so we obtain m =
∑d+1

i=1 ri < m − 1 +
m−1
d+1

+ d−m+2
d+1

= m, a contradiction.
The fifth step. Thanks to the second and fourth steps, we have

M ≥
k−1∑
j=0

rjm+q+1 + rd+1 ≥ 1 +
1

d + 1
,

as desired.
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We also prepare another

Lemma 9.1.12. Let l be an integer with l ≥ 2 and i1, . . . , il distinct integers. We
set

Zl(j) =

∏j−1
k=1 ∆ikij∏

1≤k≤l,k 6=j |∆ikij |
pj +

∏j−1
k=1 ∆ikij+1∏

1≤k≤l,k 6=j+1 |∆ikij+1
|
pj+1 + · · · +

∏j−1
k=1 ∆ikil∏

1≤k≤l,k 6=l |∆ikil|
pl

for 2 ≤ j ≤ l. Then, for any 2 ≤ j ≤ l − 1, we have

Zl(j) =

∏j−1
k=1 ∆ikij∏

1≤k≤l,k 6=j |∆ikij |
pj +

1

∆ijij+1

Zl(j + 1) − 1

∆ijij+1
∆ijij+2

Zl(j + 2) +

· · · + (−1)l−j+1 1∏l
k=j+1 ∆ijik

Zl(l).

A proof is given by elementary computations.

Now, Lemma 9.1.12 says that if Zl(j+1), . . . , Zl(l) are integers, then there exists
an integer pj such that Zl(j) becomes an integer. In fact, since

1

∆ijij+1

Zl(j + 1) − · · · + (−1)l−j+1 1∏l
k=j+1 ∆ijik

Zl(l) =
P

C
,

where P is some integer and C =
∏l

k=j+1 |∆ijik |, and the numerator (resp. the

denominator) of
Qj−1

k=1 ∆ikij
Q

1≤k≤l,k 6=j |∆ikij
| is either 1 or −1 (resp. C), it is obvious that there

exists an integer pj such that Zl(j) becomes an integer.

Let Q ⊂ RN be an integral convex polytope of dimension d. In general, when
ZAQ = ZN+1, in order to prove that Q is normal, it suffices to show that for any
α = (m,α1, . . . , αN) ∈ ZAQ ∩ R≥0AQ = R≥0AQ ∩ ZN+1 with m ≥ 2, we find
α′ ∈ Q∗ ∩ ZN+1 and α′′ ∈ R≥0AQ ∩ ZN+1 with α = α′ + α′′. (This is equivalent
to prove that Q satisfies the integer decomposition property.) In particular, when
Q is a simplex, since there exists a unique (r1, . . . , rd+1) ∈ Qd+1 such that α =∑d+1

i=1 riui and
∑d+1

i=1 ri = m, where u1, . . . , ud+1 are the vertices of Q∗, we may find

(r′1, . . . , r
′
d+1) ∈ Qd+1 with

∑d+1
i=1 r′iui ∈ Q∗ ∩ ZN+1 and (r′′1 , . . . , r

′′
d+1) ∈ Qd+1 with∑d+1

i=1 r′′i ui ∈ R≥0AQ ∩ ZN+1 satisying r′i + r′′i = ri for 1 ≤ i ≤ d + 1.

Hence, it is enough to show that for any α =
∑d+1

i=1 riui ∈ R≥0AQ ∩ ZN+1 with∑d+1
i=1 ri ≥ 2, there exists (r′1, . . . , r

′
d+1) ∈ Qd+1 such that

d+1∑
i=1

r′i = 1, 0 ≤ r′i ≤ ri for 1 ≤ i ≤ d + 1 and
d+1∑
i=1

r′iui ∈ ZN+1.

Now, we come to the position to verify the normality of integral cyclic polytopes
in the case where n = d + 1 and ∆i,i+1 ≥ d2 − 1 for 1 ≤ i ≤ d. Let P be such cyclic
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polytope. Let m be an integer with m ≥ 2 and α an element in ZAP ∩ R≥0AP =
R≥0AP∩Zd+1 with the first coordinate m. Since P∗ is a simplex of dimension d, there

exists a unique (r1, . . . , rd+1) ∈ Qd+1, where
∑d+1

i=1 ri = m, such that α =
∑d+1

i=1 rivi.
Then what we must do is to show that there exists (r′1, . . . , r

′
d+1) ∈ Qd+1 such that

d+1∑
i=1

r′i = 1, 0 ≤ r′i ≤ ri for 1 ≤ i ≤ d + 1 and
d+1∑
i=1

r′ivi ∈ Zd+1. (9.5)

The first step. If there exists ri with ri ≥ 1, say, r1, then we may set r′1 = 1
and r′2 = · · · = r′d+1 = 0. Moreover, when m ≥ d + 1, since

∑d+1
i=1 ri = m and ri ≥ 0,

there is at least one ri with ri ≥ 1. Thus, we may assume that

2 ≤ m ≤ d and 0 ≤ ri ≤ 1 for 1 ≤ i ≤ d + 1.

The second step. By Lemma 9.1.11, there exist ri1 , . . . , ril among (r1, . . . , rd+1)

such that
∑l

j=1 rij ≥ 1 + 1
d+1

and
∑l−1

j=1 rij ≤ 1, where 0 ≤ ri1 ≤ · · · ≤ ril ≤ 1 and
2 ≤ l ≤ d, although we do not know whether 1 ≤ i1 < · · · < il ≤ d + 1. Let
ri1 , . . . , ril be such ones. However, we assume that 0 ≤ ril ≤ ril−1

≤ · · · ≤ ri1 ≤ 1,
i.e., we have

l∑
j=2

rij ≤ 1 and
l∑

j=1

rij ≥ 1 +
1

d + 1
.

Let D = d2 − 1. Thus, |∆ij| ≥ D for any 1 ≤ i 6= j ≤ d + 1. Now, we set
ε(l) = l−1

D
for 2 ≤ l ≤ d. Then it is easy to see that ε(l) enjoys the following

properties:

ε(l) ≥
l∑

a=2

1

Da−1
,

1

d + 1
= ε(d) > ε(d − 1) > · · · > ε(2), (9.6)

ε(l) − l − j + 1

Dj−1
> ε(j − 1) for 3 ≤ j ≤ l.

In the following two steps, by induction on l, we prove that if
∑l

j=1 rij ≥ 1+ ε(l)

and
∑l

j=2 rij ≤ 1, then there is (r′1, . . . , r
′
d+1) ∈ Qd+1 which satisfies (9.5). Once we

know this, we obtain the required assertion from 2 ≤ l ≤ d and 1
d+1

= ε(d) ≥ ε(l).

The third step. Assume that l = 2, i.e., we have ri1 + ri2 ≥ 1 + 1
D

, where
0 ≤ ri2 ≤ ri1 ≤ 1.

Let p be a nonnegative integer satisfying

p

|∆i1i2 |
≤ ri2 <

p + 1

|∆i1i2 |
.

Then it is clear that there exists such a unique nonnegative integer p. Let r′i2 =
p

|∆i1i2
| , r

′
i1

= 1− r′i2 and r′j = 0 for any j with j ∈ [d+1]\{i1, i2}. Thus,
∑d+1

i=1 r′i = 1
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and 0 ≤ r′i2 ≤ ri2 . Moreover, since ri2 ≤ 1, we have r′i1 = 1 − r′i2 ≥ 1 − ri2 ≥ 0. In
addition, by ri1 + ri2 ≥ 1 + 1

D
and |∆i1i2 | ≥ D, we also have

ri1 − r′i1 = ri1 − 1 +
p

|∆i1i2 |
≥ 1

D
− ri2 +

p

|∆i1i2 |
≥ p + 1

|∆i1i2 |
− ri2 > 0.

On the other hand, by Proposition 9.1.3, we may consider vi1 and vi2 as vi1 =
(1, 0, . . . , 0) and vi2 = (1, ∆i1i2 , 0, . . . , 0). Obviously,

∑d+1
i=1 r′ivi ∈ Zd+1.

The fourth step. Assume that l ≥ 3. For each j with 2 ≤ j ≤ l, we define each
nonnegative integer pj as follows. Let pl be a nonnegative integer which satisfies

pl∏l−1
k=1 |∆ikil|

≤ ril <
pl + 1∏l−1

k=1 |∆ikil|
,

and for 2 ≤ j ≤ l − 1, let pj be an integer which satisfies Zl(j) ∈ Z and

pj∏
1≤k≤l,k 6=j |∆ikij |

≤ rij <
pj +

∏l
k=j+1 |∆ijik |∏

1≤k≤l,k 6=j |∆ikij |
,

where Zl(j) is as in Lemma 9.1.12. Thanks to Lemma 9.1.12, if Zl(j+1), . . . , Zl(l) ∈
Z, then there exists an integer pj with Zl(j) ∈ Z and each pj is uniquely determined
by the above inequalities. Remark that we do not know whether pj is nonnegative
except for pl. However, in our case, we may assume that p2, . . . , pl−1 are all non-
negative because of the following discussions. In fact, on the contrary, suppose that
there is j′ with pj′ < 0. Let qj′ ∈ Z≥0 be a minimal nonnegative integer satisfying∏j′−1

k=1 ∆ikij′∏
1≤k≤l,k 6=j′ |∆ikij′ |

qj′ +
1

∆ij′ ij′+1

Zl(j
′ + 1) − 1

∆ij′ ij′+1
∆ij′ ij′+2

Zl(j
′ + 2) +

· · · + (−1)l−j′+1 1∏l
k=j′+1 ∆ij′ ik

Zl(l) ∈ Z.

In particular, it follows from the minimality of qj′ that 0 ≤ qj′ <
∏l

k=j′+1 |∆ij′ ik |.
By our assumption, one has

qj′
Q

1≤k≤l,k 6=j′ |∆ikij′
| > rij′

. Thus,

ril ≤ · · · ≤ rij′ <
qj′∏

1≤k≤l,k 6=j′ |∆ij′ ik |
<

∏l
k=j′+1 |∆ij′ ik |∏

1≤k≤l,k 6=j′ |∆ikij′ |
=

1∏j′−1
k=1 |∆ikij′ |

≤ 1

Dj′−1
,

so one has
∑l

j=j′ rij < l−j′+1

Dj′−1 . From
∑l

j=1 rij ≥ 1 + ε(l) and (9.6), we have

j′−1∑
j=1

rij > 1 + ε(l) − l − j′ + 1

Dj′−1
> 1 + ε(j′ − 1)

when j′ ≥ 3. Hence, we may skip such case by the hypothesis of induction. When
j′ = 2, one has ri1 > 1 + ε(l) − l−1

D
= 1, a contradiction.
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By using the above pj’s, we define r′1, . . . , r
′
d+1 by setting

r′a =



pj∏
1≤k≤l,k 6=j |∆ikij |

, if a = ij ∈ {i2, . . . , il},

1 −
l∑

j=2

r′ij , if a = i1,

0, otherwise.

In particular,
∑d+1

a=1 r′a = 1. By definition of r′i2 , . . . , r
′
il
, we have 0 ≤ r′ij ≤ rij

for 2 ≤ j ≤ l. Moreover, from
∑l

j=2 rij ≤ 1, we also have r′i1 = 1 −
∑l

j=2 r′ij ≥
1 −

∑l
j=2 rij ≥ 0. In addition, from

∑l
j=1 rij ≥ 1 + ε(l) and (9.6), we also have

ri1 − r′i1 = ri1 − 1 +
l∑

j=2

pj∏
1≤k≤l,k 6=j |∆ikij |

≥ ε(l) −
l∑

j=2

rij +
l∑

j=2

pj∏
1≤k≤l,k 6=j |∆ikij |

≥
l∑

j=2

(
pj∏

1≤k≤l,k 6=j |∆ikij |
+

1

Dj−1
− rij

)
≥

l∑
j=2

(
pj +

∏l
k=j+1 |∆ijik |∏

1≤k≤l,k 6=j |∆ikij |
− rij

)
> 0.

Finally, we verify that
∑d+1

i=1 r′ivi ∈ Zd+1. Again, by Proposition 9.1.3, we may
consider vi1 , . . . , vil as follows:


vi1

vi2
...

vil

 =



1 0 · · · · · · · · · 0 · · · 0

1 ∆i1i2 0
. . . . . .

...
...

1 ∆i1i3 ∆i1i3∆i2i3
. . . . . .

...
...

...
...

...
. . . . . .

...
...

1 ∆i1il ∆i1il∆i2il · · ·
∏l−1

k=1 ∆ikil 0 · · · 0

 .

Hence, it is easy to check that

d+1∑
i=1

r′ivi =
l∑

j=1

r′ijvij = (1, Zl(2), Zl(3), . . . , Zl(l), 0, . . . , 0) ∈ Zd+1,

proving the assertion.

Remark 9.1.13. Since each lattice length of an edge conv({vi, vj}) of P∗ coincides
with ∆ij, where i < j, it follows immediately from [21, Theorem 1.3 (b)] that P
is normal if ∆i,i+1 ≥ d(d + 1) for 1 ≤ i ≤ n − 1. (We are grateful to Gábor
Hegedüs for informing us the result [21, Theorem 1.3 (b)].) Thus, our constraint
∆i,i+1 ≥ d2 − 1 on integral cyclic polytopes is better than a general case, but
this bound is still very rough. For example, C3(0, 1, 2, 3) is normal, while we have
∆12 = ∆23 = ∆34 = 1 < 8. Similarly, C4(0, 1, 3, 5, 6) is also normal, although one
has ∆12 = ∆45 = 1 and ∆23 = ∆34 = 2.
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9.1.3 Non-very ample cyclic polytopes

Our goal of this subsection is to prove

Theorem 9.1.14 ([30, Theorem 3.1]). Let d and n be positive integers satisfying
n ≥ d + 1 and d ≥ 4. If ∆12 = 1 or ∆n−2,n−1 = 1, then Cd(τ1, . . . , τn) is not very
ample.

We obtain Theorem 9.1.14 as a conclusion of Proposition 9.1.15 and Corollary
9.1.16 below.

Proposition 9.1.15. Let P = C4(τ1, . . . , τn). If ∆23 = 1 or ∆n−2,n−1 = 1, then P
is not very ample.

Proof. Thanks to Lemma 9.1.4, by symmetry, we assume ∆23 = 1. Consider the set

AP,3 :=
{
x − v3 : x ∈ P∗ ∩ Z5

}
.

We will prove that the monoid Z≥0AP,3 is not normal, thus there exists a vector
p ∈ ZAP,3 ∩ R≥0AP,3 = R≥0AP,3 ∩ Z5 such that p /∈ Z≥0AP,3. Then, for every
integer k ≥ 1, it holds that kv3 + p ∈ (ZAP ∩ R≥0AP) \ Z≥0AP , see [11, Excercise
2.23]. Hence, P is not very ample.

In the sequel, we denote the facet of P∗ spanned by the vertices vi, vj, vk and vl

with Fijkl. Moreover, we denote the corresponding linear form with σijkl. Note that
every facet of P∗ containing v3 defines also a facet of R≥0AP,3.

The following vector has the required properties:

p := b23 + b134 + b12345

=
∆12∆15 + 1

∆12∆13∆14∆15

v1 +
1

∆23

(
1 − 1

∆12∆24∆25

)
v2 −

1

∆23

(
1 +

∆23∆35 − 1

∆13∆34∆35

)
v3

+
∆24∆45 − 1

∆14∆24∆34∆45

v4 +
1

∆15∆25∆35∆45

v5.

First, one has p ∈ Z5 from Proposition 9.1.6 (i). Then, by the second representation
of p, it is a positive linear combination of the vectors v1 − v3, v2 − v3, v4 − v3 and
v5 − v3. Thus, p ∈ R≥0AP,3. Moreover, since we assume ∆23 = 1, the coefficient of
v3 is less than −1. Hence, p lies beyond the facet F1245 which is a facet of P∗ by
Gale’s evenness condition (Proposition 9.1.1). Thus, we have p /∈ AP,3.

It remains to show that p cannot be written as a sum
∑

wj with wj ∈ AP,3.
Suppose that we have such a representation. Then we remark that p has at least
two summands. Consider a facet F1234. Then σ1234(p) = 1

∆15∆25∆35∆45
σ1234(v5) = 1.

Since σ1234(wj) ≥ 0, σ1234(wj) = 0 for every summand wj except one. Choose one
wj 6= 0 with σ1234(wj) = 0 and denote it by w. Further, we set w′ := p−w ∈ Z≥0AP,3

the remaining sum. By Carathéodory’s Theorem, there exist vertices vi1 , . . . , vi4 of
P∗ and nonnegative numbers λj ≥ 0, such that w′ =

∑4
j=1 λj(vij − v3). Let i4 be
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the greatest of those indices. Since σ1234(w
′) = 1 and σ1234(vi4) = ∆1i4∆2i4∆3i4∆4i4 ,

we conclude that

λ4 ≤
1

∆1i4∆2i4∆3i4∆4i4

.

But the vertices vi1 , . . . , vi4 and v3 define an integral cyclic polytope, thus the de-
nominator of the coefficient of vi4 has to be a divisor of ∆i1i4∆i2i4∆i3i4∆3i4 . This
is only possible if {i1, i2, i3} = {1, 2, 4}. Thus, w′ lies in the cone generated by
v1 − v3, v2 − v3, v4 − v3 and vi4 − v3. Note that σ1234(w) = 0 implies that w lies in
the cone generated by v1 − v3, v2 − v3 and v4 − v3. Thus we can replace the polytope
P∗ by the polytope Q∗ whose vertices are v1, . . . , v5 and vi4 . The reason for doing
this is that we know the facets of Q∗. Here, i4 = 5 is possible.

We consider the representation

w = a1b3 + a2b23 + a3b123 + a4b1234

with integer coefficients a1, a2, a3, a4. This is possible from Proposition 9.1.6 (iii).
Since w is in the cone generated by v1 − v3, v2 − v3 and v4 − v3, we have a1 = 0.
Now consider a facet F123i4 of Q∗. We compute

σ123i4(p) =
1

∆45

(∆24∆45 − 1)∆4i4 +
1

∆45

∆5i4 = ∆24∆4i4 − 1.

Moreover, σ123i4(w) = −a4∆4i4 . From 0 ≤ σ123i4(w) ≤ σ123i4(p), we conclude 0 ≤
−a4 ≤ ∆24 − 1. Here we used that a4 is an integer. Next, consider a facet F2345.
We compute σ2345(w) = a3∆14∆15 + a4∆15 and σ2345(p) = ∆12∆15 + 1. As before,
we conclude that 0 ≤ a3∆14 + a4 ≤ ∆12. However, these two constraints can only
be satisfied by a3 = a4 = 0, because ∆14 = ∆12 + ∆24 and ∆15 > 1. Finally, we
consider a facet F134i4 . By computing σ134i4(w) = a2∆12∆24∆2i4 and σ134i4(p) =
∆12∆24∆2i4 − 1, we conclude that a2 = 0. But this means w = 0, a contradiction to
w 6= 0.

By using this proposition, we also obtain

Corollary 9.1.16. Let P = Cd(τ1, . . . , τn), where d ≥ 5. If there is some i with
2 ≤ i ≤ n − 2 such that ∆i,i+1 = 1, then P is not very ample.

Proof. We prove this by induction on d.
When d = 5, let Fi = conv({v1, vi, vi+1, vi+2, vi+3}) for 2 ≤ i ≤ n − 3 and

Fn−2 = conv({vn−4, vn−3, vn−2, vn−1, vn}). By Gale’s evenness condition, each Fi is
a facet of P∗. When ∆i,i+1 = 1 for some i with 2 ≤ i ≤ n − 2, it then follows
from Proposition 9.1.15 that Fi is not very ample. Thus, P itself is non-very ample,
either. (See [54, Lemma 1].)

Now, let d ≥ 6. For 2 ≤ i ≤ n − d + 2, we set

Fi =

{
conv({v1, vi, . . . , vi+d−2}), when d is odd,

conv({vi−1, vi, . . . , vi+d−2}), when d is even.
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Again, Gale’s evenness condition guarantees that each Fi is a facet of P∗. When
∆i,i+1 = 1 for some i with 2 ≤ i ≤ n − 2, since each facet is also an integral cyclic
polytope of dimension d−1, either Fi or Fd−n+2 is not very ample by the hypothesis
of induction. Therefore, P is non-very ample.

On the case where d = 2, it is well known that there exists a unimodular tri-
angulation for every integral convex polytope of dimension 2. Therefore, integral
convex polytopes of dimension 2 are always normal.

On the case where d = 3, exhaustive computational experiences lead us to give
the following

Conjecture 9.1.17. All cyclic polytopes of dimension 3 are normal.

Moreover, by computational experiences together with Proposition 9.1.15, we
also conjecture a complete characterization of normal cyclic polytopes of dimension
4.

Conjecture 9.1.18. A cyclic polytope of dimension 4 is normal if and only if we
have

∆23 ≥ 2 and ∆n−2,n−1 ≥ 2.

By considering the foregoing two conjectures and Theorem 9.1.9, the following
statement seems to be natural for us.

Conjecture 9.1.19. If P = Cd(τ1, . . . , τn) is normal and P ′ = Cd(τ
′
1, . . . , τ

′
n) satis-

fies τ ′
j − τ ′

i ≥ ∆ij for all 1 ≤ i < j ≤ n, then P ′ is also normal.

Finally, we also state

Conjecture 9.1.20. If an integral cyclic polytope is very ample, then it is also
normal.

Actually, it often happens that a very ample integral convex polytope is also
normal, that is to say, the normality of an integral convex polytope is equivalent to
what it is very ample. Hence, the above conjecture occurs in the natural way. On
the other hand, it is also known that there exists an integral convex polytope which
is not normal but very ample. See [11, Exercise 2.24].

9.2 Cohen–Macaulayness and Gorensteinness of

toric rings arising from cyclic polytopes

In the previous section, we discussed the normality of (toric rings of) cyclic polytopes
P and gave a sufficient condition (Theorem 9.1.9) and a necessary one (Theorem
9.1.14) for P to be normal. This section is devoted to the continuation of the study
of P.
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Let K be a field and P ⊂ Rd an integral cyclic polytope of dimension d. Let
Z≥0AP be as above. Then Z≥0AP is an affine semigroup contained in Zd+1, which is
generated by the set of integer points in P∗. For simplicity, set Q := Qd(τ1, · · · , τn).
Following usual convention, let K[P ] denote the affine semigroup K-algebra of
Z≥0AP . The K-algebra K[P] is just the K-subalgebra of the polynomial ring
K[t0, t1, . . . , td] such that

K[P] =
⊕

a∈Z≥0AP

K · ta,

where we set ta = ta0
0 ta1

1 · · · tad
d for a = (a0, a1, . . . , ad) ∈ Zd+1

≥0 . Note that K[P ] is
nothing other than the toric ring of P , and as is well known, P is normal if and
only if so is K[P ].

In this section, we will consider the Cohen-Macaulayness and Gorensteinness
of K[P ] (Theorem 9.2.3 and Theorem 9.2.5, respectively). We prove that K[P ]
always satisfies Serre’s condition (R1), which implies that K[P ] is Cohen-Macaulay
if and only if it is normal. This means that the characterization of the normality
of integral cyclic polytopes is also that of its Cohen-Macaulayness. Moreover, it
will turn out that K[P ] is Gorenstein if and only if one has d = 2, n = 3 and
(τ2 − τ1, τ3 − τ2) = (2, 1) or (1, 2), which says that there is essentially only one
Gorenstein integral cyclic polytope, see Lemma 9.1.4.

9.2.1 Serre’s (R1) property

In this subsection, we prove that K[P ] always satisfies Serre’s Condition (R1). More-
over, this fact enables us to claim that the Cohen–Macaulayness of K[P] is equivalent
to its normality.

Recall that a Noetherian ring R is said to satisfy (Sn) if

depth Rp ≥ min{n, dim Rp}

for all p ∈ Spec(R), and satisfy (Rn) if Rp is a regular local ring for all p ∈ Spec(R)
with dim Rp ≤ n. The conditions (Sn) and (Rn) are called Serre’s conditions.

The well-known criterion for normality of a Noetherian ring, Serre’s Criterion
(cf. [12, Theorem 2.2.22]), says that a Noetherian ring is normal if and only if it
satisfies (R1) and (S2).

We use the following combinatorial criterion of (R1), which can be found in [11,
Exercises 4.15 and 4.16].

Proposition 9.2.1 ([11]). Let M be an affine monoid, K a field and K[M ] its
semigroup K-algebra. Then K[M ] satisfies (R1) if and only if every facet F of M
satisfies the following two conditions:

1. Z(M ∩ F) = ZM ∩H, where H is the supporting hyperplane of F ;

2. there exists x ∈ M such that σF(x) = 1, where σF is a support form of F with
integer coefficients.
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Using this, we can prove

Proposition 9.2.2. Let P be an integral cyclic polytope. Then K[P ] always satisfies
the condition (R1).

Proof. First, note that the facets of P∗ are in bijection with the facets of the monoid
Z≥0AP . Let F be a facet of P∗ with vertices vi1 , . . . , vid , where i1 < . . . < id.
Using the same construction as in the proof of Lemma 9.1.7, we get a family cj :=∑d

l=j bil...id of integer points in F that is part of a basis of Zd+1. This implies that

every element x ∈ Zd+1 ∩ H can be written as a Z-linear combination of them.
Therefore, the first condition of Proposition 9.2.1 follows.

For the second condition, pick any vertex vk of P∗ that is not in F . Consider
the set S := {k, i1, . . . , id} ⊂ [n] with its natural ordering. If the position of k in
S is even (i.e., if there is an odd number of j such that ij < k), then let F ⊂ S
be the set of elements of odd position. Otherwise (i.e., if the position of k in S is
odd), let F be the set of elements of even position. In any case, k /∈ F . We write
F = {j1, . . . , jr}. We want to do a similar construction to the one above, but this
time we need to analyse it more closely. Consider the vector

x′ :=
r∑

l=1

bjl...jr .

By the reasoning above, we know that this is an integer point in F , but we claim
that it has the additional property that the coefficient of each vjs is strictly positive.
Indeed, if s is an odd number, then the coefficient of vjs is an alternating sum of
non-increasing values, starting and ending with a positive value. Thus it is positive
and we only need to consider the case that s is even. For this, we compute the
coefficient of vjs in x′:

s∑
l=1

1∏r
m=l
m6=s

∆jsjm

=
s∑

l=1

(−1)l+1

|
∏r

m=l
m6=s

∆jsjm|
=

s∑
l=1

l even

1

|
∏r

m=l
m6=s

∆jsjm|

(
1 − 1

|∆jsjl−1
|

)
.

By our choice of F , for every two indices in s1 < s2 in F , there is an index in s3 ∈ S
between them s1 < s3 < s2. Thus every ∆jqjq′

in above formula is at least 2. Hence
the coefficient of vjs cannot be zero. Now we define

x := x′ ± bS,

where the sign is “+” if the position of k in S is odd and “−” if it is even. This
ensures that σF(x) = 1. It remains to show that x is contained in P∗, that is that
the coefficients of all vi, i ∈ S are nonnegative. Now for i ∈ S \ F , the coefficient of
vi is positive by construction. For i ∈ F , the coefficient in x′ is positive and thus at
least |

∏
j∈F\{i} ∆ij|−1. But the coefficient in bS is −|

∏
j∈S\{i} ∆ij|−1, so their sum

(i.e., the coefficient in x) is nonegative, because F ⊂ S.
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As a consequence of this proposition, we obtain

Theorem 9.2.3 ([31, Theorem 2.3]). Let P be an integral cyclic polytope and K[P ]
its associated semigroup K-algebra. Then the following conditions are equivalent:

(i) K[P ] is normal;

(ii) K[P ] is Cohen–Macaulay;

(iii) K[P ] satisfies (S2).

Proof. By Hochster’s Theorem (see, e.g., [11, Theorem 6.10]), normality implies
Cohen–Macaulayness. Moreover, Serre’s Criterion states that normality is equiva-
lent to Serre’s conditions (R1) and (S2). On the other hand, Cohen–Macaulayness
implies (S2), see [12, p. 62], and thus the claim follows.

Remark 9.2.4. Using the same methods as employed above, one can also prove that
an integral cyclic polytope is normal if and only if it is seminormal. See [11, p. 66]
for the definition and basic properties of seminormality. We use the notation from
that book. Now, assume that P is not normal. Then there exists a point m in
R≥0AP ∩Z≥0AP which is not contained in Z≥0AP . This point m lies in the interior
of a unique face F of Z≥0AP . But using the same construction as above, we can
show that Z(Z≥0AP ∩ F) = Zd+1 ∩ H, where H is the linear subspace spanned by
F . Thus m ∈ Z(Z≥0AP ∩ F) is an exceptional point, and therefore (Z≥0AP ∩ F)∗
is not normal. Hence, P is not seminormal.

9.2.2 When is K[P ] Gorenstein ?

The goal of this subsection is to characterize completely when K[P] is Gorenstein,
that is, this section is devoted to proving

Theorem 9.2.5 ([31, Theorem 3.1]). Let P = Cd(τ1, . . . , τd) be an integral cyclic
polytope and K[P ] its associated semigroup K-algebra. Then K[P] is Gorenstein if
and only if d = 2, n = 3 and

(∆12, ∆23) = (1, 2) or (2, 1).

Thus, by Proposition 9.1.4, there is essentially only one case where K[P ] is
Gorenstein.

Before giving a proof, we prepare the following:

• Let

(v1, . . . , vd+1) =


1 1 · · · · · · 1
0 ∆12 ∆13 · · · ∆1,d+1
...

. . . ∆13∆23 · · · ∆1,d+1∆2,d+1
...

. . . . . .
...

0 · · · · · · 0
∏d

k=1 ∆k,d+1

 ∈ Z(d+1)×(d+1)
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and P∗ = conv({v1, . . . , vd+1}).

• Let

a1 =

(
0,

d+1∏
j=3

∆1,j,−
d+1∏
j=4

∆1,j, . . . , (−1)d∆1,d+1, (−1)d+1

)
∈ Zd+1,

ai =

0, . . . , 0︸ ︷︷ ︸
i−1

,

d+1∏
j=i+1

∆i,j,−
d+1∏

j=i+2

∆i,j, . . . , (−1)d+i−2∆i,d+1, (−1)d+i−1

 ∈ Zd+1

for i = 2, . . . , d + 1.

• Let Hi be the closed half space in Rd+1 defined by the inequality

〈a1,x〉 ≤
d+1∏
j=2

∆1,j, for i = 1,

〈ai,x〉 ≥ 0, for i = 2, . . . , d + 1,

where x = (x0, x1, . . . , xd) ∈ Rd+1 and 〈ai,x〉 stands for the usual inner prod-
uct in Rd+1.

• By using the above, we have

P∗ =
d+1⋂
i=1

Hi ∩ {x ∈ Rd+1 : x0 = 1}. (9.7)

A proof of (9.7) is given by elemtary computations. This establishes an explicit
description of the supporting hyperplanes of an integral cyclic polytope with n =
d + 1, i.e., a simplex case.

Proof of Theorem 9.2.5. First, we can check easily that K[P ] is Gorenstein when
P = C2(τ1, τ2, τ3) with (∆12, ∆23) = (1, 2) or (∆12, ∆23) = (2, 1).

Thus, what we must do is to show that K[P ] is never Gorenstein in other cases.
Mostly, we concentrate on the case where P is a simplex.

The first step. Suppose that K[P ] is not normal. Then, from Theorem 9.2.3,
K[P ] is not Cohen–Macaulay. In particular, K[P ] cannot be Gorenstein.

Hence, in the remaining parts, we assume that K[P ] is normal. Since ZAP =
Zd+1 by Lemma 9.1.7, we notice that K[P ] is nothing but the Ehrhart ring of P
when K[P ] is normal (cf. [12, pp. 275–278]). In addition, it is neccesary for the
Ehrhart ring K[P ] to be Gorenstein that P contains only one integer point in its
relative interior when P \ ∂P 6= ∅. (See, e.g., [15].) In the following, we verify that
there is no such (τ1, . . . , τn).

The second step. Assume that d = 2 and let us consider when n = 3. Suppose
that (∆12, ∆23) is neither (2, 1) nor (1, 2). From Proposition 9.1.4, we may assume
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that ∆12 ≥ ∆23. When (∆12, ∆23) = (1, 1), we can check that P is not Gorenstein.
Hence, we assume that either ∆12 ≥ ∆23 ≥ 2 or ∆12 ≥ 3 and ∆23 = 1 is satisfied.
Recall from the above statements that

H1 : ∆13x1 − x2 ≤ ∆12∆13, H2 : ∆23x1 − x2 ≥ 0, H3 : x2 ≥ 0.

Then it is enough to that there exist at least two integer points p1, p2 ∈ Z2 such that

〈(∆13,−1), pi〉 < ∆12∆13, 〈(∆23,−1), pi〉 > 0 and 〈(0, 1), pi〉 < 0 for i = 1, 2.

• When ∆12 ≥ ∆23 ≥ 2, the integer points (1, 1, 1) and (1, 2, 2) are contained in
P∗ \ ∂P∗. In fact,

∆13 − 1 < ∆13 < ∆12∆13, ∆23 − 1 > 0, 1 > 0,

∆13 − 2 < ∆13 < ∆12∆13, 2∆23 − 2 > 0, 2 > 0.

• When ∆12 ≥ 3 and ∆23 = 1, the integer points (1, 2, 1) and (1, 3, 1) are
contained in the interior. In fact,

2∆13 − 1 < 2∆13 < ∆12∆13, 2∆23 − 1 > 0, 1 > 0,

3∆13 − 1 < 3∆13 ≤ ∆12∆13, 3∆23 − 1 > 0, 1 > 0.

Thus, P is not Gorenstein when n = 3 except the case where (∆12, ∆23) = (2, 1) or
(1, 2).

When n = 4 and (∆12, ∆23, ∆34) = (1, 1, 1), then we can also check that P is
not Gorenstein. Moreover, when n = 4 and there is at least one 1 ≤ i ≤ 3 with
∆i,i+1 ≥ 2, since either τ3 − τ1 ≥ 2 and τ4 − τ3 ≥ 2 or τ3 − τ1 ≥ 3 and τ4 − τ3 = 1
are satisfied, P ′ = C2(τ1, τ3, τ4) has at least two integer points in P ′ \ ∂P ′ ⊂ P \ ∂P
as discussed above, which implies that P is not Gorenstein. Similarly, when n ≥ 5,
since τ4 − τ1 ≥ 3 and τ5 − τ4 ≥ 1, P is not Gorenstein.

The third step. Assume that d = 3 and let us consider the case where n = 4.
When (∆12, ∆23, ∆34) = (1, 1, 1), we can check P is not Gorenstein. Thus, we assume
that there is at least one 1 ≤ i ≤ 3 with ∆i,i+1 ≥ 2. Recall that

H1 : ∆13∆14x1 − ∆14x2 + x3 ≤ ∆12∆13∆14, H2 : ∆23∆24x1 − ∆24x2 + x3 ≥ 0,

H3 : ∆34x2 − x3 ≥ 0, H4 : x3 ≥ 0.

• When ∆23 ≥ 2, the integer points (1, ∆12 +1, ∆13 +1, 1) and (1, ∆12 +1, ∆13 +
1, 2) are contained in P∗ \ ∂P∗. In fact,

∆13∆14(∆12 + 1) − ∆14(∆13 + 1) + q = ∆12∆13∆14 − ∆14 + q < ∆12∆13∆14,

∆23∆24(∆12 + 1) − ∆24(∆13 + 1) + q ≥ ∆12∆24 − ∆24 + q > 0,

∆34(∆13 + 1) − q > 0, q > 0,

where q is 1 or 2.
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• When ∆23 = 1 and ∆12 ≥ 2 and ∆34 ≥ 2, the integer points (1, 2, 2, 1) and
(1, 2, 2, 2) are contained in the interior. In fact,

2∆13∆14 − 2∆14 + q = 2∆12∆14 + q < ∆12∆13∆14,

2∆23∆24 − 2∆24 + q = q > 0, 2∆34 − q > 0, q > 0,

where q is 1 or 2.

• When ∆12 ≥ 2 and ∆23 = ∆34 = 1, the integer points (∆12, ∆12, 1) and
(∆12 + 1, ∆12 + 2, 3) are contained in the interior. In fact,

∆12∆13∆14 − ∆12∆14 + 1 < ∆12∆13∆14,

∆12∆23∆24 − ∆12∆24 + 1 = 1 > 0, ∆12∆34 − 1 = ∆12 − 1 > 0, 1 > 0

and

∆13∆14(∆12 + 1) − ∆14(∆12 + 2) + 3 = ∆12∆13∆14 − ∆14 + 3 < ∆12∆13∆14,

∆23∆24(∆12 + 1) − ∆24(∆12 + 2) + 3 = −2∆24 + 3 > 0,

∆34(∆12 + 2) − 3 = ∆12 − 1 > 0, 3 > 0.

Thus, P is not Gorenstein when n = 4. Remark that we need not consider the case
where ∆34 ≥ 2 and ∆12 = ∆23 = 1 because of Proposition 9.1.4 again.

On the other hand, when n ≥ 5, let P ′ = C3(τ1, τ3, τ4, τ5). Since τ3 − τ1 ≥ 2,
there exist at least two integer points in P ′ \ ∂P ′ ⊂ P \ ∂P , which means that P is
not Gorestein.

The fourth step. Assume that d ≥ 4 and d is even. Let us consider

αq = (1, ∆12 + 1, ∆13 + 1, . . . , ∆1,d−1 + 1, ∆1,d, q) ∈ Zd+1

for q = 1 and 2. We show that α1 and α2 are contained in P∗ \ ∂P∗.

Now, we have

〈a1, αq〉 =
d+1∏
j=2

∆1,j +
d+1∏
j=3

∆1,j −

(
d+1∏
j=3

∆1,j +
d+1∏
j=4

∆1,j

)
+ · · ·

+ (−1)d−1

(
d+1∏

j=d−1

∆1,j +
d+1∏
j=d

∆1,j

)
+ (−1)d

d+1∏
j=d

∆1,j + (−1)d+1q

=
d+1∏
j=2

∆1,j + (−1)d+1q =
d+1∏
j=2

∆1,j − q <

d+1∏
j=2

∆1,j,
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〈ai, αq〉 = ∆1,i

d+1∏
j=i+1

∆i,j +
d+1∏

j=i+1

∆i,j −

(
∆1,i+1

d+1∏
j=i+2

∆i,j +
d+1∏

j=i+2

∆i,j

)
+ · · ·+

(−1)d+i−3

(
∆1,d−1

d+1∏
j=d

∆i,j +
d+1∏
j=d

∆i,j

)
+ (−1)d+i−2∆1,d∆i,d+1 + (−1)d+i−1q

= ∆1,i

d+1∏
j=i+1

∆i,j +
d−1∑
k=i

(−1)i+k−2

(
d+1∏

j=k+1

∆i,j − ∆1,k+1

d+1∏
j=k+2

∆i,j

)
+ (−1)d+i−1

= ∆1,i

d+1∏
j=i+1

∆i,j +
d−1∑
k=i

(−1)i+k−1

(
∆1,i

d+1∏
j=k+2

∆i,j

)
+ (−1)d+i−1

= ∆1,i

(
d+1∏

j=i+1

∆i,j −
d+1∏

j=i+2

∆i,j

)
+ ∆1,i

(
d+1∏

j=i+3

∆i,j −
d+1∏

j=i+4

∆i,j

)
+ · · ·+

∆1,i

(
d+1∏

j=d−1

∆i,j −
d+1∏
j=d

∆i,j

)
+ ∆1,i∆i,d+1 − q > 0

when i is even and

〈ai, αq〉 = ∆1,i

(
d+1∏

j=i+1

∆i,j −
d+1∏

j=i+2

∆i,j

)
+ · · · + ∆1,i

(
d+1∏
j=d

∆i,j −
d+1∏

j=d+1

∆i,j

)
+ q > 0

when i is odd.
The fifth step. Assume that d ≥ 5 and d is odd. Let us consider

βq = (1, ∆12 + 1, ∆13 + 1, . . . , ∆1,d + 1, ∆1,d+1 − q) ∈ Zd+1

for q = 1 and 2. Similar to the fourth step, it is easy to see that

〈a1, βq〉 <

d+1∏
j=2

∆1,j and 〈ai, βq〉 > 0 for i = 2, . . . , d + 1.

In other word, both β1 and β2 are contained in the interior, as desired.

9.3 The semigroup ring associated only with ver-

tices of a cyclic polytope

In this section, we will study the semigroup K-algebra generated only by the vertices
of integral cyclic polytopes. That is to say, we will consider the affine semigroup
K-algebra arising from

Qd(τ1, . . . , τn) = Z≥0

{
(1, τi, τ

2
i , . . . , τ d

i ) ∈ Zd+1 : i = 1, . . . , n
}

.
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(Throughout this section, Q denotes the affine semigroup Qd(τ1, . . . , τn).) Let K[Q]
be the K-subalgebra of K[t0, t1, . . . , td] with K[Q] =

⊕
a∈Q K · ta. It is just the toric

ring associated with the configuration (9.2). In this section, we study the normality
of K[Q] (Theorem 9.3.3).

Let S = K[x1, . . . , xn] be the polynomial ring over a field K. Let IQ be the
kernel of the surjective ring homomorphism S → K[Q] sending each xi to tvi . The
ideal IQ is just the toric ideal associated with the matrix (9.2). In particular, it is
homogeneous with respect to the usual Z-grading on S. Recall that the matrix (9.2)
can be transformed into the form (9.3).

By Proposition 9.1.2 (i), K[Q] is regular when n = d + 1 and in particular is
normal. When d = 1, the matrix (9.2) transformed as is stated above is of the
following form: 

1 0
1 ∆1,2
...

...
1 ∆1,n

 . (9.8)

Since IQ is preserved even if we divide a common divisor of ∆1,2, . . . , ∆1,n out of the
second row, we may assume the greatest common divisor of ∆1,2, · · · , ∆1,n is equal
to 1. The ideal IQ is a defining ideal of a projective monomial curve in Pn−1, and it
is well known (cf. [14]) that the corresponding curve is normal if and only if it is a
rational normal curve of degree n−1, that is, ∆1,i = i−1 for all i−1 with 2 ≤ i ≤ n
(after the above transformation and re-setting each ∆1,i). Consequently, in the case
d = 1, the ring K[Q] is normal if and only if τ2 − τ1 = τ3 − τ2 = · · · = τn − τn−1.

We will show that K[Q] is never normal if d ≥ 2 and n = d + 2. Our strategy is
to make use of the following criterion.

Lemma 9.3.1 ([58, Lemma 6.1]). Let R be a toric ring such that the corresponding
toric ideal I is homogeneous. Suppose I has a minimal system of binomial generators
that contains a binomial consisting of non-squarefree monomials. Then R is not
normal.

Set Γ := Γd(τ1, . . . , τn). Note that there is a one-to-one correspondence between
the faces of Γ and the proper faces of R≥0Q; a subset W ⊆ [n] is a (d−1)-dimensional
face of Γ if and only if R≥0 · {vi : i ∈ W} is a d-dimensional face of R≥0Q. In the
sequel, we tacitly use this correspondence.

If n = d + 2, then IQ is principal, and we can determine the supports of both
monomials appearing in the binomial generator of IQ. Following the usual conven-
tion, we set supp(u) := {i ∈ [n] : xi | u}.

Lemma 9.3.2. Assume n = d + 2. Then K[Q] ∼= S/(u − v) for some monomials
u, v ∈ S such that supp(u) = {i ∈ [n] : i is odd} and supp(v) = {i ∈ [n] : i is even}.
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Proof. Since the rank of ZQ is equal to dim R≥0Cd(τ1, . . . , τn) = d + 1, the kernel
of the Q-linear map defined by (9.2) is of dimension 1. It is then clear that IQ

is principal. Choose a generator u − v of IQ. Obviously supp(u) ∩ supp(v) = 0.
Moreover neither supp(u) nor supp(v) is a face of Γ. Indeed, by the choice of u− v,∑

i∈supp(u)

aivi =
∑

j∈supp(v)

bjvj (∗)

for some positive integers ai, bj, and hence if one of supp(u) and supp(v) is a face
of Γ, say W , then the corresponding cone R≥0W of R≥0Q contains all the vi and vj

appearing in (∗). This implies (∗) is just a relation among vertices in R≥0W , which
contradicts (i) of Proposition 9.1.2. Since n = d+2, applying (i) of Proposition 9.1.2
again, it follows from (∗) that supp(u) ∪ supp(v) = [n]. Thus supp(u) and supp(v)
give a partition of [n] by non-faces of Γ, i.e., subsets of [n] which are not in Γ.

Without loss of generality, we may assume that 1 ∈ supp(u). Set

Λ := {(F,G) ∈ (2[n] \ Γ) × (2[n] \ Γ) : 1 ∈ F, F ∩ G = ∅, F ∪ G = [n]}.

Then (supp(u), supp(v)) ∈ Λ. On the other hand, the pair (U, V ), where U := {i ∈
[n] : i is odd} and V := {i ∈ [n] : i is even}, also belongs to Λ; indeed, U and V
does not satisfy the condition in (iii) of Proposition 9.1.2. Thus what we have only
to show to complete the proof is #Λ = 1. Note that by [44, Proposition 5.1], Γ is
combinatorially equivalent to the join of the boundary complexes of two simplexes
Γ1, Γ2. Hence we may identify Γ with ∂Γ1 ∗ ∂Γ2 to prove #Λ = 1, and may assume
1 ∈ F1. It is straightforward to verify that Λ = {(F1, F2)}.

Now we will prove the following.

Theorem 9.3.3 ([31, Theorem 4.3]). Assume d ≥ 2 and n = d + 2. Then K[Q] is
never normal.

Proof. Set U := {i ∈ [n] : i is odd} and V := {i ∈ [n] : i is even}. By Lemma 9.3.2,

K[Q] ∼= S/

(∏
i∈U

xai
i −

∏
j∈V

x
bj

j

)
.

Set u =
∏

i∈U xai
i and v =

∏
j∈V x

bj

j . By Lemma 9.3.1, it suffices to show that neither
u nor v is squarefree. Note that the following equality holds.

(a1,−b2, a3,−b4, . . . , )


1 τ1 τ 2

1 · · · τ d
1

1 τ2 τ 2
2 · · · τ d

2
...

...
...

...
...

1 τn τ 2
n · · · τ d

n

 = (0, 0, . . . , 0) ∈ Zd+1.
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By Lemma 9.1.3,

(a1,−b2, a3,−b4, . . . , )



1 0 0 · · · 0
1 ∆12 0 · · · 0

1 ∆13 ∆13∆23
. . .

...
...

...
. . . . . .

...

1 ∆1,d+1 ∆1,d∆2,d · · ·
∏d

k=1 ∆k,d+1

1 ∆1,n ∆1,n∆2,n · · ·
∏d

k=1 ∆k,n


= (0, 0, . . . , 0)

(9.9)
For a proof by contradiction, suppose either u or v is squarefree. This is equiva-

lent to say that
∑

i∈U ai = #U or
∑

j∈V bj = #V . By the equation (9.9), it follows
that ∑

i∈U

ai =
∑
j∈V

bj. (9.10)

The case d is even. Then d = 2l for some positive integer l, n = 2l + 2,
#U = #V = l + 1, which implies both of u and v are squarefree. By the equation
(9.9), we have

∏d
k=1 ∆k,d+1 =

∏d
k=1 ∆k,n = 0, while clearly

∏d
k=1 ∆k,n >

∏d
k=1 ∆k,d+1

holds, a contradiction.
The case d is odd. Then d = 2l − 1 for some integer l with l > 1, n =

2l + 1 and #U = #V + 1 = l + 1, which implies that v cannot be squarefree since∑
i∈U ai ≥ #U . Thus u is squarefree, that is, ai = 1 for all i ∈ U . Moreover

one of the bj is 2 and the others are 1. On the other hand, it follows from (9.9)

that −
∏d

k=1 ∆k,d+1b2l +
∏d

k=1 ∆k,na2l+1 = 0. Since
∏d

k=1 ∆k,d+1 <
∏d

k=1 ∆k,n, we
conclude that b2l = 2 and hence

d∏
k=1

∆k,n = 2
d∏

k=1

∆k,d+1.

For simplicity, we set ci = ai for odd i and ci = −bi for even i. Hence c1 = c3 =
· · · = cn = 1, c2 = c4 = · · · = cn−3 = −1, and cn−1 = −2. By the equation (9.9)
again,

0 =
n∑

i=2

∆1,ici =
n∑

i=2

(
i−1∑
j=1

∆j,j+1

)
ci =

n−1∑
j=1

∆j,j+1

(
n∑

i=j+1

ci

)

Since n ≥ 5 by the hypothesis that n is odd and d ≥ 2, we may divide the last
summation in the above equality as follows. Set

s1 :=
n−3∑
j=1

(
n∑

i=j+1

ci

)
∆j,j+1,

and
s2 = ∆n−2,n−1(cn−1 + cn) + ∆n−1,ncn = −∆d,d+1 + ∆d+1,n
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Then s1 + s2 =
∑n−1

j=1 ∆j,j+1

(∑n
i=j+1 ci

)
= 0. An easy observation shows that each

coefficient
∑n

i=j+1 ci of ∆j,j+1 in s1 is 0 if j is even and otherwise negative. Hence
the inequality s1 < 0 follows since n − 3 ≥ 2. We will show that s2 ≤ 0. If this
is the case, then s1 + s2 < 0 holds on the contrary to the fact s1 + s2 = 0, which
completes the proof.

Suppose s2 > 0. Then

τn − τd+1 = ∆d+1,n > ∆d,d+1 = τd+1 − τd,

and hence τn − τd > 2(τn−1 − τd). It follows that

d∏
k=1

∆k,n = (τn − τd)(τn − τd−1) · · · (τn − τ1)

> 2(τn−1 − τd)(τn−1 − τd−1) · · · (τn−1 − τ1) = 2
d∏

k=1

∆k,n−1,

which is absurd.

As is stated above Lemma 9.3.1, the K-algebra K[Q] is normal if and only if
τ2 − τ1 = τ3 − τ2 = · · · = τn − τn−1, when d = 1. Though we do not have a complete
answer on the normality of K[Q] when n > d + 2, we strongly believe the following
holds.

Conjecture 9.3.4. The K-algebra K[Q] is normal only in one of the following
cases:

(i) n = d + 1;

(ii) d = 1 and τ2 − τ1 = τ3 − τ2 = · · · = τn − τn−1.

The following proposition tells us that there are a lot of K[Q] which are not
normal when n ≥ d + 3.

Proposition 9.3.5. Assume n ≥ d + 3. If
∏d

k=1 ∆k,d+1 -
∏d

k=1 ∆k,s for some s with
d + 2 ≤ s ≤ n, then K[Q] is not normal.

Proof. Suppose Q is normal. Since the subset {1, . . . , d} of [n] satisfies the condition
in (iii) of Proposition 9.1.2, the cone generated by v1, . . . , vd forms a facet of R≥0Q.
Let F denote this facet. Then Q together with F satisfies the condition in Propo-
sition 9.2.1, and in particular, there exists an element x ∈ Q such that σF(x) = 1,
where σF is a support form of F with integer coefficients.

We will describe σF explicitly. Let H be the supporting hyperplane of F . Note
that we can freely identify Q with the affine semigroup associated with the matrix in
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Lemma 9.1.3. After this identification, the vector ad = (0, . . . , 0, 1) ∈ Zd+1 defines
H as is stated below of Theorem 9.2.5. Thus

H = {x ∈ Rd+1 : 〈ad, x〉 = 0},

and 〈ad, x〉 ∈ Z>0 for all x ∈ Q \ F . We set ZQH := ZQ/ZQ ∩ H. Note that
ZQH ∼= Z. Let v0 ∈ ZQ be an element whose image in ZQH is a free basis of ZQH.
Then the support form σF of Q and F is defined as

σF(x) =
〈ad, x〉
〈ad, v0〉

for all x ∈ Rd+1, and σF(x) = 0 for x ∈ Q ∩ F and σF(x) ∈ Z>0 for x ∈ Q \ F
(see [11, Remark 1.72 and p.55] for the construction and the property of a support
form). Recall that there exists an element x ∈ Q such that σF(x) = 1. Since F is
generated by v1, . . . , vd, the element x can be written as x = y+

∑n
i=d+1 λivi for some

λi ∈ Z≥0 and y ∈ Q∩F . By definition, 〈ad, vi〉 =
∏d

k=1 ∆k,i for i = d+1, . . . , n, and

〈ad, y〉 = 0. Since
∏d

k=1 ∆k,d+1 <
∏d

k=1 ∆k,d+2 < · · · <
∏d

k=1 ∆k,n, it follows that
0 < 〈ad, vd+1〉 < · · · < 〈ad, vn〉, and hence

1 = σF(x) ≥ (
n∑

i=d+1

λi)σF(vd+1) > 0.

Therefore σF(vd+1) = 1 and x = y + vd+1. Thus we can replace v0 by vd+1. However
it follows from the fact vs ∈ Q that∏d

k=1 ∆k,s∏d
k=1 ∆k,d+1

=
〈ad, vs〉∏d
k=1 ∆k,d+1

= σF(vs) ∈ Z,

contrary to the hypothesis
∏d

k=1 ∆k,d+1 -
∏d

k=1 ∆k,s.

Since there exists a lot of non-normal K[Q], it is natural to ask when K[Q] is
Cohen-Macaulay. Clearly if n = d + 2, then K[Q] is a complete intersection, and
hence in particular, Cohen-Macaulay. So far, we have never found an example of
K[Q] which is Cohen-Macaulay, in the case d ≥ 2 and n > d + 2. Thus we expect
the following

Conjecture 9.3.6. The K-algebra K[Q] is never Cohen-Macaulay if d ≥ 2 and
n > d + 2.

185





Bibliography
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