Title	AN L~p-APPROACH TO SINGULAR LINEAR PARABOLIC EQUATIONS WITH LOWER ORDER TERMS
Author(s)	Favini, Angelo; Lorenzi, Alfredo; Tanabe, Hiroki et al.
Citation	Discrete and Continuous Dynamical Systems - Series A. 2008, 22(4), p. 989-1008
Version Type VoR	
URL	https://hdl. handle.net/11094/24741
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. Library.osaka-u.ac.jp/

AN L^{p}-APPROACH TO SINGULAR LINEAR PARABOLIC EQUATIONS WITH LOWER ORDER TERMS

Angelo Favini
Department of Mathematics, Università degli Studi di Bologna piazza di Porta S. Donato 5, 40126 Bologna, Italy
Alfredo Lorenzi
Department of Mathematics, Università degli Studi di Milano via Saldini 50, 20133 Milan, Italy
Hiroki Tanabe
Hirai Sanso 12-13, Takarazuka, 665-0817, Japan
Atsushi Yagi
Department of Applied Physics, Osaka University Suita, Osaka 565-0871, Japan

Abstract

Singular means here that the parabolic equation is neither in normal form nor can it be reduced to such a form. For this class of problems we generalizes the results proved in [4] introducing first-order terms.

1. Introduction. Let Ω be a bounded open set of \mathbb{R}^{n} with smooth boundary $\partial \Omega$. Let

$$
\begin{equation*}
\mathcal{L}=-\sum_{i, j=1}^{n} D_{x_{j}}\left(a_{i, j}(x) D_{x_{i}}\right)+\sum_{i=1}^{n} a_{i}(x) D_{x_{i}}+a_{0}(x) \tag{1.1}
\end{equation*}
$$

be a linear second-order differential operator such that $a_{i, j}, a_{i}$ and a_{0} are real-valued functions satisfying

$$
\begin{equation*}
a_{i, j} \in C(\bar{\Omega}), \quad D_{x_{j}} a_{i, j}, a_{i}, D_{x_{i}} a_{i}, a_{0} \in L^{\infty}(\Omega), \quad i, j=1, \ldots, n \tag{1.2}
\end{equation*}
$$

$\left\{a_{i, j}(x)\right\}$ is a positive definite symmetric matrix for each $x \in \bar{\Omega}$,
for which there exists a positive constant c_{0} such that

$$
\begin{equation*}
\sum_{i, j=1}^{n} a_{i, j}(x) \xi_{i} \xi_{j} \geq c_{0}|\xi|^{2}, \quad \text { for all } x \in \bar{\Omega}, \xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n} \tag{1.3}
\end{equation*}
$$

As is well-known, there is a large literature concerning analytic semigroups generated by realizations of $-\mathcal{L}$ in $L^{p}(\Omega), p \in(1,+\infty)$, when $-\mathcal{L}$ is endowed with different boundary conditions characterizing the domain of the realization (cf., e.g. the monographs $[6,8,10]$).

[^0]This approach yields suitable regularity properties for the solution to the corresponding Cauchy problem.

In addition to this we stress that much attention has been devoted also to singular parabolic Cauchy problems, i.e. to problem of the form

$$
\begin{array}{lr}
D_{t}[m(x) u(x, t)]+\mathcal{L} u(x, t)=f(x, t), & \text { for all }(x, t) \in \Omega \times[0, \tau] \\
\mathcal{B} u(x, t)=0, & \text { for all }(x, t) \in \partial \Omega \times[0, \tau] \\
m(x) u(x, t) \rightarrow m(x) u_{0}(x), & \text { for almost every } x \in \Omega, \text { as } t \rightarrow 0+. \tag{1.6}
\end{array}
$$

Singular means here that m is a non-negative function in $L^{\infty}(\Omega)$, which may vanish, while u_{0} and f are given functions.

If L denotes the operator with domain in $L^{p}(\Omega)$ realized by $(-\mathcal{L}, \mathcal{B})$ where \mathcal{B} is the linear operator corresponding to Dirichlet boundary conditions and M is the multiplication operator by m in $L^{p}(\Omega)$, it is shown in [5] that the resolvent estimate

$$
\left\|M(\lambda M+L)^{-1}\right\|_{\mathcal{L}\left(L^{p}(\Omega)\right)} \leq C(1+|\lambda|)^{-\beta}
$$

holds for any λ in the region $\Sigma=\{z \in \mathbb{C}: \operatorname{Re} z \geq-c(1+|\lambda|)\}$ for some $\beta \in(0,1)$ and $c>0$.

The previous assumption allows to develop a maximal regularity in time theory for the solution corresponding to $f \in C^{\theta}\left([0, T] ; L^{p}(\Omega)\right)$ (cf. [5, Theorem 3.26]). The basic point, however, is that the regularity decreases with respect to the non-singular case, in the sense that in the first case we can show that $u \in C^{\theta+\beta-1}([0, T] ; \mathcal{D}(L))$, with $\beta \in(0,1)$, while in the latter case we have $\beta=1$ and $u \in C^{\theta}([0, T] ; \mathcal{D}(L))$.

In the paper [4], making use of a result by Okazawa [9], we have improved the results in [5], where the operator $-\mathcal{L}$ is symmetric and \mathcal{B} corresponds to Dirichlet boundary conditions. In [4] we also showed that the index β can be improved to a larger one, if m is ρ-regular, i.e.

$$
m \in C^{1}(\bar{\Omega}), \quad|\nabla m(x)| \leq C m(x)^{\rho}, \quad \text { for all } x \in \bar{\Omega}
$$

for some $\rho \in(0,1)$.
The fact to have at our disposal a higher regularity for solutions plays an essential role, e.g., in recovering unknown kernels in degenerate linear integrodifferential equations.

The aim of this paper is two-fold. From one hand we want to deal with nonsymmetric operators \mathcal{L} and, from the other one, we intend to handle Robin boundary conditions, too (cf. e.g., [1, pp. 206-207]). This will be the most delicate aspect in the development of the present paper.

Concerning this aspect we note that L^{2}-theory for degenerate integrodifferential equations of parabolic type, with Robin boundary conditions and time-dependent multiplication operator $M(t)=m(t, \cdot)$, was developed quite recently in [3]. Such equations with Dirichlet and Neumann boundary conditions were dealt with in the space $L^{2}(\Omega)$ in [2], where a treatment in $L^{p}(\Omega), p \in(1,+\infty)$, is also given for Dirichlet boundary conditions.

Finally, we will mention that inverse problems for non-autonomous degenerate integrodifferential equations with Dirichlet boundary conditions are treated in [7].
2. Dirichlet and Robin problems in $L^{p}(\Omega), p \in(1,+\infty)$. In this section we make the following assumptions and suppose that all the listed functions are realvalued:

$$
\begin{align*}
& a_{i} \in W^{1, \infty}(\Omega), \quad i=1, \ldots, n, \quad a_{0}-\frac{1}{p} \sum_{i=1}^{n} D_{x_{i}} a_{i} \geq c_{1}>0 \quad \text { in } \Omega \tag{2.1}\\
& b \in L^{\infty}(\partial \Omega) \tag{2.2}
\end{align*}
$$

The realization L of \mathcal{L} in $L^{p}(\Omega), 1<p<+\infty$, is defined by

$$
\begin{equation*}
D(L)=W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega), \quad L u=\mathcal{L} u, \quad u \in D(L) \tag{2.3}
\end{equation*}
$$

in case of the Dirichlet boundary condition, and by

$$
\begin{equation*}
D(L)=\left\{u \in W^{2, p}(\Omega): \sum_{i, j=1}^{n} a_{i, j} \nu_{j} D_{x_{i}} u+b u=0 \text { on } \partial \Omega\right\}, \quad L u=\mathcal{L} u, \quad u \in D(L) \tag{2.4}
\end{equation*}
$$

in case of the Robin boundary condition, where also the following assumption is needed:

$$
\begin{equation*}
b(x)+\frac{1}{p} \sum_{i=1}^{n} a_{i}(x) \nu_{i}(x) \geq 0, \quad \text { for } x \in \partial \Omega \tag{2.5}
\end{equation*}
$$

We note that, when $b=0$, the Robin boundary condition simplifies to the Neumann one.

Finally, we observe that assumptions (2.1) and (2.1), (2.2), (2.5) guarantee that operator L admits a continuous inverse L^{-1} under both Dirichlet and Robin boundary conditions, respectively.

Let

$$
D\left(L_{0}\right)=D(L), \quad L_{0}=-\sum_{i, j=1}^{n} D_{x_{i}}\left(a_{i, j} D_{x_{j}} u\right), \quad u \in D(L)
$$

be the principal part of L.
Consider now the identity

$$
\begin{align*}
\int_{\Omega}|u|^{p-2} \bar{u} L u d x= & \int_{\Omega}|u|^{p-2} \bar{u} L_{0} u d x+\int_{\Omega} \sum_{i=1}^{n} a_{i}(x)|u|^{p-2} \bar{u} D_{x_{i}} u d x \\
& +\int_{\Omega} a_{0}(x)|u|^{p} d x \tag{2.6}
\end{align*}
$$

Observe now that

$$
\begin{equation*}
\int_{\Omega}|u|^{p-2} \bar{u} L_{0} u d x=-\lim _{\delta \rightarrow 0+} \int_{\Omega} \sum_{i, j=1}^{n} g_{p-2, \delta}(u) \bar{u} D_{x_{j}}\left(a_{i, j} D_{x_{i}} u\right) d x \tag{2.7}
\end{equation*}
$$

where

$$
g_{q, \varepsilon}(u)= \begin{cases}\left(|u|^{2}+\varepsilon\right)^{q / 2} & \text { if } q \in(-1,0) \tag{2.8}\\ |u|^{q} & \text { if } q \in[0,+\infty)\end{cases}
$$

Integrating by parts, we easily obtain

$$
\begin{equation*}
\int_{\Omega}|u|^{p-2} \bar{u} L_{0} u d x=\lim _{\delta \rightarrow 0+} I_{p}(u, \delta)+\eta \int_{\partial \Omega} b|u|^{p} d S \tag{2.9}
\end{equation*}
$$

where $\eta=0$ or $\eta=1$ according as the Dirichlet or the Robin boundary conditions hold and

$$
\begin{align*}
I_{p}(u, \delta)= & \int_{\Omega} g_{p-2, \delta}(u) \sum_{i, j=1}^{n} a_{i, j} D_{x_{i}} u D_{x_{j}} \bar{u} d x \\
& +(p-2) \int_{\Omega} g_{p-4, \delta}(u)|u| \bar{u} \sum_{i, j=1}^{n} a_{i, j} D_{x_{i}} u D_{x_{j}}|u| d x \tag{2.10}
\end{align*}
$$

Then from the proof of a remarkable result by Okazawa [9], we deduce the inequalities:

$$
\operatorname{Re} I_{p}(u, \delta) \geq \begin{cases}(p-1) c_{0} \int_{\Omega}|\nabla u|^{2}\left(|u|^{2}+\delta\right)^{(p-2) / 2} d x & \text { if } 1<p<2 \tag{2.11}\\ c_{0} \int_{\Omega}|\nabla u|^{2}|u|^{p-2} d x & \text { if } 2 \leq p<+\infty\end{cases}
$$

$\left|\operatorname{Im} I_{p}(u, \delta)\right| \leq \frac{|p-2|}{2 \sqrt{p-1}} \operatorname{Re} I_{p}(u, \delta), \quad$ for all $\delta \in \mathbb{R}_{+}$.

Taking the limit as $\delta \rightarrow 0+$, from (2.9)-(2.12) we deduce the following inequalities, where χ_{E} denotes the characteristic function of the set E :

$$
\begin{align*}
& \operatorname{Re} \int_{\Omega}|u|^{p-2} \bar{u} L_{0} u d x=\lim _{\delta \rightarrow 0+} \operatorname{Re} I_{p}(u, \delta)+\eta \int_{\partial \Omega} b|u|^{p} d S \\
& \quad \geq\left[(p-1) \chi_{(1,2)}(p)+\chi_{[2,+\infty]}(p)\right] \lim _{\delta \rightarrow 0+} \int_{\Omega} g_{p-2, \delta}|\nabla u|^{2} d x+\eta \int_{\partial \Omega} b|u|^{p} d S, \tag{2.13}\\
& \left.\left|\operatorname{Im} \int_{\Omega}\right| u\right|^{p-2} \bar{u} L_{0} u d x\left|=\left|\lim _{\delta \rightarrow 0+} \operatorname{Im} I_{p}(u, \delta)\right| \leq \frac{|p-2|}{2 \sqrt{p-1}} \lim _{\delta \rightarrow 0+} \operatorname{Re} I_{p}(u, \delta)\right. \\
& \quad=\frac{|p-2|}{2 \sqrt{p-1}}\left(\operatorname{Re} \int_{\Omega}|u|^{p-2} \bar{u} L_{0} u d x-\eta \int_{\partial \Omega} b|u|^{p} d S\right) . \tag{2.14}
\end{align*}
$$

Let now $u \in W^{1, p}(\Omega), p \in(1,+\infty]$ and $\varepsilon \geq 0$. Noting that

$$
D_{x_{i}}\left(|u|^{2}+\varepsilon\right)^{p / 2}=\frac{p}{2}\left(|u|^{2}+\varepsilon\right)^{(p-2) / 2} D_{x_{i}}\left(|u|^{2}\right) \Longleftrightarrow D_{x_{i}} g_{p, \varepsilon}(u)=\frac{p}{2} g_{p-2, \varepsilon} D_{x_{i}}\left(|u|^{2}\right)
$$

we get

$$
\begin{align*}
& \operatorname{Re} \int_{\Omega} a_{i}|u|^{p-2} \bar{u} D_{x_{i}} u d x=\lim _{\delta \rightarrow 0+} \operatorname{Re} \int_{\Omega} a_{i} g_{p-2, \delta}(u) \bar{u} D_{x_{i}} u d x \\
& =\lim _{\delta \rightarrow 0+} \int_{\Omega} a_{i} \operatorname{Re}\left(\bar{u} D_{x_{i}} u\right) g_{p-2, \delta}(u) d x \\
& =\lim _{\delta \rightarrow 0+} \frac{1}{2} \int_{\Omega} a_{i}\left(\bar{u} D_{x_{i}} u+u \overline{D_{x_{i}} u}\right) g_{p-2, \delta}(u) d x \\
& =\frac{1}{2} \lim _{\delta \rightarrow 0+} \int_{\Omega} a_{i} D_{x_{i}}\left(|u|^{2}\right) g_{p-2, \delta}(u) d x \\
& =\frac{1}{p} \lim _{\delta \rightarrow 0+} \int_{\Omega} a_{i} D_{x_{i}} g_{p, \delta}(u) d x \\
& =\frac{\eta}{p} \lim _{\delta \rightarrow 0+} \int_{\partial \Omega} \nu_{i} a_{i} g_{p, \delta}(u) d S-\frac{1}{p} \lim _{\delta \rightarrow 0+} \int_{\Omega} D_{x_{i}} a_{i} g_{p, \delta}(u) d x \\
& =\frac{\eta}{p} \int_{\partial \Omega} \nu_{i} a_{i}|u|^{p} d S-\frac{1}{p} \int_{\Omega}|u|^{p} D_{x_{i}} a_{i} d x . \tag{2.15}
\end{align*}
$$

Hence we observe that, according to our assumptions (cf. (2.2) and (2.5)), the following inequalities hold for all $u \in D(L)$:

$$
\begin{align*}
& \operatorname{Re}\left(L u,|u|^{p-2} u\right) \\
& =\operatorname{Re} \int_{\Omega}|u|^{p-2} \bar{u} L_{0} u d x+\operatorname{Re} \int_{\Omega} \sum_{i=1}^{n} a_{i}|u|^{p-2} \bar{u} D_{x_{i}} u d x+\int_{\Omega} a_{0}|u|^{p} d x \\
& \geq \eta \int_{\partial \Omega}\left(b+p^{-1} \sum_{i=1}^{n} \nu_{i} a_{i}\right)|u|^{p} d S+\int_{\Omega}\left[a_{0}-p^{-1} \sum_{i=1}^{n} D_{x_{i}} a_{i}\right]|u|^{p} d x \\
& \geq c_{1} \int_{\Omega}|u|^{p} d x \tag{2.16}
\end{align*}
$$

Then, using (2.13), we deduce, for any $\varepsilon \in \mathbb{R}_{+}$and $c_{2}=\left\|\left(\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right)^{1 / 2}\right\|_{L^{\infty}(\Omega)}$,

$$
\begin{align*}
& \left.\left.\left|\int_{\Omega} \sum_{i=1}^{n} a_{i}\right| u\right|^{p-2} \bar{u} D_{x_{i}} u d x\left|\leq c_{2} \int_{\Omega}\right| \nabla u| | u\right|^{p-1} d x \\
& \quad=c_{2} \limsup _{\delta \rightarrow 0+} \int_{\Omega}|\nabla u| g_{(p-2) / 2, \delta} g_{p / 2, \delta} d x \\
& \quad \leq c_{2} \limsup _{\delta \rightarrow 0+}\left\{\int_{\Omega}|\nabla u|^{2} g_{p-2, \delta} d x\right\}^{1 / 2}\left\{\int_{\Omega} g_{p, \delta} d x\right\}^{1 / 2} \\
& \quad \leq \limsup _{\delta \rightarrow 0+}\left\{\frac{c_{2}}{2 \varepsilon} \int_{\Omega}|\nabla u|^{2} g_{p-2, \delta} d x+\frac{c_{2} \varepsilon}{2} \int_{\Omega} g_{p, \delta} d x\right\} \\
& \quad=\frac{c_{2}}{2 \varepsilon} \limsup _{\delta \rightarrow 0+} \int_{\Omega}|\nabla u|^{2} g_{p-2, \delta} d x+\frac{c_{2} \varepsilon}{2} \int_{\Omega}|u|^{p} d x \\
& \quad \leq \frac{c_{2}}{2 \varepsilon c_{0}}\left[\frac{\chi_{(1,2)}(p)}{p-1}+\chi_{[2,+\infty]}(p)\right]\left(\operatorname{Re} \int_{\Omega}|u|^{p-2} \bar{u} L_{0} u d x-\eta \int_{\partial \Omega} b|u|^{p} d S\right) \\
& \quad+\frac{c_{2} \varepsilon}{2} \int_{\Omega}|u|^{p} d x . \tag{2.17}
\end{align*}
$$

With the aid of $(2.14),(2.15),(2.16),(2.17)$ we obtain

$$
\begin{align*}
\left.\left|\operatorname{Im} \int_{\Omega}\right| u\right|^{p-2} \bar{u} L u d x \mid= & \left.\left|\operatorname{Im} \int_{\Omega}\right| u\right|^{p-2} \bar{u} L_{0} u d x+\operatorname{Im} \int_{\Omega} \sum_{i=1}^{n} a_{i}|u|^{p-2} \bar{u} D_{x_{i}} u d x \mid \\
\leq & c_{3}\left(\operatorname{Re} \int_{\Omega}|u|^{p-2} \bar{u} L_{0} u d x-\eta \int_{\partial \Omega} b|u|^{p} d S\right)+\frac{c_{2} \varepsilon}{2} \int_{\Omega}|u|^{p} d x \\
\leq & c_{3} \operatorname{Re} \int_{\Omega}|u|^{p-2} \bar{u} L u d x-c_{3} \eta \int_{\partial \Omega}\left[b+p^{-1} \sum_{i=1}^{n} \nu_{i} a_{i}\right]|u|^{p} d S \\
& -c_{3} \int_{\Omega}\left[a_{0}-p^{-1} \sum_{i=1}^{n} D_{x_{i}} a_{i}\right]|u|^{p} d x+\frac{c_{2} \varepsilon}{2} \int_{\Omega}|u|^{p} d x \\
& \leq c_{3} \operatorname{Re}\left(L u,|u|^{p-2} u\right)-\left(c_{3} c_{1}-\frac{c_{2} \varepsilon}{2}\right) \int_{\Omega}|u|^{p} d x, \tag{2.18}
\end{align*}
$$

where

$$
c_{3}=\frac{|p-2|}{2 \sqrt{p-1}}+\frac{c_{2}}{2 \varepsilon c_{0}}\left[\frac{\chi_{(1,2)}(p)}{(p-1)}+\chi_{[2,+\infty]}(p)\right]
$$

Let $\varepsilon>0$ be so small that

$$
c_{4}=c_{3} c_{1}-c_{2} \varepsilon / 2>0
$$

Then (2.18) is rewritten as

$$
\begin{equation*}
\left.\left.\left|\operatorname{Im} \int_{\Omega}\right| u\right|^{p-2} \bar{u} L u d x\left|\leq c_{3} \operatorname{Re}\left(L u,|u|^{p-2} u\right)-c_{4} \int_{\Omega}\right| u\right|^{p} d x . \tag{2.19}
\end{equation*}
$$

Consider now the spectral problem

$$
\begin{equation*}
u \in \mathcal{D}(L), \quad \lambda m u+L u=f \in L^{p}(\Omega) \tag{2.20}
\end{equation*}
$$

Taking the real and imaginary parts of the scalar product of both sides in (2.20) with $u|u|^{p-2}$, we get

$$
\begin{align*}
& \operatorname{Re} \lambda \int_{\Omega} m|u|^{p} \mathrm{~d} x+\operatorname{Re}\left(L u, u|u|^{p-2}\right)=\operatorname{Re} \int_{\Omega} f \bar{u}|u|^{p-2} \mathrm{~d} x \tag{2.21}\\
& \operatorname{Im} \lambda \int_{\Omega} m|u|^{p} \mathrm{~d} x+\operatorname{Im}\left(L u, u|u|^{p-2}\right)=\operatorname{Im} \int_{\Omega} f \bar{u}|u|^{p-2} \mathrm{~d} x . \tag{2.22}
\end{align*}
$$

From (2.22) we deduce the inequalities

$$
\begin{equation*}
|\operatorname{Im} \lambda| \int_{\Omega} m|u|^{p} \mathrm{~d} x \leq\left|\operatorname{Im}\left(L u, u|u|^{p-2}\right)\right|+\left.\left|\operatorname{Im} \int_{\Omega} f \bar{u}\right| u\right|^{p-2} \mathrm{~d} x \mid \tag{2.23}
\end{equation*}
$$

Multiply then both sides in (2.23) by a positive constant k and add the obtained inequality to equation (2.22). From (2.19) we get

$$
\begin{align*}
& (\operatorname{Re} \lambda+k|\operatorname{Im} \lambda|) \int_{\Omega} m|u|^{p} \mathrm{~d} x+\left(1-k c_{3}\right) \operatorname{Re}\left(L u, u|u|^{p-2}\right)+k c_{4} \int_{\Omega}|u|^{p} d x \\
\leq & \operatorname{Re} \int_{\Omega} f \bar{u}|u|^{p-2} \mathrm{~d} x+\left.k\left|\operatorname{Im} \int_{\Omega} f \bar{u}\right| u\right|^{p-2} \mathrm{~d} x \mid \leq(1+k)\|f\|_{p}\|u\|_{p}^{p-1} \tag{2.24}
\end{align*}
$$

Choose now $k=k_{1}(p)$ so small as to satisfy

$$
\begin{equation*}
h_{1}(p):=1-k_{1}(p) c_{3}>0, \quad \text { for all } p \in(1,+\infty) \tag{2.25}
\end{equation*}
$$

Therefore, (2.24) and (2.25) imply

$$
\begin{align*}
& \left(\operatorname{Re} \lambda+k_{1}(p)|\operatorname{Im} \lambda|+\frac{k_{1}(p) c_{4}}{\|m\|_{\infty}}\right) \int_{\Omega} m|u|^{p} \mathrm{~d} x \\
& +h_{1}(p) \operatorname{Re}\left(L u, u|u|^{p-2}\right) \leq\left[k_{1}(p)+1\right]\|f\|_{p}\|u\|_{p}^{p-1} \tag{2.26}
\end{align*}
$$

since

$$
m(x) \leq\|m\|_{\infty}, \quad \text { for all } x \in \bar{\Omega}
$$

Introduce now the sector

$$
\begin{equation*}
\Sigma_{1}=\left\{\lambda \in \mathbb{C}: \operatorname{Re} \lambda+\frac{k_{1}(p)}{2}|\operatorname{Im} \lambda|+\frac{k_{1}(p) c_{4}}{2\|m\|_{\infty}} \geq 0\right\} \tag{2.27}
\end{equation*}
$$

Then, for any $\lambda \in \Sigma_{1}$, from (2.16) and (2.26) we deduce the estimates

$$
\begin{equation*}
c_{1}\|u\|_{p}^{p} \leq \operatorname{Re}\left(L u, u|u|^{p-2}\right) \leq \frac{k_{1}(p)+1}{h_{1}(p)}\|f\|_{p}\|u\|_{p}^{p-1} \tag{2.28}
\end{equation*}
$$

implying

$$
\begin{equation*}
\|u\|_{p} \leq \frac{\left(k_{1}(p)+1\right)}{c_{1} h_{1}(p)}\|f\|_{p} . \tag{2.29}
\end{equation*}
$$

Consequently,

$$
\begin{align*}
& \left(\operatorname{Re} \lambda+k_{1}(p)|\operatorname{Im} \lambda|+\frac{k_{1}(p) c_{4}}{\|m\|_{\infty}}\right) \int_{\Omega} m|u|^{p} d x \\
& +h_{1}(p) \operatorname{Re}\left(L u, u|u|^{p-2}\right) \leq c_{5}(p)\|f\|_{p}^{p} \tag{2.30}
\end{align*}
$$

Then, recalling that $\operatorname{Re}\left(L u, u|u|^{p-2}\right)$ is non-negative (cf. (2.16)) and observing that

$$
\begin{equation*}
|\lambda|+1 \leq\left(1+\frac{2 c_{4}+2\|m\|_{\infty}}{c_{4} k_{1}(p)}\right)\left(\operatorname{Re} \lambda+k_{1}(p)|\operatorname{Im} \lambda|+\frac{c_{4} k_{1}(p)}{\|m\|_{\infty}}\right), \quad \lambda \in \Sigma_{1} \tag{2.31}
\end{equation*}
$$

(cf. Proposition 2.1 in [4]), we obtain

$$
\begin{equation*}
(|\lambda|+1) \int_{\Omega} m|u|^{p} d x+\operatorname{Re}\left(L u, u|u|^{p-2}\right) \leq c_{6}(p)\|f\|_{p}^{p}, \quad \lambda \in \Sigma_{1} \tag{2.32}
\end{equation*}
$$

for some positive constant $c_{6}(p)$.
From Proposition 2.2 in [4] we deduce that $\lambda M+L$ is surjective on $L^{p}(\Omega)$.
Finally, from (2.32) we deduce the desired estimate

$$
\begin{equation*}
\left\|M(\lambda M+L)^{-1} f\right\|_{L^{p}(\Omega)} \leq \frac{C}{(|\lambda|+1)^{1 / p}}\|f\|_{L^{p}(\Omega)}, \quad f \in L^{p}(\Omega), \lambda \in \Sigma_{1} \tag{2.33}
\end{equation*}
$$

We can now summarize the results proved in this section in Theorem 2.1.
Theorem 2.1. Let L and M be the linear operators defined by (1.7) and (1.8), the coefficients $a_{i, j}, a_{i}, a_{0}, i, j=1, \ldots, n$, enjoying properties (1.2), (1.3), (2.1), (2.2), (2.5) and m being a non-negative function in $L^{\infty}(\Omega)$. Then the spectral equation $\lambda M u+L u=f$, with $f \in L^{p}(\Omega)$, admits, for any $\lambda \in \Sigma_{1}=\{\mu \in \mathbb{C}$: $\left.\operatorname{Re} \mu+k_{1}(p)|\operatorname{Im} \mu| / 2+k_{1}(p) c_{4} /\left(2\|m\|_{\infty}\right) \geq 0\right\}$ and $p \in(1,+\infty)$, a unique solution $u \in D(L)$ satisfying the estimates

$$
\begin{aligned}
& \|u\|_{p} \leq C_{1}(p)\|f\|_{p}, \quad\|M u\|_{p} \leq C_{2}(p)|\lambda|^{-1 / p}\|f\|_{p}, \quad \lambda \in \Sigma_{1} \\
& \|L u\|_{p} \leq C_{3}(p)(1+|\lambda|)^{1 / p^{\prime}}\|f\|_{p}, \quad \lambda \in \Sigma_{1}
\end{aligned}
$$

3. The case when m is ρ-regular and $p \in[2,+\infty)$. In this section we will assume that the multiplier m is more regular, i.e. it satisfies

$$
\begin{equation*}
m \in C^{1}(\bar{\Omega}), \quad|\nabla m(x)| \leq c_{7} m(x)^{\rho}, \quad x \in \bar{\Omega}, \text { for some } \rho \in(0,1) \tag{3.1}
\end{equation*}
$$

We will show that our β can be chosen larger than $1 / p$. We recall that the previous estimate (2.32) hold for any $p \in(1,+\infty)$.

First of all we state here Lemma 3.1 in [4] concerning the computation of the gradient of the function $\bar{u}|u|^{p-2}$ when $p \in[2,+\infty)$.

Lemma 3.1. Let $u \in W_{0}^{1, p}(\Omega)\left(u \in W^{1, p}(\Omega)\right)$ with $p \in[2,+\infty)$. Then the function $\bar{u}|u|^{p-2}$ belongs to $W_{0}^{1, p}(\Omega)\left(u \in W^{1, p}(\Omega)\right)$ and the following formulae hold a.e. in Ω :

$$
\begin{equation*}
D_{x_{j}} \bar{u}|u|^{p-2}=|u|^{p-2} D_{x_{j}} \bar{u}+(p-2) g_{p}(u) \operatorname{Re}\left(g_{p}(u) D_{x_{j}} u\right), \quad j=1, \ldots, n \tag{3.2}
\end{equation*}
$$

where

$$
g_{p}(u)(x)= \begin{cases}\overline{u(x)}|u(x)|^{(p-4) / 2}, & \text { if } u(x) \neq 0 \tag{3.3}\\ 0, & \text { if } u(x)=0\end{cases}
$$

Remark 1. From formula (3.3) we easily deduce the identity

$$
\begin{equation*}
\left|g_{p}(u)(x)\right|=|u(x)|^{(p-2) / 2} \tag{3.4}
\end{equation*}
$$

We need also the following generalization of Lemma 3.2 in [4].
Lemma 3.2. Let $\left(b_{i, j}\right)_{i, j=1, \ldots, n}$ be a matrix of functions in $C^{1}(\bar{\Omega} ; \mathbb{R})$ and let $\left(b_{i}\right)_{i=1, \ldots, n}$ a vector in $C(\bar{\Omega} ; \mathbb{R})$ such that

$$
\begin{align*}
& b_{i, j}=b_{j, i} \quad i, j=1, \ldots, n \tag{3.5}\\
& c_{8}|\xi|^{2} \mu(x) \leq \sum_{i, j=1}^{n} b_{i, j}(x) \xi_{i} \xi_{j} \leq c_{9}|\xi|^{2} \mu(x), \\
& \text { for all } x \in \bar{\Omega}, \text { for all } \xi \in \mathbb{R}^{n} \tag{3.6}
\end{align*}
$$

$$
\left(\sum_{i=1}^{n}\left|b_{i}(x)\right|^{2}\right)^{1 / 2} \leq c_{10} \mu(x), \quad c_{11} \mu(x) \leq b_{0}(x)-\frac{1}{p} \sum_{i=1}^{n} D_{x_{i}} b_{i}(x)
$$

$$
\begin{equation*}
\text { for all } x \in \bar{\Omega}, i=0, \ldots, n \tag{3.7}
\end{equation*}
$$

$$
\begin{equation*}
0 \leq b(x)+\frac{1}{p} \sum_{i=1}^{n} b_{i}(x) \nu_{i}(x), \quad \text { for all } x \in \partial \Omega \tag{3.8}
\end{equation*}
$$

where $\mu \in C(\bar{\Omega})$ is a non-negative function and $c_{8}, c_{9}, c_{10}, c_{11}$ are four positive constants. Then for any $p \in[2,+\infty)$, the linear operator $K=-\sum_{i, j=1}^{n} D_{x_{i}}\left[b_{i, j}(x) D_{x_{j}}\right]+\sum_{i=1}^{n} b_{i}(x) D_{x_{i}}+b_{0}(x)$ with $\mathcal{D}(K)=\mathcal{D}(L) \quad(c f$. (2.3) and (2.4)) satisfies the following relations with two positive constants c_{12} and
$c_{13}:$

$$
\begin{align*}
& c_{8}\left(\int_{\Omega} \mu|u|^{p-2}|D u|^{2} d x+(p-2) \int_{\Omega} \mu \sum_{j=1}^{n}\left[\operatorname{Re}\left(g_{p}(u) D_{x_{j}} u\right)\right]^{2} d x\right) \\
\leq & \operatorname{Re}\left(K u, \bar{u}|u|^{p-2}\right)-\int_{\Omega}\left[b_{0}-\frac{1}{p} \sum_{i=1}^{n} D_{x_{i}} b_{i}\right]|u|^{p} d x-\int_{\partial \Omega}\left[b+\frac{1}{p} \sum_{i=1}^{n} b_{i} \nu_{i}\right]|u|^{p} d S \\
\leq & c_{9}\left(\int_{\Omega} \mu|u|^{p-2}|D u|^{2} \mathrm{~d} x+(p-2) \int_{\Omega} \mu \sum_{j=1}^{n}\left[\operatorname{Re}\left(g_{p}(u) D_{x_{j}} u\right)\right]^{2} d x\right) \tag{3.9}\\
& \left|\operatorname{Im}\left(K u, \bar{u}|u|^{p-2}\right)\right| \leq c_{12} \operatorname{Re}\left(K u, \bar{u}|u|^{p-2}\right)-c_{13} \int_{\Omega} \mu|u|^{p} d x \tag{3.10}
\end{align*}
$$

Proof. First we deal with the case $p \in(2,+\infty)$. For any $\varepsilon>0$ define $a_{i, j, \varepsilon}=$ $b_{i, j}+\varepsilon \delta_{i, j}, i, j=1, \ldots, n$, and set $K_{\varepsilon}=-\varepsilon \Delta+K$. Since the matrix $\left(a_{i, j, \varepsilon}\right)_{i, j=1, \ldots, n}$ is uniformly positive definite, from Lemma 3.1 and an integration by parts we easily deduce the identity

$$
\begin{align*}
& \left(K_{\varepsilon} u, \bar{u}|u|^{p-2}\right)=-\int_{\partial \Omega} \bar{u}|u|^{p-2} \sum_{i, j=1}^{n} a_{i, j, \varepsilon} \nu_{j} D_{x_{i}} u d S \\
& \quad+\int_{\Omega} \sum_{i, j=1}^{n} a_{i, j, \varepsilon} D_{x_{i}} u D_{x_{j}}\left(\bar{u}|u|^{p-2}\right) d x+\int_{\Omega} \sum_{i=1}^{n} b_{i} \bar{u}|u|^{p-2} D_{x_{i}} u d x+\int_{\Omega} b_{0}|u|^{p} d x \\
& =\left\{\int_{\Omega} \sum_{i, j=1}^{n}|u|^{p-2} a_{i, j, \varepsilon} D_{x_{j}} u D_{x_{i}} \bar{u} d x\right. \\
& \left.\quad+(p-2) \int_{\Omega} \sum_{i, j=1}^{n} a_{i, j, \varepsilon} g_{p}(u) D_{x_{j}} u \operatorname{Re}\left(g_{p}(u) D_{x_{i}} u\right) d x\right\} \\
& \quad+\left\{\int_{\partial \Omega}\left[b+\frac{1}{p} \sum_{i=1}^{n} b_{i} \nu_{i}\right]|u|^{p} d S+\int_{\Omega}\left[b_{0}-\frac{1}{p} \sum_{i=1}^{n} D_{x_{i}} b_{i}\right]|u|^{p} d x\right\} \\
& \quad+i \operatorname{Im} \int_{\Omega} \bar{u}|u|^{p-2} \sum_{i=1}^{n} b_{i} D_{x_{i}} u d x-\varepsilon \int_{\partial \Omega} \bar{u}|u|^{p-2} \sum_{i=1}^{n} \nu_{i} D_{x_{i}} u d S \\
& = \tag{3.11}\\
& \\
& \\
& I_{1}(u, \varepsilon)+I_{2}(u)+i I_{3}(u)-\varepsilon \int_{\partial \Omega} \bar{u}|u|^{p-2} \sum_{i=1}^{n} \nu_{i} D_{x_{i}} u d S .
\end{align*}
$$

Set now

$$
\begin{equation*}
I_{0}(u)=\int_{\Omega}\left[|u|^{p-2}|\nabla u|^{2}+(p-2) \sum_{i=1}^{n} g_{p}(u) D_{x_{i}} u \operatorname{Re}\left(g_{p}(u) D_{x_{i}} u\right)\right] d x \tag{3.12}
\end{equation*}
$$

and observe that

$$
\begin{equation*}
I_{1}(u, \varepsilon)=I_{1}(u, 0)+\varepsilon I_{0}(u) \tag{3.13}
\end{equation*}
$$

Then from Lemma 3.1 in [9] we easily deduce

$$
\begin{align*}
& c_{8} \int_{\Omega} \mu\left[|u|^{p-2}|\nabla u|^{2}+(p-2) \sum_{j=1}^{n}\left[\operatorname{Re}\left(g_{p}(u) D_{x_{j}} u\right)\right]^{2}\right] d x \tag{3.14}\\
& \leq \operatorname{Re} I_{1}(u, \varepsilon) \leq \operatorname{Re} I_{1}(u, 0)+\varepsilon \operatorname{Re} I_{0}(u) \tag{3.15}\\
& \left|\operatorname{Im} I_{1}(u, \varepsilon)\right|=\left|\operatorname{Im}\left[I_{1}(u, 0)+\varepsilon I_{0}(u)\right]\right| \leq \frac{|p-2|}{2 \sqrt{p-1}} \operatorname{Re}\left[I_{1}(u, 0)+\varepsilon I_{0}(u)\right] \tag{3.16}
\end{align*}
$$

Taking the limit as $\varepsilon \rightarrow 0+$ in (3.14) and (3.16), we easily deduce the inequalities

$$
\begin{align*}
& c_{8} \int_{\Omega} \mu\left[|u|^{p-2}|\nabla u|^{2}+(p-2) \sum_{j=1}^{n}\left[\operatorname{Re}\left(g_{p}(u) D_{x_{j}} u\right)\right]^{2}\right] d x \leq \operatorname{Re} I_{1}(u, 0) \\
\leq & c_{9} \int_{\Omega} \mu\left[|u|^{p-2}|\nabla u|^{2}+(p-2) \sum_{j=1}^{n}\left[\operatorname{Re}\left(g_{p}(u) D_{x_{j}} u\right)\right]^{2}\right] d x \tag{3.17}\\
& \left|\operatorname{Im} I_{1}(u, 0)\right| \leq \frac{|p-2|}{2 \sqrt{p-1}} \operatorname{Re} I_{1}(u, 0) \tag{3.18}
\end{align*}
$$

(3.17) being a consequence of the definition of $I_{1}(u, 0)$ and (3.6).

Then, taking the limit as $\varepsilon \rightarrow 0+$ in (3.11), we get

$$
\begin{equation*}
\left(K u, \bar{u}|u|^{p-2}\right)=I_{1}(u, 0)+I_{2}(u)+i I_{3}(u) . \tag{3.19}
\end{equation*}
$$

To prove relations (3.9) and (3.10) we observe that

$$
\begin{equation*}
\operatorname{Re}\left(K u, \bar{u}|u|^{p-2}\right)=\operatorname{Re} I_{1}(u, 0)+I_{2}(u), \tag{3.20}
\end{equation*}
$$

and thus (3.9) follows. Further we need the estimates

$$
\begin{align*}
\left|I_{3}(u)\right| & \leq c_{14} \int_{\Omega} \mu|u|^{p / 2}|u|^{(p-2) / 2}|\nabla u| d x \\
& \leq c_{14}\left(\int_{\Omega} \mu|u|^{p} d x\right)^{1 / 2}\left(\int_{\Omega} \mu|u|^{p-2}|\nabla u|^{2} d x\right)^{1 / 2} \\
& \leq \frac{1}{2} c_{14} \varepsilon \int_{\Omega} \mu|u|^{p} d x+\frac{1}{2} c_{14} \varepsilon^{-1} \int_{\Omega} \mu|u|^{p-2}|\nabla u|^{2} d x . \tag{3.21}
\end{align*}
$$

Since $I_{2}(u) \geq 0$, according to assumptions (3.7) and (3.8), from (3.21) we deduce

$$
\begin{align*}
& \left|\operatorname{Im}\left(K u, \bar{u}|u|^{p-2}\right)\right| \leq\left|\operatorname{Im} I_{1}(u, 0)\right|+\left|I_{3}(u)\right| \\
& \leq \frac{|p-2|}{2 \sqrt{p-1}} \operatorname{Re} I_{1}(u, 0)+\frac{1}{2} c_{14} \varepsilon \int_{\Omega} \mu|u|^{p} d x+\frac{1}{2} c_{14} \varepsilon^{-1} \int_{\Omega} \mu|u|^{p-2}|\nabla u|^{2} d x \\
& \leq\left(\frac{|p-2|}{2 \sqrt{p-1}}+\frac{c_{14}}{2 c_{8}} \varepsilon^{-1}\right) \operatorname{Re} I_{1}(u, 0)+\frac{1}{2} c_{14} \varepsilon \int_{\Omega} \mu|u|^{p} d x \\
& \leq c_{12} \operatorname{Re}\left(K u, \bar{u}|u|^{p-2}\right)-\left(\frac{|p-2|}{2 \sqrt{p-1}} c_{11}-\frac{1}{2} c_{14} \varepsilon\right) \int_{\Omega} \mu|u|^{p} d x \tag{3.22}
\end{align*}
$$

where

$$
\begin{equation*}
c_{12}:=\frac{|p-2|}{2 \sqrt{p-1}}+\frac{c_{14}}{2 c_{8}} \varepsilon^{-1} . \tag{3.23}
\end{equation*}
$$

Assume $p \in(2,+\infty)$ and choose now $\varepsilon>0$ so small that

$$
\begin{equation*}
c_{13}:=\frac{|p-2|}{2 \sqrt{p-1}} c_{11}-\frac{1}{2} c_{14} \varepsilon>0 \tag{3.24}
\end{equation*}
$$

This implies estimate (3.10).
Finally, note that relations (3.9) and (3.10), with $p=2$, easily follow from the identity

$$
\begin{aligned}
(K u, \bar{u})= & \int_{\Omega} \sum_{i, j=1}^{n} b_{i, j} D_{x_{i}} u D_{x_{j}} \bar{u}+\int_{\Omega}\left[b_{0}-\frac{1}{2} \sum_{i=1}^{n} D_{x_{i}} b_{i}\right]|u|^{2} d x \\
& +\int_{\partial \Omega}\left[b+\frac{1}{2} \sum_{i=1}^{n} b_{i} \nu_{i}\right]|u|^{2} d S
\end{aligned}
$$

and our assumptions on the coefficients. In this case, since $\operatorname{Im}(K u, \bar{u})=0$, we can choose, e.g., $c_{12}=1$ and $c_{13}=c_{11}$. Indeed, since

$$
\operatorname{Re}(K u, \bar{u}) \geq c_{8} \int_{\Omega} \mu|\nabla u|^{2} d x+c_{11} \int_{\Omega} \mu|u|^{2} d x
$$

we obtain

$$
\operatorname{Re}(K u, \bar{u})-c_{11} \int_{\Omega} \mu|u|^{2} d x \geq c_{8} \int_{\Omega} \mu|\nabla u|^{2} d x \geq 0=|\operatorname{Im}(K u, \bar{u})|
$$

To apply the previous result to our case we shall use also the following identity

$$
\begin{align*}
& \left(L u, m^{p-1} u|u|^{p-2}\right)=\left(m^{p-1} L u, u|u|^{p-2}\right) \\
= & \left(K u, u|u|^{p-2}\right)+(p-1)\left(m^{p-2} \sum_{i, j=1}^{n} a_{i, j} D_{x_{i}} m D_{x_{j}} u, u|u|^{p-2}\right), \quad u \in \mathcal{D}(L), \tag{3.25}
\end{align*}
$$

where

$$
\begin{align*}
& K=-\sum_{i, j=1}^{n} D_{x_{i}}\left[m(x)^{p-1} a_{i, j}(x) D_{x_{j}}\right] \\
& +\left[\sum_{i=1}^{n} m(x)^{p-1} a_{i}(x)\right] D_{x_{i}}+m(x)^{p-1} a_{0}(x) \tag{3.26}
\end{align*}
$$

We now set
$\mu(x)=m(x)^{p-1}, \quad b_{0}(x)=\mu(x) a_{0}(x), \quad b_{i, j}(x)=\mu(x) a_{i, j}(x), \quad i, j=1, \ldots, n$,
$b_{i}(x)=\mu(x) a_{i}(x), \quad i=1, \ldots, n$.
and we assume that the following inequalities hold for all $x \in \bar{\Omega}$ and all $x \in \partial \Omega$, respectively:

$$
\begin{align*}
& m(x)^{p-1}\left(a_{0}(x)-\frac{1}{p} \sum_{i=1}^{n} D_{x_{i}} a_{i}(x)\right)-\frac{p-1}{p} m^{p-2}(x) \sum_{i=1}^{n} a_{i}(x) D_{x_{i}} m(x) \\
& \geq c_{15} m^{p-1}(x) \tag{3.29}\\
& b(x)+\frac{1}{p} m(x)^{p-1} \sum_{i=1}^{n} a_{i}(x) \nu_{i}(x) \geq 0 \tag{3.30}
\end{align*}
$$

Then all conditions (3.5)-(3.10) are satisfied.
Remark 2. Condition (3.29) is surely satisfied if we assume

$$
\begin{equation*}
a_{0}(x)-\frac{1}{p} \sum_{i=1}^{n} D_{x_{i}} a_{i}(x) \geq c_{1}, \quad \sum_{i=1}^{n} a_{i}(x)(x) D_{x_{i}} m(x) \leq 0, \quad \text { for all } x \in \bar{\Omega} \tag{3.31}
\end{equation*}
$$

Let now u be a solution to equation (2.20). Taking the scalar product of both sides in (2.6) with $m^{p-1} u|u|^{p-2}$ and using (3.25), we easily get the equalities

$$
\begin{align*}
& \left(f, m^{p-1} u|u|^{p-2}\right)=\left(\lambda m u+L u, m^{p-1} u|u|^{p-2}\right) \\
= & \lambda\|M u\|_{p}^{p}+\left(K u, u|u|^{p-2}\right)+(p-1)\left(m^{p-2} \sum_{i, j=1}^{n} a_{i, j} D_{x_{i}} m D_{x_{j}} u, u|u|^{p-2}\right) \cdot(\tag{3.32}
\end{align*}
$$

Taking the real and imaginary parts in (3.32) and using (3.10), we easily deduce the inequalities

$$
\begin{align*}
& \operatorname{Re} \lambda\|M u\|_{p}^{p}+\operatorname{Re}\left(K u, u|u|^{p-2}\right) \\
\leq & \left|\left(f, m^{p-1} u|u|^{p-2}\right)\right|+(p-1)\left|\left(m^{p-2} \sum_{i, j=1}^{n} a_{i, j} D_{x_{i}} m D_{x_{j}} u, u|u|^{p-2}\right)\right| \tag{3.33}\\
& |\operatorname{Im} \lambda|\|M u\|_{p}^{p} \leq\left|\operatorname{Im}\left(K u, u|u|^{p-2}\right)\right| \\
& +\left|\left(f, m^{p-1} u|u|^{p-2}\right)\right|+(p-1)\left|\left(m^{p-2} \sum_{i, j=1}^{n} a_{i, j} D_{x_{i}} m D_{x_{j}} u, u|u|^{p-2}\right)\right| \\
\leq & c_{12} \operatorname{Re}\left(K u, u|u|^{p-2}\right)-c_{13} \int_{\Omega} m^{p-1}|u|^{p} d x+\left|\left(f, m^{p-1} u|u|^{p-2}\right)\right| \\
& +(p-1)\left|\left(m^{p-2} \sum_{i, j=1}^{n} a_{i, j} D_{x_{i}} m D_{x_{j}} u, u|u|^{p-2}\right)\right| . \tag{3.34}
\end{align*}
$$

Multiply now by a (fixed) positive constant $k_{2}(p) \in\left(0, c_{12}^{-1}\right)$ the first and last sides in (3.34) and add to the first and last sides in (3.33). We get the estimate

$$
\begin{align*}
& {\left[\operatorname{Re} \lambda+k_{2}(p)|\operatorname{Im} \lambda|+c_{13} k_{2}(p)\|m\|_{\infty}^{-1}\right]\|M u\|_{p}^{p} } \\
&+\left(1-k_{2}(p) c_{12}\right) \operatorname{Re}\left(K u, u|u|^{p-2}\right) \tag{3.35}\\
& \leq \quad {\left[1+k_{2}(p)\right]\left\{\left|\left(f, m^{p-1} u|u|^{p-2}\right)\right|\right.} \\
&\left.+(p-1)\left|\left(m^{p-2} \sum_{i, j=1}^{n} a_{i, j} D_{x_{i}} m D_{x_{j}} u, u|u|^{p-2}\right)\right|\right\}
\end{align*}
$$

where we have made use of the elementary inequality

$$
m(x)^{p} \leq\|m\|_{\infty} m(x)^{p-1}, \quad \text { for all } x \in \bar{\Omega} .
$$

We now estimate the last term in (3.35) with the aid of (1.9). Using twice Hölder's inequality, we get

$$
\begin{align*}
& \left|\left(m^{p-2} \sum_{i, j=1}^{n} a_{i, j} D_{x_{i}} m D_{x_{j}} u, u|u|^{p-2}\right)\right| \leq \int_{\Omega} m^{p-2}|u|^{p-1}\left|\sum_{i, j=1}^{n} a_{i, j} D_{x_{i}} m D_{x_{j}} u\right| d x \\
& \leq c_{16} \int_{\Omega} m^{p-2+\rho}|u|^{p-1}|\nabla u| d x=c_{16} \int_{\Omega} m^{p \rho / 2}|u|^{p / 2} m^{(p-2)(2-\rho) / 2}|u|^{-1+p / 2}|\nabla u| d x \\
& \leq c_{16}\left(\int_{\Omega} m^{p \rho}|u|^{p \rho}|u|^{p(1-\rho)} d x\right)^{1 / 2}\left(\int_{\Omega} m^{(p-2)(2-\rho)}|u|^{p-2}|\nabla u|^{2} d x\right)^{1 / 2} \\
& \leq c_{16}\|M u\|_{p}^{p \rho / 2}\|u\|_{p}^{(1-\rho) p / 2}\|m\|_{\infty}^{(p-2)(2-\rho) / 2}\left(\int_{\Omega}|u|^{p-2}|\nabla u|^{2} d x\right)^{1 / 2} \tag{3.36}
\end{align*}
$$

On account of (2.13), with $p \in[2,+\infty)$, we easily observe the estimate

$$
\begin{equation*}
\int_{\Omega}|u|^{p-2}|\nabla u|^{2} d x \leq c_{9}(p)\|f\|_{p}^{p} \tag{3.37}
\end{equation*}
$$

From (2.23), (3.36) and (3.37) we finally deduce the estimates

$$
\begin{equation*}
\left|\left(m^{p-2} \sum_{i, j=1}^{n} a_{i, j} D_{x_{i}} m D_{x_{j}} u, u|u|^{p-2}\right)\right| \leq c_{17}(p)\|f\|_{p}^{p(2-\rho) / 2}\|M u\|_{p}^{p \rho / 2} \tag{3.38}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
\left|\left(f, m^{p-1} \bar{u}|u|^{p-2}\right)\right| \leq\|f\|_{p}\|M u\|_{p}^{p-1} \tag{3.39}
\end{equation*}
$$

Finally, from (3.35), (3.38), (3.39) we deduce the inequality
$\left[\operatorname{Re} \lambda+k_{2}(p)|\operatorname{Im} \lambda|+c_{13} k_{2}(p)\|m\|_{\infty}^{-1}\right]\|M u\|_{p}^{p}+\left(1-k_{2}(p) c_{12}\right) \operatorname{Re}\left(K u, u|u|^{p-2}\right)$
$\leq c_{18}(p)\left[\|f\|_{p}\|M u\|_{p}^{p-1}+\|f\|_{p}^{p(2-\rho) / 2}\|M u\|_{p}^{p \rho / 2}\right], \quad$ for all $\lambda \in \Sigma_{1}$.
We now introduce the sector

$$
\Sigma_{2}=\left\{\lambda \in \mathbb{C}: \operatorname{Re} \lambda+\frac{k_{2}(p)}{2}|\operatorname{Im} \lambda|+\frac{c_{13} k_{2}(p)}{2\|m\|_{\infty}} \geq 0\right\}
$$

Choose now $k=k_{2}(p)$ so small as to satisfy

$$
\begin{equation*}
0<k_{2}(p) \leq \min \left\{1 / c_{10}, k_{1}(p), c_{4} k_{1}(p) / c_{11}\right\}, \quad \text { for all } p \in(1,+\infty) \tag{3.41}
\end{equation*}
$$

Due to this choice we immediately deduce the inclusion $\Sigma_{2} \subset \Sigma_{1}$ (cf. (2.30)).

Then, recalling that $\operatorname{Re}\left(K u, u|u|^{p-2}\right)$ is non-negative (cf. Lemma 3.2) and observing that

$$
\begin{equation*}
|\lambda|+1 \leq\left(1+\frac{2\left(c_{13}+\|m\|_{\infty}\right)}{c_{13} k_{2}(p)}\right)\left(\operatorname{Re} \lambda+k_{2}(p)|\operatorname{Im} \lambda|+\frac{c_{13} k_{2}(p)}{\|m\|_{\infty}}\right) \tag{3.42}
\end{equation*}
$$

(cf. Proposition 2.1 in [4]), we obtain

$$
\begin{align*}
& (|\lambda|+1)\|M u\|_{p}^{p}+\operatorname{Re}\left(K u, u|u|^{p-2}\right) \\
\leq \quad & c_{19}(p)\left[\|f\|_{p}\|M u\|_{p}^{p-1}+\|f\|_{p}^{p(2-\rho) / 2}\|M u\|_{p}^{p \rho / 2}\right], \quad \text { for all } \lambda \in \Sigma_{2} . \tag{3.43}
\end{align*}
$$

Consequently, since $\|u\|_{p} \leq C_{1}(p)\|f\|_{p}$ (cf. Theorem 2.1), (3.34) and (3.42) imply

$$
\begin{gather*}
(|\lambda|+1)\|M u\|_{p}^{p(2-\rho) / 2} \leq c_{20}(p)\left[\|f\|_{p}\|M u\|_{p}^{p-1-p \rho / 2}+\|f\|_{p}^{p(2-\rho) / 2}\right], \\
\text { for all } \lambda \in \Sigma_{2} . \tag{3.44}
\end{gather*}
$$

Since $\lambda M+L$ is surjective on $L^{p}(\Omega)$, estimate (2.24) holds with $\alpha=1$ and $\beta=$ $2[p(2-\rho)]^{-1}$.

We can summarize the results in this section in Theorem 3.3.
Theorem 3.3. Let L and M be the linear operators defined by (2.3) or (2.4) and by $M u=m u$, the coefficients $a_{i, j}, a_{i}, a_{0}, i, j=1, \ldots, n$, enjoying properties (1.2), (1.3), (2.1), (2.2), (2.5), (3.29), (3.30) for some non-negative function $m \in C^{1}(\bar{\Omega})$ satisfying (3.1). Then the spectral equation $\lambda M u+L u=f$, with $f \in L^{p}(\Omega)$, admits, for any $\lambda \in \Sigma_{2}=\left\{\mu \in \mathbb{C}: \operatorname{Re} \mu+\frac{1}{2} k_{2}(p)|\operatorname{Im} \mu|+\frac{1}{2} k_{2}(p) c_{3}\|m\|_{\infty}^{-1} \geq 0\right\}$ and $p \in[2,+\infty)$, a unique solution $u \in D(L)$ satisfying the estimates

$$
\begin{aligned}
& \|u\|_{p} \leq C_{1}(p)\|f\|_{p}, \quad\|M u\|_{p} \leq C_{4}(p)|\lambda|^{-2 /[p(2-\rho)]}\|f\|_{p}, \quad \lambda \in \Sigma_{2}, \\
& \|L u\|_{p} \leq C_{5}(p)\left(1+|\lambda|^{[p(2-\rho)-2] /[p(2-\rho)]}\right)\|f\|_{p}, \quad \lambda \in \Sigma_{2},
\end{aligned}
$$

for some positive constants $C_{4}(p)$ and $C_{5}(p)$.
Example 1. Let Ω be a bounded domain and let x_{0} be a fixed point in $\partial \Omega$. Define then $r=\max _{x \in \bar{\Omega}}\left|x-x_{0}\right|$ and choose

$$
m(x)=\left[\left(\left|x-x_{0}\right|\left(r-\left|x-x_{0}\right|\right)\right]^{q}, \quad q \in(1,+\infty)\right.
$$

An elementary computation shows that

$$
|\nabla m(x)|=q\left[\left|x-x_{0}\right|\left(r-\left|x-x_{0}\right|\right)\right]^{q-1}|2| x-x_{0}|-r| \leq q r m(x)^{(q-1) / q}, \quad x \in \Omega .
$$

Consequently, function m satisfies condition (3.1).
We notice that for any open interval $\Omega \subset \mathbb{R}$ we have $r=\operatorname{length}(\Omega)$.
4. The case when $p \in(1,2)$. In this section we focus our attention to the case when $m \in W^{1, \infty}(\Omega)$ satisfies inequality (3.1) with

$$
\begin{equation*}
\rho \in(2-p, 1] \tag{4.1}
\end{equation*}
$$

Multiplying both sides in (2.20) by $m^{p-1} \bar{u}|u|^{p-2}$ and integrating over Ω, we easily get

$$
\begin{align*}
& \lambda\|M u\|_{p}^{p}-\lim _{\delta \rightarrow 0+} \int_{\Omega} m^{p-1} \bar{u}\left(|u|^{2}+\delta\right)^{(p-2) / 2} \sum_{j, k=1}^{n} D_{x_{j}}\left[a_{j, k} D_{x_{k}} u\right] d x \\
& +\int_{\Omega} m^{p-1} \bar{u}|u|^{p-2} \sum_{i=1}^{n} a_{i} D_{x_{i}} u d x+\int_{\Omega} a_{0} m^{p-1}|u|^{p} d x=\int_{\Omega} f m^{p-1} \bar{u}|u|^{p-2} d x, \tag{4.2}
\end{align*}
$$

where $\bar{u}|u|^{p-2}$ stands for the function vanishing where u does.
We need now Proposition 4.1 in [4] that we restate here for the the convenience of the reader.

Proposition 1. Let m satisfy property (3.1). Then for any $\beta \in(1-\rho, 1)$, the function $m(\cdot)^{\beta}$ belongs to $C^{1}(\bar{\Omega})$ and $\nabla\left[m(\cdot)^{\beta}\right]=m_{1}$ for any $x \in \bar{\Omega}$, where

$$
m_{1}= \begin{cases}0, & x \in Z(m) \tag{4.3}\\ \beta m^{\beta-1} \nabla m, & x \notin Z(m)\end{cases}
$$

and $Z(m)$ denotes the zero-set of m. Moreover,

$$
\left|\nabla\left[m(\cdot)^{\beta}\right]\right| \leq c_{21} m(\cdot)^{\beta-1+\rho}, \quad \text { for all } x \in \bar{\Omega}
$$

An integration by parts in the first integral, which takes into account (4.1), (4.2) and the Robin condition (2.4), easily yields

$$
\begin{align*}
& \quad-\lim _{\delta \rightarrow 0+} \int_{\Omega} m^{p-1} \bar{u}\left(|u|^{2}+\delta\right)^{(p-2) / 2} \sum_{j, k=1}^{n} D_{x_{j}}\left[a_{j, k} D_{x_{k}} u\right] d x \\
& = \\
& \\
& \quad \lim _{\delta \rightarrow 0+} \int_{\partial \Omega} b m^{p-1}|u|^{2}\left(|u|^{2}+\delta\right)^{(p-2) / 2} d S \\
& \\
& + \tag{4.4}\\
& +(p-1) \int_{\Omega \rightarrow 0+} \bar{u}\left(|u|^{2}+\delta\right)^{(p-2) / 2} \sum_{j, k=1}^{n} m^{p-2} D_{x_{j}} m a_{j, k} D_{x_{k}} u d x \\
& \left.+(p-2) \int_{\Omega} m^{p-1}\left(|u|^{2}+\delta\right)^{(p-4) / 2} \sum_{j, k=1}^{n} a_{j, k} \operatorname{Re}\left(\bar{u} D_{x_{j}} u\right) \bar{u} D_{x_{k}} u d x\right\} \\
& =: \\
& \\
& =\int_{\partial \Omega} b m^{p-1}|u|^{p} d S+I_{1}(u, \delta)+(p-1) I_{2}(u, \delta)-(2-p) I_{3}(u, \delta) .
\end{align*}
$$

Using again proposition 1 and assumption (4.1), by an integration by parts we get

$$
\begin{align*}
& \int_{\Omega} m^{p-1} \sum_{i=1}^{n} a_{i} \bar{u}|u|^{p-2} D_{x_{i}} u d x+\int_{\Omega} m^{p-1} a_{0}|u|^{p} d x=\frac{1}{p} \int_{\partial \Omega} m^{p-1}|u|^{p} \sum_{i=1}^{n} a_{i} \nu_{i} d S \\
& +\int_{\Omega}\left[m^{p-1}\left(a_{0}-\frac{1}{p} \sum_{i=1}^{n} D_{x_{i}} a_{i}\right)-\frac{p-1}{p} \sum_{i=1}^{n} a_{i} m^{p-2} D_{x_{i}} m\right]|u|^{p} d x \\
& +i \operatorname{Im} \int_{\Omega} m^{p-1} \bar{u}|u|^{p-2} \sum_{i=1}^{n} a_{i} D_{x_{i}} u d x \tag{4.5}
\end{align*}
$$

Consequently, equation (4.2) can be rewritten in the form

$$
\begin{align*}
& \lambda\|M u\|_{p}^{p}+\lim _{\delta \rightarrow 0+}\left[I_{1}(u, \delta)+(p-1) I_{2}(u, \delta)-(2-p) I_{3}(u, \delta)\right] \\
& +\int_{\partial \Omega} m^{p-1}\left[b+\frac{1}{p} \sum_{i=1}^{n} a_{i} \nu_{i}\right]|u|^{p} d S \\
& +\int_{\Omega}\left[m^{p-1}\left(a_{0}-\frac{1}{p} \sum_{i=1}^{n} D_{x_{i}} a_{i}\right)-\frac{p-1}{p} \sum_{i=1}^{n} a_{i} m^{p-2} D_{x_{i}} m\right]|u|^{p} d x \\
& +i \operatorname{Im} \int_{\Omega} m^{p-1} \bar{u}|u|^{p-2} \sum_{i=1}^{n} a_{i} D_{x_{i}} u d x=\int_{\Omega} f m^{p-1} \bar{u}|u|^{p-2} d x \tag{4.6}
\end{align*}
$$

Since the matrix $\left(a_{j, k}\right)_{j, k=1, \ldots, n}$ is real-valued and positive definite, from (4.4) we immediately deduce that

$$
\begin{equation*}
I_{1}(u, \delta) \text { and } \operatorname{Re} I_{3}(u, \delta) \text { are positive for any } \delta \in \mathbb{R}_{+} \tag{4.7}
\end{equation*}
$$

Then we observe that $I_{2}(u, \delta)$ has a limit as $\delta \rightarrow 0+$ and

$$
\begin{equation*}
\lim _{\delta \rightarrow 0+} I_{2}(u, \delta)=\int_{\Omega} \bar{u}|u|^{p-2} \sum_{j, k=1}^{n} m^{p-2} D_{x_{j}} m a_{j, k} D_{x_{k}} u d x \tag{4.8}
\end{equation*}
$$

Note that the integral in the right-hand side is well-defined on the whole of $W^{1, p}(\Omega)$ since $\bar{u}|u|^{p-2} \in L^{p^{\prime}}(\Omega), D_{x_{j}} u \in L^{p}(\Omega)$ and $m^{p-2} D_{x_{j}} m \in L^{\infty}(\Omega)$, due to Proposition 1, with $\beta=p-1$, and assumption (4.1).

Further, (4.6) and (4.8) imply that there exists also $\lim _{\delta \rightarrow 0+}\left[I_{1}(u, \delta)-(2-\right.$ p) $\left.I_{3}(u, \delta)\right]$. Whence we deduce that there exist the limits

$$
\lim _{\delta \rightarrow 0+} \operatorname{Im} I_{3}(u, \delta) \quad \text { and } \quad \lim _{\delta \rightarrow 0+}\left[I_{1}(u, \delta)-(2-p) \operatorname{Re} I_{3}(u, \delta)\right]
$$

We now restate here Lemma 4.1 in [4].

Lemma 4.1. The following estimates hold for any $\delta \in \mathbb{R}_{+}, p \in(1,2)$ and $\sigma \in$ $\left(0,2(p-1)(2-p)^{-1}\right)$:

$$
\begin{align*}
& I_{1}(u, \delta)-(2-p) \operatorname{Re} I_{3}(u, \delta)-\sigma(2-p)\left|\operatorname{Im} I_{3}(u, \delta)\right| \geq 0, \tag{4.9}\\
& I_{1}(u, \delta)+(p-1) \operatorname{Re} I_{2}(u, \delta)-(2-p) \operatorname{Re} I_{3}(u, \delta) \\
& -\sigma\left|(p-1) \operatorname{Im} I_{2}(u, \delta)-(2-p) \operatorname{Im} I_{3}(u, \delta)\right| \\
& \geq-(p-1)\left(1+\sigma^{2}\right)^{1 / 2}\left|I_{2}(u, \delta)\right| \tag{4.10}\\
& \lim _{\delta \rightarrow 0+}\left[I_{1}(u, \delta)+(p-1) \operatorname{Re} I_{2}(u, \delta)-(2-p) \operatorname{Re} I_{3}(u, \delta)\right] \\
& -\sigma \lim _{\delta \rightarrow 0+}\left|(p-1) \operatorname{Im} I_{2}(u, \delta)-(2-p) \operatorname{Im} I_{3}(u, \delta)\right| \\
& \geq-c_{22}\|f\|_{p}^{p / 2}\|M u\|_{p}^{p-2+\rho}\|u\|_{p}^{2-\rho-p / 2}, \tag{4.11}
\end{align*}
$$

c_{22} being a suitable positive constant.

Taking now the real part and the modulus of the imaginary part in (4.2) and using (4.4), we easily derive the relations
$\operatorname{Re} \lambda\|M u\|_{p}^{p}+\lim _{\delta \rightarrow 0+}\left[I_{1}(u, \delta)+(p-1) \operatorname{Re} I_{2}(u, \delta)-(2-p) \operatorname{Re} I_{3}(u, \delta)\right]$

$$
+\int_{\partial \Omega} m^{p-1}\left[b+\frac{1}{p} \sum_{i=1}^{n} a_{i} \nu_{i}\right]|u|^{p} d S
$$

$$
+\int_{\Omega}\left[m^{p-1}\left(a_{0}-\frac{1}{p} \sum_{i=1}^{n} D_{x_{i}} a_{i}\right)-\frac{p-1}{p} \sum_{i=1}^{n} a_{i} m^{p-2} D_{x_{i}} m\right]|u|^{p} d x
$$

$$
\begin{equation*}
=\operatorname{Re} \int_{\Omega} m^{p-1} f \bar{u}|u|^{p-2} d x \tag{4.12}
\end{equation*}
$$

$|\operatorname{Im} \lambda|\left|\left|M u \|_{p}^{p} \leq \lim _{\delta \rightarrow 0+}\right|\left[(p-1) \operatorname{Im} I_{2}(u, \delta)-(2-p) \operatorname{Im} I_{3}(u, \delta)\right]\right|$
$+\left.\left|\operatorname{Im} \int_{\Omega} m^{p-1} \bar{u}\right| u\right|^{p-2} \sum_{i=1}^{n} a_{i} D_{x_{i}} u d x\left|+\left|\operatorname{Im} \int_{\Omega} m^{p-1} f \bar{u}\right| u\right|^{p-2} d x \mid, \quad$ for all $\lambda \in \mathbb{C}$.

Assume now that inequalities (3.29) and (3.30) hold. Add then member by member (4.12) and (4.13) multiplied by $k_{3}(p) \in\left(0,2 \sqrt{p-1}(2-p)^{-1}\right)$ and use (4.11) and (2.2). Then from Lemma 4.1 we easily deduce the following estimate for

$$
\begin{align*}
& \text { any } \lambda \in \Sigma=:\left\{\mu \in \mathbb{C}: \operatorname{Re} \mu+k_{3}(p)|\operatorname{Im} \mu| \geq 0\right\}: \\
& \qquad \begin{aligned}
& {\left[\operatorname{Re} \lambda+k_{3}(p)|\operatorname{Im} \lambda|+\frac{c_{15}}{\|m\|_{\infty}}\right]\|M u\|_{p}^{p} } \\
\leq & -\lim _{\delta \rightarrow 0+}\left[I_{1}(u, \delta)+(p-1) \operatorname{Re} I_{2}(u, \delta)-(2-p) \operatorname{Re} I_{3}(u, \delta)\right] \\
& \left.-k_{3}(p) \lim _{\delta \rightarrow 0+}\left|\left[(p-1) \operatorname{Im} I_{2}(u, \delta)-(2-p) \operatorname{Im} I_{3}(u, \delta)\right]\right|\right] \\
& +\operatorname{Re} \int_{\Omega} f m^{p-1} \bar{u}|u|^{p-2} d x+\left.k_{3}(p)\left|\operatorname{Im} \int_{\Omega} f m^{p-1} \bar{u}\right| u\right|^{p-2} d x \mid \\
\leq & c_{22}\|f\|_{p}^{p / 2}\|M u\|_{p}^{p-2+\rho}\|u\|_{p}^{2-\rho-p / 2}+\left.\left|\operatorname{Re} \int_{\Omega} f m^{p-1} \bar{u}\right| u\right|^{p-2} d x \mid \\
& +\left.k_{3}(p)\left|\operatorname{Im} \int_{\Omega} f m^{p-1} \bar{u}\right| u\right|^{p-2} d x\left|+k_{3}(p)\right| \operatorname{Im} \int_{\Omega} m^{p-1} \bar{u}|u|^{p-2} \sum_{i=1}^{n} a_{i} D_{x_{i}} u d x \mid \\
\leq & c_{23}\|f\|_{p}^{p / 2}\|M u\|_{p}^{p-2+\rho}\|u\|_{p}^{2-\rho-p / 2}+\left(1+k_{3}(p)^{2}\right)^{1 / 2}\|f\|_{p}\|M u\|_{p}^{p-1} .
\end{aligned}
\end{align*}
$$

Indeed, the last term in the penultimate line can be estimated as follows:

$$
\begin{aligned}
& \left.\left.\left|\operatorname{Im} \int_{\Omega} m^{p-1} \bar{u}\right| u\right|^{p-2} \sum_{i=1}^{n} a_{i} D_{x_{i}} u d x\left|\leq c_{24} \int_{\Omega} m^{p-1}\right| u\right|^{p-1}|\nabla u| d x \\
= & c_{24} \lim _{\delta \rightarrow 0} \int_{\Omega} m^{1-\rho} m^{p-2+\rho}|u|^{p-2+\rho}|u|^{2-\rho-p / 2}\left(|u|^{2}+\delta\right)^{(p-2) / 4}|\nabla u| d x \\
\leq & c_{24}\|m\|_{\infty}^{1-\rho} \lim _{\delta \rightarrow 0} \int_{\Omega}(m|u|)^{p-2+\rho}|u|^{2-\rho-p / 2}\left(|u|^{2}+\delta\right)^{(p-2) / 4}|\nabla u| d x \\
\leq & c_{24}\|m\|_{\infty}^{1-\rho}\|M u\|_{p}^{p-2+\rho}\|u\|_{p}^{2-\rho-p / 2} \lim _{\delta \rightarrow 0}\left(\int_{\Omega}\left(|u|^{2}+\delta\right)^{(p-2) / 2}|\nabla u|^{2} d x\right)^{1 / 2}
\end{aligned}
$$

By virtue of the proof of (2.32) we obtain

$$
(p-1) c_{0} \lim _{\delta \rightarrow 0+} \int_{\Omega}\left(|u|^{2}+\delta\right)^{(p-2) / 2}|\nabla u|^{2} d x \leq c_{6}^{1-p}\left(\frac{\left(k_{1}(p)+1\right)}{h_{1}(p)}\right)^{p}\|f\|_{p}^{p}
$$

Thus

$$
\left.\left|\operatorname{Im} \int_{\Omega} m^{p-1} \bar{u}\right| u\right|^{p-2} \sum_{i=1}^{n} a_{i} D_{x_{i}} u d x \mid \leq c_{25}\|M u\|_{p}^{p-2+\rho}\|u\|_{p}^{2-\rho-p / 2}\|f\|_{p}^{p / 2}
$$

Take now λ in the sector

$$
\begin{equation*}
\Sigma_{3}=\left\{\mu \in \mathbb{C}: \operatorname{Re} \mu+\frac{k_{3}(p)}{2}|\operatorname{Im} \mu|+\frac{c_{15}}{2\|m\|_{\infty}} \geq 0\right\} \tag{4.15}
\end{equation*}
$$

Then, since $\|u\|_{p} \leq C_{1}\|f\|_{p}$ (cf. (2.11), (2.12) and our definition of $k_{3}(p)$) and $2-\rho-p / 2>0$ (cf. (4.1)), we immediately derive the inequality

$$
\begin{equation*}
(|\lambda|+1)\|M u\|_{p}^{2-\rho} \leq c_{26}\left[\|f\|_{p}^{2-\rho}+\|f\|_{p}\|M u\|_{p}^{1-\rho}\right], \quad \text { if } \quad \lambda \in \Sigma_{3} \tag{4.16}
\end{equation*}
$$

Finally, $\|M u\|_{p} \leq\|m\|_{\infty}\|u\|_{p} \leq c_{27}\|m\|_{\infty}\|f\|_{p}$ implies

$$
\begin{equation*}
(|\lambda|+1)\|M u\|_{p}^{2-\rho} \leq c_{28}\|f\|_{p}^{2-\rho}, \quad \text { if } \quad \lambda \in \Sigma_{3} \tag{4.17}
\end{equation*}
$$

We can now collect the result in this section in the following Theorem 4.1.

Theorem 4.2. Let L and M be the linear operators defined by (2.3) or (2.4) and by $M u=m u$, the coefficients $a_{i, j}, a_{i}, a_{0}, i, j=1, \ldots, n$, enjoying properties (1.2), (1.3), (2.1), (2.2), (2.3), (3.29), (3.30) for some non-negative function $m \in C^{1}(\bar{\Omega})$ satisfying (3.1)). Then the spectral equation $\lambda M u+L u=f$, with $f \in L^{p}(\Omega)$, admits, for any $\lambda \in \Sigma_{3}=\left\{\mu \in \mathbb{C}: \operatorname{Re} \mu+k_{3}(p)|\operatorname{Im} \mu| / 2+c_{15}\left(2\|m\|_{\infty}\right)^{-1} \geq 0\right\}$ and $p \in(1,2), \rho \in(2-p, 1)$, a unique solution $u \in D(L)$ satisfying the estimates

$$
\begin{align*}
& \|u\|_{p} \leq C_{1}\|f\|_{p}, \quad\|M u\|_{p} \leq C_{6}(p)|\lambda|^{-(2-\rho)^{-1}}\|f\|_{p}, \quad \text { for all } \lambda \in \Sigma_{3}, \\
& \|L u\|_{p} \leq C_{7}\left(1+|\lambda|^{(1-\rho)(2-\rho)^{-1}}\right)\|f\|_{p}, \quad \text { for all } \lambda \in \Sigma_{3} \tag{4.18}
\end{align*}
$$

Example 2. Let $n=1, m(x)=x^{q}(1-x)^{q}, q \in(1,+\infty), \Omega=(0,1)$. Then

$$
m^{\prime}(x)=q(1-2 x) m^{(q-1) / q}, \quad \text { for all } x \in(0,1)
$$

Hence (3.1) holds true for any $q \in(1,+\infty)$. If we have to deal with $L^{p}(0,1)$ with $p \in(1,2)$, to satisfy (4.1) we are forced to assume $q>(p-1)^{-1}$.
5. Solving singular parabolic problems. Taking the spectral Theorems 2.1, 3.1, 4.1 into account, from Theorem 3.26 in [5] we can easily derive our existence and uniqueness result. For this purpose we need to introduce the following Banach space contained into $\left(X ; D\left(L M^{-1}\right)\right)_{\theta, \infty}$:

$$
\begin{equation*}
L_{\theta, \infty}^{p}=\left\{g \in L^{p}(\Omega): \sup _{t \geq 1} t^{\theta}\left\|L(t M+L)^{-1} g\right\|_{L^{p}(\Omega)}<+\infty\right\} \tag{5.1}
\end{equation*}
$$

In particular, any $g=m h$ belongs to $L_{\theta, \infty}^{p}$, whenever $m \in L^{\infty}(\Omega)$ and $h \in D(L)$, if $1-\beta<\theta<\beta$ with $1 / 2<\beta \leq 1$, while when $\beta \leq \theta<1$ function $g=m h$ belongs to $L_{\theta, \infty}^{p}$ if $L h=M k$ for some $k \in D(L)$.

Consider now the initial and boundary value problem
(P) $\left\{\begin{array}{l}D_{t}[m(x) u(x, t)]+\mathcal{L} u(x, t)=f(x, t), \text { for all }(x, t) \in \Omega \times[0, \tau], \\ \eta \sum_{i, j=1}^{n} a_{i, j}(x) \nu_{j}(x) D_{x_{i}} u(x, t)+[\eta(b(x)-1)+1] u(x, t)=0, \\ \text { for all }(x, t) \in \partial \Omega \times[0, \tau], \\ m(x) u(x, t) \rightarrow m(x) u_{0}(x), \quad \text { for almost every } x \in \Omega, \text { as } t \rightarrow 0+,\end{array}\right.$
where $\eta \in\{0,1\}$.
Note that the choice $\eta=0$ corresponds to Dirichlet boundary conditions, while the choice $\eta=1$ does to Robin boundary conditions.

Theorem 5.1. Let $p \in(1,+\infty)$, let $m \in L^{\infty}(\Omega)$ be a non-negative function and let the coefficients $a_{i, j} i, j=1, \ldots, n, a_{0}$ enjoy properties (2.1). Further, when $\eta=1$, let coefficient b satisfy conditions (2.2) and (2.5). Then for any

$$
\begin{equation*}
u_{0} \in D(L), \quad f \in C^{\theta}\left([0, T] ; L^{p}(\Omega)\right), \quad \theta \in(1-\beta, 1) \tag{5.2}
\end{equation*}
$$

with $\beta=1 / p$ and

$$
\begin{equation*}
-\mathcal{L} u_{0}+f(0, \cdot)=g_{0}, \quad g_{0} \in L_{\theta, \infty}^{p} \tag{5.3}
\end{equation*}
$$

problem (P), with $\eta \in\{0,1\}$, admits a unique solution

$$
\begin{equation*}
m u \in C^{\theta+\beta}\left([0, T] ; L^{p}(\Omega)\right), \quad u \in C^{\theta+\beta-1}([0, T] ; D(L)) \tag{5.4}
\end{equation*}
$$

Moreover, if m is a non-negative function satisfying (3.1) and

$$
\beta= \begin{cases}(2-\rho)^{-1}, & \text { if } p \in(1,2), \rho \in(2-p, 1] \tag{5.5}\\ 2[p(2-\rho)]^{-1}, & \text { if } p \in[2,+\infty), \rho \in(0,1]\end{cases}
$$

the same result holds under assumptions (5.1)-(5.3) on (u_{0}, f).

REFERENCES

[1] H. O. Fattorini, "The Cauchy Problem, Encyclopedia of Mathematics and its Applications," Addison Wesley, London, 1983.
[2] A. Favini, A. Lorenzi and H. Tanabe, Degenerate integrodifferential equations of parabolic type, Differential Equations: Inverse and Direct Problems, Lecture Notes in Pure and Applied Mathematics, vol. 251, Chapman \& Hall CRC, Taylor and Francis, Boca-Raton, 2006, 91-109.
[3] A. Favini, A. Lorenzi and H. Tanabe, Degenerate integrodifferential equations of parabolic type with Robin boundary conditions: L^{2}-theory, to appear in J. Math. Soc. Japan.
[4] A. Favini, A. Lorenzi, H. Tanabe and A. Yagi, An L^{p}-approach to singular linear parabolic equations in bounded domains, Osaka J. Math., 42 (2005), 385-406.
[5] A. Favini and A. Yagi, "Degenerate Differential Equations in Banach Spaces," Marcel Dekker, New York-Basel-Hong Kong, 1999.
[6] J. A. Goldstein, "Semigroups of Linear Operators and Applications," Oxford University Press, New York, 1985.
[7] A. Lorenzi and H. Tanabe, Inverse and direct problems for nonautonomous degenerate integrodifferential equations of parabolic type with Dirichlet boundary conditions, Differential Equations: Inverse and Direct Problems, Lecture Notes in Pure and Applied Mathematics, vol. 251, Chapman \& Hall CRC, Taylor and Francis, Boca-Raton 2006, 197-243.
[8] A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems," Birkhäuser Verlag, Basel, 1995.
[9] N. Okazawa, Sectorialness of second order elliptic operators in divergence form, Proc. AMS, 113 (1991), 701-706.
[10] H. Tanabe, "Functional Analytic Methods for Partial Differential Equations," Pure and Applied Mathematics, Marcel Dekker, New York, 1997.

Received July 2007; Revised October 2007.

```
E-mail address: favini@dm.unibo.it
E-mail address: lorenzi@mat.unimi.it
E-mail address: h7tanabe@jttk.zaq.ne.jp
E-mail address: yagi@ap.eng.osaka-u.ac.jp
```


[^0]: 2000 Mathematics Subject Classification. Primary: 35K20. Secondary 35K65, 35J25, 35P05.
 Key words and phrases. Linear singular integro-differential equations of parabolic type. Existence and uniqueness results. Spectral analysis of linear elliptic operators.

 Work partially supported by the University of Bologna Funds for selected research topics. The first two authors are members of G.N.A.M.P.A. of the Italian Istituto Nazionale di Alta Matematica (I.N.d.A.M).

