
Title
A Study on Reliability and Performance
Improvement of Distributed System for Large-
Scale Data Processing

Author(s) Kirihata, Yasuhiro

Citation 大阪大学, 2012, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/24736

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

A Study on Reliability and Performance

Improvement of Distributed System for

Large-Scale Data Processing

July 2012

Yasuhiro KIRIHATA

A Study on Reliability and Performance

Improvement of Distributed System for

Large-Scale Data Processing

Submitted to
Graduate School of Information Science and Technology

Osaka University

July 2012

Yasuhiro KIRIHATA

i

List of Publications

A. Journal Papers
1. Yasuhiro Kirihata, Jason Leigh, Chaoyue Xiong, and Tadao Murata: “A Sort-Last

Rendering System over an Optical Backplane,” Journal of Systemics, Cybernetics
and Informatics, Vol.3, No.3, pp.63-69 (2005).

2. Yasuhiro Kirihata, Yoshiki Sameshima, Takashi Onoyama, and Norihisa Komoda:

“Data Loss Prevention for Confidential Web Contents and Security Evaluation with
BAN Logic,” International Journal of Computers, Vol.5, No.3, pp.414-422 (2011).

3. Yasuhiro Kirihata, Yoshiki Sameshima, Takashi Onoyama, and Norihisa Komoda:

“WriteShield: A Pseudo Thin-Client for Prevention of Information Leakage,” IEEJ
Transactions on Electronics, Information and Systems, Vol.132, No.2, pp.253-259
(2012).

4. Yasuhiro Kirihata, Takashi Onoyama, and Norihisa Komoda: “A Slot-based Virtual

Node Method of Consistent Hashing for Optimization of Index Reconfiguration on
Distributed Search,” IEEJ Transactions on Electronics, Information and Systems,
Vol.132, No.10 (2012) (to be published).

B. International Conference Papers
1. Yasuhiro Kirihata and Yoshiki Sameshima: “A Web-based System for Prevention of

Information Leakage,” The 11th International World Wide Web Conference
(WWW2002), poster-127 (2002).

ii

2. Yasuhiro Kirihata, Jason Leigh, Chaoyue Xiong, and Tadao Murata: “A Sort-Last
Rendering System over an Optical Backplane,” in Proceedings of the 10th
International Conference on Information Systems Analysis and Synthesis (ISAS
2004) and the International Conference on Cybernetics and Information
Technologies, Systems and Applications (CITSA 2004), Vol.1, pp.42-47 (2004).

3. Yasuhiro Kirihata, Yoshiki Samashima, and Takashi Onoyama: “WriteShield: A

Pseudo Thin-Client System for Prevention of Information Leakage,” in Proceedings
of the 8th IEEE International Conference on Industrial Informatics (INDIN2010),
pp.478-483 (2010).

4. Yasuhiro Kirihata, Yoshiki Sameshima, Takashi Onoyama, and Norihisa Komoda:

“A Novel Approach for Protection of Confidential Web Contents,” in Proceedings of
the European Computing Conference (ECC’11), pp.110-115 (2011).

C. Domestic Conference Papers
1. Yasuhiro Kirihata and Yoshiki Sameshima: “A Web-based System for Prevention of

Information Leakage,” in Proceedings of the 61st Annual Convention IPS Japan –
Distributed Systems and Security (2000) (in Japanese).

2. Koji Nakayama, Yasuhiro Kirihata, and Yoshiki Samashima: “A Process-based

Write Control for Software Update on the Pseudo Thin Client PC,” in IPSJ SIG
Notes on Computer Security Group, Vol.2010, No.5, pp.1-6 (2010) (in Japanese).

iii

Summary

This dissertation is a study on reliability and performance improvement of distributed
system for large-scale data processing researched through 1999 to 2012 by the author
who is enrolled at Hitachi Solutions, Ltd. and Graduate School of Information Science
and Technology, Osaka University.

Recently, as the growth rate of data is getting larger, technologies of storing and
processing data at low cost are essential in enterprises and organizations. Because the
prices of high-performance commodity servers are going down, it is more popular to
construct a cluster or a distributed system of those machines for parallel and distributed
data processing of the large-scale data set. In those distributed systems, security,
performance, scalability, and availability are principal measures of the system.

In terms of the security perspective, the thin client system is one of the effective
security methods for the distributed systems dealing with a great number of files in the
central file servers. However, it does not diffuse because of its expensive introduction
and operational cost. For this reason, the methodology for construction of low-cost thin
client system is required. In the high-performance perspective, technologies for batch
and real-time processing on the cluster of commodity machines are significant. As for
the batch processing, one of the important applications is the high-performance parallel
generation of segmented indexes for the distributed search system. The resource saving
and performance improvement of the index generation and reconfiguration are strongly
required. Furthermore, as a representative example of the real-time processing, the
parallel rendering on the PC cluster is a significant application. As the image data has
high resolution and fine-grained quality with a great number of polygons, it is essential
to realize the high performance rendering of the large-scale three dimensional images.

Based on this background, we address the following three issues in this dissertation.

iv

The first one is realization of the low-cost thin client for data protection on the large
number of PC terminals. The second one is the resource saving and performance
improvement of the segmented index generation and reconfiguration. The third one is
the realization of the high-performance rendering of large-scale three-dimensional
image data. This dissertation is composed of the following five chapters.

Chapter 1 describes the trend of technologies related to the distributed system that
consists of commodity servers for large-scale data and clarified its significant issues.
Additionally, we explain the related works in terms of technologies relevant to the
individual issues and our research strategies.

Chapter 2 proposes a reliable and secure pseudo thin client method based on the
write protection of local disks with virtual cache mechanism. We explain our proposed
pseudo thin client system called “WriteShield” that solves the issues of conventional
methods. The fundamental system architecture and virtual cache mechanism of the
write-protection driver are described. Next the three paging algorithms are evaluated
using actual disk I/O logs and the prototyped simulation code to select the optimal one.
Finally, we evaluate the disk I/O performances during the running of write-protection
mechanism and paging process of virtual cache mechanism respectively.

Chapter 3 proposes the slot-based virtual node method of consistent hashing for
optimal index generation and reconfiguration. We explain the conventional consistent
hashing method and its issues in terms of the memory resources and the index
reconfiguration time. Then, our proposed method is described. We define two data
processing models of index reconfiguration for both conventional and our new methods.
We evaluate the memory usage of our method with the prototype and estimate the lapse
times of reconfiguration processes according to the defined data processing models of
both conventional and new methods.

In Chapter 4, the sort-last rendering method over the cluster based on the photonic
switch is discussed to realize the high-performance rendering of large-scale three-
dimensional image data. We describe the issue of switching delay for application of the
photonic switch based cluster to the parallel rendering and design the architecture of the
sort-last rendering cluster based on the photonic switch to solve the issue. We evaluate
the rendering performance of single image and stream process performance, and discuss
the feedback mechanism to control queuing and sending messages to achieve the
optimal smooth data flow inside the cluster.

Finally, Chapter 5 concludes this study and presents our future directions.

v

Contents

1. Introduction .. 1

1.1 Background... 1

1.2 Related Works... 5

1.3 Research Strategies... 9

1.4 Outline of the Dissertation...11

2. Write Protection of Local Disks with Virtual Cache Mechanism for Reliable and
Secure Pseudo Thin Client ... 13

2.1 Introduction .. 13

2.2 Design of WriteShield .. 15

2.2.1 Concept and System Requirements ... 15

2.2.2 System Architecture... 16

2.3 Write Protection Mechanism .. 18

2.4 Virtual Cache Mechanism .. 20

2.4.1 Overview of Virtual Cache Mechanism .. 20

2.4.2 Selection of Paging Algorithms... 21

2.5 Evaluation... 26

2.5.1 Security Analysis of the System .. 26

2.5.2 Evaluation of Usability and Scalability ... 27

2.5.3 Disk Performance Evaluation.. 28

2.6 Conclusion.. 30

3. Slot-based Virtual Node Method of Consistent Hashing for Optimal Index Generation
and Reconfiguration ... 33

3.1 Introduction .. 33

3.2 Consistent Hashing and Issues ... 35

vi

3.2.1 Overview of Distributed Search .. 35

3.2.2 Conventional Consistent Hashing and Memory Consumption Issue 36

3.2.3 Issue of Index Reconfiguration for Conventional Consistent Hashing 39

3.3 Slot-Based Virtual Node Method of Consistent Hashing..................................... 41

3.4 Data Process Model of Index Reconfiguration... 45

3.4.1 Data Processing Model for Conventional Consistent Hashing 45

3.4.2 Data Processing Model for Slot-based Virtual Node Method 48

3.5 Evaluation... 50

3.5.1 Experimental Environment.. 50

3.5.2 Memory Consumption... 51

3.5.3 Lapse Time of Index Reconfiguration Process.. 53

3.6 Conclusion.. 55

4. High Performance Sort-Last Rendering over an Optical Backplane.......................... 57

4.1 Introduction .. 57

4.2 Sort-Last Rendering.. 60

4.3 System Design and Implementation... 62

4.3.1 Photonic Computing Engine.. 62

4.3.2 Architecture of the Sort-Last Rendering System over the PCE 63

4.3.3 Implementation of PCE ... 65

4.4 Experimental Result ... 68

4.5 Data Flow Control Mechanism in PCE .. 72

4.6 Conclusion.. 76

5. Conclusions .. 79

5.1 Concluding Remarks .. 79

5.2 Future Directions .. 81

Acknowledgements .. 83

References .. 85

1

Chapter 1
Introduction

1.1 Background
Nowadays, as the number of terminal devices and network throughputs are getting
greater, the amount of data is increasing exponentially. The recent investigation of
International Data Corporation (IDC) indicates that unstructured data accounts for 80%
of total data in enterprises and organizations. The growth rate of those data will reach
over 60% per year until 2014. According to the “IDC Digital Universe Study” [1]
published in May 2010, the total size of digital data existing in the world is 0.8
zettabytes (0.8×270 bytes) in 2009. It is also said that its increasing rate will be 40% per
year to reach 35.2 zettabytes (35.2×270 bytes) in 2020.

Popularization of smart phones such as iPhone and Android also accelerates the
explosive growth of data. Cisco Systems predicts that the data traffic of mobile
environment increases 26 times larger in the next 5 years and it will reach to 6.3
exabytes (6.3×260 bytes) per month in 2015 [2]. Previously, the digital data is mainly
generated by humans through computers. In the future, there will be a remarkable
increase in the digital data generated by various devices and sensors such as equipments
in plants, heavy machineries, car navigation systems, vending machines, monitoring
cameras, air conditioning management systems in the buildings, POS (Point of Sale)
terminals, and so on.

As the growth rate of data is getting larger, the technologies of storing and
archiving data at low cost are becoming essential. The effective reutilization of the
large-scale data is getting significant to generate new valuable information. Price down

2

and performance improvement of commodity machines promote the research and
development activities in terms of storing and processing the large-scale data set on the
PC (Personal Computer) cluster.

The representative researches on the massive data processing on the PC cluster are
Google File System [3] and MapReduce [4]-[8] which are developed by Google Inc. to
realize the high performance index generation and data archiving for the Web search
system. Hadoop [9][10], which is a top-level Apache project and implements Google’s
MapReduce framework, is also a popular project applied to various fields to execute
batch processes and analyze large-scale data set such as web access logs, corpus data,
remote sensing data, DNA (Deoxyribo Nucleic Acid) sequence data, POS data, and so
on [11]-[13]. The tight coupling parallel processing system such as MPICH [14]-[17]
and LAM [18]-[21] still has needs. In addition, the stream data processing such as CEP
(Complex Event Processing) [22]-[25] is also focused on recently as the on-memory
data computing for massive data set instead of batch processing objective like Hadoop.

The distributed file systems such as GlusterFS [26]-[27] and GPFS [28]-[30] to
construct the scale-out storage by commodity machines are also getting focused on
recently. Key value stores such as Cassandra [31][32], HBase [33]-[36], CouchDB
[37][38], MongoDB [39]-[41] are also getting popular because of their scalability. As
the data is increasing enormously, the needs for those technologies on the cluster of
commodity machines for storing and parallel processing of large-scale data will be
greater in the future.

Fig. 1.1 shows the overview of the distributed systems dealing with large-scale
data set in enterprises and organizations. In the data center, the front-end systems have
several services such as Web applications, business applications, and file storages. The
back-end system includes DB (Database) servers, normal PC clusters, and so on. The
normal PC cluster is the cluster system constructed by multiple low-cost commodity
servers connected over the high-speed networks. Parallel and distributed applications
such as batch jobs, real-time processing applications, and distributed storage software
are running on the cluster. Not only the cluster system of commodity machines but the
C/S (Client/Server) system in which many client PCs accessing the large-scale data set
stored in the storage through the front-end services is also regarded as the distributed
system for large-scale data.

3

In this distributed system, security, performance, scalability, and availability are

principal measures of the system. If the treated data includes confidential information
such as personal information, customer information, and account information, it is
necessary to introduce the appropriate backup system and data protection mechanism
with access control and encryption method during the lifecycle of data from generation
to retention, utilization, and deletion. The data protection and security are critical
requirements of the system. In addition, as the target data is bigger, execution times of
batch processing and real-time processing are clearly important measures for the system
evaluation. Scalability of the distributed system means the possibility of the “linear”
performance improvement by adding extra servers. The scalability of the system is also
important to achieve the required performance easily at lower cost. Availability of the
system is related to its reliability. If the provided services are critical, the system has to
be working completely or partially even if some part of the system goes down. It is also
important for the distributed system which deals with large-scale data. According to
these points of view, we focus on the following three significant issues on the
distributed system for large-scale data.

In terms of the security perspective on the distributed system, there are various
data protection methods depending on target data type and applications. For instance, to
protect the confidential web contents, one of the effective methods is to distribute

Large-scale
Data

Front-end System Back-end System

Web
Application

Business
Applications

File Storage

Normal PC
Terminals

Batch
Processing

Real-time
Processing

PC Cluster

DB Server

Fig. 1.1 Distributed systems for large-scale data

Accesses from
a lot of users

：Target of our research

 ・High Reliability
・High Performance
・High Scalability
・High Availability

Data Center

Distributed
Storage

4

special viewers to clients which prohibits functions of text copy, print, and snapshot of
displayed data as to web applications [42]-[45]. As for the confidential files stored in the
central file server, one of the effective security methods is the thin client system. Since
the enforcement of the Personal Information Protection Law [46] of Japan in 2005,
leakage of confidential information is one of the significant security issues in
enterprises and organizations. The thin-client computing comes under the spotlight as
one of the effective solutions for this issue. Thin client prevents from saving data in the
local disks and restricts to save it in the central servers located in the data center. If the
client terminal is lost or stolen, the confidential data itself is stored in the thin-client
server or the file server and is neither lost nor leaked out. Thus, it is more secure than
the conventional data encryption method on the local disks. However, it does not diffuse
in spite of its efficient security features because it is expensive to introduce the special
client terminals and back-end thin-client servers. To improve this situation, the thin
client method using normal PC is required. In the viewpoint of the reliability and
security on the large-scale distributed systems, we target the realization of the low-cost
thin client for data protection on the large number of PC terminals as the first issue of
this research.

In the high-performance perspective, the batch processing on the cluster of
commodity machines is also an important technology. Because the unstructured data
such as documents, images, and movies is increasing rapidly, the enterprise search
technology is getting significant to reuse those data efficiently in enterprises and
organizations. In order to increase the frequency of the update for the large number of
data, the high-performance indexing method is essential in a parallel fashion.
Additionally, the high-speed index reconfiguration is also very important as the amount
of treated data is greater. The high performance batch processing technologies with the
parallel distributed cluster system constructed by the commodity machines is required
so much. Accordingly, we target the resource saving and performance improvement of
the segmented index generation and reconfiguration derived from the needs of the
search and reutilization of the large number of unstructured files as the second issue of
this research. In this issue, we set the measure of evaluation to the memory usage and
lapse time of index reconfiguration process.

Furthermore, as an example of the real-time processing on the commodity PC
based cluster, there is a parallel rendering system. As the computer graphics is getting
higher quality and resolution in CAD (Computer Aided Design) data and entertainment

5

contents, it is required to realize the high performance rendering of the large-scale three
dimensional images consisting of a lot of polygons. Corresponding to these needs, the
real-time parallel rendering technology for the large-scale data set is required based on
the low-cost commodity machines. Therefore, we target the realization of the
high-performance rendering of large-scale three-dimensional image data on the PC
cluster as the third issue of this research.

To summarize the above points, we address the following three issues in this
dissertation. The first issue is the realization of the low-cost thin client for data
protection on the large number of PC terminals. The second issue is the resource saving
and performance improvement of the segmented index generation and reconfiguration.
The third issue is the realization of the high-performance rendering of large-scale three-
dimensional image data.

1.2 Related Works

1.2.1 Low-cost Thin Client for Data Protection on the
Large Number of PC Terminals
There are venders which develop and release the products providing the solutions of the
data loss prevention on client terminals. In those products, the thin client technology is
one of the effective products to prevent from losing and leaking confidential data
because of the lost or stolen of the client PCs. The following describes the conventional
methods of thin clients.

Firstly, the server-based computing is one of the methods of thin clients. In this
method, several users share the desktop environment of the single Windows Server, and
they access the server with remote operation tools over RDP (Remote Desktop Protocol)
or ICA (Independent Computing Architecture) protocols. In this protocol, the keyboard
and mouse events are transferred from the client computer to the server, relaying the
graphical screen images from the server to the client over the network. Representative
systems of this type are Windows Terminal Service [47][48], XenDesktop [49][50], Sun
Ray [51], X window system [52], and VNC [53]. However, the network delay seriously
affects the transfer times of keyboard and mouse events to degrade the usability of GUI
(Graphical User Interface).

The second one of the methods is the virtual PC method. In this method, the virtual
server is adopted as the thin-client server. Compared with the server-based computing

6

method in which several users share the single OS (Operating System) environment,
this method provides each OS environment to each user. Every user can possess all OS
resources on the assigned virtual server. If some users’ applications freeze their OSes on
the virtual servers, other users are not influenced by those errors. VMware vSphere [54]
and XenDesktop are the representative systems adopting this method. However, there is
a problem in terms of the usability of GUI if the network has a non-negligible delay,
because it uses RDP as similar to the server-based computing method. Similarly, it is
necessary to enhance the hardware on the server side. There is an issue on the
introduction cost of the system. Furthermore, it is required to use the special client
terminals instead of the normal PCs. It is also a problem that it is difficult to take a
countermeasure against the computer viruses and apply OS patches to the client
terminals.

Finally, the third one is the blade PC method [55]. In this method, we adopt the
blade server instead of the virtual one in the previous virtual PC method. The advantage
of this method is that each user can possess the hardware resources in the assigned blade
PC. However, there is also a usability problem if network delay exists between the
client terminal and blade PC as similar to the above two methods. Because every user
has to be assigned the blade PC, it takes much cost of installation, setting-up location,
and electricity for running the system.

On the above related works, they all need to set up the thin client servers in the
data center and enhance the networks to hold the bandwidth for network accesses of
consolidated servers. The introduction and operational costs are problems. In addition,
usability of GUI over RDP and ICA protocols is affected by the network delay seriously.
Our proposed approach solves these problems by using the commodity hardware
without changing the existing system configuration.

1.2.2 Resource Saving and Performance Improvement of
the Segmented Index Generation and Reconfiguration
In order to realize the high-performance information retrieval system for the large
number of unstructured data, the distributed search is essential for multiple segmented
indexes on the search cluster nodes. Crawling and indexing on the parallel computing
environment are getting popular to improve the speed of the indexing process. It is
necessary to have a mapping method among target files and segmented indexes for the

7

distributed search system. The conventional mapping methods are as follows.
Firstly, the range partitioning method [97][98] is one of the applicable methods of

mapping among files and segmented indexes. This method is the simplest one to divide
the set of partitioning keys with the ranges of key values corresponding to the partitions.
If this method is applied to the distributed search system, the data migrations among all
nodes are executed when the cluster nodes are added or removed. In order to keep the
equal amount of data distribution among nodes, all definitions of key value ranges
should be changed.

Secondly, the hash partitioning method [97]-[99] is another candidate of mapping
method. This method takes hash values of keys such as file paths and maps them to the
segmented indexes to realize the mapping among target files and segmented indexes. As
similar to the first method, this method has the problem of data migration cost because
of the redundant movement of index data among the original cluster nodes in the index
reconfiguration process.

Thirdly, there is the consistent hashing method [81]-[83] to realize the efficient
mapping between keys and nodes. In this method, the multiple representative points for
each node, called the virtual node, are plotted on the hash ring space at random
positions. Given a key, the hash value of the key is calculated and plotted on the hash
ring space. Then, the plotted point is moved along with the ring space in the
anti-clockwise direction. The representative point which the moving point of the key
reaches for the first time is that for the corresponding node. In order to uniform the
distribution of key entries among the nodes, a lot of virtual nodes should be plotted on
the hash ring space. This causes the huge memory utilization to load mapping data on
the memory. Furthermore, many splitting processes are executed to be a bottleneck of
the index reconfiguration process when the multiple nodes are added or removed.

Additionally, the distributed hash table such as Chord [56]-[59] can be applicable
to the mapping process among files and segmented indexes. Chord algorithm actually
provides the correspondence between the key and the node based on the consistent
hashing and is one of its applications. In Chord, each node has the routing table called
“finger table” to resolve the next node to transfer the query for the calculation of
corresponding node to the given key. The maximum number of the skipping is at most
log(N) where N is the number of nodes. In order to uniform the key entry distribution
for nodes, virtual nodes are necessary as similar to the conventional consistent hashing.
Thus, the memory resources are required if all nodes store the whole mapping

8

information on the memory. Additionally, Chord does not provide any mapping
reconfiguration methods to realize the efficient data migration among nodes.

On the above related works, they all do not provide the optimal solution for the
administration of segmented indexes of distributed search system which requires
memory resource saving and fast index generation and reconfiguration on the node
adding or removing processes.

1.2.3 High-performance Rendering of Large-scale Three-
Dimensional Image Data
In order to realize the high-performance rendering of large-scale three-dimensional
image data effectively, there are three parallel rendering algorithms running on the
cluster; Sort-fast, Sort-middle, and Sort-last methods [60]-[63].

Firstly, the sort-fast rendering method is a parallel rendering method in which the
output display region is divided into several parts and they are allocated to cluster nodes
for rendering. This method is well applicable to the tiled display system consisting of
multiple display devices to construct a huge display device for high resolution images.
However, it is difficult to implement this for the single display system, because it is
required to take the special hardware configuration to aggregate the multiple display
images rendered by the allocated cluster nodes. Furthermore, it is difficult to create an
effect of the parallel computing if the target imagery consists of a large number of
polygons. Actually, some display parts include a lot of polygons to other nodes to break
the load balancing among the cluster nodes.

Secondly, the sort-middle method is a parallel rendering method, which divides
display into multiple parts and allocates them to multiple nodes. The set of polygons is
also divided into equal number of subsets to be allocated to the nodes. This method is
not well applicable to the single display system as same as the sort-fast rendering. It
could be expensive because the number of nodes is getting larger.

Thirdly, the sort-last rendering is the parallel rendering method in which the set of
polygons is equally allocated to the cluster nodes to calculate the geometry each
polygon and compose the output images with Z-buffer composition method [64]. As for
the single display system, this method is best compared with other two methods.
However, if the resolution of the final image is large or the contents are movies, the
backbone network could be the serious bottleneck of the rendering cluster.

9

On the above related works, they all do not give any solutions for the problem of
massive data transfer among the cluster nodes. They do not solve the data flow control
inside the cluster to maximize the performance of rendering processing neither.

1.3 Research Strategies
In this section, we explain the research strategies in our research. Fig 1.2 illustrates the
problems and approaches in this research. Research strategies of the following chapters
are described as follows.
(1) Low-cost thin client for data protection on the large number of PC terminals

In order to achieve the low-cost thin client system, we propose the pseudo thin
client method based on the normal PC terminals and file servers. Actually, the pseudo

Large-scale
Data

Front-end System Back-end System

Web
Application

Business
Applications

File Storage

Normal PC
Terminals

Batch
Processing

Real-time
Processing

PC Cluster

DB Server

Fig. 1.2 Distributed systems for large-scale data

Accesses from
a lot of users

Data Center

Distributed
Storage

Problem 1: Low-cost Thin Client
for Data Protection on the Large
Number of PC Terminals
⇒Write Protection of Local Disks

with Virtual Cache Mechanism
for Reliable and Secure Pseudo
Thin Client（Chapter 2）

Problem 2: Resource Saving and
Performance Improvement of the
Segmented Index Generation and
Reconfiguration
⇒Slot-based Virtual Node Method

of Consistent Hashing for Opti-
mal Index Generation and Re-
configuration（Chapter 3）

Problem 3: High-performance
Rendering of Large-scale three
Dimensional Image Data
⇒High Performance Sort-Last

Rendering over an Optical
Backplane（Chapter 4）

10

thin client indicates a sort of thin client in which the normal PC is adopted as the client
terminal and saving local disks and copying data to external storage devices such as
USB (Universal Serial Bus) flash drives are prohibited by the software. Restricting the
saving location to the central file servers, it has same effect of data protection as the
conventional thin client system. Because the OS and applications run on the local PC,
its usability of GUI does not affect the network delay unlike the conventional thin client.
The main issue is the realization of reliable and secure write protection mechanism to
the local disks. This is realized by the write protection mechanism of local disks with
virtual memory cache. In this proposal, we adopt the volume filter driver method to
realize the write protection of local disks to avoid the security vulnerabilities for the file
filer driver method. Furthermore, it has the virtual cache mechanism to extend the cache
size of the volume filter driver and improve the reliability of the system.
(2) Resource saving and performance improvement of the segmented index generation
and reconfiguration

First of all, we describe two requirements for the mapping methods between files
and segmented indexes in the distributed search system, and discuss the problems of
typical mapping methods and conventional consistent hashing method if they are
adopted. Because segmented indexes are regarded as a sort of segmented databases,
typical partitioning methods of the databases, that is, range partitioning method and
hash partitioning method, can be applied to the distributed search system. However,
these typical mapping methods have the problem on data migration cost because of the
redundant movement of index data among original cluster nodes in node adding or
removing process. Because the consistent hash method can minimize the network traffic
and redundant index data processing in the index reconfiguration process, we focus it as
the basis of our proposed method. If the conventional consistent hashing method is
simply applied to the partitioning of indexes, the memory usage is so large because the
number of plotting virtual nodes is so large to uniform the distribution of key entries on
the nodes if the number of nodes is greater. The overhead of splitting indexes from the
original nodes is also the problem in the index reconfiguration process when multiple
nodes are added to the cluster in the conventional method. In order to overcome these
issues, we propose the slot-based virtual node method of consistent hashing to realize
the resource saving and performance improvement of the segmented index generation
and reconfiguration. The proposed method divides the hash ring space of consistent
hashing into multiple slots with equal size and manages to allocate the almost same

11

number of slots to all nodes in order to reduce the variance of entry distribution on each
node. It can save the number of virtual nodes plotted on the hash ring space to save the
memory resources. It also realizes “a bunch of” slot migration from original nodes to
reallocated nodes to reduce the splitting times of partial indexes and the total lapse time
of index reconfiguration process.
(3) High-performance rendering of large-scale three-dimensional image data

To realize the high-performance rendering of large-scale three-dimensional image
data, we propose the pure optical sort-last rendering method over the cluster based on
the photonic switch. The proposed method adopts the sort-last method because it is
suitable for the parallel rendering of image data consisting of massive polygons. In the
proposed method, the photonic switch based cluster is constructed and the sort-last
rendering process is executed on the cluster to avoid the network bottleneck among
cluster nodes. Because the cluster network is pure optical, it has broad network
bandwidth. The image generation time and frame rate on the client side are the
evaluation measures of the system. It is necessary to check the response time and data
processing speed inside the cluster to verify the feasibility of this method to be able to
use in the practical use cases. The huge network traffic among cluster nodes and the
degradation of the frame rate derived from deterioration of the data flow inside the
cluster are problems to be solved.

1.4 Outline of the Dissertation
The reminder of this dissertation is organized as follows.

Chapter 2 proposes a reliable and secure pseudo thin client method based on the
write protection of local disks with virtual cache mechanism [65]-[67]. First of all, we
describe two methods of write protection of local disks for the conventional pseudo
thin-client system and explain their issues individually. One issue is the security
vulnerability on the write permission of write protection mechanism for some system
processes. Another issue is the monotonous growth of cache data which makes a
pressure of the physical memory region. Next we explain our proposed pseudo thin
client system called “WriteShield” that solves the issues of conventional methods. The
fundamental system architecture and virtual cache mechanism of the write-protection
driver are described. Next the three paging algorithms are evaluated using actual disk
I/O logs and the prototyped simulation code to select the optimal one. Finally, we

12

evaluate the disk I/O performances during the running of write-protection mechanism
and paging process of virtual cache mechanism respectively.

Chapter 3 proposes the slot-based virtual node method of consistent hashing for
optimal index generation and reconfiguration in order to realize the resource saving and
performance improvement of the segmented index generation and reconfiguration in the
distributed search system [68]. Firstly, we explain the conventional consistent hashing
method and its issues in terms of the memory resources and the index reconfiguration
time if it is applied to the mapping function between file paths and segmented indexes
in the distributed search system. In the next, our proposed method called slot-based
virtual node method of consistent hashing is described. Then, we define two data
processing models of index reconfiguration for both conventional and our new methods.
Finally, we evaluate the memory usage of our method with the prototype and estimate
the lapse times of reconfiguration processes according to the defined data processing
models of both conventional and new methods.

In Chapter 4, sort-last rendering method over the cluster based on the photonic
switch is discussed to realize the high-performance rendering of large-scale three-
dimensional image data [69][70]. At first, the summary of sort-last rendering and the
issue of switching delay for application of the photonic switch based cluster to the
parallel rendering. Next, the architecture of the sort-last rendering cluster based on the
photonic switch is explained. After that, we evaluate the rendering performance of
single image and stream process performance. We also discuss the feedback mechanism
to control queuing and sending messages to achieve the optimal smooth data flow inside
the cluster.

Finally, Chapter 5 concludes the results from this research and shows directions for
the future research.

13

Chapter 2

Write Protection of Local Disks with
Virtual Cache Mechanism for Reliable
and Secure Pseudo Thin Client

2.1 Introduction
The realization of the low-cost thin client for data protection on the large number of PC
terminals is significant issue in the aspect of the reliability and security on the
large-scale distributed systems. In this chapter, we discuss the pseudo thin client method
based on the normal PC terminals and file servers to achieve the low-cost thin client
system.

Conventional thin-client systems have problems on usability and cost. For example,
network latency causes slow response of GUI. Generally, system response for simple
I/O tasks such as typing and mouse selection should be less than 50-150 ms threshold of
human perception to keep users from noticing any delay [71]. Because network latency
depends on the congestion and network distance, the GUI response cannot reach enough
performance to use if client and server are located thousands of miles apart such as from
overseas [72]-[76]. Performance of playing movies could also be worse because of the
poor frame rate in delayed network environment [77]. Introduction cost of the thin client
system is also a problem. It is required to prepare the special diskless machines or
terminal devices on the client side. On the server side, thin-client servers, storages, and
high-bandwidth backbone are necessary. Because the thin-client servers are
consolidated in the data center, network enhancement is required to overcome the

14

critical issue of the burst of the central network traffic especially for the printing data.
The enhancement of power supply and air conditioning is also necessary. The cost of
hardware enhancement and location space is a greater burden. This cost issue could be a
significant threshold to introduce the system on a large scale.

To overcome these issues, there is another approach called pseudo thin-client
system [78]-[80]. “Pseudo” means its architecture is not strictly categorized as the thin
client. In this system, local disks on the client are write-protected and users save data on
the remote file server if necessary. Introducing this system, it is not necessary to set up
special diskless thin-client terminals and thin-client servers. This approach is more
cost-saving than other traditional thin-client systems. Furthermore, it is simple to scale
out since the system architecture is similar to the conventional distributed system.
Administrators only have to concern about the scalability of central file servers. There
are two types of methods to protect the local disks to realize the pseudo thin client; file
system filter method and volume filter method. In the first method, the write operations
are canceled at the file system filter layer by rejecting request packets for the write
operations. In the second method, the write data is cached at the volume filter driver
layer and not transferred to the lower device stacks. Write operations of OS and
applications succeed without saving data on the local hard disk devices.

However, the conventional pseudo thin-client systems with these two methods
have following issues. Firstly, it is impossible to realize the flexible file copy operation
to external device control. Some pseudo thin-client product realizes copy prohibition to
USB flash memories with Windows Group Policy. But it is impossible to apply the copy
prohibition to the privileged users who can change the Group Policies and does not
support flexible copy control. Secondly, it could be possible to leak the data via the
network. Conventional pseudo thin-client terminal can access any open networks and
has no restriction of access destination as the normal PC does. Thus, it is possible for
malicious users to download data from the internal file servers and transfer it to the
outside open sites. Thirdly, in the file system filter method, there could be a security
hole since it is necessary to permit the write operation of the special processes such as
system processes to run regularly. Finally, it could be possible to exhaust the physical
memory because the written data cannot be released even if the corresponding files are
removed in the case of volume filter method.

In this chapter, we propose a new pseudo thin-client system named WriteShield
which overcomes the above issues on the conventional systems. We adopt the volume

15

filter method as the write protection mechanism for the data written by OS and
applications to be just cached on the physical memory but not written on the local disks.
Because physical memory consumption monotonically increase in this write protection
mechanism, the cache extension mechanism is necessary to avoid running short of the
available memory. We realize the virtual cache mechanism to solve this issue.
Additionally, it provides network traffic control and external device access control
mechanism in order to realize the prohibition of data leakage via network and flexible
copy control to the external media respectively.

The rest of this chapter is organized as follows. Section 2.2 provides the
fundamental design of WriteShield and Section 2.3 describes implementation details of
write protection mechanism. Section 2.4 discusses virtual cache mechanism and paging
algorithms to select the optimal one. Section 2.5 provides security analysis, evaluation
of usability and scalability, and evaluation of the disk I/O performance. Finally we
conclude in Section 2.6.

2.2 Design of WriteShield

2.2.1 Concept and System Requirements
The basic concept of WriteShield is to prevent from saving confidential data on the local
disks in each client machine and consolidate user data to the file server. Actually, write
protection function to local disks and external media works on each client to prohibit
saving data in and out of the client machines. This architecture restricts save location to
the central file servers. In order for WriteShield to solve the issues on the conventional
pseudo thin-client systems, there are following four system requirements.
(1) Write protection without interfering with OS and application

One of the key technologies of the pseudo thin client is write prohibition to the
local disks on the normal PC. However, the write prohibition mechanism has to let write
operations of OS and some applications succeed.
(2) Write control to the external media

In some cases, it is required to allow some privileged users to copy the external
media to bring it outside offices. Thus, it is necessary to realize the control mechanism
to encrypt and copy the data to the external media according to the users’ privileges.
(3) Prohibition of data leakage via the network

Conventional pseudo thin-client terminal can access any open networks and has no

16

restriction of access destination as the normal PC does. Thus, it is possible for malicious
users to download data from the internal file servers and transfer it to the outside open
sites. WriteShield client should have access destination control to restrict the connection
to the protected network regions.
(4) OS and application update method by users

Conventional pseudo thin clients allow for only the system administrator to update
the system such as OS patches and configuration settings. However, the machine update
and maintenance should be operated by individual users to reduce the burden of the
system administrator.

2.2.2 System Architecture
The system architecture of WriteShield is shown in Fig. 2.1. In the client, Disk
Protection Driver, External Device Control Driver and Network Traffic Controller are
installed as the client components of WriteShield. The Disk Protection Driver
implements the write protection feature to the local disks. This is a filter driver over the
volume devices. At this filter layer, the read/write packets are flied through. The
read/write packets can be fetched and modified with this filter. The Disk Protection
Driver provides the write-protection of local disks without prohibition of write
operations. OS and applications can write any data on the local disks. However the
written data is cached in the memory and is not recorded on the physical disks.

External Device Control Driver provides copy control mechanism to external
media such as USB flash drives. This is implemented as a file system filter driver. In the
file system filter layer, it fetches read/write requests to the external media and cancels
the write requests to prohibit the copy operation to it. It can also write copy data to the
external media in encrypted form when the copy operation is executed by permitted
users.

Network Traffic Controller implements network filter function to monitor the
network traffic and prohibits data transformation to the illegal sites to leak the
confidential data downloaded from the file server. Initially, it checks the connection to
the Access Control Server whether the connected network is trustworthy LAN (Local
Area Network) or WAN (Wide Area Network). If the client terminal is connected to
WAN, it monitors outbound packets and allows only the packets transferred to the VPN
(Virtual Private Network) gateway in the office site.

17

Fig. 2.1 System Architecture of WriteShield

Access Control Server is on the network which distributes security policies to each
client. This policy is about copy prevention to the external media. For example,
privileged users can copy data to the external media in encrypted form; some other users
can execute neither read nor write operations to the external media. The security policy
configured on the Access Control Server is distributed on the fly to every client.
External Device Control Driver interprets the security policy and realizes the external
device control according to it.

In order to realize the convenience of operation and maintenance, WriteShield has
the following three operational modes; write-protected mode, user maintenance mode
and administrator mode.

Write-protected mode is the default one. In this mode, write protection function of
the Disk Protection Driver is worked and users cannot save data to the local disks.

Client PC

External
Media

Disk

WriteShield Client Components

External Device
Control Driver

Disk Protection
Driver

Applications

Network Traffic
Controller

WRITE READ

WAN/LAN

File Server Access Control
Server

18

Usually, users make use of clients in this mode. Because the write-protected mode does
not allow users to store data on the local machine, it is impossible for users to update
OS patches and set configurations in this mode. To solve this problem, the user
maintenance mode and administrator mode are implemented.

In the user maintenance mode, a specialized desktop is launched to restrict user
operations. On the desktop, a menu window is appeared and other applications such as
Windows Explorer and Web browser are not available. Since Disk Protection Driver
does not work in this mode, data write operation is permitted. User can only update OS
patches and change configurations with permitted control panels. Additionally,
configurations of applications can change in configuration-change menu mode. While
this menu mode is on, Windows normal desktop appears and network access is disabled.
User cannot access and copy confidential data from the file server in this menu mode.

In the administrator mode, the protection of Disk Protection Driver is simply off.
In order to be off the protection, Disk Protection Driver writes down the all cache data
to the local disk and quite the read/write request processing. This process is called
“commit.” After the commit process, the write-protected mode transfers to the
administrator mode. In this mode, client becomes normal PC. System administrator can
update, install applications, and change configurations. This mode requires user
authentication to restrict its usage to the specified system administrators in order to keep
up the security.

Disk Protection Driver has issue of memory restriction. Written data cache cannot
be flushed until the PC is shutdown. Therefore, as the written data increases, physical
memory is exhausted to freeze the OS. To avoid this problem, Disk Protection Driver
evacuates the cache data to some files on local disks or network servers. This function is
called the virtual cache mechanism. The detail of this mechanism is presented in the
later section.

2.3 Write Protection Mechanism
Write protection to the local storages is a main function of WriteShield. Usually, OS and
applications are writing data on local storages. If write operations are simply prohibited,
OS and applications cannot run normally. For example, log database has to be updated
while OS is running. If write operation of the database cannot succeed, the OS cannot
run continuously.

19

Fig. 2.2 Stack of kernel modules and Disk Protection Driver

Our write protection mechanism has to solve this issue. We implement this
mechanism as the filter driver which caches write data on the physical memory and
cancels write operations to the local disks. It generates the differential volume images to
original ones and shows them to OS and applications as the original ones. Fig. 2.2
illustrates the stack of Windows kernel modules and position of Disk Protection Driver.

When applications access files on the local disk, file I/O requests are sent to the file
system via I/O Manager. The requests are analyzed and reorganized to send to the
destination volume. Disk Protection Driver is located between the file system and
Volume Manager to fetch the requests targeted to the local volume. In this process, the
driver manipulates read/write buffers to construct or cancel the I/O request packets.

The generation of a new cache buffer to be registered in the write request process
is illustrated in Fig. 2.3. When the file system sends a write request packet to the Disk
Protection Driver, it checks the sector address of write target region on the local volume
specified by the packet and finds the registered cache buffers partially or fully
intersected to the write target region; cache A, B and C. Then, it generates a new buffer
for register and copies the cache A, B and C on it. After that, it overwrites the register

Disk Protection Driver

File System

Volume Manager

Disk Driver

Kernel mode

User mode

Partition Manager

Application

Cache on
physical
memory

I/O Manager

20

buffer with the write buffer.
Read process follows similar way to this. After reading data from the local volume,

Disk Protection Driver checks the sector address and size of read data, and searches all
cache buffers overlapped on the read data. Then, it overwrites the cached buffers to read
buffer and return it to the upper file system. This read/write request process of Disk
Protection Driver provides virtual write operation and disk write protection efficiently.

Fig. 2.3 Generation of new cache data in write request process

2.4 Virtual Cache Mechanism

2.4.1 Overview of Virtual Cache Mechanism
One of the technical issues on WriteShield is that the write data cached on the physical
memory is not cleared even if the original written files are removed. This is because the
file system does not free the all data of written files when they are removed. It just
updates the file table entries and other written region is remained. Therefore, the trash of
write data increases monotonously in the physical memory as OS and applications run.
Finally the amount of free memory space will be exhausted and OS will get freeze. In

Cache A Cache B Cache C

Generated buffer

Sector address

Part of Cache A Part of Cache C

Write Buffer

Write Buffer

Buffer for register

21

order to solve this issue, we implemented a virtual cache mechanism to extend the
physical memory. In general, OSes have virtual memory mechanism to extend the
physical memory. However, it is not available because all write requests to the virtual
memory files are cancelled by Disk Protection Driver as with other write requests.

The virtual cache mechanism provides the similar function to the virtual memory
mechanism to extend the cache size of Disk Protection Driver. The cache data is
administrated in a B-tree structure for each volume, which is called the cache list. Each
leaf node has 4KB chunk of buffer called page which stores the part of cache data. If the
total cache size exceeds to the specified threshold, Disk Protection Driver evacuates the
cache pages to the page files on the local disk or the file server over the network. If read
accesses to the paged-out cache region are occurred, Disk Protection Driver reads the
corresponding pages from the page files and completes the read buffer. The paging
algorithm affects the disk I/O performance during the page-out processing as the
memory usage is over the configured threshold. In order to keep the system security,
Disk Protection Driver saves the pages to the page files in encrypted form if it is on the
local volume. The encryption keys are randomly generated and the page files are deleted
and newly created in every boot process. In the next section, we provide a discussion of
the paging algorithms to select the optimal one for the virtual cache mechanism.

2.4.2 Selection of Paging Algorithms
One of the questions is what the optimal paging algorithm is for the virtual cache
mechanism. We discuss a comparison among several paging algorithms to select the
best one which optimizes the I/O performance for the cache of Disk Protection Driver.
In order to evaluate the following paging algorithms, LRU (Least Recently Used), FIFO
(First In, First Out), and RANDOM, we implemented a simulation code of them and
applied the following two test cases. Here these cases cover major I/O access patterns
such as read/write a lot of small files and a single large file.

Case 1: A user boots OS and logs in to the desktop environment. Then it executes
the Windows Explorer to download and save the 2750 files (total size
232MB) on the local disk from a remote file server.

22

Case 2: A user boots OS and logs in to the desktop environment. Then it executes
the Windows Explorer to download a zip-compressed file with size of
200MB and decompress it on the local disk.

Actually, we took cache access logs in the Disk Protection Driver with respect to

the above two test cases as the input data of the simulation code and executed the code
to see the relation between cache hit ratio and cache size. Here, we define the cache hit
ratio as follows;

Cache hit ratio = {#(Reference) – #(Page fault)}/#(Reference)

where #(Reference) and #(Page fault) are the total number of referenced pages and the
total number of page fault events in the test case respectively. Page fault occurs when
the cache is full and writing page is not cached or reading page in not on the cache. This
indicates the performance of paging algorithms. Fig. 2.4 and Fig. 2.5 illustrate the
graphs of the cache hit ratio for cache size of the Disk Protection Driver for three paging
algorithms in case 1 and case 2.

Fig. 2.4 Cache hit ratio in case 1

(2.1)

23

Fig. 2.5 Cache hit ratio in case 2

The graph of Fig. 2.4 indicates that the performances of the three paging
algorithms are almost same. This is because the cache hit number is relatively small to
the total number of page references in the disk access pattern in case 1. In this case,
choice of the paging algorithm does not affect the performance of the cache access in
the Disk Protection Driver. On the other hand, the graph of Fig. 2.5 shows that three
algorithms have different performance curves in terms of the cache size. In this case, the
cache hit number is relatively large to the total number of page references. Thus the
choice of paging algorithm is significant to the cache access performance. From the
graph, we can see that the RANDOM algorithm is best of them.

In order to give further consideration to the above result, we analyze the cache
access logs in detail. Fig. 2.6 and Fig. 2.7 show the graphs of the cache references of
read/write accesses in case 1 and 2 respectively. The horizontal axis is the log event
number and the vertical axis is the logical address of the read/write references of the
cache for the protected volume.

Log event number means the sequence number for the each I/O request in the log.
From Fig. 2.6, we can notice that the read access for the cache did not occur in case 1.
This means the page fault for read access does not occur and selection of paging

24

algorithms makes no difference in this scenario. From Fig. 2.7, we can see that 200MB
zip data is sequentially written to the cache from 2800MB of logical address on the
volume and sequential read access to the same region occurs later in case 2. Comparing
to Fig. 2.6, the number of read access is large. This indicates the page fault for read
access could happen more likely in case 2 instead of in the case 1. This creates the
performance difference between the three paging algorithms in Fig 2.5.

According to these two graphs, we can notice the following things on the I/O
characteristics at the volume filter layer. At first, OS and application files are installed
and accessed in read-only mode but those files are not cached on the Disk Protection
Driver layer. Additionally, because written small files are cached in the file system and
not purged unless the cache memory is full, the read accesses to those files cached in the
file system are not reached to the Disk Protection Driver layer. Actually, several system
processes and Windows Explorer are executed and they read and write the files on the
local disks during the log capturing. However, there is no read access to the cache in the
Disk Protection Driver layer in Fig. 2.6. The cache mechanism of file system above the
Disk Protection Driver affects cache access pattern on the Disk Protection Driver.
Furthermore, relatively large size of data access affects the cache of the Disk Protection
Driver and they are usually sequential accesses and the number of read accesses for
small files is smaller than that for large files according to Fig. 2.7. So, we should focus
on the read access pattern of the large files to consider the performance difference of the
three paging algorithms. Finally, when a file is copied or overwritten by copying
another file with the same name, the file system writes the data to the new region on the
disk. There is no overwriting process to the sectors of overwritten file, even if it is the
overwrite operation of files with the Windows Explorer. Therefore, ratio of the cache
size for the overwritten sectors to that for new written sectors is relatively small.

Based on these characteristics, we can indicate the reason of the best performance
of RAMDOM as follows. Because of the small ratio of the cache size for the
overwritten sectors to that for new written sectors, the paging process of LRU is close to
that of FIFO. Additionally, the relatively large files, which are likely to account for large
part of the memory consumption, are usually read or written sequentially in terms of the
ordinary file operations and application accesses. This indicates that the probability of
the page fault for FIFO is higher than that for RANDOM because the probability of
page fault for the next sector access is higher in the sequential I/O if we adopt FIFO
paging algorithm. At the result, RANDOM works more effectively than FIFO and LRU.

25

Fig. 2.6 Distribution of references to the cache in case 1

Fig. 2.7 Distribution of references to the cache in case 2

26

2.5 Evaluation

2.5.1 Security Analysis of the System
We describe the system analysis on the security perspective in this section. Firstly, while
the conventional pseudo thin-client systems do not have flexible copy control
mechanism to the external media, WriteShield realizes that with External Device
Control Driver and Access Control Server. Security administrators can allow some
specific users to copy data in encrypted form from the client to the USB flash drive and
take a copy log in the Access Control Server. Thus, they can adopt flexible and
appropriate security policy for the actual demands of users in individual offices. If the
attackers would like to copy the data to the USB flash drive illegally, they have to
invalidate the External Device Control Driver. In order for them to uninstall the External
Device Control Driver, it is necessary to change registry data, remove files and reboot
the machine. However, those operations are cleared in the reboot process because of the
write protection by Disk Protection Driver. Therefore, External Device Control Driver
cannot be invalidated without changing to the administrator mode. This copy control
mechanism to the external media is strongly protected by the write protection feature of
the Disk Protection Driver in contrast to the protection based on the standard access
right scheme on Windows.

Secondly, the following vulnerabilities are considered that malicious users can
download and send confidential data from the file server to the outside unauthorized
region over the network by Web uploading, email attachments, telnet, etc. In the LAN,
we can take countermeasures to set up the conventional network filtering applications
such as firewall, web and email filtering products. For the WAN environment, the
Network Transfer Controller works to prohibit the illegal data transfer while the
WriteShield client is not connected to the internal LAN via VPN. If it is connected to
the LAN, the internal network filtering controls described above work appropriately.

Thirdly, if the pseudo thin client adopts file system filter method to prohibit write
data on the local disks, some processes have to be permitted to write data on them
because OS and some applications can run normally. However, the write-permitted
processes could be the security holes if they are hijacked by attackers. In order to avoid
this vulnerability, WriteShield adopts the volume filter method to realize the write
prohibition on the local disks for any processes.

“Administrator mode” is the special operation mode for system administrators. The

27

user authentication is required to use this mode. This authentication restricts the users
with full access control to hold the security. In the user maintenance mode, Windows
shell is not running and custom menus are displayed only for changing configuration
and updating OS and applications. It is impossible for users to execute any applications
via command prompt or Windows shell in this mode. In addition, Network Traffic
Controller controls the network traffic to restrict access to the servers for system
configuration and update. Especially, it prohibits the client from accessing the file
servers storing confidential files while it is in the user maintenance mode. Thus, it is
impossible for users to download the confidential files to the local disks with some
background process in the user maintenance mode.

Besides, there are following security benefits compared to conventional thin-client
systems. Firstly, virus protection can be applied to the thin-client terminal. Conventional
thin-client terminal adopts the embedded OS such as Windows XP Embedded, Linux,
FreeBSD, and so on. Usually, OS is written on the flash ROM drive. To protect the
thin-client terminal from viruses, anti-virus software products have to be installed to
each terminal. However, they usually do not support embedded OS. Actually, virus
patch files cannot be updated because OS and applications are stored on the read-only
media.

Secondly, WriteShield can take OS patch update to the thin-client terminal. When
the security holes of OS are revealed, it is necessary to update OS patches to fix them.
Thin-client OS is usually an embedded OS and recorded on read-only media. It is
impossible for users to update the OS patches on demand. WriteShield overcomes this
problem by adopting generic OS and providing the user maintenance mode. In this
mode, every user can apply patches to OS. During the update, GUI operation is
restricted. Only the update data is written to physical disks. Anti-virus pattern update is
done in the similar way.

2.5.2 Evaluation of Usability and Scalability
In the conventional thin-client system with the remote control protocol, GUI response
can be too slow to use if it is long distance access. In the WriteShield, OS and
applications run on local CPU and memory. Thus, GUI response is not affected by
network delay. Applications requiring high frame rate can run in equal performance of
the normal PC. Actually, we subjectively evaluated and confirmed equality of the

28

performances to normal PC as for GUI response and 3D model rendering through the
network connection with about 100ms RTT (Round-Trip Time). WriteShield can
overcome the usability issue of conventional thin client.

One of the critical issues of the conventional thin client system is the burst of
printing data on the network of the consolidated thin client servers in the data center.
Because issued printing data are distributed in our proposed thin-client system, they do
not interfere with the other data transfer over the LAN. It is not necessary to enhance
the network bandwidth for printing data in the data center. Besides, the enhancement of
the file servers is same as that in the conventional distributed system. Thus, system
enhancement is simple compared to the conventional thin-client systems. Actually we
have a use case in which over four thousand users utilize WriteShield clients as mobile
PC in their daily work in order to avoid the data loss and leakage outside the office.
Hardware specification of the client machine is Intel Core2 Duo 2.4GHz CPU, 3GB
RAM and 1500GB SATA HDD. Users can connect to the LAN from outside offices to
access file servers, e-mail servers, groupware servers, etc. They can update the OS
patches and virus pattern files in the user maintenance mode. This use case verified its
usability, scalability and validity of the proposed system operation mechanisms.

2.5.3 Disk Performance Evaluation
Disk Protection Driver provides a caching mechanism for disk I/O. Once new data is
written, it is cached in the cache list and the following access speed to the same data
gets faster. Thus, the disk I/O in write-protected mode can be faster than raw physical
disk I/O. On the other hand, disk access can take overhead in paging process. Local disk
I/O can drop if the used memory size exceeds the configured threshold of the memory.

According to the simulation evaluation in the previous section, we implemented
the virtual cache mechanism with RANDOM paging algorithm on the Disk Protection
Driver and evaluated disk I/O performance in write-protected mode and paging process.
As for the paging process, we measure the disk I/O performance in two cases; page file
location is on the local storage or the iSCSI volume. To measure the performance in
paging process, we copy several files on the client to exceed the specified threshold of
memory usage and benchmark the disk performance while paging process is running.
Table 2.1 illustrates the experimental environment.

29

Table 2.1 Experimental environment

Client PC CPU: Intel Core 2 Duo 1.86GHz
Memory: RAM 2GB
HDD: SATA 80GB
NIC: Broadcom Gigabit Ethernet Card
OS: Windows XP SP3

Network 100 Base-T Ethernet

Benchmark tool CrystalDiskMark 2.2

Table 2.2 Experimental results of disk I/O measurement

Disk performance (MB/s)
Measurement item Raw phys.

disk
Write-

protected
Page-out

(local disk)
Page-out

(iSCSI vol.)
Serial Read 23.0 46.1 24.4 11.4

Serial Write 28.1 45.7 23.8 10.9

Random Read(512KB) 16.1 46.2 20.9 9.5

Random Write(512KB) 23.8 45.8 19.0 9.6

Random Read(4KB) 0.3 37.6 15.4 7.5

Random Write(4KB) 0.7 31.8 11.8 6.3

Test read/write buffer size of the benchmark tool is 50MB. We measured 3 times

and took average values for each measurement item. Table 2.2 illustrates the results of
disk I/O performance measure for raw physical disks, write-protected mode, and paging
process.

The disk I/O performance of write protected mode is about 1.63 times faster than
physical disks. This is because the memory cache works as RAM disks. Especially,
random read/write operations of 4KB buffers are about 125.3 times faster than actual
physical disks. The disk performance in the paging process is worse than that in
write-protected mode. Location of the page file affects to the disk performance simply
because read/write speeds to the local disk and the iSCSI volume are different.

Comparing to the write-protected mode, performances in the paging process take
up to 62.9% (local disk) and 79.4% (iSCSI volume) degradation. However, comparing
to the raw physical disk I/O, the disk I/O in paging process on the local disk takes up to
20.2% degradation. Even the disk I/O in paging process on the iSCSI volume is not so

30

worse (up to 61.2% degradation). It indicates that the virtual cache mechanism achieves
to a practical level. Actually, the paging process does not start unless the cache data in
the Disk Protection Driver does not exhaust the physical memory region. Thus, the disk
performance of the WriteShield client is usually equal to that of write-protected mode.

2.6 Conclusion
In this chapter, we proposed WriteShield, a pseudo thin-client system for prevention of
confidential information leakage. One of the key issues on this pseudo thin client is how
to realize the write protection mechanism of local disks. Write operations of OS and
applications have to succeed without saving data on the local hard disk devices. We
implemented the write protection mechanism as a volume filter driver for the data
written by OS and applications to be just cached on the physical memory but not written
on the local disks. Cached data on the client is cleared when the power is off and any
data cannot be saved on the local disks. Since physical memory consumption
monotonically increase in this write protection mechanism, the cache extension
mechanism is necessary to avoid running short of the available memory. We realize the
virtual cache mechanism to solve this issue. According to the simulation evaluation,
RANDOM takes the best hit ratio as the paging algorithm of virtual cache mechanism.
Disk I/O evaluation indicated that the I/O performance is faster than the raw disk I/O of
physical disks in write-protected mode and it is feasible in the actual use cases. In
addition, we subjectively confirmed equality of the performance to normal PC as for
GUI response and 3D model rendering through the network connection with about
100ms RTT. It can overcome the usability issue of conventional thin-client system. We
also had a use case with over four thousands of WriteShield clients and verified its
usability, scalability and validity of the proposed system operation mechanisms such as
user maintenance mode and administrator mode. It can apply to the large scale system
effectively.

Finally, there are following remaining problems on this research. In the current
implementation of the write protection driver, it is required to reboot the system in order
to change the mode from administrator mode to write-protection mode. In order to keep
the data consistency for open files through the mode changing, it is necessary to close
all files on the volume. However, it is difficult to close all files on the system volume
because some system processes running on it have to keep opening log files and

31

configuration files. The flexible mode changing feature is one of the challenges to
improve the operations of client terminals.

Next, the seamless saving configuration in the write-protected modes is another
issue. Actually, any processes cannot save the data on the local disks without any
exceptions in that mode. In order to modify and fix the configurations, it is required to
change the mode to user maintenance mode or administrator mode. This is a
troublesome operation because of the reboot process. Write permission function for the
specified files and processes in the write-protected mode can improves such kind of
inconvenience.

32

33

Chapter 3

Slot-based Virtual Node Method of
Consistent Hashing for Optimal Index
Generation and Reconfiguration

3.1 Introduction
In enterprises and organizations, archive, management, and reuse of unstructured data
are significant issues and key factors for their evolution and streamlining of daily
knowledge work. Search technology is one of the key technologies for data
management and reutilization. In this chapter, we describe a new method for resource
saving and performance improvement of the segmented index generation and
reconfiguration derived from the needs of the search and reutilization of the large
number of unstructured files.

In order to realize efficient search for large data set, distributed search is essential
to achieve quick responses for search queries. The target documents are registered into
multiple segmented indexes which are located on separate search nodes. The load of
search process is divided into multiple nodes. Listing up hit documents and calculating
scores are executed in a parallel manner on them. It is necessary to have a mapping
among document IDs such as file paths and segmented index IDs to construct the
segmented indexes. Actually the distributed search system for large-scale data has
following two requirements; (1) high-speed indexing, and (2) elapse time reduction for
reconfiguration of segmented indexes in the node adding or removing processes. The
optimal mapping method should satisfy these two requirements.

34

Because segmented indexes are regarded as a sort of segmented databases, typical
partitioning methods of the databases, that is, range partitioning and hash partitioning,
can be applied to the distributed search system. However, these methods cannot satisfy
the requirement (2). They have the problem on data migration cost because of the
redundant movement of index data among original cluster nodes in the node adding or
removing processes. On the other hand, the consistent hash method is an advanced
mapping method with the hash function which minimizes the network traffic and
redundant index data processing in the index reconfiguration process for adding or
removing cluster nodes. Actually, it can avoid data transfer among original cluster nodes
to realize efficient data migration in the index reconfiguration process. It can overcome
the problem of the typical methods on the requirement (2). Thus, we focus on it as the
basis of our approach.

However, if we simply adopt the conventional consistent hashing as the mapping
method, it still cannot satisfy the above requirements. Actually, it requires huge memory
to hold mapping information because it consists of millions of virtual nodes. It actually
requires several gigabytes of memory resources if the search system consists of several
thousands of nodes. This disables on-memory processing of mapping calculation and
causes dissatisfaction of the requirement (1). Furthermore, it takes much time to execute
the process of index reconfiguration. When multiple search nodes are added to the
search cluster, it is necessary to split and retrieve several partial indexes from each
cluster node and send them to the added nodes. This multiple-splitting process could be
a great burden for index reconfiguration if the number of added nodes is greater. So, it
still does not satisfy the requirement (2) completely.

In this chapter, we propose a new improved method named the slot-based virtual
node method of consistent hashing to overcome issues and satisfy the requirements
mentioned above. In our approach, the hash ring space of consistent hashing is divided
into multiple regions with equal size. The virtual nodes are plotted on the slot
boundaries on the hash ring space where the sizes of allocated range spaces are almost
equal for every node to uniformize the probability of entry allocation to each node.
When the multiple nodes are added or removed, our slot-based virtual node reallocation
algorithm works to plot or reallocate the virtual nodes on the hash ring space to realize
“a bunch of” data migration as far as possible to optimize the index reconfiguration. In
order to evaluate our approach, we measure the memory consumptions and estimate the
lapse times of index reconfiguration processes to check advantages of our approach

35

compared with the conventional method.
The rest of this chapter is organized as follows. Section 3.2 provides overview of

the distributed search system, conventional consistent hashing and issues on its
application to the search system. Section 3.3 describes our new method of consistent
hashing for distributed search. Section 3.4 describes data processing models as for both
methods. Section 3.5 provides evaluation of our approach according to the resource
consumption and estimation of index reconfiguration processing time based on the data
processing models defined in Section 3.4. Finally, we conclude in Section 3.6.

3.2 Consistent Hashing and Issues

3.2.1 Overview of Distributed Search
Distributed search is an effective method if the number of search target files is so large.
In this method, target files are registered on multiple segmented indexes which are
stored on multiple search nodes to reduce load of the search process on each node. Fig.
3.1 shows the system overview of the distributed search system.

Fig. 3.1 Overview of distributed search system

Here, the target files are stored on NASes. Crawling and indexing nodes connect to
NASes to fetch the target files and generate indexes. Search cluster consists of several

NAS

Files

NAS

Files

…

Crawling&
indexing

node

Crawling&
indexing

node

…

Search node

Index

Search node

Index

…

Search
client

Search cluster
Crawling&

indexing cluster

36

search nodes which store segmented indexes separately. The search client accesses one
of the search nodes to send queries to the cluster. The queries are dispatched to each
search node and search results are aggregated to output a query result for overall target
files. Though the system configuration in Fig. 3.1 has crawling and indexing cluster and
search cluster separately, it is also possible to have one single cluster which has all
crawling, indexing and search features.

The adopted search engine software is Lucene [84] which is a top project of
Apache software foundation. It is the most popular search engine software with
Java-based implementation. Using the Lucene API (Application Program Interface), it is
possible to construct indexes and search files from a set of target files. It also provides
functions of index splitting, merging, optimization, and so on.

In order to create segmented indexes stored in multiple search nodes, it is required
to determine a mapping function that defines the relation between file paths and
segmented indexes. Consistent hashing is one of the great options as the mapping
function. We describe the consistent hashing and its issues if it is applied to the
distributed search system in the following sections.

3.2.2 Conventional Consistent Hashing and Memory
Consumption Issue
Consistent hashing is a special sort of hashing which provides hash table functionality
in a way that addition and removal of one node does not significantly change the
mapping of keys to nodes. Originally, this is invented for management of distributed
data caching among several nodes. It is used in many applications such as memcached
[85][86], Cassandra, ketama and ROMA [87]. Only K/n keys are required to be
remapped on average where K is the number of keys and n is the number of nodes. In
order to balance the key entry numbers, virtual-node method of consistent hashing is
utilized popularly. Fig. 3.2 shows the basic idea of virtual-node method of consistent
hashing.

Here, we assume that the base hash function is MD5 [88] whose range of value is
from 0 to 2128-1. The hash ring space is the hash value space in which start and end
points, that is 0 and 2128-1, are identified. Three virtual nodes are allocated to each node.
Those are candidate points of nodes plotted on the hash ring space. The virtual points
are registered on the mapping table with addresses on the hash ring space and

37

corresponding node IDs.
Given a file path of indexing target, the indexer calculates the MD5 hash value of

the path and plots it on the hash ring space. Then, the point moves along with the hash
ring space to anti-clockwise direction until its hitting to the first virtual node. This
mapping process can determine that the corresponding node to the virtual node is that to
register the file.

Fig. 3.2 Virtual-node method of consistent hashing

When the new node of number 2 is added, the corresponding three virtual nodes
are plotted on the hash ring space at random position and new three entries are inserted
into the mapping table. Since the plotting position is at random, the cover range of each
node on the hash ring space takes various sizes to make the variance of entry
distribution larger if the number of virtual nodes is small. Table 3.1 shows the relation
among the number of virtual nodes, standard deviation of entry distribution on the

V-node address Node ID
P1 0
P2 0
P3 0
P4 1
P5 1
P6 1

V-node address Node ID
P1 0
P2 0
P3 0
P4 1
P5 1
P6 1
P7 2
P8 2
P9 2

Corresponding
mapping table

Corresponding
mapping table

Insert entries for
new virtual nodes

P2 P2

0 2128-1
0

1

0

0 1

1

2

2

2

Number of
nodes = 2

Number of
nodes = 3

0 2128-1
0

1

0

01

1

P1

P3 P4

P5

P6

P1

P3 P4

P5

P6

P7

P8

P9

38

segmented indexes, its ratio to average, and memory usage where the total number of
documents is 10 million. Here, the memory usage is for storing the mapping table data.
We implemented a prototype of the conventional consistent hash method to measure the
actual memory usage and the distribution of the numbers of entries registered to each
node for 10 million URIs generated randomly to get values in Table 3.1.

As the number of virtual nodes getting larger, the standard deviation of key entry
distribution is getting smaller. For instance, the number of virtual nodes should be
greater than 3000 for 5000 nodes in order to limit the ratio of 3 times SD (Standard
Deviation) to average under 10%. In this case, the memory consumption is greater than
1894.3MB. The greater is the number of nodes such as several thousands of segmented
indexes, the larger are the required memory resources more than several gigabytes to
hold the large mapping table in the memory. This is one of significant issues if we apply
the conventional consistent hashing to the generation of segmented indexes on the
distributed search system.

Table 3.1 Relation among the number of virtual nodes, standard deviation of
registered entries, and memory usage

Node # Virtual node # SD 3*SD/Average (%) Memory Usage (MB)

100 9236.0 27.7 10.5

500 4673.6 14.0 36.7

1000 3026.0 9.1 73.4

3000 1853.7 5.6 104.3

100

5000 1460.0 4.4 135.0

100 997.2 29.9 70.8

500 437.7 13.1 135.0

1000 340.2 10.2 270.0

3000 213.5 6.4 589.2

1000

5000 178.1 5.3 752.9

100 203.8 30.6 126.4

500 101.5 15.2 674.4

1000 77.9 11.7 753.2

5000

3000 57.6 8.6 1894.3

SD: Standard Deviation

39

3.2.3 Issue of Index Reconfiguration for Conventional
Consistent Hashing
In the distributed search system, index reconfiguration process is executed
corresponding to the changed mapping table among file paths and segmented indexes
when search nodes are added or removed in the search cluster. Fig. 3.3 illustrates the
overview of the index reconfiguration in the node adding process with conventional
consistent hashing. This figure shows the case in which N search nodes are added to the
cluster with M search nodes. The reconfiguration process consists of the following sub
processes.

Fig. 3.3 Index reconfiguration in the node adding process for the conventional
consistent hashing

…

…

…

split

merge

transfer

Original M nodes Added N nodes

Index

Index

transfer

transfer

N partial
indexes

ID=M+1

ID=1

…

split

Index

N partial
indexes

ID=2

…

split

Index

N partial
indexes

ID=M

…

M partial
indexes

…

merge
Index

ID=M+N
M partial
indexes

40

(1) Splitting partial indexes
After the calculation of new mapping table corresponding to the addition of N

nodes to the cluster, the documents which should be migrated to the new nodes are
retrieved and added to the partial indexes with same node ID based on it. For instance,
if document entries with ID = M+1 and M+2 are in the index with ID = 1, those
document entries are fetched and two indexes with ID = M+1 and M+2 are constructed
in the node. This process is called splitting indexes. Fig. 3.4 illustrates an example of
the hash ring space reallocation in the node adding process for conventional consistent
hashing. Because relatively a large number of virtual nodes for added nodes are plotted
on the hash ring space at random position, each original node allocates parts of the
assigned hash space region to all added N nodes. Thus, every original node has N times
of index splitting processes for added N nodes. The following figure illustrates an
example of the hash ring space reallocation in the node adding process for conventional
consistent hashing.

Fig. 3.4 Hash ring space reallocation in the node adding process for
conventional consistent hashing

…

ID=1 ID=4 ID=2

0 2128-1

Hash ring space

…

ID=M+N-4 ID=1

0 2128-1

ID=M+2

Plot virtual nodes
at random position

… …

41

(2) Transferring partial indexes
After splitting and retrieving the partial indexes on each original node, the split

data is transferred to the target nodes. The target nodes are determined by the new
mapping and IDs of the partial indexes.
(3) Merging partial indexes and optimizing merged indexes

When the transferred data is stored on the added node, it is added to the new index
sequentially. The order of merging indexes is free. Finally, the merged indexes are
optimized to be one segmented index in each node to improve the search performance.
(4) Deleting extracted entries and optimization in original nodes

After splitting all partial indexes, the original index still includes data of
documents extracted into partial indexes. Thus, deletion of extracted entries and index
optimization are executed. Because document deletion API of Lucene just makes the
document invisible but does not delete document data itself, the index optimization
process is required to remove those invalid data from the original index actually.

If we apply the conventional consistent hashing to generation of segmented
indexes on the distributed search system, it takes so much time of index reconfiguration
when multiple nodes are added or removed. For instance, if N nodes are added to the
cluster, N times of splitting process should be executed on each original node because
the virtual nodes of added nodes are plotted at random position on the hash ring space.
This could be a burden for the index reconfiguration process. Additionally, the process
of merging and optimizing a large number of indexes take relatively longer time than
that for small number of large indexes in the Lucene framework. This is the second
issue for application of conventional consistent hashing to the segmented index
management in the distributed search system.

3.3 Slot-Based Virtual Node Method of Consistent
Hashing
In this section, we describe the fundamental concept of our new consistent hashing
method to solve the issues of conventional method described in the previous section.
Fig. 3.5 illustrates the fundamental concept of the hash ring space management in our
approach.

Let H be the size of hash ring space. For example, H = 2128 if adopted hash

42

function is MD5. Basically, the hash ring space is divided into K regions called slots
with the same size S (=H/K) and dividing points are numbered to indicate the addresses
of virtual nodes on the hash ring space. Given a node set, some virtual nodes are
assigned to each node to define the allocated regions on the hash ring space. The
information of virtual node address is recorded in the mapping table which defines the
relation among nodes and allocated regions on the hash ring space. When the new node
is added or removed, the mapping table is changed under the condition of almost equal
size of allocated region to every node. Keeping this condition realizes the nearly equal
probabilities of entry allocations to the nodes.

V-node address Node ID

P1 2

P2 1

P3 4

K(=P4) 3

Fig. 3.5 Hash ring space of the slot-based virtual node method

0 2128-1

1
2

P1

K-1
K-2

P2

P3

Node ID = 1

Node ID = 3

Node ID = 4

Node ID = 2

S

P3-1

P2-1

P1-1

3

S

43

Fig. 3.6 Hash ring space reallocation in the node adding process

We describe the hash ring space reallocation algorithm on adding or removing
multiple nodes. Fig. 3.6 shows the reallocation method of hash ring space in the
multiple-node adding process.

Let M and N be the numbers of original nodes and added nodes respectively.
Assume that there are M nodes mapped on the hash ring space. The region in the size of
H/M is allocated to each node. If N nodes are added to the cluster, then the allocated
regions are reconfigured in the following way.

1. Regions in the size of HN/{M(M+N)} are extracted from each original node and
concatenated on the working space in order of the node ID. The total size of
concatenated regions is HN/(M+N).

2. Regions in the size of H/(M+N) are fetched from the head of the working space
and allocated to added N nodes sequentially. The dividing points on the working
space are mapped on the hash ring space to calculate actual addresses of virtual
nodes on it.

3. The pairs of actual virtual node addresses and corresponding added node IDs are
recorded on the mapping table.

…
ID=1 ID=1 ID=2 0 H-1

…

HS
M(M+N)

HS
M(M+N)

Extraction

Allocate H/(M+N) size of regions
to added N nodes respectively.

Hash ring space

Working space

44

Fig. 3.7. Hash ring space reallocation in the node removing process

In the next, we explain reallocation of regions on the hash ring space when some
nodes are removed from the cluster. In this case, let M+N and N be the number of
original nodes and removed nodes respectively. Fig. 3.7 illustrates the reallocation of
hash ring space in the multiple-node removing process. This process is similar to the
reallocation process in the node adding process described above.

1. Allocated regions to every removed node are extracted and concatenated on the
working space. The total size of extracted regions from each node is H/(M+N).
The total size of concatenated regions on the working space is HN/(M+N).

2. Regions in the size of HN/{M(M+N)} are fetched from the head of the working
space and allocated to the remaining M nodes sequentially. The dividing points on
the working space are mapped on the hash ring space to calculate actual addresses
of virtual nodes on it.

3. The pairs of actual virtual node addresses and corresponding node IDs are
recorded on the mapping table and entries of the removed virtual nodes are
removed from the table.

After the reallocation of hash ring space, the index reconfiguration process is

executed based on the changed mapping table in the similar way to the case of
conventional consistent hashing described in Section 3.2.3. Because this reallocation

Working space

ID=M+1 ID=M+1 ID=M+2 0 H-1

…

KS
(M+N)

KS
(M+N)

Extraction

Allocate HN/{M(M+N)} size of regions
to remaining M nodes respectively.

Hash ring space

…

45

achieves “a bunch of” data migrations as far as possible, the number of index splitting
times in this process satisfies the following formula.

In the node adding process, the splitting times are smaller than N that is equal to
those for the conventional consistent hashing method. Especially, if M≧N, the splitting
times are one or two. On the other hand, the splitting times are smaller than M that is
equal to those for the conventional consistent hashing method in the node removing
process. This reduction of splitting times for the conventional method realizes the
reduction of the total lapse time of the index reconfiguration process.

If the index reconfiguration processes are executed a lot of times, the number of
virtual nodes is growing and hash ring space is fragmented like disks. However, the
maximum number of virtual nodes is limited to K because of the restriction in which the
virtual nodes can only be plotted on the K dividing points on the hash ring space.
Therefore, the size of mapping table is limited up to K*(the size of one virtual node
entry). We can estimate the worst case of memory consumption for our new approach
with this formula.

Compared to the conventional random plotting method of virtual nodes, the above
method manages to allocate the almost same number of slots to every node. Allocating
slots with the same size prepared preliminarily, the number of virtual nodes that
determine the slot allocation is saved efficiently than the conventional random plotting
method to save the memory consumption.

3.4 Data Process Model of Index Reconfiguration
In order to consider the validity of our approach, we define the data processing models
of the index reconfiguration processes as for the conventional virtual node method of
consistent hashing and our proposed method to estimate their lapse times. The detail of
estimation is described in Section 3.5.3. In this section, we explain both models.

3.4.1 Data Processing Model for Conventional Consistent
Hashing
Let M and N be the numbers of original nodes and added nodes respectively. In the

⎡ ⎤
⎡ ⎤ processremovingnodethein

processaddingnodethein
NM
MN

timesspliting
⎩
⎨
⎧

+
+

1
1

≦ (3.1)

46

index reconfiguration process, the N partial indexes are split from the original index if
we adopt the conventional consistent hashing method. Fig. 3.8 shows the ideal data
processing model of the index reconfiguration process for the conventional consistent
hashing.

In this case, we assume that M≧N. The splitting processes are executed N times for
each node as previously described in Section 3.2.3. If the original index size is larger
and M+N is not smaller, the splitting time is considerably longer than split data transfer
and merging process because the size of split index is not bigger. Thus, the pipeline

split
Index

transfer

…

ID=M+1

split
Index …

ID=M+2

split
Index …

ID=M+N

…

split
Index

ID=M+1

…

Index
merge

ID=1

ID=2

ID=N

ID=N+1

Index
merge

transfer

…

ID=M+1

ID=M+2

Original M nodes
Added N nodes

…

…

Index
merge

ID=M+N

…

transfer

Fig. 3.8 Ideal data processing of index reconfiguration for the conventional
 consistent hashing

…

47

processing of splitting, transferring and merging processes are executed in parallel to
reduce the total lapse time optimally. That is, the process of data transfer and merge is
executed while the following process of splitting a partial index from the original one is
running. The actual pipeline processing timeline is described in Fig. 3.9. According to
this timeline, we can estimate that the total lapse time of index reconfiguration process
as follows.

Here, Tsplit(i, j) indicates the lapse time of splitting the partial index with ID = j
from the original index with ID = i. Ttrans(i, j) and Tmerge(i, j) mean the data transfer time
and merging time as for the partial index with ID = j extracted from the original index
with ID = i respectively. Topt(i) denotes the optimization time of the index with ID = i. If
the adding node number N is greater, the total time is also greater to be a bottleneck of
the process in conventional method.

Fig. 3.9 Timeline of data processing for the conventional consistent
hashing method

… ID=1

Split
ID=M+1

Split
ID=M+2

Split
ID=M+N

Delete &
Optimize

ID=M+1

… ID=N

Split
ID=M+N

Split
ID=M+1

Split
ID=M+N-1

Delete &
Optimize

…

… ID=2

Split
ID=M+2

Split
ID=M+3

Split
ID=M+1

Delete &
Optimize

Optimize

…

Transfer
& Merge

Transfer
& Merge

Transfer
& Merge

)}()},(

),({min)},({min≧
,...,1
,...,1

,...,1
,...,1

jMTjMiT

jMiTjMiTNtimelapse

optmerge

trans
Nj

Misplit
Nj

Mi

++++

+++⋅
=
=

=
=

(3.2)

48

3.4.2 Data Processing Model for Slot-based Virtual Node
Method
Assume that M ≧ N where M and N is the numbers of original nodes and added nodes
respectively. Then, the number of split indexes is one or two for each node in our
approach as described in Section 3.3. Fig. 3.10 shows the data processing model of
index reconfiguration with our new approach.

Fig. 3.10 Data processing of index reconfiguration for our new method of
 consistent hashing

Fig. 3.11 shows the timeline of index reconfiguration in this model. The nodes with
ID = 1, 2, 3 generates the split indexes with ID = M+1. Similarly, the nodes with ID = 3,
4, 5 generates the split indexes with ID = M+2. They are transferred to the node with ID
= M+1 and ID = M+2 respectively.

split Index
transfer

ID=M+1

split Index

ID=M+1

Index
merge ID=1

ID=3

transfer

transfer

…

ID=M+1

Original M nodes

Added N nodes

ID=M+2

transfer
split Index

ID=M+1

ID=2

Index
merge

ID=M+2

…

49

Fig. 3.11 Timeline of data processing for our new method of consistent hashing

In this timeline, after the end of splitting the index data with ID = M+2 on the node
with ID = 4, the node with ID = M+2 can start to transfer and merge processes.
However, it cannot start transfer the split index data from the node with ID = 3 until the
end of its split process on the node. On the other hand, the split indexes with ID = M+1
can be transferred around the time of first splitting on the nodes with ID = 1, 2, 3.
Therefore, the finish time of transfer and merge process on the node with ID = M+2
could be later than that of the node with ID = M+1 even if the total sizes of transferred
data to both nodes are same. According to this timeline, it is possible to estimate that the
maximum lapse time of total data processing as follows.

)()),(),((

)}1,(),({max)(

)}({max

1

,...,1

,...,1

kMTkMiTkMiT

kMiTkMiTkT

kTtimelapse

opt

M

i
mergetrans

splitsplitMi

Nk

++++++

++++=

∑
=

=

=
≦

…

ID=2

Split
ID=M+1

Delete &
Optimize

ID=M+1

ID=3

Split
ID=M+1

Split
ID=M+2

Delete &
Optimize

Optimize Transfer & Merge

ID=5

ID=M+2 Optimize Transfer & Merge

ID=1

Split
ID=M+1

Delete &
Optimize

Split
ID=M+2

Delete &
Optimize

ID=4

Split
ID=M+2

Delete &
Optimize

(3.3)

(3.4)

50

Here, Tsplit(i, j) denotes the lapse time of splitting the partial index with ID = j from
the original one with ID = i. If there is no splitting of partial one with ID = j from the
original one with ID = i, Tsplit(i, j)=0. Similarly, Ttrans(i, j) and Tmerge(i, j) mean the data
transfer time and merging time as for the partial index with ID = j extracted from the
original one with ID = i. Topt(i) denotes the optimization time of the index with ID = i.

3.5 Evaluation

3.5.1 Experimental Environment
In this section, we describe the experimental environment to evaluate our new
consistent hashing approach to confirm the advantage in terms of resource consumption
and index reconfiguration time. As for the evaluation of resource consumption, we
measure the actual memory usage for our prototyping. As for the lapse time of index
reconfiguration, we estimate them based on the data processing models defined in
Section 3.4 and actual measurements of lapse times for index splitting, transferring,
merging, and optimization processes under the following condition in Table 3.2. Our
experimental prototype is implemented based on Lucene. It uses the Lucene API for
index splitting, merging, optimization, and so on. The adopted base hash function is
MD5. The indexing target data is a set of 10 million plain text files with a size of 16KB.
These text files are generated by picking up words automatically from a corpus data
based on the distribution of word occurrence. The corpus data has 12620 English words
and their occurrence information extracted from the actual English documents on a web
site. The reason to adopt the above file generation method is following. If they are
generated by simply picking up words at random from the corpus data without the
distribution of word occurrence, every word has almost uniform size of position data in
the index which has different composition from the index of actual document set.

Table 3.2 Specification of the system

Node specification - CPU: Intel Core i5 2.4GHz
- Memory: RAM 4GB
- HDD: SATA 350GB
- OS: Linux 2.6.35 64bit

Network - 1000 Base-T Ethernet

51

3.5.2 Memory Consumption
One of the issues in the utilization of the conventional consistent hashing is memory
usage. As we mentioned in the previous section, if the number of nodes is over several
thousands, the memory consumption reaches over several gigabytes. It is hard to store
the mapping table on the memory to realize the high performance access to it. The
reduction of the memory usage is the important issue as for the consistent hashing.
Table 3.3 shows the memory consumption of our approach.

Table 3.3 Memory consumption of slot-based virtual node method

K Average SD 3*SD/Average (%) Memory Usage (MB)

210 10000 1498.84 44.97 2.6

211 10000 1044.45 31.33 2.6

212 10000 723.95 21.72 2.6

213 10000 490.71 14.72 2.6

214 10000 314.31 9.43 5.2

215 10000 160.69 4.82 7.9

216 10000 125.86 3.78 13.1

217 10000 99.10 2.97 28.8

218 10000 98.33 2.95 57.0

219 10000 100.04 3.00 113.8

220 10000 101.75 3.05 107.4

221 10000 100.75 3.02 200.3

222 10000 99.81 2.99 147.0

SD: Standard Deviation

In this test case, the number of document entries is 10 million and number of nodes
is 1000. As mentioned in section 3.1, this table data is the worst case of memory
consumption when all dividing points have virtual node. In order to realize that
3*SD/Average (%) is under 10%, the number of dividing points on the hash ring space
should be larger than 214 (=16384). In that case, the utilized memory size is 5.2MB.
This is really smaller than 589.2MB, that of conventional consistent hashing where
node number = 1000.

52

Table 3.4 Relation between node number and standard deviation

K Node # Average SD 3*SD/Average (%) Memory Usage (MB)

100 100000 595.44 1.79 2.6

500 20000 966.74 14.50 2.6

1000 10000 723.50 21.70 2.6

212

5000 2000 940.60 141.09 2.6

100 100000 493.47 1.48 2.6

500 20000 612.39 9.19 2.6

1000 10000 494.74 14.84 2.6

213

5000 2000 588.32 88.25 2.6

100 100000 354.63 1.06 5.3

500 20000 300.55 4.51 5.2

1000 10000 317.13 9.51 5.2

214

5000 2000 278.28 41.74 5.2

100 100000 342.41 1.03 5.2

500 20000 201.17 3.02 7.9

1000 10000 161.96 4.86 7.9

215

5000 2000 157.98 23.70 7.9

100 100000 312.29 0.94 10.5

500 20000 143.33 2.15 13.1

1000 10000 123.00 3.69 13.1

216

5000 2000 64.56 9.68 13.1

100 100000 340.55 1.02 21.0

500 20000 143.44 2.15 26.2

1000 10000 98.96 2.97 28.8

217

5000 2000 54.58 8.19 28.8

SD: Standard Deviation

Table 3.4 illustrates the relation between the node number and standard deviation
while changing the dividing number (=K) as a parameter. If the node number is 5000, K
should be greater than 216 in order to limit 3*SD/Average (%) up to 10%. In this case,
the necessary amount of memory is 13.1MB while the conventional method requires
1894.3MB of memory resources.

53

Appropriate value of K is determined by the maximum number of nodes in the
system to be supported. Then, the worst case of memory usage can be estimated by K.
Actually, the target data properties such as average size of files and the maximum
number of files in the system affects K and required memory resources. Similarly, the
memory usage in the conventional method also depends on the maximum number of
nodes the system can support. Thus, the memory saving efficiency of our approach
against the conventional one is achieved similarly if the target data set is different.

3.5.3 Lapse Time of Index Reconfiguration Process
Finally, we evaluate the lapse time of the index reconfiguration process between the
conventional method and our new approach. Assume that the number of original nodes
M = 1000 and that of adding nodes N = 100 to increase 10% nodes for load reduction of
search process in each node. Then, based on the discussion in Section 3.4, we can
estimate lapse times of index reconfiguration processes as for the conventional method
and the new method as follows. In the following estimation, we assume that individual
processing time such as splitting time and merging time takes same value if the treated
data size is same. Thus, the maximum or minimum values in the estimation formulas
described in Section 4.1 and 4.2 can be calculated simply based on this assumption.

(1) Conventional method

(a) Splitting time: It takes 365 (sec) to retrieve the split index data with 9090
documents from the original index with 10 million documents (51.7GB).

(b) Transfer time: It takes 4.33 (sec) to transfer the single split data (45MB). Because
this time is shorter compared with the splitting time, it is possible to finish the
data transfer while the splitting process is executed as we mentioned in section
3.4.1.

(c) Merging time: Lapse time to merge 1000 indexes with 9090 documents is 1033
(sec). This is also executed during the splitting process similar to the data transfer.

(d) Optimization time: This is 14778 (sec). Optimization process starts only after the
finish of merge processes of all partial indexes.

(2) Our new method
(a) Splitting time: It takes 575 (sec) to retrieve the split index data with 0.909 million

documents (4.7GB) from the original index.

54

(b) Transfer time: It takes 4327 (sec) to transfer the total index data (45GB).
(c) Merging time: Lapse time to merge 10 indexes with 0.909 million documents is

1651 (sec).
(d) Optimization time: It takes 3021 (sec) to optimize the index generated by previous

merge process of 10 indexes.

Table 3.5 Lapse time estimation of index reconfiguration process

M N
Lapse time (sec)
(conventional)

Lapse time (sec)
(new)

Lapse time ratio
(new/conventional)

100 50822 9364 0.184

200 86165 8478 0.098

500

300 106610 7926 0.074

100 51283 9575 0.187

200 76603 8845 0.115

1000

300 123992 9600 0.077

According to the above lapse times of individual processes, we can estimate that

the total lapse time for conventional method = 365 (sec) * 100 + 4.33 (sec) + 1.033 (sec)
+ 14778 (sec) = 51283 (sec). Similarly, that for our new method = 575 (sec) + 4327
(sec) + 1652 (sec) + 3021 (sec) = 9575 (sec). Thus, the lapse time of new method is
about 11.6 hours shorter than that of conventional method. In this case, our new method
reduces the lapse time to 18.4% of that of conventional one, that is, our approach is
about 5.43 times faster than conventional one. Furthermore, we estimate lapse times in
other cases which are illustrated in Table 3.5. According to this result, we can see that
our new method can effectively reduce the lapse time as the number of splitting times is
greater. Multiple splitting processes could be a bottleneck for the conventional method
and this is the reason why it can improve the lapse time of index reconfiguration
effectively.

If the treated target data properties such as the number of files and average size of
files are changed, the lapse times for both methods also changes. However, the key
point of the reduction of lapse time of index reconfiguration process is still the number
of splitting times because each process depends on the data size of indexes and it is
proportional to the number of files and average size of files. Therefore, the saving effect

55

of the lapse time of index reconfiguration process with our approach works efficiently if
those data properties are changed. Finally, drawbacks of our approach are complex
implementation and necessity to share the mapping table information among cluster
nodes. Data protection of the mapping table is essential to realize robustness of the
system.

3.6 Conclusion
In this chapter, we proposed a new method called slot-based virtual node method of
consistent hashing to realize the efficient index segmentation and reconfiguration in the
distributed search system. This new approach overcomes the issue of large memory
consumption and improves the index reconfiguration process for the conventional
consistent hashing. Adopting our approach, the memory consumption can be reduced to
13.1MB against 1894.3MB in the conventional method if the number of nodes is 5000.
As for the lapse time of index reconfiguration process, our approach can reduce it to
avoid the multiple splitting processes on each node. In the case when the numbers of
original nodes and added nodes are 1000 and 100 respectively, the total lapse time can
be improved about 11.6 hours according to our estimation.

The remaining problems on this research are as follows. Firstly, the
implementation and evaluation of the actual index reconfiguration function is a
challenge to validate our approach. System evaluation over the several hundred node
cluster is important to validate the actual effectiveness of our algorithm.

Another issue is the security enhancement for the indexing and searching on the
cluster. If target files have access controls put by the system administrator, access to the
search result including the parts of contents should be controlled based on the ACLs
(Access Control Lists). This is really required in the enterprise search field.

56

57

Chapter 4

High Performance Sort-Last
Rendering over an Optical Backplane

4.1 Introduction
Recently, the parallel processing with the commodity PC cluster is the significant
technologies for the batch processing and real-time processing of the large-scale data set.
In the previous chapter, we discussed about the batch processing technologies of the
distributed system for large-scale data processing. In this chapter, we focus on the
real-time processing technology on the PC cluster. Especially, we target on the parallel
rendering system as an example of the real-time processing on the cluster. Increasing in
the needs of graphics technologies for high quality and resolution of three dimensional
images with large data size such as MRI (Magnetic Resonance Imaging), CT (Computer
Tomography) scan and CAD, the real-time parallel rendering methods are required
based on the low-cost commodity machines. In this chapter, we describe the high
performance sort-last rendering method over the optical backplane to correspond to this
nowadays requirement.

The continual drop in the cost of commodity computers has motivated aggressive
research in the development of techniques for realizing and optimizing large scale
computation on PC clusters. On a cluster, each node is connected to each other by a
high-speed communication network whose bandwidth can reach anywhere between
1~10Gbps, depending on the technology used. The cluster system takes the MIMD
(Multiple Instruction stream Multiple Data stream) architecture on which each node can

58

deal with its own data set on its own memory and execute the programs in parallel.
Compared with the SIMD (Single Instruction stream Multiple Data stream) architecture,
it is cost effective and utilization of computing resource is more efficient.

When we consider the efficiency of a parallel algorithm over a cluster, we should
take one major overhead into account, i.e., communication among processing elements.
To minimize the communication cost, we need to (1) communicate in bulk, (2)
minimize the size of transferred data, and (3) minimize the distance of data transfer. The
first and second requirements are for minimizing the start up time and transmission time,
respectively. The third point depends on the topology of the cluster system and the
mapping of the parallel programs. Since the propagation time over the medium of the
network is usually very small on the cluster, we can ignore the distance among the
nodes. We need to take (1) and (2) to optimize the communication among the processing
elements. If the communication payload in a system becomes larger, e.g. the multimedia
application, it is not easy to realize (1) and (2) at the same time. Because if one would
like to send data in bulk, the size of each message becomes large, and if the size of each
message is small, one needs to send messages more frequently. Using a huge bandwidth
network can greatly reduce transmission time, and thus is the most effective way to
realize these two requirements. Therefore, constructing a cluster over a high bandwidth
network such as an optical network is one of the most effective solutions to handle large
data sets on clusters.

The OptIPuter [89], a project at the Electronic Visualization Laboratory (EVL) and
the University of California San Diego, is a computing model which uses optical
networking as a backplane to connect clusters of computers that are collectively
regarded as large computer peripherals. For example, a cluster of computers with
massive RAID disks are thought of as a single large disk drive; and a cluster of
computers with advanced graphics cards are thought of as a single giant graphics card.
These peripherals are then interconnected with optical networks to form a wide variety
of virtual computers that can be specifically customized to meet application's
requirements. The Gigabit Ethernet switch which supports the optical fiber connection
converts the optical signal into the electrical signal to realize the packet switching
internally in the conventional way. Although the achievable bandwidth of the optical
fiber is over 50Tbps, the current limitation of the throughput is 100Gbps through the
Gigabit Ethernet switch which is realized by parallel transmission channels such as
10Gbps×10 or 25Gbps×4. This is due to the response time of a photodiode. The

59

limitation of the signal sampling causes the limitation of the traditional optical-electrical
network switch. Meanwhile, the photonic switch adopts totally different architecture for
switching network. It uses the all-optical MEMS devices to switch the connection inside.
The optical signal incoming via the inbound fiber is routed to the outbound fiber with
the micro-mirrors and lenses in the silicon. There are no signal changes from optical to
electrical. This technology can avoid the bottleneck of the optical-electrical converting
signal and make utilize of the optical fiber's bandwidth possible up to the upper
limitation. The advantage of the photonic switch based cluster is that the bandwidth of
the interconnection among cluster nodes could be over 1000 times larger than the
traditional Gigabit Ethernet cluster.

For example, if the rendering cluster deals with high resolution images such as
QUXGA wide resolution at 20 fps, the required network throughput for the peer-to-peer
node connection through the network switch is about 2.9Gbps. Assume that the number
of interconnections inside the switch is 21 in 13 node tree-structured cluster case, the
backbone throughput is required over 60.9Gbps for one cluster. If we construct multiple
clusters for the stereo view or tiled display, it is required multiple times of the
throughput for a single cluster. So, the high bandwidth switches like pure photonic
switches works effectively to avoid the network bottleneck for rendering the large-scale
image data. Furthermore, the cost performance of the photonic switch is better than
conventional electronic switch which has the similar bandwidth specification. It is also
the energy-saving appliance with 50 watts of power consumption against the electronic
switch whose power consumption is several thousand watts. The every connection
inside the photonic switch can occupy the full bandwidth of the network without
congestion is also the great advantage over the electronic one.

However, there is a serious drawback on the photonic switch based cluster. The
switching delay takes about over 20 milliseconds. If the switch changes connections
among the cluster nodes frequently, the performance of the parallel computation will be
degraded. We can expect the performance improvement of the parallel computation
when the connection among the cluster nodes does not change frequently compared
with the processing time for the assigned task on each node. Especially, if we adopt the
parallel algorithm in which the data flow is static among the nodes and is going to the
single node like a tree-structured connection, the switching does not happen after the
initial connection establishment. We can hide the drawback and get the benefit of the
photonic switch based cluster.

60

In this chapter, we discuss the design and implementation of the sort-last rendering
system on the photonic switch based cluster. Contents of this chapter are as follows;
first of all, we explain the sort-last rendering in Section 4.2. Then, we discuss the design
and implementation of our system in Section 4.3. In Section 4.4, we will provide
experimental results and analysis of the system. Finally, we discuss a feedback control
mechanism to realize a stable burst flow in the cluster in Section 4.5.

4.2 Sort-Last Rendering
There are three well-known parallel rendering algorithms, sort-first, sort-middle, and
sort-last rendering. Their differences are characterized by the time when the primitives
are distributed to several processors in the graphic pipeline. The following Fig. 4.1
illustrates the taxonomy of the parallel rendering architecture.

Fig. 4.1 Taxonomy of the parallel rendering architecture
 (a) sort-first, (b) sort-middle, and (c) sort-last

The graphic pipeline has three stages, the application processing, the geometry

processing, and the rasterization. At the geometry processing stage, each geometry unit

Sort

G G G

R R R

Sort

G G G

R R R
Sort

G G G

R R R

(a) (b) (c)

Application

Display

Application Application

Display Display

61

G processes the geometry to be rendered. At the rasterization stage, each rasterizer unit
R handles the pixel calculations. In the sort-first rendering, the "raw" primitives are
distributed early to each processor during the geometry processing stage. Each
processor is assigned to a part of the entire display which is divided into disjoint regions,
and it renders the assigned primitives individually.

In the sort-middle rendering, the distribution of the work is arbitrary and even
among the geometry units. Each rasterizer unit is responsible for a screen space region.
After the geometry processing, each primitive is allocated to the corresponding
rasterizer unit that is responsible for the screen space location of the primitive.

The sort-last rendering, on the other hand, defers sorting primitives until the end of
the rendering pipeline, i.e. after primitives have been rasterized into pixels. Each
processor is assigned a subset of primitives and renders them no matter where they
locate on the screen. After rendering, processors communicate with each other to
composite those pixels to generate the final entire image. In order to handle the
real-time high quality image rendering, the high data rates over the internetwork among
the rendering processors is required. This is one of the reasons why we target on the
parallel computing system over the high bandwidth optical network.

There are some techniques to optimize the data transfer in the sort-last rendering.
One is the bounding rectangle method. It is also called SL-sparse. It minimizes the data
transfer by only sending the pixels with actual data (active pixels). In order to encode
the active pixels, (1) you find a smallest rectangle which contains all actual pixels in the
rendered image, (2) take coordinates of upper left and lower right points, and (3) pack
these coordinates and the image data inside the rectangle as the buffer to send. When the
original image is sparse, the optimization is done efficiently.
At the composition stage of the sort-last rendering, because the composition of active
pixel and non-active pixel is the active pixel, we should only compose the overlapping
region of two rectangles. This composition technique reduces the time to compose two
images.

Another optimization technique is the run-length encoding method. In the method,
each pixel is classified into two kinds of pixel, active pixel and non-active pixel.
Counting the continuously locating non-active pixels and encode the count as the
integer into the sending buffer, the total size of pixels shrinks. Combining these two
methods, we can optimize the data transfer rate in the sort-last rendering and improve its
performance.

62

4.3 System Design and Implementation

4.3.1 Photonic Computing Engine
The Photonic Computing Environment provides a high performance computing
mechanism over the photonic switch based cluster system. It constructs the pipelines
among the cluster nodes and manages the computation flow. In order to use the photonic
switch to construct the rendering cluster, the cluster application needs to use the PDC
(Photonic Domain Controller) [90] to generate the pipeline connection among the
cluster nodes. Because the current existing library for parallel programming such as
MPICH does not support the manipulation of the connection inside the photonic switch,
it is necessary to implement the network application which generates the network
pipeline among the cluster nodes over the photonic switch. Fig. 4.2 illustrates the
system configuration of PDC, photonic switch and client nodes of the switch. The PDC
provides the interface to create the link inside the photonic switch. The network
application that uses the PDC at first invokes the PDC's interface to establish the
connection between two nodes. After generating the connection, those nodes can
communicate each other with any protocols such as TCP and UDP. The connection can
occupy the whole bandwidth allocated at the initialization time. It is disconnected when
communicating nodes explicitly invoke the disconnect function on the PDC.

Fig.4.3 shows the architecture of the Photonic Computing Environment. Network
applications run on the cluster of PCs over the photonic switch in this computing

Photonic Domain
Controller

Photonic switchClient node 1 Client node 2

1. Connection
request 2. Switching

3. Establishing connection between
node 1 and node 2

Fig. 4.2 System configuration of PDC, photonic switch and client nodes

63

environment. The PCE (Photonic Computing Engine) handles the establishment of the
connection among the cluster nodes and provides the functionality to synchronize
messages to the add-in calculation module such as image rendering module and image
composition module.

The PCE has the two types of data transfer mechanism, pull-up mode and push-out

mode. In the pull-up mode, the client sends a request to the PCE and it returns the
results as the C/S system. In the sort-last rendering case, the viewer on the client send
rendering request to the PCE each time when it needs to change the view. On the other
hand, the outputs of calculations on the PCE are generated as much as possible and sent
to the client in the push-out mode. The push-out mode is useful if the computation
results are automatically generated like animations and movies.

4.3.2 Architecture of the Sort-Last Rendering System
over the PCE
The PCE is the application that provides the network pipeline among the nodes on the
photonic switch based cluster and synchronization mechanism to realize the sort-last
rendering. Fig. 4.4 shows the architecture of the PCE with 7 nodes for the sort-last
rendering.

On the each node, the PCU (Photonic Computing Unit) is running and generates
the pipeline. The client application accesses to the root PCU to get the computing result.
In the sort-last volume rendering system, the PCU plays two types of roles, the
composition proxy and the rendering server. Each rendering server fetches the allocated

Photonic Domain Controller

Photonic Computing Engine

Application (Sort-last rendering)

Optical Network

Fig. 4.3 Architecture of Photonic Computing Environment

64

part of volume data and renders the image. After rendering the image, the rendering
server sends to the composition proxy, which is a parent node of it. At the composition
proxy, it synchronizes the output images and composes them.

Fig. 4.4 Architecture of the 7-node sort-last rendering cluster

Fig. 4.5 Physical configuration of the sort-last rendering cluster

Cross
connections

Photonic switch

Input

Output

Composition
Proxy

Composition
Proxy

Rendering
Server

Rendering
Server

Composition
Proxy

Rendering
Server

Rendering
Server

Output
Images

Input
Data

Input
Data

Input
Data

Input
Data

65

Fig. 4.5 shows the physical configuration of the sort-last rendering cluster. Seven
nodes are connected to the photonic switch through optical fiber cables. Each node has
several network cards to be assigned individual IP addresses. Because the network
connections among nodes are fixed, they have to have individual network cards for
inbound and outbound data connections. The cross connections are established inside
the photonic switch at the initial stage of the data processing. Once they are established,
they do not change during the parallel processing over this pipeline.

4.3.3 Implementation of PCE
In this section, we will describe the actual implementation of the PCE. PCE has
basically the following functionalities, message transferring, message queuing, flow
control, and module add-in.
(1) Message transferring

The PCE generates the cluster as a tree. When the client sends the request to the
PCE, the root node has to propagate the request message to the computing nodes such
as the rendering servers. Since switching the connection among the nodes in the
photonic switch takes much cost, the PCE does not change the connection pattern. The
message needs to be passed along the tree-structured connection. Therefore, the each
PCU has the message transferring mechanism from the parent node to the child nodes.
(2) Message queuing

On the intermediate PCU, the synchronization mechanism is required because the
intermediate PCU might use both results sent from two child PCUs. Each message sent
from the child PCUs has a sequential number and it is used to synchronize the output
results. Since the output messages from the child PCUs are sent to the intermediate PCU
asynchronously, it needs to store the messages in a queue to synchronize them.
(3) Flow control

In the push-out mode, the rendering server sends output image to the composition
proxy. If the output message rate of the rendering server is better than that of the other
rendering servers or ability of message processing at the composition proxy, the queue
could overflow for the message burst. Therefore, the flow control mechanism is
required in the composition proxy. In order to control the flow, we use the socket buffer
and TCP flow control mechanism. If the socket buffer is full, the sender process is
blocked on a TCP connection. Thus, if the length of the queue becomes maximum, the

66

composition proxy blocks the receiving process until a queue element is consumed by
another process. The blocking of the receiving process on the proxy is propagated to the
child node and stop sending data.
(4) Module add-in

Besides the message routing mechanism, the PCE provides the computation add-in
mechanism, that is, you can replace the composition and rendering part of
implementation to other one like the add-in module. You can easily change the
computation algorithm on the PCE by overwriting the computation part of composition
nodes and rendering nodes. For example, the proxy provides the callback function that
is invoked when all output data from child nodes reach at the proxy. One can overwrite
the callback function that handles the output buffers to implement other composition
algorithms. Also, the rendering server provides the display function as the callback
function. If one would like to implement the other rendering algorithms, one can modify
the display function to realize it.

We explain the implementation of the rendering server, composition proxy, and
client viewer. The rendering server renders the part of the volume data with the 3D
texture mapping method. After rendering the assigned part of volume data, it fetches the
image data from the frame buffer. The fetched image is cut into the smallest rectangle
which includes the active part of the image, encoded by the Run Length Encoding
algorithm, and sent to the composition proxy [91]. Fig. 4.6 indicates the rectangle
extraction including active pixels from an image described above.

Fig. 4.6 Rectangle extraction including active pixels

Extraction

(x1, y1)

(x2, y2)

67

The composition proxy receives the encoded images from the child nodes such as
the rendering server and other composition proxy. The encoded images are decoded and
checked whether the two image rectangles have overlapping part or not. If so,
overlapping part of two image rectangles are fetched and composed. Then, the
composed part is embedded into the image rectangle which includes two image
rectangles inside. Fig. 4.7 shows the composition algorithm. Composing the
overlapping part of the rectangles, we can omit the other redundant composition such as
the composition with the blank part of pixels. After finishing the composition, it packs
the data as the message with appropriate header and sends the packed message to the
parent node.

Fig. 4.7 Composition of the overlapping part of two rectangles

The client viewer also has a queue to store the image data sent from the
composition proxy. It fetches the encoded image and pushes it into the queue. The
display routine of the client viewer popes the image data from the queue, decoding data,
embedding it into the original size of blank rectangle, and maps it onto the square
polygon. It also has an interface to change the argument of the volume image. When
you drag the mouse over the display window, the bounding box rotating on the window

Rectangle 1

Rectangle 2

Overlapping part

Rectangle 1

Rectangle 2

Composed part

Compose
overlapping

parts and embed

Composed rectangle

68

and send the request message to the composition proxy when you release the mouse
button. We can switch pull-up mode or burst image mode with the client viewer.

Setting the configuration file, one can specify the tree structure of the cluster. In the
configuration file, the information of the network connection can be described by the
port numbers and network addresses of parent node, child nodes and message transfer
service on each node. Each node has the ID specified by the command line argument at
the beginning of the execution. In the configuration file, the set of parameters for each
node is separated and identified with the node ID. Each node reads its configuration part
from the configuration file according to its ID.

Since the cluster in EVL consists of the nodes on which Linux is running and
Linux cannot recognize more than 2 optical network cards, the proxy cannot have 3
network cards to construct the data processing pipeline currently. Therefore, the current
implementation does not have the function to construct the connections over the
photonic switch with PDC. However, once the pipeline is constructed with PDC, the
communication overhead in terms of the PDC does not happen during the computation
of image rendering. Additionally, bandwidth of an optical network card and a regular
Gigabit network card are similar to each other (both have around 1Gbps). We can
simulate and evaluate the performance of PCE somehow in the current implementation.

4.4 Experimental Result
In order to evaluate the PCE, we implemented the sort-last volume rendering system
over the PCE and took some experiments. The volume rendering is a method to
visualize the volume data which is sampled by MRI or CT scanner. The sampled data
has the scalar value for each point in the three-dimensional spatial data. Several
methods are proposed to visualize the volume data. The representative methods are ray
casting, splatting, shear-warp and hardware-assisted 3D texture mapping [92][93]. We
implemented the 3D texture mapping method to render the volume in the system

We used the cluster that has 16 nodes, 1 master and 15 slaves. Each node has dual
Xeons 1.8GHz and 1.5GB memory. The graphics card is PNY Quadro FX3000 and the
Gigabit Ethernet card is equipped on each node. All nodes are connected to the Gigabit
Ethernet Switch to construct a cluster. In the experiment, we constructed the 7-node
sort-last rendering system on the cluster and rendered the three sample volume data,
protein.raw, hydrogen.raw and foot.raw, which have sizes of 64×64×64, 128×128×128,

69

and 256×256×256 respectively [94].
We took several trials for image resolutions 128×128, 256×256 and 512×512, and

measured time intervals on the client viewer, the composition proxy, and the rendering
server. The measured time intervals are the total delay, queuing time, blending time,
bounding rectangle calculation time and so on.

The graphs in Fig. 4.8 show the total delay and spent time for each process in the
system. Total delay means how long it takes from the start of sending request message
to final image displaying on the client viewer. Image embedding time is the time to
embed the partial rectangle image into the original size of blank image to generate the
final one. Blending time is the composition processing time for two received images.
Synchronization time is the time to take for synchronizing the received data, that is, the
time interval from the arrival of the first image to the arrival of the final image. It is
actually the time the data spent in the queue until it is popped out. Finally, queuing time
is the time to push and pop the data in the queue respectively. Queue data is stored in
the shared memory. Attaching, detaching, reading and writing data to the shared
memory is the main processes of the queue handling.

From the experimental results, the total delay and synchronization time for a single
image rendering are up to 0.288 seconds and 0.167 seconds respectively in the case
when the resolution size is 512×512. It actually achieves enough performance for
dialogical real-time rendering system. As it can be seen in these graphs, the total delay
increases as the resolution size does. The number of polygons did not affect the
performance explicitly, since the performance of the rendering server is so much better
compared with the processing performance inside the proxies. From these results, we
can see that the blending time increases as the size of the resolution becomes larger. The
reason is like this. If the resolution is larger, the overlapping part of the two rectangles
on the composition process becomes larger. The blending calculation spends more time
as the size of the overlapping part of the two rectangles increases. Actually, blending
time is proportional to the image size.

Other time intervals such as synchronization, queue push and queue pop do not
change explicitly in this experiment. However, the synchronization time can increase if
the transferred data size is getting larger, since it includes the data receiving time. Thus,
we can say that the transmission time affects the synchronization time and total
performance of the frame rate on the client viewer significantly.

70

Fig. 4.8 Total delay and spent time of each processing in the 7-node volume
rendering cluster system

Sy
nc

hr
on

izi
ng

To
tal

 de
lay

 0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Processing time for protein.raw

sp
en

t t
im

e
(s

ec
)

128x128
256x256
512x512

Bl
en

din
g

Qu
eu

ing

Im
ag

e
em

be
dd

ing

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Processing time for hydrogen.raw

sp
en

t t
im

e
(s

ec
)

128x128
256x256
512x512

Bl
en

din
g

Sy
nc

hr
on

izi
ng

To
tal

 de
lay

Qu
eu

ing

Im
ag

e
em

be
dd

ing

Sy
nc

hr
on

izi
ng

To
tal

 de
lay

 0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Processing time for foot.raw

sp
en

t t
im

e
(s

ec
)

128x128
256x256
512x512

Bl
en

din
g

Qu
eu

ing

Im
ag

e
em

be
dd

ing

71

Here, we give further considerations for the result in Fig. 4.8. In terms of the
synchronization time, it exceeds largely over 0.05 seconds in 512×512 resolution
comparing with other ones. This implies that the data transmission time affects the
synchronization time strongly in this case. Thus, if the transmission speed goes to 10
times faster, the synchronization time is under 0.05 seconds. On the other hand, the
blending time is proportional to the size of image resolution. For instance, changing the
resolution from 256×256 to 512×512, the blending time becomes 4 times longer. In the
case of foot.raw, the bottle neck is changing from synchronizing process to blending
process if the transmission speed is 4 times faster because the synchronization time is
nearly equal to that in 256×256, which is under 0.05 seconds.

Fig. 4.9 shows the frame rate on the client viewer when the system pushes out the
output image as fast as possible or keeps the sending rate in a certain speed, such as 10
fps, 15 fps, and 20 fps. In order to keep the sending rate, the rendering server takes sleep
for appropriate time in the redraw routine.

Fig. 4.9 Frame rate in push-out mode

0

2

4

6

8

10

12

14

16

P
ro

te
in

.ra
w

H
yd

ro
ge

n.
ra

w

Fo
ot

.ra
w

P
ro

te
in

.ra
w

H
yd

ro
ge

n.
ra

w

Fo
ot

.ra
w

P
ro

te
in

.ra
w

H
yd

ro
ge

n.
ra

w

Fo
ot

.ra
w

P
ro

te
in

.ra
w

H
yd

ro
ge

n.
ra

w

Fo
ot

.ra
w

10FPS 15FPS 20FPS As fast as possible

FP
S

128x128

256x256

512x512

72

From the experimental result of the push-out mode, our system can achieve the
throughput from 9 to 14 fps on the image streaming process. If the rendering server
sends the data as much as possible, the actual frame rate is not good, because the data
flow in the cluster is not smooth. When the message-sending rate at the rendering
servers is too high, the queues in the composition proxies can be full easily and
frequently because once one rendering server’s performance get worse, the other one
send messages during the time and the many messages which cannot be synchronized
arrive at the composition proxy. Controlling the output of the rendering server, data flow
inside the cluster get smooth and the frame rate is improved as you can see in the other
sending rate cases. What is the optimal message-sending rate on the rendering servers is
the significant problem in order to maximize the performance.

4.5 Data Flow Control Mechanism in PCE
In this section, we discuss the flow control mechanism [95][96] for the push-out mode.
The objective of this mechanism is to adaptively determine the optimal push-out rate for
the rendering system to ensure maximum frame rate. Fig. 4.10 shows the data flow
model of the 7-node cluster, where nij denotes the number of messages generated by a
rendering process j, and noj denotes the number of messages handled by a composition
process j.

Fig. 4.10 The data flow model of the 7-node cluster

no1

Compose

Compose

Queue

Render

Render

Render

Render

Compose

ni1

ni2

ni3

ni4

no2

no3

Queue

Queue

Queue

Queue

Queue

73

A composition process assembles two messages together each of which comes
from a different queue, and creates one message. The whole system is composed of six
small equivalent sub-systems as shown in Fig. 4.11, where ni is the number of input
message, and no is the number of output message.

Fig. 4.11 The sub-system

A system achieves the maximum-speed response with a predictable operation if the
system operates at a state close to stability boundary. A queue pair refers to two queues
feeding the same composition process. If two queues in a queue pair are stable, i.e.,
always have some messages to feed a composition process and at the same time no
queue has an overwhelming number of messages than another, the system can achieve
the maximum message-sending rate. In other words, the system can achieve the
maximum rate by maintaining a non-zero and small queue in a steady state and draining
queues when the sources do not have messages to send. Therefore, in order to achieve
the maximum rate, we should maintain a small number of messages in every queue.
This is the problem of making the sub-system be stable.

A queue does not change the number of messages, but it imposes delay to message
flow. Thus a queue can be modeled as a delay part, so is a composition process. Let
l=l(t) to express the length of a queue, then we have:

Since queue length is greater than zero in a stable state, therefore, we have,

whose corresponding Laplace transform is

nino

otherwise
rrorlifrr

dt
dl oioi >>

⎩
⎨
⎧ −

=
0

0

s
sRsRsL oi)()()(−

=

∫ −=
t

oi duururtl
0

))()(()(

Queue

(4.1)

(4.2)

(4.3)

74

The message-sending rate is the derivative of the number of messages generated by a
rendering process and output rate is the derivative of the number of messages processed
by a composition process, i.e.,

Laplace transform for a derivative is

Since ro(0) = 0 and ri(0)=0, we have Laplace transforms for ro(t) and ri(t) as follows.

Therefore, the fluid-flow model for the open-loop sub-system can be modeled as
shown in Fig. 4.12, where τ is the delay of the sub-system, Ri and Ro is the Laplace
transform of the message-sending rate and message-output rate respectively.

Fig. 4.12 Open-loop sub-system

)()()(ssNtn
dt
dLsR ooo =⎥⎦

⎤
⎢⎣
⎡=

)()()(ssNtn
dt
dLsR iii =⎥⎦

⎤
⎢⎣
⎡=

)0()()(±−=⎥⎦
⎤

⎢⎣
⎡ fssFtf

dt
dL

Ni(s) No(s)

Ri(s) Ro(s)

s s

1/s 1/s

L(s)

−

se τ−

+

)()(tn
dt
dtr ii =

)()(tn
dt
dtr oo = (4.4)

(4.5)

(4.6)

(4.7)

(4.8)

75

From Fig. 4.12, we have the following equations.

From Eq. (4.3) and Eq. (4.9), we know the open-loop transfer function of the system is
as follows.

Here, τ is small, so the system can be considered as a linear system within a small
range of time. Thus the system can be analyzed by the stability criterion of a linear
system, which says that a system is stable if all roots of its characteristic equation lie to
the left of imaginary axis in the s-plane.

The characteristic equation of this system has only one root, s = 0, which means
that the system is boundary stable. However, usually a boundary-stable system is not
stable in operation. To make this system stable, one option is to add a negative feedback
to the system, as shown in Fig. 4.13, where λ is a feedback gain.

Fig. 4.13 Closed loop subsystem

From Fig. 4.13, we know the following equations.

s
i

is
i

s
oo esR

s
sRsesNsessNsR τττ −−− ====)()()()()(

s
e

sR
sL s

i

τ−−
=

1
)(
)(

s
sRsRsL oi)()()(−′

=

(4.9)

(4.10)

(4.11)

Ni(s) No(s)

Ri(s)

Ro(s)

s s

1/s 1/s

L

−

λ
+ −

se τ−

)(sRi′
+

76

Thus, the closed-loop transfer function is the following.

The system has a pole at -λ, therefore, the system is stable provided λ> 0.

We can apply this control mechanism to the 7-node cluster as follows. When the
composition proxy receives the message, it returns the feedback λL to the child node
where L is the current queue length. Then, the child node controls the message-sending
rate to ri-λL. If the child node is the rendering server, it can add some time interval in
the display loop to control the sending rate. If the child node is the composition proxy, it
adds some time interval in the composition routine to control the message-sending rate
to realize the feedback control.

4.6 Conclusion
We designed the sort-last rendering cluster system with photonic switch over the

optical fiber network and implemented the system to evaluate its performance. From the
experimental results, the total delay and synchronization time for a single image
rendering are up to 0.288 seconds and 0.167 seconds respectively in the case when the
resolution size is 512×512. It actually achieves enough performance for dialogical
real-time rendering system.

According to the analysis of the internal processing times for a single image
rendering, performance of the sort-last parallel rendering system is mainly affected by
the image blending time and synchronization time. Especially the synchronization time
accounts for almost half percentage of the total lapse time. Other time intervals such as
queuing time and image embedding time do not change explicitly in the different
conditions. The synchronization time can increase if the transferred data size is getting
larger, since it includes the data receiving time. Thus, we can say that the transmission
time affects the synchronization time and total performance of the frame rate on the
client viewer significantly. We can also see that the blending time increases as the size
of the resolution becomes larger. If the resolution is larger, the overlapping part of the

λ

τ

+
−

=
−

s
e

sR
sL s

i

1
)(
)(

s
io eRsR τ−=)(

)()()(sLsRsR ii λ−=′ (4.12)

(4.13)

(4.14)

77

two rectangles on the composition process becomes larger. The blending calculation
spends more time as the size of the overlapping part of the two rectangles increases.

If the transmission speed goes to 10 times faster, the synchronization time is under
0.05 seconds because it is possible to ignore the effect of the transmission time. On the
other hand, the blending time is proportional to the size of image resolution. In the case
of foot.raw, the bottle neck is changing from synchronizing process to blending process
if the transmission speed is 4 times faster because the synchronization time is nearly
equal to that in 256×256, which is under 0.05 seconds.

While the frame processing ability of the composition proxy is related to the
resolution and the density of the active pixel, it is relatively independent on the number
of polygons rendered on the rendering server. Thus, the system can keep the rendering
performance until when the number of assigned polygons to the rendering server
reaches to the limitation of graphics cards equipped on it, even if the number of
polygons increases much more. On the other hand, the rendering performance will be
getting worse if the image resolution size is greater because the transmission cost is
larger. When the display sizes of contents on the image are not large, the performance
could be kept better because the compression rate of the messages is higher. But if they
are enlarged on the screen, the compression rate is worse to drop the rendering
performance. Partitioning the image and increasing the clusters could be a remedy in
this case.

As for the experimental results of the push-out mode, our system can achieve the
throughput from 9 to 14 fps on the image streaming process. However, when rendering
servers generate images as much as possible and the message-sending rate exceed the
processing capability on the composition proxy, the frame rate on the client viewer gets
worse. To realize the optimal data flow inside the cluster, we propose the flow control
mechanism which calculates the optimal message- sending rate from the current queue
length L. Actually the feedback system needs to set the message-sending rate ri-λL for
given L to optimize the data flow inside the cluster. Evaluating the efficacy of the
adaptive flow mechanism is the future work, as well as testing in a fully realized optical
network.

78

79

Chapter 5
Conclusions

5.1 Concluding Remarks
In this dissertation, we discussed reliability and performance improvement of the
distributed system for large-scale data and proposed the reliable and secure pseudo thin
client method, the slot-based virtual node method of consistent hashing, and the sort-last
rendering method over the cluster based on the photonic switch. This dissertation
reports these research results individually in the following four chapters.

In the chapter 1, we described the trend of technologies related to the distributed
system consist of commodity servers for large-scale data set and clarified its significant
issues. Additionally, we explained the related works in terms of technologies related to
the individual issues and our research strategies.

In the chapter 2, the reliable and secure pseudo thin client based on the write
protection of local disks with virtual cache mechanism was proposed. The proposed
method realizes the write protection to the local disks to make the commodity PC as the
pseudo thin client terminal. In order to solve the memory exhausting issue, we
implemented the virtual cache mechanism on the write protection driver to evacuate the
cached data from memory to local disk or iSCSI volumes. The simulation result of the
paging algorithm indicates that RANDOM is the best one for the virtual cache
mechanism. We also evaluated the disk I/O performances in the write-protected mode
and paging processing to local disks and iSCSI volume to check its feasibility.
According to the evaluation results, the disk I/O performance in the write-protected
mode is much better than the raw disk access performance because of the RAM disk

80

effectiveness. The disk I/O performance during the paging process also takes practical
values to verify its feasibility.

In the chapter 3, we proposed the slot-based virtual node method of consistent
hashing. The proposed method can save the memory resources and shrink the
reconfiguration time of distributed indexes in the processes of adding and removing
cluster nodes. In our approach, the hash ring space of consistent hashing is divided into
multiple regions with equal size. The virtual nodes are plotted on the slot boundaries on
the hash ring space where the sizes of allocated range spaces are almost equal for every
node to uniformize the probability of entry allocation to each node. When the multiple
nodes are added or removed, our slot-based virtual node reallocation algorithm works to
plot or reallocate the virtual nodes on the hash ring space to realize “a bunch of” data
migration as far as possible to optimize the index reconfiguration. In order to evaluate
our approach, we measure the memory consumptions and estimate the lapse times of
index reconfiguration processes to check advantages of our approach compared with the
conventional method. Adopting our approach, the memory consumption can be reduced
to 13.1MB against 1894.3MB in the conventional method if the number of nodes is
5000. As for the lapse time of index reconfiguration process, our approach can reduce it
to avoid the multiple splitting processes on each node. In the case when the numbers of
original nodes and added nodes are 1000 and 100 respectively, the total lapse time can
be improved about 11.6 hours according to our estimation.

In the chapter 4, we proposed the sort-last rendering method over the cluster based
on the photonic switch to realize the high-performance rendering of large-scale
three-dimensional image data. In order to solve the drawback of switching delay in the
photonic switch, our sort-last rendering system constructs the tree-structured pipelines
to avoid the network switching during the parallel rendering process. From the
experimental results, the total delay and synchronization time for a single image
rendering are up to 0.288 seconds and 0.167 seconds respectively in the case when the
resolution size is 512×512. It actually achieves enough performance for dialogical
real-time rendering system. Performance of the rendering system is mainly affected by
the image blending time and synchronization time. The total delay increases as the
resolution size does. In addition, our system can achieve the throughput from 9 to 14 fps
on the image streaming process. To realize the optimal data flow inside the cluster, we
proposed the flow control mechanism which calculates the optimal message-sending
rate from the current queue length L. Actually the feedback system needs to set the

81

message-sending rate ri-λL for given L to optimize the data flow inside the cluster.

5.2 Future Directions
Finally, we describe the future problems and directions on this research.
(1) High-speed achieve and search technologies for massive sensor data and log data

In the chapter 3 of this dissertation, the parallel batch processing is discussed to
realize the high-speed index generation for the large number of target files. Hadoop
technology is one of the powerful and effective methodologies for this kind of
processing. Recently, these data archive and processing frameworks using commodity
servers are getting popular in the big data market. Especially, the technologies for
archiving and analyzing the machine generated data such as sensor data and log data are
getting more important. The high-speed archive and search technologies for massive
machine generated data is one of the significant research issues with respect to the
distributed system for large scale data processing
(2) Secure batch processing framework with PC cluster for sensitive information

In the chapter 2 and 3 of this dissertation, we discussed on the security and high
speed batch processing on the distributed system that consists of commodity machines.
In the near future, the improvement of batch processes by using the Hadoop framework
will be more popular in the world. In fact, the Hadoop-based solutions for improving
the daily batch processes of business data stored in DB are provided by several IT
vendors recently. However, there are not enough methodologies of data security handled
in the Hadoop framework currently. The secure batch processing architecture for the
sensitive information is the significant issue in this area.

82

83

Acknowledgements

I am cordially grateful to Professor Norihisa Komoda of the Graduate School of
Information Science and Technology at Osaka University for his visionary directions
and constructive suggestions on this research activity and on writing this dissertation.

I would like to thank to Professors Toru Fujiwara, Shinji Shimojo of the Graduate
School of Information Science and Technology at Osaka University for their numerous
suggestions for revising this dissertation.

I also so much appreciate to Professors Shojiro Nishio, Koh Hosoda, and Associate
Professor Masanori Akiyoshi (Currently, Professor of Hiroshima Institute of
Technology) of Graduate School of Information Science and Technology at Osaka
University for their valuable comments and supports on this research.

I would also like to acknowledge Distinguished Professor Emeritus Tadao Murata
and Professor Jason Leigh of Department of Computer Science, University of Illinois at
Chicago for their supervision and valuable suggestions during my stay and study in the
beautiful windy city Chicago.

My sincere appreciation also goes to ex-Vice President and Executive Officer Mr.
Hiroyuki Maezawa of Hitachi Solutions, Ltd. for giving this opportunity and full
accommodation to study in the Graduate School of Information Science and Technology
at Osaka University.

I would like to express my appreciation to Mr. Tsutomu Shomura, Deputy General
Manager, Engineering and Information Technical Management Group, Dr. Takashi
Onoyama, Department Manager of Research and Development Department, and Dr.
Yoshiki Sameshima, Chief Researcher, for their understanding, support, and a lot of
useful advices ever since my joined Hitachi Solutions, Ltd. I would also like to give my
thanks to my seniors, colleagues, and juniors of the company.

84

I must extend my deepest gratitude to my parents, brother, and sister for their
sincere encouragement and support in my endeavors. Finally I would like to thank my
wife Satomi, who has been encouraging and supportive, and my daughter Tamaki, who
always brings a cheerful air and happiness to our family.

85

References

[1] J. Gantz and D. Reinsel: “The Digital Universe Decade – Are You Ready?,” EMC

(online), available from <http://www.emc.com/collateral/analyst-reports/idc-digi
tal-universe-are-you-ready.pdf> (accessed 2012-05-02).

[2] “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,
2010-2015,” Cisco Systems, Inc. (online), available from <http://newsroom.
cisco.com/dlls/ekits/Cisco_VNI_Global_Mobile_Data_Traffic_Forecast_2010_20
15.pdf> (accessed 2012-05-02).

[3] S. Ghemawat, H. Gobioff, and S.-T. Leung: “Google File System,” in Proceedings
of the 19th ACM Symposium on Operating Systems Principles, pp.29-43 (2003).

[4] J. Dean, and S. Ghemawat: “MapReduce: Simplified Data Processing on Large
Clusters,” in Proceedings of the 6th Symposium on Operating Systems Design and
Implementation (OSDI 2004), pp.137-150 (2004).

[5] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis:
“Evaluating MapReduce for Multi-core and Multiprocessor Systems,” in
Proceedings of the 13st International Conference on High-Performance Computer
Architecture (HPCA 2007), pp.13-24 (2007).

[6] C. Chu, S. K. Kim, Y. Lin, Y. Yu, G. Bradski, A. Y. Ng, and K. Olukotun:
“MapReduce for Machine Learning on Multicore,” in Proceedings of Advances in
Neural Information Processing Systems 19, pp.281-288 (2006).

[7] R. Chen, H. Chen, and B. Zang: “Tiled-MapReduce: Optimizing Resource Usages
of Data-parallel Applications on Multicore with Tiling,” in Proceedings of the 19th
International Conference on Parallel Architectures and Compilation Techniques
(PACT 2010), pp.523-534 (2010).

[8] A. Alexandrov, S. Ewen, M. Heimel, F. Hueske, O. Kao, V. Markl, E. Nijkamp,

86

and D. Warneke: “MapReduce and PACT – Comparing Data Parallel
Programming Models,” in Proceedings of the 14th International Conference on
Database Systems for Business, Technology, and Web (BTW 2011), pp.25-44
(2011).

[9] “Welcome to ApacheTM HadoopTM!,” The Apache Software Foundation (online),
available from <http://hadoop.apache.org/> (accessed 2012-05-02).

[10] Tom White: “Hadoop: The Definitive Guide,” O’Reilly (2009).
[11] J. Lin: “Scalable Language Processing Algorithms for Masses: A Case Study in

Computing Word Co-occurrence Matrices with MapReduce,” in Proceedings of
the 2008 Conference on Empirical Methods in Natural Language Processing,
pp.419-428 (2008).

[12] N. Golpayegani, and M. Halem: “Cloud Computing for Satellite Data Processing
on High End Compute Clusters,” in Proceedings of 2009 IEEE International
Conference on Cloud Computing, pp.88-92 (2009).

[13] A. Matsunaga, M. Tsugawa, and J. Fortes: “CloudBLAST: Combining MapReduce
and Virtualization on Distributed Resources for Bioinformatics Applications,” in
Proceedings of the 4th IEEE International Conference on eScience, pp.222-229
(2008).

[14] “MPICH2: High-performance and Widely Portable MPI,” Argonne National
Laboratory (online), available from <http://www.mcs.anl.gov/research/projects/
mpich2/> (accessed 2012-05-02).

[15] D. Buntinas, G. Mercier, and W. Gropp: “Implementation and Evaluation of
Shared-Memory Communication and Synchronization Operations in MPICH2
using the Nemesis Communication Subsystem,” Parallel Computing, Vol.33, No.9,
pp.634-644 (2007).

[16] W. Gropp and R. Thakur: “Issues in Developing a Thread-Safe MPI
Implementation,” in Proceedings of the 13th European PVM/MPI Users' Group
Meeting (Euro PVM/MPI 2006), pp.12-21 (2006).

[17] S. Byna, W. Gropp, X. Sun, and R. Thakur: “Improving the Performance of MPI
Derived Datatypes by Optimizing Memory-Access Cost,” in Proceedings of the
IEEE International Conference on Cluster Computing (Cluster 2003), pp. 412-419
(2003).

[18] “LAM/MPI Parallel Computing,” Indiana University (online), available from
<http://www.lam-mpi.org> (accessed 2012-05-02).

87

[19] S. Sankaran, J. M. Squyres, B. Barrett, A. Lumsdaine, J. Duell, P. Hargrove, and E.
Roman: “The LAM/MPI Checkpoint/Restart Framework: System-Initiated
Checkpointing,” International Journal of High Performance Computing
Applications, Vol.19, No.4, pp.479-493 (2005).

[20] G. Burns, R. Daoud, and J. Vaigl: “LAM: An Open Cluster Environment for MPI,”
in Proceedings of Supercomputing Symposium ’94, pp.379-386 (1994).

[21] J. M. Squyres and A. Lumsdaine: “A Component Architecture for LAM/MPI,” in
Proceedings of the 10th European PVM/MPI Users’ Group Meeting, pp.379-387
(2003).

[22] D. Luckham: “The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems,” Addison-Wesley Professional (2002).

[23] D. Gyllstrom, E. Wu, H. Chae, Y. Diao, P. Stahlberg, and G. Anderson: “SASE:
Complex Event Processing over Streams,” in Proceedings of 3rd Biennial
Conference on Innovative Data Systems Research (CIDR 2007), pp.407-411
(2007).

[24] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman: “Efficient Pattern Matching
over Event Streams,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD 2008), pp.147-160 (2008).

[25] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku, C.
Olston, J. Rosenstein, and R. Varma: “Query Processing, Resource Management,
and Approximation in a Data Stream Management System,” in Proceedings of the
1st Biennial Conference on Innovative Data Systems Research (CIDR 2003),
pp.245-256 (2003).

[26] “Gluster.org Community Website | GlusterFS is a cluster file-system capable of
scaling to several peta-bytes,” Gluster, Inc. (online), available from
<http://www.gluster.org> (accessed 2012-05-02).

[27] R. Noronha and D. K. Panda: “IMCa: A High Performance Caching Front-end for
GlusterFS on InfiniBand,” in Proceedings of the 37th International Conference on
Parallel Processing, pp.462-469 (2008).

[28] “IBM General Parallel File System,” IBM (online), available from
<http://www-03.ibm.com/systems/software/gpfs> (accessed 2012-05-02).

[29] F. Schmuck and R. Haskin: “GPFS: A Shared-Disk File System for Large
Computing Clusters,” in Proceedings of the FAST’02 Conference on File and
Storage Technologies, pp.231-244 (2002).

88

[30] P. F. Corbett and D. G. Feitelson: “The Vesta Parallel File System,” ACM
Transactions on Computer Systems, Vol.14, No.3, pp.225-264 (1996).

[31] “The Apache Cassandra Project,” Apache Software Foundation (online),
available from <http://cassandra.apache.org> (accessed 2012-05-02).

[32] A. Lakshman, and P. Malik: “Cassandra: a decentralized structured storage
system,” ACM SIGOPS Operating Systems Review, Vol.44, No.2, pp.35-40 (2010).

[33] “HBase Home,” Apache Software Foundation (online), available from
<http://hbase.apache.org> (accessed 2012-05-02).

[34] L. George: “HBase: The Definitive Guide,” O’Reilly (2011).
[35] C. Zhang and H. D. Sterck: “CloudBATCH: A Batch Job Queuing System on

Clouds with Hadoop and HBase,” in Proceedings of the 2nd IEEE International
Conference on Cloud Computing Technology and Science (CloudCom 2010),
pp.368-375 (2010).

[36] C. Zhang and H. D. Sterck: “Supporting Multi-row Distributed Transactions with
Global Snapshot Isolation Using Bare-bones HBase,” in Proceedings of the 11th
ACM/IEEE International Conference on Grid Computing (Grid 2010), pp.177-184
(2010)

[37] “Apache CouchDB,” Apache Software Foundation (online), available from
<http://couchdb.apache.org> (accessed 2012-05-02).

[38] “CouchDB: The Definitive Guide,” O’Reilly (2009).
[39] “MongoDB,” 10gen, Inc. (online), available from <http://www.mongodb.org>

(accessed 2012-05-02).
[40] K. Banker: “MongoDB in Action,” Manning Publications (2011).
[41] Z. Wei-ping: “Using MongoDB to implement textbook management system

instead of MySQL,” in Proceedings of IEEE 3rd International Conference on
Communication Software and Networks (ICCSN), pp.303-305 (2011).

[42] Y. Kirihata, Y. Sameshima, T. Onoyama, and N. Komoda: “Data Loss Prevention
for Confidential Web Contents and Security Evaluation with BAN Logic,”
International Journal of Computers, Vol.5, No.3, pp.414-422 (2011).

[43] Y. Kirihata and Y. Sameshima: “A Web-based System for Prevention of
Information Leakage,” The 11th International World Wide Web Conference
(WWW2002), poster-127 (2002).

[44] Y. Kirihata, Y. Sameshima, T. Onoyama, and N. Komoda: “A Novel Approach for
Protection of Confidential Web Contents,” in Proceedings of the European

89

Computing Conference (ECC’11), pp.110-115 (2011).
[45] Y. Kirihata and Y. Sameshima: “A Web-based System for Prevention of

Information Leakage,” in Proceedings of the 61st Annual Convention IPS Japan –
Distributed Systems and Security (2000) (in Japanese).

[46] “Act on the Protection of Personal Information,” Government of Japan (online),
available from <http://www.caa.go.jp/seikatsu/kojin/houritsu/houritsu.pdf>
(accessed 2012-05-02).

[47] A. Y. Wong and M. Seltzer: “Evaluating Windows NT terminal server
performance,” in Proceedings of the Third USENIX Windows NT Symposium
(USENIX, Seattle), pp.145-154 (1999).

[48] A. Y. Wong and M. Seltzer: “Operating System Support for Multi-User, Remote,
Graphical Interaction,” in Proceedings of the USENIX 2000 Annual Technical
Conference, pp.183-196 (2000).

[49] “Citrix XenDesktop: Designing an Enterprise Solution Guild,” Citrix, Inc.
(online), available from <http://www.citrix.com/site/resources/dynamic/salesdocs/
XD_Enterprise_Design_White_Paper.pdf> (accessed 2012-05-02).

[50] T. W. Mathers and S. P. Genoway: “Windows NT Thin Client Solutions:
Implementing Terminal Server and Citrix MetaFrame,” Macmillan Technical
Publishing (1998).

[51] B. K. Schmidt, M. S. Lam, and J. D. Northcutt: “The interactive performance of
SLIM: a stateless, thin-client architecture,” 17th ACM Symposium on Operating
Systems Principles, Vol.33, No.5, pp.32-47 (1999).

[52] R. W. Scheifler and J. Gettys: “The X Window System,” ACM Transactions on
Graphics, Vol.5, No.2, pp 79-106 (1986).

[53] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper: “Virtual Network
Computing,” IEEE Internet Computing, Vol.2, No.1, pp.33-38 (1998).

[54] “VMware vSphere Basics Guide,” VMware, Inc. (online), available from < http://
pubs.vmware.com/vsphere-50/topic/com.vmware.ICbase/PDF/vsphere-esxi-vcente
r-server-50-basics-guide.pdf> (accessed 2012-05-02).

[55] “HP Consolidated Client Infrastructure (CCI) Network Consideration Guide,”
Hewlett-Packard Company (online), available from <http://bizsupport1.austin.hp.
com/bc/docs/support/SupportManual/c01163844/c01163844.pdf> (accessed 2012-
05-02).

[56] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek, F. Dabek, and H.

90

Balakrishnan: “Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications,” IEEE/ACM Transactions of Networking, Vol.11, No.1, pp.17-32
(2003).

[57] P. Ganesan and G. S. Manku: “Optimal Routing in Chord,” in Proceedings of the
15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004),
pp.169-178 (2004).

[58] F. Dabek, E. Brunskill, M. F. Kaashoek, D. Karger, R. Morris, I. Stoica, and H.
Balakrishnan: “Building Peer-to-Peer Systems with Chord, a Distributed Lookup
Service,” in Proceedings of the 8th Workshop on Hot Topics in Operating Systems
(HotOS-VIII), pp.81-86 (2001).

[59] B. Leong, B. Liskov, and E. D. Demaine: “EpiChord: Parallelizing the Chord
lookup algorithm with reactive routing state management,” Journal of Computer
Communications, Vol.29, No.9, pp.1243-1259 (2006).

[60] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs: “A Sorting Classification of
Parallel Rendering,” IEEE Computer Graphics and Applications, Vol.14, No.4,
pp.23-32 (1994).

[61] K. Moreland, B. Wylie, and C. Pavlakos: “Sort-last Parallel Rendering for Viewing
Extremely Large Data Sets on Tile Displays,” in Proceedings of IEEE 2001
Symposium on Parallel and Large-Data Visualization and Graphics (PVG 2001),
pp.85-92 (2001).

[62] S. Eilemann and R. Pajarola: “Direct Send Compositing for Parallel Sort-Last
Rendering,” in Proceedings of Eurographics Symposium on Parallel Graphics and
Visualization (EGPGV 2007), pp.29-36 (2007).

[63] C. Mueller: “Sort-First Rendering Architecture for High-Performance Graphics,”
in Proceedings of the 1995 Symposium on Interactive 3D Graphics, pp.75-84
(1995).

[64] M. Woo, J. Neider, T. Davis, and D. Shreiner: “OpenGL Programming Guide,
Third Edition,” Addison-Wesley (1999).

[65] Y. Kirihata, Y. Sameshima, T. Onoyama, and N. Komoda: “WriteShield: A Pseudo
Thin-Client for Prevention of Information Leakage,” IEEJ Transactions on
Electronics, Information and Systems, Vol.132, No.2, pp.253-259 (2012).

[66] Y. Kirihata, Y. Samashima, and T. Onoyama: “WriteShield: A Pseudo Thin-Client
System for Prevention of Information Leakage,” in Proceedings of the 8th IEEE
International Conference on Industrial Informatics (INDIN2010), pp.478-483

91

(2010).
[67] K. Nakayama, Y. Kirihata, and Y. Samashima: “A Process-based Write Control for

Software Update on the Pseudo Thin Client PC,” in IPSJ SIG Notes on Computer
Security Group, Vol.2010, No.5, pp.1-6 (2010) (in Japanese).

[68] Y. Kirihata, T. Onoyama, and N. Komoda: “A Slot-based Virtual Node Method of
Consistent Hashing for Optimization of Index Reconfiguration on Distributed
Search,” IEEJ Transactions on Electronics, Information and Systems, Vol.132,
No.10 (2012) (to be published).

[69] Y. Kirihata, J. Leigh, C. Xiong, and T. Murata: “A Sort-Last Rendering System
over an Optical Backplane,” Journal of Systemics, Cybernetics and Informatics,
Vol.3, No.3, pp.63-69 (2005).

[70] Y. Kirihata, J. Leigh, C. Xiong, and T. Murata: “A Sort-Last Rendering System
over an Optical Backplane,” in Proceedings of the 10th International Conference
on Information Systems Analysis and Synthesis (ISAS 2004) and the International
Conference on Cybernetics and Information Technologies, Systems and
Applications (CITSA 2004), Vol.1, pp.42-47 (2004)

[71] B. Shneiderman: “Designing the User Interface: Strategies for Effective
Human-Computer Interaction, 4th edition,” Addison-Wesley (2004).

[72] J. Nieh, S. J. Yang, and N. Novik: “Measuring Thin-Client Performance Using
Slow-Motion Benchmarking,” ACM Transactions on Computer Systems, Vol.21,
No.1, pp.87-115 (2003).

[73] S. J. Yang, J. Nieh, and J. Novik: "Measuring Thin-Client Performance Using
Slow-Motion Bench-marking,” in Proceedings of USENIX 2001 Annual Technical
Conference, pp.35-49 (2001).

[74] S. J. Yang, J. Nieh, M. Selsky, and N. Tiwan: “The Performance of Remote
Display Mechanism for Thin-Client Computing,” in Proceedings of the 2002
USENIX Annual Technical Conference, pp.131-146 (2002).

[75] A. Lai and J. Nieh: “On the Performance of Wide-Area Thin-Client Computing,”
ACM Transactions on Computer Systems, Vol.24, No.2, pp. 175-209 (2006).

[76] A. Lai and J. Nieh: “Limits of Wide-Area Thin-Client Computing,” in Proceedings
of ACM SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems, Vol.30, No.1, pp.228-239 (2002).

[77] J. Nieh and S. J. Yang: “Measuring the Multimedia Performance of Server-Based
Computing,” in Proceedings of the 10th International Workshop on Network and

92

Operation System Support for Digital Audio and Video, pp. 55-64 (2000).
[78] “Windows SteadyState Handbook,” Microsoft Corporation (online), available from

<http://download.microsoft.com/download/d/2/6/d261b347-2f03-4bcf-8240-8b7a6
6beef8a/Windows SteadyState Handbook.pdf> (accessed 2012-05-02).

[79] “Deep Freeze Enterprise User Guide,” Faronics Corporation (online), available
from <http://www.faronics.com/assets/DFE_Manual.pdf> (accessed 2012-05-02).

[80] “Eugrid SecureDesktop,” Eugrid K. K. (online), available from <http://
www.eugrid.co.jp/products/ securedesktop/> (accessed 2012-05-02).

[81] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy:
“Consistent Hashing and Random Trees: Distributed Caching Protocols for
Relieving Hot Spots on the World Wide Web,” in Proceedings of the 29th ACM
Symposium on Theory of Computing, pp.654-663 (1997).

[82] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina, K. Iwamoto, B.
Kim, L. Matkins, and Y. Yerushalmi: “Web Caching with Consistent Hashing,”
Computer Networks: The International Journal of Computer and
Telecommunications Networking, Vol.31, No.11-16, pp.1203-1213 (1999).

[83] X. Wang, and D. Loguinov: “Load-Balancing Performance of Consistent Hashing:
Asymptotic Analysis of Random Node Join,” IEEE/ACM Transactions of
Networking, Vol.15, No.4, pp.892-905 (2007).

[84] M. McCandless, E. Hatcher, and O. Gospodnetic: “Lucene in Action Second
Edition,” Manning Publications Co. (2010).

[85] B. Fitzpatrick: “Distributed caching with memcached,” Linux Journal, Vol.2004,
No.124, pp.1-5 (2004).

[86] J. Latency, A. Bahety, S. Konda, and S. Mahindrakar: “Low-Latency,
High-Throughput Access to Static Global Resources within the Hadoop
Framework,” Technical Report HCIL-2009-01, University of Maryland, College
Park, pp.1-15 (2009).

[87] “roma-prj – ROMA: A Distributed Key-Value Store in Ruby,” Rakuten, Inc.
(online), available from <http://code.google.com/p/roma-prj/> (accessed 2012-05
-02).

[88] R. Rivest: “The MD5 Message-Digest Algorithm,” The Internet Engineering Task
Force (online), available from <http://www.ietf.org/rfc/rfc1321.txt> (accessed
2012-05-02).

[89] J. Leigh, L. Renambot, T. A. DeFanti, M. Brown, E. He, N. Krishnaprasad, J. M. A.

93

Meerasa, A. Nayak, K. Park, R. Singh, S. Venkataraman, C. Zhang, D. Livingston,
and M. McLaughlin: “An Experimental OptIPuter Architecture for Data-Intensive
Collaborative Visualization,” in Proceedings of the 3rd Workshop on Advanced
Collaborative Environments (in conjunction with the High Performance
Distributed Computing Conference), in CD-ROM (2003).

[90] E. He, J. Alimohideen, J. Eliason, N. K. Krishnaprasad, J. Leigh, O. Yu, and T. A.
DeFanti: “QUANTA: A Toolkit for High Performance Data Delivery over
Photonic Networks,” Future Generation Computer Systems, Vol.19, No.6,
pp.919-933 (2003).

[91] D. Yang, J. Yu, and Y. Chung: “Effecient Compositing Methods for the
Sort-Last-Sparse Parallel Volume Rendering System on Distributed Memory
Multicomputers,” The Journal of Supercomputing, Vol.18, No.2, pp.201-220
(2001).

[92] M. Meißner, J. Huang, D. Bartz, K. Mueller, and R. Crawfis: “A Practical
Evaluation of Popular Volume Rendering Algorithms,” in Proceedings of the 2000
IEEE Symposium on Volume Visualization (Volviz 2000), pp.81-90 (2000).

[93] B. Cabral, N. Cam, and J. Foran: “Accelerated Volume Rendering and
Tomographic Reconstruction using texture mapping hardware,” in Proceedings of
the Symposium on Volume Visualization 1994, pp.91-98 (1994).

[94] “http://www.volvis.org,” D. Bartz (online), available from <http://www.volvis.
org > (accessed 2012-05-02).

[95] D.C. Dorf and R.H. Bishop: “Modern Control Systems,” Addison-Wesley (1998).
[96] T. Sugie and M. Fujita: “Introduction to Feedback Control,” Corona Publishing

Co., Ltd. (1999) (in Japanese).
[97] “Oracle Database, Data Warehousing Guide, 10g Release 2 (10.2),” Oracle

Corporation (online), available from <http://da2i.univ-lille1.fr/doc/oracle/B19306
_01 /server.102/b14223.pdf> (accessed 2012-06-21).

[98] C. T. Yu and W. Meng: “Principles of Database Query Processing for Advanced
Applications,” Morgan Kaufmann Publishers, Inc. (1998).

[99] K. Sekiguchi, J. Otani, Y. Sanbe, K. Takeda, and T. Nakano: “Introduction to
Apache Solr－Open Source Full-Text Search Engine,” Gijutsu-Hyohron Co., Ltd.
(2010) (in Japanese).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

