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Abstract. This paper is concerned with the Belousov-Zhabotinskii reaction
model. We consider the reaction-diffusion model due to Keener-Tyson. After
constructing a dynamical system, we will construct exponential attractors and
will estimate the attractor dimension from below. In particular, it will be shown
that, as the excitability ε > 0 tends to zero, the attractor dimension tends
to infinity, although the exponential attractor can depend on the excitability
continuously.

1. Introduction. The Belousov-Zhabotinskii reaction is known as a typical phe-
nomenon of self-organization in the chemical reactions (cf. Nicolis and Prigogine
[12, Chapter 13]). In 1986, Keener and Tyson [6] introduced a simple mathematical
model 




∂u

∂t
= εa∆u+ ε−1

[
u(1 − u) − cv

(u− q

u+ q

)]
,

∂v

∂t
= εb∆v + u− v

for investigating the mechanics of the Belousov-Zhabotinskii reaction which is con-
sidered to consists of more than ten elementary chemical reactions. Here, u and
v denote the concentrations in a vessel of HBrO2 and Ce4+, respectively, whereas
a > 0 and b > 0 represent the diffusion rate of each species. Finally, ε, q and c are
positive constants. By some chemical reason, q is such that 0 < q < 1.
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We are concerned with the initial-boundary value problem for the Keener-Tyson
model





∂u

∂t
= a∆u+

1

ε2

[
u(1 − u) − cv

(u− q

u+ q

)]
in Ω × (0,∞),

∂v

∂t
= b∆v +

1

ε
[u− v] in Ω × (0,∞),

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω × (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω

(1)

in a three-dimensional C2 or convex, bounded domain Ω. Notice that we used the
scaling of the time variable τ = εt and rewrite the new variable τ to t, so that the
diffusion coefficients of u and v are again a and b, respectively. As before, a, b, c
and q are fixed constants. In turn, 0 < ε ≤ 1 is treated as a control parameter
of the system. Actually, ε is taken to represent excitability of the reaction in the
vessel.

The aim of this note is to prove that Problem (1) generates a dynamical system
possessing finite-dimensional exponential attractors. Besides, we estimate their di-
mension from below, showing that, provided that |c− 1| < 1 and q is small enough,
the exponential attractors dimension increases up to infinity, as the control param-
eter ε > 0 goes to zero. On the other hand, by their robustness, it is always proved
that exponential attractors can dependent continuously on the parameter ε.

Problem (1) always has two nonnegative homogeneous stationary solutions, a
trivial solution (0, 0) and a nontrivial solution (u, v), where u = v is a positive
number given by

u = v =
[
1 − c− q +

√
(c+ q − 1)2 + 4q(c+ 1)

]
/2. (2)

The trivial solution is easily seen to be always unstable. In turn, (u, v) is stable
if ε is close to 1, but it becomes unstable if |c − 1| < 1 and ε together with q is
small enough. Therefore, in the latter case, every equilibrium that corresponds to
a homogeneous stationary solution is unstable. This then previses that (1) must
have some temporal or spatial pattern solutions. Moreover, since the dimension
of attractors increases as ε → 0, (1) may then exhibit solutions representing more
complex patterns.

The notion of exponential attractors has been introduced in 1994 by Eden, Foias,
Nicolaenko and Temam [10] in the theory of infinite-dimensional dynamical systems.
The exponential attractor is a compact and positively invariant set having finite frac-
tal dimension which contains the global attractor and attracts every trajectory at
an exponential rate. It is also known that the exponential attractor enjoys stronger
robustness than the global attractor. When the semigroup of a dynamical system
depends continuously on a parameter, the global attractor is in general only upper-
semicontinuous. In turn, under some reasonable assumptions, if an exponential
attractor exists, it can depend continuously on the parameter. Such a continuous
dependence was recently studied in a general framework by Efendiev and Yagi [5].
When the underlying space is a Hilbert space, it is known by the same reference
[10] quoted above that the squeezing property of semigroup implies existence of ex-
ponential attractors and provides a sharp estimate of attractor dimensions. When
the underlying space is a Banach space, it is known by Efendiev, Miranville and
Zelik [3] that the compact smoothing property of semigroup implies existence of
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exponential attractors (Theorem 3.1). The methods for constructing exponential
attractors for the semilinear abstract parabolic evolution equations were studied in
the reference [10]. On the other hand, those for the quasilinear ones were studied by
Aida, Efendiev and Yagi [1]. Finally, the methods for estimating attractor dimen-
sions from below were presented by Aida, Tsujikawa, Efendiev, Yagi and Mimura
[2].

2. Global solutions.

2.1. Abstract formulation. Let us formulate (1) as the Cauchy problem for a
semilinear abstract equation in a suitable space of functions in Ω.

We first recall the known results in the theory on semilinear abstract parabolic
evolution equations. Consider the Cauchy problem





dU

dt
+AU = F (U), 0 < t <∞,

U(0) = U0

(3)

in a Banach space X with norm ‖ · ‖. Here, A is a sectorial linear operator of X
the spectrum of which is contained in a sectorial domain Σ = {λ ∈ C; | argλ| < ω}
with some angle 0 < ω < π

2 , and the resolvent satisfies the estimate

‖(λ−A)−1‖L(X) ≤
M

|λ| + 1
, λ 6∈ Σ (4)

with some constant M > 0. Then we denote by Aη the η-fractional power of A,
whose domain D(Aη) is an intermediate space between D(A) and X , provided that
η ∈ [0, 1). It is well known that the following interpolation inequality holds true

‖AηU‖ ≤ C‖AU‖η‖U‖1−η, U ∈ D(A).

The operator F is a nonlinear operator from D(Aη) to X , where 0 ≤ η < 1 is
some exponent. And, F is assumed to satisfy a Lipschitz condition of the form

‖F (U) − F (Ũ)‖ ≤ ϕ(‖AαU‖ + ‖AαŨ‖)
× [‖Aη(U − Ũ)‖ + (‖AηU‖ + ‖AηŨ‖)‖Aα(U − Ũ)‖], U, Ũ ∈ D(Aη) (5)

with a second exponent α such that 0 ≤ α ≤ η < 1, where ϕ(·) is some continuous
increasing function. The initial value U0 is taken from D(Aα). Let 0 < R < ∞ be
any given number. Then, U0 is assumed to satisfy

‖AαU0‖ ≤ R. (6)

Theorem 2.1 ([7, Theorem 3.1]). Let 0 ≤ α ≤ η < 1 and let (4), (5) and (6) be

satisfied. Then, (3) has a unique local solution in the function space:

U ∈ C([0, TR];D(Aα)) ∩ C1((0, TR];X) ∩ C((0, TR];D(A)),

where TR > 0 is determined by R alone. Moreover, the estimate

t1−α‖AU(t)‖ + tη−α‖AηU(t)‖ + ‖AαU(t)‖ ≤ CR, 0 < t ≤ TR (7)

holds for the local solutions with a constant CR > 0 determined by R alone.
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It is in addition possible to derive the Lipschitz dependence of the local solutions
with respect to the initial values satisfying (6). To see this, consider a closed ball

BR ≡ B
D(Aα)

(0;R) of D(Aα) centered at 0 with the radius R. As stated above, for
each U0 ∈ BR, a unique local solution U to (3) exists on an interval [0, TR]. Let
U, V be local solutions of (3) for initial values U0, V0 ∈ BR, respectively. Then, it
is valid that

tη‖Aη[U(t)−V (t)]‖+‖U(t)−V (t)‖ ≤ CR‖U0−V0‖, U0, V0 ∈ BR; 0 ≤ t ≤ TR (8)

with some constant CR > 0. For the proof, refer to [7].

In the second half of this subsection, we will apply the general results to (1) by
setting the underlying space

X =

{(
f
g

)
; f ∈ L2(Ω) and g ∈ L2(Ω)

}
. (9)

Let A be a linear operator of X given by

AU =

(
A1 0
0 A2

)(
u
v

)
, U ∈ D(A) = H

2
N (Ω) ≡ [H2

N (Ω)]2. (10)

Here, A1 and A2 are realizations of −a∆+ 1 and −b∆+ 1 under the homogeneous
Neumann boundary conditions ∂u

∂n
= 0 and ∂v

∂n
= 0 on ∂Ω, respectively. Thanks

to [11, Theorem 3.2.1.3], Ai (i = 1, 2) are positive definite self-adjoint operators
of L2(Ω) with domains H2

N (Ω) = {u ∈ H2(Ω); ∂u
∂n

= 0 on ∂Ω}. Furthermore,
according to [9], the domains of their fractional powers are characterized by

{
D(Aθ

i ) = H2θ(Ω), if 0 ≤ θ < 3
4 ,

D(Aθ
i ) = H2θ

N (Ω) ≡ {u ∈ H2θ(Ω); ∂u
∂n

= 0 on ∂Ω}, if 3
4 < θ ≤ 1,

(11)

where i = 1, 2. As a consequence, A is a positive definite self-adjoint operator of X
with domain H2

N(Ω) (which is the product space ofH2
N (Ω) as denote above). In view

of (11), the domains of the fractional powers Aθ are also given by D(Aθ) = H2θ(Ω)
if 0 ≤ θ < 3

4 and by D(Aθ) = H2θ
N (Ω) if 3

4 < θ ≤ 1, H2θ(Ω) and H2θ
N (Ω) being the

product spaces of H2θ(Ω) and H2θ
N (Ω), respectively.

We introduce a nonlinear operator Fε :D(Aη) → X given by

Fε(U) =

(
u+ ε−2[u(1 − u) − cv(u− q)(|u| + q)−1]

ε−1u+ (1 − ε−1)v

)
, U ∈ D(Aη), (12)

where the exponent η is fixed as 3
4 < η < 1. Since H2η

N (Ω) ⊂ H2η(Ω) ⊂ L∞(Ω) due
to the Sobolev embedding theorem, it follows that D(Aη) ⊂ L∞(Ω). It is immediate
to verify the following Lipschitz condition on Fε:

‖Fε(U) − Fε(Ũ)‖ ≤ Cε(‖AηU‖ + ‖AηŨ‖ + 1)‖U − Ũ‖, U, Ũ ∈ D(Aη). (13)

Here, for any fixed 0 < ε0 < 1, the constant Cε > 0 is uniformly bounded for
ε ∈ [ε0, 1].

This shows that (5) is fulfilled with α = 0 and the η fixed above. In view of this
fact, we are led to set the space of initial values as

K =

{(
u0

v0

)
; 0 ≤ u0 ∈ L2(Ω) and 0 ≤ v0 ∈ L2(Ω)

}
. (14)

In this manner, we have seen that, for any U0 ∈ K, the abstract equation of form
(3) has a unique local solution in the function space:

U ∈ C((0, TU0
];D(A)) ∩ C([0, TU0

];X) ∩ C1((0, TU0
];X),
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equivalently,

u, v ∈ H(TU0
) ≡ C((0, TU0

];H2
N (Ω))∩C([0, TU0

];L2(Ω))∩C1((0, TU0
];L2(Ω)), (15)

here TU0
> 0 depends only on the norm ‖U0‖.

2.2. Nonnegativity of local solutions. For U0 ∈ K, let U = t(u, v) be the local
solution of (3) constructed above. By the usual truncation methods, we can show
that u(t) ≥ 0 and v(t) ≥ 0 for every 0 < t ≤ TU0

.
We thus conclude that, for any U0 ∈ K, (3) possesses a unique local solution in

the function space:
0 ≤ u, v ∈ H(TU0

), (16)

TU0
> 0 being determined by the norm ‖U0‖ alone.

2.3. A priori estimates. Let us see next a priori estimates of the local solutions.
For U0 ∈ K, let U = t(u, v) denote any local solution of (3) on an interval [0, TU ]

in the function space:

0 ≤ u, v ∈ H(TU ) (for the space H(TU ), see (15)). (17)

Consider the scalar product of the equation of (3) and U in X . After some
calculations, it is possible to obtain that

1

2

d

dt
‖U‖2 + ‖U‖2 ≤ Cε−3.

Solving this differential inequality, we conclude that

‖U(t)‖2
L2

≤ e−t‖U0‖2
L2 + C(1 − e−t)ε−3, 0 ≤ t ≤ TU . (18)

In particular,

‖U(t)‖X ≤
√
‖U0‖2

X + Cε−3, 0 ≤ t ≤ TU . (19)

2.4. Construction of global solutions. We remember that Theorem 2.1 ensures
the local existence of solution to Problem (1) on some interval [0, TU0

], depending
only on ‖U0‖. Then we have obtained the a priori estimate (19). By the standard
argument of continuation of local solutions, these two facts infer the global existence
of solution. Thus, for any U0 ∈ K, (1) possesses a unique global solution in the
function space:

0 ≤ u, v ∈ C((0,∞);H2
N (Ω)) ∩ C([0,∞);L2(Ω)) ∩ C1((0,∞);L2(Ω)). (20)

For U0 ∈ K, let U(t;U0) denote the global solution. From (18) it is clear that

‖U(t;U0)‖X ≤ e−
t
2 ‖U0‖X + Cε−

3

2 , 0 ≤ t <∞; U0 ∈ K. (21)

Moreover, on account of (7),

‖AU(t;U0)‖X ≤ (1 + t−1)p1,ε(‖U0‖X), 0 < t <∞; U0 ∈ K (22)

is obtained as well, where p1,ε(·) is a suitable continuous increasing function.
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3. Dynamical system.

3.1. Construction of dynamical system. Let us first recall some basic matters
on the dynamical system. Let X be a Banach space and let K be a subset of X , K
being a metric space equipped with the distance induced from the norm of X . Let
S(t), 0 ≤ t < ∞ be a family of mappings from K into itself having the following
properties: i) S(0) = 1 (the identity mapping); ii) S(t)S(s) = S(t+s), 0 ≤ t, s <∞
(the semigroup property); and iii) the mapping G : [0,∞) × K → K, (t, U0) 7→
S(t)U0, is continuous. Such a family is called a continuous (nonlinear) semigroup
acting on K. The image of S(·)U0 drawn in K is called the trajectory starting from
K. The whole of such trajectories is the dynamical system (S(t),K, X), where K
and X are called the phase-space and the universal space, respectively.

A subset A of the phase-space K is the global attractor of (S(t),K, X) if the fol-
lowing conditions are satisfied: (1) A is a compact subset of X ; (2) A is an invariant
set, i.e., S(t)A = A for every 0 < t < ∞; and (3) A attracts every bounded subset
of K, namely, for any bounded subset B ⊂ K, it holds that limt→∞ h(S(t)B,A) = 0,
where h(B1, B2) = supU∈B1

infV ∈B2
‖U−V ‖ denotes the Hausdorff pseudodistance

between two sets B1 and B2. In turn, M ⊂ K is called an exponential attractor
of (S(t),K, X) if the following conditions are satisfied: (1) M is a compact subset
of X with finite fractal dimension dF (M); (2) M is a positively invariant set, i.e.,
S(t)M ⊂ M for every 0 < t < ∞; and (3) M contains the global attractor A and
attracts every bounded subset of K at an exponential rate, namely, there exists a
positive exponent k > 0 such that, for any bounded subset B ⊂ K, it holds that
h(S(t)B,M) ≤ CBe

−kt with some constant CB > 0 depending on B.

Let us now verify that our problem (1) defines a dynamical system with the
phase-space K and the universal space X given by (14) and (9), respectively. Then,
for 0 ≤ t < ∞, we put S(t)U0 = U(t;U0), where U(t;U0) is the global solution of
(1) with initial value U0 ∈ K. Then, S(t) is a semigroup acting on K. In addition,
thanks to (8), for any 0 < R <∞, there exist 0 < TR <∞ and a constant LR > 0
such that

‖S(t)U0 − S(t)V0‖ ≤ LR‖U0 − V0‖, 0 ≤ t ≤ TR; U0, V0 ∈ KR,

where KR ≡ K ∩ B
X

(0;R). From this, S(t) is shown to be continuous on K for
0 ≤ t <∞. Consequently, a dynamical system (S(t),K, X) is determined.

3.2. Compact smoothing of S(t). Consider a dynamical system (S(t),K, X) in
a Banach space X . We recall the conditions on S(t) which ensure existence of
exponential attractors.

We make the following assumptions:

1. There exists an absorbing and positively invariant set X ⊂ K of S(t) which is
a compact subset of X ;

2. There exist a Banach space Z which is compactly embedded in X and a time
t∗ > 0 such that

‖S(t∗)U0 − S(t∗)V0‖Z ≤ D‖U0 − V0‖X , U0, V0 ∈ X (23)

with some constant D > 0;
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3. G(t, U0) = S(t)U0 satisfies the Lipschitz condition

‖G(t, U0) −G(s, V0)‖X ≤ L(|t− s| + ‖U0 − V0‖X),

t, s ∈ [0, t∗]; U0, V0 ∈ X (24)

with some constant L > 0.

Theorem 3.1 ([3, 8]). Let the conditions 1∼3 in Subsection 3.2 be satisfied. Then

(S(t),K, X) possesses a family of exponential attractors Mθ, where 0 < θ < 1
2D2 ,

with dimension

dF (Mθ) ≤ log Kθ/ log 1
aθ

(25)

attracting all bounded sets of K at an exponential rate with k = (t∗)−1 log a−1
θ ,

where aθ = 2D2θ and Kθ is the minimal number of balls with radii θ in X which

cover the closed ball B
Z
(0; 1).

Let us apply this theorem to our dynamical system (S(t),K, X). The dissipative
estimate (21) together with (22) immediately yields existence of an absorbing set
B ⊂ K of S(t) which is a compact set of X and is a bounded set of D(A). Then,
we put

X =
⋃

tB≤t<∞

S(t)B ⊂ B (closure in the space X),

where tB > 0 is a time when B is absorbed by itself. It is easy to see that this
set is still positively invariant and absorbing in K, compact in X and bounded in
D(A). In particular, we can fix R > 0 such that X ⊂ BX(0;R) and Z = D(Aη);
then, (23) holds true thanks to (8), provided that t∗ > 0 is suitably chosen. Finally,
(24) is verified directly by using boundedness of X in D(A). Theorem 3.1 then
concludes that (S(t),K, X) possesses a family of exponential attractors Mθ whose
fractal dimensions are estimated by (25).

3.3. Dynamical system in Dβ. For any exponent 0 < β < 1, we can repeat a
similar argument for constructing a dynamical system, taking as universal space and
phase space Dβ = D(Aβ) and Kβ = K ∩Dβ , respectively, so getting (S(t),Kβ ,Dβ).
Then it is immediate to check that the inertial sets Mθ given by Theorem 3.1 are
exponential attractors for the dynamical system (S(t),Kβ ,Dβ), as well.

4. Exponential attractors for (1). In this section, we want to study the depen-
dence of the exponential attractors on the control parameter ε. For this reason,
we denote the dynamical system corresponding to Problem (1) for a fixed ε by
(Sε(t),K, X).

4.1. Continuous dependence on the parameter ε. In the paper Efendiev-Yagi
[5] (cf. also [4]), continuous dependence of exponential attractors on a parameter
was studied in a general framework. Let us review their results. Consider a family
of dynamical systems (Sξ(t),Xξ, X) in a Banach space X which are parameterized
by 0 ≤ ξ ≤ 1, the phase space Xξ being a compact subset of X for each ξ. Let us
assume the following conditions:
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1. There exist a Banach space Z which is compactly embedded in X and a time
t∗ > 0 such that

‖Sξ(t
∗)U0 − Sξ(t

∗)V0‖Z ≤ D‖U − V ‖X , U0, V0 ∈ Xξ

with some uniform constant D > 0 independent of 0 ≤ ξ ≤ 1;
2. Each Gξ(t, U0) = Sξ(t)U0 satisfies

‖Sξ(t)U0 − Sξ(s)V0‖X ≤ L(|t− s| + ‖U0 − V0‖X), 0 ≤ s, t ≤ t∗, U0, V0 ∈ Xξ

with some uniform constant L > 0 independent of 0 ≤ ξ ≤ 1;
3. There exists an absorbing set B which is uniform in ξ, namely, B ⊂ ∩0≤ξ≤1Xξ

and

Sξ(t)Xξ ⊂ B for every t ≥ t∗

for all 0 ≤ ξ ≤ 1;
4. As ξ → 0, Sξ(t) converges to S0(t) on B at the rate

sup
U∈B

sup
0≤t≤t∗

‖Sξ(t)U − S0(t)U‖X ≤ Kξ

with some constant K ≥ 1 for all 0 ≤ ξ ≤ 1.

As proved by [5, Theorem 3.1], the conditions 1∼4 imply the following result.

Theorem 4.1. Let the conditions 1∼4 in Subsection 4.1 be satisfied. Then one

can construct a family of exponential attractors Mξ of (Sξ(t),Xξ, X) for 0 ≤ ξ ≤ 1,
such that

d(Mξ,M0) ≤ Cξκ

for some κ ∈ (0, 1) and some positive constant C. Here, d(B1, B2) denotes the

distance of two sets B1, B2, i.e., d(B1, B2) = max{h(B1, B2), h(B2, B1)}.

We intend to apply this theorem to our dynamical system. But we realize that
as ε → 0, the estimates (21) and (22) lose uniformity. So, letting 0 < ε0 < 1
be arbitrarily fixed, we assume that the control parameter ε varies in the range
ε ∈ [ε0, 1] only. Then, it is possible by similar techniques as before to verify that
the structural conditions 1∼4 in Subsection 4.1 are fulfilled by (Sε(t),K, X) for
ε ∈ [ε0, 1].

As a result, the following statement is true. Take any ε such that ε0 ≤ ε ≤ 1.
Then, we can construct an exponential attractor Mε̃ of (Sε̃(t),K, X) for each ε̃ ∈
[ε0, 1] that depends continuously on ε̃ at ε in such a way that

d(Mε̃,Mε) ≤ C|ε̃− ε|κ, ε0 ≤ ε̃ ≤ 1

with some exponent 0 < κ < 1.

4.2. Lower estimate of dF (Mε). We begin with recalling the general results. In
a Banach space X , consider the Cauchy problem for a semilinear evolution equation
of form (3). Let the structural conditions (4) and (5) be satisfied, and let the a

priori estimate

‖AαU(t;U0)‖ ≤ p(‖AαU0‖), 0 ≤ t ≤ TU

hold for all local solutions with some continuous increasing function p(·). Then,
by the same argument as in Subsection 2.4, the global existence of solution for
U0 ∈ D(Aα) is established. Furthermore, a dynamical system (S(t),Dα,Dα) is
defined, where Dα = D(Aα) is a Banach space endowed with the graph norm
‖Aα · ‖. Let U ∈ D(A) be a stationary solution to (3). Clearly, U is an equilibrium
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of (S(t),Dα,Dα). We assume that F :D(Aη) → X is C1,1 in BD(Aη)(U ; r) for some
r > 0. More precisely, we make the following assumptions:

‖F ′(U)V ‖ ≤ ψ(‖AαU‖)‖AηU‖‖AαV ‖, U ∈ BD(Aη)(U ; r), V ∈ D(Aη), (26)

‖[F ′(U) − F ′(Ũ)]V ‖ ≤ ψ(‖AαU‖ + ‖AαŨ‖)
× ‖Aη(U − Ũ)‖‖AαV ‖, U, Ũ ∈ BD(Aη)(U ; r); V ∈ D(Aη) (27)

with some continuous increasing function ψ(·).
By [2, Sections 5 and 6], the following results are known.

Theorem 4.2. Let U be an equilibrium of (S(t),Dα,Dα) and let (26) and (27) be

satisfied with some r > 0. If the spectrum of A−F ′(U) is separated by the imaginary

axis, i.e., σ(A − F ′(U)) ∩ iR = ∅ and if σ(A − F ′(U)) ∩ {λ ∈ C; Reλ < 0} 6= ∅,
then U is unstable and has a smooth local unstable manifold M(U,O).

In order to apply this theorem, let us find first homogeneous stationary solutions
of (1). Obviously, for u ≥ 0 and v ≥ 0, the system of equations




u(1 − u) − cv

(u− q

u+ q

)
= 0,

u− v = 0

has two solutions (0, 0) and (u, v), where u = v 6= 0. Here, u is a unique positive
solution given by (2) to the quadratic equation

(u+ q)(1 − u) = c(u− q).

Then, U = t(u, v) is an equilibrium of (Sε(t),Kβ ,Dβ). Let Mε(U ) be the unstable

manifold of U and Mε(U,O) be a local unstable manifold of U in (Sε(t),Kβ ,Dβ),

where O is a neighborhood of U in Kβ . By definition, we have

Mε(U,O) ⊂ Mε(U) ⊂ Mε.

Remember that 3
4 < β < 1 and that Dβ ⊂ C(Ω). On account of this fact, we can

consider a complexified version of Problem (1) localized at the equilibrium point U ,
by introducing the nonlinear operator

F̃ε(U) =

(
χ(u) + ε−2

[
χ(u)(1 − χ(u)) − cχ(v)

(
χ(u)−q

χ(u)+q

)]

ε−1χ(u) + (1 − ε−1)χ(v)

)
,

U =

(
u
v

)
∈ D(Aη).

Here, χ(u) is a cutoff function of u in a complex neighborhood of u such that
χ(u) ≡ u for |u − u| < u and χ(u) = u−u

|u−u|u + u for |u − u| ≥ u. It is clear that

|χ(u) + q| ≥ q for u ∈ C, |χ(u)| ≤ 2u for u ∈ C and |χ(u1) − χ(u2)| ≤ |u1 − u2|
for u1, u2 ∈ C. Since u = v, χ(v) plays also a cutoff function of v in the same
neighborhood of v. Then the complexified version of (1) is written by





dU

dt
+AU = F̃ε(U), 0 < t <∞,

U(0) = U0,
(28)

where A is the same sectorial operator of X defined by (10).
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Problem (28) also generates a dynamical system with the phase space Dβ and

the universal space Dβ , respectively, which will be denoted by (S̃ε(t),Dβ ,Dβ). We

can construct exponential attractors M̃ε for (S̃ε(t),Dβ ,Dβ), as well. Of course,

U is an equilibrium of (S̃ε(t),Dβ ,Dβ). In a suitable neighborhood of U , any tra-

jectory of (Sε(t),Kβ ,Dβ) is that of (S̃ε(t),Dβ ,Dβ). We will then apply Theorem

4.2 to (S̃ε(t),Dβ ,Dβ) with α = β. It is not difficult to verify that F̃ε is C1,1 in a

neighborhood of U and that the derivative F̃ε
′ satisfies the conditions (26) and (27).

Put 


f(u, v) = u(1 − u) − cv

(u− q

u+ q

)
,

g(u, v) = u− v.

Then it is easy to see that



fu = fu(u, v) = 1 − 2u− 2cqu

(u+ q)2
, fv = fv(u, v) = u− 1,

gu = gu(u, v) = 1, gv = gv(u, v) = −1.
(29)

Furthermore, we observe that

F̃ε
′(U) =

(
1 + ε−2fu(u, v) ε−2fv(u, v)
ε−1gu(u, v) 1 + ε−1gv(u, v)

)
.

By the similar argument as in [2], we are able to characterize the spectrum of

A− F̃ε
′(U). In fact, it is proved that λ ∈ σ(A− F̃ε

′(U)) if and only if λ ∈ σ(Ak) at

least for some k = 0, 1, 2, . . .. Here, Ak is a part of A−F̃ε
′(U) in the two-dimensional

subspace Xk of X defined by

Xk =

{
U = ξk

(
φk

0

)
+ ηk

(
0
φk

)
; ξk, ηk ∈ C

}
, k = 0, 1, 2, . . . ,

where {φk}k=0,1,2,... is an orthonormal basis of L2(Ω) consisting of real eigenfunc-
tions of −∆ in Ω under the homogeneous Neumann boundary conditions. Moreover,
the transformation matrix of Ak is given by

(
aµk − ε−2fu −ε−1gu

−ε−2fv bµk − ε−1gv

)
, k = 0, 1, 2, . . . ,

where µk ≥ 0 denotes the eigenvalue corresponding to φk. Therefore, we have
σ(Ak) = {λ′k, λ′′k}, where λ′k and λ′′k are solutions of a quadratic equation

λ2 − [(a+ b)µk − ε−1(ε−1fu + gv)]λ

+ abµ2
k − ε−1(agv + ε−1bfu)µk + ε−3(fugv − fvgu) = 0.

Hence, σ(A − F̃ ′
ε(U)) = ∪k=0,1,2,...{λ′k, λ′′k}.

As seen from (29), it always holds that fu(u, v) < 1. When fu(u, v) ≤ 0, we can

observe that σ(Ak) ⊂ {λ ∈ C; Reλ > 0} for every k; therefore, σ(A − F̃ε
′(U)) ⊂

{λ ∈ C; Reλ > 0} whatever ε > 0 is. This means in this case that U is stable.
Even when 0 < fu(u, v) < 1 (indeed this can take place if |c− 1| < 1 and q is small
enough), if ε is sufficiently large in such a way that

ε > max

{
b2f

2

u(√
ab(fugv−fvgu)+

√
−abfvgu

)
2 , fu

}
,
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then σ(A− F̃ε
′(U)) ⊂ {λ ∈ C; Reλ > 0} and U is still stable. But, if 0 < fu(u, v) <

1 (as mentioned, this is the case when |c − 1| < 1 and q is small enough) and if
ε > 0 is sufficiently small together with the supplement conditions that



abµ2

k − ε−2(εagv + bfu)µk + ε−3(fugv − fvgu) 6= 0 for all k; and,

−εagv + bfu > (a+ b)

√
−εfvgu,

then it is true that σ(A − F̃ε
′(U)) ∩ iR = ∅ and σ(A − F̃ε

′(U)) ∩ {λ ∈ C; Reλ <
0} 6= ∅. Hence, in this case, U is unstable. Furthermore, counting the number of

eigenvalues of A − F̃ε
′(U) lying in {λ ∈ C; Reλ < 0}, the dimension of a local

unstable manifold M̃ε(U,O) of U is estimated by dim M̃ε(U,O) ≥ Cε−3. In

turn, since any exponential attractor M̃ε of (S̃ε(t),Dβ ,Dβ) contains M̃ε(U,O), it
is deduced that

dim M̃ε ≥ dim M̃ε(U,O) ≥ Cε−3.
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