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ABSTRACT. In this paper we give new results on complete abstract second
order differential equations of elliptic type in the framework of Holder spaces,
extending those given in [4] and [5]. More precisely we study v/ +2Bu'+Au = f
in the case when f is Holder continuous and under some natural assumptions
on the operators A and B. We give necessary and sufficient conditions of
compatibility to obtain a strict solution u and also to ensure that the strict
solution has the maximal regularity property.

1. Introduction and hypotheses. Let us consider the second order abstract dif-
ferential equation

u'(x) +2Bu'(x) + Au(z) = f(z), = € (0,1), (1)
with the boundary conditions
u(0) = ug, u(l) = u. (2)

Here ug, u; are given elements of a complex Banach space X, A, B are two linear
operators in X and f € C([0,1]; X).
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We recall that a strict solution u to (1)-(2), is a function u such that
u € C*([0,1];X) N C([0,1]; D(A)),u’ € C([0,1]; D(B)),

and which satisfies (1)-(2).
In general, the condition f € C([0,1];X) is not sufficient to provide a strict
solution to (1)-(2), this is why we assume, in all the paper, that

fec?(0,1;X),0< 6 <1,
and, in this case, our aims are the following:

1. Furnish a unified approach in the analysis of (1)-(2) by using uniquely two
closed linear operators L and M related to A and B.

2. Under reasonable assumptions on L and M, give necessary and sufficient
conditions to obtain a unique strict solution u to (1)-(2).

3. Give also necessary and sufficient conditions to obtain a unique strict solution
u satisfying the maximal regularity property

u", Bu/, Au € C?([0,1]; X).
The results proved here extend those given in the recent papers [1], [5], [6]. Note

that we have already used L and M, in the UMD case, see [8].
If P,Q are two linear operators in X such that

D(P) € D(Q) and P = Q on D(P),

we write P C Q.
Now, we assume that there exist L, M two closed linear operators in X satisfying

{ D(L) = D(M) 3
D(ML) = D(LM),

L—-McC2B (@)
LM =ML C —A,
L, M generate a generalized analytic semigroup on X, (5)

(for the definition of a generalized analytic semigroup see section 2) and
L+ M is boundedly invertible in X. (6)

Remark 1.
1. Assumptions (3) and (5) imply that L + M generates an analytic semigroup
(ex(LJrM))INJon X.
2. Assumption (3) together with LM = M L imply
D(M™L™) = D(L™M"™) = D(L™"™) = D(M™*"), (7)
for n,m € N.
3. By our methods, we will solve
u(z) + (L — M)u'(z) — LMu(z) = f(z), = € (0,1),
so a function u such that
ue C*([0,1]; X)NC([0,1]; D(LM)),u" € C([0,1]; D(L — M)),

and which satisfies (1)-(2) will be called a (L, M)-strict solution of Problem
(1)-(2). Of course such a solution will be in particular a strict solution of
Problem (1)-(2) in the sense defined previously.

The main results in this work are given by the following Theorems.
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Theorem 2. Assume (5)~(6), 0 €]0,1] and f € C’([0,1]; X).
Then the two following assertions are equivalent.

1. Problem (1)-(2) has a unique (L, M)-strict solution u.
2. ug,u1 € D(LM) and

(i) — Au; € D(LM), i =0, 1.
Theorem 3. Assume (3)~(6) and set 0 €]0,1[. Then the two following assertions
are equivalent.
1. Problem (1)-(2) has a unique (L, M)-strict solution u satisfying the maximal
reqularity property
u”, B/, Au € C°([0,1]; X),
2. fe€C%0,1]; X), uo,u; € D(LM) and
f(i)—A’uiE (D(LM),X)l 0 1 =0,1. (8)

—4. 000

The plan of the paper is as follows.

In section 2, we recall some basic facts on generalized analytic semigroups, which
will be applied in our proofs.

In section 3, we give the representation formula of the solution u of Problem
(1)-(2).

Section 4 is devoted to the proof of technichal Lemmas which are useful to give
a precise analysis of the representation of the solution u.

In section 5, we prove our main results.

Section 6 contains a comparison with the approach used in [7].

Finally, in section 7, we give some examples to which our theory applies.

2. Analytic semigroups. Let @ be a linear operator in X such that

(@) D Sus = {A € C\ {w} / Jarg(A —w)| < T + 8} and
up A =w) A = @), < o0,

for some given w € R and ¢ € }0, 5 [ This says exactly that ) is the infinitesimal
generator of a generalized analytic semigroup (emQ)wm, “generalized” in the sense
that @ is not supposed to be densely defined and so_(eg”Q)w>O
be a strongly continuous semi-group (see E. Sinestrari [13], A. Lunardi [12]).

Remark 4. Fix r > 0, dy € ]0,d[. Then (emQ)z>O is defined by

is not supposed to

. s [ —Q) 7 dN if x>0
v =

I ifz=0,
where 7 is the sectorial boundary curve of S, s, \ B(w,r) oriented positively.

Let us recall the following classical result.

Proposition 5.

1. Let ¢ € X. Then the two following assertions are equivalent.
(a) e%p € C([0,1]; X).
(b) ¢ € D(Q).
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2. Let 0 €]0,1[,g € C%([0,1]; X),p € X. Set
v(z) = "y +/ e~ (s)ds, x € [0,1].
0

Then the two following assertions are equivalent.
(a) ve C'([0,1]; X) N C([0,1]; D(Q))-

(b) v € D(Q) and g(0) + Qp € D(Q).

Considering the well known real interpolation space

(D(Q)7X)179,oo = (X7 D(Q))Gﬁoo )
(see H. Triebel [14] p. 25 and 76), we have also:

Theorem 6.

1. Let 6 €]0,1[. Then the two following assertions are equivalent.
(a) e®p € C°([0,1]; X).
(b) ¢ € (D(Q): X);_g o0 -

2. Let 6 €]0,1] and g € C?([0,1]; X). Set

v@y_Améﬁwﬂﬂg_gmn@,xemJy

Then
ve CHO([0,1;X) N C?([0,1]; D(Q)).
3. Let g € C([0,1]; X) and ¢ € X. Set

w(z) = er(p—‘,—/ e®=3)Q¢(s)ds, x €[0,1].
0

Then the two following assertions are equivalent.

(a) we CH([0,1); X) N C([0,1]; D(Q))-

(b) g € C?([0,1]; X), ¢ € D(Q) and g(0) + Qp € (D(Q), X);_g o -
4. Let g € C%([0,1]; X). Then

1
Q ; e*? (g(s) = 9(0)) ds € (D (Q)), X);_g o0 -

Statement 2 is obtained by applying the Da Prato-Grisvard sum theory [2]. State-
ment 3 which improves Statement 2 is due to E. Sinestrari [13], see also G. Da Prato
[1]. We can find in D. Guidetti [9] a simple proof of these results (see Corollary 2.1.
and Theorem 2.4, p.136).

Notation 7. Let g and h be two given X -valued functions defined on [0,1] and
0 €10,1[. We write
9 h,
if
g—heC?0,1]; X).
Proposition 8. Let h € C?([0,1]; X), » € D(Q) and set

w(z) = ezQsp -|—/ e(z*S)Qh(s)ds, x €10,1].
0

Then
Qu(-) ~ € (Qp + h(0)).
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Proof. Tt is an easy consequence of Theorem 6 and Proposition 1.2, statement (ii)
in [13], that

Quiz) = Q+q [ "5 ((s) — h(0))ds + Q / " @92 (0)ds
0 0

— Qe+ Q / " el@90 (1(s) — h(0)) ds — (h(0) — e"h(0))

@ (Qp + h(0)) + Q /O e~ (h(s) — h(0)) ds — h(0).

O

_ eLtM

3. Representation formula. In virtue of Lunardi [12] (p. 60), I admits

a bounded inverse 7.
Now, taking into account the representation formula used in [8], we set for z €

(0,1)

u(z) = eMTug+ (L+ M)™? /O”” e@=9IM f(5)ds 9)

1
—T(L—l—M)*lemM/ e’ f(s)ds
0
1

+e DLy 4+ (L + M)~ / e (s)ds

x

1
—T(L—I—M)*le(l*z)L/ =M £ (5)ds
0

—Te=2 LM perMl g
where
{ fo=1g— (L+M)~" [ e f(5)ds
fr=u = (L+ M) g et mIM f(s)ds.
Now, setting for g € C([0,1]; X),Q € {L, M}, and ¢ € D(Q)

Si(z,6,9,Q) = " T + [T @ (s)ds
Sa(z,9,Q) = —Te™@ [} esLTM=Q)g(s)ds
R(z,9,Q) = Te®QeltM=Q g

we see that the regularity of w is given by the one of

Sl('v(bvng)a SQ('vng)aR('aq/}aQ)v

since

u(z) = (L+M)"'Si(z, (L + M)ug, f, M) (10)
+(L + M)~ Sy(z, f, M) — R(z, f1, M)
+(L+ M) S1(1 — 2, (L + M)uy, f(1—.),L)
+(L+ M) So(1 —z, f(1 - ), L) — R(1 — =z, fo, L).
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4. Technical Lemmas.

Lemma 9. Assume (3)~(6). For any g € C%([0,1];X),Q € {L,M},v € X and
¢ € D(Q), we have

1. R(7¢7Q)7LMR(7¢7Q)7Q2R(7w7Q) S COO([Ou 1]7X)
3. (L+M —Q)Sa(-,9,Q) = Te%g(0).
Proof.

1. Since L + M — @) generates a generalized analytic semigroup, we have for any
m e N

M e LX,D((L+M-Q)™)),
and so, taking into account (7), we get for any ¢ € X

R(-,%,Q) = Qe+ M-y € 0([0, 1], X).
LMR(-%,Q) = QLM M=y € ([0, 1], X).
Q*R(-,,Q) = — Q2L M-Qy € ([0, 1], X).

2. Note that T¢ € D(Q) and apply Proposition 8.
3. We write

(L+M —Q)Ss(z,9,Q)

1
_ _Te@<L+»w__Q)/ SEHM=Q) (g(5) — g(0)) ds
0
1
—Te"@ (L+ M - Q) / e*EHM=Q) g(0)ds
0

_ 4@@@+M_@/ZMH“@@@—mww
0
_Te*@ [e(L+M7Q)g(O) - 9(0)}

_ 4@@@+M_@/ZMH“@@@—mww
0

—Te””Qe(L+M_Q)g(O) + Teng(O)'

)

but it is known that
(L+M-Q) /01 MR (g(s) = g(0))ds € (D(L+ M = Q), X), 4.
see [13], so from Theorem 6, statement 1,
~Te9(L+M—-Q) /01 eSEFM=Q) (4(5) — ¢(0)) ds € C°([0,1]; X).
Moreover, as in statement 1,
TQe MM Dyg(0) € C([0,1); X),

from which we deduce

(L+M = Q) Sa(-,9,Q) 9 Te%(0).
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Now we set for g € C?([0,1]; X),Q € {L, M}, and ¢ € D(Q)
S(z,6,9,Q) = (L+M)"'Si(z,(L+M)¢,9,Q) (11)
+(L+M)7182($797Q)
Then
Lemma 10. Assume (3)~(6). For any g € C?([0,1]; X),Q € {L, M} and
¢ € D(Q?),

we have

LMS(-,6,9,Q) = Te%g(0) + T (L + M — Q) e“Q¢.
Proof. From hypothesis (3) we get

(L+M-Q)Q=Q(L+M-Q)=LM,
SO
+Q(L+ M) (L + M~ Q) Sa(x,9,Q).

Now taking into account the fact that

{ (L+M—-Q)(L+M)"1,Q(L+M)! e LX) and
(L+M)¢ € D(@Q),

we can apply Lemma 9 to obtain

LMS(,¢,9,Q)
~p (L+M—Q)(L+M) 'e?(QT(L+ M)p+g(0))
+Q(L+ M)~'TeQg(0)
~p e ((L+M-Q)+QT)(L+M)""g(0)
+(L+M—-Q)e?QT¢
~p TeQ((I—elMY(L+M—Q)+Q)(L+ M) 'g(0)
+(L+M—-Q)e?QT¢
~y Te@ [(L + M) — el M(L+ M - Q)} (L+M)~1g(0)
+(L+M—-Q)e?QT¢
~g eQTg(0) — Te Qe+ M (L + M — Q) (L+ M)~'g(0)
+(L+M —Q)e?QT¢;
but, as in Lemma 9, statement 1,
Te Qe ™M (L + M — Q) (L + M)~"g(0) € C*([0,1]; X),

since L + M generates an analytic semigroup.
Finally

LMS(z,¢,9,Q) =4 Te%g(0) + T (L + M — Q) e Q0.

Lemma 11. Assume (3)~(6). For any g € C%([0,1]; X),Q € {L, M},
€ D(Q?) and X € p(L + M — Q),

we have

1. QS(a¢agaQ) =0 0.
2. Q%S(,¢,9,Q) ~p —Q(L+M —Q—\)""LMS(-, ¢,9.Q).
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Proof. 1. We get

QS(2,¢,9,Q) = QL+ M)"'Si(z,(L + M), 9,Q)
+Q(L + M)~ 'Ss(z,9,Q)

= Q [eIQTeﬁ + / Ceem(r, 4 M)‘lg<s)ds}
0
1
-Q(L+ M) [TemQ/ eS(L+M_Q)g(s)ds]

0

= Qlui(x)] = QL+ M)~ [wa(x)],

but L + M — @) generates a generalized analytic semigroup, so
1
| e Qg(s)ds € DL+ 31 - @) = DIQ),
0

and ws is differentiable on [0, 1]. Moreover, from Proposition 8

Qui(-) =9 e (QTo + (L + M)~'g(0)),

and since
(QT¢ + (L + M)~'9(0)) € D(L),
we deduce
Qui(-) =9 0.
Finally
QS(,0,9,Q) = 0.
2. We write

Q°S(6.9.Q) = QULAM-Q-N""(L+M-Q—-)QS(~¢,9,Q)
= QUL+M-Q-N""(L+M-0Q)QS(¢,9,Q)
—QL+M-Q-XN""Q5(.64,9.Q)
= QL+M-Q—-)\""LMS(,¢.9,Q)
“AQ(L+M-Q-X""QS(¢,9,Q),

and conclude using statement 1.

5. The main abstract results. First we show that the function u given by (9)
satisfies formally (1). Setting f = f(1 —.), one has, due to (10) and (11)

u(z) = S(z,uo, f, M)+ S(1 —x,ul,:fv,L)
_R(l _J;?anL) - R(x7f17M)'
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So
u(z) = M?S(z,uo, f, M) - M?R(x, f1, M)
+L2S(1 — z,uy, f, L) — L?R(1 — =, fo, L)
+(L+M)(L+M)"'f(x)

(L— M) (x)= (L—M)MS(x,ug, f,M)— (L — M)MR(x, f1, M)

—(L—M)LS(1 — z,uy, f, L)+ (L — M)LR(1 — x, fo, L)

—LMu(z) = —LMS(z,uo, fy M)+ LMR(z, f1, M)

_LMS(l _xaulafuL)+LMR(1 _x7f07L)7

Then, from (4)
u’(x) + 2B/ (z) + Au(z) = u"(2) + (L — M)u'(x) — LMu(x)
f(z).
Moreover
u(0) = S(0,uo, f, M) = R(0, f1, M) + S(1,us, f, L) = R(1, fo, L) = uo,
and
u(1) = S(1,ug, f, M) — R(1, f1, M) + S(0,uq, f, L) — R(0, fo, L) = uy.

We show the unicity part of our theorems in the following manner. Let u be a
(L, M)-strict solution of (1)-(2); then wu is necessarily given by the representation
(9) and this gives unicity. In fact u can be broken down into the sum

U=+ w,
where
v=LL+M)'u+ (L+M)" 1
w=M(L+ M) u—(L+M) .
After computation we get
v/ =Muv+ (L+M)"Lf
w' = —Lw— (L+ M)7Lf,
and
w = Lw+ (L+ M) f(1-.),
where @ = w(1 —.). In the case when L = M and thus
L? C —A,

it is the Krein method using square roots of operators, see [11].
Now, from (12) and (5) we deduce
v=e"M& + (L+ M)~ [ e IM f(5)ds
w=e"& + (L+ M) [ el L f(1 - s)ds.
Finally

u = v+w(l-.)

_ emM€0+ (L+M)_l /I e(w—S)Mf(S)dS
0

1
el Le) 4 (L+ M)™! / el f(0)do.

x
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Now, since ug = u(0),u; = u(1) we have

1 1
§o=T(uo—eLu1)—T(L+M)—1/ eSLf(s)ds—l—T(L—i—M)_leL/ =M £(5)ds,

0 0

1 1
I3 :T(ul—eMuo)—T(LJrM)*l/ e<1*S>Mf(s)ds+T(L+M)*1eM/ e f(s)ds,
0

0
and thus u is given by (9).

5.1. Proof of Theorem 2. Let f € CY([0,1]; X).

Assume that there exists a (L, M)-strict solution u of Problem (1)-(2). Then

ug € D(LM), uy € D(LM),
and from Lemma 9 and Lemma 10 one has
LMu(-) 9 LMS(-,ug, f, M)+ LMS(1 - - uy, f, L),
with
LMS (-, ug, f,M) =~y TeMf0)+TLe™Mug
~g T [e™f(0) + Le™ Muy|
~p T [e™(f(0) — Aug)],
LMS(1 = uy, f,L) =~y TeO=ILF0)+TMe1=)LLu,
~o T [6(17')Lf(1) + Me(li')LLul}
~g T [6(17')L (f(1) = Auy)] .
Taking into account the fact that
LMS(-,ug, f, M) € C*(10,1]; X), LMS(1 — -,uy, f, L) € C*([0,1]; X),
we get

. M (£(0) — Au) € C((0,1]; X)
LMu e C([0,1; X) <= { eI (£(1) —?4u1) € C([0,1]; X)

£(0) — Aup € D(LM)
— { f(l)—Au? e D(LM).

Conversely if ug,u1 € D(LM) and
£(i) — Au; € D(LM), i = 0,1,

then from (16)
LMS(-,ug, f, M), LMS(1 — - us, f, L) € C([0, 1]; X),
and due to Lemma 11
M2S(-,ug, f, M), L2S(1 — -, uy, f, L) € C([0,1]; X).
But

(L — M)'(-) ~ (L — M) MS(,uo, f, M) = (L = M) LS(1 = -, uy, f, L),

and thus

(L—M)u' € C([0,1]; X) and v = f — (L — M)u' + LMu € C([0,1]; X),
from which we deduce that u is a (L, M)-strict solution of Problem (1)-(2).

(16)

(17)
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5.2. Proof of Theorem 3. Assume that there exists a (L, M )-strict solution u of
Problem (1)-(2) having the maximal regularity property. Then necessarily

uo, w1 € D(LM) and

f=u"+2Bu + Au € C%([0,1]; X).
Moreover

Au = —LMu € C%([0,1]; X),
and, using (13),(14) and (15) as in the previous proof we get
M 0
0 : e M (f(0) = Aug) € C7([0,1]; X)
st e 03 = { G0 e x)
S L
f(1) = Auy € (D(L), X);_ o -

(18)

We conclude by noting that

(DM), X), g0 = (DL

= (DILM), X)1_g/3 00 -
Conversely if f € C([0,1]; X), ug,u1 € D(LM) and

f) — Au; € (D(LM),X)I_%)Oo ,  1=0,1,

then from (18)
LMS(-,ug, f, M), LMS(1 — - uy, f, L) € C?([0,1]; X),
and due to Lemma 11
M2S(-,ug, f, M), L2S(1 — -,us, f, L) € C°([0,1]; X);
but, from (17) we deduce
(L—M)u' € C%0,1); X) and v = f — (L — M)u' + LMu € C%([0,1]; X).

6. Comparison with the approach in [5]. In this section, we illustrate our
abstract theory by building a typical model of a pair of operators (L, M) satisfying

assumptions (3)~(6) as it has been done in [8].
Assume that operators A, B are such that

{ B?% — A'is closed with R_ C p (B? — A) and (19)

Je>0:VA>0,[|(M + B? - A)*1||L(X) <c/(1+2),

(then it is well known that —(B? — A)!/? is the infinitesimal generator of a gener-
alized analytic semigroup)

vy € D(B), B(B® — A)™'y = (B* - A)™' By, (20)

D((B* - 4)'/*) € D(B), (21)

L=B— (B>~ A)Y?and M = —-B — (B> — A)'/? (22)

generate a generalized analytic semigroup on X.

The following lemma has been proved in [5] (see Lemma 4, p. 426, noting that
the additional condition D(A) C D(B?) in this lemma can be dropped).
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Lemma 12. Under the hypothesis (19) we have
1. Assumption (20) is equivalent to

D(B(B? — A)) Cc D((B®> — A)B) and 93
{ Wz e D(B(B* — A)), B(B?— A)z — (B® — A)B=. (23)
2. Assumption (20) is equivalent to
Yy € D(B), (B?> - A)~'/?y € D(B) and
{ B(B2 _ A)—1/2y _ (B2 _ A)_1/2By. (24)

We can find, in [8], the proof of the next Lemma which precises the domains of
L and M.

Lemma 13. Suppose that (19)~(22) hold. Then, one has

D(M) = D(L) = D((B* — A)'/?)
{ D(ML) = D(LM) = D(B? — A)
ML =LM C —A,

and

(L+M)" = —%(32 — A7V e L(X).

Note that ML = LM = —A if and only if D(A) C D(B?).

Hence, (19)~(22) imply (3)~(6) and we can apply Theorem 2 and Theorem 3.

7. Applications.

7.1. First example. Consider C' which generates a generalized bounded analytic
semigroup on X and assume that 0 € p(C).
Set

B=0bC, A=—aC?

where

a,beR, a>0, vVb2+a > 0.
Then (3)~(6) are verified for
L=0b+Vb*+a)C
M = (=b+Vb?>+a)C,

and so we can solve the following abstract problem

{ u”(z) + 2bBu/(x) — aB?u(z) = f(z), = € (0,1),
u(0) = ug, u(l) = uy.

As an example, take C' defined in X = C([0,1]) by

D(C) = {v e C?(0,1]) : v(0) = v(1) =0
{ Cl(} :) v”,{v € D((C[') D . } (25)
Then

(4)

{ D(A) = {v € C*([0,1]) : v(0) = v(1) =v"(0) ="(1) =0}
Av = —av ", v € D(A).
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So we can deal with the problem
2u 03u 0*u
it o e
2 (& Y) + 95707 (z,y) By (z,y)
=flz,y), (z,9) €(0,1)x(0,1)

0% 0%

u(z,0) =u(z,1) = 8—y2(x,0) = 8—y2(:v, 1)=0, z€(0,1)
U(O,y) = U’O(y)v u(lay) = Ul(y), Yy € (Oa 1)
Taking into account the fact that D(C') is not dense since

D(C) = {v € C([0,1)) : v(0) = v(1) = 0},

and applying Theorem 2, we get:
Theorem 14. Let, 0 €]0,1] and f € C%([0,1]; X). Then the two following asser-
tions are equivalent.
1. Problem (26) has a unique strict solution w.
2. Forie {0,1}
u; € C4([0,1]), ui(0) = u;(1) = u/(0) = u/(1) =0 and
£, ) =i () € C(o,1)),
£6.0) = V() = £(i,1) —u” (1) = 0.
Now, let 6 €]0, 1], then

(D(A)vX)l—g, = (D(M)vX)l—e,oo = (D(C)vX)l—é),aw

and it is well known that this last space coincides with
{ve Z%(0,1]) : v(0) = v(1) = 0},

where
C? (0,1]) if 20 < 1
Z9([0,1])) =< Ct*([0,1]) if 260 =1
Ch29=1(]0,1]) if 20 > 1.

Here C*(]0,1]) is the Zigmund space

{v e C([0,1]) / ysig [v(ys) — 21}((& fz;)ﬂ) +u(y2)l < oo} .

We can apply Theorem 3, to obtain

Theorem 15. The two following assertions are equivalent.
1. Problem (26) has unique strict solution u satisfying the mazimal reqularity
property
u", Bu/, Au € C?([0,1]; X).
2. feC%0,1]; X) and fori € {0,1}
u; € C4([0,1]), ui(0) = u;(1) = u/(0) = /(1) =0 and
1) = () € 2°(0,1]),
£6,0) =" (0) = £(i,1) = u;” (1) = 0.
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7.2. Second example. Let 6 €]0, 7| and set
Yo ={A e C\{0} / |arg\| < 6}.
We say that an operator Q on X belongs to Sect(6) if

o(Q)CYgandfor§ <0 <m
sup__ [[AA — Q)_lHL(X) < +oo.

AEC \ 2y
Let us recall the following Scaling Property
(Q € Sect(#) and «a €]0,7/0]) = Q% € Sect(ab), (27)

see Haase [10], Proposition 2.2. p. 58.

Note also that @ € Sect(d) for some 6 €]0,7/2[ if and only if —Q generates a
generalized bounded analytic semigroup on X.

Consider C' an operator on X such that

(28)

C and — C? generate a generalized
bounded analytic semigroup on X,

and
0 € p(0).
Note that if —C' € Sect(#) with 6 €]0, 7/4[, then from (27)
C? € Sect(26), 20 €]0,7/2],

and we get (28).
Set
B=b(C+C?), A=4b°C?,
where b > 0.
Then (3)~(6) are verified for

L =2bC, M = —2bC",
and so we can solve the following abstract problem

{ u"(z) 4+ 2b (C + C?) v/ (z) + 40*C3u(z) = f(z), = € (0,1),
u(0) = ug, u(l) = us.

Then C given by (25) can be used again to furnish a concrete example.
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